Abstract
The functional complexity of brain circuits underlies the broad spectrum of behaviors, cognitive functions, and their associated disorders. Mitochondria, traditionally known for their role in cellular energy metabolism, are increasingly recognized as central to brain function and behavior. This review examines how mitochondria are pivotal in linking cellular energy processes with the functioning of neural circuits that govern fear and anxiety. Following an introductory section in which we summarize current knowledge about fear and anxiety neural circuits, we provide a brief summary of mitochondria fundamental roles (e.g., from energy production and calcium buffering to their involvement in reactive oxygen species (ROS) generation, mitochondrial dynamics, and signaling), particularly emphasizing their contribution to synaptic plasticity, neurodevelopment, and stress response mechanisms. The review’s core focuses on the current state of knowledge regarding how mitochondrial function and dysfunction impact the neural substrates of fear and anxiety. Furthermore, we explore the implications of mitochondrial alterations in the context of posttraumatic stress disorder (PTSD) and anxiety disorders, underscoring the potential of mitochondrial pathways as new therapeutic targets. Integrating insights from genetic, biochemical, neurobiological, behavioral, and clinical studies, we propose a model in which mitochondrial function is critical for regulating the neural circuits that underpin fear and anxiety behaviors, highlighting how mitochondrial dysfunction can lead to their pathological manifestations. This integration emphasizes the potential for developing novel treatments targeting the biological roots of fear, anxiety, and related disorders. By merging mitochondrial biology with behavioral and circuit neuroscience, we enrich our neurobiological understanding of fear and anxiety, uncovering promising avenues for therapeutic intervention.
References
Andreazza AC, Andersen ML, Alvarenga TA et al (2010) Impairment of the mitochondrial electron transport chain due to sleep deprivation in mice. J Psychiatr Res 44:775–780. https://doi.org/10.1016/j.jpsychires.2010.01.015
Andreazza AC, Nierenberg AA (2018) Mitochondrial dysfunction: at the Core of psychiatric disorders? Biol Psychiatry 83:718–719
Batandier C, Poulet L, Hininger I et al (2014) Acute stress delays brain mitochondrial permeability transition pore opening. J Neurochem 131:314–322. https://doi.org/10.1111/jnc.12811
Bloodgood DW, Sugam JA, Holmes A, Kash TL (2018) Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Transl Psychiatry 8:60. https://doi.org/10.1038/s41398-018-0106-x
Boles RG, Burnett BB, Gleditsch K et al (2005) A high predisposition to depression and anxiety in mothers and other matrilineal relatives of children with presumed maternally inherited mitochondrial disorders. Am J Med Genet B Neuropsychiatr Genet 137B:20–24. https://doi.org/10.1002/ajmg.b.30199
Brand MD, Affourtit C, Esteves TC et al (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37:755–767
Britt JP, Benaliouad F, McDevitt RA et al (2012) Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus Accumbens. Neuron 76:790–803. https://doi.org/10.1016/j.neuron.2012.09.040
Brivio P, Gallo MT, Karel P et al (2022) Alterations of mitochondrial dynamics in serotonin transporter knockout rats: a possible role in the fear extinction recall mechanisms. Front Behav Neurosci 16. https://doi.org/10.3389/fnbeh.2022.957702
Burkhouse KL, Jimmy J, Defelice N et al (2020) Nucleus accumbens volume as a predictor of anxiety symptom improvement following CBT and SSRI treatment in two independent samples. Neuropsychopharmacology 45:561–569. https://doi.org/10.1038/s41386-019-0575-5
Calarco CA, Lobo MK (2021) The individualized powerhouse: Mitofusin-2 regulates nucleus Accumbens mitochondrial influence on individual differences in trait anxiety. Biol Psychiatry 89:1024–1026. https://doi.org/10.1016/j.biopsych.2021.03.031
Calhoon GG, Tye KM (2015) Resolving the neural circuits of anxiety. Nat Neurosci 18:1394–1404
Chen W, Zhao H, Li Y (2023) Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther 8:333. https://doi.org/10.1038/s41392-023-01547-9
Cherix A, Larrieu T, Grosse J et al (2020) Metabolic signature in nucleus accumbens for anti-depressant-like effects of acetyl-l-carnitine. Elife 9:1–19. https://doi.org/10.7554/eLife.50631
Choi KH, Le T, McGuire J et al (2012) Expression profiles of mitochondrial genes in the frontal cortex and the caudate nucleus of developing humans and mice selectively bred for high and low fear. PLoS One 7:e49183. https://doi.org/10.1371/journal.pone.0049183
Ciocchi S, Herry C, Grenier F et al (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468:277–282. https://doi.org/10.1038/nature09559
Correia SS, McGrath AG, Lee A et al (2016) Amygdala-ventral striatum circuit activation decreases long-term fear. Elife 5. https://doi.org/10.7554/eLife.12669
Daniels TE, Olsen EM, Tyrka AR (2020) Stress and psychiatric disorders: the role of mitochondria. Annu Rev Clin Psychol 16:165–186. https://doi.org/10.1146/annurev-clinpsy-082719-104030
Datta S, Jaiswal M (2021) Mitochondrial calcium at the synapse. Mitochondrion 59135-153. https://doi.org/10.1016/j.mito.2021.04.006
Devine MJ, Kittler JT (2018) Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 19(2):63–80. https://doi.org/10.1038/nrn.2017.170
Do-Monte FH, Quiñones-Laracuente K, Quirk GJ (2015) A temporal shift in the circuits mediating retrieval of fear memory. Nature 519:460–463. https://doi.org/10.1038/nature14030
Duan K, Gu Q, Petralia RS et al (2021) Mitophagy in the basolateral amygdala mediates increased anxiety induced by aversive social experience. Neuron 109:3793–3809.e8. https://doi.org/10.1016/j.neuron.2021.09.008
Duchen MR (2000) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529:57–68. https://doi.org/10.1111/j.1469-7793.2000.00057.x
Duvarci S, Pare D (2014) Amygdala microcircuits controlling learned fear. Neuron 82:966–980
Evans CS, Holzbaur ELF (2020) Quality control in neurons: mitophagy and other selective autophagy mechanisms. J Mol Biol 432:240–260. https://doi.org/10.1016/j.jmb.2019.06.031
Fan B, Hao B, Dai Y et al (2022) Deficiency of Tet3 in nucleus accumbens enhances fear generalization and anxiety-like behaviors in mice. Brain Pathol 32. https://doi.org/10.1111/bpa.13080
Fan K, Li Y, Wang H et al (2019) Stress-induced metabolic disorder in peripheral CD4+ T cells leads to anxiety-like behavior. Cell 179:864–879.e19. https://doi.org/10.1016/j.cell.2019.10.001
Federighi G, Traina G, Macchi M et al (2013) Modulation of gene expression in contextual fear conditioning in the rat. PLoS One 8:e80037. https://doi.org/10.1371/journal.pone.0080037
Filiou MD, Nussbaumer M, Teplytska L, Turck CW (2021) Behavioral and metabolome differences between C57BL/6 and DBA/2 mouse strains: implications for their use as models for depression- and anxiety-like phenotypes. Metabolites 11:128. https://doi.org/10.3390/metabo11020128
Filiou MD, Sandi C (2019) Anxiety and brain mitochondria: a bidirectional crosstalk. Trends Neurosci 42:573–588
Gebara E, Zanoletti O, Ghosal S et al (2021) Mitofusin-2 in the nucleus Accumbens regulates anxiety and depression-like behaviors through mitochondrial and neuronal actions. Biol Psychiatry 89:1033–1044. https://doi.org/10.1016/j.biopsych.2020.12.003
Ghosal S, Gebara E, Ramos-Fernández E et al (2023) Mitofusin-2 in nucleus accumbens D2-MSNs regulates social dominance and neuronal function. Cell Rep 42. https://doi.org/10.1016/j.celrep.2023.112776
Gimsa U, Kanitz E, Otten W et al (2011) Alterations in anxiety-like behavior following knockout of the uncoupling protein 2 (ucp2) gene in mice. Life Sci 89:677–684. https://doi.org/10.1016/j.lfs.2011.08.009
Gimsa U, Kanitz E, Otten W, Ibrahim SM (2009) Behavior and stress reactivity in mouse strains with mitochondrial DNA variations. Ann N Y Acad Sci 1153:131–138. https://doi.org/10.1111/j.1749-6632.2008.03960.x
Giustino TF, Maren S (2015) The role of the medial prefrontal cortex in the conditioning and extinction of fear. Front Behav Neurosci 9. https://doi.org/10.3389/fnbeh.2015.00298
Han S, Zhang M, Jeong YY et al (2021) The role of mitophagy in the regulation of mitochondrial energetic status in neurons. Autophagy 17:4182–4201. https://doi.org/10.1080/15548627.2021.1907167
Herry C, Johansen JP (2014) Encoding of fear learning and memory in distributed neuronal circuits. Nat Neurosci 17:1644–1654
Hollis F, Mitchell ES, Canto C et al (2018) Medium chain triglyceride diet reduces anxiety-like behaviors and enhances social competitiveness in rats. Neuropharmacology 138:245–256. https://doi.org/10.1016/j.neuropharm.2018.06.017
Hollis F, Van Der Kooij MA, Zanoletti O et al (2015) Mitochondrial function in the brain links anxiety with social subordination. Proc Natl Acad Sci U S A 112:15486–15491. https://doi.org/10.1073/pnas.1512653112
Hovatta I, Juhila J, Donner J (2010) Oxidative stress in anxiety and comorbid disorders. Neurosci Res 68:261–275. https://doi.org/10.1016/j.neures.2010.08.007
Kao C-Y, He Z, Henes K et al (2016) Fluoxetine treatment rescues energy metabolism pathway alterations in a posttraumatic stress disorder mouse model. Complex Psychiatry 2:46–59. https://doi.org/10.1159/000445377
Kaplan GB, Dadhi NA, Whitaker CS (2023) Mitochondrial dysfunction in animal models of PTSD: relationships between behavioral models, neural regions, and cellular maladaptation. Front Physiol 14. https://doi.org/10.3389/fphys.2023.1105839
Kawarada L, Fukaya M, Saito R et al (2021) Telencephalon-specific Alkbh1 conditional knockout mice display hippocampal atrophy and impaired learning. FEBS Lett 595:1671–1680. https://doi.org/10.1002/1873-3468.14098
Kraus F, Roy K, Pucadyil TJ, Ryan MT (2021) Function and regulation of the divisome for mitochondrial fission. Nature 590:57–66
Krolow R, Arcego DM, Noschang C et al (2014) Oxidative imbalance and anxiety disorders. Curr Neuropharmacol 12:193–204. https://doi.org/10.2174/1570159X11666131120223530
Krols M, van Isterdael G, Asselbergh B et al (2016) Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathol 131:505–523. https://doi.org/10.1007/s00401-015-1528-7
Lander SS, Chornyy S, Safory H et al (2020) Glutamate dehydrogenase deficiency disrupts glutamate homeostasis in hippocampus and prefrontal cortex and impairs recognition memory. Genes Brain Behav 19. https://doi.org/10.1111/gbb.12636
Larrieu T, Cherix A, Duque A et al (2017) Hierarchical status predicts behavioral vulnerability and nucleus Accumbens metabolic profile following chronic social defeat stress. Curr Biol 27:2202–2210.e4. https://doi.org/10.1016/j.cub.2017.06.027
Latorre-Pellicer A, Moreno-Loshuertos R, Lechuga-Vieco A et al (2016) Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535(7613):561–565. https://doi.org/10.1038/nature18618
Lee S, Ahmed T, Lee S et al (2012) Bidirectional modulation of fear extinction by mediodorsal thalamic firing in mice. Nat Neurosci 15:308–314. https://doi.org/10.1038/nn.2999
Li H, Li X, Smerin SE et al (2014) Mitochondrial gene expression profiles and metabolic pathways in the Amygdala associated with exaggerated fear in an animal model of PTSD. Front Neurol 5. https://doi.org/10.3389/fneur.2014.00164
Liu D, Gao Y, Liu J et al (2021) Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct Target Ther 6:65. https://doi.org/10.1038/s41392-020-00440-z
Liu L, Cheng S, Qi X et al (2023) Mitochondria-wide association study observed significant interactions of mitochondrial respiratory and the inflammatory in the development of anxiety and depression. Transl Psychiatry 13:216. https://doi.org/10.1038/s41398-023-02518-y
Lüthi A, Lüscher C (2014) Pathological circuit function underlying addiction and anxiety disorders. Nat Neurosci 17:1635–1643
Ma L, Chen X, Zhao B et al (2020) Enhanced apoptosis and decreased AMPA receptors are involved in deficit in fear memory in rin1 knockout rats. J Affect Disord 268:173–182. https://doi.org/10.1016/j.jad.2020.02.040
Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36:587–597. https://doi.org/10.1016/j.tins.2013.07.001
Misiewicz Z, Iurato S, Kulesskaya N et al (2019) Multi-omics analysis identifies mitochondrial pathways associated with anxiety-related behavior. PLoS Genet 15:e1008358. https://doi.org/10.1371/journal.pgen.1008358
Monzel AS, EnrÃquez JA, Picard M (2023) Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nat Metab 5:546–562. https://doi.org/10.1038/s42255-023-00783-1
Morató L, Astori S, Zalachoras I et al (2022) eNAMPT actions through nucleus accumbens NAD + /SIRT1 link increased adiposity with sociability deficits programmed by peripuberty stress. Sci Adv 8. https://doi.org/10.1126/sciadv.abj9109
Morava E, Gardeitchik T, Kozicz T et al (2010) Depressive behaviour in children diagnosed with a mitochondrial disorder. Mitochondrion 10:528–533. https://doi.org/10.1016/j.mito.2010.05.011
Morava É, Kozicz T (2013) Mitochondria and the economy of stress (mal)adaptation. Neurosci Biobehav Rev 37:668–680
Morella IM, Brambilla R, Morè L (2022) Emerging roles of brain metabolism in cognitive impairment and neuropsychiatric disorders. Neurosci Biobehav Rev 142:104892. https://doi.org/10.1016/j.neubiorev.2022.104892
Morrison KE, Stenson AF, Marx-Rattner R et al (2022) Developmental timing of Trauma in women predicts unique extracellular vesicle proteome signatures. Biol Psychiatry 91:273–282. https://doi.org/10.1016/j.biopsych.2021.08.003
Murlanova K, Jouroukhin Y, Huseynov S et al (2022) Deficient mitochondrial respiration in astrocytes impairs trace fear conditioning and increases naloxone-precipitated aversion in morphine-dependent mice. Glia 70:1289–1300. https://doi.org/10.1002/glia.24169
Namkung H, Thomas KL, Hall J, Sawa A (2022) Parsing neural circuits of fear learning and extinction across basic and clinical neuroscience: towards better translation. Neurosci Biobehav Rev 134
Nussbaumer M, Asara JM, Teplytska L et al (2016) Selective mitochondrial targeting exerts anxiolytic effects in vivo. Neuropsychopharmacology 41:1751–1758. https://doi.org/10.1038/npp.2015.341
Olsen RKJ, Cornelius N, Gregersen N (2013) Genetic and cellular modifiers of oxidative stress: what can we learn from fatty acid oxidation defects? Mol Genet Metab 110:S31–S39. https://doi.org/10.1016/j.ymgme.2013.10.007
Palikaras K, Lionaki E, Tavernarakis N (2018) Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol 20:1013–1022. https://doi.org/10.1038/s41556-018-0176-2
Patergnani S, Suski JM, Agnoletto C et al (2011) Calcium signaling around mitochondria associated membranes (MAMs). Cell Commun Signal 9:19. https://doi.org/10.1186/1478-811X-9-19
Pathak RK, Kolishetti N, Dhar S (2015) Targeted nanoparticles in mitochondrial medicine. WIREs Nanomed Nanobiotechnol 7(3):315–329. https://doi.org/10.1002/wnan.2015.7.issue-3 10.1002/wnan.1305
Pei L, Wallace DC (2018) Mitochondrial etiology of neuropsychiatric disorders. Biol Psychiatry 83:722–730
Picard M, McEwen BS (2018) Psychological stress and mitochondria: a systematic review. Psychosom Med 80:141–153
Picard M, Meagan J, McManus Jason D et al (2015) Mitochondrial functions modulate neuroendocrine metabolic inflammatory and transcriptional responses to acute psychological stress. Significance Proceedings Nat Academy Sci 112(48). https://doi.org/10.1073/pnas.1515733112
Picard M, Sandi C (2021) The social nature of mitochondria: implications for human health. Neurosci Biobehav Rev 120:595–610. https://doi.org/10.1016/j.neubiorev.2020.04.017
Pignatelli M, Tejeda HA, Barker DJ et al (2021) Cooperative synaptic and intrinsic plasticity in a disynaptic limbic circuit drive stress-induced anhedonia and passive coping in mice. Mol Psychiatry 26:1860–1879. https://doi.org/10.1038/s41380-020-0686-8
Poirier GL, Hitora-Imamura N, Sandi C (2016) Emergence in extinction of enhanced and persistent responding to ambiguous aversive cues is associated with high MAOA activity in the prelimbic cortex. Neurobiol Stress 5:1–7. https://doi.org/10.1016/j.ynstr.2016.08.005
Preston G, Kirdar F, Kozicz T (2018) The role of suboptimal mitochondrial function in vulnerability to post-traumatic stress disorder. J Inherit Metab Dis 41:585–596. https://doi.org/10.1007/s10545-018-0168-1
Price JS (2003) Evolutionary aspects of anxiety disorders. Dialogues Clin Neurosci 5:223–236. https://doi.org/10.31887/DCNS.2003.5.3/jprice
Ramanathan KR, Maren S (2019) Nucleus reuniens mediates the extinction of contextual fear conditioning. Behav Brain Res 374:112114. https://doi.org/10.1016/j.bbr.2019.112114
Ramanathan KR, Ressler RL, Jin J, Maren S (2018) Nucleus Reuniens is required for encoding and retrieving precise, hippocampal-dependent contextual fear memories in rats. J Neurosci 38:9925–9933. https://doi.org/10.1523/JNEUROSCI.1429-18.2018
Rangaraju V, Calloway N, Ryan TA (2014) Activity-Driven Local ATP Synthesis Is Required for Synaptic Function. Cell 156(4):825–835. https://doi.org/10.1016/j.cell.2013.12.042
Ratigan HC, Krishnan S, Smith S, Sheffield MEJ (2023) A thalamic-hippocampal CA1 signal for contextual fear memory suppression, extinction, and discrimination. Nat Commun 14:6758. https://doi.org/10.1038/s41467-023-42429-6
Rodriguez-Romaguera J, Do Monte FHM, Quirk GJ (2012) Deep brain stimulation of the ventral striatum enhances extinction of conditioned fear. Proc Natl Acad Sci 109:8764–8769. https://doi.org/10.1073/pnas.1200782109
Rosenberg AM, Saggar M, Monzel AS et al (2023) Brain mitochondrial diversity and network organization predict anxiety-like behavior in male mice. Nat Commun 14. https://doi.org/10.1038/s41467-023-39941-0
Rossi MJ, Pekkurnaz G (2019) Powerhouse of the mind: mitochondrial plasticity at the synapse. Curr Opin Neurobiol 57149-155. https://doi.org/10.1016/j.conb.2019.02.001
Ryan KC, Ashkavand Z, Norman KR (2020) The role of mitochondrial calcium homeostasis in Alzheimer’s and related diseases. Int J Mol Sci 21:9153. https://doi.org/10.3390/ijms21239153
Ryu D, Mouchiroud L, Andreux PA et al (2016) Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med 22:879–888. https://doi.org/10.1038/nm.4132
Sandi C, Richter-Levin G (2009) From high anxiety trait to depression: a neurocognitive hypothesis. Trends Neurosci 32:312–320. https://doi.org/10.1016/j.tins.2009.02.004
Santini E, Turner KL, Ramaraj AB et al (2015) Mitochondrial superoxide contributes to hippocampal synaptic dysfunction and memory deficits in Angelman syndrome model mice. J Neurosci 35:16213–16220. https://doi.org/10.1523/JNEUROSCI.2246-15.2015
Schiavone S, Jaquet V, Trabace L, Krause KH (2012) Severe life stress and oxidative stress in the brain: from animal models to human pathology. Antioxid Redox Signal 12:1475–1490. https://doi.org/10.1089/ars.2012.4720
Schrepfer E, Scorrano L (2016) Mitofusins, from mitochondria to metabolism. Mol Cell 61:683–694
Shevelkin AV, Terrillion CE, Hasegawa Y et al (2020) Astrocyte DISC1 contributes to cognitive function in a brain region-dependent manner. Hum Mol Genet 29:2936–2950. https://doi.org/10.1093/hmg/ddaa180
Silva BA, Astori S, Burns AM et al (2021) A thalamo-amygdalar circuit underlying the extinction of remote fear memories. Nat Neurosci 24:964–974. https://doi.org/10.1038/s41593-021-00856-y
Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20:745–754. https://doi.org/10.1038/s41556-018-0124-1
Strasser A, Luksys G, Xin L et al (2020) Glutamine-to-glutamate ratio in the nucleus accumbens predicts effort-based motivated performance in humans. Neuropsychopharmacology 45:2048–2057. https://doi.org/10.1038/s41386-020-0760-6
Strasser A, Xin L, Gruetter R, Sandi C (2019) Nucleus accumbens neurochemistry in human anxiety: a 7 T 1 H-MRS study. Eur Neuropsychopharmacol 29:365–375. https://doi.org/10.1016/j.euroneuro.2018.12.015
Telch MJ, Bruchey AK, Rosenfield D et al (2014) Effects of post-session administration of methylene blue on fear extinction and contextual memory in adults with claustrophobia. Am J Psychiatry 171:1091–1098. https://doi.org/10.1176/appi.ajp.2014.13101407
Totty MS, Tuna T, Ramanathan KR et al (2023) Thalamic nucleus reuniens coordinates prefrontal-hippocampal synchrony to suppress extinguished fear. Nat Commun 14:6565. https://doi.org/10.1038/s41467-023-42315-1
Twig G, Shirihai OS (2011) The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal 14:1939–1951. https://doi.org/10.1089/ars.2010.3779
Tyurina YY, Poloyac SM, Tyurin VA et al (2014) A mitochondrial pathway for biosynthesis of lipid mediators. Nat Chem 6:542–552. https://doi.org/10.1038/nchem.1924
Underwood EL, Redell JB, Hood KN et al (2023) Enhanced presynaptic mitochondrial energy production is required for memory formation. Sci Rep 13. https://doi.org/10.1038/s41598-023-40877-0
van de Burgt N, van Doesum W, Grevink M et al (2023) Psychiatric manifestations of inborn errors of metabolism: a systematic review. Neurosci Biobehav Rev 144:104970. https://doi.org/10.1016/j.neubiorev.2022.104970
Van Der Kooij MA, Hollis F, Lozano L et al (2018) Diazepam actions in the VTA enhance social dominance and mitochondrial function in the nucleus accumbens by activation of dopamine D1 receptors. Mol Psychiatry 23:569–578. https://doi.org/10.1038/mp.2017.135
Wang J, Fröhlich H, Torres FB et al (2022) Mitochondrial dysfunction and oxidative stress contribute to cognitive and motor impairment in FOXP1 syndrome. Proc Natl Acad Sci 119. https://doi.org/10.1073/pnas.2112852119
Weger M, Alpern D, Cherix A et al (2020) Mitochondrial gene signature in the prefrontal cortex for differential susceptibility to chronic stress. Sci Rep 10:18308. https://doi.org/10.1038/s41598-020-75326-9
Weger M, Sandi C (2018) High anxiety trait: a vulnerable phenotype for stress-induced depression. Neurosci Biobehav Rev 87:27–37. https://doi.org/10.1016/j.neubiorev.2018.01.012
Woods JJ, Wilson JJ (2020) Inhibitors of the mitochondrial calcium uniporter for the treatment of disease. Curr Opin Chem Biol 55:9–18. https://doi.org/10.1016/j.cbpa.2019.11.006
Zalachoras I, Astori S, Meijer M et al (2022) Opposite effects of stress on effortful motivation in high and low anxiety are mediated by CRHR1 in the VTA
Zalachoras I, Hollis F, Ramos-Fernández E et al (2020) Therapeutic potential of glutathione-enhancers in stress-related psychopathologies. Neurosci Biobehav Rev 114:134–155. https://doi.org/10.1016/j.neubiorev.2020.03.015
Zhvania M, Japaridze N, Tizabi Y et al (2022) Anxiety and ultrastructural consequences of chronic mild stress in rats. Neurosci Lett 771:136390. https://doi.org/10.1016/j.neulet.2021.136390
Zweig JA, Caruso M, Brandes MS, Gray NE (2020) Loss of NRF2 leads to impaired mitochondrial function, decreased synaptic density and exacerbated age-related cognitive deficits. Exp Gerontol 131:110767. https://doi.org/10.1016/j.exger.2019.110767
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Chioino, A., Sandi, C. (2024). The Emerging Role of Brain Mitochondria in Fear and Anxiety. In: Current Topics in Behavioral Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2024_537
Download citation
DOI: https://doi.org/10.1007/7854_2024_537
Published:
Publisher Name: Springer, Berlin, Heidelberg