
File System Forensics : Measuring
Parameters of the ext4 File System

Madhu Ramanathan
Department of Computer Sciences, UW Madison

madhurm@cs.wisc.edu

Venkatesh Karthik Srinivasan
Department of Computer Sciences, UW Madison

venk@cs.wisc.edu

Abstract
Operating systems are rather complex software systems. The File
System component of Operating Systems is defined by a set of pa-
rameters that impact both the correct functioning as well as the per-
formance of the File System. In order to completely understand and
modify the behavior of the File System, correct measurement of
those parameters and a thorough analysis of the results is manda-
tory. In this project, we measure the various key parameters and
a few interesting properties of the Fourth Extended File System
(ext4). The ext4 has become the de facto File System of Linux ker-
nels 2.6.28 and above and has become the default file system of
several Linux Distros. We measure and report:

• The size of the basic allocation and transfer unit, otherwise
called as the block size

• The prefetch size used by the file system
• The size of the buffer cache
• The number of in-inode extents

1. Introduction
1.1 A primer on the ext4 File System
Ext4 [2] was released as a functionally complete and stable file
system in Linux 2.6.28 and has been included in every Linux distro
that uses kernels 2.6.28 and above. It has been used as the default
file system in several Linux distros. ext4 is a Journalling File Sys-
tem like its ext3 counterpart but supports volume sizes upto Exa
Byte (1 EB) and file sizes upto 16 TB. It is the first file system
in the ext family to depart from the traditional mechanism of us-
ing indirect blocks to index data blocks. When indirect blocks are
used, accessing data blocks need to pass through an extra level
of indirection. Since mapping information is maintained for every
block, regardless of the blocks’ being physically contiguous with
allocated adjacent blocks, block maps tend to be huge and the extra
indirection becomes a huge overhead. Further, files tend to become
extremely fragmented on disk, the gravity of which is determined
by the block allocator’s intelligence. For these very reasons, ’ex-
tents’ are used in ext4.

[Copyright notice will appear here once ’preprint’ option is removed.]

An extent is a group of physically contiguous blocks. Allocating
extents instead of indirect blocks reduces the size of the block map,
thus, aiding the quick retrieval of logical disk block numbers and
also minimizes external fragmentation. An extent is represented in
an inode by 96 bits with 48 bits to represent the physical block
number and 15 bits to represent length. This allows one extent to
have a length of 215 blocks. An inode can have at most 4 extents.
If the file is fragmented, every extent typically has less than 215

blocks. If the file needs more than four extents, either due to frag-
mentation or due to growth, an extent HTree rooted at the inode is
created. A HTree is just like a B-Tree with high fanout. The extents
occur at the leaf nodes and they point to contiguous disk blocks.
Figure 1 shows the structure of an inode with the extent tree.

Figure 1. Structure of the ext4 inode with the Extent HTree

1.2 Measured Parameters
A very basic parameter of any file system is the size of the basic
allocation and storage unit, also called as the block size. Our exper-
iments first determine the block size of the ext4 file system. This
parameter is used by the rest of the experiments. The blocksize is
tricky to determine if the file system prefetches data on a buffer
cache miss. ext4, being a complex and intelligent file system, is no
exception to this fact. We had to design an algorithm that triggers
no form of prefetching, but, at the same time, measures the block
size accurately.

The next parameter that we measure is the prefetch size of ext4.
Whenever there is a buffer cache miss, instead of just servicing the
block miss, it would be advantageous to fetch the next few contigu-
ous disk blocks too. This would prove fruitful if the file were to be
accessed in a sequential manner. We designed a simple experiment
to measure the number of blocks prefetched by ext4.

1 2011/2/22

Table 1. Experimental Infrastructure
Processor Intel Core i7

Core Clock Freq. 2.66 Ghz
No. of Cores 2

LLC Size 4.0 MB
Memory Bandwidth 17.1 Gb/s

Memory Size 4.0 GB
Hard Disk Capacity 500GB

Hard Disk RPM 7200
Linux Ditro Ubuntu 10.10

Kernel Version Linux 2.6.35-22-generic

We then attempt to measure the buffer cache size of the file
system. Reading from a disk can be very slow when compared to
accessing the main memory. In addition, it is common to read the
same part of a disk several times during relatively short periods
of time. By reading the information from disk only once and then
keeping it in memory until no longer needed, one can speed up all
but the first read. For this purpose, disk buffering is done and the
pages once read are stored in the buffer cache, which occupies a
significant part of the main memory.

Unlike ext2, the ext4 file system does not have the concept of di-
rect pointers and indirect pointers to store the data block addresses.
This is because, if the files are large, then it would require a large
amount of disk blocks to store the metadata itself. Ext4 overcomes
this disadvantage by storing data in contiguous blocks of memory.
The metadata about each contiguous block of memory up to a max-
imum size of 128MB is stored in an extent. Each inode supports
the storage of 4 such extents in the inode itself. If the number of
extents is greater than 4, then they are stored in a HTree whose root
is stored in the inode. We attempt to verify the number of extents
stored in the inode directly.

2. Experimental Setup
We carried out our experiments in a Lenovo Thinkpad T510 Laptop
running Ubuntu 10.10 distro, built over a 2.6.35-22-generic Linux
kernel. The T510 had an Intel Core i7 processor. The processor is
a dual core processor and so, we affinitized our programs to run on
a single core with high priority. Our system had a 4 GB RAM. We
used a 500 GB ATA Hitatchi 7200 RPM disk for our measurements.
The detailed hardware infrastructure used for our experimenst is
listed in Table 1. Our programs were coded in C.

3. Design and Implementation
Taking measurements for a software system as complex as the ext4
file system requires carefully formulated methodologies and ex-
treme care so as to eliminate the effects of noise. ext4 is a pretty
complex file system and noise can be introduced by a variety of
factors. We had to take several things into consideration to get ac-
curate measurements.

• Selection of Timer: The selection of the timer used for mea-
surements is very critical for the project. Since memory refer-
ences require delays in the order of microseconds to complete,
we wanted to use a high resolution timer that gave an accuracy
finer than microseconds. The rdtsc is an assembly instruction
in the x86 ISA that reads a 64-bit register dedicated to storing
the number of clock cycles elapsed since the register was reset.
Since hardware counters provide the highest accuracy possible
in terms of CPU cycles, we decided to use the rdtsc instruc-

tion. However, our processor had two cores, with two separate
registers and, depending on which core the process is currently
running on, this might cause errors while reading the register.
To ensure that this does not happen, we affinitized the process
to run in a single CPU using the sched set affinity() system call
wrapper provided by the Linix kernel API. Further, we raised
the priority of the process so that no other process is scheduled
to that CPU. We multiply the resulting CPU cycles obtained, by
the CPU frequency to obtain the time measurements.

• Flushing and Clearing the Buffer Cache: Several times, dur-
ing our experiments, we had to clear the buffer cache or flush
the buffer cache to disk or both. For flushing the cache, we made
use of the fsync() system call. For clearing the buffer cache, we
made use of the ”drop caches” utility, found in Linux kernels
2.6.16 and above.

• Choosing a representative measurement: Once we took a se-
ries of measurements of a specific parameter, we had to use a
value that best represents the set of measurements taken. For
this, we used the arithmetic mean of a filtered subset of mea-
surements. While measuring the time for file system operations,
we need to take into account that there is a mechanical device
involved, the hard disk. The time that we report encompasses
the necessary head movement. To ensure that the head move-
ment is stable, we repeated the experiment many times and
disregarded the first 3 or 4 measurements. First few measure-
ments might include the time taken by the head to move from its
current poistion and this might cause unnecessary noise in the
measurements. This was how we arrived at the filtered subset of
measurements. Further, we did not print the measurements in a
file and we printed them to the console to prevent buffer cache
pollution or worse, stray head movements.

• Measurement validation: Since ext4 uses extents, which are
physically contiguous blocks of arbitary sizes, we had to find
some way of veryfying the results we obtained, pertaining to
extent boundaries. For this, we used the debugfs tool, an in-
teractive file system debugger in Ubuntu that can be used to
examine the state of the ext4 file system. We used it to manu-
ally uncover the extent map of our files and to cross-verify our
measurements.

3.1 Design of individual experiments:

Now, we present the mechanism we used to determine the
various parameters of the ext4 file system. In each subsection,
we briefly explain the methodology used to measure the specific
parameter and a short listing of the algorithm used.

3.1.1 Block Size

The size of the block is the fundamental unit in which trans-
actions with the file system are done. Only on determining the
block size can the remaining experiments be performed. We
wanted to come up with a foolproof method so that no form of
prefetching kicks in, and thus, we had to avoid reading the file
sequentially in any direction. A random read would not help
much in this scenario since the block size is unknown. Hence,
we came up with an algorithm to estimate the block size. The
buffer cache is cleared before every run of the experiment. Ev-
ery run of the experiment assumes a block size. During each
run, a rifle shot read is done to the byte located at the position
of an arbitary prime number multiplied by the assumed block

2 2011/2/22

size. The next read is directed to the previous byte. If both reads
take time in order of milliseconds, the assumed block size is the
actual block size. The rifle shot reads serve the purpose of ran-
dom reads and the previous byte is read next to counter initial
sequential prefetching. A prime number is chosen to prevent
reporting false block boundaries. For example, if 4 were chosen
as the number, and if the assumed block size were 1024 but the
actual block size were 4096, 4 ∗ 1024th byte and the previous
byte would go to different blocks and result in a false positive.

Pseudocode:
Affinitize process to a CPU;
Make priority of this process the highest;
Clear buffer cache;
Choose a random prime number P;
Assume a block size X;
Repeat {
Read the (P ∗X)th byte;
Let R1 = Time required by the read;

Read the (P ∗X)− 1th byte;
Let R2 = Time required by the read;
if (R1 ≈ R2)
Output X as actual block size;
else
Increment X by a suitable increment;
Clear buffer cache;
}

3.1.2 Prefetch Size

ext4 has a prefetching mechanism through which the file sys-
tem prefetches sequentially adjacent blocks while a block is
read from the disk. The prefetching makes sequential reads very
fast. To find how many blocks ext4 prefetches, we formulated
an experiment. Before every run of the experiment, the buffer
cache is cleared. Every run assumes a prefetch size. First, an ar-
bitary block is read from the disk. A sleep() of a second is given
to provide enough time for blocks to be prefetched. Then the
block that is located ’assumed number of blocks’ away from the
previously read block, is read. The first read takes time in the
order of milliseconds for disk access. If the second read takes
time in the order of milliseconds, we are readindg a block that
is beyond the prefetch size. So the size of the prefetch buffer is
the previously assumed prefetch size.

Pseudocode:
Affinitize process to a CPU;
Make priority of this process the highest;
Clear buffer cache;
Choose a random number P;
Assume a prefetch size X;
Let B = Block size determined from the previous
experiment;
Repeat {
Read the P th block;
Let R1 = Time required by the read;
Sleep() for a second;

Read the (P +X)th block;
Let R2 = Time required by the read;
if (R1 ≈ R2)
Output previous X as actual prefetch size;
else
Increment X by suitable step;
Clear buffer cache;

}

3.1.3 Buffer Cache Size

As described earlier, buffering helps minimize the time wasted
in repeated reads of the same data. In our experiment, we first
assume the buffer cache size to be a certain value. During the
first pass, we read the assumed number of blocks from a file.
Since this is the first access made to these blocks, a compulsory
cache miss will occur for each of the blocks and so the average
read time will be more (in the range of milliseconds). Now,
we read the same sequence of blocks for the second time. If
the actual buffer cache size is greater than the assumed buffer
cache size, then the average read time during the second pass
will be very less (in the range of microseconds). If on the other
hand, the buffer cache size is smaller, then cache misses will
occur for every block being accessed and the average read time
during the second pass will also be similar to the first pass (in
the range of milliseconds). We keep repeating this experiment
by increasing the assumed buffer cache size until this condition
is reached. The buffer cache size can then be determined to be
in the range where such a transition occurs and the experiment
can be repeated by making smaller increments in this range to
more accurately measure the buffer cache size.

At the beginning of the experiment and after each iteration the
buffer cache is cleared so that the results of the previous itera-
tion do not affect the measurements. Also, to avoid blocks from
being prefetched during both passes we read the blocks in re-
verse order from the file.

Pseudocode:
Affinitize process to a CPU;
Make priority of this process the highest;
Clear buffer cache;
Let X = Assumed buffer cache size;
Repeat {
Read X number of blocks from file in reverse order;
Let R1 = Average access time for a block;
Read the same X blocks again;
Let R2 = Average access time for a block;
Increment X by the step size;
} until (R1 ≈ R2)
Clear buffer cache;

However, the buffer cache size available for a given process is
not constant and it varies depending upon the memory usage by
other active processes. So, we have to conduct the experiment
in a stable ambiance, preferably having the current process as
the only process under execution. This will give us the maxi-
mum value that the buffer cache size can assume.

3.1.4 Number of in-inode extents

We conducted our experiments based on the concept that, when
the number of extents exceeds the number that can be stored
in memory then some additional time would be required to
allocate extra blocks that would store the HTree. We start by
writing block by block to a newly created file and find the time
taken for each block write.

Pseudocode:
Affinitize process to a CPU;

3 2011/2/22

Clear cache;
Create a new file;
Let X = Number of blocks to be written;
while (X ≥ 0)
{
Write a block of data to the file;
Store the time taken for the write;
X = X - 1
}
Plot graph of Block number vs time taken

The corresponding graph is shown in Figure 7. The graph
showed a number of small peaks and one sharp peak at the
end. To cross check if these were the blocks that correspond
to points where new extents are created, we used the debugfs
utility. With the help of debugfs we could trace the physical ad-
dress corresponding to a given logical block and, through trial
and error, we traced the beginning of each extent. However,
after comparing the results of debugfs with the graph, we could
see that the small peaks did not match with points where the
extents started. This could be because ext4 file system uses de-
layed allocation mechanism, where contiguous physical blocks
get allocated only when the buffer overflows or when the file
is written to the disk. This improves performance and reduces
fragmentation by improving block allocation decisions based
on the actual file size. The sharp peak towards the end could
thus be attributed to the time taken to finally allocate contigu-
ous blocks in the disk.

Since delayed allocation prevents us from identifying extents
we altered our experiment slightly and timed the reads instead
of writes hoping to see an increase in the read time as the block
numbers increase. The cache was cleared after each read so as
to avoid irregularities due to prefetching. However, except for
a few peaks due to noise we could not observe any increase
in the read time as expected. This behavior could be because
large contiguous blocks of memory are allocated and hence the
number of extents is so few that the additional time required to
trace the HTree is not that expensive.

4. Results and Evaluation
4.1 Block Size

To implement our experiment to determine the block size, a
rifle-shot read of 1 byte was done. 47 was chosen as the random
prime number. The experiment was done for assumed block
sizes ranging from 256 to 4096, stepping in powers of 2. While
smaller assumed block sizes reported time in the order of mi-
croseconds for the second read, 4096 bytes reported a read time
of about 7 milliseconds. Thus, we concluded that 4096 bytes
was the block size. The results of the experiment are shown in
Figure 2.

4.2 Prefetch size

To determine the prefetch size, larger reads of size 4096 bytes
were done at a random block number and then to the block
that was at the end of the assumed prefetch size. The assumed
prefetch sizes were varied from 32 to 256 blocks in powers
of 2. A second disk access occured for an assumed prefetch
size of 256 blocks, which meant that the actual prefetch size
was between 128 blocks and 256 blocks. With a second run

Figure 2. Time for First and second rifle shot reads for different
assumed block sizes

and further granularity, the prefetch size was determined as 200
blocks or 800KB. The results are shown in Figure 3.

Figure 3. Time for first and second block reads for different
prefetch sizes

4.3 Buffer Cache Size

To measure the approximate buffer cache size, three passes of
the algorithm in section 3.1.3 were executed, each time with
decreasing values of step size. In the first run the increment was
done in powers of 2 to speed up the process of identifying the
range in which the buffer cache lies. It was found to be between
512MB and 1GB. The second run was executed with 100MB
as step size and the third run with 20MB as the buffer size.
From the graphs it can be concluded that the buffer cache size
is somewhere in the range of 850MB.

4.4 Number of in-inode extents

In our experiment we created a file of size around 100MB. We
conducted the experiment as described in section 3.1.4 and the
corresponding graph is shown in Figure 7. As can be seen the
write time is almost constant except for a few peaks due to
noise. It could also be noted that the write time is much less
than what could be normally expected in file systems such a
ext3. This could be because in ext2 blocks are allocated the
moment data is written to them. Ext4 however follows delayed
allocation mechanism and hence the average write time is much
less throughout and there is just one peak at the end which cor-
responds to the point where the actual allocation of contiguous

4 2011/2/22

Figure 4. First run where assumed buffer size is incremented in
powers of 2 starting from 1MB as the assumed buffer cache size

Figure 5. Second run where the step size is fixed as 100MB start-
ing with 512MB as the assumed buffer cache size.

Figure 6. Third run where the step size is reduced to 20MB and
starting with 820 MB as the assumed buffer cache size

block of memory in disk is made. This avoids fragmentation
and also improves performance to a great extent.

In the second part of our experiment, we measured the read
access time for each block for the above file. The graph is shown
in Figure 8. Except for a few peaks due to noise, the graph does
not exhibit any increase in access time, as the block number

Figure 7. Graph showing block number vs time required to write
the block

increases. This may be because, large contiguous blocks are
grouped together as extents and hence, even for a file as large as
this, the number of extents is small enough such that it doesn’t
require significant access time overhead.

Figure 8. Graph showing Block number vs read access time

This was the most difficult of all experiments. Though we got
to understand the various techniques involved to improvise the
performance of file access, we could not however measure the
number of direct extents present in the inode. The inherent mod-
eling of the ext4 file system makes it very difficult to measure
the number of extents or the beginning of the extents. We could
however conclude that the ext4 file system could be observed to
produce a large amount of performance improvement over the
earlier file systems.

5. Conclusion
We have measured the basic block size, prefetch size, buffer
cache size and we have analysed the characteristics of the extent
records that are used to store the file metadata. We learned
how to use system utilities such as drop cache, that helps to
clear the cache; nice, that helps to increase the priority of a
process; set affinity which makes a process execute on a single
core. We also learned how to use the tool called debugfs that
was very helpful in tracing the beginning of extents. We also
learned how noise affects measurements in systems and how to
counteract noise by taking necessary precautions while taking
measurements.
From the experiments coducted we learned a few major charac-
teristics of the ext4 filesystem behaviour

5 2011/2/22

1. ext4 is a very intelligent file system with advance block
allocation techniques and smart prefetching mechanisms.

2. The ext4 filesystem produces a huge performance improve-
ment over the earlier version such as ext2 by using delayed
allocation.

3. It also decreases to a large extent, the huge amount of
metadata stored in the inode by having just one extent refer
to a huge contiguous block of memory.

References
[1] http://en.wikipedia.org/wiki/Ext4
[2] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, The new

ext4 filesystem: current status and future plans, IBM Linux Technology
Center

6 2011/2/22

