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History

The first mathematician to study knots as mathematical objects
was Carl Friedrich Gauss. While Gauss himself wrote little about
knots, his student Johann Benedict Listing dedicated much of his
monograph to the study of knots and links. By the late 19th and
early 20th centuries, large tables of knots had been compiled, but it
was not clear that knots within them were distinct. A revolution in
knot theory occurred with the introduction of the Jones polynomial
in 1985 [3]. This was quickly followed by the HOMFLY polynomial
[2] and Kauffman polynomial [4].



Quantum invariants

These knot polynomials were later generalized by quantum knot
invariants, one of which is studied at a relatively elementary level in
this work. The concept of quantum invariants originates from
quantum physics, first introduced in Witten’s groundbreaking
paper[9]. Although Witten’s formulation was not mathematically
rigorous, it was later formalized by Reshetikhin and Turaev[7, 6],
who used quantum groups, which had been introduced shortly
before this.



Reidemeister moves

Knots are conveniently represented by knot diagrams. A knot
diagram is a projection of a knot onto a plane, where the curve has
only a finite number of self-intersections, and at each intersection,
one branch of the curve passes over the other. The Reidemeister
theorem [1] asserts that two knots are equivalent if and only if their
diagrams can be transformed into each other through a sequence of
three types of Reidemeister moves:

Ω1 Ω2 Ω3

Reidemeister moves



In addition to knots, their close relatives, called tangles, are often
studied. A tangle is both a generalization and a building block of
knots. On one hand, knots are a special case of tangles, and on the
other, any knot can be represented as a combination of elementary
tangles.



Figure-eight knot



I A knot with a framing—a smooth family of perpendiculars to
the knot—is called framed. Framed knots can be thought of as
knots tied on a ribbon.

I The HOMFLY polynomial of a knot is a polynomial P in two
variables, typically denoted by a and z . It was introduced in
[2, 5], where it was defined by the skein relation:

aP
(
L+
)
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L−
)

= zP
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Result

In this work, I provide an explicit construction of the invariant θStslN ,
which is equivalent to the HOMFLY polynomial and a more general
invariant θfr ,StslN

defined for framed knots. Moreover, this
construction also applies to tangles.



Operator R

To construct the invariant θfr ,StslN
, we introduce some notation. Let

V be an N-dimensional vector space with basis e1, . . . , eN . Define
the operator R : V ⊗ V → V ⊗ V on the basis as follows:

R(ei ⊗ ej) =


q

−1
2N ej ⊗ ei , i < j ;

q
N−1
2N ei ⊗ ej , i = j ;

q
−1
2N ej ⊗ ei +

(
q

N−1
2N − q

−N−1
2N

)
ei ⊗ ej , i > j .

This operator can be extended to V ⊗ V by linearity.



Inverse operator

The inverse operator R−1 : V ⊗V → V ⊗V is defined on the basis
as follows:

R−1(ei ⊗ ej) =


q

1
2N ej ⊗ ei +

(
−q

N+1
2N + q

−N+1
2N

)
ei ⊗ ej , i < j ;

q
−N+1
2N ei ⊗ ej , i = j ;

q
1
2N ej ⊗ ei , i > j .



Verifying RR−1 = id

WLOG assume i < j . Then:

R−1(ei ⊗ ej) = q
1
2N ej ⊗ ei +

(
−q

N+1
2N + q

−N+1
2N

)
ei ⊗ ej ,

R
(
q

1
2N ej ⊗ ei +

(
−q

N+1
2N + q

−N+1
2N

)
ei ⊗ ej

)
= ei ⊗ ej .

Thus, the operator R ◦ R−1 coincides with the identity operator on
V ⊗ V , verifying that R−1 behaves as expected.



Square equation on R

The operator R satisfies the equation:

q
1
2N R − q−

1
2N R−1 =

(
q

1
2 − q−

1
2

)
idV⊗V .

For i < j :

q
1
2N R(ei ⊗ ej)− q−

1
2N R−1(ei ⊗ ej)

= q
1
2N q

−1
2N ei ⊗ ej − q−

1
2N

(
q

1
2N ej ⊗ ei +

(
−q

N+1
2N + q

−N+1
2N

)
ei ⊗ ej

)
=
(
q

N
2N − q

−N
2N

)
ei ⊗ ej .

Hence, all eigenvalues of R are q
N−1
2N or −q

−N−1
2N .



Constructing the invariant θfr ,StslN
To construct the invariant θfr ,StslN

, we introduce additional operators:

min−→ : C→ V ∗ ⊗ V , min−→(1) :=
N∑

k=1

q
−N−1

2 +kek ⊗ ek ,

min←− : C→ V ⊗ V ∗, min←−(1) :=
N∑

k=1

ek ⊗ ek ,

−−→max : V ⊗ V ∗ → C, −−→max(ei ⊗ e j) =

{
0, i 6= j ,

q
N+1
2 −i , i = j ,

←−−max : V ∗ ⊗ V → C, ←−−max(e i ⊗ ej) =

{
0, i 6= j ,

1, i = j .



Constructing the invariant θfr ,StslN

To build the invariant θfr ,StslN
, represent the tangle as a composition

of elementary tangles. On the boundary between two elementary
tangles, associate the space V to each thread going upwards, and
V ∗ to each thread going downwards. The boundary itself is
associated with the tensor product of these spaces.
The mappings for trivial tangles are defined as follows: a thread
going from bottom to top without intersecting other threads
corresponds to the identity map from V to V . Similarly, a thread
going from top to bottom corresponds to the identity map from V ∗

to V ∗.



Elementary tangles
Each “event” in a tangle corresponds to an operator. For example,
a minimum going left is assigned to the linear transformation
min←− : C→ V ⊗ V ∗:

Similarly, a minimum going right corresponds to min−→:

A maximum going right corresponds to −−→max:

A maximum going left corresponds to ←−−max:



Elementary tangles

If an event is a crossing, there are eight possible cases. If both lines
are going up, then:

is assigned to the operator R , and:

is assigned to the operator R−1. All other cases can be expressed
using previously defined operators.



If a tangle represents a knot, its boundaries are empty, and it is
assigned a linear transformation from C to C. Denote the image of
1 by θfr ,StslN

.
For tangle diagrams, there exists an analogue of the Reidemeister
moves called Turaev moves [8]. Tangle diagrams are equivalent if
and only if they can be transformed into each other by a finite
sequence of Turaev moves.



In non-oriented case

I
...

...

T1

T2
←→

...

...

T1

T2

I ←→ ←→

I ←→ ←→

I ←→

I ←→ ←→

I ←→

I ←→



In oriented case
I The same as in non-oriented case with arbitrary orientation of

threads.
I The same as in non-oriented case with threads going from the

bottom to the top

I ←→ ←→

I ←→ ←→

I ←→

I ←→

I ←→



Yang-Baxter equation

The operator R satisfies the Yang-Baxter equation. Let
R12 : V ⊗ V ⊗ V → V ⊗ V ⊗ V = R ⊗ idV , and
R23 : V ⊗ V ⊗ V → V ⊗ V ⊗ V = idV ⊗ R . Then:

R12R23R12 = R23R12R23. (1)

This can be verified by checking the actions of both sides of (1) on
the basis elements ei ⊗ ej ⊗ ek of V ⊗ V ⊗ V . If their actions
coincide on the basis, they will coincide on the entire space.



Skein-relation

Let us prove that for θfr ,StslN
, the following skein-relation holds:

q
1
2N θfr ,StslN

(L+)− q−
1
2N θfr ,StslN

(L−) = (q
1
2 − q−

1
2 )θfr ,StslN

(L0).

Consider a knot diagram where the knot is decomposed into
elementary tangles, with L−, L0, and L+ oriented upwards. They
correspond to R , idV ⊗ idV , and R−1, respectively. By linearity, it
suffices to check that q

1
2N R − q−

1
2N R−1 = (q

1
2 − q−

1
2 )idV⊗V ,

which was previously verified.



First Turaev move

First Turaev move replaces the loop with one line, but θfr ,StslN
is not

preserved. Let us look what is exactly happening to θfr ,StslN
.



First Turaev move

First Turaev move replaces the loop with one line, but θfr ,StslN
is not

preserved. Let us look what is exactly happening to θfr ,StslN
.

Loop is oriented upside down and gives us an operator V → V by
formula (idV ⊗−−→max)(R ⊗ idV ∗)(idV ⊗min←−).

One can check that changing writhe by ±1 corresponds to
multiplying θfr ,StslN

by q±
N−1/N

2 .



Deframing
Define the invariant θStslN of a knot by the relation:

θStslN := q−
N−1/N

2 wθfr ,StslN
,

where w is the writhe, the difference between the number of
positive crossings (associated with R , R , R , and R ) and
negative crossings (associated with R−1, R−1, R−1, and R−1).
Both θfr ,StslN

and the writhe must be calculated for the same diagram.
The skein-relation for θStslN is:

q
1
2N q

N−1/N
2 θfr ,StslN

(L+)−q−
1
2N q−

N−1/N
2 θfr ,StslN

(L−) = (q
1
2−q−

1
2 )θfr ,StslN

(L0).

The invariant θStslN can be obtained from the HOMFLY polynomial

P(Knot) by substituting q
N
2 for a and q

1
2 − q−

1
2 for z , up to the

factor q
N
2 −q

−N
2

q
1
2−q−

1
2
. Thus, θStslN is equivalent to the HOMFLY

polynomial.
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