Fundamentals of Photochemical Redox Reactions
Daniel A. Corbin
Colorado State University, Department of Chemistry, 1301 Center Ave, 1872 Campus Delivery, Fort Collins, CO, 80523-1872 USA
Search for more papers by this authorNicholas A. Swisher
Colorado State University, Department of Chemistry, 1301 Center Ave, 1872 Campus Delivery, Fort Collins, CO, 80523-1872 USA
Search for more papers by this authorGarret M. Miyake
Colorado State University, Department of Chemistry, 1301 Center Ave, 1872 Campus Delivery, Fort Collins, CO, 80523-1872 USA
Search for more papers by this authorDaniel A. Corbin
Colorado State University, Department of Chemistry, 1301 Center Ave, 1872 Campus Delivery, Fort Collins, CO, 80523-1872 USA
Search for more papers by this authorNicholas A. Swisher
Colorado State University, Department of Chemistry, 1301 Center Ave, 1872 Campus Delivery, Fort Collins, CO, 80523-1872 USA
Search for more papers by this authorGarret M. Miyake
Colorado State University, Department of Chemistry, 1301 Center Ave, 1872 Campus Delivery, Fort Collins, CO, 80523-1872 USA
Search for more papers by this authorJun-Ichi Yoshida
Kyoto University, School of Engineering, Nishikyo-ku Kyoto University, 606-8510 Kyoto, Japan
Search for more papers by this authorFrédéric W. Patureau
Institut für Organische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
Search for more papers by this authorSummary
The extensive development of photoredox catalysis in the past decade has enabled both old and new reactions to be performed under mild, light-driven conditions. In this chapter, an overview of photoredox reactions is provided, starting with a brief history of photoredox catalysis and electron donor–acceptor (EDA) chemistry. Fundamental concepts, common instrumental techniques, and general considerations for photoredox reactions are broadly discussed, as well as specific details related to photoredox catalysis and EDA chemistry. Examples demonstrating the application of these chemistries in organic synthesis and polymer chemistry are highlighted. Finally, as this chapter aims to serve as a broad introduction to photoredox reactions, additional reading is suggested at the end of the chapter where readers can delve into the concepts presented herein in greater detail.
Photochemistry and Photophysical Processes
- Anslyn , E.V. and Dougherty , D.A. ( 2006 ). Photochemistry . In: Modern Physical Organic Chemistry , Chapter 16 (ed. J. Murdzek ), 935 – 1000 . University Science Books .
- Lakowicz , J.R. ( 2006 ). Principles of Fluorescence Spectroscopy . Springer .
- Turro , N.J. ( 1991 ). Modern Molecular Photochemistry . University Science Books .
- Turro , N.J. ( 2010 ). Modern Molecular Photochemistry of Organic Molecules . University Science Books .
Electrochemical Methods
- Bard , A.J. and Faulkner , L.R. ( 2001 ). Electrochemical Methods: Fundamentals and Applications . Wiley .
- Elgrishi , N. , Rountree , K.J. , McCarthy , B.D. et al. ( 2018 ). A practical beginner's guide to cyclic voltammetry . J. Chem. Educ. 95 : 197 .
Photoredox Catalysis
- Arias-Rotondo , D.M. and McCusker , J.K. ( 2016 ). The photophysics of photoredox catalysis: a roadmap for catalyst design . Chem. Soc. Rev. 45 : 5803 .
- Corrigan , N. , Shanmugam , S. , Xu , J. , and Boyer , C. ( 2016 ). Photocatalysis in organic and polymer synthesis . Chem. Soc. Rev. 45 : 6165 .
- Gesmundo , N.J. , Shaw , M.H. , Twilton , J. et al. ( 2019 ). Photoredox Catalysis Desk Reference and User's Guide . Sigma-Aldrich .
- Prier , C.K. , Rankic , D.A. , and MacMillan , D.W.C. ( 2013 ). Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis . Chem. Rev. 113 : 5322 .
- Romero , N.A. and Nicewicz , D.A. ( 2016 ). Organic photoredox catalysis . Chem. Rev. 116 : 10075 .
Earth Abundant Metal Photoredox Catalysis
- Hockin , B.M. , Li , C. , Robertson , N. , and Zysman-Colman , E. ( 2019 ). Photoredox catalysts based on earth abundant metal complexes . Catal. Sci. Technol. 9 : 889 .
- McCusker , J.K. ( 2019 ). Electronic structure in the transition metal block and its implications for light harvesting . Science 363 : 484 .
- Wenger , O.S. ( 2018 ). Photoactive complexes with earth-abundant metals . J. Am. Chem. Soc. 140 : 13522 .
EDA
Complexes
- Crisenza , G.E.M. , Mazzarella , D. , and Melchiorre , P. ( 2020 ). Synthetic methods driven by photoactivity of electron donor-acceptor complexes . J. Am. Chem. Soc. 142 : 5461 .
- Lima , C.G.S. , Lima , T.d.M. , Duarte , M. et al. ( 2016 ). Organic synthesis enabled by light-irradiation of EDA complexes: theoretical background and synthetic applications . ACS Catal. 6 : 1389 .
- Rosokha , S.V. and Kochi , J.K. ( 2008 ). Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex . Acc. Chem. Res. 41 : 641 .
References
- Roth , H.D. ( 1989 ). The beginnings of organic photochemistry . Angew. Chem. Int. Ed. Engl. 28 ( 9 ): 1193 – 1207 .
- Heindel , N.D. and Pfau , M.A. ( 1965 ). A profitable partnership: Giacomo Ciamician and Paul Silber . J. Chem. Educ. 42 ( 7 ): 383 .
-
Hedstrand , D.M.
,
Kruizinga , W.H.
, and
Kellogg , R.M.
(
1978
).
Light induced and dye accelerated reductions of phenacyl onium salts by 1,4-dihydropyridines
.
Tetrahedron Lett.
19
(
14
):
1255
–
1258
.
10.1016/S0040-4039(01)94515-0 Google Scholar
- Pac , C. , Ihama , M. , Yasuda , M. et al. ( 1981 ). Ru(bpy) 3 2+ -mediated photoreduction of olefins with 1-benzyl-1,4-dihydronicotinamide: a mechanistic probe for electron-transfer reactions of NAD(P)H-model compounds . J. Am. Chem. Soc. 103 ( 21 ): 6495 – 6497 .
- Fukuzumi , S. , Mochizuki , S. , and Tanaka , T. ( 1990 ). Photocatalytic reduction of phenacyl halides by 9,10-dihydro-10-methylacridine: control between the reductive and oxidative quenching pathways of tris(bipyridine)ruthenium complex utilizing an acid catalysis . J. Phys. Chem. 94 ( 2 ): 722 – 726 .
- Cano-Yelo , H. and Deronzier , A. ( 1984 ). Photo-oxidation of some carbinols by the Ru(II) polypyridyl complex-aryl diazonium salt system . Tetrahedron Lett. 25 ( 48 ): 5517 – 5520 .
- Cano-Yelo , H. and Deronzier , A. ( 1987 ). Photocatalysis of the pschorr reaction by Ru(bpy) 3 2+ . J. Photochem. 37 ( 2 ): 315 – 321 .
- Ischay , M.A. , Anzovino , M.E. , Du , J. , and Yoon , T.P. ( 2008 ). Efficient visible light photocatalysis of [2+2] enone cycloadditions . J. Am. Chem. Soc. 130 ( 39 ): 12886 – 12887 .
- Nicewicz , D.A. and MacMillan , D.W.C. ( 2008 ). Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes . Science 322 ( 5898 ): 77 – 80 .
- Narayanam , J.M.R. , Tucker , J.W. , and Stephenson , C.R.J. ( 2009 ). Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction . J. Am. Chem. Soc. 131 ( 25 ): 8756 – 8757 .
- Du , Y. , Pearson , R.M. , Lim , C.-H. et al. ( 2017 ). Strongly reducing, visible-light organic photoredox catalysts as sustainable alternatives to precious metals . Chem. Eur. J. 23 ( 46 ): 10962 – 10968 .
- Pham , P.V. , Nagib , D.A. , and MacMillan , D.W.C. ( 2011 ). Photoredox catalysis: a mild, operationally simple approach to the synthesis of α-trifluoromethyl carbonyl compounds . Angew. Chem. Int. Ed. 50 ( 27 ): 6119 – 6122 .
- Arceo , E. , Jurberg , I.D. , Álvarez-Fernández , A. , and Melchiorre , P. ( 2013 ). Photochemical activity of a key donor–acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes . Nat. Chem. 5 ( 9 ): 750 – 756 .
- Tobisu , M. , Furukawa , T. , and Chatani , N. ( 2013 ). Visible light-mediated direct arylation of arenes and heteroarenes using diaryliodonium salts in the presence and absence of a photocatalyst . Chem. Lett. 42 ( 10 ): 1203 – 1205 .
- Liu , B. , Lim , C.-H. , and Miyake , G.M. ( 2017 ). Visible-light-promoted C–S cross-coupling via intermolecular charge transfer . J. Am. Chem. Soc. 139 ( 39 ): 13616 – 13619 .
- Liu , B. , Lim , C.-H. , and Miyake , G. ( 2018 ). Transition-metal-free, visible-light-promoted C–S cross-coupling through intermolecular charge transfer . Synlett 29 ( 19 ): 2449 – 2455 .
- Jablonski , A. ( 1933 ). Efficiency of anti-stokes fluorescence in dyes . Nature 131 : 839 .
- Kasha , M. ( 1950 ). Characterization of electronic transitions in complex molecules . Discuss. Faraday Soc. 9 : 14 – 19 .
- Demchenko , A.P. , Heldt , J. , Waluk , J. et al. ( 2014 ). Michael Kasha: from photochemistry and flowers to spectroscopy and music . Angew. Chem. Int. Ed. 53 ( 52 ): 14316 – 14324 .
- Demchenko , A.P. , Tomin , V.I. , and Chou , P.-T. ( 2017 ). Breaking the Kasha rule for more efficient photochemistry . Chem. Rev. 117 ( 21 ): 13353 – 13381 .
- Okamura , T. , Sancar , A. , Heelis , P.F. et al. ( 1989 ). Doublet-quartet intersystem crossing of flavin radical in DNA photolyase . J. Am. Chem. Soc. 111 ( 15 ): 5967 – 5969 .
- International Union of Pure and Applied Chemistry ( 2020 ). The Gold book: gibbs energy of photoinduced electron transfer . https://goldbook.iupac.org/terms/view/GT07388 (accessed 13 July 2020).
- Romero , N.A. and Nicewicz , D.A. ( 2016 ). Organic photoredox catalysis . Chem. Rev. 116 ( 17 ): 10075 – 10166 .
- Miller , J.R. , Calcaterra , L.T. , and Closs , G.L. ( 1984 ). Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates . J. Am. Chem. Soc. 106 ( 10 ): 3047 – 3049 .
- Lakowicz , J.R. ( 2006 ). Principles of Fluorescence Spectroscopy . New York : Springer .
- Garlets , Z.J. , Nguyen , J.D. , and Stephenson , C.R.J. ( 2014 ). The development of visible-light photoredox catalysis in flow . Isr. J. Chem. 54 ( 4 ): 351 – 360 .
- Buss , B.L. and Miyake , G.M. ( 2018 ). Photoinduced controlled radical polymerizations performed in flow: methods, products, and opportunities . Chem. Mater. 30 ( 12 ): 3931 – 3942 .
- Arias-Rotondo , D.M. and McCusker , J.K. ( 2016 ). The photophysics of photoredox catalysis: a roadmap for catalyst design . Chem. Soc. Rev. 45 ( 21 ): 5803 – 5820 .
- Weir , D. and Scaiano , J.C. ( 1986 ). Substituent effects on the lifetime and fluorescence of excited diphenylmethyl radicals in solution . Chem. Phys. Lett. 128 ( 2 ): 156 – 159 .
- MacKenzie , I.A. , Wang , L. , Onuska , N.P.R. et al. ( 2020 ). Discovery and characterization of an acridine radical photoreductant . Nature 580 ( 7801 ): 76 – 80 .
- Kalyanasundaram , K. ( 1982 ). Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues . Coord. Chem. Rev. 46 : 159 – 244 .
- Thompson , D.W. , Ito , A. , and Meyer , T.J. ( 2013 ). [Ru(bpy) 3 ] 2+ * and other remarkable metal-to-ligand charge transfer (MLCT) excited states . Pure Appl. Chem. 85 ( 7 ): 1257 – 1305 .
- Tucker , J.W. and Stephenson , C.R.J. ( 2012 ). Shining light on photoredox catalysis: theory and synthetic applications . J. Org. Chem. 77 ( 4 ): 1617 – 1622 .
- Nguyen , J.D. , D'Amato , E.M. , Narayanam , J.M.R. , and Stephenson , C.R.J. ( 2012 ). Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions . Nat. Chem. 4 ( 10 ): 854 – 859 .
- Condie , A.G. , González-Gómez , J.C. , and Stephenson , C.R.J. ( 2010 ). Visible-light photoredox catalysis: aza-Henry reactions via C−H functionalization . J. Am. Chem. Soc. 132 ( 5 ): 1464 – 1465 .
- Yasu , Y. , Koike , T. , and Akita , M. ( 2012 ). Three-component oxytrifluoromethylation of alkenes: highly efficient and regioselective difunctionalization of C–C bonds mediated by photoredox catalysts . Angew. Chem. Int. Ed. 51 ( 38 ): 9567 – 9571 .
- Ventre , S. , Petronijevic , F.R. , and MacMillan , D.W.C. ( 2015 ). Decarboxylative fluorination of aliphatic carboxylic acids via photoredox catalysis . J. Am. Chem. Soc. 137 ( 17 ): 5654 – 5657 .
- Liu , Y. , Persson , P. , Sundström , V. , and Wärnmark , K. ( 2016 ). Fe N-heterocyclic carbene complexes as promising photosensitizers . Acc. Chem. Res. 49 ( 8 ): 1477 – 1485 .
- Kjær , K.S. , Kaul , N. , Prakash , O. et al. ( 2019 ). Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime . Science 363 ( 6424 ): 249 – 253 .
- Pirtsch , M. , Paria , S. , Matsuno , T. et al. ( 2012 ). [Cu(dap) 2 Cl] as an efficient visible-light-driven photoredox catalyst in carbon-carbon bond-forming reactions . Chem. Eur. J. 18 ( 24 ): 7336 – 7340 .
- Wang , Y. , Haze , O. , Dinnocenzo , J.P. et al. ( 2007 ). Bonded exciplexes. A new concept in photochemical reactions . J. Org. Chem. 72 ( 18 ): 6970 – 6981 .
- Yamago , S. , Miyazoe , H. , Iida , K. , and Yoshida , J. ( 2000 ). Highly efficient and chemoselective reductive bis-silylation of quinones by silyltellurides . Org. Lett. 2 ( 23 ): 3671 – 3673 .
- Ohkubo , K. , Fujimoto , A. , and Fukuzumi , S. ( 2013 ). Visible-light-induced oxygenation of benzene by the triplet excited state of 2,3-dichloro-5,6-dicyano-p-benzoquinone . J. Am. Chem. Soc. 135 ( 14 ): 5368 – 5371 .
-
Fukuzumi , S.
and
Kitano , T.
(
1991
).
Mechanisms of reductive methylation of NAD
+
analogues by a
trans
-dimethylcobalt(III) complex
.
J. Chem. Soc., Perkin Trans. 2
(
1
):
41
.
10.1039/p29910000041 Google Scholar
- Searle , R. , Williams , J.L.R. , DeMeyer , D.E. , and Doty , J.C. ( 1967 ). The sensitization of stilbene isomerization . Chem. Commun. Lond. 22 : 1165 .
- Kitaguchi , H. , Ohkubo , K. , Ogo , S. , and Fukuzumi , S. ( 2006 ). Electron-transfer oxidation properties of unsaturated fatty acids and mechanistic insight into lipoxygenases . J. Phys. Chem. A 110 ( 5 ): 1718 – 1725 .
- Benniston , A.C. , Harriman , A. , Li , P. et al. ( 2005 ). Illumination of the 9-mesityl-10-methylacridinium ion does not give a long-lived photoredox state . Chem. Commun. ( 21 ): 2701 .
- Benniston , A.C. , Harriman , A. , Li , P. et al. ( 2005 ). Charge shift and triplet state formation in the 9-mesityl-10-methylacridinium cation . J. Am. Chem. Soc. 127 ( 46 ): 16054 – 16064 .
- Shen , T. , Zhao , Z.-G. , Yu , Q. , and Xu , H.-J. ( 1989 ). Photosensitized reduction of benzil by heteroatom-containing anthracene dyes . J. Photochem. Photobiol. Chem. 47 ( 2 ): 203 – 212 .
- Pan , Y. , Kee , C.W. , Chen , L. , and Tan , C.-H. ( 2011 ). Dehydrogenative coupling reactions catalysed by Rose Bengal using visible light irradiation . Green Chem. 13 ( 10 ): 2682 .
- Fukuzumi , S. , Kotani , H. , Ohkubo , K. et al. ( 2004 ). Electron-transfer state of 9-mesityl-10-methylacridinium ion with a much longer lifetime and higher energy than that of the natural photosynthetic reaction center . J. Am. Chem. Soc. 126 ( 6 ): 1600 – 1601 .
- Romero , N.A. and Nicewicz , D.A. ( 2014 ). Mechanistic insight into the photoredox catalysis of anti-Markovnikov alkene hydrofunctionalization reactions . J. Am. Chem. Soc. 136 ( 49 ): 17024 – 17035 .
- Nguyen , T.M. , Manohar , N. , and Nicewicz , D.A. ( 2014 ). Anti-Markovnikov hydroamination of alkenes catalyzed by a two-component organic photoredox system: direct access to phenethylamine derivatives . Angew. Chem. Int. Ed. 53 ( 24 ): 6198 – 6201 .
- Romero , N.A. , Margrey , K.A. , Tay , N.E. , and Nicewicz , D.A. ( 2015 ). Site-selective arene C–H amination via photoredox catalysis . Science 349 ( 6254 ): 1326 – 1330 .
- Ohkubo , K. , Kobayashi , T. , and Fukuzumi , S. ( 2011 ). Direct oxygenation of benzene to phenol using quinolinium ions as homogeneous photocatalysts . Angew. Chem. Int. Ed. 50 ( 37 ): 8652 – 8655 .
- Alfonzo , E. , Alfonso , F.S. , and Beeler , A.B. ( 2017 ). Redesign of a pyrylium photoredox catalyst and its application to the generation of carbonyl ylides . Org. Lett. 19 ( 11 ): 2989 – 2992 .
- Lin , Y.-C. and Chen , C.-T. ( 2009 ). Acridinium salt-based fluoride and acetate chromofluorescent probes: molecular insights into anion selectivity switching . Org. Lett. 11 ( 21 ): 4858 – 4861 .
- McTiernan , C.D. , Pitre , S.P. , and Scaiano , J.C. ( 2014 ). Photocatalytic dehalogenation of vicinal dibromo compounds utilizing sexithiophene and visible-light irradiation . ACS Catal. 4 ( 11 ): 4034 – 4039 .
- Pitre , S.P. , McTiernan , C.D. , and Scaiano , J.C. ( 2016 ). Understanding the kinetics and spectroscopy of photoredox catalysis and transition-metal-free alternatives . Acc. Chem. Res. 49 ( 6 ): 1320 – 1330 .
- Suppan , P. ( 1975 ). Photoreactivity of Michler's ketone in solution . J. Chem. Soc., Faraday Trans. 1 Phys. Chem. Condens. Phases 71 : 539 – 547 .
- Timpe , H.-J. , Kronfeld , K.-P. , Lammel , U. et al. ( 1990 ). Excited states of ketones as electron donors-ketone-iodonium salt systems as photoinitiators for radical polymerization . J. Photochem. Photobiol. Chem. 52 ( 1 ): 111 – 122 .
- Schweitzer , C. , Mehrdad , Z. , Noll , A. et al. ( 2001 ). Oxygen quenching of n π * triplet phenyl ketones: local excitation and local deactivation . Helv. Chim. Acta 84 : 15 .
- Bachman , J.C. , Kavian , R. , Graham , D.J. et al. ( 2015 ). Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes . Nat. Commun. 6 ( 1 ): 7040 .
- Singh-Rachford , T.N. and Castellano , F.N. ( 2010 ). Triplet sensitized red-to-blue photon upconversion . J. Phys. Chem. Lett. 1 ( 1 ): 195 – 200 .
- Parac , M. and Grimme , S. ( 2003 ). A TDDFT study of the lowest excitation energies of polycyclic aromatic hydrocarbons . Chem. Phys. 292 ( 1 ): 11 – 21 .
- Kikuchi , K. , Niwa , T. , Takahashi , Y. et al. ( 1993 ). Quenching mechanism in a highly exothermic region of the Rehm-Weller relationship for electron-transfer fluorescence quenching . J. Phys. Chem. 97 ( 19 ): 5070 – 5073 .
- Luo , J. and Zhang , J. ( 2016 ). Donor–acceptor fluorophores for visible-light-promoted organic synthesis: photoredox/Ni dual catalytic C(sp 3 )–C(sp 2 ) cross-coupling . ACS Catal. 6 ( 2 ): 873 – 877 .
- Treat , N.J. , Sprafke , H. , Kramer , J.W. et al. ( 2014 ). Metal-free atom transfer radical polymerization . J. Am. Chem. Soc. 136 ( 45 ): 16096 – 16101 .
- Korobov , V.E. , Shubin , V.V. , and Chibisov , A.-K. ( 1977 ). Triplet state of rhodamine dyes and its role in production of intermediates . Chem. Phys. Lett. 45 ( 3 ): 4 .
- Yasui , S. , Tsujimoto , M. , Itoh , K. , and Ohno , A. ( 2000 ). Quenching of a photosensitized dye through single-electron transfer from trivalent phosphorus compounds . J. Org. Chem. 65 ( 15 ): 4715 – 4720 .
- Theriot , J.C. , Lim , C.-H. , Yang , H. et al. ( 2016 ). Organocatalyzed atom transfer radical polymerization driven by visible light . Science 352 ( 6289 ): 1082 – 1086 .
- Pearson , R.M. , Lim , C.-H. , McCarthy , B.G. et al. ( 2016 ). Organocatalyzed atom transfer radical polymerization using N-aryl phenoxazines as photoredox catalysts . J. Am. Chem. Soc. 138 ( 35 ): 11399 – 11407 .
- McCarthy , B.G. , Pearson , R.M. , Lim , C.-H. et al. ( 2018 ). Structure–property relationships for tailoring phenoxazines as reducing photoredox catalysts . J. Am. Chem. Soc. 140 ( 15 ): 5088 – 5101 .
- Cole , J.P. , Federico , C.R. , Lim , C.-H. , and Miyake , G.M. ( 2019 ). Photoinduced organocatalyzed atom transfer radical polymerization using low ppm catalyst loading . Macromolecules 52 ( 2 ): 747 – 754 .
- Buss , B.L. , Lim , C.-H. , and Miyake , G.M. ( 2020 ). Dimethyl dihydroacridines as photocatalysts in organocatalyzed atom transfer radical polymerization of acrylate monomers . Angew. Chem. Int. Ed. 59 ( 8 ): 3209 – 3217 .
- Singh , V.K. , Yu , C. , Badgujar , S. et al. ( 2018 ). Highly efficient organic photocatalysts discovered via a computer-aided-design strategy for visible-light-driven atom transfer radical polymerization . Nat. Catal. 1 ( 10 ): 794 – 804 .
- Ishimatsu , R. , Matsunami , S. , Kasahara , T. et al. ( 2014 ). Electrogenerated chemiluminescence of donor-acceptor molecules with thermally activated delayed fluorescence . Angew. Chem. Int. Ed. 53 ( 27 ): 6993 – 6996 .
- Miyake , G.M. and Theriot , J.C. ( 2014 ). Perylene as an organic photocatalyst for the radical polymerization of functionalized vinyl monomers through oxidative quenching with alkyl bromides and visible light . Macromolecules 47 ( 23 ): 8255 – 8261 .
- Sartor , S.M. , McCarthy , B.G. , Pearson , R.M. et al. ( 2018 ). Exploiting charge-transfer states for maximizing intersystem crossing yields in organic photoredox catalysts . J. Am. Chem. Soc. 140 : 4778 – 4781 .
- Park , G.S. , Back , J. , Choi , E.M. et al. ( 2019 ). Visible light-mediated metal-free atom transfer radical polymerization with N-trifluoromethylphenyl phenoxazines . Eur. Polym. J. 117 : 347 – 352 .
- Poelma , S.O. , Burnett , G.L. , Discekici , E.H. et al. ( 2016 ). Chemoselective radical dehalogenation and C–C bond formation on aryl halide substrates using organic photoredox catalysts . J. Org. Chem. 81 ( 16 ): 7155 – 7160 .
- Dadashi-Silab , S. , Pan , X. , and Matyjaszewski , K. ( 2017 ). Phenyl benzo[b]phenothiazine as a visible light photoredox catalyst for metal-free atom transfer radical polymerization . Chem. Eur. J. 23 ( 25 ): 5972 – 5977 .
- Gong , H. , Zhao , Y. , Shen , X. et al. ( 2018 ). Organocatalyzed photocontrolled radical polymerization of semifluorinated (meth)acrylates driven by visible light . Angew. Chem. Int. Ed. 57 ( 1 ): 333 – 337 .
- Zhao , Y. , Gong , H. , Jiang , K. et al. ( 2018 ). Organocatalyzed photoredox polymerization from aromatic sulfonyl halides: facilitating graft from aromatic C–H bonds . Macromolecules 51 ( 3 ): 938 – 946 .
- Sartor , S.M. , Chrisman , C.H. , Pearson , R.M. et al. ( 2020 ). Designing high-triplet-yield phenothiazine donor–acceptor complexes for photoredox catalysis . J. Phys. Chem. A 124 ( 5 ): 817 – 823 .
- Ryan , M.D. , Theriot , J.C. , Lim , C.-H. et al. ( 2017 ). Solvent effects on the intramolecular charge transfer character of N,N-diaryl dihydrophenazine catalysts for organocatalyzed atom transfer radical polymerization . J. Polym. Sci., Part A: Polym. Chem. 55 ( 18 ): 3017 – 3027 .
- Corbin , D.A. , Lim , C.-H. , and Miyake , G.M. ( 2019 ). Phenothiazines, dihydrophenazines, and phenoxazines: sustainable alternatives to precious-metal-based photoredox catalysts . Aldrichim. Acta 52 ( 1 ): 15 .
- Discekici , E.H. , Treat , N.J. , Poelma , S.O. et al. ( 2015 ). A highly reducing metal-free photoredox catalyst: design and application in radical dehalogenations . Chem. Commun. 51 ( 58 ): 11705 – 11708 .
- Wang , H. and Jui , N.T. ( 2018 ). Catalytic defluoroalkylation of trifluoromethylaromatics with unactivated alkenes . J. Am. Chem. Soc. 140 ( 1 ): 163 – 166 .
- Uoyama , H. , Goushi , K. , Shizu , K. et al. ( 2012 ). Highly efficient organic light-emitting diodes from delayed fluorescence . Nature 492 ( 7428 ): 234 – 238 .
- Mateos , J. , Rigodanza , F. , Vega-Peñaloza , A. et al. ( 2020 ). Naphthochromenones: organic bimodal photocatalysts engaging in both oxidative and reductive quenching processes . Angew. Chem. Int. Ed. 59 ( 3 ): 1302 – 1312 .
- Gualandi , A. , Rodeghiero , G. , Della Rocca , E. et al. ( 2018 ). Application of coumarin dyes for organic photoredox catalysis . Chem. Commun. 54 ( 72 ): 10044 – 10047 .
- Jia , T. , Huang , S. , Bohra , H. , and Wang , M. ( 2019 ). Examining derivatives of quinacridone, diketopyrrolopyrrole and indigo as the visible-light organic photocatalysts for metal-free atom transfer radical polymerization . Dyes Pigm. 165 : 223 – 230 .
- Yang , L. , Huang , Y. , Peng , Y. et al. ( 2020 ). Pyridine-diketopyrrolopyrrole-based novel metal-free visible-light organophotoredox catalyst for atom-transfer radical polymerization . J. Phys. Chem. A 124 ( 6 ): 1068 – 1075 .
- Buzzetti , L. , Prieto , A. , Roy , S.R. , and Melchiorre , P. ( 2017 ). Radical-based C–C bond-forming processes enabled by the photoexcitation of 4-alkyl-1,4-dihydropyridines . Angew. Chem. Int. Ed. 56 ( 47 ): 15039 – 15043 .
- Noto , N. , Tanaka , Y. , Koike , T. , and Akita , M. ( 2018 ). Strongly reducing (diarylamino)anthracene catalyst for metal-free visible-light photocatalytic fluoroalkylation . ACS Catal. 8 ( 10 ): 9408 – 9419 .
- Noto , N. , Koike , T. , and Akita , M. ( 2019 ). Visible-light-triggered monofluoromethylation of alkenes by strongly reducing 1,4-bis(diphenylamino)naphthalene photoredox catalysis . ACS Catal. 9 ( 5 ): 4382 – 4387 .
- Matsubara , R. , Shimada , T. , Kobori , Y. et al. ( 2016 ). Photoinduced charge-transfer state of 4-carbazolyl-3-(trifluoromethyl)benzoic acid: photophysical property and application to reduction of carbon−halogen bonds as a sensitizer . Chem. Asian J. 11 ( 14 ): 2006 – 2010 .
- Matsubara , R. , Yabuta , T. , Md Idros , U. et al. ( 2018 ). UVA- and visible-light-mediated generation of carbon radicals from organochlorides using nonmetal photocatalyst . J. Org. Chem. 83 ( 16 ): 9381 – 9390 .
- Gosztola , D. , Niemczyk , M.P. , Svec , W. et al. ( 2000 ). Excited doublet states of electrochemically generated aromatic imide and diimide radical anions . J. Phys. Chem. A 104 ( 28 ): 6545 – 6551 .
- Ghosh , I. , Ghosh , T. , Bardagi , J.I. , and Konig , B. ( 2014 ). Reduction of aryl halides by consecutive visible light-induced electron transfer processes . Science 346 ( 6210 ): 725 – 728 .
- Zeman , C.J. , Kim , S. , Zhang , F. , and Schanze , K.S. ( 2020 ). Direct observation of the reduction of aryl halides by a photoexcited perylene diimide radical anion . J. Am. Chem. Soc. 142 ( 5 ): 2204 – 2207 .
- Cowper , N.G.W. , Chernowsky , C.P. , Williams , O.P. , and Wickens , Z.K. ( 2020 ). Potent reductants via electron-primed photoredox catalysis: unlocking aryl chlorides for radical coupling . J. Am. Chem. Soc. 142 ( 5 ): 2093 – 2099 .
- Kim , H. , Kim , H. , Lambert , T.H. , and Lin , S. ( 2020 ). Reductive electrophotocatalysis: merging electricity and light to achieve extreme reduction potentials . J. Am. Chem. Soc. 142 ( 5 ): 2087 – 2092 .
- Cole , J.P. , Chen , D.-F. , Kudisch , M. et al. ( 2020 ). Organocatalyzed birch reduction driven by visible light . J. Am. Chem. Soc. 142 ( 31 ): 13573 – 13581 . https://doi.org/10.1021/jacs.0c05899 .
- Christensen , J.A. , Phelan , B.T. , Chaudhuri , S. et al. ( 2018 ). Phenothiazine radical cation excited states as super-oxidants for energy-demanding reactions . J. Am. Chem. Soc. 140 ( 15 ): 5290 – 5299 .
- Huang , H. , Strater , Z.M. , Rauch , M. et al. ( 2019 ). Electrophotocatalysis with a trisaminocyclopropenium radical dication . Angew. Chem. Int. Ed. 58 ( 38 ): 13318 – 13322 .
- Kerzig , C. , Guo , X. , and Wenger , O.S. ( 2019 ). Unexpected hydrated electron source for preparative visible-light driven photoredox catalysis . J. Am. Chem. Soc. 141 ( 5 ): 2122 – 2127 .
- Kerzig , C. and Wenger , O.S. ( 2019 ). Reactivity control of a photocatalytic system by changing the light intensity . Chem. Sci. 10 ( 48 ): 11023 – 11029 .
- Hildebrand , J.H. and Glascock , B.L. ( 1909 ). The color of iodine solutions . J. Am. Chem. Soc. 31 ( 1 ): 26 – 31 .
- Mulliken , R.S. ( 1950 ). Structures of complexes formed by halogen molecules with aromatic and with oxygenated solvents . J. Am. Chem. Soc. 72 ( 1 ): 600 – 608 .
- Mulliken , R.S. ( 1952 ). Molecular compounds and their spectra. II . J. Am. Chem. Soc. 74 ( 3 ): 811 – 824 .
- Mulliken , R.S. ( 1952 ). Molecular compounds and their spectra. III. The interaction of electron donors and acceptors . J. Phys. Chem. 56 ( 7 ): 801 – 822 .
- Rosokha , S.V. and Kochi , J.K. ( 2008 ). Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex . Acc. Chem. Res. 41 ( 5 ): 641 – 653 .
- Lima , C.G.S. , Lima , T.d.M. , Duarte , M. et al. ( 2016 ). Organic synthesis enabled by light-irradiation of EDA complexes: theoretical background and synthetic applications . ACS Catal. 6 ( 3 ): 1389 – 1407 .
-
Roth , H.
,
Romero , N.
, and
Nicewicz , D.
(
2015
).
Experimental and calculated electrochemical potentials of common organic molecules for applications to single-electron redox chemistry
.
Synlett
27
(
05
):
714
–
723
.
10.1055/s-0035-1561297 Google Scholar
- Crisenza , G.E.M. , Mazzarella , D. , and Melchiorre , P. ( 2020 ). Synthetic methods driven by the photoactivity of electron donor–acceptor complexes . J. Am. Chem. Soc. 142 ( 12 ): 5461 – 5476 .
-
Cantacuzène , D.
,
Wakselman , C.
, and
Dorme , R.
(
1977
).
Condensation of perfluoroalkyl iodides with unsaturated nitrogen compounds
.
J. Chem. Soc., Perkin Trans. 1
(
12
):
1365
–
1371
.
10.1039/P19770001365 Google Scholar
- Hoz , S. and Bunnett , J.F. ( 1977 ). A quantitative study of the photostimulated reaction of iodobenzene with diethyl phosphite ion . J. Am. Chem. Soc. 99 ( 14 ): 4690 – 4699 .
- Fox , M.A. , Younathan , J. , and Fryxell , G.E. ( 1983 ). Photoinitiation of the S RN 1 reaction by excitation of charge-transfer complexes . J. Org. Chem. 48 ( 18 ): 3109 – 3112 .
- Fukuzumi , S. , Mochida , K. , and Kochi , J.K. ( 1979 ). A unified mechanism for thermal and photochemical activation of charge-transfer processes with organometals. Steric effects in the insertion of tetracyanoethylene . J. Am. Chem. Soc. 101 ( 20 ): 5961 – 5972 .
- Sankararaman , S. , Haney , W.A. , and Kochi , J.K. ( 1987 ). Annihilation of aromatic cation radicals by ion-pair and radical pair collapse. Unusual solvent and salt effects in the competition for aromatic substitution . J. Am. Chem. Soc. 109 ( 25 ): 7824 – 7838 .
- Wade , P.A. , Morrison , H.A. , and Kornblum , N. ( 1987 ). The effect of light on electron transfer substitution at a saturated carbon atom . J. Org. Chem. 52 ( 14 ): 3102 – 3107 .
- Russell , G.A. and Wang , K. ( 1991 ). Homolytic alkylation of enamines by electrophilic radicals . J. Org. Chem. 56 ( 11 ): 3475 – 3479 .
- Gotoh , T. , Padias , A.B. , and Hall , H.K. ( 1991 ). An electron donor-acceptor complex and thermal triplex as intermediates in the cycloaddition reaction of N-vinylcarbazole with dimethyl 2,2-dicyanoethylene-1,1-dicarboxylate . J. Am. Chem. Soc. 113 ( 4 ): 1308 – 1312 .
- Kandukuri , S.R. , Bahamonde , A. , Chatterjee , I. et al. ( 2015 ). X-ray characterization of an electron donor-acceptor complex that drives the photochemical alkylation of indoles . Angew. Chem. Int. Ed. 54 ( 5 ): 1485 – 1489 .
- Yang , Q.-Q. , Liu , N. , Yan , J.-Y. et al. ( 2020 ). Visible light- and heat-promoted C–O coupling reaction of phenols and aryl halides . Asian J. Org. Chem. 9 ( 1 ): 116 – 120 .
- da Silva , G.P. , Ali , A. , da Silva , R.C. et al. ( 2015 ). Tris(trimethylsilyl)silane and visible-light irradiation: a new metal- and additive-free photochemical process for the synthesis of indoles and oxindoles . Chem. Commun. 51 ( 82 ): 15110 – 15113 .
- Zhang , J. , Li , Y. , Xu , R. , and Chen , Y. ( 2017 ). Donor-acceptor complex enables alkoxyl radical generation for metal-free C(sp 3 )-C(sp 3 ) cleavage and allylation/alkenylation . Angew. Chem. Int. Ed. 56 ( 41 ): 12619 – 12623 .
- Davies , J. , Booth , S.G. , Essafi , S. et al. ( 2015 ). Visible-light-mediated generation of nitrogen-centered radicals: metal-free hydroimination and iminohydroxylation cyclization reactions . Angew. Chem. Int. Ed. 54 ( 47 ): 14017 – 14021 .
- Fawcett , A. , Pradeilles , J. , Wang , Y. et al. ( 2017 ). Photoinduced decarboxylative borylation of carboxylic acids . Science 357 ( 6348 ): 283 – 286 .
- Wu , J. , He , L. , Noble , A. , and Aggarwal , V.K. ( 2018 ). Photoinduced deaminative borylation of alkylamines . J. Am. Chem. Soc. 140 ( 34 ): 10700 – 10704 .
- Wu , J. , Bär , R.M. , Guo , L. et al. ( 2019 ). Photoinduced deoxygenative borylations of aliphatic alcohols . Angew. Chem. Int. Ed. 58 ( 52 ): 18830 – 18834 .
- Bosque , I. and Bach , T. ( 2019 ). 3-Acetoxyquinuclidine as catalyst in electron donor–acceptor complex-mediated reactions triggered by visible light . ACS Catal. 9 ( 10 ): 9103 – 9109 .
- Emmanuel , M.A. , Greenberg , N.R. , Oblinsky , D.G. , and Hyster , T.K. ( 2016 ). Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light . Nature 540 ( 7633 ): 414 – 417 .
Citing Literature
Recommended
Details
© 2022 WILEY-VCH GmbH
Keywords
Publication History
- 17 September 2021
- 19 July 2021
ISBN Information
- Online ISBN: 9783527815678
- Print ISBN: 9783527344871