Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Octahedral units in halide perovskites

Abstract

Metal halide perovskites, with an ABX3 crystal structure, possess excellent photophysical properties for (opto)electronic applications including photovoltaics, light-emitting diodes, photodetectors and transistors. To pave the pathway towards commercial applications, enormous efforts have been made to obtain high-performance perovskite-based devices. The octahedral unit is considered to be the fundamental and functional unit of halide perovskite materials, consisting of a central B cation surrounded by six X anions, with typical dimensions of 5−6 Å. One promising pathway towards stable and high-performance perovskite devices is to manipulate this octahedral unit. Although rational engineering of octahedra has been used in oxide perovskites to unlock various functionalities, analogous targeted work has been relatively underexplored in halide perovskites. Here, we present fundamental concepts regarding octahedral configurations in metal halide perovskites and its effects on crystal structures, photophysical properties and device performance. We outline techniques that can be used for characterizing octahedral units and summarize different approaches to rationally manipulate these units. Finally, we discuss the challenges and outlook for future research to align octahedral units with device investigations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structures and octahedral tilting in halide perovskites.
Fig. 2: Examples of data extracted from perovskite materials that show the presence of octahedral tilting.
Fig. 3: Dynamic B-cation off-centre displacement and lattice anharmonicity in halide perovskites.
Fig. 4: Correlation between octahedral tilt and bandgaps.
Fig. 5: Effect of octahedral variations on carrier dynamics.
Fig. 6: Tilting octahedra stabilizing halide perovskites.
Fig. 7: Manipulating octahedral units in the halide perovskites.
Fig. 8: Research status and future outlook of octahedral unit in halide perovskites.

Similar content being viewed by others

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Dong, Q. et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Stranks, S. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016).

    Article  CAS  Google Scholar 

  5. Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9. Sci. Rep. 2, 591 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647, (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    Article  CAS  Google Scholar 

  9. Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Jiang, J. et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photon. 16, 575–581 (2022).

    Article  CAS  Google Scholar 

  14. Moon, J., Mehta, Y., Gundogdu, K., So, F. & Gu, Q. Metal-halide perovskite lasers: cavity formation and emission characteristics. Adv. Mater. 36, 2211284 (2024).

    Article  CAS  Google Scholar 

  15. Bukke, R. N. et al. Strain relaxation and multidentate anchoring in n-type perovskite transistors and logic circuits. Nat. Electron. 7, 444–453 (2024).

    Article  CAS  Google Scholar 

  16. Prasanna, R. et al. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139, 11117–11124 (2017). The work demonstrates that octahedral tilt and the perovskite lattice distortion are the main reasons for the altered bandgaps in composition engineering, which demonstrates a strong correlation between perovskite bandgap variations and octahedral unit configuration.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, Y., Wang, J. & Ghosez, P. Unraveling the suppression of oxygen octahedra rotations in A3B2O7 Ruddlesden-Popper compounds: engineering multiferroicity and beyond. Phys. Rev. Lett. 125, 157601 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Doherty, T. A. S. et al. Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases. Science 374, 1598–1605 (2021). The work firstly reveals that in the lattice level, stable FA-rich perovskites are not ideal cubic phase, exhibiting ~2° octahedral tilt at room temperature. By using organic matrix template without cation alloying, ots-FAPbI3 perovskite has been achieved, highlighting that the modulation of octahedral units is crucial for the stability of halide perovskites.

    Article  CAS  PubMed  Google Scholar 

  19. Mozur, E. M. & Neilson, J. R. Cation dynamics in hybrid halide perovskites. Annu. Rev. Mater. Res. 51, 269–291 (2021). The work reviews the temperature effect of cation dynamics on the phase stability and the origins of defect-tolerated electronic transport.

    Article  CAS  Google Scholar 

  20. Jin, J. et al. A new perspective and design principle for halide perovskites: ionic octahedron network (ION). Nano Lett. 21, 5415–5421 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Han, X.-B., Jing, C.-Q., Zu, H.-Y. & Zhang, W. Structural descriptors to correlate Pb ion displacement and broadband emission in 2D halide perovskites. J. Am. Chem. Soc. 144, 18595–18606 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Shao, Y. et al. Unlocking surface octahedral tilt in two-dimensional Ruddlesden-Popper perovskites. Nat. Commun. 13, 138 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ornelas-Cruz, I., dos Santos, R. M., González, J. E., Lima, M. P. & Da Silva, J. L. F. Cubic-to-hexagonal structural phase transition in metal halide compounds: a DFT study. J. Mater. Chem. A 12, 12564–12580 (2024).

    Article  CAS  Google Scholar 

  24. dos Santos, R. M., Ornelas−Cruz, I., Dias, A. C., Lima, M. P. & Da Silva, J. L. F. Theoretical investigation of the role of mixed A+ cations in the structure, stability, and electronic properties of perovskite alloys. ACS Appl. Energy Mater. 6, 5259–5273 (2023).

    Article  Google Scholar 

  25. Megaw, H. D. & Templeton, D. H. Crystal structures: a working approach. Phys. Today 27, 53–54 (1974).

    Article  Google Scholar 

  26. Glazer, A. The classification of tilted octahedra in perovskites. Acta Cryst. 28, 3384–3392 (1972).

    Article  CAS  Google Scholar 

  27. Howard, C. J. & Stokes, H. T. Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr. B Struct. Sci. 54, 782–789 (1998).

    Article  Google Scholar 

  28. Zhao, Y. & Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 45, 655–689 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Zhou, Y. & Zhao, Y. Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 12, 1495–1511 (2019).

    Article  CAS  Google Scholar 

  30. Filip, M. R. & Giustino, F. The geometric blueprint of perovskites. Proc. Natl Acad. Sci. USA 115, 5397–5402 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sato, T., Takagi, S., Deledda, S., Hauback, B. C. & Orimo, S.-I. Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds. Sci. Rep. 6, 23592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Travis, W., Glover, E., Bronstein, H., Scanlon, D. & Palgrave, R. J. C. S. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7, 4548–4556 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bartel, C. J. et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, eaav0693 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Filip, M. R., Eperon, G. E., Snaith, H. J. & Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 5, 5757 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Kawamura, Y., Mashiyama, H. & Hasebe, K. Structural study on cubic-tetragonal transition of CH3NH3PbI3. J. Phys. Soc. Jpn 71, 1694–1697 (2002).

    Article  CAS  Google Scholar 

  36. Lee, J. H., Bristowe, N. C., Bristowe, P. D. & Cheetham, A. K. Role of hydrogen-bonding and its interplay with octahedral tilting in CH3NH3PbI3. Chem. Commun. 51, 6434–6437 (2015).

    Article  CAS  Google Scholar 

  37. Lee, J.-H. et al. Resolving the physical origin of octahedral tilting in halide perovskites. Chem. Mater. 28, 4259–4266 (2016). The research elucidates that for fully inorganic perovskites, the steric effects dominate the tilt magnitude in inorganic halides, whereas hydrogen bonding between the organic A-cation and the halide frame has a role in octahedral tilting in hybrids.

    Article  CAS  Google Scholar 

  38. Varadwaj, P. R., Varadwaj, A., Marques, H. M. & Yamashita, K. Significance of hydrogen bonding and other noncovalent interactions in determining octahedral tilting in the CH3NH3PbI3 hybrid organic-inorganic halide perovskite solar cell semiconductor. Sci. Rep. 9, 50 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wiktor, J., Fransson, E., Kubicki, D. & Erhart, P. Quantifying dynamic tilting in halide perovskites: chemical trends and local correlations. Chem. Mater. 35, 6737–6744 (2023).

    Article  CAS  Google Scholar 

  40. Zhang, X., Shen, J.-X., Wang, W. & Van de Walle, C. G. First-principles analysis of radiative recombination in lead-halide perovskites. ACS Energy Lett. 3, 2329–2334 (2018).

    Article  CAS  Google Scholar 

  41. Amat, A. et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, B.-Q. et al. Engineering carrier dynamics in halide perovskites by dynamical lattice distortion. Adv. Sci. 10, 2300386 (2023).

    Article  CAS  Google Scholar 

  43. Herz, L. M. Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annu. Rev. Phys. Chem. 67, 65–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Arunkumar, P. et al. Probing molecule-like isolated octahedra via phase stabilization of zero-dimensional cesium lead halide nanocrystals. Nat. Commun. 9, 4691 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Ghosh, D., Walsh Atkins, P., Islam, M. S., Walker, A. B. & Eames, C. Good vibrations: locking of octahedral tilting in mixed-cation iodide perovskites for solar cells. ACS Energy Lett. 2, 2424–2429 (2017).

    Article  CAS  Google Scholar 

  47. Bechtel, J. S. & Van der Ven, A. Octahedral tilting instabilities in inorganic halide perovskites. Phys. Rev. Mater. 2, 025401 (2018).

    Article  CAS  Google Scholar 

  48. Klarbring, J. Low-energy paths for octahedral tilting in inorganic halide perovskites. Phys. Rev. B 99, 104105 (2019).

    Article  CAS  Google Scholar 

  49. Wang, Y. et al. High phase stability in CsPbI3 enabled by Pb-I octahedra anchors for efficient inorganic perovskite photovoltaics. Adv. Mater. 32, e2000186 (2020).

    Article  PubMed  Google Scholar 

  50. Lanigan-Atkins, T. et al. Two-dimensional overdamped fluctuations of the soft perovskite lattice in CsPbBr3. Nat. Mater. 20, 977–983 (2021). The work applies momentum-resolved neutron and X-ray scattering measurements as a function of temperature, complemented with first-principles simulations to reveal the detailed structural and temporal correlations of their atomic motions.

    Article  CAS  PubMed  Google Scholar 

  51. King, G. & Woodward, P. M. Cation ordering in perovskites. J. Mater. Chem. A 20, 5785–5796 (2010).

    Article  CAS  Google Scholar 

  52. Weller, M. T., Weber, O. J., Frost, J. M. & Walsh, A. Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 6, 3209–3212 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  53. Weadock, N. J. et al. The nature of dynamic local order in CH3NH3PbI3 and CH3NH3PbBr3. Joule 7, 1051–1066 (2023).

    Article  CAS  Google Scholar 

  54. Dubajic, M. et al. Dynamic nanodomains dictate macroscopic properties in lead halide perovskites. Preprint at https://arxiv.org/abs/2404.14598 (2024).

  55. Shirane, G., Cowley, R. A., Matsuda, M. & Shapiro, S. M. q dependence of the central peak in the inelastic-neutron-scattering spectrum of SrTiO3. Phys. Rev. B 48, 15595–15602 (1993).

    Article  CAS  Google Scholar 

  56. Beecher, A. N. et al. Direct observation of dynamic symmetry breaking above room temperature in methylammonium lead iodide perovskite. ACS Energy Lett. 1, 880–887 (2016).

    Article  CAS  Google Scholar 

  57. Weadock, N. J. et al. Test of the dynamic-domain and critical scattering hypotheses in cubic methylammonium lead triiodide. Phys. Rev. Lett. 125, 075701 (2020).

    Article  Google Scholar 

  58. Pham, H. T. et al. Unraveling the influence of CsCl/MACl on the formation of nanotwins, stacking faults and cubic supercell structure in FA-based perovskite solar cells. Nano Energy 87, 106226 (2021).

    Article  CAS  Google Scholar 

  59. Zuo, J. M. & Rouvière, J.-L. Solving difficult structures with electron diffraction. IUCrJ 2, 7–8 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, H. et al. Ultrafast relaxation of lattice distortion in two-dimensional perovskites. Nat. Phys. 19, 545–550 (2023). The work highlights the effect of lattice distortion on the carrier relaxation in halide perovskite.

    Article  CAS  Google Scholar 

  61. Humphreys, C. J. The scattering of fast electrons by crystals. Rep. Prog. Phys. 42, 1825 (1979).

    Article  CAS  Google Scholar 

  62. Chen, S. et al. Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite. Nat. Commun. 9, 4807 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rothmann, M. U. et al. Structural and chemical changes to CH3NH3PbI3 induced by electron and gallium ion beams. Adv. Mater. 30, 1800629 (2018).

    Article  Google Scholar 

  64. Borisevich, A. et al. Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 4, 6071–6079 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Rothmann, M. U. et al. Atomic-scale microstructure of metal halide perovskite. Science 370, eabb5940 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Sharma, R. et al. Elucidating the atomistic origin of anharmonicity in tetragonal CH3NH3PbI3 with Raman scattering. Phys. Rev. Mater. 4, 092401 (2020).

    Article  CAS  Google Scholar 

  67. Fu, Y., Jin, S. & Zhu, X. Y. Stereochemical expression of ns2 electron pairs in metal halide perovskites. Nat. Rev. Chem. 5, 838–852 (2021). The work demonstrates that the distorted crystal structure caused by octahedral tilt can impact the stereochemical expression of the NSEP on group IV metal cations, which is one of the main reasons for lattice instability and broken inversion symmetry. The work highlights the strong correlation between octahedral tilt and anharmonicity.

    Article  CAS  PubMed  Google Scholar 

  68. Yaffe, O. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 118, 136001 (2017).

    Article  PubMed  Google Scholar 

  69. Wang, F. et al. Solvated electrons in solids-ferroelectric large polarons in lead halide perovskites. J. Am. Chem. Soc. 143, 5–16 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Munson, K. T., Swartzfager, J. R. & Asbury, J. B. Lattice anharmonicity: a double-edged sword for 3D perovskite-based optoelectronics. ACS Energy Lett. 4, 1888–1897 (2019).

    Article  CAS  Google Scholar 

  71. Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582–587 (2015).

    Article  CAS  Google Scholar 

  72. Dyksik, M. et al. Broad tunability of carrier effective masses in two-dimensional halide perovskites. ACS Energy Lett. 5, 3609–3616 (2020).

    Article  CAS  Google Scholar 

  73. Park, N.-G. & Segawa, H. Research direction toward theoretical efficiency in perovskite solar cells. ACS Photonics 5, 2970–2977 (2018).

    Article  CAS  Google Scholar 

  74. Zhu, C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019). The work explains the mechanism of the strain affecting band structure and also clarifies the relationship between bandgap and lattice contraction and expansion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jung, Y.-K., Abdulla, M., Friend, R. H., Stranks, S. D. & Walsh, A. Pressure-induced non-radiative losses in halide perovskite light-emitting diodes. J. Mater. Chem. C 10, 12560–12568 (2022).

    Article  CAS  Google Scholar 

  76. Ummadisingu, A., Meloni, S., Mattoni, A., Tress, W. & Gratzel, M. Crystal-size-induced band gap tuning perovskite films. Angew. Chem. Int. Ed. 60, 21368–21376 (2021).

    Article  CAS  Google Scholar 

  77. Zhao, X.-G., Wang, Z., Malyi, O. I. & Zunger, A. Effect of static local distortions vs. dynamic motions on the stability and band gaps of cubic oxide and halide perovskites. Mater. Today 49, 107–122 (2021).

    Article  Google Scholar 

  78. Sun, G. et al. Emission wavelength tuning via competing lattice expansion and octahedral tilting for efficient red perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2106691 (2021).

    Article  CAS  Google Scholar 

  79. Li, M., Fu, J., Xu, Q. & Sum, T. C. Slow hot-carrier cooling in halide perovskites: prospects for hot-carrier solar cells. Adv. Mater. 31, e1802486 (2019).

    Article  PubMed  Google Scholar 

  80. Muscarella, L. A. et al. Accelerated hot-carrier cooling in MAPbI3 perovskite by pressure-induced lattice compression. J. Phys. Chem. Lett. 12, 4118–4124 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ambacher, O. et al. Role of spontaneous and piezoelectric polarization induced effects in group-III nitride based heterostructures and devices. Phys. Status Solidi B 216, 381–389 (1999).

    Article  CAS  Google Scholar 

  82. Krishnaswamy, K. et al. BaSnO3 as a channel material in perovskite oxide heterostructures. Appl. Phys. Lett. 108, 083501 (2016).

    Article  Google Scholar 

  83. Chambers, S. A., Kaspar, T. C., Prakash, A., Haugstad, G. & Jalan, B. Band alignment at epitaxial BaSnO3/SrTiO3(001) and BaSnO3/LaAlO3(001) heterojunctions. Appl. Phys. Lett. 108, 152104 (2016).

    Article  Google Scholar 

  84. Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Wehrenfennig, C., Liu, M., Snaith, H. J., Johnston, M. B. & Herz, L. M. Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx. Energy Environ. Sci. 7, 2269–2275 (2014).

    Article  CAS  Google Scholar 

  86. Gélvez-Rueda, M. C. et al. Effect of cation rotation on charge dynamics in hybrid lead halide perovskites. J. Phys. Chem. C 120, 16577–16585 (2016).

    Article  Google Scholar 

  87. Ghosh, D. et al. Lattice expansion in hybrid perovskites: effect on optoelectronic properties and charge carrier dynamics. J. Phys. Chem. Lett. 10, 5000–5007 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Qiao, L., Sun, X. & Long, R. Mixed Cs and FA cations slow electron-hole recombination in FAPbI3 perovskites by Time-Domain Ab initio study: lattice contraction versus octahedral tilting. J. Phys. Chem. Lett. 10, 672–678 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Chu, W., Zheng, Q., Prezhdo Oleg, V., Zhao, J. & Saidi Wissam, A. Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination. Sci. Adv. 6, eaaw7453 (2020). The work points out the role of phonons in recombination processes, that is, low-frequency phonons can decrease nonadiabatic coupling and dominantly slow down recombination rate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ghosh, D., Smith, A. R., Walker, A. B. & Islam, M. S. Mixed A-cation perovskites for solar cells: atomic-scale insights into structural distortion, hydrogen bonding, and electronic properties. Chem. Mater. 30, 5194–5204 (2018).

    Article  CAS  Google Scholar 

  91. Shen, J. X., Zhang, X., Das, S., Kioupakis, E. & Van de Walle, C. G. Unexpectedly strong Auger recombination in halide perovskites. Adv. Energy Mater. 8, 1801027 (2018).

    Article  Google Scholar 

  92. Han, Y. et al. Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots. Nat. Mater. 21, 1282–1289 (2022). The work indicates that structural distortion enables the formation of bright excitons and that temperature-induced lattice distortion in perovskite nanocrystals can manipulate bright-exciton fine-structure splitting, which highlights the important effect of octahedral tilting on carrier recombination.

    Article  CAS  PubMed  Google Scholar 

  93. Wright, A. D. et al. Electron-phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 11755 (2016). The work has conducted a throughout analysis of carrier–phonon coupling in different perovskites, emphasizing the important phonon behaviour in perovskites.

    Article  Google Scholar 

  94. Gong, X. et al. Electron-phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17, 550–556 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Motta, C., El-Mellouhi, F. & Sanvito, S. Charge carrier mobility in hybrid halide perovskites. Sci. Rep. 5, 12746 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Poncé, S., Schlipf, M. & Giustino, F. Origin of low carrier mobilities in halide perovskites. ACS Energy Lett. 4, 456–463 (2019).

    Article  Google Scholar 

  97. Milot, R. L., Eperon, G. E., Snaith, H. J., Johnston, M. B. & Herz, L. M. Temperature‐dependent charge‐carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv. Funct. Mater. 25, 6218–6227 (2015).

    Article  CAS  Google Scholar 

  98. Brenner, T. M. et al. Are mobilities in hybrid organic-inorganic halide perovskites actually “high”? J. Phys. Chem. Lett. 6, 4754–4757 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Sendner, M. et al. Optical phonons in methylammonium lead halide perovskites and implications for charge transport. Mater. Horiz. 3, 613–620 (2016).

    Article  CAS  Google Scholar 

  100. Neukirch, A. J. et al. Polaron stabilization by cooperative lattice distortion and cation rotations in hybrid perovskite materials. Nano Lett. 16, 3809–3816 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Maughan, A. E. et al. Anharmonicity and octahedral tilting in hybrid vacancy-ordered double perovskites. Chem. Mater. 30, 472–483 (2017).

    Article  Google Scholar 

  102. Eperon, G. E. et al. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695 (2015).

    Article  CAS  Google Scholar 

  103. Masi, S., Gualdrón-Reyes, A. F. & Mora-Seró, I. Stabilization of black perovskite phase in FAPbI3 and CsPbI3. ACS Energy Lett. 5, 1974–1985 (2020).

    Article  CAS  Google Scholar 

  104. Chen, G.-Y., Guo, Z.-D., Gong, X.-G. & Yin, W.-J. Kinetic pathway of γ-to-δ phase transition in CsPbI3. Chem 8, 3120–3129 (2022).

    Article  CAS  Google Scholar 

  105. Iqbal, A. N. et al. Composition dictates octahedral tilt and photostability in halide perovskites. Adv. Mater. 36, e2307508 (2024).

    Article  PubMed  Google Scholar 

  106. Yi, C. et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656–662 (2016).

    Article  CAS  Google Scholar 

  107. Syzgantseva, O. A., Saliba, M., Gratzel, M. & Rothlisberger, U. Stabilization of the perovskite phase of formamidinium lead triiodide by methylammonium, Cs, and/or Rb doping. J. Phys. Chem. Lett. 8, 1191–1196 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Li, W., Hao, M., Baktash, A., Wang, L. & Etheridge, J. The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3. Nat. Commun. 14, 8523 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shojaei, F. & Yin, W.-J. Stability trend of tilted perovskites. J. Phys. Chem. C 122, 15214–15219 (2018).

    Article  CAS  Google Scholar 

  110. Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Wang, Y. et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019). The work has managed to reduce octahedral tilting and finally achieves stable tetragonal (β) phase CsPbI3 with suppressed tilts in comparison with γ-CsPbI3, presenting high significance of controlling octahedral tilting for the stable halide perovskite.

    Article  CAS  PubMed  Google Scholar 

  112. Straus, D. B., Guo, S., Abeykoon, A. M. & Cava, R. J. Understanding the instability of the halide perovskite CsPbI3 through temperature-dependent structural analysis. Adv. Mater. 32, e2001069 (2020).

    Article  PubMed  Google Scholar 

  113. Wu, T. et al. Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups. Adv. Mater. 31, e1900605 (2019).

    Article  PubMed  Google Scholar 

  114. Wang, X., Wang, Y., Chen, Y., Liu, X. & Zhao, Y. Efficient and stable CsPbI3 inorganic perovskite photovoltaics enabled by crystal secondary growth. Adv. Mater. 33, 2103688 (2021).

    Article  CAS  Google Scholar 

  115. Yoon, S. M. et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule 5, 183–196 (2021).

    Article  CAS  Google Scholar 

  116. Yin, J. et al. Tuning octahedral tilting by doping to prevent detrimental phase transition and extend carrier lifetime in organometallic perovskites. J. Am. Chem. Soc. 145, 5393–5399 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. He, J., Borisevich, A., Kalinin, S. V., Pennycook, S. J. & Pantelides, S. T. Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys. Rev. Lett. 105, 227203 (2010).

    Article  PubMed  Google Scholar 

  118. Liao, Z. et al. Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching. Proc. Natl Acad. Sci. USA 115, 9515–9520 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pitcher, M. J. et al. Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite. Science 347, 420–424 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Linaburg, M. R., McClure, E. T., Majher, J. D. & Woodward, P. M. Cs1–xRbxPbCl3 and Cs1–xRbxPbBr3 solid solutions: understanding octahedral tilting in lead halide perovskites. Chem. Mater. 29, 3507–3514 (2017).

    Article  CAS  Google Scholar 

  121. Lee, J.-W. et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015).

    Article  Google Scholar 

  122. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Turren-Cruz, S. H., Hagfeldt, A. & Saliba, M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362, 449–453 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Jin, S. Can we find the perfect A-cations for halide perovskites? ACS Energy Lett. 6, 3386–3389 (2021).

    Article  CAS  Google Scholar 

  125. Fu, Y. et al. Cation engineering in two-dimensional Ruddlesden-Popper lead iodide perovskites with mixed large A-site cations in the cages. J. Am. Chem. Soc. 142, 4008–4021 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Barrier, J. et al. Compositional heterogeneity in CsyFA1−yPb(BrxI1−x)3 perovskite films and its impact on phase behavior. Energy Environ. Sci. https://doi.org/10.1039/D1EE01184G (2021).

  127. Rolston, N. et al. Effect of cation composition on the mechanical stability of perovskite solar cells. Adv. Energy Mater. https://doi.org/10.1002/aenm.201702116 (2017).

  128. Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Lu, X. et al. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization. Adv. Mater. 28, 8663–8668 (2016).

    Article  PubMed  Google Scholar 

  130. Angel, R. J., Zhao, J. & Ross, N. L. General rules for predicting phase transitions in perovskites due to octahedral tilting. Phys. Rev. Lett. 95, 025503 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Oksenberg, E. et al. Large lattice distortions and size-dependent bandgap modulation in epitaxial halide perovskite nanowires. Nat. Commun. 11, 489 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kazes, M., Udayabhaskararao, T., Dey, S. & Oron, D. Effect of surface ligands in perovskite nanocrystals: extending in and reaching out. Acc. Chem. Res. 54, 1409–1418 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, Y. et al. The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant? Angew. Chem. Int. Ed. 58, 16691–16696 (2019).

    Article  CAS  Google Scholar 

  134. Wang, Q. et al. Stabilizing the α-Phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 1, 371–382 (2017).

    Article  CAS  Google Scholar 

  135. Chen, Y. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 577, 209–215 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Steele, J. A. et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 365, 679–684 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Zhang, T. Y. et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 3, e1700841 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wang, Y., Zhang, T., Kan, M. & Zhao, Y. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc. 140, 12345–12348 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Moloney, E. G., Yeddu, V. & Saidaminov, M. I. Strain engineering in halide perovskites. ACS Mater. Lett. 2, 1495–1508 (2020).

    Article  CAS  Google Scholar 

  140. Fu, S. et al. Tailoring in situ healing and stabilizing post-treatment agent for high-performance inverted CsPbI3 perovskite solar cells with efficiency of 16.67%. ACS Energy Lett. 5, 3314–3321 (2020).

    Article  CAS  Google Scholar 

  141. Rehman, W. et al. Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties. Energy Environ. Sci. 10, 361–369 (2017).

    Article  CAS  Google Scholar 

  142. Bischak, C. G. et al. Tunable polaron distortions control the extent of halide demixing in lead halide perovskites. J. Phys. Chem. Lett. 9, 3998–4005 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Wang, A. et al. Inhibiting octahedral tilting for stable CsPbI2Br solar cells. InfoMat 4, e12263 (2022).

    Article  Google Scholar 

  144. Nord, M. et al. Three-dimensional subnanoscale imaging of unit cell doubling due to octahedral tilting and cation modulation in strained perovskite thin films. Phys. Rev. Mater. 3, 063605 (2019).

    Article  CAS  Google Scholar 

  145. Brandt, R. E., Stevanović, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Yong Wang thanks the National Science Fund for Excellent Young Scholars (Overseas), Top Talent Project of West Lake Pearl Project, National Natural Science Foundation of China (numbers 52302315 and 62474157), and the talent project of ZJU-Hangzhou Global Scientific and Technological Innovation Center (number 02170000-K02013017). D.Y. thanks the project of National Natural Science Foundation of China (number 61721005). Yu Wang thanks the European Union’s Horizon 2020 research and innovation programme with a Marie Skłodowska-Curie grant agreement number 956270. F.G. thanks the project of Wallenberg Foundation (number 2019.0082). S.D.S. thanks the Royal Society and Tata Group (UF150033). T.A.S.D. acknowledges the support of an Ernest Oppenheimer Research fellowship and a Schmidt Science fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Yong Wang conceived the idea. D.Y., F.G. and S.D.S. supported this work. Yong Wang, Yu Wang and T.A.S.D. wrote the original draft. All the authors reviewed and edited the draft.

Corresponding authors

Correspondence to Yong Wang or Deren Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Lioz Etgar, Marina Freitag and Soumitra Satapathi for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

National Renewable Energy Laboratory photovoltaic research page: https://www.nrel.gov/pv/cell-efficiency.html

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, Y., Doherty, T.A.S. et al. Octahedral units in halide perovskites. Nat Rev Chem (2025). https://doi.org/10.1038/s41570-025-00687-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41570-025-00687-6

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing