The Future of Peptide-based Drugs
Corresponding Author
David J. Craik
Division of Chemistry & Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
Corresponding author: David J. Craik, d.craik@imb.uq.edu.auSearch for more papers by this authorDavid P. Fairlie
Division of Chemistry & Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
Search for more papers by this authorSpiros Liras
CVMED Medicinal Chemistry, Pfizer Inc., Worldwide Medicinal Chemistry, 620 Memorial Drive, Cambridge, MA 02139, USA
Search for more papers by this authorDavid Price
CVMED Medicinal Chemistry, Pfizer Inc., Worldwide Medicinal Chemistry, 620 Memorial Drive, Cambridge, MA 02139, USA
Search for more papers by this authorCorresponding Author
David J. Craik
Division of Chemistry & Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
Corresponding author: David J. Craik, d.craik@imb.uq.edu.auSearch for more papers by this authorDavid P. Fairlie
Division of Chemistry & Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
Search for more papers by this authorSpiros Liras
CVMED Medicinal Chemistry, Pfizer Inc., Worldwide Medicinal Chemistry, 620 Memorial Drive, Cambridge, MA 02139, USA
Search for more papers by this authorDavid Price
CVMED Medicinal Chemistry, Pfizer Inc., Worldwide Medicinal Chemistry, 620 Memorial Drive, Cambridge, MA 02139, USA
Search for more papers by this authorAbstract
The suite of currently used drugs can be divided into two categories – traditional ‘small molecule’ drugs with typical molecular weights of <500 Da but with oral bioavailability, and much larger ‘biologics’ typically >5000 Da that are not orally bioavailable and need to be delivered via injection. Due to their small size, conventional small molecule drugs may suffer from reduced target selectivity that often ultimately manifests in human side-effects, whereas protein therapeutics tend to be exquisitely specific for their targets due to many more interactions with them, but this comes at a cost of low bioavailability, poor membrane permeability, and metabolic instability. The time has now come to reinvestigate new drug leads that fit between these two molecular weight extremes, with the goal of combining advantages of small molecules (cost, conformational restriction, membrane permeability, metabolic stability, oral bioavailability) with those of proteins (natural components, target specificity, high potency). This article uses selected examples of peptides to highlight the importance of peptide drugs, some potential new opportunities for their exploitation, and some difficult challenges ahead in this field.
References
- 1 Newman D.J., Cragg G.M. (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod; 75: 311–335.
- 2 Lipinski C.A. (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods; 44: 235–249.
- 3 Katz C., Levy-Beladev L., Rotem-Bamberger S., Rito T., Rudiger S.G., Friedler A. (2011) Studying protein-protein interactions using peptide arrays. Chem Soc Rev; 40: 2131–2145.
- 4 Krumholz H.M., Ross J.S., Presler A.H., Egilman D.S. (2007) What have we learnt from Vioxx? BMJ; 334: 120–123.
- 5 Danho W., Swistok J., Khan W., Chu X.J., Cheung A., Fry D., Sun H., Kurylko G., Rumennik L., Cefalu J., Cefalu G., Nunn P. (2009) Opportunities and challenges of developing peptide drugs in the pharmaceutical industry. Adv Exp Med Biol; 611: 467–469.
- 6 Vlieghe P., Lisowski V., Martinez J., Khrestchatisky M. (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today; 15: 40–56.
- 7 Craik D.J., Swedberg J.E., Mylne J.S., Cemazar M. (2012) Cyclotides as a basis for drug design. Expert Opin Drug Discov; 7: 179–194.
- 8 Madala P.K., Tyndall J.D., Nall T., Fairlie D.P. (2010) Update 1 of: proteases universally recognize beta strands in their active sites. Chem Rev; 110: PR1–PR31.
- 9 Loughlin W.A., Tyndall J.D., Glenn M.P., Hill T.A., Fairlie D.P. (2010) Update 1 of: beta-strand mimetics. Chem Rev; 110: PR32–PR69.
- 10 Verdine G.L., Hilinski G.J. (2012) Stapled peptides for intracellular drug targets. Methods Enzymol; 503: 3–33.
- 11 Wittrup K.D., Verdine G.L. (2012) Protein engineering for therapeutics, part B. Preface Methods Enzymol; 503: xiii–xiv.
- 12 Robinson J.A. (2011) Protein epitope mimetics as anti-infectives. Curr Opin Chem Biol; 15: 379–386.
- 13 Bellmann-Sickert K., Beck-Sickinger A.G. (2010) Peptide drugs to target G protein-coupled receptors. Trends Pharmacol Sci; 31: 434–441.
- 14 Zhang L., Bulaj G. (2012) Converting peptides into drug leads by lipidation. Curr Med Chem; 19: 1602–1618.
- 15 Horne W.S. (2011) Peptide and peptoid foldamers in medicinal chemistry. Expert Opin Drug Discov; 6: 1247–1262.
- 16 Montanya E. (2012) A comparison of currently available GLP-1 receptor agonists for the treatment of type 2 diabetes. Expert Opin Pharmacother; 13: 1451–1467.
- 17 Chae S.Y., Jin C.H., Shin H.J., Youn Y.S., Lee S., Lee K.C. (2008) Preparation, characterization, and application of biotinylated and biotin-PEGylated glucagon-like peptide-1 analogues for enhanced oral delivery. Bioconjug Chem; 19: 334–341.
- 18 Jin C.H., Chae S.Y., Son S., Kim T.H., Um K.A., Youn Y.S., Lee S., Lee K.C. (2009) A new orally available glucagon-like peptide-1 receptor agonist, biotinylated exendin-4, displays improved hypoglycemic effects in db/db mice. J Control Release; 133: 172–177.
- 19 Halai R., Craik D.J. (2009) Conotoxins: natural product drug leads. Nat Prod Rep; 26: 526–536.
- 20 Borel J.F. (2002) History of the discovery of cyclosporin and of its early pharmacological development. Wien Klin Wochenschr; 114: 433–437.
- 21 Craik D.J. (2006) Chemistry. Seamless proteins tie up their loose ends. Science; 311: 1563–1564.
- 22 Cascales L., Craik D.J. (2010) Naturally occurring circular proteins: distribution, biosynthesis and evolution. Org Biomol Chem; 8: 5035–5047.
- 23 Condie J.A., Nowak G., Reed D.W., Balsevich J.J., Reaney M.J., Arnison P.G., Covello P.S. (2011) The biosynthesis of Caryophyllaceae-like cyclic peptides in Saponaria vaccaria L. from DNA-encoded precursors. Plant J; 67: 682–690.
- 24 White T.R., Renzelman C.M., Rand A.C., Rezai T., McEwen C.M., Gelev V.M. et al. (2011) On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat Chem Biol; 7: 810–817.
- 25 Beck J.G., Chatterjee J., Laufer B., Kiran M.U., Frank A.O., Neubauer S., Ovadia O., Greenberg S., Gilon C., Hoffman A., Kessler H. (2012) Intestinal permeability of cyclic peptides: common key backbone motifs identified. J Am Chem Soc; 134: 12125–12133.
- 26 Fairlie D.P., Abbenante G., March D. (1995) Macrocyclic peptidomimetics: forcing peptides into bioactive conformations. Curr Med Chem; 2: 672–705.
- 27 Rezai T., Bock J.E., Zhou M.V., Kalyanaraman C., Lokey R.S., Jacobson M.P. (2006) Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides. J Am Chem Soc; 128: 14073–14080.
- 28 Chatterjee J., Gilon C., Hoffman A., Kessler H. (2008) N-methylation of peptides: a new perspective in medicinal chemistry. Acc Chem Res; 41: 1331–1342.
- 29 Biron E., Chatterjee J., Ovadia O., Langenegger D., Brueggen J., Hoyer D., Schmid H.A., Jelinek R., Gilon C., Hoffman A., Kessler H. (2008) Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues. Angew Chem Int Ed Engl; 47: 2595–2599.
- 30 Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., Kopple K.D. (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem; 45: 2615–2623.
- 31 Nowick J.S. (2008) Exploring beta-sheet structure and interactions with chemical model systems. Acc Chem Res; 41: 1319–1330.
- 32 Loughlin W.A., Tyndall J.D., Glenn M.P., Fairlie D.P. (2004) Beta-strand mimetics. Chem Rev; 104: 6085–6117.
- 33 Fairlie D.P., West M.L., Wong A.K. (1998) Towards protein surface mimetics. Curr Med Chem; 5: 29–62.
- 34 Shepherd N.E., Hoang H.N., Abbenante G., Fairlie D.P. (2005) Single turn peptide alpha helices with exceptional stability in water. J Am Chem Soc; 127: 2974–2983.
- 35 Heitz A., Avrutina O., Le-Nguyen D., Diederichsen U., Hernandez J.F., Gracy J., Kolmar H., Chiche L. (2008) Knottin cyclization: impact on structure and dynamics. BMC Struct Biol; 8: 54.
- 36 Gracy J., Le-Nguyen D., Gelly J.C., Kaas Q., Heitz A., Chiche L. (2008) KNOTTIN: the knottin or inhibitor cystine knot scaffold in 2007. Nucleic Acids Res; 36: D314–D319.
- 37 Gould A., Ji Y., Aboye T.L., Camarero J.A. (2011) Cyclotides, a novel ultrastable polypeptide scaffold for drug discovery. Curr Pharm Des; 17: 4294–4307.
- 38 Knappe T.A., Manzenrieder F., Mas-Moruno C., Linne U., Sasse F., Kessler H., Xie X., Marahiel M.A. (2011) Introducing lasso peptides as molecular scaffolds for drug design: engineering of an integrin antagonist. Angew Chem Int Ed Engl; 50: 8714–8717.
- 39 Terlau H., Olivera B.M. (2004) Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol Rev; 84: 41–68.
- 40 Adams D.J., Alewood P.F., Craik D.J., Drinkwater R., Lewis R.J. (1999) Conotoxins and their potential pharmaceutical applications. Drug Dev Res; 46: 219–234.
- 41 Moriuchi T., Hirao T. (2004) Highly ordered structures of peptides by using molecular scaffolds. Chem Soc Rev; 33: 294–301.
- 42 Tyndall J.D., Nall T., Fairlie D.P. (2005) Proteases universally recognize beta strands in their active sites. Chem Rev; 105: 973–999.
- 43 Henchey L.K., Jochim A.L., Arora P.S. (2008) Contemporary strategies for the stabilization of peptides in the alpha-helical conformation. Curr Opin Chem Biol; 12: 692–697.
- 44 Harrison R.S., Shepherd N.E., Hoang H.N., Ruiz-Gómez G., Hill T.A., Driver R.W., Desai V.S., Young P.R., Abbenante G., Fairlie D.P. (2010) Downsizing human, bacterial, and viral proteins to short water-stable alpha helices that maintain biological potency. Proc Natl Acad Sci U S A; 107: 11686–11691.
- 45 Taylor J.W. (2002) The synthesis and study of side-chain lactam-bridged peptides. Biopolymers; 66: 49–75.
- 46 Madden M.M., Muppidi A., Li Z., Li X., Chen J., Lin Q. (2011) Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-Mdm2/Mdmx interactions via photoinduced cycloaddition. Bioorg Med Chem Lett; 21: 1472–1475.
- 47 Walensky L.D., Kung A.L., Escher I., Malia T.J., Barbuto S., Wright R.D., Wagner G., Verdine G.L., Korsmeyer S.J. (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science; 305: 1466–1470.
- 48 Schafmeister C.E., Po J., Verdine G.L. (2000) An All-hydrogen cross-linking system for enhancing the helicity and metabolic stability of peptides. J Am Chem Soc; 122: 5891–5892.
- 49 Kim Y.W., Grossmann T.N., Verdine G.L. (2011) Synthesis of all-hydrocarbon stapled alpha-helical peptides by ring-closing olefin metathesis. Nat Protoc; 6: 761–771.
- 50 Bullock B.N., Jochim A.L., Arora P.S. (2011) Assessing helical protein interfaces for inhibitor design. J Am Chem Soc; 133: 14220–14223.
- 51 Mahon A.B., Arora P.S. (2012) End-capped alpha-helices as modulators of protein function. Drug Discov Today Technol; 9: e57–e62.
- 52 Calvo J.C., Choconta K.C., Diaz D., Orozco O., Bravo M.M., Espejo F., Salazar L.M., Guzman F., Patarroyo M.E. (2003) An alpha helix conformationally restricted peptide is recognized by cervical carcinoma patients’ sera. J Med Chem; 46: 5389–5394.
- 53 Kelso M.J., Hoang H.N., Appleton T.G., Fairlie D.P. (2000) The first solution structure of a single alpha-helical turn. A pentapeptide alpha-helix stabilised by a metal clip. J Am Chem Soc; 122: 10488–10489.
- 54 Ma M.T., Hoang H.N., Scully C.C., Appleton T.G., Fairlie D.P. (2009) Metal clips that induce unstructured pentapeptides to be alpha-helical in water. J Am Chem Soc; 131: 4505–4512.
- 55 Ball J.B., Andrews P.R., Alewood P.F., Hughes R.A. (1990) A one-variable topographical descriptor for the beta-turns of peptides and proteins. FEBS Lett; 273: 15–18.
- 56 Hutchinson E.G., Thornton J.M. (1994) A revised set of potentials for beta-turn formation in proteins. Protein Sci; 3: 2207–2216.
- 57 Moradi S., Soltani S., Ansari A.M., Sardari S. (2009) Peptidomimetics and their applications in antifungal drug design. AntiInfect Agents Med Chem; 8: 327–344.
- 58 Marshall G.R. (1993) A hierarchical approach to peptidomimetic design. Tetrahedron; 49: 3547–3558.
- 59 Jones R.M., Boatman P.D., Semple G., Shin Y.J., Tamura S.Y. (2003) Clinically validated peptides as templates for de novo peptidomimetic drug design at G-protein-coupled receptors. Curr Opin Pharmacol; 3: 530–543.
- 60 Kee K.S., Jois S.D. (2003) Design of beta-turn based therapeutic agents. Curr Pharm Des; 9: 1209–1224.
- 61 Tyndall J.D., Pfeiffer B., Abbenante G., Fairlie D.P. (2005) Over one hundred peptide-activated G protein-coupled receptors recognize ligands with turn structure. Chem Rev; 105: 793–826.
- 62 Henriques S.T., Craik D.J. (2010) Cyclotides as templates in drug design. Drug Discov Today; 15: 57–64.
- 63 Akcan M., Stroud M.R., Hansen S.J., Clark R.J., Daly N.L., Craik D.J., Olson J.M. (2011) Chemical re-engineering of chlorotoxin improves bioconjugation properties for tumor imaging and targeted therapy. J Med Chem; 54: 782–787.
- 64 Kimura R.H., Miao Z., Cheng Z., Gambhir S.S., Cochran J.R. (2010) A dual-labeled knottin peptide for PET and near-infrared fluorescence imaging of integrin expression in living subjects. Bioconjug Chem; 21: 436–444.
- 65 Miao Z., Ren G., Liu H., Kimura R.H., Jiang L., Cochran J.R., Gambhir S.S., Cheng Z. (2009) An engineered knottin peptide labeled with 18F for PET imaging of integrin expression. Bioconjug Chem; 20: 2342–2347.
- 66 Kimura R.H., Cheng Z., Gambhir S.S., Cochran J.R. (2009) Engineered knottin peptides: a new class of agents for imaging integrin expression in living subjects. Cancer Res; 69: 2435–2442.
- 67 Vita C., Drakopoulou E., Vizzavona J., Rochette S., Martin L., Ménez A., Roumestand C., Yang Y.S., Ylisastigui L., Benjouad A., Gluckman J.C. (1999) Rational engineering of a miniprotein that reproduces the core of the CD4 site interacting with HIV-1 envelope glycoprotein. Proc Natl Acad Sci U S A; 96: 13091–13096.
- 68 Chan L.Y., Gunasekera S., Henriques S.T., Worth N.F., Le S.J., Clark R.J., Campbell J.H., Craik D.J., Daly N.L. (2011) Engineering pro-angiogenic peptides using stable, disulfide-rich cyclic scaffolds. Blood; 118: 6709–6717.
- 69 Gunasekera S., Foley F.M., Clark R.J., Sando L., Fabri L.J., Craik D.J., Daly N.L. (2008) Engineering stabilized vascular endothelial growth factor-A antagonists: synthesis, structural characterization, and bioactivity of grafted analogues of cyclotides. J Med Chem; 51: 7697–7704.
- 70 Thongyoo P., Bonomelli C., Leatherbarrow R.J., Tate E.W. (2009) Potent inhibitors of beta-tryptase and human leukocyte elastase based on the MCoTI-II scaffold. J Med Chem; 52: 6197–6200.
- 71 Wong C.T., Rowlands D.K., Wong C.H., Lo T.W., Nguyen G.K., Li H.Y., Tam J.P. (2012) Orally active peptidic bradykinin B1 receptor antagonists engineered from a cyclotide scaffold for inflammatory pain treatment. Angew Chem Int Ed Engl; 51: 5620–5624.
- 72 Contreras J., Elnagar A.Y., Hamm-Alvarez S.F., Camarero J.A. (2011) Cellular uptake of cyclotide MCoTI-I follows multiple endocytic pathways. J Control Release; 155: 134–143.
- 73 Cascales L., Henriques S.T., Kerr M.C., Huang Y.H., Sweet M.J., Daly N.L., Craik D.J. (2011) Identification and characterization of a new family of cell-penetrating peptides: cyclic cell-penetrating peptides. J Biol Chem; 286: 36932–36943.
- 74 Bowersox S., Mandema J., Tarczy-Hornoch K., Miljanich G., Luther R.R. (1997) Pharmacokinetics of SNX-111, a selective N-type calcium channel blocker, in rats and cynomolgus monkeys. Drug Metab Dispos; 25: 379–383.
- 75 Miljanich G.P. (2004) Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem; 11: 3029–3040.
- 76 Clark R.J., Jensen J., Nevin S.T., Callaghan B.P., Adams D.J., Craik D.J. (2010) The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angew Chem Int Ed Engl; 49: 6545–6548.
- 77 Carstens B.B., Clark R.J., Daly N.L., Harvey P.J., Kaas Q., Craik D.J. (2011) Engineering of conotoxins for the treatment of pain. Curr Pharm Des; 17: 4242–4253.
- 78 Craik D.J., Mylne J.S., Daly N.L. (2010) Cyclotides: macrocyclic peptides with applications in drug design and agriculture. Cell Mol Life Sci; 67: 9–16.
- 79 Katoh T., Goto Y., Reza M.S., Suga H. (2011) Ribosomal synthesis of backbone macrocyclic peptides. Chem Commun (Camb); 47: 9946–9958.
Citing Literature
Recommended
Metrics
Details
© 2012 John Wiley & Sons A/S
Keywords
Publication History
- 17 December 2012
- 17 December 2012