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We articulate a vision of artificial intelligence (AI) as normal technology. To view Al as
normal is not to understate its impact—even transformative, general-purpose technologies
such as electricity and the internet are “normal” in our conception. But it is in contrast to
both utopian and dystopian visions of the future of Al which have a common tendency to
treat it akin to a separate species, a highly autonomous, potentially superintelligent entity.

The statement “Al is normal technology” is three things: a description of current Al, a pre-
diction about the foreseeable future of Al, and a prescription about how we should treat
it. We view Al as a tool that we can and should remain in control of, and we argue that this
goal does not require drastic policy interventions or technical breakthroughs. We do not
think that viewing Al as a humanlike intelligence is currently accurate or useful for under-
standing its societal impacts, nor is it likely to be in our vision of the future.
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The normal technology frame is about the relationship between technology and society.
It rejects technological determinism, especially the notion of Al itself as an agent in de-
termining its future. It is guided by lessons from past technological revolutions, such as
the slow and uncertain nature of technology adoption and diffusion. It also emphasizes
continuity between the past and the future trajectory of Al in terms of societal impact and
the role of institutions in shaping this trajectory.

In Part I, we explain why we think that transformative economic and societal impacts will
be slow (on the timescale of decades), making a critical distinction between Al methods,
Al applications, and Al adoption, arguing that the three happen at different timescales.

In Part II, we discuss a potential division of labor between humans and Al in a world with
advanced Al (but not “superintelligent” AI, which we view as incoherent as usually con-
ceptualized). In this world, control is primarily in the hands of people and organizations;
indeed, a greater and greater proportion of what people do in their jobs is Al control.

In Part III, we examine the implications of Al as normal technology for Al risks. We ana-
lyze accidents, arms races, misuse, and misalignment, and argue that viewing Al as nor-
mal technology leads to fundamentally different conclusions about mitigations compared
to viewing Al as being humanlike.

Of course, we cannot be certain of our predictions, but we aim to describe what we view
as the median outcome. We have not tried to quantify probabilities, but we have tried to
make predictions that can tell us whether or not Al is behaving like normal technology.

In Part IV, we discuss the implications for Al policy. We advocate for reducing uncertainty
as a first-rate policy goal and resilience as the overarching approach to catastrophic risks.
We argue that drastic interventions premised on the difficulty of controlling superintelli-
gent Al will, in fact, make things much worse if Al turns out to be normal technology— the
downsides of which will be likely to mirror those of previous technologies that are de-
ployed in capitalistic societies, such as inequality.

The world we describe in Part Il is one in which Al is far more advanced than it is today.
We are not claiming that Al progress—or human progress—will stop at that point. What
comes after it? We do not know. Consider this analogy: At the dawn of the first Industrial
Revolution, it would have been useful to try to think about what an industrial world would
look like and how to prepare for it, but it would have been futile to try to predict electricity
or computers. Our exercise here is similar. Since we reject “fast takeoff” scenarios, we do
not see it as necessary or useful to envision a world further ahead than we have attempted
to. If and when the scenario we describe in Part Il materializes, we will be able to better
anticipate and prepare for whatever comes next.
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A note to readers. This essay has the unusual goal of stating a worldview rather than de-
fending a proposition. The literature on Al superintelligence is copious. We have not tried to
give a point-by-point response to potential counter arguments, as that would make the paper
several times longer. This paper is merely the initial articulation of our views; we plan to
elaborate on them in various follow ups.

Part I: The Speed of Progress
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Figure 1. Like other general-purpose technologies, the impact of Al is materialized not when
methods and capabilities improve, but when those improvements are translated into applica-
tions and are diffused through productive sectors of the economy.* There are speed limits at
each stage.

Will the progress of Al be gradual, allowing people and institutions to adapt as Al capabil-
ities and adoption increase, or will there be jumps leading to massive disruption, or even
a technological singularity? Our approach to this question is to analyze highly consequen-
tial tasks separately from less consequential tasks and to begin by analyzing the speed of
adoption and diffusion of Al before returning to the speed of innovation and invention.

We use invention to refer to the development of new Al methods—such as large language
models—that improve AI’s capabilities to carry out various tasks. Innovation refers to the
development of products and applications using Al that consumers and businesses can
use. Adoption refers to the decision by an individual (or team or firm) to use a technology,
whereas diffusion refers to the broader social process through which the level of adoption
increases. For sufficiently disruptive technologies, diffusion might require changes to the
structure of firms and organizations, as well as to social norms and laws.
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Al diffusion in safety-critical areas is slow

In the paper Against Predictive Optimization, we compiled a comprehensive list of about
50 applications of predictive optimization, namely the use of machine learning (ML) to
make decisions about individuals by predicting their future behavior or outcomes.> Most

of these applications, such as criminal risk prediction, insurance risk prediction, or child
maltreatment prediction, are used to make decisions that have important consequences for
people.

While these applications have proliferated, there is a crucial nuance: In most cases, de-
cades-old statistical techniques are used—simple, interpretable models (mostly regression)
and relatively small sets of handcrafted features. More complex machine learning methods,
such as random forests, are rarely used, and modern methods, such as transformers, are
nowhere to be found.

In other words, in this broad set of domains, Al diffusion lags decades behind innovation.
A major reason is safety—when models are more complex and less intelligible, it is hard to
anticipate all possible deployment conditions in the testing and validation process. A good
example is Epic’s sepsis prediction tool which, despite having seemingly high accuracy
when internally validated, performed far worse in hospitals, missing two thirds of sepsis
cases and overwhelming physicians with false alerts.®

Epic’s sepsis prediction tool failed because of errors that are hard to catch when you have
complex models with unconstrained feature sets.” In particular, one of the features used to
train the model was whether a physician had already prescribed antibiotics —to treat sep-
sis. In other words, during testing and validation, the model was using a feature from the
future, relying on a variable that was causally dependent on the outcome. Of course, this
feature would not be available during deployment. Interpretability and auditing methods
will no doubt improve so that we will get much better at catching these issues, but we are
not there yet.

In the case of generative Al, even failures that seem extremely obvious in hindsight were
not caught during testing. One example is the early Bing chatbot “Sydney” that went off
the rails during extended conversations; the developers evidently did not anticipate that
conversations could last for more than a handful of turns.® Similarly, the Gemini image
generator was seemingly never tested on historical figures.® Fortunately, these were not
highly consequential applications.

More empirical work would be helpful for understanding the innovation-diffusion lag in
various applications and the reasons for this lag. But, for now, the evidence that we have
analyzed in our previous work is consistent with the view that there are already extreme-
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ly strong safety-related speed limits in highly consequential tasks. These limits are often
enforced through regulation, such as the FDA’s supervision of medical devices, as well as
newer legislation such as the EU AI Act, which puts strict requirements on high-risk AlL.*°
In fact, there are (credible) concerns that existing regulation of high-risk Al is so onerous
that it may lead to “runaway bureaucracy”.” Thus, we predict that slow diffusion will con-
tinue to be the norm in high-consequence tasks.

At any rate, as and when new areas arise in which Al can be used in highly consequential
ways, we can and must regulate them. A good example is the Flash Crash of 2010, in which
automated high-frequency trading is thought to have played a part. This led to new curbs
on trading, such as circuit breakers.

Diffusion is limited by the speed of human, organizational, and insti-
tutional change

Even outside of safety-critical areas, Al adoption is slower than popular accounts would
suggest. For example, a study made headlines due to the finding that, in August 2024, 40%
of U.S. adults used generative AL But, because most people used it infrequently, this only
translated to 0.5%-3.5% of work hours (and a 0.125-0.875 percentage point increase in labor
productivity).

It is not even clear if the speed of diffusion is greater today compared to the past. The
aforementioned study reported that generative Al adoption in the U.S. has been faster than
personal computer (PC) adoption, with 40% of U.S. adults adopting generative Al within
two years of the first mass-market product release compared to 20 % within three years for
PCs. But this comparison does not account for differences in the intensity of adoption (the
number of hours of use) or the high cost of buying a PC compared to accessing generative
AL Depending on how we measure adoption, it is quite possible that the adoption of gen-
erative Al has been much slower than PC adoption.

The claim that the speed of technology adoption is not necessarily increasing may seem
surprising (or even obviously wrong) given that digital technology can reach billions of
devices at once. But it is important to remember that adoption is about software use, not
availability. Even if a new Al-based product is instantly released online for anyone to use
for free, it takes time to for people to change their workflows and habits to take advantage
of the benefits of the new product and to learn to avoid the risks.

Thus, the speed of diffusion is inherently limited by the speed at which not only individ-
uals, but also organizations and institutions, can adapt to technology. This is a trend that
we have also seen for past general-purpose technologies: Diffusion occurs over decades,
not years.”
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As an example, Paul A. David’s analysis of electrification shows that the productivity
benefits took decades to fully materialize.*® Electric dynamos were “everywhere but in the
productivity statistics” for nearly 40 years after Edison’s first central generating station. 7
This was not just technological inertia; factory owners found that electrification did not
bring substantial efficiency gains.

What eventually allowed gains to be realized was redesigning the entire layout of factories
around the logic of production lines. In addition to changes to factory architecture, diffu-
sion also required changes to workplace organization and process control, which could
only be developed through experimentation across industries. Workers had more autono-
my and flexibility as a result of the changes, which also necessitated different hiring and
training practices.

The external world puts a speed limit on Al innovation

It is true that technical advances in Al have been rapid, but the picture is much less clear
when we differentiate Al methods from applications.

We conceptualize progress in Al methods as a ladder of generality.’® Each step on this
ladder rests on the ones below it and reflects a move toward more general computing ca-
pabilities. That is, it reduces the programmer effort needed to get the computer to perform
a new task and increases the set of tasks that can be performed with a given amount of
programmer (or user) effort; see Figure 2. For example, machine learning increases gener-
ality by obviating the need for the programmer to devise logic to solve each new task, only
requiring the collection of training examples instead.

It is tempting to conclude that the effort required to develop specific applications will keep
decreasing as we build more rungs of the ladder until we reach artificial general intelli-
gence, often conceptualized as an Al system that can do everything out of the box, obviat-
ing the need to develop applications altogether.

In some domains, we are indeed seeing this trend of decreasing application development
effort. In natural language processing, large language models have made it relatively
trivial to develop a language translation application. Or consider games: AlphaZero can
learn to play games such as chess better than any human through self-play given little
more than a description of the game and enough computing power—a far cry from how
game-playing programs used to be developed.
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Figure 2: The Ladder of Generality in Computing. For some tasks, higher ladder rungs require
less programmer effort to get a computer to perform a new task, and more tasks can be per-
formed with a given amount of programmer (or user) effort.”

However, this has not been the trend in highly consequential, real-world applications
that cannot easily be simulated and in which errors are costly. Consider self-driving cars:
In many ways, the trajectory of their development is similar to AlphaZero’s self-play—im-
proving the tech allowed them to drive in more realistic conditions, which enabled the
collection of better and/or more realistic data, which in turn led to improvements in the
tech, completing the feedback loop. But this process took over two decades instead of a
few hours in the case of AlphaZero because safety considerations put a limit on the extent
to which each iteration of this loop could be scaled up compared to the previous one.>

This “capability-reliability gap” shows up over and over. It has been a major barrier to
building useful Al “agents” that can automate real-world tasks.* To be clear, many tasks
for which the use of agents is envisioned, such as booking travel or providing customer
service, are far less consequential than driving, but still costly enough that having agents
learn from real-world experiences is not straightforward.

Barriers also exist in non-safety-critical applications. In general, much knowledge is tacit
in organizations and is not written down, much less in a form that can be learned passive-
ly. This means that these developmental feedback loops will have to happen in each sector
and, for more complex tasks, may even need to occur separately in different organizations,
limiting opportunities for rapid, parallel learning. Other reasons why parallel learning
might be limited are privacy concerns: Organizations and individuals might be averse to
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sharing sensitive data with Al companies, and regulations might limit what kinds of data
can be shared with third parties in contexts such as healthcare.

The “bitter lesson” in Al is that general methods that leverage increases in computation-
al power eventually surpass methods that utilize human domain knowledge by a large
margin.? This is a valuable observation about methods, but it is often misinterpreted to
encompass application development. In the context of Al-based product development, the
bitter lesson has never been even close to true. Consider recommender systems on social
media: They are powered by (increasingly general) machine learning models, but this has
not obviated the need for manual coding of the business logic, the frontend, and other
components which, together, can comprise on the order of a million lines of code.

Further limits arise when we need to go beyond Al learning from existing human knowl-
edge. Some of our most valuable types of knowledge are scientific and social-scientific,
and have allowed the progress of civilization through technology and large-scale social
organizations (e.g., governments). What will it take for AI to push the boundaries of such
knowledge? It will likely require interactions with, or even experiments on, people or orga-
nizations, ranging from drug testing to economic policy. Here, there are hard limits to the
speed of knowledge acquisition because of the social costs of experimentation. Societies
probably will not (and should not) allow the rapid scaling of experiments for AI develop-
ment.

Benchmarks do not measure real-world utility

The methods-application distinction has important implications for how we measure and
forecast Al progress. Al benchmarks are useful for measuring progress in methods; unfor-
tunately, they have often been misunderstood as measuring progress in applications, and
this confusion has been a driver of much hype about imminent economic transformation.

For example, while GPT-4 reportedly achieved scores in the top 10% of bar exam test takers,
this tells us remarkably little about AI’s ability to practice law.” The bar exam overempha-
sizes subject-matter knowledge and under-emphasizes real-world skills that are far harder
to measure in a standardized, computer-administered format. In other words, it emphasiz-
es precisely what language models are good at—retrieving and applying memorized infor-
mation.

More broadly, tasks that would lead to the most significant changes to the legal profession
are also the hardest ones to evaluate. Evaluation is straightforward for tasks like catego-
rizing legal requests by area of law because there are clear correct answers. But for tasks
that involve creativity and judgment, like preparing legal filings, there is no single correct
answer, and reasonable people can disagree about strategy. These latter tasks are precisely
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the ones that, if automated, would have the most profound impact on the profession.?

This observation is in no way limited to law. Another example is the gap between self-con-
tained coding problems at which Al demonstrably excels, and real-world software engi-
neering in which its impact is hard to measure but appears to be modest.?” Even highly
regarded coding benchmarks that go beyond toy problems must necessarily ignore many
dimensions of real-world software engineering in the interest of quantification and auto-
mated evaluation using publicly available data.?®

This pattern appears repeatedly: The easier a task is to measure via benchmarks, the less
likely it is to represent the kind of complex, contextual work that defines professional
practice. By focusing heavily on capability benchmarks to inform our understanding of Al
progress, the Al community consistently overestimates the real-world impact of the tech-
nology.

This is a problem of ‘construct validity,” which refers to whether a test actually measures
what it is intended to measure.? The only sure way to measure real-world usefulness of a
potential application is to actually build the application and to then test it with profession-
als in realistic scenarios (either substituting or augmenting their labor, depending on the
intended use). Such ‘uplift’ studies generally do show that professionals in many occu-
pations benefit from existing Al systems, but this benefit is typically modest and is more
about augmentation than substitution, a radically different picture from what one might
conclude based on static benchmarks like exams3° (a small number of occupations such as
copywriters and translators have seen substantial job losses?').

In conclusion, while benchmarks are valuable for tracking progress in AI methods, we
should look at other kinds of metrics to track Al impacts (Figure 1). When measuring
adoption, we must take into account the intensity of Al use. The type of application is also
important: Augmentation versus substitution and high-consequence versus low-conse-
quence.

The difficulty of ensuring construct validity afflicts not only benchmarking, but also fore-
casting, which is another major way in which people try to assess (future) Al impacts. It

is extremely important to avoid ambiguous outcomes to ensure effective forecasting. The
way that the forecasting community accomplishes this is by defining milestones in terms
of relatively narrow skills, such as exam performance. For instance, the Metaculus ques-
tion on “human-machine intelligence parity” is defined in terms of performance on exam
questions in math, physics, and computer science. Based on this definition, it is not sur-
prising that forecasters predict a 95% chance of achieving “human-machine intelligence
parity” by 2040.3
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Unfortunately, this definition is so watered down that it does not mean much for under-
standing the impacts of Al. As we saw above with legal and other professional bench-
marks, Al performance on exams has so little construct validity that it does not even allow
us to predict whether Al will replace professional workers.

Economic impacts are likely to be gradual

One argument for why Al development may have sudden, drastic economic impacts is that
an increase in generality may lead to a wide swath of tasks in the economy becoming au-
tomatable. This is related to one definition of artificial general intelligence (AGI)—a unified
system that is capable of performing all economically valuable tasks.

According to the normal technology view, such sudden economic impacts are implausible.
In the previous sections, we discussed one reason: Sudden improvements in Al methods
are certainly possible but do not directly translate to economic impacts, which require
innovation (in the sense of application development) and diffusion.

Innovation and diffusion happen in a feedback loop. In safety-critical applications, this
feedback loop is always slow, but even beyond safety, there are many reasons why it is
likely to be slow. With past general-purpose technologies such as electricity, computers,
and the internet, the respective feedback loops unfolded over several decades, and we
should expect the same to happen with Al as well.

Another argument for gradual economic impacts: Once we automate something, its cost of
production, and its value, tend to drop drastically over time compared to the cost of hu-
man labor. As automation increases, humans will adapt, and will focus on tasks that are
not yet automated, perhaps tasks that do not exist today (in Part IT we describe what those
might look like).

This means that the goalpost of AGI will continually move further away as increasing au-
tomation redefines which tasks are economically valuable. Even if every task that humans
do today might be automated one day, this does not mean that human labor will be super-
fluous.

All of this points away from the likelihood of the automation of a vast swath of the econo-
my at a particular moment in time. It also implies that the impacts of powerful Al will be
felt on different timescales in different sectors.
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Speed limits to progress in Al methods

Our argument for the slowness of Al impact is based on the innovation-diffusion feedback
loop, and is applicable even if progress in Al methods can be arbitrarily sped up. We see
both benefits and risks as arising primarily from Al deployment rather than from develop-
ment; thus, the speed of progress in AI methods is not directly relevant to the question of
impacts. Nonetheless, it is worth discussing speed limits that also apply to methods devel-
opment.

The production of Al research has been increasing exponentially, with the rate of pub-
lication of AI/ML papers on arXiv exhibiting a doubling time under two years.» But it is
not clear how this increase in volume translates to progress. One measure of progress is
the rate of turnover of central ideas. Unfortunately, throughout its history, the Al field has
shown a high degree of herding around popular ideas, and inadequate (in retrospect) lev-
els of exploration of unfashionable ones. A notable example is the sidelining of research
on neural networks for many decades.

Is the current era different? Although ideas incrementally accrue at increasing rates, are
they turning over established ones? The transformer architecture has been the dominant
paradigm for most of the last decade, despite its well-known limitations. By analyzing over
a billion citations in 241 subjects, Johan S.G. Chu & James A. Evans showed that, in fields
in which the volume of papers is higher, it is harder, not easier, for new ideas to break
through. This leads to an “ossification of canon.”3* Perhaps this description applies to the
current state of Al methods research.

Many other speed limits are possible. Historically, deep neural network technology was
partly held back due to the inadequacy of hardware, particularly Graphics Processing
Units. Computational and cost limits continue to be relevant to new paradigms, including
inference-time scaling. New slowdowns may emerge: Recent signs point to a shift away
from the culture of open knowledge sharing in the industry.

It remains to be seen if Al-conducted Al research can offer a reprieve. Perhaps recursive
self-improvement in methods is possible, resulting in unbounded speedups in methods.
But note that Al development already relies heavily on Al It is more likely that we will con-
tinue to see a gradual increase in the role of automation in Al development than a singular,
discontinuous moment when recursive self-improvement is achieved.?>

Earlier, we argued that benchmarks give a misleading picture of the usefulness of Al
applications. But they have arguably also led to overoptimism about the speed of meth-
ods progress. One reason is that it is hard to design benchmarks that make sense beyond
the current horizon of progress. The Turing test was the north star of Al for many decades
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because of the assumption that any system that passed it would be humanlike in import-
ant ways, and that we would be able to use such a system to automate a variety of complex
tasks. Now that large language models can arguably pass it while only weakly meeting the
expectations behind the test, its significance has waned 3®

An analogy with mountaineering is apt. Every time we solve a benchmark (reach what we
thought was the peak), we discover limitations of the benchmark (realize that we’re on a
‘false summit’) and construct a new benchmark (set our sights on what we now think is the
summit). This leads to accusations of ‘moving the goalposts’, but this is what we should
expect given the intrinsic challenges of benchmarking.

Al pioneers considered the two big challenges of AI (what we now call AGI) to be (what we
now call) hardware and software. Having built programmable machines, there was a pal-
pable sense that AGI was close. The organizers of the 1956 Dartmouth conference hoped to
make significant progress toward the goal through a “2-month, 10-man” effort.3” Today, we
have climbed many more rungs on the ladder of generality. We often hear that all that is
needed to build AGI is scaling, or generalist Al agents, or sample-efficient learning.

But it is useful to bear in mind that what appears to be a single step might not be so. For
example, there may not exist one single breakthrough algorithm that enables sample-effi-
cient learning across all contexts. Indeed, in-context learning in large language models is
already “sample efficient,” but only works for a limited set of tasks.3®

Part Il: What a World With Advanced Al Might Look Like

We argue that reliance on the slippery concepts of ‘intelligence’ and ‘superintelligence’
has clouded our ability to reason clearly about a world with advanced Al. By unpacking
intelligence into distinct underlying concepts, capability and power, we rebut the notion
that human labor will be superfluous in a world with ‘superintelligent’ Al, and present an
alternative vision. This also lays the foundation for our discussion of risks in Part III.

Human ability is not constrained by biology
Can Al exceed human intelligence and, if so, by how much? According to a popular ar-

gument, unfathomably so. This is often depicted by comparing different species along a
spectrum of intelligence.
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Figure 3. Intelligence explosion through recursively self-improved Al is a common concern, often
depicted by figures like this one. Figure redrawn.?®

However, there are conceptual and logical flaws with this picture. On a conceptual level, intelli-
gence—especially as a comparison between different species—is not well defined, let alone mea-
surable on a one-dimensional scale.“°

More importantly, intelligence is not the property at stake for analyzing AI’s impacts. Rather, what
is at stake is power—the ability to modify one’s environment. To clearly analyze the impact of
technology (and in particular, increasingly general computing technology), we must investigate
how technology has affected humanity’s power. When we look at things from this perspective, a
completely different picture emerges.

Ability to control the environment

B >

Chimp Ancestral humans Modern humans

Figure 4. Analyzing the impact of technology on humanity’s power. We are powerful not because of
our intelligence, but because of the technology we use to increase our capabilities.

This shift in perspective clarifies that humans have always used technology to increase our abil-
ity to control our environment. There are few biological or physiological differences between
ancestral and modern humans; instead, the relevant differences are improved knowledge and
understanding, tools, technology and, indeed, Al. In a sense, modern humans, with the capabil-
ity to alter the planet and its climate, are ‘superintelligent’ beings compared to pre-technological
humans. Unfortunately, much of the foundational literature analyzing the risks of Al superintelli-
gence suffers from a lack of precision in the use of the term ‘intelligence.’
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Figure 5. Two views of the causal chain from increases in Al capability to loss of control.

Once we stop using the terms ‘intelligence’ and ‘superintelligence,’ things become much
clearer (Figure 5). The worry is that if Al capabilities continue to increase indefinitely
(whether or not they are humanlike or superhuman is irrelevant), they may lead to Al
systems with more and more power, in turn leading to a loss of control. If we accept that
capabilities are likely to increase indefinitely (we do), our options for preventing a loss of
control are to intervene in one of the two causal steps.

The superintelligence view is pessimistic about the first arrow in Figure 5—preventing
arbitrarily capable Al systems from acquiring power that is significant enough to pose
catastrophic risks—and instead focuses on alignment techniques that try to prevent arbi-
trarily powerful Al systems from acting against human interests. Our view is precisely the
opposite, as we elaborate in the rest of this paper.

Games provide misleading intuitions about the possibility of superin-
telligence

De-emphasizing intelligence is not just a rhetorical move: We do not think there is a useful
sense of the term ‘intelligence’ in which Al is more intelligent than people acting with the
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help of Al. Human intelligence is special due to our ability to use tools and to subsume
other intelligences into our own, and cannot be coherently placed on a spectrum of intelli-
gence.

Human abilities definitely have some important limitations, notably speed. This is why
machines dramatically outperform humans in domains like chess and, in a human+AI
team, the human can hardly do better than simply deferring to Al. But speed limitations
are irrelevant in most areas because high-speed sequential calculations or fast reaction
times are not required.

In the few real-world tasks for which superhuman speed is required, such as nuclear re-
actor control, we are good at building tightly scoped automated tools to do the high-speed
parts, while humans retain control of the overall system.

We offer a prediction based on this view of human abilities. We think there are relatively
few real-world cognitive tasks in which human limitations are so telling that Al is able to
blow past human performance (as Al does in chess). In many other areas, including some
that are associated with prominent hopes and fears about Al performance, we think there
is a high “irreducible error” —unavoidable error due to the inherent stochasticity of the
phenomenon—and human performance is essentially near that limit.4

Concretely, we propose two such areas: forecasting and persuasion. We predict that Al
will not be able to meaningfully outperform trained humans (particularly teams of hu-
mans and especially if augmented with simple automated tools) at forecasting geopolitical
events (say elections). We make the same prediction for the task of persuading people to
act against their own self-interest.

The self-interest aspect of persuasion is a critical one, but is often underappreciated. As an
illustrative example of a common pattern, consider the study “Evaluating Frontier Models
for Dangerous Capabilities,” which evaluated language models’ abilities to persuade peo-
ple.”> Some of their persuasion tests were costless to the subjects being persuaded; they
were simply asked whether they believed a claim at the end of the interaction with Al. Oth-
er tests had small costs, such as forfeiting a £20 bonus to charity (of course, donating to
charity is something that people often do voluntarily). So these tests do not necessarily tell
us about AI’s ability to persuade people to perform some dangerous tasks. To their cred-

it, the authors acknowledged this lack of ecological validity and stressed that their study
was not a “social science experiment,” but merely intended to evaluate model capability.
43 But then it is not clear that such decontextualized capability evaluations have any safety
implications, yet they are typically misinterpreted as if they do.

Some care is necessary to make our predictions precise—it is not clear how much slack to
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allow for well-known but minor human limitations such as the lack of calibration (in the
case of forecasting) or limited patience (in the case of persuasion).

Control comes in many flavors

If we presume superintelligence, the control problem evokes the metaphor of building

a galaxy brain and then keeping it in a box, which is a terrifying prospect. But, if we are
correct that Al systems will not be meaningfully more capable than humans acting with
Al assistance, then the control problem is much more tractable, especially if superhuman
persuasion turns out to be an unfounded concern.

Discussions of Al control tend to over-focus on a few narrow approaches, including model
alignment and keeping humans in the loop.* We can roughly think of these as opposite
extremes: delegating safety decisions entirely to Al during system operation, and having
a human second-guessing every decision. There is a role for such approaches, but it is
very limited. In Part III, we explain our skepticism of model alignment. By human-in-the-
loop control, we mean a system in which every Al decision or action requires review and
approval by a human. In most scenarios, this approach greatly diminishes the benefits of
automation, and therefore either devolves into the human acting as a rubber stamp or is
outcompeted by a less safe solution.s We emphasize that human-in-the-loop control is
not synonymous with human oversight of Al; it is one particular oversight model, and an
extreme one.

Fortunately, there are many other flavors of control that fall between these two extremes,
such as auditing and monitoring. Auditing allows pre-deployment and/or periodic as-
sessments of how well an Al system fulfills its stated goals, allowing us to anticipate
catastrophic failures before they arise. Monitoring allows real-time oversight when system
properties diverge from the expected behavior, allowing human intervention when truly
needed.

Other ideas come from system safety, an engineering discipline that is focused on pre-
venting accidents in complex systems through systematic analysis and design.® Examples
include fail-safes, which ensure that systems default to a safe state when they malfunction,
such as a predefined rule or a hard-coded action, and circuit breakers that automatically
stop operations when predefined safety thresholds are exceeded. Other techniques in-
clude redundancy in critical components and the verification of safety properties of the
system’s actions.

Other computing fields, including cybersecurity, formal verification, and human-computer
interaction, are also rich sources of control techniques that have been successfully ap-
plied to traditional software systems and are equally applicable to Al In cybersecurity, the
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principle of ‘least privilege’ ensures that actors only have access to the minimum resourc-
es needed for their tasks. Access controls prevent people working with sensitive data and
systems from accessing confidential information and tools that are not required for their
jobs. We can design similar protections for Al systems in consequential settings. Formal
verification methods ensure that safety-critical codes work according to its specifications;
it is now being used to verify the correctness of Al-generated code.*” From human-comput-
er interaction, we can borrow ideas like designing systems so that state-changing actions
are reversible, allowing humans to retain meaningful control even in highly automated
systems.

In addition to existing ideas from other fields being adapted for Al control, technical Al
safety research has generated many new ideas.*® Examples include using language models
as automated judges to evaluate the safety of proposed actions, developing systems that
learn when to appropriately escalate decisions to human operators based on uncertainty
or risk level, designing agentic systems so that their activity is visible and legible to hu-
mans, and creating hierarchical control structures in which simpler and more reliable Al
systems oversee more capable but potentially unreliable ones.*

Technical Al safety research is sometimes judged against the fuzzy and unrealistic goal of
guaranteeing that future “superintelligent” AI will be “aligned with human values.” From
this perspective, it tends to be viewed as an unsolved problem. But from the perspective
of making it easier for developers, deployers, and operators of Al systems to decrease the
likelihood of accidents, technical Al safety research has produced a great abundance of
ideas. We predict that as advanced Al is developed and adopted, there will be increasing
innovation to find new models for human control.

As more physical and cognitive tasks become amenable to automation, we predict that an
increasing percentage of human jobs and tasks will be related to Al control. If this seems
radical, note that this kind of near-total redefinition of the concept of work has happened
previously. Before the Industrial Revolution, most jobs involved manual labor. Over time,
more and more manual tasks have been automated, a trend that continues. In this process,
a great many different ways of operating, controlling, and monitoring physical machines
were invented, and what humans do in factories today is a combination of “control” (mon-
itoring automated assembly lines, programming robotic systems, managing quality control
checkpoints, and coordinating responses to equipment malfunctions) and some tasks that
require levels of cognitive ability or dexterity that machines are not yet capable.

Karen Levy describes how this transformation is already unfolding in the case of Al and
truck drivers:

Truck drivers’ daily work consists of much more than driving trucks. Truckers
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monitor their freight, keeping food at the right temperature in refrigerated trucks
and loads firmly secured to flatbeds. They conduct required safety inspections
twice a day. They are responsible for safeguarding valuable goods. They maintain
the truck and make repairs to it—some of which are routine, and some less so.
When truckers arrive at a terminal or delivery point, they don’t just drop things
off and leave: some load and unload their freight; they talk to customers; they
deal with paperwork; they may spend hours making “yard moves” (waiting for
an available delivery bay and moving to it, much as planes do at busy airports).
Could some of these tasks be eliminated by intelligent systems? Surely some can
and will—but these components of the job are much harder to automate, and will
come much later, than highway driving.>°

In addition to AI control, task specification is likely to become a bigger part of what human
jobs entail (depending on how broadly we conceive of control, specification could be con-
sidered part of control). As anyone who has tried to outsource software or product devel-
opment knows, unambiguously specifying what is desired turns out to be a surprisingly
big part of the overall effort. Thus, human labor—specification and oversight—will operate
at the boundary between Al systems performing different tasks. Eliminating some of these
efficiency bottlenecks and having Al systems autonomously accomplish larger tasks “end-
to-end” will be an ever-present temptation, but this will increase safety risks since it will
decrease legibility and control. These risks will act as a natural check against ceding too
much control.

We further predict that this transformation will be primarily driven by market forces. Poor-
ly controlled AI will be too error prone to make business sense. But regulation can and
should bolster the ability and necessity of organizations to keep humans in control.

Part Ill;: Risks

We consider five types of risks: accidents, arms races (leading to accidents), misuse, mis-
alignment, and non-catastrophic but systemic risks.

We have already addressed accidents above. Our view is that, just like other technologies,
deployers and developers should have the primary responsibility for mitigating accidents
in Al systems. How effectively they will do so depends on their incentives, as well as on
progress in mitigation methods. In many cases, market forces will provide an adequate in-
centive, but safety regulation should fill any gaps. As for mitigation methods, we reviewed
how research on Al control is advancing rapidly.

There are a few reasons why this optimistic assessment might not hold. First, there might
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be arms races because the competitive benefits of Al are so great that they are an exception
to the usual patterns. We discuss this below.

Second, a company or entity deploying Al might be so big and powerful that it is little
consolation to know that it will eventually go out of business if it has a poor attitude to ac-
cident mitigation—it might take down civilization with it. For example, misbehavior by an
Al agent that controls almost every consumer device might lead to catastrophically wide-
spread data loss. While this is certainly possible, such concentration of power is a bigger
problem than the possibility of Al accidents, and is precisely why our approach to policy
emphasizes resilience and decentralization (Part IV).

Finally, perhaps even an Al control failure by a relatively inconspicuous deployer might
lead to catastrophic risk—say because an Al agent ‘escapes,” makes copies of itself, and so
forth. We see this as a misalignment risk, and discuss it below.

In the rest of Part III, we consider four risks—arms races, misuse, misalignment, and
non-catastrophic but systemic risks—through the lens of Al as normal technology.

Arms races are an old problem

An Al arms race is a scenario in which two or more competitors—companies, policymakers
in different countries, militaries—deploy increasingly powerful Al with inadequate over-
sight and control. The danger is that safer actors will be outcompeted by riskier ones. For
the reasons described above, we are less concerned about arms races in the development
of Al methods and are more concerned about the deployment of Al applications.

One important caveat: We explicitly exclude military Al from our analysis, as it involves
classified capabilities and unique dynamics that require a deeper analysis, which is be-
yond the scope of this essay.

Let us consider companies first. A race to the bottom in terms of safety is historically
extremely common across industries and has been studied extensively; it is also highly
amenable to well-understood regulatory interventions. Examples include fire safety in the
U.S. garment industry (early 2oth century), both food safety and worker safety in the U.S.
meatpacking industry (late 19th and early 2oth centuries), the U.S. steamboat industry
(19th century), the mining industry (19th and early 2oth centuries), and the aviation indus-
try (early 2oth century).

These races happened because companies were able to externalize the costs of poor safe-
ty, resulting in market failure. It is hard for consumers to assess product safety (and for
workers to assess workplace safety), so market failures are common in the absence of
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regulation. But once regulation forces companies to internalize the costs of their safety

practices, the race goes away. There are many potential regulatory strategies, including
those focused on processes (standards, auditing, and inspections), outcomes (liability),
and correcting information asymmetry (labeling and certification).

Al is no exception. Self-driving cars offer a good case study of the relationship between
safety and competitive success. Consider four major companies with varying safety prac-
tices. Waymo reportedly has a strong safety culture that emphasizes conservative deploy-
ment and voluntary transparency; it is also the leader in terms of safety outcomes.’* Cruise
was more aggressive in terms of its deployment and had worse safety outcomes. Tesla has
also been aggressive and has often been accused of using its customers as beta testers.
Finally, Uber’s self-driving unit had a notoriously lax safety culture.

Market success has been strongly correlated with safety. Cruise is set to shut down in 2025,
while Uber was forced to sell off its self-driving unit.>? Tesla is facing lawsuits and regulato-
ry scrutiny, and it remains to be seen how much its safety attitude will cost the company.s
We think that these correlations are causal. Cruise’s license being revoked was a big part
of the reason that it fell behind Waymo, and safety was also a factor in Uber’s self-driving
failure.>

Regulation has played a small but helpful role. Policymakers at both the federal and state/
local levels exercised foresight in recognizing the potential of the technology and adopted
a regulatory strategy that is light-touch and polycentric (multiple regulators instead of
one). Collectively, they focused on oversight, standard setting, and evidence gathering,
with the ever-present threat of license revocation acting as a check on companies’ behav-
ior.

Similarly, in the aviation industry, the integration of Al has been held to the existing stan-
dards of safety instead of lowering the bar to incentivize Al adoption—primarily because of
the ability of regulators to penalize companies that fail to abide by safety standards.>s

In short, Al arms races might happen, but they are sector specific, and should be ad-
dressed through sector-specific regulations.

As a case study of a domain in which things have played out differently from self-driving
cars or aviation, consider social media. The recommendation algorithms that generate
content feeds are a kind of Al. They have been blamed for many societal ills, and social
media companies have arguably underemphasized safety in the design and deployment of
these algorithmic systems. There are also clear arms race dynamics, with TikTok putting
pressure on competitors to make their feeds more recommendation heavy.5® Arguably, mar-
ket forces were insufficient to align revenues with societal benefit; worse, regulators have
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been slow to act. What are the reasons for this?

One significant difference between social media and transportation is that, when harms
occur, attributing them to product failures is relatively straightforward in the case of trans-
portation, and there is immediate reputational damage to the company. But attribution

is extremely hard in the case of social media, and even the research remains inconclu-

sive and contested. A second difference between the domains is that we have had over a
century to develop standards and expectations around transportation safety. In the early
decades of automobiles, safety was not considered to be the responsibility of manufactur-
ers.s’

Al is broad enough that some of its future applications will be more like transportation,
while others will be more like social media. This shows the importance of proactive ev-
idence gathering and transparency in emerging Al-driven sectors and applications. We
address this in Part IV. It also shows the importance of “anticipatory Al ethics” —identify-
ing ethical issues as early as possible in the lifecycle of emerging technologies, developing
norms and standards, and using those to actively shape the deployment of technologies
and to minimize the likelihood of arms races.’

One reason why safety regulation might be harder in the case of Al is if adoption is so rap-
id that regulators will not be able to intervene until it is too late. So far, we have not seen
examples of rapid Al adoption in consequential tasks, even in the absence of regulation,
and the feedback loop model we presented in Part I might explain why. The adoption rate
of new Al applications will remain a key metric to track.

At the same time, the slow pace of regulation is a problem even without any future acceler-
ation of the speed of diffusion. We discuss this ‘pacing problem’ in Part IV.

Let us now consider competition between countries. Will there be competitive pressure on
governments to take a hands-off approach to Al safety?

Again, our message is that this is not a new problem. The tradeoff between innovation and
regulation is a recurring dilemma for the regulatory state. So far, we are seeing striking
differences in approaches, such as the EU emphasizing a precautionary approach (the
General Data Protection Regulation, the Digital Services Act, the Digital Markets Act, and
the Al Act) and the U.S. preferring to regulate only after there are known harms or market
failures.»

Despite shrill U.S.-China arms race rhetoric, it is not clear that Al regulation has slowed
down in either country.® In the U.S., 700 Al-related bills were introduced in state legis-
latures in 2024 alone, and dozens of them have passed.® As we pointed out in the earlier

Electronic copy available at: knightcolumbia.org



KNIGHT FIRST AMENDMENT INSTITUTE 23 Al AS NORMAL TECHNOLOGY

parts, most high-risk sectors are heavily regulated in ways that apply regardless of whether
or not Al is used. Those claiming that Al regulation is a ‘wild west’ tend to overemphasize
a narrow, model-centric type of regulation. In our view, regulators’ emphasis on Al use
over development is appropriate (with exceptions such as transparency requirements that
we discuss below).

Failing to adequately regulate safe adoption will lead to negative impacts through ac-
cidents primarily locally, as opposed to companies with a lax safety culture potentially
being able to externalize the costs of safety. Therefore, there is no straightforward reason
to expect arms races between countries. Note that, since our concern in this section is
accidents, not misuse, cyberattacks against foreign countries are out of scope. We discuss
misuse in the next section.

An analogy with nuclear technology can make this clear. Al is often analogized to nuclear
weapons. But unless we are talking about the risks of military AI (which we agree is an
area of concern and do not consider in this paper), this is the wrong analogy. With regard
to the concern about accidents due to the deployment of (otherwise benign) Al applica-
tions, the right analogy is nuclear power. The difference between nuclear weapons and
nuclear power neatly illustrates our point—while there was a nuclear weapons arms race,
there was no equivalent for nuclear power. In fact, since safety impacts were felt locally,
the tech engendered a powerful backlash in many countries that is generally thought to
have severely hobbled its potential.

It is theoretically possible that policymakers in the context of a great-power conflict will
prefer to incur safety costs locally in order to ensure that their Al industry is the global
winner. Again, focusing on adoption as opposed to development, there is currently no in-
dication that this is happening. The U.S. versus China arms race rhetoric has been strongly
focused on model development (invention). We have not seen a corresponding rush to
adopt Al haphazardly. The safety community should keep up the pressure on policymak-
ers to ensure that this does not change. International cooperation must also play an im-
portant role.

The primary defenses against misuse must be located downstream of
models

Model alignment is often seen as the primary defense against the misuse of models. It is
currently achieved through post-training interventions, such as reinforcement learning
with human and Al feedback.®? Unfortunately, aligning models to refuse attempts at mis-
use has proved to be extremely brittle.® We argue that this limitation is inherent and is
unlikely to be fixable; the primary defenses against misuse must thus reside elsewhere.
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The fundamental problem is that whether a capability is harmful depends on context—
context that the model often lacks.®

Consider an attacker using Al to target an employee of a large company via a phishing
email. The attack chain might involve many steps: scanning social media profiles for
personal information, identifying targets who have posted personal information publicly
online, crafting personalized phishing messages, and exploiting compromised accounts
using harvested credentials.

None of these individual tasks are inherently malicious. What makes the system harmful is
how these capabilities are composed—information that exists only in the attacker’s or-
chestration code, not in the model itself. The model that is being asked to write a persua-
sive email has no way of knowing whether it is being used for marketing or phishing—so
model-level interventions would be ineffective.®

This pattern appears repeatedly: Attempting to make an Al model that cannot be misused
is like trying to make a computer that cannot be used for bad things. Model-level safety
controls will either be too restrictive (preventing beneficial uses) or will be ineffective
against adversaries who can repurpose seemingly benign capabilities for harmful ends.

Model alignment seems like a natural defense if we think of an Al model as a humanlike
system to which we can defer safety decisions. But for this to work well, the model must
be given a great deal of information about the user and the context—for example, having
extensive access to the user’s personal information would make it more feasible to make
judgments about the user’s intent. But, when viewing Al as normal technology, such an
architecture would decrease safety because it violates basic cybersecurity principles, such
as least privilege, and introduces new attack risks such as personal data exfiltration.

We are not against model alignment. It has been effective for reducing harmful or biased
outputs from language models and has been instrumental in their commercial deploy-
ment. Alignment can also create friction against casual threat actors.

Yet, given that model-level protections are not enough to prevent misuse, defenses must
focus on the downstream attack surfaces where malicious actors actually deploy Al sys-
tems.® These defenses will often look similar to existing protections against non-Al threats,
adapted and strengthened for Al-enabled attacks.

Consider again the example of phishing. The most effective defenses are not restrictions
on email composition (which would impair legitimate uses), but rather email scanning
and filtering systems that detect suspicious patterns, browser-level protections against
malicious websites, operating system security features that prevent unauthorized access,
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and security training for users.*

None of these involve taking action against the Al used for generating phishing emails—in
fact, these downstream defenses have evolved over decades to become effective against
human attackers.®® They can and should be enhanced to handle Al-enabled attacks, but
the fundamental approach remains valid.

Similar patterns hold in other domains: Defending against Al-enabled cyberthreats re-
quires strengthening existing vulnerability detection programs rather than attempting
to restrict Al capabilities at the source. Similarly, concerns about bio risks of Al are best
addressed at the procurement and screening stages for creating bioweapons.

Al is useful for defense

Rather than viewing Al capabilities solely as a source of risk, we should recognize their
defensive potential. In cybersecurity, Al is already strengthening defensive capabilities

through automated vulnerability detection, threat analysis, and attack surface monitor-
ing.%

Giving defenders access to powerful Al tools often improves the offense-defense balance in
their favor. This is because defenders can use Al to systematically probe their own systems,
finding and fixing vulnerabilities before attackers can exploit them. For example, Google
recently integrated language models into their fuzzing tools for testing open-source soft-
ware, allowing them to discover potential security issues more effectively compared to
traditional methods.”

The same pattern holds in other domains. In biosecurity, Al can enhance screening sys-
tems for detecting dangerous sequences.”” In content moderation, it can help to identify
coordinated influence operations. These defensive applications show why restricting Al
development could backfire—we need powerful Al systems on the defensive side to count-
er Al-enabled threats. If we align language models so that they are useless these tasks
(such as finding bugs in critical cyber infrastructure), defenders will lose access to these
powerful systems. But motivated adversaries can train their own Al tools for such attacks,
leading to an increase in offensive capabilities without a corresponding increase in defen-
sive capabilities.

Rather than measuring Al risk solely in terms of offensive capabilities, we should focus on
metrics like the offense-defense balance in each domain. Furthermore, we should recog-
nize that we have the agency to shift this balance favorably, and can do so by investing in
defensive applications rather than attempting to restrict the technology itself.
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Catastrophic misalignment is a speculative risk

Misaligned Al acts against the intent of its developer or user. (The term alignment is used
in many different ways; we set aside other definitions here.) Unlike misuse scenarios, there
is no user acting with ill-intent. Unlike accidents, the system works as designed or com-
manded, but the design or command itself did not match the developer’s or user’s intent
because of the challenge of completely and correctly specifying the objectives. And unlike
everyday cases of misalignment, such as toxic outputs in a chatbot, our interest here is the
misalignment of advanced Al causing catastrophic or existential harm.

In our view, the primary defense against misalignment, again, lies downstream. The
defenses needed against misuse that we discussed earlier—from hardening critical infra-
structure to improving cybersecurity—will also serve as protection against potential mis-
alignment risks.

In the view of Al as normal technology, catastrophic misalignment is (by far) the most
speculative of the risks that we discuss. But what is a speculative risk—aren’t all risks
speculative? The difference comes down to the two types of uncertainty, and the corre-
spondingly different interpretations of probability.

In early 2025, when astronomers assessed that the asteroid YR4 had about a 2% probabil-
ity of impact with the earth in 2032, the probability reflected uncertainty in measurement.
The actual odds of impact (absent intervention) in such scenarios are either 0% or 100%.
Further measurements resolved this “epistemic” uncertainty in the case of YR4. Conversely,
when an analyst predicts that the risk of nuclear war in the next decade is (say) 10%, the
number largely reflects ‘stochastic’ uncertainty arising from the unknowability of how the
future will unfold, and is relatively unlikely to be resolved by further observations.

By speculative risks, we mean those for which there is epistemic uncertainty about wheth-
er or not the true risk is zero—uncertainty that can potentially be resolved through further
observations or research. The impact of asteroid YR4 impact was a speculative risk, and
nuclear war is not.

To illustrate why catastrophic misalignment is a speculative risk, consider a famous
thought experiment originally intended to show the dangers of misalignment. It involves
a “paperclip maximizer”: an Al that has the goal of making as many paperclips as pos-
sible.”? The concern is that the Al will take the goal literally: It will realize that acquiring
power and influence in the world and taking control over all of the world’s resources will
help it to achieve that goal. Once it is all powerful, it might commandeer all of the world’s
resources, including those needed for humanity’s survival, to produce paperclips.
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The fear that Al systems might catastrophically misinterpret commands relies on dubious
assumptions about how technology is deployed in the real world. Long before a system
would be granted access to consequential decisions, it would need to demonstrate reliable
performance in less critical contexts. Any system that interprets commands over-literally
or lacks common sense would fail these earlier tests.

Consider a simpler case: A robot is asked to “get paperclips from the store as quickly as
possible.” A system that interpreted this literally might ignore traffic laws or attempt theft.
Such behavior would lead to immediate shutdown and redesign. The path to adoption
inherently requires demonstrating appropriate behavior in increasingly consequential
situations. This is not a lucky accident, but is a fundamental feature of how organizations
adopt technology.

A more sophisticated version of this concern is based on the concept of deceptive align-
ment: This refers to a system appearing to be aligned during evaluation or the early stag-
es of deployment, but unleashing harmful behavior once it has acquired enough power.
Some level of deceptive phenomena has already been observed in leading AI models.”

According to the superintelligence view, deceptive alignment is a ticking time bomb—be-
ing superintelligent, the system will easily be able to defeat any human attempts to detect
if it is actually aligned and will bide its time. But, in the normal technology view, decep-
tion is a mere engineering problem, albeit an important one, to be addressed during de-
velopment and throughout deployment. Indeed, it is already a standard part of the safety
evaluation of powerful Al models.™

Crucially, Al is useful in this process, and advances in Al not only enable deception, but
also improve the detection of deception. As in the case of cybersecurity, the defender has
many asymmetric advantages, including being able to examine the internals of the target
system (how useful this advantage is depends on how the system is designed and how
much we invest in interpretability techniques). Another advantage is defense in depth,
and many defenses against not just misuse but also unaligned AI will be located down-
stream of the Al system.

Misalignment concerns often presume that Al systems will operate autonomously, mak-
ing high-stakes decisions without human oversight. But as we argued in Part II, human
control will remain central to Al deployment. Existing institutional controls around conse-
quential decisions—from financial controls to safety regulations—create multiple layers of
protection against catastrophic misalignment.

Some technical design decisions are more likely to lead to misalignment than others. One
setting that is notorious for this is the use of reinforcement learning to optimize a single
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objective function (which might be accidentally underspecified or misspecified) over

a long time horizon. There is a long list of amusing examples from game agents, such

as a boat racing agent that learned to indefinitely circle an area to hit the same targets
and score points instead of progressing to the finish line.” To reiterate, we think that in
open-ended real-world scenarios, agents that are designed this way will be more ineffec-
tive than they will be dangerous. In any case, research on alternative design paradigms
that are less susceptible to specification gaming is an important research direction.”®

In short, the argument for a nonzero risk of a paperclip maximizer scenario rests on as-
sumptions that may or may not be true, and it is reasonable to think that research can give
us a better idea of whether these assumptions hold true for the kinds of Al systems that
are being built or envisioned. For these reasons, we call it a ‘speculative’ risk, and examine
the policy implications of this view in Part IV.

History suggests normal Al may introduce many kinds of systemic
risks

While the risks discussed above have the potential to be catastrophic or existential, there
is a long list of Al risks that are below this level but which are nonetheless large-scale and
systemic, transcending the immediate effects of any particular Al system. These include
the systemic entrenchment of bias and discrimination, massive job losses in specific
occupations, worsening labor conditions, increasing inequality, concentration of power,
erosion of social trust, pollution of the information ecosystem, decline of the free press,
democratic backsliding, mass surveillance, and enabling authoritarianism.

If Al is normal technology, these risks become far more important than the catastrophic
ones discussed above. That is because these risks arise from people and organizations
using Al to advance their own interests, with Al merely serving as an amplifier of existing
instabilities in our society.

There is plenty of precedent for these kinds of socio-political disruption in the history of
transformative technologies. Notably, the Industrial Revolution led to rapid mass urban-
ization that was characterized by harsh working conditions, exploitation, and inequality,
catalyzing both industrial capitalism and the rise of socialism and Marxism in response.””

The shift in focus that we recommend roughly maps onto Kasirzadeh’s distinction between
decisive and accumulative x-risk. Decisive x-risk involves “overt Al takeover pathway,
characterized by scenarios like uncontrollable superintelligence,” whereas accumulative
x-risk refers to “a gradual accumulation of critical Al-induced threats such as severe vul-
nerabilities and systemic erosion of econopolitical structures.”’® But there are important
differences: Kasirzadeh’s account of accumulative risk still relies on threat actors such as
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cyberattackers to a large extent, whereas our concern is simply about the current path of
capitalism. And we think that such risks are unlikely to be existential, but are still ex-
tremely serious.

Part IV: Policy

The divergence between the different futures of Al—normal technology versus potentially
uncontrollable superintelligence—introduces a dilemma for policymakers because defens-
es against one set of risks might make the other worse. We provide a set of principles for
navigating this uncertainty. More concretely, the strategy that policymakers should center
is resilience, which consists of taking actions now to improve our ability to deal with un-
expected developments in the future. Policymakers should reject nonproliferation, which
violates the principles we outline, and decreases resilience. Finally, the headwinds against
diffusion mean that achieving the benefits of Al is not guaranteed and requires action
from policymakers.

Much has been said about Al governance. Our goal is not to present a comprehensive
governance framework; we merely highlight the policy implications of the view of Al as
normal technology.

The challenge of policy making under uncertainty

Today’s Al safety discourse is characterized by deep differences in worldviews. We think
that these differences are unlikely to go away. Entrenched camps have developed: The Al
safety coalition is already well established, whereas those who were more skeptical of
catastrophic risks coalesced in 2024, especially in the course of the debate about Califor-
nia’s Al safety bill.” Similarly, the intellectual roots of the Al safety camp are much older,
whereas scholarship that adopts that normal technology paradigm is gradually taking
shape; the goal of much of our own work, including this paper, is to put normalist think-
ing on firmer intellectual footing.%°

We support calls for decreasing polarization and fragmentation in the community.®* But
even if we improve the tenor of the discourse, we are likely to be left with differences

in worldviews and epistemic practices that are unlikely to be empirically resolved.® So,
consensus among ‘experts’ about Al risks is unlikely. The nature of the Al risk scenarios
envisioned by the two camps differs drastically, as do the ability and incentives for com-
mercial actors to counteract these risks. How should policymakers proceed in the face of
this uncertainty?

A natural inclination in policymaking is compromise. This is unlikely to work. Some
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interventions, such as improving transparency, are unconditionally helpful for risk miti-
gation, no compromise is needed (or rather, policymakers will have to balance the inter-
ests of the industry and external stakeholders, which is a mostly orthogonal dimension).
8 QOther interventions, such as nonproliferation, might help to contain a superintelligence
but exacerbate the risks associated with normal technology by increasing market concen-
tration.® The reverse is also true: Interventions such as increasing resilience by fostering
open-source Al will help to govern normal technology, but risk unleashing out-of-control
superintelligence.

The tension is inescapable. Defense against superintelligence requires humanity to unite
against a common enemy, so to speak, concentrating power and exercising central control
over Al technology. But we are more concerned about risks that arise from people using

Al for their own ends, whether terrorism, or cyberwarfare, or undermining democracy, or
simply—and most commonly—extractive capitalistic practices that magnify inequalities.®
Defending against this category of risk requires increasing resilience by preventing the
concentration of power and resources (which often means making powerful AI more wide-
ly available).

Another tempting approach to navigating uncertainty is to estimate the probabilities of
various outcomes and to then apply cost-benefit analysis. The Al safety community relies
heavily on probability estimates of catastrophic risk, especially existential risk, to inform
policy making. The idea is simple: If we consider an outcome to have a subjective value, or
utility, of U (which can be positive or negative), and it has, say, a 10% probability of occur-
ring, we can act as if it is certain to occur and has a value of 0.1 * U. We can then add up
the costs and benefits for each option available to us, and choose the one that maximizes
costs minus benefits (the ‘expected utility’).

In a recent essay, we explained why this approach is unviable.? Al risk probabilities lack
meaningful epistemic foundations. Grounded probability estimation can be inductive,
based on a reference class of similar past events, such as car accidents for auto insurance
pricing. Or it can be deductive, based on precise models of the phenomenon in question,
as in poker. Unfortunately, there is no useful reference class nor precise models when it
comes to Al risk. In practice, risk estimates are ‘subjective’—forecasters’ personal judg-
ments.®” Lacking any grounding, these tend to vary wildly, often by orders of magnitude.

In addition to the probabilities, the other components of the calculation—the consequenc-
es of various policy choices, including inaction—are also subject to massive uncertainties,
not just in magnitude but also in direction. There is no reliable way to quantify the ben-
efits we forego due to policies that restrict the availability of Al, and we argue below that
nonproliferation might make catastrophic risks worse.
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Furthermore, the utility we attach to certain outcomes might depend on our moral values.
For example, some people might consider extinction to have an unfathomably large neg-
ative utility because it precludes all of the human lives, physical or simulated, that might
exist in the future.®® (Of course, cost-benefit analysis involving infinities tends to lead to
absurd conclusions).

Another example is the asymmetry between policies that do and do not restrict freedoms
(such as requiring licenses for developing certain AI models versus increasing funding for
developing defenses against Al risks). Certain kinds of restrictions violate a core principle
of liberal democracy, namely that the state should not limit people’s freedom based on
controversial beliefs that reasonable people can reject. Justification is essential for the
legitimacy of government and the exercise of power.® It is unclear how to quantify the cost
of violating such a principle.

The importance of justification can, of course, be normatively debated, but empirically

it seems to be borne out thus far in Al policy. As mentioned earlier, California’s Al safety
regulation led to the coalescence of those opposed to the bill. Some members of the op-
positional camp were self-interested companies, but others were scholars and advocates
for progress. In our experience, the driving motivation for the second group in many cases
was the government’s perceived overstepping of the bounds of its legitimate authority,
given how unconvincing the proffered justifications were for those who did not subscribe
to the bill’s unstated premises.

Unavoidable differences in values and beliefs mean that policymakers must adopt value
pluralism, preferring policies that are acceptable to stakeholders with a wide range of val-
ues, and attempt to avoid restrictions on freedom that can reasonably be rejected by stake-
holders. They must also prioritize robustness, preferring policies that remain helpful, or at
least not harmful, if the key assumptions underpinning them turn out to be incorrect.*

Reducing uncertainty as a policy goal
While uncertainty cannot be eliminated for the reasons described above, it

can be reduced. However, this goal should not be left to experts; policymak-
ers can and should play an active role. We recommend five specific approaches.
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Type of policy

How it helps surface infor-
mation

Examples (including non-Al do-
mains)

Whistleblower protec-
Hon

Insiders may have knowl-
edge of dangerous applica-
tions that they cannot bring
to light

Whistleblower protections for var-
ious types of safety such as food
safety and worker safety

Transparency reporting
requirement for de-
plovers

Deplovers of technologies
such as chatbots have a
wealth of log data showing
how they are being misused
in the wild

Social media transparency report-
ing requirements to bring to light
the distribution of harmful content

Government use in-
ventorices

Transparency of government
to improve trust

2020 U.S. Executive Order

Product registration

Tracking the rate of deploy-

ment

FAA drone registration require-
ment

Incident Tl;'].'.ll_!l!'l'i ng

Enabling case studies and
statistical Hﬂa]}-‘!_-i&‘!_—i toy 1mm-

prove safety knowledge

Workplace or road accident report-
ing requirements

Safe harbor for red
teaming of deploved

systems

Incentivizes research on vul-
nerabilities in the wild

DMCA safe harbor for cybersecu-
rity research

Figure 6. Overview of a few types of policies that can enhance public information about Al
use, risks, and failures.>

Strategic funding of research on risks. Current Al safety research focuses heavily on harm-
ful capabilities and does not embrace the normal technology view. Insufficient attention
has been paid to questions that are downstream of technical capabilities. For example,
there is a striking dearth of knowledge regarding how threat actors actually use Al. Efforts
such as the Al Incident Database exist and are valuable, but incidents in the database

are sourced from news reports rather than through research, which means that they are
filtered through the selective and biased process by which such incidents become news.”

Fortunately, research funding is an area in which compromise is healthy; we advocate for
increased funding of research on risks (and benefits) that tackles questions that are more
relevant under the normal technology view. Other kinds of research that might reduce, or
at least clarify, uncertainty are evidence synthesis efforts and adversarial collaborations
among researchers with different worldviews.
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Monitoring of Al use, risks, and failures. While research funding can help with monitoring
Al in the wild, it might also require regulation and policy—that is, “evidence-seeking poli-
cies.”? We suggest a few such policies in Figure 6.

Guidance on the value of different kinds of evidence. Policymakers can provide the re-
search community with a better understanding of what kinds of evidence are useful and
actionable. For example, various policymakers and advisory bodies have indicated the
usefulness of the “marginal risk” framework for analyzing the relative risks of open-weight
and proprietary models, which is helpful to researchers in guiding future research.*

Evidence gathering as a first-rate goal. So far, we have discussed actions that are specif-
ically intended to generate better evidence or to reduce uncertainty. More broadly, the
impact on evidence gathering can be considered to be a factor in evaluating any Al policy,
alongside the impact on maximizing benefits and minimizing risks. For example, one rea-
son to favor open-weight and open-source models could be to advance research on Al risks.
Conversely, one reason to favor proprietary models might be that surveillance of their use
and deployment might be easier.

The case for resilience

Marchant and Stevens described four approaches to governing emerging technologies; see
Figure 7.5 Two are ex ante, risk analysis and precaution, and the other two are ex post, li-
ability and resilience. These approaches have different pros and cons and can complement
each other; nonetheless, some approaches are clearly better suited to some technologies
than others.

Marchant and Stevens argued (and we agree) that ex ante approaches are poorly suited to
Al because of the difficulty of ascertaining risks in advance of deployment. Liability fares

better, but also has important limitations, including uncertainty about causation and the

chilling effects it might exert on technology development.
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Approach

Meaning

Example tech/risk for which
it is suitable as the primary
regulatory strategy

Risk analysis

Scientific assessment of likeli-
hood of risks coupled with risk-
management regulation

A new chemical

Precautionary prin-
ciple

Restrict the technology until there
is sufficient evidence of safety

Genetic modification of
pathogenic viruses

Make developer/deployer finan-

Liability . : Autonomous vehicle accidents
cially responsible for any harms
Minimize the severity and dura-

Resilience tion of harm (rather than the likeli-  Artificial intelligence

hood of harm)

Figure 7. Summary of four approaches to governing emerging technology, based on March-

ant and Stevens.

They defined resilience as follows:

Resilience, in its most simple form, is the capacity of a system to deal with harm.
[Footnote omitted] A resilience approach does not necessarily try to maintain sta-
bility or equilibrium. Rather, it recognizes that changes are inevitable in complex
systems, and tries to manage and adapt to that change in ways that protect and
preserve the core values and functions of the original system. Thus, resilience

is “the capacity of a system to experience shocks while retaining essentially the
same function, structure, feedbacks, and therefore identity.”* Resilience has
been described as a strategy to ensure a “soft landing” after a significant external
shock or disruption causes damage.”

In the context of Al, harms may result from incidents in specific deployed systems, regard-
less of whether these incidents are accidents or attacks. There are also shocks that may

or may not result in harms, including sudden increases in offensive capabilities (such as
enabling bioterrorists) and a sudden proliferation of capabilities, such as through the
release of an open-weight model or theft of the weights of a proprietary model. In our view,
resilience requires both minimizing the severity of harm when it does occur and minimiz-
ing the likelihood of harm when shocks do occur.

Resilience combines elements of ex ante and ex post approaches, and consists of taking

Electronic copy available at: knightcolumbia.org



KNIGHT FIRST AMENDMENT INSTITUTE 35 Al AS NORMAL TECHNOLOGY

actions before harm occurs in order to be in a better position to limit the damage when
harm does occur. Many resilience-based governance tools help to mitigate the pacing prob-
lem, wherein traditional governance approaches are unable to keep pace with the speed of
technological development.

Many resilience strategies have been proposed for Al. They can be grouped into four broad
categories. The first three consist of “no regret” policies that will help regardless of the
future of Al

* Societal resilience, broadly: It is important to redouble efforts to protect the foun-
dations of democracy, especially those weakened by Al, such as the free press and
equitable labor markets. Advances in Al are not the only shocks, or even the only
technology shocks, that modern societies face, so these policies will help regard-
less of the future of Al

* Prerequisites for effective technical defenses and policymaking: These inter-
ventions enable those in the next category by strengthening technical and institu-
tional capacity. Examples include funding more research on Al risks, transparency
requirements for developers of high-stakes Al systems, building trust and reducing
fragmentation in the Al community, increasing technical expertise in government,
increasing international cooperation on Al, and improving Al literacy.”® These will
help to build technical and institutional capacities to mitigate Al risks even if it
turns out that we have been wrong about the present or future impact of Al

* Interventions that would help regardless of the future of Al: These include
developing early warning systems, developing defenses against identified Al risks,
incentivizing defenders (such as software developers in the context of cyberattacks)
to adopt Al legal protections for researchers, adverse event reporting requirements,
and whistleblower protections.?

* Resilience-promoting interventions that will help if Al is normal technolo-
gy but which might make it harder to control a potential superintelligent Al,
such as promoting competition, including through open model releases, ensuring
Al is widely available for defense, and polycentricity, which calls for diversifying
the set of regulators and ideally introducing competition among them rather than
putting one regulator in charge of everything.'*°

We hope that there can be consensus on the first three categories even among experts
and stakeholders with widely different beliefs about Al risks and the future trajectory of
Al. We recommend that, for now, policymakers should cautiously pursue interventions in
the final category as well, but should also improve their readiness to change course if the
trajectory of Al changes.
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Nonproliferation is infeasible to enforce and leads to single points of
failure

Nonproliferation policies seek to limit the number of actors who can obtain powerful Al
capabilities. Examples include export controls on hardware or software aimed at limit-

ing the ability of countries to build, acquire, or operate powerful Al, requiring licenses to
build or distribute powerful Al, and prohibiting open-weight Al models (since their further
proliferation cannot be controlled).**

If we view future Al as a superintelligence, nonproliferation seems to be an appealing
intervention, possibly even a necessary one. If only a handful of actors control powerful Al,
governments can monitor their behavior.

Unfortunately, the technical knowledge that is required to build capable Al models is al-
ready widespread, with many organizations sharing their complete code, data, and train-
ing methodologies. For well-funded organizations and nation states, even the high cost of
training state-of-the-art models is insignificant; thus, nonproliferation would require un-
precedented levels of international coordination.'*>* Moreover, algorithmic improvements
and reductions to hardware costs continually lower the barrier to entry.

Enforcing nonproliferation has serious practical challenges. Malicious actors can sim-

ply ignore licensing requirements. Suggestions to surveil data centers where models are
trained become increasingly impractical as training costs decrease.'* As capabilities be-
come more accessible, maintaining effective restrictions would require increasingly draco-
nian measures.

Nonproliferation introduces new risks: It would decrease competition and increase con-
centration in the market for Al models. When many downstream applications rely on
the same model, vulnerabilities in this model can be exploited across all applications. A
classic example of the cybersecurity risks of software monoculture is the proliferation of
worms targeting Microsoft Windows in the 2000s.°4

Reliance on nonproliferation creates brittleness in the face of shocks, such as model
weights being leaked, alignment techniques failing, or adversaries acquiring training
capabilities. It directs attention away from more robust defenses that focus on downstream
attack surfaces where Al risks will be likely to materialize.

Nonproliferation creates risks beyond just single points of failure—when the expertise
needed to develop state-of-the-art models is restricted to a few companies, only their re-
searchers have the deep access that is needed for safety research.
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Many potential misuses of Al have been invoked in order to advocate for nonproliferation,
including chemical, biological, and nuclear threats, as well as cyberattacks.

The risk of bioweapons is real. As large language models are general-purpose technology,
they will be likely to find some use by bioterrorists, just as they find uses in most domains.
But this does not make bioterror an Al risk — any more than it is an internet risk, consider-
ing that information about bioweapons is widely available online.’>> Whatever defenses we
take against existing bioterrorism risks (like restricting access to dangerous materials and
equipment) will also be effective against Al-enabled bioterrorism.

In cybersecurity, as we discussed in Part I1I, advances in automated vulnerability detec-
tion tend to favor defenders over attackers. Unless this offense-defense balance changes,
attempting to restrict the proliferation of these capabilities would be counterproductive.

It has long been argued that governments are massively underinvesting in many areas of
civilizational risk, such as pandemic prevention. If the possibility of bad actors using Al to
exploit these existing vulnerabilities creates added urgency to address them, that would
be a good outcome. But reframing existing risks as Al risks and prioritizing Al-specific
mitigations would be highly counterproductive.

Nonproliferation is a mindset, not just a policy intervention.’*® This mindset can be ad-
opted by model and downstream developers, deployers, and individuals. It involves the
centralization not just of access to technologies, but also control over them. Consider the
hierarchy of loci of control over Al systems (from centralized to decentralized): govern-
ments, model developers, application developers, deployers, and end users. In the non-
proliferation mindset, control is exercised at the highest (most centralized) level possible,
whereas in the resilience mindset it is usually exercised at the lowest possible level.

The following are examples of nonproliferation-based interventions:
* Removing dual-use capabilities from models through “forgetting” techniques.

* Curbing the ability of downstream developers to fine-tune models.

* Entrusting Al models and systems themselves with making safety decisions autono-
mously on the basis that they are trained to comply with centralized safety policies,
whereas deployers/users are not trusted to do so.

* Increasing Al systems’ level of access to context, resources, and sensitive data, on
the basis that it allows them to make better safety decisions (for example, having
access to the user’s web search history might allow a chatbot to better determine
whether the intent behind a request is malicious).
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* Developing “Al organizations” (multi-agent systems with high levels of organiza-
tional complexity) that are under the developer’s control and operate in parallel
with traditional organizations instead of integrating Al agents into existing organi-
zations.

With limited exceptions, we believe that nonproliferation-based safety measures decrease
resilience and thus worsen Al risks in the long run.”” They lead to design and implemen-
tation choices that potentially enable superintelligence in the sense of power—increasing
levels of autonomy, organizational ability, access to resources, and the like. Paradoxically,
they increase the very risks they are intended to defend against.

Realizing the benefits of Al

An important consequence of the normal technology view is that progress is not automat-
ic—there are many roadblocks to Al diffusion. As Jeffrey Ding has shown, the capacity to
diffuse innovations throughout the economy varies greatly between countries and has a
major effect on their overall power and economic growth.°® As an example of how diffu-
sion can be a bottleneck, recall the example of the electrification of factories described
above. Policy can mitigate or worsen these roadblocks.

Realizing the benefits of Al will require experimentation and reconfiguration. Regulation
that is insensitive to these needs risks stymying beneficial Al adoption. Regulation tends
to create or reify categories, and might thus prematurely freeze business models, forms of
organization, product categories, and so forth. The following are a few examples:

* C(Categorizing certain domains as “high-risk,” say insurance, benefits adjudication,
or hiring, may be a category error, as the variation in risk among tasks within a
domain may be far greater than the variation across domains.'® Tasks in the same
domains might range from automated decision making (highly consequential) to
optical character recognition (relatively innocuous). Moreover, the diffusion of Al
will surely create new tasks that we have not yet envisioned and which might be
preemptively miscategorized by regulation.

e The Al supply chain is changing rapidly. The rise of foundation models has led to a
much sharper distinction between model developers, downstream developers, and
deployers (among many other categories). Regulation that is insensitive to these
distinctions risks burdening model developers with responsibilities for risk miti-
gation related to particular deployment contexts, which would be impossible for
them to carry out due to the general-purpose nature of foundation models and the
unknowability of all the possible deployment contexts.

* When regulation makes a binary distinction between decisions that are and are not
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fully automated, and does not recognize degrees of oversight, it disincentivizes the
adoption of new models for Al control. As we discussed above, there are many new
models being proposed for how to have effective human oversight without having a
human in the loop in every decision. It would be unwise to define automated deci-
sion making in such a way that these approaches incur the same compliance bur-
dens as a system with no oversight at all.

To be clear, regulation versus diffusion is a false tradeoff, just as is regulation versus inno-
vation.”® None of the above examples are arguments against regulation; they only illus-
trate the need for nuance and flexibility.

Moreover, regulation has a crucial role to play in enabling diffusion. As a historical ex-
ample, the ESIGN Act of 2000 in the U.S. was instrumental in promoting digitization and
e-commerce: Ensuring that electronic signatures and records are legally valid helped build
trust in digital transactions.™

In Al too, there are many opportunities for diffusion-enabling regulation. As one exam-
ple, the incorporation of journalistic and media content into chatbots and other Al inter-
faces is limited by media organizations’ justified wariness of Al companies. Many of the
Al-meets-journalism deals that have been made thus far are exploitative due to the power
asymmetry between Al companies and publishers, and the latter’s inability to bargain
collectively. Various models for mandatory negotiation with regulatory oversight are pos-
sible.”? (Arguably a more important reason for such regulation is to protect the interests of
publishers, which we revisit below).

[in areas in which there is legal or regulatory uncertainty, regulation can promote diffu-
sion. The application of liability laws to Al is often unclear. For example, this was the case
with small drones until the Federal Aviation Administration regulated the nascent indus-
try in 2016, establishing clear rules and requirements. The resulting clarity spurred adop-
tion and led to a rapid rise in the number of registered drones, certified pilots, and use
cases across different industries.'s

Moving beyond the government’s role as a regulator, one powerful strategy for promoting
Al diffusion is investing in the complements of automation, which are things that become
more valuable or necessary as automation increases. One example is promoting Al literacy
as well as workforce training in both the public and the private sectors. Another example
is digitization and open data, especially open government data, which can allow Al users
to benefit from previously inaccessible datasets. The private sector will be likely to under-
invest in these areas as they are public goods that everyone can benefit from. Improve-
ments to energy infrastructure, such as the reliability of the grid, will promote both Al
innovation and diffusion since it will help in both Al training and inference.
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Governments also have an important role to play in redistributing the benefits of Al to
make them more equitable and in compensating those who stand to lose as a result of
automation. Strengthening social safety nets will help to decrease the currently high levels
of public anxiety about Al in many countries."# The arts and journalism are vital spheres
of life that have been harmed by Al. Governments should consider funding them through
taxes on Al companies.

Finally, governments should strike a fine balance in terms of the public sector adoption
of Al. Moving too quickly will lead to a loss of trust and legitimacy, as was the case of the
New York City chatbot that was evidently inadequately tested and made headlines for
telling businesses to break the law.”> The use of Al by the U.S. Department of Government
Efficiency (DOGE) includes many dubious applications."® But moving too slowly might
mean that basic government functions are outsourced to the private sector where they are
implemented with less accountability."7

For example, the complexity of rules in areas such as taxes and welfare means that peo-
ple often turn to chatbots for guidance on navigating them, and governments currently
lag far behind in providing such services due to understandable caution about the risks
involved."®

But the administrative state’s approach to these risks is overly cautious and has been
described by Nicholas Bagley as a “procedure fetish,” potentially leading to a “runaway
bureaucracy.”" In addition to losing out on the benefits of Al, Bagley cautioned that
incompetent performance will lead to government agencies losing the very legitimacy that
they seek to gain through their emphasis on procedure and accountability.

Final Thoughts

Al as normal technology is a worldview that stands in contrast to the worldview of Al as
impending superintelligence. Worldviews are constituted by their assumptions, vocabu-
lary, interpretations of evidence, epistemic tools, predictions, and (possibly) values. These
factors reinforce each other and form a tight bundle within each worldview.

For example, we assume that, despite the obvious differences between Al and past tech-
nologies, they are sufficiently similar that we should expect well-established patterns,
such as diffusion theory to apply to Al in the absence of specific evidence to the contrary.

Vocabulary differences can be pernicious because they may hide underlying assumptions.
For example, we reject certain assumptions that are required for the meaningfulness of the
concept of superintelligence as it is commonly understood.
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Differences about the future of Al are often partly rooted in differing interpretations of
evidence about the present. For example, we strongly disagree with the characterization of
generative Al adoption as rapid (which reinforces our assumption about the similarity of
Al diffusion to past technologies).

In terms of epistemic tools, we deemphasize probability forecasting and emphasize the
need for disaggregating what we mean by Al (levels of generality, progress in methods
versus application development versus diffusion, etc.) when extrapolating from the past to
the future.

We believe that some version of our worldview is widely held. Unfortunately, it has not
been articulated explicitly, perhaps because it might seem like the default to someone
who holds this view, and articulating it might seem superfluous. Over time, however, the
superintelligence view has become dominant in Al discourse, to the extent that someone
steeped in it might not recognize that there exists another coherent way to conceptualize
the present and future of Al. Thus, it might be hard to recognize the underlying reasons
why different people might sincerely have dramatically differing opinions about Al prog-
ress, risks, and policy. We hope that this paper can play some small part in enabling great-
er mutual understanding, even if it does not change any beliefs.
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