Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Defining immune reset: achieving sustained remission in autoimmune diseases

Abstract

Personalized cell therapies for autoimmune diseases — such as autologous haematopoietic stem cell transplantation and chimeric antigen receptor-expressing T cells — have the potential to achieve sustained remission in patients with certain autoimmune diseases. The effective elimination of pathogenic lymphocytes and their subsequent repopulation with naive cells has been termed ‘immune reset’. In this Perspective, we trace the origins of the immune reset concept and its clinical, cellular and molecular definitions, and we review current attempts to identify biomarkers for long-term clinical remission in autoimmune diseases. Emerging data from clinical trials support the concept that higher probabilities of long-term remission can be achieved with therapies that can more deeply and broadly deplete B cells than the anti-CD20 antibody rituximab. A better understanding of the cellular and molecular basis for immune reset and the biomarkers associated with this state should accelerate progress towards the goal of restoring a non-autoimmune state and sustaining remission, while reducing the need for chronic immunosuppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Working model of immune activation and immune reset.
Fig. 2: Marker expression and differentiation of B cells.
Fig. 3: Evolution of CAR constructs and therapeutic approaches for CAR T cell therapy.
Fig. 4: Positioning of immune reset and B cell depletion therapies.

Similar content being viewed by others

References

  1. Lee, D. S. W., Rojas, O. L. & Gommerman, J. L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat. Rev. Drug Discov. 20, 179–199 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Swart, J. F. et al. Haematopoietic stem cell transplantation for autoimmune diseases. Nat. Rev. Rheumatol. 13, 244–256 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Schett, G., Mackensen, A. & Mougiakakos, D. CAR T-cell therapy in autoimmune diseases. Lancet 402, 2034–2044 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Burt, R. K., Slavin, S., Burns, W. H. & Marmont, A. M. Induction of tolerance in autoimmune diseases by hematopoietic stem cell transplantation: getting closer to a cure. Blood 99, 768–784 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Alexander, T., Arnold, R., Hiepe, F. & Radbruch, A. Resetting the immune system with immunoablation and autologous haematopoietic stem cell transplantation in autoimmune diseases. Clin. Exp. Rheumatol. 34, 53–57 (2016).

    PubMed  Google Scholar 

  6. Schett, G., McInnes, I. B. & Neurath, M. F. Reframing immune-mediated inflammatory diseases through signature cytokine hubs. N. Engl. J. Med. 385, 628–639 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Edner, N. M., Carlesso, G., Rush, J. S. & Walker, L. S. K. Targeting co-stimulatory molecules in autoimmune disease. Nat. Rev. Drug Discov. 19, 860–883 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Snowden, J. A. et al. Evolution, trends, outcomes, and economics of hematopoietic stem cell transplantation in severe autoimmune diseases. Blood Adv. 1, 2742–2755 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Müller, F. et al. CD19 CAR T-cell therapy in autoimmune disease — a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024).

    Article  PubMed  Google Scholar 

  10. Merkt, W. et al. Third-generation CD19.CAR-T cell-containing combination therapy in Scl70+ systemic sclerosis. Ann. Rheum. Dis. 83, 543–546 (2024).

    Article  PubMed  Google Scholar 

  11. Schall, N. & Muller, S. Resetting the autoreactive immune system with a therapeutic peptide in lupus. Lupus 24, 412–418 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Patel, T., Patel, V., Singh, R. & Jayaraman, S. Chromatin remodeling resets the immune system to protect against autoimmune diabetes in mice. Immunol. Cell Biol. 89, 640–649 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. DeHeer, D. H. & Edgington, T. S. Evidence for a B lymphocyte defect underlying the anti-X anti-erythrocyte autoantibody response of NZB mice. J. Immunol. 118, 1858–1863 (1977).

    Article  CAS  PubMed  Google Scholar 

  14. Ikehara, S. et al. Rationale for bone marrow transplantation in the treatment of autoimmune diseases. Proc. Natl Acad. Sci. USA 82, 2483–2487 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jacobs, P., Vincent, M. D. & Martell, R. W. Prolonged remission of severe refractory rheumatoid arthritis following allogeneic bone marrow transplantation for drug-induced aplastic anaemia. Bone Marrow Transpl. 1, 237–239 (1986).

    CAS  Google Scholar 

  16. Lowenthal, R. M., Cohen, M. L., Atkinson, K. & Biggs, J. C. Apparent cure of rheumatoid arthritis by bone marrow transplantation. J. Rheumatol. 20, 137–140 (1993).

    CAS  PubMed  Google Scholar 

  17. Yin, J. A. & Jowitt, S. N. Resolution of immune-mediated diseases following allogeneic bone marrow transplantation for leukaemia. Bone Marrow Transpl. 9, 31–33 (1992).

    CAS  Google Scholar 

  18. van Gelder, M. & van Bekkum, D. W. Effective treatment of relapsing experimental autoimmune encephalomyelitis with pseudoautologous bone marrow transplantation. Bone Marrow Transpl. 18, 1029–1034 (1996).

    Google Scholar 

  19. Alexander, T. & Greco, R. Hematopoietic stem cell transplantation and cellular therapies for autoimmune diseases: overview and future considerations from the Autoimmune Diseases Working Party (ADWP) of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transpl. 57, 1055–1062 (2022).

    Article  Google Scholar 

  20. Openshaw, H. et al. Peripheral blood stem cell transplantation in multiple sclerosis with busulfan and cyclophosphamide conditioning: report of toxicity and immunological monitoring. Biol. Blood Marrow Transpl. 6, 563–575 (2000).

    Article  CAS  Google Scholar 

  21. Rizzo, J. D. et al. Solid cancers after allogeneic hematopoietic cell transplantation. Blood 113, 1175–1183 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Bijnen, S. et al. Predictive factors for treatment-related mortality and major adverse events after autologous haematopoietic stem cell transplantation for systemic sclerosis: results of a long-term follow-up multicentre study. Ann. Rheum. Dis. 79, 1084–1089 (2020).

    Article  PubMed  Google Scholar 

  23. Goklemez, S. et al. Long-term follow-up after lymphodepleting autologous haematopoietic cell transplantation for treatment-resistant systemic lupus erythematosus. Rheumatology 61, 3317–3328 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Burt, R. K. et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 378, 498–506 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Bruera, S. et al. Stem cell transplantation for systemic sclerosis. Cochrane Database Syst. Rev. 7, CD011819 (2022).

    PubMed  Google Scholar 

  26. Sullivan, K. M. et al. Myeloablative autologous stem-cell transplantation for severe scleroderma. N. Engl. J. Med. 378, 35–47 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mancardi, G. L. et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology 84, 981–988 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Burt, R. K. et al. Effect of nonmyeloablative hematopoietic stem cell transplantation vs continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis: a randomized clinical trial. JAMA 321, 165–174 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pearl, J. P. et al. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am. J. Transpl. 5, 465–474 (2005).

    Article  CAS  Google Scholar 

  30. Williams, T., Coles, A. & Azzopardi, L. The outlook for alemtuzumab in multiple sclerosis. BioDrugs 27, 181–189 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Dang, V. D., Stefanski, A. L., Lino, A. C. & Dorner, T. B- and plasma cell subsets in autoimmune diseases: translational perspectives. J. Investig. Dermatol. 142, 811–822 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Edwards, J. C. & Cambridge, G. Sustained improvement in rheumatoid arthritis following a protocol designed to deplete B lymphocytes. Rheumatology 40, 205–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Kaegi, C. et al. Systematic review of safety and efficacy of rituximab in treating immune-mediated disorders. Front. Immunol. 10, 1990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schett, G., Nagy, G., Kronke, G. & Mielenz, D. B-cell depletion in autoimmune diseases. Ann. Rheum. Dis. 83, 1409–1420 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Ramwadhdoebe, T. H. et al. Effect of rituximab treatment on T and B cell subsets in lymph node biopsies of patients with rheumatoid arthritis. Rheumatology 58, 1075–1085 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Melet, J. et al. Rituximab-induced T cell depletion in patients with rheumatoid arthritis: association with clinical response. Arthritis Rheum. 65, 2783–2790 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Cross, A. H., Stark, J. L., Lauber, J., Ramsbottom, M. J. & Lyons, J. A. Rituximab reduces B cells and T cells in cerebrospinal fluid of multiple sclerosis patients. J. Neuroimmunol. 180, 63–70 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takemura, S., Klimiuk, P. A., Braun, A., Goronzy, J. J. & Weyand, C. M. T cell activation in rheumatoid synovium is B cell dependent. J. Immunol. 167, 4710–4718 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Jelcic, I. et al. Memory B cells activate brain-homing, autoreactive CD4+ T cells in multiple sclerosis. Cell 175, 85–100 e123 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Merrill, J. T. et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 62, 222–233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Connelly, K. et al. Towards a novel clinical outcome assessment for systemic lupus erythematosus: first outcomes of an international taskforce. Nat. Rev. Rheumatol. 19, 592–602 (2023).

    Article  PubMed  Google Scholar 

  43. Kamburova, E. G. et al. A single dose of rituximab does not deplete B cells in secondary lymphoid organs but alters phenotype and function. Am. J. Transpl. 13, 1503–1511 (2013).

    Article  CAS  Google Scholar 

  44. Thurlings, R. M. et al. Synovial tissue response to rituximab: mechanism of action and identification of biomarkers of response. Ann. Rheum. Dis. 67, 917–925 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Tur, C. et al. CD19-CAR T-cell therapy induces deep tissue depletion of B cells. Ann. Rheum. Dis. https://doi.org/10.1136/ard-2024-226142 (2024).

  46. Vital, E. M. et al. Reduced-dose rituximab in rheumatoid arthritis: efficacy depends on degree of B cell depletion. Arthritis Rheum. 63, 603–608 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Odendahl, M. et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J. Immunol. 165, 5970–5979 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Leandro, M. J., Cambridge, G., Ehrenstein, M. R. & Edwards, J. C. Reconstitution of peripheral blood B cells after depletion with rituximab in patients with rheumatoid arthritis. Arthritis Rheum. 54, 613–620 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Anolik, J. H. et al. Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum. 56, 3044–3056 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Karampetsou, M. P. et al. Signaling lymphocytic activation molecule family member 1 engagement inhibits T cell-B cell interaction and diminishes interleukin-6 production and plasmablast differentiation in systemic lupus erythematosus. Arthritis Rheumatol. 71, 99–108 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, J. et al. Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. J. Clin. Invest. 130, 6317–6324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reddy, V. et al. Obinutuzumab induces superior B-cell cytotoxicity to rituximab in rheumatoid arthritis and systemic lupus erythematosus patient samples. Rheumatology 56, 1227–1237 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Furie, R. A. et al. B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 81, 100–107 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Arnold, J. et al. Efficacy and safety of obinutuzumab in systemic lupus erythematosus patients with secondary non-response to rituximab. Rheumatology 61, 4905–4909 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Richard, A. et al. Efficacy and safety of obinutuzumab in active lupus nephritis. New Engl. J. Med. https://doi.org/10.1056/NEJMoa2410965 (2025).

  56. Lavie, F. et al. Increase of B cell-activating factor of the TNF family (BAFF) after rituximab treatment: insights into a new regulating system of BAFF production. Ann. Rheum. Dis. 66, 700–703 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Mackay, F., Schneider, P., Rennert, P. & Browning, J. BAFF and APRIL: a tutorial on B cell survival. Annu. Rev. Immunol. 21, 231–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Cambridge, G. et al. B cell depletion therapy in systemic lupus erythematosus: relationships among serum B lymphocyte stimulator levels, autoantibody profile and clinical response. Ann. Rheum. Dis. 67, 1011–1016 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Shipa, M. et al. Effectiveness of belimumab after rituximab in systemic lupus erythematosus: a randomized controlled trial. Ann. Intern. Med. 174, 1647–1657 (2021).

    Article  PubMed  Google Scholar 

  60. Aranow, C. et al. Efficacy and safety of sequential therapy with subcutaneous belimumab and one cycle of rituximab in patients with systemic lupus erythematosus: the phase 3, randomised, placebo-controlled BLISS-BELIEVE study. Ann. Rheum. Dis. 83, 1502–1512 (2024).

    Article  CAS  PubMed  Google Scholar 

  61. Bowman, S. J. et al. Safety and efficacy of subcutaneous ianalumab (VAY736) in patients with primary Sjogren’s syndrome: a randomised, double-blind, placebo-controlled, phase 2b dose-finding trial. Lancet 399, 161–171 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Dörner, T. et al. Treatment of primary Sjogren’s syndrome with ianalumab (VAY736) targeting B cells by BAFF receptor blockade coupled with enhanced, antibody-dependent cellular cytotoxicity. Ann. Rheum. Dis. 78, 641–647 (2019).

    Article  PubMed  Google Scholar 

  63. Santos da Costa, A. D., et al. Modulation of B cell and interferon pathways by ianalumab in patients with systemic lupus erythematosus: findings from a phase 2 clinical trial. Arthritis Rheumatol. 75, abstr. 2342 (2023).

    Google Scholar 

  64. Mathur, M. et al. A phase 2 trial of sibeprenlimab in patients with IgA nephropathy. N. Engl. J. Med. 390, 20–31 (2024).

    Article  CAS  PubMed  Google Scholar 

  65. Evans, L. S. et al. Povetacicept, an enhanced dual APRIL/BAFF antagonist that modulates B lymphocytes and pathogenic autoantibodies for the treatment of lupus and other B cell-related autoimmune diseases. Arthritis Rheumatol. 75, 1187–1202 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Merrill, J. T. et al. Efficacy and safety of atacicept in patients with systemic lupus erythematosus: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled, parallel-arm, phase IIb study. Arthritis Rheumatol. 70, 266–276 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dhillon, S. Telitacicept: first approval. Drugs 81, 1671–1675 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Cree, B. A. C. et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 394, 1352–1363 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Ratelade, J. & Verkman, A. S. Neuromyelitis optica: aquaporin-4 based pathogenesis mechanisms and new therapies. Int. J. Biochem. Cell Biol. 44, 1519–1530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dai, Y. et al. Rapid exacerbation of neuromyelitis optica after rituximab treatment. J. Clin. Neurosci. 26, 168–170 (2016).

    Article  PubMed  Google Scholar 

  71. Mealy, M. A. & Levy, M. A pilot safety study of ublituximab, a monoclonal antibody against CD20, in acute relapses of neuromyelitis optica spectrum disorder. Medicine 98, e15944 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ostendorf, L. et al. Targeting CD38 with daratumumab in refractory systemic lupus erythematosus. N. Engl. J. Med. 383, 1149–1155 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Alexander, T. et al. Sustained responses after anti-CD38 treatment with daratumumab in two patients with refractory systemic lupus erythematosus. Ann. Rheum. Dis. 82, 1497–1499 (2023).

    Article  PubMed  Google Scholar 

  74. Roccatello, D. et al. A 4-year observation in lupus nephritis patients treated with an intensified B-lymphocyte depletion without immunosuppressive maintenance treatment — clinical response compared to literature and immunological re-assessment. Autoimmun. Rev. 14, 1123–1130 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Mysler, E. F. et al. Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study. Arthritis Rheum. 65, 2368–2379 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, W. et al. BCMA-CD19 compound CAR T cells for systemic lupus erythematosus: a phase 1 open-label clinical trial. Ann. Rheum. Dis. 83, 1304–1314 (2024).

    Article  CAS  PubMed  Google Scholar 

  78. Chung, J. B., Brudno, J. N., Borie, D. & Kochenderfer, J. N. Chimeric antigen receptor T cell therapy for autoimmune disease. Nat. Rev. Immunol. 24, 830–845 (2024).

    Article  CAS  PubMed  Google Scholar 

  79. Li, Y. R., Lyu, Z., Chen, Y., Fang, Y. & Yang, L. Frontiers in CAR-T cell therapy for autoimmune diseases. Trends Pharmacol. Sci. 45, 839–857 (2024).

    Article  CAS  PubMed  Google Scholar 

  80. Schett, G. et al. Advancements and challenges in CAR T cell therapy in autoimmune diseases. Nat. Rev. Rheumatol. 20, 531–544 (2024).

    Article  PubMed  Google Scholar 

  81. Cohen, A. D. et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest. 129, 2210–2221 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Dekker, L. et al. Fludarabine exposure predicts outcome after CD19 CAR T-cell therapy in children and young adults with acute leukemia. Blood Adv. 6, 1969–1976 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gauthier, J. et al. Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B-cell malignancies. Blood 137, 323–335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Neelapu, S. S. Managing the toxicities of CAR T-cell therapy. Hematol. Oncol. 37, 48–52 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, G. M. et al. Integrative bulk and single-cell profiling of premanufacture T-cell populations reveals factors mediating long-term persistence of CAR T-cell therapy. Cancer Discov. 11, 2186–2199 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, Y. et al. Fourth-generation chimeric antigen receptor T-cell therapy is tolerable and efficacious in treatment-resistant rheumatoid arthritis. Cell Res. https://doi.org/10.1038/s41422-024-01068-2 (2025).

  88. Dickinson, M. J. et al. A novel autologous CAR-T therapy, YTB323, with preserved T-cell stemness shows enhanced CAR T-cell efficacy in preclinical and early clinical development. Cancer Discov. 13, 1982–1997 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Granit, V. et al. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol. 22, 578–590 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Short, L., Holt, R. A., Cullis, P. R. & Evgin, L. Direct in vivo CAR T cell engineering. Trends Pharmacol. Sci. 45, 406–418 (2024).

    Article  CAS  PubMed  Google Scholar 

  91. Shah, K. et al. Disrupting B and T-cell collaboration in autoimmune disease: T-cell engagers versus CAR T-cell therapy. Clin. Exp. Immunol. 217, 15–30 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kassner, J., Abdellatif, B., Yamshon, S., Monge, J. & Kaner, J. Current landscape of CD3 bispecific antibodies in hematologic malignancies. Trends Cancer 10, 708–732 (2024).

    Article  CAS  PubMed  Google Scholar 

  93. Bucci, L. et al. Bispecific T cell engager therapy for refractory rheumatoid arthritis. Nat. Med. 30, 1593–1601 (2024).

    Article  CAS  PubMed  Google Scholar 

  94. Subklewe, M. et al. Application of blinatumomab, a bispecific anti-CD3/CD19 T-cell engager, in treating severe systemic sclerosis: a case study. Eur. J. Cancer 204, 114071 (2024).

    Article  CAS  PubMed  Google Scholar 

  95. Hagen, M. et al. BCMA-targeted T-cell-engager therapy for autoimmune disease. N. Engl. J. Med. 391, 867–869 (2024).

    Article  PubMed  Google Scholar 

  96. Alexander, T., Kronke, J., Cheng, Q., Keller, U. & Kronke, G. Teclistamab-induced remission in refractory systemic lupus erythematosus. N. Engl. J. Med. 391, 864–866 (2024).

    Article  PubMed  Google Scholar 

  97. Zhai, Y. et al. Comparison of blinatumomab and CAR T-cell therapy in relapsed/refractory acute lymphoblastic leukemia: a systematic review and meta-analysis. Expert Rev. Hematol. 17, 67–76 (2024).

    Article  CAS  PubMed  Google Scholar 

  98. Forsthuber, T. G., Cimbora, D. M., Ratchford, J. N., Katz, E. & Stuve, O. B cell-based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets. Ther. Adv. Neurol. Disord. 11, 1756286418761697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ferreira-Gomes, M. et al. Recruitment of plasma cells from IL-21-dependent and IL-21-independent immune reactions to the bone marrow. Nat. Commun. 15, 4182 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Greco, R. et al. Innovative cellular therapies for autoimmune diseases: expert-based position statement and clinical practice recommendations from the EBMT Practice Harmonization and Guidelines Committee. EClinicalMedicine 69, 102476 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Walti, C. S. et al. Antibodies against vaccine-preventable infections after CAR-T cell therapy for B cell malignancies. JCI Insight 6, e146743 (2021).

    PubMed  PubMed Central  Google Scholar 

  102. Qin, C. et al. Anti-BCMA CAR T-cell therapy CT103A in relapsed or refractory AQP4-IgG seropositive neuromyelitis optica spectrum disorders: phase 1 trial interim results. Signal Transduct. Target. Ther. 8, 5 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Qin, C. et al. Single-cell analysis of anti-BCMA CAR T cell therapy in patients with central nervous system autoimmunity. Sci. Immunol. 9, eadj9730 (2024).

    Article  CAS  PubMed  Google Scholar 

  104. Rensel, M. et al. Long-term efficacy and safety of inebilizumab in neuromyelitis optica spectrum disorder: analysis of aquaporin-4-immunoglobulin G-seropositive participants taking inebilizumab for ≥4 years in the N-MOmentum trial. Mult. Scler. 28, 925–932 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Einarsson, J. T. et al. Rituximab in clinical practice: dosage, drug adherence, Ig levels, infections, and drug antibodies. Clin. Rheumatol. 36, 2743–2750 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chahin, N., Sahagian, G., Feinberg, M. H., Stewart, C. A., Jewell, C. M., Kurtoglu, M., Miljković, M. D., Vu, T., Mozaffar, T., Howard Jr, J. F. Twelve-month follow-up of patients with generalized myasthenia gravis receiving BCMA-directed mRNA cell therapy. Preprint at medRxiv https://doi.org/10.1101/2024.01.03.24300770 (2024).

  107. Müller, F. et al. CD19-targeted CAR T cells in refractory antisynthetase syndrome. Lancet 401, 815–818 (2023).

    Article  PubMed  Google Scholar 

  108. Bergmann, C. et al. Treatment of a patient with severe systemic sclerosis (SSc) using CD19-targeted CAR T cells. Ann. Rheum. Dis. 82, 1117–1120 (2023).

    Article  PubMed  Google Scholar 

  109. Fava, A. et al. Urine proteomic signatures of histological class, activity, chronicity, and treatment response in lupus nephritis. JCI Insight 9, e172569 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Alexander, T. et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 113, 214–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Oh, S. et al. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat. Biotechnol. 41, 1229–1238 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ellebrecht, C. T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353, 179–184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lovgren, T., Eloranta, M. L., Bave, U., Alm, G. V. & Ronnblom, L. Induction of interferon-α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum. 50, 1861–1872 (2004).

    Article  PubMed  Google Scholar 

  114. Raschi, E. et al. Immune complexes containing scleroderma-specific autoantibodies induce a profibrotic and proinflammatory phenotype in skin fibroblasts. Arthritis Res. Ther. 20, 187 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ding, Y. et al. Phenotypic subgroup in serologically active clinically quiescent systemic lupus erythematosus: a cluster analysis based on CSTAR cohort. Med 5, 1226–1274.e3 (2024).

    Article  Google Scholar 

  116. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Nunez, D. et al. Cytokine and reactivity profiles in SLE patients following anti-CD19 CART therapy. Mol. Ther. Methods Clin. Dev. 31, 101104 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ayoglu, B. et al. Characterising the autoantibody repertoire in systemic sclerosis following myeloablative haematopoietic stem cell transplantation. Ann. Rheum. Dis. 82, 670–680 (2023).

    Article  CAS  PubMed  Google Scholar 

  119. Qin, C. et al. Single-cell analysis of refractory anti-SRP necrotizing myopathy treated with anti-BCMA CAR-T cell therapy. Proc. Natl Acad. Sci. USA 121, e2315990121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tian, D. S. et al. B cell lineage reconstitution underlies CAR-T cell therapeutic efficacy in patients with refractory myasthenia gravis. EMBO Mol. Med. 16, 966–987 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Sender, R. et al. The total mass, number, and distribution of immune cells in the human body. Proc. Natl Acad. Sci. USA 120, e2308511120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bodansky, A. et al. Unveiling the proteome-wide autoreactome enables enhanced evaluation of emerging CAR T cell therapies in autoimmunity. J. Clin. Invest. 134, e180012 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Guiducci, C. et al. TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature 465, 937–941 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Horisberger, A. et al. Blood immunophenotyping identifies distinct kidney histopathology and outcomes in patients with lupus nephritis. Preprint at bioRxiv https://doi.org/10.1101/2024.01.14.575609 (2024).

  125. Choi, M. Y. et al. Machine learning identifies clusters of longitudinal autoantibody profiles predictive of systemic lupus erythematosus disease outcomes. Ann. Rheum. Dis. 82, 927–936 (2023).

    Article  CAS  PubMed  Google Scholar 

  126. Wilhelm, A. et al. Selective CAR T cell-mediated B cell depletion suppresses IFN signature in SLE. JCI Insight 9, e179433 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Couzin-Frankel, J. Replacing an immune system gone haywire. Science 327, 772–774 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Raine, T. & Danese, S. Breaking through the therapeutic ceiling: what will it take. Gastroenterology 162, 1507–1511 (2022).

    Article  PubMed  Google Scholar 

  129. Ramirez-Valle, F., Maranville, J. C., Roy, S. & Plenge, R. M. Sequential immunotherapy: towards cures for autoimmunity. Nat. Rev. Drug Discov. 23, 501–524 (2024).

    Article  CAS  PubMed  Google Scholar 

  130. Skopelja-Gardner, S. et al. Acute skin exposure to ultraviolet light triggers neutrophil-mediated kidney inflammation. Proc. Natl Acad. Sci. USA 118, e2019097118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Santambrogio, L. & Marrack, P. The broad spectrum of pathogenic autoreactivity. Nat. Rev. Immunol. 23, 69–70 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Arruda, L. C. M. et al. Immune rebound associates with a favorable clinical response to autologous HSCT in systemic sclerosis patients. Blood Adv. 2, 126–141 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Muraro, P. A. et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J. Exp. Med. 201, 805–816 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cull, G. et al. Lymphocyte reconstitution following autologous stem cell transplantation for progressive MS. Mult. Scler. J. Exp. Transl. Clin. 3, 2055217317700167 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Arruda, L. C. et al. Autologous hematopoietic SCT normalizes miR-16, -155 and -142-3p expression in multiple sclerosis patients. Bone Marrow Transpl. 50, 380–389 (2015).

    Article  CAS  Google Scholar 

  136. Visweswaran, M. et al. Sustained immunotolerance in multiple sclerosis after stem cell transplant. Ann. Clin. Transl. Neurol. 9, 206–220 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tsukamoto, H. et al. Analysis of immune reconstitution after autologous CD34+ stem/progenitor cell transplantation for systemic sclerosis: predominant reconstitution of Th1 CD4+ T cells. Rheumatology 50, 944–952 (2011).

    Article  CAS  PubMed  Google Scholar 

  138. Baraut, J. et al. Peripheral blood regulatory T cells in patients with diffuse systemic sclerosis (SSc) before and after autologous hematopoietic SCT: a pilot study. Bone Marrow Transpl. 49, 349–354 (2014).

    Article  CAS  Google Scholar 

  139. Abrahamsson, S. V. et al. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 136, 2888–2903 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Farge, D. et al. Long-term immune reconstitution and T cell repertoire analysis after autologous hematopoietic stem cell transplantation in systemic sclerosis patients. J. Hematol. Oncol. 10, 21 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Gernert, M., Tony, H. P., Schwaneck, E. C., Gadeholt, O. & Schmalzing, M. Autologous hematopoietic stem cell transplantation in systemic sclerosis induces long-lasting changes in B cell homeostasis toward an anti-inflammatory B cell cytokine pattern. Arthritis Res. Ther. 21, 106 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. von Niederhausern, V. et al. B-cell reconstitution after autologous hematopoietic stem cell transplantation in multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 9, e200027 (2022).

    Article  Google Scholar 

  143. Adamska, J. Z. et al. Myeloablative autologous haematopoietic stem cell transplantation resets the B cell repertoire to a more naive state in patients with systemic sclerosis. Ann. Rheum. Dis. 82, 357–364 (2023).

    Article  CAS  PubMed  Google Scholar 

  144. Assassi, S. et al. Myeloablation followed by autologous stem cell transplantation normalises systemic sclerosis molecular signatures. Ann. Rheum. Dis. 78, 1371–1378 (2019).

    Article  CAS  PubMed  Google Scholar 

  145. Zanin-Silva, D. C. et al. Autologous hematopoietic stem cell transplantation promotes connective tissue remodeling in systemic sclerosis patients. Arthritis Res. Ther. 24, 95 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mariottini, A. et al. Intermediate-intensity autologous hematopoietic stem cell transplantation reduces serum neurofilament light chains and brain atrophy in aggressive multiple sclerosis. Front. Neurol. 13, 820256 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zjukovskaja, C., Larsson, A., Cherif, H., Kultima, K. & Burman, J. Biomarkers of demyelination and axonal damage are decreased after autologous hematopoietic stem cell transplantation for multiple sclerosis. Mult. Scler. Relat. Disord. 68, 104210 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Larsson, D., Akerfeldt, T., Carlson, K. & Burman, J. Intrathecal immunoglobulins and neurofilament light after autologous haematopoietic stem cell transplantation for multiple sclerosis. Mult. Scler. 26, 1351–1359 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Santana-Goncalves, M. et al. Autologous hematopoietic stem cell transplantation modifies specific aspects of systemic sclerosis-related microvasculopathy. Ther. Adv. Musculoskelet. Dis. 14, 1759720X221084845 (2022).

  150. Martin, J. et al. B-cell maturation antigen (BCMA) as a biomarker and potential treatment target in systemic lupus erythematosus. Int. J. Mol. Sci. https://doi.org/10.3390/ijms251910845 (2024).

  151. Avery, D. T. et al. BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J. Clin. Invest. 112, 286–297 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Szelinski, F. et al. Plasmablast-like phenotype among antigen-experienced CXCR5-CD19(low) B cells in systemic lupus erythematosus. Arthritis Rheumatol. 74, 1556–1568 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Dörner, T., Szelinski, F., Lino, A. C. & Lipsky, P. E. Therapeutic implications of the anergic/postactivated status of B cells in systemic lupus erythematosus. RMD Open https://doi.org/10.1136/rmdopen-2020-001258 (2020).

  154. Jenks, S. A. et al. Distinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity 49, 725–739.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang, X. et al. Allogeneic CD19-targeted CAR-T therapy in patients with severe myositis and systemic sclerosis. Cell 187, 4890–4904.e9 (2024).

    Article  CAS  PubMed  Google Scholar 

  156. Hahn, B. H. The potential role of autologous stem cell transplantation in patients with systemic lupus erythematosus. J. Rheumatol. Suppl. 48, 89–93 (1997).

    CAS  PubMed  Google Scholar 

  157. Schett, G., Mackensen, A. & Mougiakakos, D. CAR T-cell perspectives in lupus — authors’ reply. Lancet 404, 336–337 (2024).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Brogdon, D. Bu, B. Cenni, T. Chapuis, S. De Vita, S. Diehl, L. Gabryšová, I. Isnardi, J. Rohr and G. Wieczorek for the discussion.

Author information

Authors and Affiliations

Authors

Contributions

T.J., T.C., P.G. and R.M.S. conceived the article. T.J., T.C., E.T., A.N.d.C., P.G., G.S., T.D. and R.M.S. wrote the manuscript. T.J. and T.D. prepared display items with constructive input from T.C., E.T., A.N.d.C. and R.M.S. All authors contributed to editing and finalization of the content and approved the submitted version of the article.

Corresponding author

Correspondence to Tobias Junt.

Ethics declarations

Competing interests

T.J., T.C., E.T., A.N.d.C., P.G. and R.M.S. are employees of Novartis Pharma AG and hold stock of the company. T.D. received honorary from Novartis, Sanofi, Roche/Genentech, AbelZeta, Amgen/Horizon and J&J for scientific advice. T.D. also received support for clinical studies (all paid to the university) from Novartis, Roche, BMS, J&J and Sanofi. G.S. has received speaker’s fees from Cabaletta, Janssen, Kyverna and Novartis.

Peer review

Peer review information

Nature Reviews Immunology thanks A. Grenov, G. Silverman, N. Shen and C. Vinuesa for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junt, T., Calzascia, T., Traggiai, E. et al. Defining immune reset: achieving sustained remission in autoimmune diseases. Nat Rev Immunol (2025). https://doi.org/10.1038/s41577-025-01141-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-025-01141-w

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research