Abstract
Metal halide perovskites, with an ABX3 crystal structure, possess excellent photophysical properties for (opto)electronic applications including photovoltaics, light-emitting diodes, photodetectors and transistors. To pave the pathway towards commercial applications, enormous efforts have been made to obtain high-performance perovskite-based devices. The octahedral unit is considered to be the fundamental and functional unit of halide perovskite materials, consisting of a central B cation surrounded by six X anions, with typical dimensions of 5−6 Å. One promising pathway towards stable and high-performance perovskite devices is to manipulate this octahedral unit. Although rational engineering of octahedra has been used in oxide perovskites to unlock various functionalities, analogous targeted work has been relatively underexplored in halide perovskites. Here, we present fundamental concepts regarding octahedral configurations in metal halide perovskites and its effects on crystal structures, photophysical properties and device performance. We outline techniques that can be used for characterizing octahedral units and summarize different approaches to rationally manipulate these units. Finally, we discuss the challenges and outlook for future research to align octahedral units with device investigations.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
¥14,900 per year
only ¥1,242 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
Dong, Q. et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).
Stranks, S. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).
Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016).
Kim, H. S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9. Sci. Rep. 2, 591 (2012).
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647, (2012).
Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).
Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).
Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020).
Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).
Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).
Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).
Jiang, J. et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photon. 16, 575–581 (2022).
Moon, J., Mehta, Y., Gundogdu, K., So, F. & Gu, Q. Metal-halide perovskite lasers: cavity formation and emission characteristics. Adv. Mater. 36, 2211284 (2024).
Bukke, R. N. et al. Strain relaxation and multidentate anchoring in n-type perovskite transistors and logic circuits. Nat. Electron. 7, 444–453 (2024).
Prasanna, R. et al. Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139, 11117–11124 (2017). The work demonstrates that octahedral tilt and the perovskite lattice distortion are the main reasons for the altered bandgaps in composition engineering, which demonstrates a strong correlation between perovskite bandgap variations and octahedral unit configuration.
Zhang, Y., Wang, J. & Ghosez, P. Unraveling the suppression of oxygen octahedra rotations in A3B2O7 Ruddlesden-Popper compounds: engineering multiferroicity and beyond. Phys. Rev. Lett. 125, 157601 (2020).
Doherty, T. A. S. et al. Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases. Science 374, 1598–1605 (2021). The work firstly reveals that in the lattice level, stable FA-rich perovskites are not ideal cubic phase, exhibiting ~2° octahedral tilt at room temperature. By using organic matrix template without cation alloying, ots-FAPbI3 perovskite has been achieved, highlighting that the modulation of octahedral units is crucial for the stability of halide perovskites.
Mozur, E. M. & Neilson, J. R. Cation dynamics in hybrid halide perovskites. Annu. Rev. Mater. Res. 51, 269–291 (2021). The work reviews the temperature effect of cation dynamics on the phase stability and the origins of defect-tolerated electronic transport.
Jin, J. et al. A new perspective and design principle for halide perovskites: ionic octahedron network (ION). Nano Lett. 21, 5415–5421 (2021).
Han, X.-B., Jing, C.-Q., Zu, H.-Y. & Zhang, W. Structural descriptors to correlate Pb ion displacement and broadband emission in 2D halide perovskites. J. Am. Chem. Soc. 144, 18595–18606 (2022).
Shao, Y. et al. Unlocking surface octahedral tilt in two-dimensional Ruddlesden-Popper perovskites. Nat. Commun. 13, 138 (2022).
Ornelas-Cruz, I., dos Santos, R. M., González, J. E., Lima, M. P. & Da Silva, J. L. F. Cubic-to-hexagonal structural phase transition in metal halide compounds: a DFT study. J. Mater. Chem. A 12, 12564–12580 (2024).
dos Santos, R. M., Ornelas−Cruz, I., Dias, A. C., Lima, M. P. & Da Silva, J. L. F. Theoretical investigation of the role of mixed A+ cations in the structure, stability, and electronic properties of perovskite alloys. ACS Appl. Energy Mater. 6, 5259–5273 (2023).
Megaw, H. D. & Templeton, D. H. Crystal structures: a working approach. Phys. Today 27, 53–54 (1974).
Glazer, A. The classification of tilted octahedra in perovskites. Acta Cryst. 28, 3384–3392 (1972).
Howard, C. J. & Stokes, H. T. Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr. B Struct. Sci. 54, 782–789 (1998).
Zhao, Y. & Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 45, 655–689 (2016).
Zhou, Y. & Zhao, Y. Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 12, 1495–1511 (2019).
Filip, M. R. & Giustino, F. The geometric blueprint of perovskites. Proc. Natl Acad. Sci. USA 115, 5397–5402 (2018).
Sato, T., Takagi, S., Deledda, S., Hauback, B. C. & Orimo, S.-I. Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds. Sci. Rep. 6, 23592 (2016).
Travis, W., Glover, E., Bronstein, H., Scanlon, D. & Palgrave, R. J. C. S. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 7, 4548–4556 (2016).
Bartel, C. J. et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, eaav0693 (2019).
Filip, M. R., Eperon, G. E., Snaith, H. J. & Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 5, 5757 (2014).
Kawamura, Y., Mashiyama, H. & Hasebe, K. Structural study on cubic-tetragonal transition of CH3NH3PbI3. J. Phys. Soc. Jpn 71, 1694–1697 (2002).
Lee, J. H., Bristowe, N. C., Bristowe, P. D. & Cheetham, A. K. Role of hydrogen-bonding and its interplay with octahedral tilting in CH3NH3PbI3. Chem. Commun. 51, 6434–6437 (2015).
Lee, J.-H. et al. Resolving the physical origin of octahedral tilting in halide perovskites. Chem. Mater. 28, 4259–4266 (2016). The research elucidates that for fully inorganic perovskites, the steric effects dominate the tilt magnitude in inorganic halides, whereas hydrogen bonding between the organic A-cation and the halide frame has a role in octahedral tilting in hybrids.
Varadwaj, P. R., Varadwaj, A., Marques, H. M. & Yamashita, K. Significance of hydrogen bonding and other noncovalent interactions in determining octahedral tilting in the CH3NH3PbI3 hybrid organic-inorganic halide perovskite solar cell semiconductor. Sci. Rep. 9, 50 (2019).
Wiktor, J., Fransson, E., Kubicki, D. & Erhart, P. Quantifying dynamic tilting in halide perovskites: chemical trends and local correlations. Chem. Mater. 35, 6737–6744 (2023).
Zhang, X., Shen, J.-X., Wang, W. & Van de Walle, C. G. First-principles analysis of radiative recombination in lead-halide perovskites. ACS Energy Lett. 3, 2329–2334 (2018).
Amat, A. et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014).
Zhao, B.-Q. et al. Engineering carrier dynamics in halide perovskites by dynamical lattice distortion. Adv. Sci. 10, 2300386 (2023).
Herz, L. M. Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annu. Rev. Phys. Chem. 67, 65–89 (2016).
Arunkumar, P. et al. Probing molecule-like isolated octahedra via phase stabilization of zero-dimensional cesium lead halide nanocrystals. Nat. Commun. 9, 4691 (2018).
Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019).
Ghosh, D., Walsh Atkins, P., Islam, M. S., Walker, A. B. & Eames, C. Good vibrations: locking of octahedral tilting in mixed-cation iodide perovskites for solar cells. ACS Energy Lett. 2, 2424–2429 (2017).
Bechtel, J. S. & Van der Ven, A. Octahedral tilting instabilities in inorganic halide perovskites. Phys. Rev. Mater. 2, 025401 (2018).
Klarbring, J. Low-energy paths for octahedral tilting in inorganic halide perovskites. Phys. Rev. B 99, 104105 (2019).
Wang, Y. et al. High phase stability in CsPbI3 enabled by Pb-I octahedra anchors for efficient inorganic perovskite photovoltaics. Adv. Mater. 32, e2000186 (2020).
Lanigan-Atkins, T. et al. Two-dimensional overdamped fluctuations of the soft perovskite lattice in CsPbBr3. Nat. Mater. 20, 977–983 (2021). The work applies momentum-resolved neutron and X-ray scattering measurements as a function of temperature, complemented with first-principles simulations to reveal the detailed structural and temporal correlations of their atomic motions.
King, G. & Woodward, P. M. Cation ordering in perovskites. J. Mater. Chem. A 20, 5785–5796 (2010).
Weller, M. T., Weber, O. J., Frost, J. M. & Walsh, A. Cubic perovskite structure of black formamidinium lead iodide, α-[HC(NH2)2]PbI3, at 298 K. J. Phys. Chem. Lett. 6, 3209–3212 (2015).
Weadock, N. J. et al. The nature of dynamic local order in CH3NH3PbI3 and CH3NH3PbBr3. Joule 7, 1051–1066 (2023).
Dubajic, M. et al. Dynamic nanodomains dictate macroscopic properties in lead halide perovskites. Preprint at https://arxiv.org/abs/2404.14598 (2024).
Shirane, G., Cowley, R. A., Matsuda, M. & Shapiro, S. M. q dependence of the central peak in the inelastic-neutron-scattering spectrum of SrTiO3. Phys. Rev. B 48, 15595–15602 (1993).
Beecher, A. N. et al. Direct observation of dynamic symmetry breaking above room temperature in methylammonium lead iodide perovskite. ACS Energy Lett. 1, 880–887 (2016).
Weadock, N. J. et al. Test of the dynamic-domain and critical scattering hypotheses in cubic methylammonium lead triiodide. Phys. Rev. Lett. 125, 075701 (2020).
Pham, H. T. et al. Unraveling the influence of CsCl/MACl on the formation of nanotwins, stacking faults and cubic supercell structure in FA-based perovskite solar cells. Nano Energy 87, 106226 (2021).
Zuo, J. M. & Rouvière, J.-L. Solving difficult structures with electron diffraction. IUCrJ 2, 7–8 (2015).
Zhang, H. et al. Ultrafast relaxation of lattice distortion in two-dimensional perovskites. Nat. Phys. 19, 545–550 (2023). The work highlights the effect of lattice distortion on the carrier relaxation in halide perovskite.
Humphreys, C. J. The scattering of fast electrons by crystals. Rep. Prog. Phys. 42, 1825 (1979).
Chen, S. et al. Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite. Nat. Commun. 9, 4807 (2018).
Rothmann, M. U. et al. Structural and chemical changes to CH3NH3PbI3 induced by electron and gallium ion beams. Adv. Mater. 30, 1800629 (2018).
Borisevich, A. et al. Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 4, 6071–6079 (2010).
Rothmann, M. U. et al. Atomic-scale microstructure of metal halide perovskite. Science 370, eabb5940 (2020).
Sharma, R. et al. Elucidating the atomistic origin of anharmonicity in tetragonal CH3NH3PbI3 with Raman scattering. Phys. Rev. Mater. 4, 092401 (2020).
Fu, Y., Jin, S. & Zhu, X. Y. Stereochemical expression of ns2 electron pairs in metal halide perovskites. Nat. Rev. Chem. 5, 838–852 (2021). The work demonstrates that the distorted crystal structure caused by octahedral tilt can impact the stereochemical expression of the NSEP on group IV metal cations, which is one of the main reasons for lattice instability and broken inversion symmetry. The work highlights the strong correlation between octahedral tilt and anharmonicity.
Yaffe, O. et al. Local polar fluctuations in lead halide perovskite crystals. Phys. Rev. Lett. 118, 136001 (2017).
Wang, F. et al. Solvated electrons in solids-ferroelectric large polarons in lead halide perovskites. J. Am. Chem. Soc. 143, 5–16 (2021).
Munson, K. T., Swartzfager, J. R. & Asbury, J. B. Lattice anharmonicity: a double-edged sword for 3D perovskite-based optoelectronics. ACS Energy Lett. 4, 1888–1897 (2019).
Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11, 582–587 (2015).
Dyksik, M. et al. Broad tunability of carrier effective masses in two-dimensional halide perovskites. ACS Energy Lett. 5, 3609–3616 (2020).
Park, N.-G. & Segawa, H. Research direction toward theoretical efficiency in perovskite solar cells. ACS Photonics 5, 2970–2977 (2018).
Zhu, C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019). The work explains the mechanism of the strain affecting band structure and also clarifies the relationship between bandgap and lattice contraction and expansion.
Jung, Y.-K., Abdulla, M., Friend, R. H., Stranks, S. D. & Walsh, A. Pressure-induced non-radiative losses in halide perovskite light-emitting diodes. J. Mater. Chem. C 10, 12560–12568 (2022).
Ummadisingu, A., Meloni, S., Mattoni, A., Tress, W. & Gratzel, M. Crystal-size-induced band gap tuning perovskite films. Angew. Chem. Int. Ed. 60, 21368–21376 (2021).
Zhao, X.-G., Wang, Z., Malyi, O. I. & Zunger, A. Effect of static local distortions vs. dynamic motions on the stability and band gaps of cubic oxide and halide perovskites. Mater. Today 49, 107–122 (2021).
Sun, G. et al. Emission wavelength tuning via competing lattice expansion and octahedral tilting for efficient red perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2106691 (2021).
Li, M., Fu, J., Xu, Q. & Sum, T. C. Slow hot-carrier cooling in halide perovskites: prospects for hot-carrier solar cells. Adv. Mater. 31, e1802486 (2019).
Muscarella, L. A. et al. Accelerated hot-carrier cooling in MAPbI3 perovskite by pressure-induced lattice compression. J. Phys. Chem. Lett. 12, 4118–4124 (2021).
Ambacher, O. et al. Role of spontaneous and piezoelectric polarization induced effects in group-III nitride based heterostructures and devices. Phys. Status Solidi B 216, 381–389 (1999).
Krishnaswamy, K. et al. BaSnO3 as a channel material in perovskite oxide heterostructures. Appl. Phys. Lett. 108, 083501 (2016).
Chambers, S. A., Kaspar, T. C., Prakash, A., Haugstad, G. & Jalan, B. Band alignment at epitaxial BaSnO3/SrTiO3(001) and BaSnO3/LaAlO3(001) heterojunctions. Appl. Phys. Lett. 108, 152104 (2016).
Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).
Wehrenfennig, C., Liu, M., Snaith, H. J., Johnston, M. B. & Herz, L. M. Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx. Energy Environ. Sci. 7, 2269–2275 (2014).
Gélvez-Rueda, M. C. et al. Effect of cation rotation on charge dynamics in hybrid lead halide perovskites. J. Phys. Chem. C 120, 16577–16585 (2016).
Ghosh, D. et al. Lattice expansion in hybrid perovskites: effect on optoelectronic properties and charge carrier dynamics. J. Phys. Chem. Lett. 10, 5000–5007 (2019).
Qiao, L., Sun, X. & Long, R. Mixed Cs and FA cations slow electron-hole recombination in FAPbI3 perovskites by Time-Domain Ab initio study: lattice contraction versus octahedral tilting. J. Phys. Chem. Lett. 10, 672–678 (2019).
Chu, W., Zheng, Q., Prezhdo Oleg, V., Zhao, J. & Saidi Wissam, A. Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination. Sci. Adv. 6, eaaw7453 (2020). The work points out the role of phonons in recombination processes, that is, low-frequency phonons can decrease nonadiabatic coupling and dominantly slow down recombination rate.
Ghosh, D., Smith, A. R., Walker, A. B. & Islam, M. S. Mixed A-cation perovskites for solar cells: atomic-scale insights into structural distortion, hydrogen bonding, and electronic properties. Chem. Mater. 30, 5194–5204 (2018).
Shen, J. X., Zhang, X., Das, S., Kioupakis, E. & Van de Walle, C. G. Unexpectedly strong Auger recombination in halide perovskites. Adv. Energy Mater. 8, 1801027 (2018).
Han, Y. et al. Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots. Nat. Mater. 21, 1282–1289 (2022). The work indicates that structural distortion enables the formation of bright excitons and that temperature-induced lattice distortion in perovskite nanocrystals can manipulate bright-exciton fine-structure splitting, which highlights the important effect of octahedral tilting on carrier recombination.
Wright, A. D. et al. Electron-phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 11755 (2016). The work has conducted a throughout analysis of carrier–phonon coupling in different perovskites, emphasizing the important phonon behaviour in perovskites.
Gong, X. et al. Electron-phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17, 550–556 (2018).
Motta, C., El-Mellouhi, F. & Sanvito, S. Charge carrier mobility in hybrid halide perovskites. Sci. Rep. 5, 12746 (2015).
Poncé, S., Schlipf, M. & Giustino, F. Origin of low carrier mobilities in halide perovskites. ACS Energy Lett. 4, 456–463 (2019).
Milot, R. L., Eperon, G. E., Snaith, H. J., Johnston, M. B. & Herz, L. M. Temperature‐dependent charge‐carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv. Funct. Mater. 25, 6218–6227 (2015).
Brenner, T. M. et al. Are mobilities in hybrid organic-inorganic halide perovskites actually “high”? J. Phys. Chem. Lett. 6, 4754–4757 (2015).
Sendner, M. et al. Optical phonons in methylammonium lead halide perovskites and implications for charge transport. Mater. Horiz. 3, 613–620 (2016).
Neukirch, A. J. et al. Polaron stabilization by cooperative lattice distortion and cation rotations in hybrid perovskite materials. Nano Lett. 16, 3809–3816 (2016).
Maughan, A. E. et al. Anharmonicity and octahedral tilting in hybrid vacancy-ordered double perovskites. Chem. Mater. 30, 472–483 (2017).
Eperon, G. E. et al. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695 (2015).
Masi, S., Gualdrón-Reyes, A. F. & Mora-Seró, I. Stabilization of black perovskite phase in FAPbI3 and CsPbI3. ACS Energy Lett. 5, 1974–1985 (2020).
Chen, G.-Y., Guo, Z.-D., Gong, X.-G. & Yin, W.-J. Kinetic pathway of γ-to-δ phase transition in CsPbI3. Chem 8, 3120–3129 (2022).
Iqbal, A. N. et al. Composition dictates octahedral tilt and photostability in halide perovskites. Adv. Mater. 36, e2307508 (2024).
Yi, C. et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9, 656–662 (2016).
Syzgantseva, O. A., Saliba, M., Gratzel, M. & Rothlisberger, U. Stabilization of the perovskite phase of formamidinium lead triiodide by methylammonium, Cs, and/or Rb doping. J. Phys. Chem. Lett. 8, 1191–1196 (2017).
Li, W., Hao, M., Baktash, A., Wang, L. & Etheridge, J. The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3. Nat. Commun. 14, 8523 (2023).
Shojaei, F. & Yin, W.-J. Stability trend of tilted perovskites. J. Phys. Chem. C 122, 15214–15219 (2018).
Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).
Wang, Y. et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019). The work has managed to reduce octahedral tilting and finally achieves stable tetragonal (β) phase CsPbI3 with suppressed tilts in comparison with γ-CsPbI3, presenting high significance of controlling octahedral tilting for the stable halide perovskite.
Straus, D. B., Guo, S., Abeykoon, A. M. & Cava, R. J. Understanding the instability of the halide perovskite CsPbI3 through temperature-dependent structural analysis. Adv. Mater. 32, e2001069 (2020).
Wu, T. et al. Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups. Adv. Mater. 31, e1900605 (2019).
Wang, X., Wang, Y., Chen, Y., Liu, X. & Zhao, Y. Efficient and stable CsPbI3 inorganic perovskite photovoltaics enabled by crystal secondary growth. Adv. Mater. 33, 2103688 (2021).
Yoon, S. M. et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells. Joule 5, 183–196 (2021).
Yin, J. et al. Tuning octahedral tilting by doping to prevent detrimental phase transition and extend carrier lifetime in organometallic perovskites. J. Am. Chem. Soc. 145, 5393–5399 (2023).
He, J., Borisevich, A., Kalinin, S. V., Pennycook, S. J. & Pantelides, S. T. Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys. Rev. Lett. 105, 227203 (2010).
Liao, Z. et al. Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching. Proc. Natl Acad. Sci. USA 115, 9515–9520 (2018).
Pitcher, M. J. et al. Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite. Science 347, 420–424 (2015).
Linaburg, M. R., McClure, E. T., Majher, J. D. & Woodward, P. M. Cs1–xRbxPbCl3 and Cs1–xRbxPbBr3 solid solutions: understanding octahedral tilting in lead halide perovskites. Chem. Mater. 29, 3507–3514 (2017).
Lee, J.-W. et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015).
Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).
Turren-Cruz, S. H., Hagfeldt, A. & Saliba, M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362, 449–453 (2018).
Jin, S. Can we find the perfect A-cations for halide perovskites? ACS Energy Lett. 6, 3386–3389 (2021).
Fu, Y. et al. Cation engineering in two-dimensional Ruddlesden-Popper lead iodide perovskites with mixed large A-site cations in the cages. J. Am. Chem. Soc. 142, 4008–4021 (2020).
Barrier, J. et al. Compositional heterogeneity in CsyFA1−yPb(BrxI1−x)3 perovskite films and its impact on phase behavior. Energy Environ. Sci. https://doi.org/10.1039/D1EE01184G (2021).
Rolston, N. et al. Effect of cation composition on the mechanical stability of perovskite solar cells. Adv. Energy Mater. https://doi.org/10.1002/aenm.201702116 (2017).
Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022).
Lu, X. et al. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization. Adv. Mater. 28, 8663–8668 (2016).
Angel, R. J., Zhao, J. & Ross, N. L. General rules for predicting phase transitions in perovskites due to octahedral tilting. Phys. Rev. Lett. 95, 025503 (2005).
Oksenberg, E. et al. Large lattice distortions and size-dependent bandgap modulation in epitaxial halide perovskite nanowires. Nat. Commun. 11, 489 (2020).
Kazes, M., Udayabhaskararao, T., Dey, S. & Oron, D. Effect of surface ligands in perovskite nanocrystals: extending in and reaching out. Acc. Chem. Res. 54, 1409–1418 (2021).
Wang, Y. et al. The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant? Angew. Chem. Int. Ed. 58, 16691–16696 (2019).
Wang, Q. et al. Stabilizing the α-Phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 1, 371–382 (2017).
Chen, Y. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 577, 209–215 (2020).
Steele, J. A. et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 365, 679–684 (2019).
Zhang, T. Y. et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci. Adv. 3, e1700841 (2017).
Wang, Y., Zhang, T., Kan, M. & Zhao, Y. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc. 140, 12345–12348 (2018).
Moloney, E. G., Yeddu, V. & Saidaminov, M. I. Strain engineering in halide perovskites. ACS Mater. Lett. 2, 1495–1508 (2020).
Fu, S. et al. Tailoring in situ healing and stabilizing post-treatment agent for high-performance inverted CsPbI3 perovskite solar cells with efficiency of 16.67%. ACS Energy Lett. 5, 3314–3321 (2020).
Rehman, W. et al. Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties. Energy Environ. Sci. 10, 361–369 (2017).
Bischak, C. G. et al. Tunable polaron distortions control the extent of halide demixing in lead halide perovskites. J. Phys. Chem. Lett. 9, 3998–4005 (2018).
Wang, A. et al. Inhibiting octahedral tilting for stable CsPbI2Br solar cells. InfoMat 4, e12263 (2022).
Nord, M. et al. Three-dimensional subnanoscale imaging of unit cell doubling due to octahedral tilting and cation modulation in strained perovskite thin films. Phys. Rev. Mater. 3, 063605 (2019).
Brandt, R. E., Stevanović, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).
Acknowledgements
Yong Wang thanks the National Science Fund for Excellent Young Scholars (Overseas), Top Talent Project of West Lake Pearl Project, National Natural Science Foundation of China (numbers 52302315 and 62474157), and the talent project of ZJU-Hangzhou Global Scientific and Technological Innovation Center (number 02170000-K02013017). D.Y. thanks the project of National Natural Science Foundation of China (number 61721005). Yu Wang thanks the European Union’s Horizon 2020 research and innovation programme with a Marie Skłodowska-Curie grant agreement number 956270. F.G. thanks the project of Wallenberg Foundation (number 2019.0082). S.D.S. thanks the Royal Society and Tata Group (UF150033). T.A.S.D. acknowledges the support of an Ernest Oppenheimer Research fellowship and a Schmidt Science fellowship.
Author information
Authors and Affiliations
Contributions
Yong Wang conceived the idea. D.Y., F.G. and S.D.S. supported this work. Yong Wang, Yu Wang and T.A.S.D. wrote the original draft. All the authors reviewed and edited the draft.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks Lioz Etgar, Marina Freitag and Soumitra Satapathi for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
National Renewable Energy Laboratory photovoltaic research page: https://www.nrel.gov/pv/cell-efficiency.html
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wang, Y., Wang, Y., Doherty, T.A.S. et al. Octahedral units in halide perovskites. Nat Rev Chem (2025). https://doi.org/10.1038/s41570-025-00687-6
Accepted:
Published:
DOI: https://doi.org/10.1038/s41570-025-00687-6