Skip to main content
Advertisement
Main content starts here
No access
Perspective
Geophysics

How does Antarctic ice deform?

A deep-learning model infers large-scale dynamics of Antarctic ice shelves
Science
13 Mar 2025
Vol 387, Issue 6739
pp. 1150-1151

Abstract

Mass loss from ice sheets that cover Earth presents the largest potential contribution to future sea level rise, yet uncertainties in predicting the magnitude and pace of this depletion hamper climate adaptation planning and coastal infrastructure decisions. Fast-flowing glaciers—moving masses of ice, snow, rock, and sediment—transition to floating ice shelves that extend from land to the ocean. These ice shelves exert buttressing forces on inland upstream ice, affecting ice sheet stability (1). A key factor governing the ice flow dynamics is the deformation of ice under stress. Elucidating rheological parameters at the scale of an entire ice shelf, which extends over hundreds of kilometers, has been a long-standing challenge in glaciology. On page 1219 of this issue, Wang et al. (2) report a physics-informed deep-learning model that can predict the deformation behavior of Antarctic ice shelves, revealing complexities of the process that extend beyond the traditional understanding.

Access the full article

View all access options to continue reading this article.

References and Notes

1
G. Gudmundsson, Cryosphere 7, 647 (2013).
2
Y. Wang, C.-Y. Lai, D. J. Prior, C. Cowen-Breen, Science 387, 1219 (2025).
3
J. W. Glen, Proc. R. Soc. London Ser. A 228, 519 (1955).
4
D. Goldsby, D. L. Kohlstedt, J. Geophys. Res. 106, 11017 (2001).
5
M. D. Behn, D. L. Goldsby, G. Hirth, Cryosphere 15, 4589 (2021).
6
P. D. Bons et al., Geophys. Res. Lett. 45, 6542 (2018).
7
J. D. Millstein, B. M. Minchew, S. S. Pegler, Commun. Earth Environ. 3, 57 (2022).
8
M. Ranganathan, B. Minchew, Proc. Natl. Acad. Sci. U.S.A. 121, e2309788121 (2024).
9
C. M. Schohn, N. R. Iverson, L. K. Zoet, J. R. Fowler, N. Morgan-Witts, Science 387, 182 (2025).
10
D. R. MacAyeal, J. Geophys. Res. 94, 4071 (1989).
11
C. Borstad, D. McGrath, A. Pope, Geophys. Res. Lett. 44, 4186 (2017).
12
T. Young et al., J. Geophys. Res. Earth Surface 126, e2020JF006023 (2021).
13
D. A. Lilien et al., J. Glaciol. 69, 2007 (2023).
14
B. Riel, B. Minchew, J. Glaciol. 69, 1167 (2023).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Neither embedded figures nor equations with special characters can be submitted, and we discourage the use of figures and equations within eLetters in general. If a figure or equation is essential, please include within the text of the eLetter a link to the figure, equation, or full text with special characters at a public repository with versioning, such as Zenodo. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Recommended articles from TrendMD

Information & Authors

Information

Published In

Science
Volume 387 | Issue 6739
14 March 2025

Article versions

Submission history

Published in print: 14 March 2025

Permissions

Request permissions for this article.

Acknowledgments

The author acknowledges support from the National Natural Science Foundation of China (42376230) and the Zhejiang University Global Partnership Fund.

Authors

Affiliations

Notes

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Figures

Tables

Media

Share

Share

Copy the article link

Share on social media

Check Access

Check Access

Log in to view the full text

AAAS ID LOGIN

Loading institution options

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

References

References

1
G. Gudmundsson, Cryosphere 7, 647 (2013).
2
Y. Wang, C.-Y. Lai, D. J. Prior, C. Cowen-Breen, Science 387, 1219 (2025).
3
J. W. Glen, Proc. R. Soc. London Ser. A 228, 519 (1955).
4
D. Goldsby, D. L. Kohlstedt, J. Geophys. Res. 106, 11017 (2001).
5
M. D. Behn, D. L. Goldsby, G. Hirth, Cryosphere 15, 4589 (2021).
6
P. D. Bons et al., Geophys. Res. Lett. 45, 6542 (2018).
7
J. D. Millstein, B. M. Minchew, S. S. Pegler, Commun. Earth Environ. 3, 57 (2022).
8
M. Ranganathan, B. Minchew, Proc. Natl. Acad. Sci. U.S.A. 121, e2309788121 (2024).
9
C. M. Schohn, N. R. Iverson, L. K. Zoet, J. R. Fowler, N. Morgan-Witts, Science 387, 182 (2025).
10
D. R. MacAyeal, J. Geophys. Res. 94, 4071 (1989).
11
C. Borstad, D. McGrath, A. Pope, Geophys. Res. Lett. 44, 4186 (2017).
12
T. Young et al., J. Geophys. Res. Earth Surface 126, e2020JF006023 (2021).
13
D. A. Lilien et al., J. Glaciol. 69, 2007 (2023).
14
B. Riel, B. Minchew, J. Glaciol. 69, 1167 (2023).

Get Science’s award-winning newsletter with the latest news, commentary, and research, free to your inbox daily.