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ABSTRACT

The Poisson function is introduced to study in a simple ten-
sion test the lateral contractive response of compressible and
incompressible, isotropic elastic materials in finite strain.
The relation of the Poisson function to the «classical Poisson’s
ratio and its behavior for certain constrained materials are
discussed. Some experimental results for several elastomers,
including two natural rubber compounds of the same kind studied
in earlier basic experiments by Rivlin and Saunders, are compared
with the derived relations. A special <class of compressible
materials also 1is considered. It is proved that the only class
of compressible hyperelastic materials whose response functions
depend on only the third principal invariant of the deformation
tensor is the class first introduced in experiments by Blatz and
Ko. Poisson functions for the Blatz-Ko polyurethane elastomers
are derived; and our experimental data are reviewed in relation

to a volume constraint equation used in their experiments.



1. INTRODUCTION

Isotropic, linear elasticity theory is characterized by two
important physical constants: Young’s modulus and Poisson’'s
ratio. It is well-known that their definitions are based wupon
the simple tension testl; and, for a specific homogeneous,
isotropic and linearly elastic material, both may be found from
this experiment [1, §69]. We recall that Poisson’s ratio is
determined from kinematical measurements alone; and when the
material is known to be incompressible, it has the value 1/2.

In isotropic, nonlinear elasticity theory, the traditional
material constants play a less important role, but their wuse in
characterization of the mechanical properties of highly elastic
materials certainly is of no lesser importance. However, in this
case, the material response generally is not described by con-
stants; rather, it is represented by three scalar-valued
functions ﬁr = Br(Il’IZ’I3) of the three principal invariants Ik
of the Cauchy-Green deformation tensor B so that the principal
Cauchy stress components tk are determined by

t, = By * B+ B_nos k=1, 2, 3. (1.1)

[See 3, §47.] Herein xz the squared principal stretches, are the

k’

This does not preclude the use of other testing methods for
the determination of these basic moduli. However, the Poisson
ratio is defined in terms of strains in a simple extension
produced by simple tensile loading. Although the same thing
may be done in a simple compression experiment, a compression
test usually is avoided because of eccentric 1loading and
stability problems. Of course, compression data sometimes may
be obtained by other means [2, p.270].



principal values of B, and T = -1, 0, 1. For an incompressible

material, every deformation must satisfy the constant volume con-

straint relation

172 _ . .
Iy = N xghg 71 (1.2)

and the constitutive relation (1.1) is replaced by

€, = -p + Bxo + B a2, k=1, 2,3, (1.3)

in which p is an unknown hydrostatic stress, and the two response
functions BF = Br(Il,Iz) depend on the invariants indicated.
The determination of the response functions for particular
materials is a principal problem in experimental mechanics. of
course, it is reasonable to expect that the response functions,
or combinations of them, ought to be related in some limit sense
to the classical moduli of the linearized theory: and it is nat-
ural to ask how the usual physical parameters may be character-
ized in the general theory. The connection of the response
functions with the Lamé constants is made in [3,§50]. This note
concerns the definition of the Poisson function and its relation
to the classical modulus known as Poisson’s ratio.

The Poisson function is defined in §2; and its connection

with the simple tension experiment and its behavior under certain

constraints are described there. Some experimental results are
then presented for demonstration in §3. Experimental data for a
urethane elastomer, a certain blend of natural and synthetic

rubbers, and two natural rubber compounds of the same kind used

in early experiments by Rivlin and Saunders {[2], are compared



with the wuniversal Poisson function obtained for incompressible

materials. Although every incompressible material has the
universal constant, natural state limit value 1/2, the converse
is shown generally to be false. A specific application to

compressible materials is illustrated.

It is proved in §4 that the only class of compressible
hyperelastic materials whose response functions depend on only
the third principal invariant of the deformation tensor is the
class first studied in experiments by Blatz and Ko [4]. Their
constitutive equation for foamed, polyurethane rubber is shown to
be related to the micro-structural theory of foamed rubbers due
to Gent and Thomas [5] and to the well-known controversial,
classical molecular theory of elasticity [6]. Poisson functions
are derived for the Blatz—-Ko polyurethane materials; and our
demonstration data are reviewed in relation to an ad hoc Blatz-Ko
constitutive equation of volume control in simple tension. It is
shown that the natural state Poisson’s ratio for every Blatz-Ko
material is simply the ratio of the true lateral contractive
strain to the true extensional strain for finite deformations and
hence may be readily evaluated from measurements of corresponding
stretches over the entire range of elastic extensibility of the
material in a simple tension experiment. Discussion of some

additional related literature is reserved for the end.

2. THE POISSON FUNCTION
It is easy to show from the constitutive equation for
isotropic, linearly elastic solids that a simple tension produces

a simple extension provided that the shear modulus Mg, * 0 nor o,



and Poisson’s ratio v, * -1 nor . In fact, on physical grounds,
one usually requires o > Mg > 0 and 1/2 2 v, > 0; and, in any
case, v > -1 is necessary for material stability [1,870]. The

corresponding result for isotropic, nonlinearly elastic solids is
not as transparent. Therefore, to begin, it 1is necessary to

recall Batra’s theorem [7] that for every isotropic, compressible

or incompressible elastic material, a simple tensile loading

t = T, t =t =0 (2.1)

Xg = X, X T oo (2.2)
provided that the empirical inequalities

By >0, B, <O (2.3)

hold {3, §51]. Actually, the same result obtains under the
weaker condition that the Baker-Ericksen inequalities [3] hold.
With Batra’s result in hand, let us assume that a compress-—
ible material characterized by (l1.1) and (2.3) is subjected to a
simple tension (2.1). Then the familiar Young’s modulus is
defined as the slope of the axial stress/axial stretch function
T = ts(x) evaluated at » = 1. However, its determination in-
volves the further assumption that either of the identical trans-—
verse stress equations (2.1)2’3 may be solved uniquely for the
lateral stretch as a function of the axial stretch. In other

words, (2.1)2 may be interpreted in a simple tension test as a



restriction on the response functions that defines a relation

between the longitudinal extension » 2 1 and the lateral contrac-

tions xl = xz < 1. Hence, their ratio,
SEEY,
a(x) = T > (2.4)

defines one kind of lateral contraction function that derives

from (2.1)2 and (l1.1). Subtraction of the second equation from
the first in (1.1) and use of (2.3) shows that in simple tension
0 < x(x) & 1. There exists the possibility that for some
response functions the same equations may exhibit several
solutions for xl(x). We consider only those elastic materials
for which xl(x) may be determined uniquely. When this is so, we
say that the extension is simple. Thus, if the empirical

inequalities are met, it is in this sense that a simple tension

produces a simple extension in every compressible, homogeneous

and isotropic elastic solid. 1In linear elasticity theory [1],

for example, the null relations (2.1)2 3 yield a unique
s

expression for the ratio of the principal transverse contractive
and longitudinal engineering strains in terms of the Lamé
constants; and this classical squeeze—-stretch ratio is commonly
known as Poisson’s ratio [1, 6}.

Recalling that the three principal engineering strains €

are related to the principal stretches by ek = N T 1, we may

define the Poisson function v(x\) as the ratio of the lateral

contractive strain to the extensional strain measured in a simple

tension experiment; that is,



v(x)z—z—l 1 _ 1 - salx)

3 xg—l x - 1 ’

(2.5)

wherein (2.2) and (2.4) have been used in the last relation.
Then, for general homogeneous and isotropic elastic solids,

Poisson’s ratio Vo is defined as the value of this function in

the undistorted, natural state where x = 1:
v_ = limit v(n). (2.8)
o
x + 1

It follows similarly by Batra’s theorem that for the incom-
pressible material (1.3) a simple tension produces an extension
(2.2); and the constraint (1.2) determines uniquely the function

-1/2

xl(x) = % (2.7)

Thus, a simple tension produces a simple extension in every
incompressible, homogeneous and isotropic elastic solid, provided
the empirical inequalities (2.3) hold. We have seen that the
condition (2.1)2 is essential to the determination of the Poisson
function (2.5) for an isotropic and compressible elastic mater-
ial. On the other hand, in view of (2.7) and the arbitrariness
of the stress p in {(1.3), the condition (2.1)2 in the case of an
incompressible material is irrelative to the determination of the
Poisson function, which may be found from the kinematics alone.
By use of (2.7) in (2.5)2, we obtain for every incompressible,

homogeneous and isotropic material the wuniversal Poisson



function2

1

v(x) = —————e (2.8)
n + kl/z
Hence, we may conclude by (2.6) that for every incompressible,
isotropic material Poisson’s ratio has the unique value v, © 1/2.

The converse, however, is false, as we shall see in a moment. It

may be mentioned that the lateral contraction function (2.4) for

X—S/Z; hence, «(l) = 1 in

the incompressible case becomes «o(x) =
the natural state.

The value of Poisson’s ratio v, is defined by (2.6); hence,
it does not necessarily follow that v, = 1/2 implies that the
isotropic elastic material need be incompressible, We shall
illustrate this by a counterexample of a compressible, isotropic
material whose Poisson function has the constant value v, = 1/2.
For this purpose it is wuseful to recall the results of
experiments by Bell [11] for certain homogeneous and isotropic
metals in finite (plastic) strain. These data support the
following constraint in a variety of deformations:

1/2

trB = x, 4 ox, +

1 9 Xg = 3. (2.9)

The function (2.8) and its limit value have been described in
different ways by others ([8-9]. However, of these, only
Posfalvi [10] derived them in the context of the simple
tension test for general incompressible, homogeneous and
isotropic hyperelastic materials; but Pbdsfalvi does nothing
with the results. We thank Dr. Joseph D. Walter, Assistant
Director of the Firestone Central Research Laboratories, for
bringing to our attention the references {9] and [10].



A similar constraint trB = 3 has been investigated recently by
Ericksen [12] in a study of a constitutive theory for elastic
crystals. Details of these applications need not concern us
here. Rather, let us consider a homogeneous, isotropic elastic
material for which the constraint (2.9) may hold; and let it be
subjected to a simple tension to effect, under suitable restric-—
tions on the response functions, an extensional deformation
(2.2). Then use of (2.2) in (2.9) yields the unique simple exten-
sion relation 2xl(x) = 3 - x> 0, which also implies 1 ¢ x < 3.
It thus follows by (2.5)2 and (2.6) that the Poisson function for
this special class of constrained, compressible, homogeneous and

isotropic elastic materials is a constant:

v = 3= v, (2.10)

for all x € {1, 3). If, additionally, the material were assumed
incompressible so that (1.2) also must hold for every admissible
deformation, it may be seen that only the trivial deformation

PN PN = x3 = 1 would be possible. For sufficiently small

1 2
deformations, however, the constraint (2.9) approximates the
incompressibility constraint; hence, for small strains, the
material behaves initially 1like an incompressible, isotropic
elastic solid.

It is interesting to observe that in every extemnsion (2.2),
whatever may be the tractions required for 1its control in an
incompressible material, the Poisson function (2.8) is indepen-

dent of the elastic response and is valid whether the material be

isotropic or not. However, this fact must be viewed with caution.



Control of the deformation (2.2) plainly depends on the nature of
the constitutive equation for the stress; and if the homogeneous
deformation (2.2) 1is assigned, this stress distribution may be
readily determined. But if the stress is given, conditions need-
ed to assure that the deformation (2.2) is possible, as demon-—
strated above, must follow from careful examination of the con-
stitutive equation for the prescribed loading situation. In
particular, in a simple tension (or compression) test, the
kinematic condition (2.2)2 plainly cannot be expected to hold for
arbitrary directions in an incompressible, anisotropic material.
In such a material, even equal biaxial loading may not produce
(2.2). For an isotropic material, we are assured by Batra’s
theorem that simple tensile loading will effect the deformation
(2.2). Therefore, the formula (2.8), though universal for the
deformation (2.2), must be viewed indirectly with regard for the
nature of the material and of the loading needed to control the
deformation. Parallel remarks apply to the Bell constraint (2.9)
and the associated value (2.10) for the Poisson function valid in
every equi-biaxial deformation (2.2).

On the other hand, contraction functions certainly may be
defined in terms of other experiments; and, for distinction,
these may be named apparent Poisson functions Vas For an in-
compressible material, the apparent Poisson function will be the
same as (2.8) in any experiment for which (2.2) holds; but the
loading needed to control the deformation will be determined by
the particular constitutive equation for the material. 1In equal
triaxial extension of a cube of any incompressible material, the

only solution is the trivial solution X T Xg T Xg = 1l; hence,
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for this case (2.8) yields the apparent value va(x) = v, = 1/2.
We are reminded, however, that nonuniqueness of a pure homogen-
eous deformation is possible in all around tension of an incom-

pressible material. Rivlin [13] has shown, for example, that for

a uniform tension T > 0 on all faces of a cube of neo-Hookean

material for which Bl = M, is constant and B_l 0, seven pos-

sible states exist. The trivial state X T Rxg T xg = 1 is always
a solution for which v, T 1/2. This state is stable provided that

T/po < 2. The state SEERY 0 < Xg T X < T/“o’ and two others

obtained by cyclic permutation of the xk’s, are stable
equilibrium solutions; and the apparent Poisson function is the
same as (2.8). The remaining three solutions are wunstable.

Although each solution has the same apparent Poisson function
(2.8), it can not be measured in these wunstable states. Other

examples may be easily constructed.

3. SOME EXPERIMENTAL RESULTS

Experimental data obtained from at least two specimens of
each of three considerably different elastomers are presented
here. One is a polyether, polyurethane elastomer; another is a
carbon-black reinforced, sulfur-cured blend of natural and
synthetic rubbers; and a third variety is a natural gum rubber.
The procedure for obtaining the axial and transverse stretch data
is straightforward. Specimens having straight sides of length 42
mm and width of 6 mm were die stamped from thin sheets of uniform
thickness of 1 to 3 mm. Each sample was quasistatically elon-—
gated in a tensile loading frame. The test was stopped periodi-

cally to allow measurement of the specimen width to the nearest
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0.01 mm with a Gaertner traversing microscope equipped with a
digital readout; and, at that time, the elongation was measured
to the nearest 0.1 mm with a linear variable differential trans-
former fastened to the loading actuator. These techniques per-
mitted reasonably accurate determination of the transverse and
axial stretches suitable for demonstration purposes here. For
the sake of clarity in diagrams presented below, not all the data
values collected will be shown.

It is seen that the Poisson function (2.8) for an incom-
pressible material is a monotonically decreasing function for
which 0 < v(x) € 1/2 in simple tension. The graph of (2.8) is
shown in Figs., 1 and 2 together with tensile test stretch data
for the three kinds of elastomers described above. It is seen
that the wurethane follows the universal function very nicely,
particularly for axial stretches x > 1.5, roughly. Although the
data for the carbon-black reinforced blend of natural and
synthetic rubbers, as shown in Fig. 1, follows the trend of the
universal graph, its deviation at the larger deformations is
evident. Two compounds of natural gum rubber of the same3 kind
used in the basic experiments by Rivlin and Saunders [2, p.285]
were fabricated from their recipes provided for compounds
described as A and B. Fig. 2 shows that our compound A is
exceptional in its comparison with the kinematical relation
(2.8), while our compound B, though well-behaved, falls below and
virtually parallel to the master curve. The scatter in the data

There was a minor difference; the antioxidant nonox used in
[2] was replaced by another hindered phenol type antioxidant,
tradename American Cyanamid A02246.
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for small deformations was typical for all the samples; and we
feel no need to provide explanation for it. The dotted curves
shown in Figs. 1 and 2 have an analytical basis which will be
explained in the next section; it suffices to mention here that
these curves approximate the best fit for the data. The exten-
sion data obtained by Rivlin and Saunders for their compound A
also is shown in Fig. 2. It is found that these data, for the
same reason noted later, fit the universal relation (2.8). Our
data for the same material is essentially coincident with theirs,
except at small deformations, as noted before.

The same data may be viewed differently in Figs. 3 and 4,
which emphasize the incompressibility relation (2.7) in simple
tension. The data are to be compared with the line whose slope
is one. The response appears to be about the same as described
for Fig. 1 and 2, except that the small amount of scatter evident
for the smaller stretches appears diminished in Figs. 3 and 4.
It is quite clear from both graphs that the data for the urethane
and the natural gum compound A fall reasonably close to the
kinematical function described; therefore, these materials are
virtually incompressible. The special rubber blend and the
natural rubber compound B exhibit almost incompressible response
that we shall examine again further on. The data for the Rivlin-—
Saunders compound A also is shown in Fig. 4. However, it must be
mentioned that Rivlin and Saunders did not confirm by any tests
in [2] that the incompressibility constraint actually was obeyed
by either compound they studied. Since they used the incompress-
ibility condition to compute from measured values of X alone the

values for I2 provided in Table 6 in {2]; it is not surprising
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that our calculation of values of X1 corresponding to their
tabulated values for » and 12 results in their data falling smack
on the line in Fig. 4. The same applies to Fig. 2. The represent-—
ation of our stretch data in the universal plot in Fig. 2, how-
ever, is a genuine experimental result that demonstrates the in-
compressibility of the natural rubber compound A. The response of

compound B is another matter that will be discussed later.

4. EXAMPLE FOR COMPRESSIBLE RUBBERS

Let us consider a class of compressible, isotropic hyper-
elastic materials with strain energy function W = W(Jl,Jz,J3) per
unit undeformed volume, and whose response functions in (1.1)
depend on J3 alone: BF = BF(JS)' Herein we have introduced the

invariants

= - - - -1 - /2 _
Jp = Iy = trB, J, =1,/15 = trB , Jg = I./° = detP. (4.1)
Then the following relations will be obtained for this
hyperelastic material [3, §86]:
_ oW .2 oW . _2 oW
Pollg) = 55y PiUg) = 5o 550 B Uy = 75 a3, (42

Bearing in mind the assumed functional dependence, it may be seen
that these relations will hold if and only if ZaW/aJl = o and
ZaW/an = P are constants. Thus, introducing these in (4.2) and

writing aW/aJ3 = W3(J3), we obtain the response functions
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= :«— :.—E_.
BO WB(JB)’ Bl T B—l T (4.3)
3 3
It is known that Bl(l) - B_l(l) = a+ B = My the wusual
constant shear modulus in the undistorted, natural state of

the material (3, §50]. Thus, upon introducing « = “of and

B = po(l - f), where f is another constant, and substituting

(4.3) into (1.1), we reach the general form of the constitutive

equation for our compressible, hyperelastic material:

w £ (L= £) )

B - 2— "3t (4.4)
3 I3

This equation was first introduced in an altogether different way
by Blatz and Ko [4]. It may be seen from (4.3) that the empir-
ical inequalities (2.3) are satisfied for the Blatz-Ko material
if and only if Mo > 0 and 0 < f ¢ 1. These conditions were not
noted in [4]; however, they are essential in the biaxial deforma-
tion problems described there.

Experiments by Blatz and Ko [4] on a certain compressible,

foamed, polyurethane rubber revealed the specific response
functions

Bo = “0’ 0 <« B]. << 1, B_l = "HO/J3, (4.5)
where Bl was considered negligible so that f = 0, very nearly,
and W3 = M, = 32 psi. Thus, in general terms, (4.4) reduces to

the following constitutive equation for the Blatz-Ko foamed,

polyurethane rubber:
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-1 -1

T = L-J5 B (4.6)

For the simple tension (2.1), (2.2) holds and J3 = x?x. It

follows that (4.8) yields

2. -3 1/4

T = “0(1 BRI Y, xl(x) = N . (4.7)
The extension, therefore, is simple. Application of (2.5) deliv-

ers the Poisson function

v(x) = l;iij——— X (4.8)

We thus find by (2.6) that the foamed, polyurethane rubber (4.86)

has a Poisson ratio Vo T 1/4, which is, in fact, the experimental
value found by Blatz and Ko. However, they made no connection of
their data with (4.8); rather, they used a clever ad hoc rule

described below to determine v,

The linearized form of (4.6) will be considered next. First
we note that Eo = 5g0/2 is the usual Young’s modulus for this
model and for a sufficiently small engineering strain €, it can

be easily shown that
B =1+ 2¢, J =1+ e, (4.9)

in which e = tr¢ describes the small change in volume per wunit

initial volume. Then, to the first order in ¢, (4.6) becomes

T = &> [el + 2¢]. (4.10)
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We thus recover the linearized, uni-constant equation for general
isotropic, foamed elastic materials derived by Gent and Thomas
(6] from a simple micro-structural model consisting of a network
of thin extensible rubber cords connected by rigid joints. It
may be noted that (4.10) is the same equation obtained from
linear, isotropic elasticity theory with v, = 1/4, i.e. with
equal Lamé constants xo = po; it is the constitutive equation of
the controversial 19th century rari-constant elasticity model
that evolved from molecular theories of elasticity due by Poisson
and Cauchy [8, 16]. On the contrary side, we are reminded of
Wertheim’s many experiments on metals for which he claimed a
universal average value v, T 1/3. The rari-constant theorists
and experimentists were careful always to exclude from the uni-
constant theory unusual materials that they believed ought not to
be treated as elastic; caoutchouc was an example often cited [8,
16]. It is strangely coincidental that Gent and Thomas [5] found
in their experiments on foamed natural rubber the average value
v, = 1/3, as compared with their predicted wuniversal value of
1/4.

There is a third empirical condition, BO < 0, that also
should be respected [3,§51]. We see from (4.5)l that the Blatz-
Ko foamed, polyurethane rubber model fails to satisfy it [14].
It is possible, of course, that this results from the fact that a
foamed rubber is not a homogeneous, materially uniform and iso-—
tropic continuum. Nonetheless, the test data share good agree-—
ment with this model. It should be emphasized also that the data

for the Blatz-Ko compressible, solid polyurethane rubber material



21

described below support all of the empirical inequalities.

It is also interesting, though apparently not well-known,
that in the construction of their more general constitutive
equation (4.4), which essentially is designed to reduce to the
Mooney—Rivlin model when vy = 1/2, Blatz and Ko [4] invoked the
following additional ad hoc constitutive assumption of volume

control in a simple tension:

- o
J3 = X\ . (4.11)

It follows by Batra’s theorem that xl = Xg in the simple tension;

hence, (4.11) yields the unique relation

-V

N (%) = x °. (4.12)

Therefore, the extension is indeed simple. This must hold in a
simple tension of every Blatz-Ko material (4.4) for which (2.3)
holds. Thus, the Poisson function for every such material is
given by

1 - »

v(ixn) = TT— . (4.13)

It is readily seen that for small strains (4.12) may be
linearized to 61 = - vo€3; hence, the constant exponent Vo in

(4.11) to (4.13) is the classical Poisson ratio for the material.

O0f course, the same thing derives from (2.6). Thus, the occur-
rence of Poisson’s ratio vy ° 1/4 in (4.7)2 and (4.8) is not
coincidental. Notice also that for this case the value vy T 1/2

reduces (4.11) to the incompressibility condition (1.2) in simple
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tension.

A material whose response in a simple tension test fails to
obey the rule (4.12) can not be a candidate for the Blatz-Ko
model. Therefore, when attempting to model the constitutive
behavior of an elastomer, the experimenter may find it helpful to
first confirm the volume control relation (4.12) by plotting a
graph of log(l/xl) against log 5, which is a straight line of
slope V.- For illustration, the tensile test data for the
elastomers considered earlier are plotted accordingly in Figs. 5
and 6. A least squares fit of the data with straight lines
through the origin shows in Fig. 5 +that the urethane has a
Poisson ratio v, = 0.493, while the rubber blend satisfies Vo T
0.468. Similar tests on a second urethane and a second rubber
blend, which differed from the others only slightly in their
formulation and processing, yielded the same basic response with
the respective values vg = 0.463 and vy T 0.459.

The data for the Rivlin-Saunders natural rubber compound A
are shown in Fig.6. However, as noted earlier, because they
measured only x and, in effect, used the incompressibility condi-
tion to compute xl, one should expect, as seen in Fig. 6, that
their converted data should follow perfectly the ideal line for
which v, = 0.5. It is seen, however, that our corresponding data
for the natural rubber compound A also enjoys excellent correla-
tion with the volume control relation for incompressible materi-
als. The compound A yielded, among all the elastomers we studied,
the best fit correlation with Vo T 0.499. The natural rubber
compound B, on the other hand, produced in our tests the best fit

Vo = 0.466. The values of Vo found in this manner were then used
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in (4.13), and the corresponding best fit graphs of their Poisson
functions p(x) were plotted in Figs. 1 and 2. Of course, the
curves for the urethane and the rubber compound A lay so close to
the master curve that we let this curve represent their behavior,
as shown therein. Although the elastomers for which vy * 0.5,
approximately, may thus be viewed as candidates for a Blatz-Ko
constitutive model, considerable further evaluation would be
necessary to establish this.

Based upon their volume control relation (4.11), Blatz and
Ko graphed the straight line of 1ogJ3 against logx and from its
slope 1 - 2vo determined for their foamed, polyurethane rubber
the value v, T 0.25; but they apparently were unable to apply the
same method to their solid, polyurethane rubber. By an altogether
different and unrelated argument, they arrived at the value v, T
0.463. We encountered no serious difficulties in our graphical
evaluations of ratios of similar value for other varieties of
rubber based upon (4.6). Evaluation by Blatz and Ko [4] of the
tension data for their solid, polyurethane showed that f = 1 and
M, = 34 psi. Thus, in general terms, the reduced form of the

Blatz—-Ko constitutive relation (4.4) for their solid polyurethane

rubber may be written as

M
T o= Wo(Jg) L+ 7, b (4.14)

subject to the further empirical inequality Bo = W3(J3) < 0.
Finally, it may be observed that the true strain e, in any

k

direction k is defined by e = log Xk' Consequently, the volume
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control relation (4.12) may be rewritten as

v.o= - =, (4.15)

which reveals that in finite strain Poisson’s ratio for every
Blatz-Ko model is the ratio of the true 1lateral contractive
strain to the true extensional strain. Therefore, Figs. 5 and 6
actually are plots of the true transverse strain e, versus the
true axial strain eq in a simple tension test. This simple fact

has apparently gone unnoticed by others.

5. CONCLUSION

The tensile test possibly is the most important among all
simple experiments used to characterize the phenomenological
behavior of solid materials; and its application to rubbery mat-
erials provides an excellent opportunity for instruction in some
interesting aspects of nonlinear elasticity. With this objective
in mind, some data for the so-called Poisson’s ratio (sic) as a
function of engineering strain for an unspecified rubber material
was illustrated by Coakham, Eastwood and Evans [15]; however,
they provided no explanation or discussion of the phenomenon.
This almost casual indication of a substantial variation in the
lateral contraction ratio for rubber in finite strain prompted,
we feel, an inaccurate critique by Lindley [8] a year later.

Lindley observed correctly that Poisson’s ratio is a
material constant, hence independent of the strain from the
natural state. But his subsequent remark that its definition is

valid only for small strains, so that its use is inappropriate at
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large strains, is imprecise. He naturally assumes that regard-
less of the nonlinear constitutive description of the material,
the transverse strains in a simple tension test must be equal;
and based upon this assertion and the incompressibility of
rubber, which he justifies in terms of the bulk modulus rather
than the volume constraint for infinitesimal strains, he provides
an equation in terms of (possibly) finite engineering strains
that characterizes reasonably the data shown in [15]. We agree
with Lindley that the experiment in [15] and in our own Figs. 1
and 2 above, is an inappropriate method for evaluation of
Poisson’s ratio for natural rubber, though it may be an excellent
demonstration 1in support of its incompressibility. However,
since Poisson’s ratio v, = 1/2 for every incompressible,
isotropic elastic material, these data obviously are not intended
for this evaluation in the first place.

The fact that one can indeed define a Poisson function, or
some other lateral contraction function, that accurately demon-
strates the variation in the lateral contractive response of
elastomers over a wide range of deformation in a simple tension
test, as shown in Figs. 1 and 2, apparently is unappreciated by
Lindley [8] and ignored by Coakham, Eastwood and Evans [15]. of
course, not every elastomer need be incompressible; and based
upon the Blatz-Ko volume control relation (4.11), it is seen in
Figs. 5 and 6 that in special circumstances the kinematical data
for finite deformations may be plotted in a manner that does
allow for easy evaluation of their Poisson’s ratio in the natural
state. In fact, our equation (4.15), demonstrated by rough

experiments, refutes Lindley’s remark that use of Poisson’s ratio
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is appropriate only for small strains. Moreover, Anand [17] has
found that (4.15) arises naturally in a linear theory of iso-
tropic elasticity that uses the true strain e = loggl/2 as a
deformation measure for moderately large strains. He showed that

Hencky’s constitutive equation for the Kirchhoff stress shares

good agreement with a variety of experimental data for moderately

large deformations defined by stretches of roughly 1.3 to 1.4.
Although it may be tempting to adopt (4.15) as the definition of
Poisson’s ratio for large deformations, we caution that this rule
applies only to the class of materials for which (4.12) holds in
a simple tension test. The Blatz—-Ko material (4.6), in view of
(4.7)2, the linear Hencky model [17], by definition, and all
others for which (4.12) may be valid, belong to this class. The
definition (2.5), on the other hand, extends to all isotropic

elastic materials that respect the empirical inequalities.

Finally, we are reminded that in numerical work involving
elastomeric materials which often are assumed ideally
incompressible, a value of L close to 0.5 commonly is used to

avoid computational difficulties. But it may be useful to first
evaluate the actual lateral contractive response for the special
elastomeric material of interest. 1Indeed, it may happen that a
plot of +the kind used in Figs. 5 and 6 may provide useful data
for a more appropriate and realistic estimate of Poisson’s ratio

for elastomers studied in numerical work.
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