Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient and modular synthesis of ibogaine and related alkaloids

Abstract

Anecdotal reports and preliminary clinical trials suggest that the psychoactive alkaloid ibogaine and its active metabolite noribogaine have powerful anti-addictive properties, producing long-lasting therapeutic effects across a range of substance use disorders and co-occurring neuropsychiatric diseases such as depression and post-traumatic stress disorder. Here we report a gram-scale, seven-step synthesis of ibogaine from pyridine. Key features of this strategy enabled the synthesis of three additional iboga alkaloids, as well as an enantioselective total synthesis of (+)-ibogaine and the construction of four analogues. Biological testing revealed that the unnatural enantiomer of ibogaine does not produce ibogaine-like effects on cortical neuron growth, while (−)-10-fluoroibogamine exhibits exceptional psychoplastogenic properties and is a potent modulator of the serotonin transporter. This work provides a platform for accessing iboga alkaloids and congeners for further biological study.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic strategies towards iboga alkaloids.
Fig. 2: Total synthesis of epiibogaine.
Fig. 3: Total synthesis of (±)-ibogaine and related compounds.
Fig. 4: Asymmetric synthesis of (+)-ibogaine, (−)-10-fluoroibogamine and (+)-10-fluoroibogamine.
Fig. 5: Biological effects of iboga alkaloids and related analogues.

Similar content being viewed by others

Data availability

All the data are available within the main text or Supplementary Information. Experimental and characterization data for all new compounds prepared during this study are provided in the Supplementary Information. Graphpad Prism files containing the data for the spinogenesis and SERT assays are available via Figshare at https://doi.org/10.6084/m9.figshare.24531316 (ref. 73).

References

  1. Iyer, R. N., Favela, D., Zhang, G. & Olson, D. E. The iboga enigma: the chemistry and neuropharmacology of iboga alkaloids and related analogs. Nat. Prod. Rep. 38, 307–329 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kock, P., Froelich, K., Walter, M., Lang, U. & Dursteler, K. M. A systematic literature review of clinical trials and therapeutic applications of ibogaine. J. Subst. Abuse Treat. 138, 108717 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Wasko, M. J., Witt-Enderby, P. A. & Surratt, C. K. DARK classics in chemical neuroscience: ibogaine. ACS Chem. Neurosci. 9, 2475–2483 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Belgers, M. et al. Ibogaine and addiction in the animal model, a systematic review and meta-analysis. Transl. Psychiatry 6, e826 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koenig, X., Kovar, M., Boehm, S., Sandtner, W. & Hilber, K. Anti-addiction drug ibogaine inhibits hERG channels: a cardiac arrhythmia risk. Addict. Biol. 19, 237–239 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Thurner, P. et al. Mechanism of hERG channel block by the psychoactive indole alkaloid ibogaine. J. Pharmacol. Exp. Ther. 348, 346–358 (2014).

    Article  PubMed  Google Scholar 

  7. Alper, K. R., Stajić, M. & Gill, J. R. Fatalities temporally associated with the ingestion of ibogaine. J. Forensic Sci. 57, 398–412 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Koenig, X. & Hilber, K. The anti-addiction drug ibogaine and the heart: a delicate relation. Molecules 20, 2208–2228 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cameron, L. P. et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature 589, 474–479 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Glick, S. D., Kuehne, M. E., Maisonneuve, I. M., Bandarage, U. K. & Molinari, H. H. 18-Methoxycoronaridine, a non-toxic iboga alkaloid congener: effects on morphine and cocaine self-administration and on mesolimbic dopamine release in rats. Brain Res. 719, 29–35 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Rocha, J. M., Reis, J. A. S., Buoso, J. C., Hallak, J. E. C. & Dos Santos, R. G. Identifying setting factors associated with improved ibogaine safety: a systematic review of clinical studies. Eur. Arch. Psychiatry Clin. Neurosci. 273, 1527–1542 (2023).

    Article  PubMed  Google Scholar 

  12. Cherian, K. N. et al. Magnesium-ibogaine therapy in veterans with traumatic brain injuries. Nat. Med. 30, 373–381 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Noeller, G. E., Frampton, C. M. & Yazar-Klosinski, B. Ibogaine treatment outcomes for opioid dependence from a twelve-month follow-up observational study. Am. J. Drug Alcohol Abuse 44, 37–46 (2018).

    Article  Google Scholar 

  14. Davis, A. K., Barsuglia, J. P., Windham-Herman, A., Lynch, M. & Polanco, M. Subjective effectiveness of ibogaine treatment for problematic opioid consumption: short- and long-term outcomes and current psychological functioning. J. Psychedelic Stud. 1, 65–73 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dickel, D. F., Holden, C. L., Maxfield, R. C., Paszek, L. & Taylor, W. The alkaloids of Tabernanthe iboga. Part III. Isolation studies. J. Am. Chem. Soc. 80, 123–125 (1958).

    Article  CAS  Google Scholar 

  16. Jenks, C. W. Extraction studies of Tabernanthe iboga and Voacanga africana. Nat. Prod. Lett. 16, 71–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Gonzalez, B. et al. Efficient access to the iboga skeleton: optimized procedure to obtain voacangine from Voacanga africana root bark. ACS Omega 6, 16755–16762 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Farrow, S. C. et al. Biosynthesis of an anti-addiction agent from the iboga plant. J. Am. Chem. Soc. 141, 12979–12983 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Farrow, S. C. et al. Cytochrome P450 and O-methyltransferase catalyze the final steps in the biosynthesis of the anti-addictive alkaloid ibogaine from Tabernanthe iboga. J. Biol. Chem. 293, 13821–13833 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Trost, B. M., Godleski, S. A. & Genet, J. P. A total synthesis of racemic and optically active ibogamine. Utilization and mechanism of a new silver ion assisted palladium catalyzed cyclization. J. Am. Chem. Soc. 100, 3930–3931 (1978).

    Article  CAS  Google Scholar 

  21. Imanishi, T., Yagi, N. & Hanaoka, M. 1,6-Dihydro-3(2H)-pyridinones. X. 2-Azabicyclo[2.2.2]octane ring formation via intramolecular Michael reaction: total synthesis of (±)-ibogamine and (±)-epiibogamine. Chem. Pharm. Bull. 33, 4202–4211 (1985).

    Article  CAS  Google Scholar 

  22. Höck, S. & Borschberg, H. J. Enantioselective synthesis of (−)-(19R)-ibogamin-19-ol. Helv. Chim. Acta 89, 542–557 (2006).

    Article  Google Scholar 

  23. Harada, M. et al. Asymmetric total synthesis of an iboga-type indole alkaloid, voacangalactone, newly isolated from Voacanga africana. Org. Lett. 14, 5800–5803 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Mizoguchi, H., Oikawa, H. & Oguri, H. Biogenetically inspired synthesis and skeletal diversification of indole alkaloids. Nat. Chem. 6, 57–64 (2013).

    Article  PubMed  Google Scholar 

  25. Kruegel, A. C., Rakshit, S., Li, X. & Sames, D. Constructing iboga alkaloids via C–H bond functionalization: examination of the direct and catalytic union of heteroarenes and isoquinuclidine Alkenes. J. Org. Chem. 80, 2062–2071 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, G. et al. Synthesis of tertiary amines through extrusive alkylation of carbamates. Org. Lett. 24, 6208–6212 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hughes, A. J. & Townsend, S. D. Gram-scale total synthesis of (±)-ibogamine. Org. Lett. 25, 4567–4570 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Hughes, A. J. & Townsend, S. D. Total synthesis of tabernanthine and ibogaline: rapid access to nosyl tryptamines. Eur. J. Org. Chem. 27, e202400442 (2024).

    Article  CAS  Google Scholar 

  29. Raucher, S. & Bray, B. L. Total synthesis of (±)-catharanthine. J. Org. Chem. 50, 3236–3237 (1985).

    Article  CAS  Google Scholar 

  30. Herdeis, C. & Hartke-Karger, C. Short and stereoselective synthesis of (±)-ibogamine via a vinylsulfone intermediate, IV. Liebigs Ann. Chem. 2, 99–104 (1991).

    Article  Google Scholar 

  31. Büchi, G., Coffen, D. L., Kocsis, K., Sonnet, P. E. & Ziegler, F. E. The total synthesis of iboga alkaloids. J. Am. Chem. Soc. 88, 3099–3109 (1966).

    Article  Google Scholar 

  32. Jana, G. K. & Sinha, S. Total synthesis of ibogaine, epiibogaine and their analogues. Tetrahedron 68, 7155–7165 (2012).

    Article  CAS  Google Scholar 

  33. Zhao, G. et al. Bioinspired collective syntheses of iboga-type indole alkaloids. Org. Lett. 18, 2447–2450 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. White, J. D. & Choi, Y. Catalyzed symmetric Diels−Alder reaction of benzoquinone. Total synthesis of (−)-ibogamine. Org. Lett. 2, 2373–2376 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Sallay, S. I. The total synthesis of dl-ibogamine. J. Am. Chem. Soc. 89, 6762–6763 (1967).

    Article  CAS  PubMed  Google Scholar 

  36. Augustine, R. L. & Pierson, W. G. Synthesis of dl-deethylibogamine. J. Org. Chem. 34, 1070–1075 (1969).

    Article  CAS  Google Scholar 

  37. Redding, M. T. & Fukuyama, T. Stereocontrolled total synthesis of (±)-catharanthine via radical-mediated indole formation. Org. Lett. 1, 973–976 (1999).

    Article  Google Scholar 

  38. Yu, P., Karmakar, A., Sabbers, W. A., Shajan, F. & Andrade, R. B. Asymmetric total synthesis of (+)-epiibogamine enabled by three-component domino Michael/Michael/Mannich annulation of N-sulfinyl metallosilylenamines. Org. Lett. 6, 956–960 (2023).

    Article  Google Scholar 

  39. Iwasaki, K., Wan, K. K., Oppedisano, A., Crossley, S. W. M. & Shenvi, R. A. Simple, chemoselective hydrogenation with thermodynamic stereocontrol. J. Am. Chem. Soc. 136, 1300–1303 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Crossley, S. W. M., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Green, S. A. et al. The high chemofidelity of metal-catalyzed hydrogen atom transfer. Acc. Chem. Res. 51, 2628–2640 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shevick, S. L. et al. Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chem. Sci. 11, 12401–12422 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lo, J. C. et al. Bond construction from olefins via radicals. J. Am. Chem. Soc. 139, 2484–2503 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Green, S. A., Huffman, T. R., McCourt, R. O., Van Der Puyl, V. & Shenvi, R. A. Hydroalkylation of olefins to form quaternary carbons. J. Am. Chem. Soc. 141, 7709–7714 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qian, D., Bera, S. & Hu, X. Chiral alkyl amine synthesis via catalytic enantioselective hydroalkylation of enecarbamates. J. Am. Chem. Soc. 143, 1959–1967 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Griffin, J. D., Zeller, M. A. & Nicewicz, D. A. Hydrodecarboxylation of carboxylic and malonic acid derivatives via organic photoredox catalysis: substrate scope and mechanistic Insight. J. Am. Chem. Soc. 137, 11340–11348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, N. et al. A highly selective decarboxylative deuteration of carboxylic acids. Chem. Sci. 12, 5505–5510 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bottcher, T. An additive definition of molecular complexity. J. Chem. Inf. Model. 56, 462–470 (2016).

    Article  PubMed  Google Scholar 

  49. Demoret, R. M. et al. Synthetic, mechanistic, and biological interrogation of Ginkgo biloba chemical space en route to (−)-bilobalide. J. Am. Chem. Soc. 142, 18599–18618 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim, S. K. & Batey, R. A. Enantioselective isoquinuclidine synthesis via sequential Diels–Alder/visible-light photoredox C–C bond cleavage: a formal synthesis of the indole alkaloid catharanthine. Org. Chem. Front. 5, 2934–2939 (2018).

    Article  CAS  Google Scholar 

  51. Seki, C. et al. Asymmetric synthesis of isoquinuclidines by Diels–Alder reaction of 1,2-dihydropyridine utilizing a chiral Lewis acid catalyst. Tetrahedron 68, 1774–1781 (2012).

    Article  CAS  Google Scholar 

  52. Nakano, H., Tsugawa, N., Takahashi, K., Okuyama, Y. & Fujita, R. An efficient synthetic methodology of chiral isoquinuclidines by the enantioselective Diels–Alder reaction of 1,2-dihydropyridines using chiral cationic palladium–phosphinooxazolidine catalyst. Tetrahedron 62, 10879–10887 (2006).

    Article  CAS  Google Scholar 

  53. Takenaka, N., Huang, Y. & Rawal, V. H. The first catalytic enantioselective Diels–Alder reactions of 1,2-dihydropyridine: efficient syntheses of optically active 2-azabicyclo[2.2.2]octanes with chiral BINAM derived Cr(III) salen complexes. Tetrahedron 58, 8299–8305 (2002).

    Article  CAS  Google Scholar 

  54. Hirama, M. et al. Asymmetric cycloaddition of 1,2-dihydropyridine derivatives in the presence of Lewis acids. Chem. Lett. 37, 924–925 (2008).

    Article  CAS  Google Scholar 

  55. Zhang, Y., Xue, Y., Li, G., Yuan, H. & Luo, T. Enantioselective synthesis of iboga alkaloids and vinblastine via rearrangements of quaternary ammoniums. Chem. Sci. 7, 5530–5536 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nothrup, A. B. & Macmillan, D. W. C. The first general enantioselective catalytic Diels−Alder reaction with simple α,β-unsaturated ketones. J. Am. Chem. Soc. 124, 2458–2460 (2002).

    Article  Google Scholar 

  57. Buetner, G. L. et al. Revisiting the cleavage of Evans oxazolidinones with LiOH/H2O2. Org. Process Res. Dev. 23, 1378–1385 (2019).

    Article  Google Scholar 

  58. He, D. Y. et al. Glial cell line-derived neurotrophic factor mediates the desirable actions of the anti-addiction drug ibogaine against alcohol consumption. J. Neurosci. 25, 619–628 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Marton, S. et al. Ibogaine administration modifies GDNF and BDNF expression in brain regions involved in mesocorticolimbic and nigral dopaminergic circuits. Front. Pharmacol. 10, 193 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ly, C. et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 23, 3170–3182 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Singh, I. et al. Structure-based discovery of conformationally selective inhibitors of the serotonin transporter. Cell 186, 2160–2175 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mash, D. C., Staley, J. K., Baumann, M. H., Rothman, R. B. & Hearn, W. L. Identification of a primary metabolite of ibogaine that targets serotonin transporters and elevates serotonin. Life Sci. 57, 45–50 (1995).

    Article  Google Scholar 

  63. Staley, J. K. et al. Pharmacological screen for activities of 12-hydroxyibogamine: a primary metabolite of the indole alkaloid ibogaine. Psychopharmacology 127, 10–18 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Baumann, M. H., Rothman, R. B., Pablo, J. P. & Mash, D. C. In vivo neurobiological effects of ibogaine and its O-desmethyl metabolite, 12-hydroxyibogamine (noribogaine), in rats. J. Pharmacol. Exp. Ther. 297, 531–539 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Jacobs, M. T., Zhang, Y. W., Campbell, S. D. & Rudnick, G. Ibogaine, a noncompetitive inhibitor of serotonin transport acts by stabilizing the cytoplasm-facing state of the transporter. J. Biol. Chem. 282, 29441–29447 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Coleman, J. A. et al. Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport. Nature 569, 141–145 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Meanwell, N. A. Fluorine and fluorinated motifs in the design and applicationof bioisosteres for drug design. J. Med. Chem. 61, 5822–5880 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Glue, P. et al. Ascending-dose study of noribogaine in healthy volunteers: pharmacokinetics, pharmacodynamics, safety, and tolerability. J. Clin. Pharmacol. 55, 189–194 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Arai, G., Coppola, J. & Jeffrey, G. The structure of ibogaine. Acta Crystallogr. 13, 553–564 (1960).

    Article  CAS  Google Scholar 

  70. Vargas, M. V., Meyer, R., Avanes, A., Rus, M. & Olson, D. E. Psychedelics and other psychoplastogens for treating mental illness. Front. Psychiatry 12, 727117 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Vargas, M. V. et al. Psychedelics promote neuroplasticity through activation of intracellular 5-HT2A receptors. Science 379, 700–706 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Henry, K., Dubay, J. W. & Grieco, P. A. A novel approach to iboga alkaloids: total synthesis of (±)-ibogamine and (±)-epi-ibogamine. Tetrahedron Lett. 37, 8289–8292 (1996).

    Article  CAS  Google Scholar 

  73. Iyer, R. & Olson, D. E. Efficient and modular synthesis of ibogaine and related alkaloids - data sets Prism files. Figshare https://doi.org/10.6084/m9.figshare.24531316 (2024).

Download references

Acknowledgements

Sources for the left-hand panel of the graphical abstract (left to right): Büchi, 1966 (ref. 31; She, 2016 (ref. 33; Sinha, 2012 (ref. 32; the authors. We thank J. Cordova Guerrero for performing early pilot studies. This work was supported by funds from the National Institutes of Health (NIH; R01GM128997, R35GM148182 and R01DA056365 to D.E.O.), the National Science Foundation (XSEDE/ACCESS programme to D.J.T. for computational support) and a Camille Dreyfus Teacher-Scholar Award (D.E.O.). The Nikon high content analysis spinning disc confocal microscope used in this study was purchased using NIH Shared Instrumentation Grant 1S10OD019980-01A1. We thank the MCB Light Microscopy Imaging Facility, which is a University of California, Davis Campus Core Research Facility, for the use of this microscope. Funding for the NMR spectrometers was provided by the National Science Foundation (no. CHE-04-43516) and NIH (no. 08P0ES 05707C). Analysis for this project was performed in the University of California, Davis Campus Mass Spectrometry Facilities with instrument funding provided by the NIH (1S10OD025271-01A1). The natural ibogaine used in these studies was provided by the National Institute on Drug Abuse Drug Supply Program.

Author information

Authors and Affiliations

Authors

Contributions

R.N.I. completed the racemic total synthesis of ibogaine with assistance from D.F. and G.Z.; R.N.I. completed the asymmetric total synthesis of ibogaine. R.N.I. and D.F. optimized all reactions and synthesized the iboga alkaloids and analogues. R.N.I., D.F. and A.D. characterized all compounds. A.G.B. developed the liquid chromatography–mass spectrometry methods for chiral separation. A.D. conducted neuroplasticity assays with assistance from A.R.D.; A.A.A. and S.J.C. conducted SERT efflux and inhibition assays. D.J.T. performed energy calculations. The Supplementary Information was prepared by R.N.I. with assistance from D.F.; D.E.O. conceived the project, supervised the research and assisted with data analysis. D.E.O. wrote the manuscript with assistance from R.N.I. and input from all authors.

Corresponding author

Correspondence to David E. Olson.

Ethics declarations

Competing interests

D.E.O. is a co-founder of Delix Therapeutics, Inc.; serves as the Chief Innovation Officer and Head of the Scientific Advisory Board; and has sponsored research agreements with Delix Therapeutics. Delix Therapeutics has licensed technology from the University of California, Davis related to analogues of iboga alkaloids. D.E.O., R.N.I. and A.D. have submitted a patent application related to the work described here. The sponsors of this research were not involved in the conceptualization, design, decision to publish or preparation of the manuscript. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Regioselective reduction of 3-ethylpyridine.

Product distribution determined by integration of LC-MS spectra obtained using positive ionization mode. All reactions were run at 0.1 M. While compound 11 was isolable, compound 10 could never be isolated and was assigned based on its mass and the fact that mixtures of 10 and 11 would convert to 11 over time. aBoth methanol and ethanol were tested.

Extended Data Fig. 2 Optimization of 7-membered ring closure.

Isolated yields are shown. All reactions were conducted on a 1 mmol scale at a concentration of 0.1 M using a 1:1 mixture of S1 and S2 and purified via silica gel chromatography (gradient elution, 20:1 → 10:1 DCM/MeOH). Product S4 was isolated as a mixture of endo and exo epimers.

Extended Data Fig. 3 Optimization of MHAT coupling.

Isolated yields are shown. All reactions were conducted on a 1 mmol scale and purified via silica gel chromatography (gradient elution, 10:1 → 7:3 hexanes/EtOAc). Products S5 and S6 were isolated as a mixture of C16 endo and exo epimers.

Extended Data Fig. 4 Alternative hydroethylation strategy.

Isolated yields are shown. All reactions were conducted on a 1 mmol scale and purified via silica gel chromatography (gradient elution, 10:1 → 7:3 hexanes/EtOAc). Products S6, S7, and S8 were tentatively assigned based on LC-MS analysis and isolated as a mixture of endo and exo epimers. PC = propylene carbonate.

Extended Data Fig. 5 Optimization of a photoredox-catalysed decarboxylation.

Isolated yields are shown. All reactions were conducted on a 0.64 mmol scale and purified via silica gel chromatography (gradient elution, 10:1 → 7:3 hexanes/EtOAc). DIPEA – N,N-diisopropylethylamine, TRIP thiol = 2,4,6-Triisopropylbenzenethiol.

Extended Data Fig. 6 Comparison of 1H NMR data obtained from natural and synthetic ibogaine.

(a) 1H NMR data demonstrates that synthetic and natural ibogaine are indistinguishable. (b) a 1:1 molar ratio of natural ibogaine and CH2Br2 was treated with 1 equiv. of synthetic ibogaine. Spiking increased the ibogaine signal integration without impacting that of CH2Br2. Natural ibogaine was obtained from the National Institute on Drug Abuse (NIDA) as the hydrochloride salt. Natural Ibogaine • HCl was basified using 1 M NaOH and DCM as the extraction solvent.

Extended Data Fig. 7 Comparison of infrared spectroscopy data obtained from natural and synthetic ibogaine.

Infrared spectroscopy data demonstrate that synthetic and natural ibogaine are indistinguishable. Natural ibogaine was obtained from the National Institute on Drug Abuse (NIDA) as the hydrochloride salt. Natural Ibogaine • HCl was basified using 1 M NaOH and DCM as the extraction solvent.

Extended Data Fig. 8 Total synthesis of iboga alkaloids.

The overall yields and step counts for the total syntheses of various iboga alkaloids from commercially available starting materials are shown. Principal investigators are indicated by colour.

Extended Data Fig. 9 Efforts towards an enantioselective synthesis of iboga alkaloids.

(a) Attempts to achieve an enantioselective Diels-Alder reaction using chiral acid catalysts were unsuccessful. (b) Attempts to achieve an enantioselective Diels-Alder reaction using chiral organocatalysts were unsuccessful. (c) Placing a chiral menthol-derived auxiliary on the diene did not lead to any diastereoselectivity in the Diels-Alder reaction. Lack of diastereoselectivity was confirmed by converting S13 to desethylibogaine and then performing chiral HPLC analysis. (d) Placing a chiral auxiliary on the dienophile resulted in a range of diastereoselectivities depending on the reaction conditions. (e) Chiral HPLC analysis revealed that enantiopure S19 could be obtained following a diastereoselective Diels-Alder reaction of S15 and subsequent functional group interconversions.

Supplementary information

Supplementary Information

Detailed synthetic procedures and experimental data for all compounds, 1H and 13C NMR spectra and details on computations.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, R.N., Favela, D., Domokos, A. et al. Efficient and modular synthesis of ibogaine and related alkaloids. Nat. Chem. 17, 412–420 (2025). https://doi.org/10.1038/s41557-024-01714-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-024-01714-7

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research