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FROM THE EDITOR
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Everybody knows that the Soviet Union had a great culture of chess.
Many outstanding chess players of the 20th century were from the USSR.
Much less known, however, is another remarkable cultural tradition,
which I will refer to as the “Math Movement,” with capital M’s. Quite
different from recreational mathematics in the West, Math Movement
mathematics was a unique phenomenon in the social life of the coun-
try, if the term “social life” is at all applicable to communist regimes.
The tradition was upheld and promoted by a great variety of enthusi-
asts – from 13-year-old schoolboys and girls, to seasoned mathematics
professors. The phenomenon hit every large city of the country that
spanned eleven time zones. These enthusiasts were engaged in creating
contrived, complex and intellectually challenging math problems which
could be solved, in principle, on the basis of elementary mathematics
(i.e. “mathematics before calculus”), as it was taught in Soviet schools.
They strived to get nonstandard solutions to these problems, and to dis-
seminate knowledge about such problems and their solutions in every
school and every class.a This Math Movement became widespread in the
1930s; and it attracted the best and the brightest. Its basis was formed
from so-called mathematical circles – groups of school students, math
teachers and mathematicians that existed virtually in every school, uni-
versity, and in many other places. I remember that I myself belonged,
at different times, to several such circles: one at my school, another at
the Moscow Institute for Physics and Technology, and a third one asso-
ciated with the Moscow Palace of Pioneers. They held regular meetings,
once or twice a week, where advanced problems were discussed in classes
and offered for personal analysis on one’s own time. I looked forward to

aSome idea of the character of these problems can be inferred from a selection
Mathematical Circles published by the American Mathematical Society.1
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and enjoyed every meeting – they provided me with brain gymnastics,
which were otherwise so scarce and so discouraged, to put it mildly, in
every other aspect of Soviet life.

The Math Movement had its Grandmasters, who were highly es-
teemed. Most of them were research mathematicians and university
professors who had drawn experience from years spent within the same
mathematical circles. Their books, which contained selections of prob-
lems with commentaries, or thorough analyses of selected topics from
“elementary mathematics,” were in high demand. Many of these books
were superb and unparalleled in their quality and depth. Remarkably,
they were swept from the bookstore shelves, immediately upon arrival.
These books were a captivating read, and I hunted for some of them in
secondhand bookstores for weeks and even months.

Mathematical circles were just one element of the Math Movement.
Olympiads (or math competitions) presented another pillar. They were
organized on a regular basis and at every level, beginning in school dis-
tricts, through city competitions, and finally at the national level. The
highest achievers at every level were admired. National prize winners
were praised by the media just as winners of the national spelling-bee
competitions are praised in the US.

Finally, the third pillar of the Math Movement was a network of
special “mathematical schools.” Every city had at least one, and large
cities, such as Moscow and Leningrad, had, perhaps, a dozen. Even
small towns tended to arrange a “mathematical class” in a school. At
age 13 or so, mathematically and scientifically gifted students were se-
lected for such schools through a competitive process – usually a skill-
fully tailored entrance examination. What made these schools really
special was a unique academic and social environment. They were run
by enthusiastic teachers who worked not for money – salaries were mea-
ger, as they were everywhere else in the USSR – but for the excitement
and joy that naturally emerged in the creative atmosphere produced by
enthusiastic students united by a common appreciation for the beauty of
math and science. Classes often continued far into the night. Students
and teachers often went on weekend trips, summer retreats and hiking
expeditions. My daughter was a student at one of the best Moscow
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math schools, # 57, and I remember many events of this type, and so
does she – fifteen years after graduation.

The Math Movement was an element of culture scarcely mentioned
in the literature accessible to the western reader. One of my goals in
this book is to familiarize the western reader with elementary math
problems, of various levels of complexity, which constituted a fertile
ground, the very basis of the Math Movement. The core of this book,
two excellent essays written by Dr. Ilan Vardi, serve this purpose.

There is another goal, however, which is as important to me as the
first one. This second objective is explained below.

Mathematics at the service of ideology of “real socialism”

“All students are treated equally,

but some more equally than others...”

Achievements of Real Socialism

(Moscow University Press, 1982)

Vol. 1982, p. 1982.

“Don’t worry, we will flunk them all...”

From an overheard conversation of

a mathematics professor with

the Chairman of an Admission Committee.

An important part of this book is devoted to a bizarre and, I would
say, unique page in the history of science. It tells a story of how high-
school mathematics was used as a weapon of racism in the USSR – a
country which gave to the world many brilliant mathematicians whose
role in shaping 20th-century mathematics was absolutely instrumental.2

This topic deserves the attention of professional historians, and I am
admittedly an amateur in this field. Since professional historians are
in no hurry, and time is rapidly erasing the recollections of live wit-
nesses, I would like to, at least, set the stage. My role is more than
modest. I collected, at a rather fragmentary level, relatively accessible
notes and recollections of live participants in these events. Some were
published in the Russian media, and thus the only effort needed to make
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them accessible to the western reader was translation; others were not
published.

The place of action is the Soviet Union, the time is the 1970s and 80s,
a time of a general decline of the regime that accelerated after the 1968
Soviet invasion of Czechoslovakia. The social and economic climate was
rapidly deteriorating. Stagnation, moral degradation and decay became
permanent components of the everyday life of Soviet citizens. Among
other ugly phenomena of the so-called real socialism that flourished
under Brezhnev was state–sponsored anti-Semitism. Vehemently denied
in public, it was in fact orchestrated by the highest echelons of the
Communist Party and, behind the scenes, encouraged and promoted by
the state–party machine.

As a particular manifestation, discrimination against Jews in the ad-
mission policies of Soviet universities reached its peak. Of course, it was
not the first peak, and not even the strongest, but it was strong enough
to virtually close all reputable departments of mathematics in the So-
viet Union, as well as some physics departments, to Jewish applicants.b

I do not know why, but it is a well-known fact that the Russian mathe-
matical establishment was pathologically anti-Semitic. Such outstand-
ing mathematicians as Pontryagin, Shafarevich and Vinogradov, who
had enormous administrative power in their hands, were ferocious anti-
Semites. The tactics used for cutting off Jewish students were very
simple. At the entrance examination, special groups of “undesirable
applicants” were organized.c They were then offered killer problems
which were among the hardest from the set circulated in mathemati-
cal circles, quite frequently at the level of international mathematical
competitions. Sometimes they were deliberately flawed. Even if an ex-
ceptionally bright Jewish student occasionally overcame this barrier in
the written examination, zealous professors would adjust the oral exam
appropriately, to make sure that this student flunked the oral exam.

What else is there to say on this issue? Everybody knew that “pu-

bStatistical data illustrating this fact in the most clear-cut manner were presented
in the samizdat essays 3,4, see also the book 5.

cThe working definition of “Jewishness” was close to that of Nazis; having at
least one Jewish parent of even one grandparent would almost certainly warrant
one’s placement in the category of undesirables.
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rification” of the student body, Nazi style, had taken place for years.
It was a part of Soviet state ideology. Needless to say, the Soviet state
did not want it to become public knowledge, especially in the West.
The silence was first broken by dissidents and Jewish refuseniksd in the
1980s in a series of samizdate essays, one of the first and the most fa-
mous of which, Intellectual Genocide, was written by Boris Kanevsky
and Valery Senderov in 1980. This book presents the first publication of
this essay. As you will see, it is very factual and is based on a study of
87 Moscow high school graduates from six special math schools, many
of whom had won prizes in national mathematics Olympiads. The bulk
of the essay is an unemotional comparative analysis of various math
problems given to “desirable” and “undesirable” applicants, with sta-
tistically motivated conclusions at the end. The essay was deemed a
political provocation, and heavy consequences ensued shortly. One of
the authors, Valery Senderov, was sentenced to seven years in prison
and 5 years in exile on charges of anti-Soviet agitation and propaganda.
Boris Kanevsky was also arrested and spent three years in prison. It
is hard to believe it now, but this is a true story. This is how it was
... and, unfortunately, this is not just “the past, long gone.” Although
anti-Semitism is no longer encouraged by authorities in the new Rus-
sia, some of the zealous professors who were part of the “intellectual

dA group of people treated as political enemies in the USSR in the 1970s and 80s.
The only “crime” committed by these people was that they had applied for and got
denied exit visas to Israel. And yet, they were treated essentially as criminals: fired
from jobs and blacklisted, with no access to work (with the exception of low-paid
manual labor), constantly intimidated by the KGB, at the verge of arrest. In fact,
the most active of them, those who tried to organize and fight back for their rights,
were imprisoned.

eA strict censorship existed in the USSR. Nothing could be published without pre-
approval from Glavlit, an omnipotent State Agency implementing censorship. The
class of suppressed books and other printed materials included not only those with
political connotations, but, in general, everything that was not considered helpful
for Soviet ideology. Forbidden publications circulated in typewritten form. People
retyped them, using mechanical type-writers and carbon paper, or photographed
them, page by page, using amateur cameras, and then printed them at home on
photopaper, producing huge piles. The process was called samizdat, which can be
loosely translated from Russian as self-publishing. Samizdat was forbidden by the
Soviet law.
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genocide” in the 1980s continue to occupy high positions and flourish
at Moscow University and some other institutions. Alas, there is no full
stop in this story yet. Apology or remorse is not in sight.

To put a personal touch on this picture and to give a clearer idea
of the atmosphere in which we lived, I would like to tell of an episode
which happened to me in 1985 or ’86. A friend of mine gave me a
wonderful gift: a photocopy of Feynman’s book Surely You’re Joking,
Mr. Feynman. I swallowed it overnight. It was so fascinating that I
could not keep it to myself. I badly wanted to share my fascination with
others. Upon reflection, I decided that the only way for me to do so was
to translate it into Russian and try to publish the translation.

I called a person – let us call him RA – who was in charge of one of
the departments of the popular magazine Nauka i Zhizn (Science and
Life). From time to time, he would provide me with small writing jobs,
so I could make an extra 20 or 30 roubles to make ends meet. In those
days, this magazine had a circulation of three million plus. Now it is
almost extinct; a meager 30 thousand is all that the new Russia can
support.

RA met the idea with enthusiasm and was very supportive. He told
me that I could go ahead and translate from a quarter to a third of
Feynman’s book, at my choice. He would push it through the board
and take care of the copyright issues.

“Just make sure you stay away from chapters with political conno-
tations, and passages where he might mention our spy at Los Alamos,
Klaus Fuchs,” he added. “Focus on science.”

I worked for a month or so, and came up with 120 typewritten pages
which I brought to Nauka i Zhizn’s office and left with RA.

In a few days he called me and said: “Are you mad?”

“What happened?”

“In your translation I found at least three paragraphs where Feyn-
man mentioned he was Jewish. The board will never authorize this
material for publication. Cut them out!”

“I do not understand, RA ... You said yourself, just steer clear from
Klaus Fuchs and political issues, and so I did ... this is not political...”

“This is political. Just do what I am telling you, or say farewell to
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the project.”

What could I do but comply? My crippled translation was serialized
and published.f

On this book

A few words on the structure of this book. As I have already said,
mathematics – the purest and the most beautiful of all sciences – is
not responsible for the abuses associated with it. In the mid-1990s
Alexander Shen, professor at the Independent University of Moscow,
published6 in The Mathematical Intelligencer a selection of problems
which were offered to “undesirable” applicants at the entrance exami-
nations at the Department of Mechanics and Mathematics (Mekh-mat)
of Moscow University. Many of these problems are captivating. Their
solution does not require knowledge of a higher level of mathematics;
what you learned in high school will do. The solution does require,
however, ingenuity, creativity and unorthodox attitudes. Solutions to
these problems were thoroughly analyzed by Dr. Ilan Vardi. He wrote
two excellent essays which are being published in Part 1: Mekh-mat
entrance examinations problems and Solutions to the year 2000 Inter-
national Mathematical Olympiad. The second essay is meant to com-
plement the first one by providing a natural frame of reference for eval-
uating the relative complexity of various problems.

Part 2 provides the reader with necessary historical background. En-
glish translation of Kanevsky and Senderov’s essay Intellectual Genocide
opens this chapter. Among other things in Part 2 the reader will find
an essay Science and Totalitarianism written by A. Vershik, which has

fNauka i Zhizn, # 10, 12 (1986); 2, 8 (1987) and 8 (1988). There is a funny
continuation to this story. Surely You’re Joking, Mr. Feynman was published in
Russian in full only in 2001.7 My 1/3 of translation was incorporated; the remaining
2/3 of the book were translated by Natasha Zubchenko. Apparently, she was educated
in classical British English. Many nuances of Feynman’s English puzzled her and she
found them incomprehensible. We had exchanged innumerable messages, and I had
a few phone conversations with Natasha, trying to help her out. And yet, quite a
few hilarious misinterpretations slipped unnoticed. For instance, orthodox rabbi was
translated as “pravoslavny$i ravvin.”
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never been published in English previously.

Part 3 describes a little-known page of 1970s-80s Soviet history,
one rather rare example of the oppressed organizing to defend their
dignity and trying to fight back. This is the story of the so-called Jewish
People’s University, the inception of which is associated with the names
of Kanevsky, Senderov and Bella Abramovna Subbotovskaya.

It opens with the article Free Education at the Highest Price written
by K. Tylevich, a young friend of mine who became interested in the
story, made an extensive literature search, and summarized what little
was known in the literature, by the beginning of 2004. Then follow per-
sonal recollections of D. Fuchs, A. Zelevinsky (both taught at the Jewish
People’s University) and I. Muchnik (Subbotovskaya’s ex-husband), live
witnesses of the events. They are emotionally charged and immerse us
in the depths of this dramatic story.

Bella Subbotovskaya’s idea was to launch something along the lines
of unofficial extension classes, where students unfairly barred from the
official universities could get food for their hungry minds from the hands
of first-class mathematicians and physicists. It was supposed that the
classes would take place on a regular basis through the entire school year,
that they would be open to everybody (no registration or anything of
the like was required) and that the spectrum of courses offered would
be broad and deep enough to provide a serious educational background
in the exact sciences.

Andrei Zelevinsky (now at the Northeastern University, Boston) rec-
ollects:8 “... I was truly impressed with her [Subbotovskaya’s] courage
and quiet determination to run the whole thing. All the organizational
work, from finding the places for our regular meetings to preparing sand-
wiches for participants, was done by her and two other activists: Valery
Senderov and [...] Boris Kanevsky. Both, as I understand, were active
dissidents at the time. I think they made a deliberate effort to separate
mathematics from politics, in order to protect us, professional research
mathematicians.”

Another professor of this “university,” Dmitry Fuchs (now at UC,
Davis) writes: “We taught there major mathematical disciplines corre-
sponding to the first two years of the Mekh-Mat curriculum: mathemat-
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ical analysis, linear algebra and geometry, abstract algebra and so on.
I taught there since 1980 through 1982, until Subbotovskaya’s sudden
death in September or October of 1982 put an end to this enterprise.
Bella Abramovna was tragically killed in a hit-and-run accident which
was universally believed to be the act of KGB. This has never been
officially confirmed, though. At this time we did not use any particular
name for our courses [...]. The number of students varied between 60 and
20. The place of our meetings was not permanent: we met at an elemen-
tary school where Bella Abramovna worked as a teacher, at the Gubkin
Institute for Oil and Gas, at the Chemistry and Humanities Buildings of
the Moscow State University, and so on. Anywhere, where we could get
permission to occupy a large enough room... All instructors prepared
notes which were photocopied and distributed among the students. An
article on our “school” was published by a Russian-Israeli newspaper
some time ago.9 It was interesting but excessively emotional. Among
other things, the authors had a tendency to exaggerate the Jewish na-
ture of our “university.” It is certainly true that a substantial number
of both students and teachers were ethnic Jews. This was the result of
the well-known policy of the Mekh-Mat Admission Committee, and the
Soviet State at large, rather than the deliberate aim of the organizers.
After all, we taught only exact sciences. No plans were made to teach
Jewish culture, history, or language.”

Needless to say, all teachers of the Jewish People’s University re-
ceived no reward other than the wonderful feeling that what they were
doing was a good deed. Although the goals of the university were purely
educational, the very fact of its existence was considered a political act
of resistance. The end of Jewish People’s University, which gave ex-
cellent mathematical education to over 350 young people, was tragic.
The actual circumstances of the death of Bella Subbotovskaya remain
uninvestigated so far. Perhaps the materials I present in this book will
attract the attention of a historian or a novelist, who knows?
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Thank you

This book was in the making for four years. The work on it became my
weekly hobby, sucking me in like a good detective story. In fact, it was
a detective story which spanned two decades and three continents. As
the story unfolded, increasing numbers of people became involved, and
it is their generous assistance that made this publication possible. I am
deeply grateful to all participants.

It was Gregory Korchemsky, a theoretical physicist from Orsay and
an old friend of mine, who came to Minneapolis in the spring of 2000
and brought, as a present, Ilan Vardi’s Mekh-Mat essay. From this essay
I learned of Shen’s article in The Mathematical Intelligencer, which, in
turn, quotes Intellectual Genocide of Kanevsky and Senderov. When I
tried to google Kanevsky and Senderov, I got a few dozen hits, none
of them being particularly useful since they contained only marginal
mentions of Kanevsky and Senderov’s essay. Archive searches became
inevitable. I wrote to many archives in an attempt to get a copy of
the essay and/or locate the authors. In the autumn of 2000, three pos-
itive responses came — from G. Superfin (Forschungsstelle Osteuropa,
Universität Bremen, Germany), N. Zanegina (Open Society Archives at
Central European University, Budapest, Hungary), and G. Kuzovkin
(Memorial Archive, Moscow). Along with other useful materials, they
sent me photocopies of Intellectual Genocide, none of them complete,
all taken from typewritten n-th carbon copy of distinct originals where
I estimate n > 3. The tedious work of comparing three distinct copies,
restoring the full original, checking all mathematical expressions and
translating the original into English was done by Nodira Dadabayeva
and Alexei Kobrinsky, my student helpers who were also responsible for
typesetting all of the materials.

In November 2003, I managed to get in touch with Valery Senderov
through the Editorial Office of The Herald of Europe. In December of
the same year I interviewed him in Moscow. Not only did he share
with me a treasure trove of personal recollections of the 1980’s, but he
also connected me to Boris Kanevsky in Jerusalem who owns a large
private archive of Samizdat documents (and shared some of them with
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me), and to M. Vyalyi, A. Belov-Kanel and A. Reznikov, the Editors
of the Matematicheskoye Prosveshcheniye.g This Russian magazine is
intended for the general public and devoted to the advancement of math-
ematics. The 2005 Almanac of Matematicheskoye Prosveshcheniye will
include a collection of articles on the Jewish People’s University and
B. Subbotovskaya. Two of these articles are translated into English and
published in Part 3, with the kind permission of the Editors.

It is my pleasure to say thank you to Sally Menefee who handled all
financial aspects of this project and to Roxanne Keen for proofreading
the articles translated from Russian. I am grateful to Roman Kovalev
who carried the main burden of translation. As usual, my World Scien-
tific contact, Lakshmi Narayanan — “my Editor” — was instrumental
in the speedy completion of this project. Special thanks go to Poline
Tylevich, the graphic designer, who did a great job making this book
visually appealing. And, above all, I want to say thank you to the
contributors and advisors who are listed below.

Minneapolis, December 31, 2004

List of Contributors and Advisors

? Alexei Belov-Kanel belova@macs.biu.ac.il, kanel@mccme.ru

? Dmitry Fuchs fuchs@math.ucdavis.edu

? Boris Kanevsky Elizabeth.Kanevsky@teva.co.il

? Ilya Muchnik muchnik@lunar.rutgers.edu

? Andrei Reznikov andre reznik0v@yahoo.com

? Valery Senderov valery@senderov.mccme.ru

? Alexander Shen shen@mccme.ru

? Katherine Tylevich tyleart@aol.com

? Ilan Vardi ilanpi@mail.com

? Anatoly Vershik vershik@pdmi.ras.ru

? Andrei Zelevinsky andrei@neu.edu

gMatematiqeskoe Prosvewenie, Postal address: B. Vlasyevskiy Pereulok,
11, Moscow 119002, Russia.
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MEKH-MAT ENTRANCE EXAMINATIONS PROBLEMS

ILAN VARDI

The recent articles a of Anatoly Vershik and Alexander Shen [1,2]

describe discrimination against Jews in Soviet universities during the

1970’s and 1980’s. The articles contain a report by Alexander Shen

on the specific role of examinations in discrimination against Jewish

applicants to the Mekh-mat at Moscow State University during the

1970’s and 1980’s. The article goes on to list “killer problems” that

were given to Jewish candidates. However, solutions to the problems

were not given in the article, so in order to judge their difficulty,

one must try the problems for oneself. The aim of this note is to

relieve readers of this time consuming task by providing a full set

of solutions to the problems. Hopefully, this will help readers gain

some insight into the ethical questions involved.

Section 2 consists of a personal evaluation of the problems in the

style of a referee’s report. It was written to provide a template for

readers to make a similar evaluation of the problems. This evaluation

also reflects the author’s own mathematical strengths and weaknesses

as well as his approach to problem solving. Readers are therefore

encouraged to make up their own minds.

The problems are given exactly as in Ref. 2 with the names of the

examiners and the year (A. Shen has explained that in his article, the

name of the examiners and year is given by a set of problems ending

with the name). Some inaccuracies of Ref. 2 both in the statement of

the problems and attribution of examiners have have been corrected,

see Section 4. Some of the statements are nevertheless incorrect.

These errors are a reflection of either the examinations themselves,

the reports given by the students, or the article of Ref. 2. In any

case, this is further evidence for the need of a complete solution set.

aThese articles are reprinted in Part 2 of the present Collection. – Editor’s note

1
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These solutions were worked out during a six week period in July

and August 1999. In order to retain some aspect of an examination,

no sources were consulted. As a result, the solutions reflect gaps

in the author’s background. However, this might offer some insight

into how one can deal with a wide range of elementary problems

without the help of outside references. An effort was therefore made

to explain how the solutions were found. The solutions are the most

direct that the author could come up with, so some unobvious tricks

may have been overlooked.

After completing these problems, the author discussed them with

other mathematicians who, in some cases, found much better so-

lutions. These solutions are therefore given along with the author’s

solutions in Section 3. Section 4 provides notes on the problems such

as outside references and historical remarks.

The most egregious aspect of these problems is the fact that they

are, to the author’s knowledge, the only example in which mathemat-

ics itself has been used a political tool. It is important to note that

there is absolutely no controversy about whether this discrimination

actually took place – it appears that antisemitism at the Mekh-mat

was accepted as a fact of life. It is the author’s conviction that the

best course of action now is to provide as much information as possi-

ble about what took place. A more detailed account of the political

practices described by Vershik and Shen should follow.
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Problems

1. K is the midpoint of a chord AB. MN and ST are chords that

pass through K. MT intersects AK at a point P and NS intersects

KB at a point Q. Show that KP = KQ. /Lavrentiev, Gnedenko,

Vinogradov, 1973; Maksimov, Falunin, 1974/

2. A quadrangle in space is tangent to a sphere. Show that the

points of tangency are coplanar. /Maksimov, Falunin, 1974/

3. The faces of a triangular pyramid have the same area. Show that

they are congruent. /Nesterenko, 1974/

4. The prime decompositions of different integersm and n involve the

same primes. The integers m+ 1 and n+ 1 also have this property.

Is the number of such pairs (m,n) finite or infinite? /Nesterenko,

1974/

5. Draw a straight line that halves the area and perimeter of a

triangle. /Podkolzin, 1978/

6. Show that, for 0 < x < π/2 ,

(1/ sin2 x) ≤ (1/x2) + 1 − 4/π2 .

/Podkolzin, 1978/

7. Choose a point on each edge of a tetrahedron. Show that the

volume of at least one of the resulting tetrahedrons is ≤ 1/8 of the

volume of the initial tetrahedron. /Podkolzin, 1978/

8. We are told that a2 + 4 b2 = 4 , cd = 4 . Show that

(a− d)2 + (b− c)2 ≥ 1.6 .

/Sokolov, Gashkov, 1978/

9. We are given a point K on the side AB of a trapezoid ABCD.

Find a point M on the side CD that maximizes the area of the

quadrangle which is the intersection of the triangles AMB and CDK.

/Fedorchuk, 1979; Filimonov, Proshkin, 1980/

10. Can one cut a three-faced angle by a plane so that the intersec-

tion is an equilateral triangle? /Pobedrya, Proshkin, 1980/
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11. Let H1 , H2 , H3 , H4 , be the altitudes of a triangular pyramid.

Let O be an interior point of the pyramid and let h1 , h2 , h3 , h4 be

the perpendiculars from O to the faces. Show that

H4
1 +H4

2 +H4
3 +H4

4 ≥ 1024h1 · h2 · h3 · h4 .

/Vavilov, Ugol’nikov, 1981/

12. Solve the system of equations
{

y(x+ y)2 = 9

y(x3 − y3) = 7 .

/Vavilov, Ugol’nikov, 1981/

13. Show that if a, b, c are the sides of a triangle and A,B,C are its

angles, then

a+ b− 2c

sin(C/2)
+
b+ c− 2a

sin(A/2)
+
a+ c− 2b

sin(B/2)
≥ 0 .

/Dranishnikov, Savchenko, 1984/

14. In how many ways can one represent a quadrangle as the union

of two triangles? /Dranishnikov, Savchenko, 1984/

15. Show that

1000
∑

n=1

1

n3 + 3n2 + 2n
<

1

4
.

/Bogatyi, 1984/

16. Solve the equation

x4 − 14x3 + 66x2 − 115x+ 66.25 = 0 .

/Evtushik, Lyubishkin, 1984/

17. Can a cube be inscribed in a cone so that 7 vertices of the cube

lie on the surface of the cone? /Evtushik, Lyubishkin, 1984/

18. The angle bisectors of the exterior angles A and C of a triangle

ABC intersect at a point of its circumscribed circle. Given the sides
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AB and BC, find the radius of the circle.b /Evtushik, Lyubishkin,

1986/

19. A regular tetrahedron ABCD with edge a is inscribed in a cone

with a vertex angle of 90◦ in such a way that AB is on a generator

of the cone. Find the distance from the vertex of the cone to the

straight line CD. /Evtushik, Lyubishkin, 1986/

20. Compare

log34 · log36 · . . . · log380 and 2 log33 · log35 · . . . · log379 .

/Smurov, Balsanov, 1986/

21. A circle is inscribed in a face of a cube of side a. Another circle

is circumscribed about a neighboring face of the cube. Find the least

distance between points of the circles. /Smurov, Balsanov, 1986/

22. Given k segments in a plane, show that the number of trian-

gles all of whose sides belong to the given set of segments is less

than C k3/2, for some positive constant C which is independent of k.

/Andreev, 1987/

23. Use ruler and compasses to construct the coordinate axes from

the parabola y = x2. /Kiselev, Ocheretyanskii, 1988/

24. Find all a such that for all x < 0 we have the inequality

ax2 − 2x > 3a− 1 .

/Tatarinov, 1988/

25. Let A,B,C be the angles and a, b, c the sides of a triangle. Show

that

60◦ ≤ aA+ bB + cC

a+ b+ c
≤ 90◦ .

/Podol’skii, Aliseichik, 1989/

b From Ref. 2: “The condition is incorrect: this doesn’t happen.”
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1. Evaluation of the Problems

I have classified the problems according to difficulty, inherent inter-

est, and correctness. The first two criteria are subjective, however,

the fact that the problems listed in categories VI and VII have incor-

rect statements is proved in Section 3. This evaluation reflects the

solutions presented in Section 3.

Since these problems appear to be at a level similar to Olympiad

problems [2], it seems that Olympiad problems are an appropriate

standard for comparison [3–8].

However, it must be stressed that these problems were given in

oral examinations. This makes the comparison to Olympiad prob-

lems valid only in the sense that given similar conditions, the prob-

lems have the same level of difficulty. Note that the International

Mathematical Olympiad consists of a written examination given over

two days, with a total of hours to solve 6 problems.

It should be noted that these problems also differ from Olympiad

problems by being, in many cases, either false or poorly stated. Such

defects have the side effect of making the problems more interesting

in some cases, as they are less artificial than Olympiad problems in

which a certain type of solution is often expected.

I. Easy: 15, 24

By this, I mean problems which, once one has understood the state-

ment, offer no conceptual or technical difficulty – there is no idea or

difficult computation to challenge the solver. I also include problems

which require ideas which are completely standard and should be

known to students wishing to pursue a college mathematics educa-

tion.

II. Tricky: 4, 7, 8, 13, 14, 18, 23

By this, I mean problems which can be quite challenging until one

has found a simple but not well motivated idea after which the re-

sult is immediate. This applies to the proof that the statement of

Problem 18 is false. Note that Problem 7 is much more difficult than

the others, see Remark 7.2. Problem 14 has a “trap” which caught
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some students [9], but the examiners themselves overlooked a trap,

see Remark 14.1.

III. Challenging and interesting: 3, 9, 11, 20, 22, 25

These are problems whose solutions require interesting ideas and

whose statements are also of interest. In other words, these would

make good Olympiad problems.

IV. Straightforward and difficult: 1, 2, 5, 6, 17, 21

These are problems which can be solved by a direct computation

which does not require any clever idea, though the computation may

be quite involved. The problems have alternate solutions with in-

teresting conceptual content and thus put them in category III (this

applies to Problems 1, 2, and 21).

V. Difficult and uninteresting: 10, 12, 16, 19

These are problems with an uninteresting statement and whose so-

lution is a long and unmotivated computation.

VI. Inaccurate statement: 5, 7, 9, 14, 19, 22

These problems have statements with alternative interpretations

most likely not intended by the authors.

VII. Completely wrong: 18

This problem asks for conclusions about situations which cannot oc-

cur. (So A. Shen’s [2] comment about it is correct.)
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2. Solutions

Problem 1. K is the midpoint of a chord AB. MN and ST are

chords that pass through K. MT intersects AK at a point P and

NS intersects KB at a point Q. Show that KP = KQ.

A B

K

M

N

T

S

PQ

Solution S. The following solution is due to Pavol Severa.

The claim can be made obvious using Lobačevskij geometry. In

the Klein disk, i.e. projective, model, the Lobačevskij plane is a disk

and straight lines are chords. Let the notation be as in the statement

of the problem. If K is an arbitrary point on the Lobačevskij line

AB then QK and PK are congruent, since a 180◦ rotation about K

preserves the picture, except that it exchanges P and Q. It follows

that P and Q are equidistant to K in the Lobačevskij metric. Now

let CD be the diameter of the circle passing through K, then the

previous remark shows that the Lobačevskij reflection about CD

takes P to Q. But since we chose K to be the Euclidean center of

AB, CD is perpendicular to AB, so that the Lobačevskij reflection

about CD equals the Euclidean reflection about CD. It follows that

|QK| = |PK| in Euclidean sense as well.

Solution R. The following solution is due to David Ruelle. The

idea is to use the cross ratio of four points A,B,C,D which can be

defined by

[A,B,C,D] =
|AC| · |BD|
|AD| · |BC| . (1)
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One simply notes that A,Q,K,B are the stereographic projections

of A,S,M,B with pole N and that A,K,P,B are the stereographic

projections of A,S,M,B with pole T . Since stereographic projection

preserves cross ratios, it follows that [A,Q,K,B] = [A,K,P,B]. The

result follows from a simple computation using the above algebraic

definition of cross ratio.

A’

Q’

K’

B’
A

BK

M

N

S

Q

It should be noted that the above stereographic projection is not

the standard one but still preserves cross ratios. To see this, let L be

a line perpendicular to a diameter through N and let A′, Q′,K ′, B′

be the projections of A,Q,K,B onto L. This projection preserves

the cross ratio. The stereographic projection of A,S,N,B onto

A′, Q′,K ′, B′ is now the standard one, i.e. is an inversion, and thus

preserves cross ratios [10].

Algebraic solution. The following argument uses an algebraic ap-

proach which seems to be the most direct, i.e. requires the least

amount of ingenuity or knowledge.

Let the circle be {(x, y) : x2 +y2 = 1} and let K = (0, β), so that

A = (−
√

1 − β2, β) , B = (
√

1 − β2, β) .

One first excludes the trivial case: M=S andN=T, when P =Q=K

and the result holds. Otherwise, one considers lines L1 and L2 pass-

ing through K which determine the chords. Assuming for the time

being that neither L1 nor L2 is parallel to the y-axis, the lines L1

and L2 can be defined by the equations y=m1x+β and y=m2x+β ,

respectively.
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Without loss of generality, one can assume that m1 > 0 . First,

one considers the case when m2 < 0 . Let L1 intersect the circle at

M = (x1 , y1) and N = (x3 , y3) , where x1 > x3 , y1 > y3 ,

and L2 intersect the circle at

T = (x2 , y2) and S = (x4 , y4) , where x2 > x4 , y2 < y4 .

One now computes P , i.e. one finds the x-coordinate of the point on

the line segment MT which has y-coordinate equal to β . The line

segment is represented by

λM + (1 − λ)T , 0 ≤ λ ≤ 1 ,

so

λy1 + (1 − λ)y2 = β ,

and one gets

λ =
β − y2

y1 − y2
.

Letting P = (α, β), one has

α =
β (x1 − x2) + y1x2 − y2x1

y1 − y2
. (2)

One observes that

y1x2 − y2x1 = x1x2

(

y1
x1

− y2
x2

)

= x1x2

(

m1 + β
x1

−m2 − β2

x2

)

= x1x2(m1 −m2) + βx2 − βx1 .

Substituting this into (2) gives

α =
m1 −m2
m1

x2

− m2

x1

. (3)

Since M and T lie on the unit circle, one has

x2
1 + (m1x

2
1 + β)2 = 1 and x2

2 + (m2x
2
2 + β)2 = 1 ,
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so with the above assumptions,

x1 =
−m1β +

√

1 +m2
1 − β2

1 +m2
1

, x2 =
−m2β +

√

1 +m2
2 − β2

1 +m2
2

.

This implies that

m1

x2
− m2

x1
=
m1

(

1 +m2
2

) (

−m2β −
√

1 +m2
2 − β2

)

m2
2β

2 −
(

1 +m2
2 − β2

)

− m2

(

1 +m2
1

) (

−m1β −
√

1 +m2
1 − β2

)

m2
1β

2 −
(

1 +m2
1 − β2

)

=
−m1

√

1 +m2
2 − β2 +m2

√

1 +m2
1 − β2

β2 − 1
,

and gives

α =
(m1 −m2)(1 − β2)

m1

√

1 +m2
2 − β2 −m2

√

1 +m2
1 − β2

.

One now observes that the value of α is invariant under β 7→ −β .

This in fact proves the result in this case. To see this, one notes

that β 7→ −β corresponds to a 180◦ rotation which interchanges M

and N and interchanges S and T , and therefore interchanges P

and Q. Moreover, since ∠BKM = ∠AKN and ∠BKT = ∠AKS,

this preserves the slopes of L1 and L2 . Since the value of α does not

change, this shows that |KP | = |KQ|.
Next, one considers the case in which m2 > 0 . Without loss

of generality, assume that m2 > m1 . One then lets M = (x1 , y1)

be the intersection of L1 with the circle and T = (x2 , y2) be the

intersection of the circle with L2 , where x1 , y1 > 0 and x2 , y2 < 0 .

Arguing exactly as above one lets P =(α, β) and once again (3) holds.

Solving for T , M on the unit circle, one now obtains

x1 =
−m1β +

√

1 +m2
1 − β2

1 +m2
1

, x2 =
−m2β −

√

1 +m2
2 − β2

1 +m2
2

.
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Substituting this into (3) yields

α =
(m2 −m1)(1 − β2)

m1

√

1 +m2
2 − β2 +m2

√

1 +m2
1 − β2

.

Once again, α is invariant under β 7→ −β and the result for this case

follows as above.

Finally, there remain the cases when L1 or L2 are parallel to

the x-axis or to the y-axis. Since |PK| and |QK| are obviously

continuous functions of M and S, the result follows by continuity

from the previous cases.

Elementary geometry solution. After much effort the following

elementary “geometric” argument was found. However, this proof

seems more difficult, as some of the intermediate results appear to

be at least as deep as the main result. On the other hand, this

argument does not require knowledge of hyperbolic geometry.

A trivial case occurs if one of the chords equals AB, so it will be

assumed that this is not the case. The first observation is that the

result follows from

areaKMT

areaKMBT
=

areaKSN

areaKSAN
. (4)

To see why this is the case, define h1 to be the distance between M

and KB, i.e. the altitude of KMB, and similarly let h2 the distance

between T and KB, h3 the distance between S and AK, and h4 the

distance between N and AK. It follows that

areaKMT = |KP | (h1 + h2) , areaKMBT = |KB| (h1 + h2) ,

(5)

areaKSN = |KQ| (h3 + h4) , areaKSAN = |KA| (h3 + h4) .

Since |KA| = |KB|, equation (4) implies that |KQ| = |KP |, which

is the statement of the result.

The proof of (4) begins by recalling that if two chords XY and

ZW of a circle intersect at T , then |XT | · |TY | = |ZT | · |TW |. Since

the proof of this result is much easier than what is to follow, it is left

as a preparatory exercise for the reader.
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The intersection of chords implies that triangles KMT and KSN

are similar and it will be convenient to let ρ = |KM |/|KS| be the

common ratio between the corresponding sides. Then the area of

triangle KMT equals ρ2 areaNKS (this follows from the same ar-

gument as Lemma 1.1 below). Equation (4) is therefore equivalent

to areaKMBT = ρ2 areaKSAN , and (5) shows that this is in turn

equivalent to

h1 + h2 = ρ2 (h3 + h4) . (6)

The proof of this follows from the following lemma.

Lemma 1.1. Let the notation be as above. Then

(a) h1h2 = ρ2h3h4 ,

(b)
1

h1
+

1

h2
=

1

h3
+

1

h4
.

Assuming this for the moment, one has

h3 + h4

h3h4
=

1

h3
+

1

h4
=

1

h1
+

1

h2
=
h1 + h2

h1h2
=
h1 + h2

ρ2h3h4
,

which implies (6) and the main result.

Proof of Lemma 1.1. In order to prove part (a) one uses the above

result about chords which shows that triangle KMB is similar to

triangle KAN and triangle KTB is similar to triangle KAS. As

before, one has

areaKMB =
( |KM |
|AK|

)2
· areaKAN ,

areaKTB =
( |KB|
|KS|

)2
· areaKAS .

Since |KB| = |KA| it follows that

(areaKMB) (areaKTB) = ρ2 (areaKAN) (areaKAS) . (7)
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But one also has

areaKMB = h1 |KB| , areaKTB = h2 |KB| ,

areaKAN = h4 |AK| , areaKAS = h3 |AK| ,

which, upon using |AK| = |KB|, gives part (a) of the lemma. Part

(b) is a consequence of the following surprising result.

Lemma 1.2. Given a chord AB of a circle, let MN be any other

chord bisecting AB, x the distance from N to the line AB and y the

distance from M to the line AB. Then
(

1
x − 1

y

)

is independent of

MN except for its sign which only depends on the side of AB that

M lies on.

Assuming this, one notes that M and N lie on different sides of AB,

so applying Lemma 1.2 gives

1

h1
− 1

h4
= − 1

h2
+

1

h3
,

which is equivalent to part (b) of Lemma 1.1.

A B
K

M

O

I 

J

H

G

N

Proof of Lemma 1.2. Let O be the center of the circle and assume

that N and O lie on the same side of AB. Draw a perpendicular

from O to KN meeting KN at I. Since N and M lie on a circle

with center O, one has |OM | = |ON | and so the triangle OIM is

congruent to the triangle OIN . It follows that I bisects NM . Now

let J lie on the ray IN and be such that |JI| = |IK|. By the previous

argument |IK| < |IM |, so J lies strictly between N and I. Since I
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also bisects JK, it follows that |NJ | = |KM | and thus

|KN | = 2 |KI| + |KM | . (8)

Now drop a perpendicular from N to AK meeting the line AK at H,

so that the signed length of NH is η. Since ∠KHN = ∠HKO = 90◦

and ∠HKN +∠IKO = 90◦, it follows that triangle KHN is similar

to triangle OIK. From similar triangles, one gets

|KI|
x

=
|OK|
|KN | .

Substituting this into (8) gives

|KN |
|KM | = 1 +

2x |OK|
|NK| · |KM | = 1 +

2x |OK|
R2 − |OK|2 ,

where R is the radius of the circle. The last equality follows from

the fact that NM intersects the diameter DE containing K. By

intersection of chords,

|NK| · |KM | = |DK| · |KE| =
(

R+ |OK|
)(

R− |OK|
)

.

One therefore gets

1

x
− |KN |
x |KM | =

−2 |OK|
R2 − |OK|2 . (9)

One now drops a perpendicular from M to KB meeting KB at G,

so that the length of MG is y, since G and O lie on opposite sides

of AB. The triangle KGM is similar to KHN so that

y =
x|KM |
|KN | .

Plugging this into (9) shows that

1

x
− 1

y
=

−2 |OK|
R2 − |OK|2

and has a constant value, which proves the result in this case.

Similarly, if it is M and O which lie on the same side of AB, then

one replaces N with M in the above argument, i.e. one lets I lie on

KM , etc., and the result carries through in the same way and one
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arrives at (9) with x and y interchanged, which proves that value

of
(

1
x − 1

y

)

changes sign if N lies on the opposite side of AB. �

Problem 2. A quadrangle in space is tangent to a sphere. Show

that the points of tangency are coplanar.

A

B

C

D

Solution. This solution was independently found by Pavol Severa

and Igor Rivin.

Let A1, . . . , A4 be the vertices of the quadrangle given in cyclic

order e.g., A,C,B,D in the diagram. For each point Ai let ki be the

circle on the sphere where the tangents passing through Ai touch

the sphere. Notice that the cyclic order of the vertices induces a

cyclic order on the ki’s, in particular, these can be oriented so that

their orientations at the four points of tangency agree. Now we make

a stereographic projection from one of these points of tangency so

the picture looks like the following, with X,Y,Z being the images of

three of the four vertices of the quadrangle under the stereographic

projection.

Z

k1

k4

k3

k2

Y

X
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We have to prove that X, Y and Z lie on a line. This is visually

obvious, but just to help: the homothety with center at Y that maps

k2 to k4 , maps k1 to a tangent of k3 parallel to k4 . Actually, since

the orientations agree, it has to map k1 to k4 and therefore X to Z.

Alternate solution. This solution was found by Georg Illies.

Excluding trivial special cases we assume that the points T1, T3, T4

and T2 , at which the sides of the quadrangle ABCD touch the sphere

(with center M), lie in the interior of the sides, i.e. T1∈AB, T1 6=A,B
and so on. We also assume that A,B,C,D are not coplanar.

Consider the plane E determined by T1, T3 and T4 . If one edge of

ABCD were in E the others would also, by our assumptions. So by

the above, A and C lie on different sides of E as do C and B as well

as B and D. Thus, A and D also lie on different sides of E .

Let points A′, B′, C ′,D′ ∈ E be such that AA′⊥ E , BB′⊥ E , etc.

Let Q be the intersection point of E and AD, it is thus the point

in which AD and A′D′ intersect. (Observe that AA′‖DD′, so the

points A,A′,D,D′ are coplanar; the same argument shows that T1

is the point in which AC and A′C ′ intersect and so on.) We have to

show that T2 = Q.

Now we have |AT2| = |AT1| , |CT1| = |CT3| and so on (as the

right triangles AMT2 and AMT1 are congruent etc.). Thus

|AT2|
|DT2| =

|AT1|
|CT1| ·

|CT3|
|BT3| ·

|BT4|
|DT4| =

|AA′|
|CC′| ·

|CC′|
|BB′| ·

|BB′|
|DD′| =

|AA′|
|DD′| =

|AQ|
|DQ| ,

where the second and fourth equality follow by considering the similar

right triangles AA′T1 and CC ′T1 . One therefore gets T2 = Q, as

claimed.

Algebraic solution. The following approach puts the problem into

purely algebraic form and minimizes geometric intuition.

Let the quadrangle be ABCD and the sphere S. Assume, without

loss of generality, that the points of tangency lie on AC, AD, BC,

BD. If the quadrangle lies in the plane, then the result is trivial, so

it will be assumed that this is not the case.

Let K be the center of S, then A, B, and K lie on a plane.

Without loss of generality, one can assume to be the xy-plane, that

A and B lie on the x-axis and that K lies on the y-axis, so that
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A = (a, 0, 0), B = (b, 0, 0), and K = (0, k, 0). One can also assume

that b > a, k ≥ 0 , and that the sphere has radius 1. Let the points

of tangency be at Ti = (xi, yi, zi), i = 1, . . . , 4 , where T1 lies on AC,

T2 on AD, T3 on BC, and T4 on BD.

The approach begins by noticing that A, B, C, T1 , T3 lie in a

plane and the same holds for A, B, D, T2 , T4 . In fact, choose a plane

P containing the x-axis and of slope m with respect to the xy-plane,

and two points T, T ′ ∈ S ∩ P so that AT and BT ′ are tangent to

the sphere. Then, generically, there is an interval of slopes m such

that AT and BT ′ meet at a point. One concludes that characterizing

T and T ′ in terms of m will lead to all possible quadrangles with 4

points of tangency on S.

Thus, consider a plane P of slope m with respect to the x-axis, so

that (x, y, z) lies on P if and only if z = my. Now let T = (x, y, z) be

a point on S such that TA is tangent to S. Thus (T−K)·(T−A) = 0 ,

so that

x(x− a) + y(y − k) + z2 = 0 .

Moreover, since S has radius 1 and center K, one gets

x2 + (y − k)2 + z2 = 1 . (10)

Subtracting these equations yields

x =
ky + 1 − k2

a
, (11)

where one assumes for the time being that a 6= 0 . It follows that

T =

(

ky + 1 − k2

a
, y , my

)

, (12)

for some y. One can now use (10) to solve for y and this leads to

y2

(

k2 + a2m2 + a2

k2 + a2 − 1

)

− 2ky + k2 − 1 = 0 . (13)

Note that this equation is well defined since the conditions of the

problem imply that the distance from A to the center of the circle

K is greater than the radius of the circle, i.e. a2 + k2 > 1 .
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Instead of solving directly for the yi’s, it seems more efficient

to continue by using (12) to gain information about T1, . . . , T4 .

Thus, assume that A,B,C lie on a plane of slope m with respect

to the xy-plane, and that A,B,D lie on a plane of slope n with re-

spect to the xy-plane. Applying (12) yields

T1 =
(

ky1+1−k2

a
, y1,my1

)

, T2 =
(

ky2+1−k2

a
, y2, ny2

)

,

T3 =
(

ky3+1−k2

b
, y3,my3

)

, T4 =
(

ky4+1−k2

b
, y4, ny4

)

.

In order to tell whether T1, . . . , T4 lie in a plane, one checks to see

if T2 − T1 , T3 − T1 , and T4 − T1 form a linearly independent set.

Since T4 − T1 = (T4 − T1) − (T3 − T1), this is equivalent to verifying

whether the following determinant vanishes.

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k
a

(y2 − y1) y2 − y1 ny2 −my1

k
(

y3
b
− y1

a

)

+ (1 − k2)
(

1
b
− 1
a

)

y3 − y1 m(y3 − y1)

k
b

(y4 − y3) y4 − y3 ny4 −my3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Assuming for the moment that y1 6= y2, y3 and y4 6= y3 , one gets

D = (y2 − y1) (y3 − y1) (y4 − y3)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k
a

1 ny2−my1
y2−y1

k
y3−y1

(

y3
b
− y1

a

)

+ 1−k2

y3−y1

(

1
b
− 1
a

)

1 m

k
b

1 ny4−my3
y4−y3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Subtracting the first row from the other two rows yields

D = (y2 − y1)(y3 − y1)(y4 − y3)

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

k
a

1 ny2−my1
y2−y1

(

1
b
− 1
a

)

ky3+1−k2

y3−y1 0
(m−n)y2
y2−y1

k
(

1
b
− 1
a

)

0 (m− n) y1y4−y2y3
(y2−y1)(y4−y3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Expanding from the top row and factoring out common terms in rows

and columns yields

D = − (y3−y1) (y4−y3) (m−n)
(

1
b
− 1
a

)

∣

∣

∣

∣

∣

∣

∣

ky3+1−k2

y3−y1 y2

k y1y4−y2y3
y4−y3

∣

∣

∣

∣

∣

∣

∣

.

This last determinant equals

(ky3 + 1 − k2) (y1y4 − y2y3)

(y3 − y1) (y4 − y3)
− ky2

=
k (−y2y3y4 + y1y3y4 + y1y2y4 − y1y2y3) + (1 − k2) (y1y4 − y2y3)

(y3 − y1) (y4 − y3)
.

It follows that

D = (m− n)
(

1
a
− 1
b

)[

k (y2y3y4 − y1y3y4 − y1y2y4 + y1y2y3)

+ (k2 − 1) (y1y4 − y2y3)
]

.

(14)

It is easily seen that this formula holds also if any of y1 = y2 , y1 = y3 ,

or y3 = y4 holds, since both sides of (14) are analytic in y1, . . . , y4 .

Now let wi = 1/yi , i = 1, . . . , 4 . Since A and B both lie on

the x-axis, it is clear that to lie on a quadrangle, none of the points of

tangency can satisfy yi = 0 , so the wi’s are well defined. Substituting
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this in (14) results in

D =
m− n

w1w2w3w4

(

1
a
− 1
b

)

×
[

k(w1 − w2 − w3 + w4) + (k2 − 1)(w2w3 − w1w4)
]

.

(15)

One now solves for the wi’s by applying (13) which gives

(k2 − 1)w2 − 2kw +

(

k2 + a2m2 + a2

k2 + a2 − 1

)

= 0 ,

so that, assuming that k 6= 1 ,

w =
k ±

√

k2 − (k2−1) (k2+a2m2+a2)
k2+a2−1

k2 − 1

=
k ±

√

(m2−k2m2+1) a2

k2+a2−1

k2 − 1

=
k ± f(m)g(a)

k2 − 1
,

(16)

where

f(m) =
√

m2 − k2m2 + 1 , g(a) =

√

a2

k2+a2−1
.

One thus gets

w1 =
k±f(m)g(a)

k2−1
, w2 =

k±f(n)g(a)
k2−1

,

w3 =
k±f(m)g(b)

k2−1
, w4 =

k±f(n)g(b)
k2−1

.

Once again, one can make a further simplification before using this
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formula. By writing wi = (k + si)/(k
2 − 1), one gets

k(w1 − w2 − w3 + w4) + (k2 − 1)(w2w3 − w1w4)

=
k

k2 − 1
(s1 − s2 − s3 + s4)

+
1

k2 − 1

[

(k + s2)(k + s3) − (k + s1)(k + s4)
]

=
s2s3 − s1s4
k2 − 1

.

In other words,

D =
m− n

w1w2w3w4

s2s3 − s1s4
k2 − 1

(

1

a
− 1

b

)

.

One now observes that

|s2s3| = f(n)g(a)f(m)g(b) = |s1s4| .

It follows that D = 0 depends only on the signs of si , i = 1, . . . , 4 .

In other words, if σi is the sign of si , then T1, . . . , T4 are coplanar if

and only if σ1σ4 = σ2σ3 , that is if s1, s4 and s2, s3 either both have

the same signs or both have unequal signs.

In order to characterize this last condition, one examines the ge-

ometrical significance of the sign of σi . Note first that one has the

explicit computation

x1 =
ky1 + 1 − k2

a
=

k
w1

+ 1 − k2

a
= − (k2 − 1)s1

a(k + s1)
.

Assuming for the time being that k > 1 , one has

s21 =
a2

a2 + k2 − 1

(

1 −m2(k2 − 1)
)

≤ 1 ,

so that k + s1 > 0 . It follows that σ1 equals the sign of x1 if a > 0 ,

and is minus the sign of x1 is a < 0 . In other words, if the sphere S is

divided into two sides S1 and S−1 according to whether sign (a) > 0

or < 0 , then σ1 determines the side of the sphere that T1 lies in,

namely, T1 lies in Sσ1 sign(a). The same holds true for T2, . . . , T4 and
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one gets

T1 ∈ Sσ1 sign(a), T2 ∈ Sσ2 sign(a), T3 ∈ Sσ3 sign(b), T4 ∈ Sσ4 sign(b) . (17)

Now consider the two points of tangency T1, T3 lying in the plane of

A,B. One will say that these are of Type I with respect to A,B if

T1 and T3 lie on different sides of the sphere, as defined above, and

of Type II with respect to A,B if they lie on the same side of the

sphere. Thus, in the diagram, the two figures on the left represent

Type I and the figure on the right Type II.

One now translates the condition that σ1σ4 = σ2σ3 into this no-

tation.

(i) If σ1 =σ4 and σ2 =σ3 , and sign (a)=sign (b), then T1, . . . , T4

all lie on S1 so T1, T4 and T2, T3 are both of Type II with

respect to A,B.

(ii) If σ1 = σ4 and σ2 = σ3 , and sign (a) = −sign (b), then T1, T4

and T2, T3 are both of Type I with respect to A,B.

(iii) If σ1 =−σ4 and σ2 =−σ3 , and sign (a)=sign (b), then T1, T4

and T2, T3 are both of Type I with respect to A,B.

(iv) If σ1=−σ4 and σ2=−σ3 , and sign (a)=−sign (b), then T1, T4

and T2, T3 are both of Type II with respect to A,B.

A B A B A B

One concludes that σ1σ4 = σ2σ3 implies that T1, T4 and T2, T3 are of

the same type with respect to A,B. If σ1σ4 = −σ2σ3 , then the exact

same argument shows that T1, T4 and T2, T3 cannot be of the same

type with respect to A,B. It follows that the condition σ1σ4 = σ2σ3
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is equivalent to T1, T4 and T2, T3 being of the same type with respect

to A,B. In other words, the points of tangency are coplanar if and

only if T1, T4 and T2, T3 are of the same type with respect to A,B.

This will be shown in the case at hand. In fact, if the points of

tangency lie on the edges of a quadrangle, then they must all be of

Type I. In fact, it is easily seen that AT1 and BT3 cannot lie on the

same side of the sphere when T1 and T3 lie on line segments AC and

BC. This is obvious from the above diagram and a rigorous proof is

left as an exercise.

Finally, as can be easily checked, the case a = 0 can be proved by

continuity from the above argument.

Remark 2.1. The above argument proves the slightly more general

result. Given a quadrangle and a sphere such that the lines extending

the edges of the quadrangle are tangent to the sphere, then the points

of tangency are coplanar if and only if there are two vertices such

that the pairs of points of tangency are of the same type with respect

to these vertices.

Problem 3. The faces of a triangular pyramid have the same area.

Show that they are congruent.

Solution. A good way to approach this problem is to first char-

acterize the consequence of the following statement. There exists a

tetrahedron all of whose sides are congruent to a given triangle if and

only if all the angles of the triangle are acute.

A B

C D

A B

C

F

E
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Proof. Let the triangle be ABC, and assume, without loss of gener-

ality, that ∠BAC is greater or equal the other angles of the triangle.

One places a triangle ABD on the line AB such that C and D lie on

the same side of AB and such that ABC is congruent to BAD, in

other words, ABD is a mirror image of ABC. As in the above, one

rotates ABD about AB to form a triangle ABD′. Clearly, any tetra-

hedron with all sides congruent to ABC will be formed in this way,

so if a solution exists, then it is unique up to rotational symmetry.

(a) First, assume that all angles of ABC are acute. It follows that

|CD| < |AB| . Now let ABE be the triangle ABD rotated 180◦ about

AB, and let F be the intersection of AB and CE. By construction,

it follows that triangles ACF and BEF are congruent, so CE bisects

AB. By assumption, ∠BAC ≥ ∠ACB, so ∠FAC > ∠ACF . But in

the triangle FAC one has, by the law of sines, that

|CF |
sin ∠FAC

=
|AF |

sin ∠ACF
,

and one concludes that |CF | > |AF |, since ∠FAC < 90◦ and sin z

is increasing for 0 < z < 90◦.

It follows that |CE| > |AB|. This implies that there must be a

rotation with angle strictly between zero and 180◦ such that |CD′| =

|AB|. This value of D′ then gives the required tetrahedron.

(b) Let us assume now that at least one angle of ABC is not

acute, i.e. ∠BAC ≥ 90◦. Then |CD| ≥ |AB|, and rotating ABD

about AB will only increase the value of |CD′| so that it is strictly

greater than |AB|. It follows that there can be no solution in this

case. �

The solution of the problem uses similar ideas but will require the

following technical point.

Lemma 3.1. Let a, b, c, d be positive real numbers such that a, b are

not equal to c, d in some order. Then there is at most one value of x

such that there are two triangles with side lengths a, b, x and c, d, x,

and with equal areas.

Assuming this holds, one proves the result by contradiction. One

begins as above by trying to construct a tetrahedron all of whose

sides have equal areas. Thus, let ABC and ABD be non-congruent
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triangles with equal areas.

A B

C D

One now forms a tetrahedron by placing ABC and ABD in the

same plane with C and D on the same side of AB and then rotat-

ing ABD about AB to obtain a new triangle ABD′. Clearly, any

tetrahedron with adjacent sides congruent to ABC and ABD will be

generated this way.

Let a = |AC|, b = |AD|, c = |BC|, d = |BD|. It follows that the

other two faces of the tetrahedron are ACD′ and BCD′ with sides

a, b, x and c, d, x, respectively, where x = |CD′|. A solution to the

problem requires ACD′ and BCD′ to have equal areas. Since the

assumption that ABC is not congruent to ABD implies that a, b are

not equal to (c, d) in some order, Lemma 3.1 applies, and there is a

unique D′ with the required property.

Since triangles ABC and ABD have equal areas, ABC and ABD

have equal altitudes with respect to AB, and thus ACD and BCD

must have equal areas as well. This implies that the initial position

D′ = D gives the only possible solution to ACD′ and ABD′ having

equal areas. Since these lie in the same plane, there is no three-

dimensional solution.

Proof of Lemma 3.1. Let the two triangles be ACD and BCD

with notation as above, i.e. a = |AC|, b = AD, c = |BC|, d = |BD|,
CD = x. Let α = ∠CAD and β = ∠CBD. Then from elementary

trigonometry (law of cosines) one has

a2 + b2 − 2ab cosα = c2 + d2 − 2cd cos β = x2 , (18)

while equating areas gives

ab sinα = cd sin β . (19)
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Using sin2 z = 1 − cos2 z , one transforms (19) into

a2b2 − c2d2 − a2b2 cos2 α+ c2d2 cos2 β = 0 . (20)

Equation (18) implies that

a2b2 cos2 α =

(

x2 − a2 − b2

2

)2

, c2d2 cos2 β =

(

x2 − c2 − d2

2

)2

.

Plugging this into (20) gives

a2b2 −
(

x2 − a2 − b2

2

)2

− c2d2 +

(

x2 − c2 − d2

2

)2

= 0 ,

which leads to

x2
(

a2 + b2 − c2 − d2
)

=

(

a2 − b2
)2 −

(

c2 − d2
)2

2
. (21)

Now if a2 + b2 6= c2 +d2, then there is at most one positive value of x

satisfying (21), and the statement of the lemma follows. On the other

hand, if a2 + b2 = c2 + d2, then (18) implies that ab cosα = cd cos β .

Combining this with (19), e.g. by using sin2 z + cos2 z = 1 , one

obtains ab = cd. One therefore gets

a2 + 2ab+ b2 = c2 + 2cd+ d2, a2 − 2ab+ b2 = c2 − 2cd+ d2.

This implies that

a+ b = c+ d and a− b = ±(c− d) ,

and one concludes that a, b are equal to c, d in some order, contra-

dicting the hypothesis. �

Problem 4. The prime decompositions of different integers m and

n involve the same primes. The integers m+ 1 and n + 1 also have

this property. Is the number of such pairs (m,n) finite or infinite?

Answer. The number of such pairs is infinite.

Proof. Let m= 2k− 2 , n= (m + 1)2 − 1 , for k = 2, 3, 4, . . . .

Then

n+ 1 = (m+ 1)2 ,
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so n+ 1 and m+ 1 have the same prime factors. Moreover,

n = (m+ 1)2 − 1 = m (m+ 2) .

Since m+ 2 is a power of 2 and m is already even, it follows that m

and n also have the same prime factors.

Remark 4.1. One can ask whether there are infinitely many pairs

not of this form. This does not appear to be an easy question and

even finding one other pair is non trivial. A computer search revealed

that

m = 75 = 3 · 52, and n = 1215 = 35 · 5

also satisfy this condition since

m+ 1 = 22 · 19 and n+ 1 = 26 · 19 .

In fact, this is a special case of a well known problem of Erdős and

Woods in number theory and logic, see the Notes.
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Problem 5. Draw a straight line that halves the area and perimeter

of a triangle.

Solution. Let the triangle be ABC, let p = a+b+c be the perimeter,

and, without loss of generality, assume that b ≥ a ≥ c. On AB, let

D be such that the length of AD is

t0 =
p−

√

p2 − 8bc

4
,

and on AC, let E be such that the length of AE is
bc
2t0 . Then the

line DE splits ABC into two parts with equal areas and perimeters.

A B

C = (u, v)

D

E 

Proof. One can think of the triangle ABC as being in the xy-plane

with the origin at A, B= (c , 0) and C = (u , v), where c , u , v > 0 .

Under these assumptions, let D on AB be such that the length of

AD is t and c/2 ≤ t ≤ c. One will construct E on AC such that DE

divides the triangle into two equal areas. In fact, let E be such that

the length of AE is bc
2t0

. Then the area of the triangle ADE is

cv

2t

t

2
=

1

2

cv

2
,

so E satisfies this property. Note that for t = c, one gets E = C/2 ,

and for t = c/2 one gets E = C.

Now the perimeter contribution of AD and AE is t+ bc
2t
, so one
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needs to solve the equation

t+
bc

2t
=
a+ b+ c

2
,

which has solutions t =
p±
√
p2−8bc

2
. I will show that

t0 =
p−

√

p2 − 8bc

4

satisfies all necessary conditions to give an actual solution, i.e.

p2 ≥ 8bc, t0 ≤ c, t0 ≥ c

2
. (22)

To prove the first inequality, note that it follows from

(−a+ b− c)2 = a2 + b2 + c2 − 2ab− 2bc+ 2ac ≥ 0 ,

which implies

p2 = a2 + b2 + c2 + 2ab+ 2bc+ 2ac ≥ 8bc .

The second inequality in (22) is equivalent to

(a+ b− 3c)2 ≤ (a+ b+ c)2 − 8bc ,

which reduces to 8ac ≥ 0 . Finally, the third inequality in (22) is

equivalent to

(a+ b− c)2 ≥ (a+ b+ c)2 − 8bc ,

which reduces to b ≥ a, which is true by assumpion.

Remark 5.1. Since t0 is a composition of additions, subtractions,

divisions, and square roots of the sides of ABC, it follows that DE

can be “drawn” with ruler and compass.

Problem 6. Show that
1

sin2 x
≤ 1

x2
+ 1 − 4

π2
, 0 < x <

π

2
.

Solution. The question can be rewritten as

1

x2
− 1

sin2 x
+ 1 − 4

π2
≥ 0 , 0 < x <

π

2
. (23)
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In order to prove this, one begins by showing that

lim
x→0

(

1

sin2 x
− 1

x2

)

=
1

3
.

This can be done either by expanding into a power series about

x = 0 , or by L’Hôpital’s rule, as follows.

1

sin2 x
− 1

x2
=
x2 − sin2 x

x2 sin2 x
→ 0

0
, x→ 0 ,

so the limit equals the limit of the derivative of the numerator divided

by the derivative of the denominator. Iterating this process yields

2x− sin 2x

2x sin2 x+ x2 sin 2x
→ 0

0
,

1 − cos 2x

sin2 x+ 2x sin 2x+ x2 cos 2x
→ 0

0
,

2 sin 2x

3 sin 2x+ 6x cos 2x− 2x2 sin 2x
→ 0

0
,

2 cos 2x

6 cos 2x− 8x sin 2x− x2 cos 2x
→ 1

3
.

Since 1− 4
π2

> 1
3

, it follows that there is such δ > 0 , for which strict

inequality holds in (23) for all 0 < x < δ .

Next, one rewrites (23) as

sinx
√

1 − a sin2 x
≥ x , (24)

where a = 1 − 4
π2

. Clearly, this is an equality for x = 0 , and a
computation shows that it also holds for x = π/2 . To show that the

inequality is strict for 0 < x < π
2

, one takes the second derivative of

f(x) =
sinx

√

1 − a sin2 x
,
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which is easily found as

f ′(x) =
cos x

(1 − a sin2 x)3/2
, f ′′(x) =

(a− 1 + 2a cos2 x) sinx

(1 − a sin2 x)5/2
.

Since a >
1
3 , it follows that f ′′(x) > 0 for 0 < x < x0 , where x0

is the unique solution of f ′′(x0) = 0 in
(

0 ,
π
2

)

(that x0 exists and is

unique is immediate from the form of f ′′(x)). In other words, f(x)

is concave in (0 , x0). Now f(0) = 0 , and by the first part, it is true

that (24) holds for 0 < x < δ , so the strict concavity of f(x) implies

that f(x)> x for 0 < x ≤ x0 .

Since f ′′(x) has only one zero in
(

0 ,
π
2

)

and

f ′′
(

π
2

)

= −
(

π
2

)3
< 0 ,

it follows that f(x) is convex in
(

x0 ,
π
2

)

. Since f(x0) > x0 and

f
(π
2

)

=
π
2 , convexity implies that f(x)> x for x0 < x <

π
2 .

Problem 7. Choose a point on each edge of a tetrahedron. Show

that the volume of at least one of the resulting tetrahedrons is not

greater than 1/8 of the volume of the initial tetrahedron.

Solution. The most natural interpretation of “resulting tetrahe-

drons” is the tetrahedrons formed by each original corner and the

points on edges that are adjacent to the corner, see Remark 7.3.

Lemma 7.1. If the angles of a vertex of a tetrahedron are fixed,

then the volume of the tetrahedron is proportional to the lengths of

the sides adjacent to this vertex.

Proof. One assumes the well known facts that the area of a triangle

is proportional to the base times height, and that the volume of a

tetrahedron is proportional to base times height. Let A be the vertex

with fixed angles, and B,C,D the other vertices. Let C and D be

fixed and let B vary. If one considers ABC to be the base of the

tetrahedron, then the height remains fixed as B varies. Similarly, if

one considers AB to be the base of ABC, then its height remains

fixed. It follows that the volume of the tetrahedron is proportional

to AB. By symmetry, this holds for B and C, proving the result.
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Alternatively, if one lets α be the angle CBA and β the angle that

AD makes with ABC, then the volume of the tetrahedron is simply

1
6
|AB| · |AC| · |AD| sinα sinβ . �

Now let the tetrahedron be T with vertices A1 , . . . , A4 . One then

picks a point on each edge so that Pij lies on AiAj , 1 ≤ i 6= j ≤ 4 ,

with the convention that Pij = Pji . The resulting tetrahedrons are

then Ti , i = 1 , . . . , 4 , where Ti has vertices Ai and Pij , j 6= i.

Let v(R) be the volume of a three-dimensional region R, then the

problem is to show that one of v(Ti)/v(T ) ≤ 1/8 .

In order to do this, let

rij ≡ |AiPij |
|AiAj |

be the ratio of the distance between Pij and Ai to the length of AiAj .

Since the angles at the corner Ai of Ti remain fixed as the Pij ’s vary,

one can apply Lemma 7.1 to get

v(Ti)

v(T )
=
∏

j 6=i

rij .

Multiplying all these quantities together gives

4
∏

i=1

v(Ti)

v(T )
=
∏

1≤i,j≤4

i6=j

rij .

Since rij = 1 − rji , it follows that

4
∏

i=1

v(Ti)

v(T )
=
∏

1≤i<j≤4

rij(1 − rij) .

Now it is easily shown that x(1 − x) ≤ 1
4

for 0<x<1 , so it follows

that

4
∏

i=1

v(Ti)

v(T )
≤ 1

46
. (25)
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This implies that not all of the factors on the left of (25) can be

greater than (1/46)1/4 = 1/8 . The result follows.

Remark 7.1. This argument generalizes verbatim to n dimensions.

Thus, let S be an n-dimensional simplex, i.e. the set

S={λ1A1+. . .+λn+1An+1 : λ1 , . . . , λn+1 ≥ 0 , λ1+. . .+λn+1 = 1} ,

where the vertices A1 , . . . , An+1 ∈Rn have the property that remov-

ing any one results in a linearly independent set. The generalization

is the following. Pick a point on each edge of an n-dimensional sim-

plex, then the volume of one of the simplexes obtained by taking an

original vertex and points that lie on edges adjacent to it must be

not greater than 1/2n of the volume of the original simplex. The

generalization of this to arbitrary polyhedrons is left as a problem

for the reader.

Remark 7.2. This problem is frustrating because natural geometric

arguments that prove the two-dimensional analogue do not seem to

generalize well to three dimensions. As an example, a simple geo-

metric argument is given for the two-dimensional case.

Proposition 7.1. Pick a point on each edge of a triangle. Then one

of the triangles formed by a vertex of the original triangle and points

on the two adjacent edges has an area which is not greater than 1/4

of the area of the original triangle.

Proof. If some vertex, say A, has two edge points, say D,F , at least

as close to A as to the other vertices, then the area of ADF is less

than 1/4 of that of the original triangle. The only other possibility is

that each vertex has only one edge point closer to it. Let us say that

D is on AB and AD ≤ DB, that E is on BC and BE ≤ EC, and

that F is on CA and CF ≤ FA. Moreover, let G be the midpoint of

AB, H the midpoint of BC, and I the midpoint of CA.
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G

HI

J
A B

C

D

E 

F

One now shows that the area of DEF is not less than the area of

GHI. Since AB and IH are parallel, it follows that FE is either

parallel to AB or meets AB at J such that AJF is an acute angle.

Now, let x= |GD| . Then in the first case, as x increases, the area

of DEF remains constant. In the second case, as x increases, the

distance from D to FJ increases, since AJF is acute. Since this

equals the distance from D to FE, it follows that as x increases, the

area of DEF increases.

One concludes that the area of DEF is non-decreasing in x. Since

this argument holds for |HE| and |IF |, it follows that the area of

DEF is not less than the area of GHI, as claimed. Since the area

of GHI is exactly 1/4 of the area of ABC, the sum of the three

remaining triangles is not greater than 3/4 of the area of ABC, and

thus one of the triangles ADF , BDE, CEF must have area less

than 1/4 of the area of ABC. �

Generalizing this to three dimensions would entail finding a lower

bound on the middle piece of the tetrahedron, i.e. what remains

after the four tetrahedrons have been removed. However, in three

dimensions, the volume of this piece is no longer a monotonic function

of the edge points, as was the case in the above argument. Following

through with this argument is left as a problem for the reader.

Remark 7.3. If one interprets “resulting tetrahedrons” as any tetra-

hedrons formed by joining one of the edge points to a vertex, then

the solution is simple: pick a vertex A of the tetrahedron. If the

points on the three edges from A all lie closer to A than to the other
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vertex on the edge, then the tetrahedron formed by these edge points

and A is clearly not greater in volume than 1/8 of the volume of the

original tetrahedron. Otherwise, there is an edge point E such that

the distance from E to BCD is less than or equal to half the distance

from A to BCD. Now clearly, one of the four triangles formed by

the edge points at the base has area which not greater than 1/4 of

the area of the base. It then follows that the tetrahedron formed by

joining this triangle to E has volume which is not greater than 1/8

of the original volume.

Problem 8. We are told that a2 + 4 b2 = 4 , cd = 4 . Show that

(a− d)2 + (b− c)2 ≥ 1.6 .

Solution. The lower bound is found as follows: the form

(a− d)2 + (b− c)2

is the square of the Euclidean distance between (a, b) and (d, c), so

the question reduces to finding the minimum distance between the

curves x2+ 4y2 = 4 , and xy = 4 . The first of these is an ellipse with

axes’ lengths 2 and 1 , while the second is a hyperbola. Clearly, this

problem is symmetric with respect to the line x=−y, so one can re-

strict oneself to x ≥ −y, and, as a consequence, to the component of

the hyperbola with c, d > 0 . Thus, in the following, “the hyperbola”

will mean points (x, y) satisfying xy = 4 and x, y > 0 . The main

idea is the following simple observation.

P

P’

Q Q’ 

R 

Lemma 8.1. If a convex curve C has a tangent line L and a concave
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curve C ′ has a tangent line L′ such that L′ is parallel to L and neither

C nor C ′ lie between L and L′, then the minimum distance between

C and C ′ is greater than the distance between L and L′.

Proof. Note that if P is a point on C and P ′ is a point on C ′, then

given the Lemma assumptions, PP ′ must cross L and L′, so that

|PP ′| is greater than the distance between L and L′. �

In order to use this, one must find points on the ellipse and on the

hyperbola whose tangents have the same slope. In order to do this,

one must first compute the slope of the tangents to these curves.

Thus, consider a point (x, y) on the ellipse. Differentiating

x2 + 4y2 = 4

gives

2x dx+ 8y dy = 0 ,

so that
dy

dx
= − x

4y

is the slope of the tangent line at (x, y). Similarly, the slope of the

tangent line at the point (x, y) of the hyperbola is −4/x2.

One now appeals to a “trick” which consists in taking

P =
(√

2 , 1√
2

)

and P ′ =
(

2
√

2 ,
√

2
)

.

It turns out that P lies on the ellipse and P ′ on the hyperbola,

and that the slopes of the tangent lines at P and P ′ are both equal

to −1/2 , as can be checked using the previous paragraph. A further

simple computation shows that if L is the tangent line at P and L′

the tangent line at Q, then these lines are given by the equations

L : y = −x
2

+
√

2 , L′ : y = −x
2

+ 2
√

2 .

To compute the distance between L and L′, consider their intersec-

tions at the x-axis. Thus, L intersects the x-axis at Q = (2
√

2 , 0),

and L′ at Q′ = (4
√

2 , 0). Now, let us draw a line from Q perpendic-

ular to L meeting L′ at R. Since L′ has a slope of −1/2 with respect

to the x-axis, it follows that the x-axis (pointing to −∞) has a slope
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of 1/2 with respect to L′ (pointing in the positive y direction). This

implies that

|QR|
|RQ′| =

1

2
, so that

|QR|
|QQ′| =

1√
5
,

by the Pythagorean theorem. Since |QQ′| = 2
√

2 , one gets

|QR| =
2
√

2√
5
.

Since QR is perpendicular to L and L′, it follows that |QR| equals

the distance between L and L′. One concludes that

(a− d)2 + (b− c)2 ≥ |QR|2 =
8

5
= 1.6 .

Remark 8.1. The minimum value of

(a− d)2 + (b− c)2 is 1.77479583276941567010 . . . .

Proof. Unlike the other material in this section, the proof uses a

computer algebra system, as this question does not appear to have

a closed form solution.

One proceeds along the lines used in the solution to the problem.

The idea is that Lemma 8.1 clearly implies that if M and M ′ lying

on C and C ′, respectively, are such that MM ′ is orthogonal to the

tangents atM andM ′, then |MM ′| is the minimum distance between

C and C ′. One therefore finds two such points.

P

P’

N

N’

M

M’

59
Mekhmat Entrance Examinations Problems



January 7, 2005 12:14 WSPC/Trim Size: 9in x 6in for Proceedings MekhmatFinal

39

In order to do this, one starts with a given value of α and finds

points on the ellipse and the hyperbola where tangents to both have

a slope equal to −α. On the ellipse, let the tangent at M=(x0 , y0)

have the slope −α so that − x0

4y0
= −α. Then,

x2
0 + 4y2

0 = 4 ⇒ x0 = 4α√
4α2+1

, y0 = 1√
4α2+1

.

Similarly, let M ′ = (x1 , y1) be a point on the hyperbola whose tan-

gent has slope −α. Then − 4
x2

1

= −α, and

x1y1 = 4 ⇒ x1 = 2√
α
, y = 2

√
α .

In order for MM ′ to be orthogonal to the tangents one must have

y1 − y0

x1 − x0
=

1

α
.

This gives

2
√
α− 1√

4α2+1
2√
α
− 4α√

4α2+1

=
2α

√
4α2 + 1 − √

α

2
√

4α2 + 1 − 4α
√
α

=
1

α
,

which simplifies to the equation

16α6 − 28α4 − 9α3 + 8α2 + 4 = 0 . (26)

This equation was examined using the computer algebra system

Mathematica. The polynomial on the left hand side of (26) is ir-

reducible over the rationals and the computer algebra system was

unable to express the roots using radicals. Approximate roots are

−0.979691±0.34843 i , −0.04401±0.493223 i , 0.699695 , 1.34771 .

One can eliminate all but the last two possibilities. Carrying out the

above argument using the last root fails, as it ends up giving points

N and N ′ with a negative slope for N − N ′, see the figure, which

means that it cannot be orthogonal to the tangent, since it would

then have slope 1/α > 0 . The relevant root is therefore the second

to last which, to twenty digits, is

α0 = 0.69969482002339060183 . . . .
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Following the above argument, one lets

M =

(

4α0√
4α2

0
+1

, 1√
4α2

0
+1

)

= (1.62722713282531988425 . . . , 0.58140602383297697452 . . .) ,

M ′ =

(

2√
α0

, 2
√
α0

)

= (2.39097847459882936932 . . . , 1.67295525346422891327 . . .) .

One therefore gets the minimum value of (a− d)2 + (b− c)2 to be
∣

∣M −M ′
∣

∣

2
= 1.77479583276941567010 . . . .

Problem 9. We are given a point K on the side AB of a trapezoid

ABCD. Find a point M on the side CD that maximizes the area of

the quadrangle which is the intersection of the triangles AMB and

CDK.

Answer. It is not clear from the statement of the problem whether

AB is one of the parallel sides of the trapezoid. Since this inter-

pretation seems more natural, I will treat this possibility only and

leave the other case to the reader. The answer in this case is as

follows. If AB and CD are parallel, then M is chosen such that

|DM | · |AB| = |AK| · |CD| .

K

M

A B

CD

E 

F 

Proof. Let t be the area of the trapezoid, h the distance between the

parallel lines AB and CD, and let q be the area of the quadrangle in
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question. The first observation is that the area of AMB plus the area

of DKC equals t. To see this, one notes that the areas of AMB and

DKC are independent of M and K since AB and CD are parallel.

One can therefore take K = A and M = C, in which case ABCD is

the disjoint union of AMB and DKC.

One then uses

area (AMK ∪DKC) = area (AMK) + area (DKC) − q ,

to get

q = t− area (AMK ∪DKC) .

Now let E be the intersection of DK and AM , and F the intersection

of MB and KC. One has

area (AMK ∪DKC) = area (AEK) + area (DEM)

+ area (KFB) + area (MFC) + q ,

so

q =
t

2
− area (AEK) + area (DEM) + area (KFB) + area (MFC)

2
.

But since AB is parallel to DC, it follows that triangle AEK is

similar to triangle MED and triangle KFB is similar to CFM .

Now let h1 be the altitude of DEM , i.e. the distance from E to

DM , and h2 the altitude of AEK, i.e. the distance from E to AK.

One then has

h2 = h1
|AK|
|DM | .

Moreover, since AB and CD are parallel, one also has h1 + h2 = h.

One concludes that

h1 = h
|DM |

|DM | + |AK| .

This then implies that

area (AEK) + area (DEM) =
h

2

|AK|2 + |DM |2
|AK| + |DM | .
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One similarly gets

area (KFB) + area (MFC) =
h

2

|KB|2 + |MC|2
|KB| + |MC| .

Let x = |DM |, so that |MC| = |DC|−x , then one wants to maximize

t

2
− h

4

(

x2 + |AK|2
x+ |AK| +

(|DC| − x)2 + |KB|2
|DC| − x+ |KB|

)

,

which is equivalent to minimizing

f(x) =
x2 + |AK|2
x+ |AK| +

(|DC| − x)2 + |KB|2
|DC| − x+ |KB|

= x− |AK| + 2|AK|2
x+ |AK| − |KB| − x+

2|KB|2
|DC| − x+ |KB|

= −|AB| + 2|AK|2
x+ |AK| +

2|KB|2
|DC| − x+ |KB| .

So, f ′(x) = 0 gives

|AK|2
(x+ |AK|)2 =

|KB|2
(|DC| − x+ |KB|)2 ,

and since all quantities are positive, one can take positive square

roots to obtain |AK| · |CD| = x |AB|, which is exactly the expression

claimed above.

To complete the proof, one checks that this gives a minimum of

f(x). But this follows from the fact that

f ′′(x) =
4|AK|2

(x+ |AK|)3 +
4|KB|2

(|DC| − x+ |KB|)3 > 0 . �

Problem 10. Can one cut a three-faced angle by a plane so that

the intersection is an equilateral triangle?

Answer. In general, one cannot cut a three-faced angle by a plane

so that the intersection is an equilateral triangle.

Proof. One can take “three-faced” angle to mean the set of points

{xU + yV + zW : x, y, z ≥ 0} ,
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where U , V , and W are unit vectors that do not all lie in a plane.

The problem is therefore to find x, y, z > 0 such that

‖zW − xU‖ = ‖zW − yV ‖ = ‖xU − yV ‖ .

Clearly, one can assume that z = 1 , so the problem is equivalent to

finding x, y > 0 such that

(W − xU) · (W − xU) = (W − yV ) · (W − yV ) ,

(W − xU) · (W − xU) = (xU − yV ) · (xU − yV ) .
(27)

A counter example is given by

U = (1 , 0 , 0) , V = (0 , 1 , 0) , W =
(

0 , 1√
2
, 1√

2

)

.

Thus, we assume that there exist x, y that satisfy (27) for this choice

of U, V,W . Then the first of equations (27) gives

x2 + 1 =
(

y − 1√
2

)2
+ 1

2
,

so that

y = 1√
2
±
√

x2 + 1
2
.

Since one must have x, y > 0 , the only solution is

y = 1√
2

+
√

x2 + 1
2
. (28)

The second of equations (27) implies that x2 +y2 = x2 +1 . However,

Eq. (28) implies that y ≥
√

2 > 1 , so there is a contradiction, and

this proves the result.

Remark 10.1. One can give some general conditions for the exis-

tence of a solution (a complete characterization is left to the reader).

In particular, it can be shown that there is a solution if either

(a) U ·V , U ·W, V ·W < 1/2 , or (b) U ·V , U ·W, V ·W > 1/2 .

Proof. The idea is to solve the first of equations (27) by finding a

solution y = f(x), x ≥ 0 , such that y = f(x) > 0 for x > 0 , and
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f(x) is continuous. One then defines

g(x) =
(

W−xU
)

·
(

W−xU
)

, h(x) =
(

xU−f(x)V
)

·
(

xU−f(x)V
)

,

so that a solution exists when g(x) = h(x). In order to do this, one

finds a value x1 > 0 such that g(0) − h(0) and g(x1) − h(x1) have

opposite sign. Continuity will then imply that there is an x0 > 0 for

which g(x0) = h(x0).

To prove (a), let us assume, without loss of generality, that

V ·W ≥ U ·W .

One now solves the first of equations (27) to get

y = V ·W +
√

(x− (U ·W ))2 + (V ·W )2 − (U ·W )2 .

Let f(x) be the right hand side of the last equation. Note that

f(x) > 0 for x > 0 ,

since by assumption,

U ·W < 0 when V ·W < 0 .

Now if V ·W ≤ 0 , then f(0) = 0 , and otherwise f(0) = 2(V ·W ).

Furthermore, g(0) = 1 , while

h(0) = 0 if V ·W = 0 ,

and

h(0) = 4(V ·W )2 if V ·W > 0 .

By assumption, 4 (V ·W )2 < 1 , so in either case, one has h(0) < g(0).

Now, it is clear that

f(x)
x

→ 1 as x→ ∞ ,

so

g(x) = x2 + 1 − 2x(U ·W ) ∼ x2,

while

h(x) = x2 +
[

f(x)
]2 − 2xf(x)(U · V )

∼ (2 − 2 (U · V ))x2 = (1 + ε)x2, ε > 0 ,
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since it was assumed that U ·V < 1/2 . It follows that there is x1>0 ,

for which g(x1) < h(x1) and the proof follows as outlined above.

(b) Again, assume that W ·U ≤W ·V . In this case, one solves the

second of equations (27) but this time one takes the solution

y = V ·W −
√

(x− (U ·W ))2 + (V ·W )2 − (U ·W )2 .

Let f(x) be the right hand side of this equation. It follows that

f(0) = 0 , f(2(U ·W )) = 0 ,

and

f(x) > 0 , for 2(U ·W ) > x > 0 .

Now g(0) = 1 and h(0) = 0 , so g(0) > h(0). On the other hand,

g
(

2(U ·W )
)

= 1 ,

while
h
(

2(U ·W )
)

= 4
(

U ·W
)2
> 1 ,

so that h
(

2(U ·W )
)

> g
(

2(U ·W )
)

, and the result follows by conti-

nuity.

Problem 11. Let H1 , H2 , H3 , H4 , be the altitudes of a tri-

angular pyramid. Let O be an interior point of the pyramid and

let h1 , h2 , h3 , h4 be the perpendiculars from O to the faces. Show

that

H4
1 +H4

2 +H4
3 +H4

4 ≥ 1024h1 · h2 · h3 · h4. (29)

Solution. Let ABCD be the tetrahedron and let its faces be

F1 ,F2 ,F3 , andF4 , with areas f1 , f2 , f3 , and f4 , respectively. Let

Hi be the altitude to Fi , and if P is an interior point of the tetrahe-

dron, let hi = hi(P ) be the distance of P to Fi .

Recall that the volume of a tetrahedron is 1
3 base×height (knowl-

edge of the exact constant 1
3 is not important here). Thus, let-

ting V be the volume of the tetrahedron, one has Hi = 3V/fi ,

where i = 1 , . . . , 4 . Moreover, P divides ABCD into 4 non-

overlapping tetrahedrons PABC, PABD, PACD, and PBCD.
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These tetrahedrons have volumes hifi/3 in some order, so one also

gets the identity h1f1 + h2f2 + h3f3 + h4f4 = 3V .

Now both sides of (29) are homogeneous of degree 4 , so without

loss of generality one can normalize the tetrahedron to have volume

equal to 1/3 . It follows that

Hi =
1

fi
, i = 1 , . . . , 4 , h1f1 + h2f2 + h3f3 + h4f4 = 1 . (30)

One next finds an upper bound for h1h2h3h4 by maximizing

α(y1 , y2 , y3 , y4) = y1 y2 y3 y4 ,

given the constraints

y1f1 + y2f2 + y3f3 + y4f4 = 1 , yi ≥ 0 .

(Whether this maximum is attained by an actual interior point of

the tetrahedron is left as a problem for the reader.)

One observes that there will be a maximum with yi > 0 since

α(y1, y2, y3, y4) vanishes if any of the yi’s is zero. This implies that

the maximum will be a local maximum, and one applies the follow-

ing principle. Let S be a smooth surface of dimension of n − 1 in

Euclidean n-space and γ a real valued smooth function on S. Then

at a local maximum s0 of γ , the vector ∇γ =
( ∂γ
∂x1

, . . . , ∂γ
∂xn

)

is a

multiple of the normal to S at s0 . To see why this should be true,

recall that ∇γ points in the direction of maximum growth of γ , so if

s0 is a local maximum, then moving away from s0 along S, i.e. locally

orthogonally to the normal vector at s0 , should never increase γ .

One now lets

yi = 1
4fi

+ xi , i = 1 , . . . , 4 ,

and notes that maximizing α is equivalent to maximizing β = logα.

This reduces the problem to maximizing

β(x1, x2, x3, x4) = log

[

4
∏

i=1

(

1
4fi

+ xi

)

]

,

given that

x1f1 + x2f2 + x3f3 + x4f4 = 0 . (31)
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One easily computes

∇β(x1, x2, x3, x4) =





1
1

4f1
+ x1

,
1

1
4f2

+ x2

,
1

1
4f3

+ x3

,
1

1
4f4

+ x4



 ,

while (31) defines a plane with normal vector n = (f1, f2, f3, f4).

Equating ∇β = tn, for t 6= 0 , results in

xi = 1
fi

(

1
t
− 1

4

)

, i = 1, . . . , 4 .

Applying (31) shows that in fact x1 = x2 = x3 = x4 = 0 . It follows

that the maximum of α occurs at

y1 =
1

4f1
, y2 =

1

4f2
, y3 =

1

4f3
, y4 =

1

4f4
,

and thus the maximal value of α is 1
28f1f2f3f4

. This implies that

h1h2h3h4 ≤ 1

28f1f2f3f4
.

On the other hand, (30) implies that

H4
1 +H4

2 +H4
3 +H4

4 =
1

f4
1

+
1

f4
2

+
1

f4
3

+
1

f4
3

.

The final result will therefore follow from the inequality

z1z2z3z4 ≤ z4
1 + z4

2 + z4
3 + z4

4

4
. (32)

To prove this, one starts with (a− b)2 ≥ 0 which implies

ab ≤ a2 + b2

2
. (33)

One therefore has

z1z2z3z4 ≤
(

z2
1 + z2

2

2

)(

z2
3 + z2

4

2

)

≤ 1

4

(z2
1 + z2

2)
2 + (z2

3 + z2
4)

2

2

=
1

4

z4
1 + 2z2

1z
2
2 + z4

2 + z4
3 + 2z2

3z
2
4 + z4

4

2
,

which leads to (32) upon applying (33) to z2
1z

2
2 and z2

3z
2
4 .
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Problem 12. Solve the system of equations.
{

y(x+ y)2 = 9

y(x3 − y3) = 7

Answer. The only real solution is x = 2 , y = 1 .

Proof. Clearly this is a solution. To show that this is the only one,

let x = ty, then the system becomes
{

y3(t+ 1)2 = 9

y4(t3 − 1) = 7 .
(34)

Taking the first equation to the 4th power and cubing the second

and dividing yields

(t+ 1)8

(t3 − 1)3
=

94

73
,

which reduces to finding the roots of

f(t) = 94 (t3 − 1)3 − 73 (t+ 1)8 .

Any real positive root t0 of f(t) will yield a solution x0 , y0 by letting

y0 =
(

94

(t+1)8

)1/12
and x0 = t0 y0 .

Conversely, the above shows that every solution of (34) yields a pos-

itive real root of f(t).

Clearly, t = 2 is a root of f(t), and this corresponds to the solution

x = 2 , y = 1 . By the previous argument, one only has to show that

f(t) has no other positive real root. This can be done by directly

computing

f(t)

t− 2
= 6561t8 + 12779t7 + 22814t6 + 16341t5

+ 13474t4 + 2938t3 + 6351t2 + 3098t + 3452 ,

and noting that all the coefficients are positive so there is no other

positive real root. This computation can be done in a straightforward
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way by expanding

f(t) = 6561t9 − 343t8 − 2744t7 − 29287t6 − 19208t5

− 24010t4 + 475t3 − 9604t2 − 2744t − 6904 ,

and then doing a long division by t − 2 . Such a computation was

achieved in full during a train ride from IHES to Paris. Moreover,

the fact that division by t− 2 must leave a zero remainder provides

an internal check for the computation.

Problem 13. Show that if a , b , and c are the sides of a triangle and

A ,B , and C are its angles, then

a+ b− 2c

sin(C/2)
+
b+ c− 2a

sin(A/2)
+
a+ c− 2b

sin(B/2)
≥ 0 .

Solution. By collecting terms, one can rewrite the expression as

(a− b)

(

1

sin(B/2)
− 1

sin(A/2)

)

+ (a− c)

(

1

sin(C/2)
− 1

sin(A/2)

)

+ (b− c)

(

1

sin(C/2)
− 1

sin(B/2)

)

.

C

A

B

a

b

c

One now observes that each summand is non-negative.

In fact, consider a triangle ABC with sides a = BC, b = AC,

c = AB. Then b ≥ a if and only if ∠B ≥ ∠A, and since A,B < 180◦,
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if and only if sin(B/2) ≥ sin(A/2). It follows that

(a− b)

(

1

sin(B/2)
− 1

sin(A/2)

)

≥ 0 .

Since this is true for any two sides and corresponding vertices, it

holds for the other terms and the result follows.

Problem 14. In how many ways can one represent a quadrangle as

the union of two triangles?

Answer. If the quadrangle is convex then there are exactly two

ways, and if it not convex then the number of representations is

infinite.

Proof. First consider a convex quadrangle ABCD and assume that

ABCD is the union of two triangles T1 and T2 .

A B

C
D

E 

F

A B

C
D

E F A B

C
D

First one shows that one of the triangles must contain three ver-

tices. For if this were not the case, then each of the triangles would

contain exactly two vertices leading to two cases.

In the first case, each triangle contains two vertices on the same

edge of the quadrangle. Without loss of generality, assume that T1

contains AB and T2 contains CD. Since a triangle is a closed convex

set, and DA is not contained completely in T1 , there is a point E in

the interior of AD for which AE ⊂ T1 but ED − {E} 6⊂ T1 . This

condition implies that E is a vertex of T1 . Since a triangle is convex

and the quadrangle is convex none of the sides AE, BE, or AB of

T1 can be extended outside of ABCD, so it follows that T1 = ABE.

Similarly, there is an F in the interior of AD such that T2 = CDF .

However, this shows that T1∪T2 does not include the interior of BC,

so this case is not possible.

In the second case, each triangle contains opposite vertices of

the quadrangle. Without loss of generality, assume that T1 contains
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A and C and T2 contains B and D. By assumption, AB is not

completely contained in T1 or T2 , so as above, there is a point E in

the interior of AB which is a vertex of T1 and T1 = AEC. Similarly,

there is a point F in the interior of AB such that T2 = BDF . This

again implies that T1 ∪ T2 does not contain the interior of BC, so

this case is not possible either.

It follows that one of the triangles contains three vertices. With-

out loss of generality, assume that this is T1 and that the vertices

are A,B,C. Since the quadrangle is convex, none of the edges AB,

AC, or BC can be extended and still remain in T1 so T1 = ABC. It

follows that BDA ⊂ T2 , and since none of the edges of BDA can be

extended, one has that BDA = T2 .

Thus, each choice of three vertices of ABCD yields a partition

into two triangles. There are 4 such choices, but two of these are

equal by symmetry, so there are two choices: ABC ∪ BDA and

ABD ∪BCD.

A

B

C

D

E F

G 

H

Consider the case where the quadrangle is not convex. Let the

quadrangle be ABCD, where the angle B is greater than 180◦. Now

extend AB so that it cuts CD at E and extend CB so that it cuts

AD at F . Also, let G be any point on BF and H be any point on

ED. For any such choice, the quadrangle is the union of the triangles

AED and CGH.

Remark 14.1. It seems clear that the examiners only meant non-

overlapping triangles (note that the two triangles can never be dis-

joint). The “trap”, which some students actually fell into [9], was to
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only consider convex quadrangles , but the examiners were in fact

trapped by failing to consider the most general case.

In the non-convex case, there are three ways to represent the

quadrangle as a union of non-overlapping triangles which, using the

above notation, are ABD ∪CBD, AED ∪CBE, and ABF ∪CFD.

The argument is similar to the convex case and is left to the reader.

Problem 15. Show that

1000
∑

n=1

1

n3 + 3n2 + 2n
<

1

4
.

Solution. The factorization n3 + 3n2 + 2n = n(n + 1)(n + 2) leads

to the partial fraction expansion

1

n3 + 3n2 + 2n
=

1

2

(

1

n
− 1

n+ 2

)

+
1

n+ 1
− 1

n+ 2
.

Now let N > 3 , e.g. N = 1000 , then

N
∑

n=1

1

n3 + 3n2 + 2n
=

1

2

N
∑

n=1

(

1

n
− 1

n+ 2

)

−
N
∑

n=1

(

1

n+ 1
− 1

n+ 2

)

.

Each sum reduces by telescopic summation and this gives

1

2

(

1 +
1

2
− 1

N + 1
− 1

N + 2

)

−
(

1

2
− 1

N + 2

)

=
1

4
+

1

2(N + 2)
− 1

2(N + 1)
=

1

4
− 1

2(N + 1)(N + 2)
<

1

4
.

Problem 16. Solve the equation

x4 − 14x3 + 66x2 − 115x+ 66.25 = 0 .

Answer. The roots of x4 − 14x+ 66x2 − 115x+ 66.25 are

7+i
2

+
√

4 + 2i , 7+i
2

−
√

4 + 2i , 7−i
2

+
√

4 − 2i , 7−i
2

−
√

4 − 2i ,

where i =
√
−1 .
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Proof. Let
f(x) = x4 − 14x+ 66x2 − 115x+ 66.25 .

Substituting x = y
2

we rewrite f(x) = 0 as g(y) = 0 , where

g(y) = y4 − 28y3 + 264y2 − 920y + 1060 .

One removes the cubic term by substituting y=z+7 so that g(y)=0

transforms into h(z) = 0 , where

h(z) = z4 − 30z2 + 32z + 353 .

Now h(z) ≡ z4 − z− 1 (mod 3), which is easily seen to be irreducible

modulo 3. It follows that f(x) is irreducible over the rationals, so

there is no very easy solution to this problem. However, since this

is an examination problem (one conjectures that students were not

expected to be familiar with the solution to the general quartic),

there might still be an “easy” solution. In particular, one could hope

that f(x) factors over a quadratic extension of the rational numbers.

With this in mind, one writes

z4−30z2+32z+353 = (z2+a
√
D z+b+c

√
D) (z2−a

√
D z+b−c

√
D) ,

(35)

where a, b, c,D are integers (more generally, b and c could be half-

integers) and D is squarefree. Equating terms in (35) one gets the

conditions

(I) 2b− a2D = −30, (II) − 2acD = 32 , (III) b2 − c2D = 353 .

From (II) one concludes that D must be one of −2, 2,−1 . IfD = −2 ,

then (III) has the solution b = ±15 , c = ±8 . But then, (I) would

imply that a is divisible by 15 , which is inconsistent with (II). If

D = 2 , then (III) has the solution b = ±19 , c = ±2 (other solutions

can be easily excluded). But then a = ±4 which is inconsistent

with (I). Finally, if D = −1 , then (III) has the solution b = ±17 ,

c = ±8 , and (II) implies that a = ±2 . Trying out all the possible sign

combinations, one eventually finds that a = −2 , c = −8 , b = −17

solves (I), (II), and (III). One therefore has the factorization

z4−30z2+32z+353 = (z2−2iz−17−8i) (z2 +2iz−17+8i). (36)
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Applying the quadratic formula to each term yields roots

z = i± 2
√

4 + 2i and z = −i± 2
√

4 − 2i

for the left and right factor of (36), respectively. The final answer

follows on substituting x = (z + 7)/2 .

Problem 17. Can a cube be inscribed in a cone so that 7 vertices

of the cube lie on the surface of the cone?

Answer. It is not possible to inscribe a cube in a cone so that 7

vertices of the cube lie on the cone.

Proof. If this were possible, then there would be a face ABCD

with all vertices on the cone, and the parallel face EFGH would

have at least 3 vertices on the cone. Now the face ABCD lies on a

plane which cuts the cone in a conic section, i.e. either in a hyper-

bola, parabola, ellipse, or two intersecting lines. Only an ellipse can

circumscribe a square at 4 points, therefore, the intersection is an

ellipse, say E1 . Since EFGH is parallel to ABCD, it lies on a plane

which also intersect the cone at an ellipse, say E2 .

Now ABCD is symmetric with respect to E1 , i.e. its sides are

parallel to the major or minor axes of E1 . Since ABCD, EFGH

are parallel and E1 and E2 are parallel, it follows that EFGH is

symmetric with respect to E2 . This implies that the vertices of

EFGH can meet E2 at either 0, 2, or 4 points. This implies that

EFGH meets E2 at 4 points. However, it is clear that there is a

unique square that is inscribed symmetrically in an ellipse. Since

E1 and E2 are parallel, they are similar, i.e. the ratio of their axes

is the same, so the fact that they inscribe the same square implies

that they are equal. This is clearly impossible, as different parallel

sections of a cone must be different. It should also be noted that this

also implies that E1 cannot be a circle. The only other possibility

is that ABCD is not symmetric with respect to E1 . However, this

cannot happen as every inscribed square in an ellipse must have its

sides parallel to the major or minor axes.
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I 

J 

K 

L 

In order to prove this, without loss of generality, consider an ellipse

x2 + y2

a2
= 1 , a > 0 ,

and a line

y = mx+ b , m 6= 0 .

If these intersect at (x, y), then

(a2 +m2)x2 − 2mbx+ b2 − a2 = 0 ,

so the intersection points are

I =

(

−mb− a
√
a2 +m2 − b2

a2 +m2
,
ba2 − am

√
a2 +m2 − b2

a2 +m2

)

,

J =

(

−mb+ a
√
a2 +m2 − b2

a2 +m2
,
ba2 + am

√
a2 +m2 − b2

a2 +m2

)

.

The length of the chord IJ is then

2a
√

(1 +m2) (a2 +m2 − b2)

a2 +m2
.

It follows that given a and m, the only way to get two equal chords is

to take y = mx+b and y = mx−b (this corresponds to the symmetry
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of the ellipse). The solutions corresponding to −b are

K =

(

mb− a
√
a2 +m2 − b2

a2 +m2
,
−ba2 − am

√
a2 +m2 − b2

a2 +m2

)

,

L =

(

mb+ a
√
a2 +m2 − b2

a2 +m2
,
−ba2 + am

√
a2 +m2 − b2

a2 +m2

)

.

If these 4 points are to lie on a square then the angle KLJ must be

90◦, in other words, the slope of LJ must be −1/m since the slope

of KL is m. Since

L− J =

(

2mb

a2 +m2
,

−2ba2

a2 +m2

)

,

this slope is −a2/m. It follows that a2 = 1 , which implies that the

ellipse is a circle. However, this contradicts the assumption that the

ellipse circumscribes the square asymmetrically, and completes the

proof.

Problem 18. The angle bisectors of the exterior angles A and C of

a triangle ABC intersect at a point of its circumscribed circle. Given

the sides AB and BC, find the radius of the circle.

[From Ref. 2: “The condition is incorrect: this doesn’t happen.”]

Solution. As indicated by A. Shen, the statement is incorrect. In

fact, the following is true. In a triangle ABC, the angle bisectors

of the exterior angles of A and C cannot meet on the circumscribed

circle of ABC.

A B

C 

D

Proof. Let the exterior angle bisectors of A and C meet at the

point D. If D were to lie on the circumscribed circle of ABC, then
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ABCD would be a cyclic quadrilateral. One appeals to the fact that

in a cyclic quadrilateral the sum of opposite angle is 180◦ (this result

seems well known and the easy proof is left to the reader). One now

observes that the angle BAD is equal to

180◦−A
2

+A = 90◦ + A
2

and similarly the angle BCD is 90◦ + C/2 . It follows that the sum

of the angles BAD and BCD is 180◦ + (A+ C)/2 > 180◦, which is

a contradiction.

Problem 19. A regular tetrahedron ABCD with edge a is inscribed

in a cone with a vertex angle of 90◦ in such a way that AB is on a

generator of the cone. Find the distance from the vertex of the cone

to the straight line CD.

Answer. The statement of the problem is incorrect as the tetra-

hedron cannot be inscribed in the cone. Inscribing a tetrahedron

in the cone means that all its vertices lying on the cone and that,

apart from its vertices, it lies entirely inside a connected component

of R3 minus the cone. As will be seen below, this is not possible.

If one takes “inscribe” to mean only that the tetrahedron has all its

vertices on the (double) cone, then the answer is
√

34 a/8 . However,

this interpretation would imply that a cube could be inscribed in a

cone, contradicting the result of Problem 17.

Proof. Without loss of generality, one can take the cone to be given

by the equation x2 + y2 = z2 and the generator to be the line x = 0 ,

y = z . Moreover, one can take the tetrahedron to have side length

equal 1 , so that for a tetrahedron of side a, the answer will be a

times the answer for this case. Since A and B lie on the generator,

one can assume, without loss of generality, that

A =
(

0 , t , t
)

, B =
(

0 , t+ 1√
2
, t+ 1√

2

)

.

Letting
C =

(

−1
2
, t− 1

2
+ 1

2
√

2
, t+ 1

2
+ 1

2
√

2

)

,

D =

(

1
2
, t− 1

2
+ 1

2
√

2
, t+ 1

2
+ 1

2
√

2

)

,
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it is easily checked that ABCD is a regular tetrahedron. In order for

C and D to lie on the cone, one has to have

1
4

+

(

t− 1
2

+ 1
2
√

2

)2

=

(

t+ 1
2

+ 1
2
√

2

)2

,

which has the unique solution t0 = 1
8
− 1√

8
. It follows that the

tetrahedron must have vertices

A =

(

0 , 1
8
− 1√

8
, 1

8
− 1√

8

)

, B =

(

0 , 1
8

+ 1√
8
, 1

8
+ 1√

8

)

,

C =
(

−1
2
, −3

8
, 5

8

)

, D =
(

1
2
, −3

8
, 5

8

)

.

Since 1/8 < 1/
√

8 , it follows that the interior of AB and the interior

of CD lie on two different connected components of R3 minus the

cone, so that ABCD is not strictly inscribed in the double cone. In

any case, the midpoint of CD is (0,−3/8, 5/8) so that the distance

from the vertex (0, 0, 0) to CD is
√

34/8 .

One must also consider the possibility of inscribing the tetrahe-

dron asymmetrically by rotating it about y = z . However, the inter-

section of the cone with the possible rotations of the C and D about

y = z form a circle which lies in a plane orthogonal to the generator

of the cone. Since the cone has vertex angle 90◦, the intersection of

this plane with the cone is a parabola. A circle and a parabola can

intersect at two points at most, so this implies that any intersection

point must be symmetric, and there are no other solutions.

Remark 19.1. The following shows how one was led to the original

construction of C and D. One begins with a simple result about

regular tetrahedrons.

Lemma 19.1. Let ABCD be a regular tetrahedron and ϕ be the

angle between AB and AC +AD, i.e. the angle that a side from the

base to the summit makes with the base, then ϕ = arccos
(

1/
√

3
)

.

Proof. This is clearly equivalent to showing that for a regular tetra-

hedron of side 1, the distance of the summit to the base is
√

2/3 .
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Thus, let the points be

A =
(

0 ,
√

3
2
, 0
)

, B =
(

0 , y , z
)

, C =
(

−1
2
, 0 , 0

)

, D =
(

1
2
, 0 , 0

)

.

One has ‖C −B‖ = 1 and ‖A−B‖ = 1 , so that

y2 + z2 = 3
4
,
(

x−
√

3
2

)2
+ z2 = 1 .

Clearly B =
(

0 , 1
2
√

3
,
√

2
3

)

solves these equations, and this proves

the Lemma 19.1. �

In order to inscribe the tetrahedron in the cone, one translates it

by
(

0 ,−
√

3
2
, 0
)

so that it has vertices

A =
(

0 , 0 , 0
)

, B =
(

0 ,− 1√
3
,
√

2
3

)

,

C =
(

−1
2
,−

√
3

2
, 0
)

, D =
(

1
2
,−

√
3

2
, 0
)

.

In this position, B has angle π−ϕ in the yz-plane and one wants it

to have angle π/4 , so one rotates the tetrahedron by ψ = ϕ − 3π/4

degrees with respect to the x-axis, then slides it up the cone by

adding (0, k, k). Let Rx,ψ be the rotation, then one is solving for k

such that Rx,ψ(C) + (0, k, k) lies on x2 + y2 = z2.

It only remains to compute Rx,ψ(C), which follows from

Rx,ψ(C) =











1 0 0

0 cosψ − sinψ

0 sinψ cosψ























1
2

−
√

3
2

0













=













1
2

−1
2

+ 1
2
√

2
1
2

+ 1
2
√

2













,

using

cosψ = cos 3π
4

cosϕ+ sin 3π
4

sinϕ = − 1√
6

+ 1√
3
,

sinψ = cos 3π
4

sinϕ− sin 3π
4

cosϕ = − 1√
3
− 1√

6
.
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Problem 20. Compare

log34 · log36 · . . . · log380 and 2 log33 · log35 · . . . · log379 .

Answer.

log34 · log36 · . . . · log380 > 2 log33 · log35 · . . . · log379 .

Proof. Since there are the same number of log3 . . . terms on each

side, the base 3 in the logarithm can be canceled out and the above

is equivalent to

log 4 · log 6 · . . . · log 80 > 2 log 3 · log 5 · . . . · log 79 .

Taking logarithms of both sides, leads to the equivalent statement

40
∑

k=2

log log(2k) > log 2 +

40
∑

k=2

log log(2k − 1) . (37)

The proof of this will rely on two basic facts: that log log x is concave

for x ≥ 3 and that

41
∫

2

dx

(2x− 1) log(2x− 1)
= log 2 . (38)

To see that log log x is concave for x ≥ 3 , note that

d2

dx2
log log x =

1

x2

(

1 − 1

log x

)

> 0 , x > e .

In order to prove (38), note that

41
∫

2

dx

(2x− 1) log(2x− 1)
=

log log(2x− 1)

2

∣

∣

∣

∣

41

2

=
log log 81 − log log 3

2
= log 2 .

From the concavity of log log x one has for k ≥ 2 ,

log log(2k) >
log log(2k + 1) + log log(2k − 1)

2
.
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Subtracting log log(2k − 1) from each side gives

log log(2k) − log log(2k − 1) >
log log(2k + 1) − log log(2k − 1)

2
.

But the right hand side of this is exactly equal to

1

2
log log(2x− 1)

∣

∣

∣

∣

k+1

k

=

k+1
∫

k

dx

(2x− 1) log(2x− 1)
.

It follows that

40
∑

k=2

[

log log(2k) − log log(2k − 1)
]

>

41
∫

2

dx

(2x− 1) log(2x− 1)
= log 2 ,

by (38). This last inequality is exactly (37) and the result follows.

Problem 21. A circle is inscribed in a face of a cube of side a.

Another circle is circumscribed about a neighboring face of the cube.

Find the least distance between points of the circles.

Answer. The minimum distance is
a

√

20 + 8
√

6
.

Proof. It is sufficient to treat the case of a = 2 , as the solution

is linear in a. One can thus consider that the cube has vertices at

(±1,±1,±1) and that the inscribed and circumscribed circles are

given, respectively, by

(cos t , sin t , 1) , 0 ≤ t < 2π

and (1 ,
√

2 sinu ,
√

2 cos u) , 0 ≤ u < 2π ,

The minimum distance will therefore be the minimum of
√

(cos t− 1)2 + (sin t−
√

2 sinu)2 + (1 −
√

2 cos u)2 .

One therefore minimizes

(cos t− 1)2 + (sin t−
√

2 sinu)2 + (1 −
√

2 cos u)2

= 5 − 2 cos t− 2
√

2 sin t sinu− 2
√

2 cos u .
(39)
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This is equivalent to maximizing

cos t+
√

2 sin t sinu+
√

2 cosu . (40)

One does this by first considering u to be constant, and maximizing

over t, and then maximizing over u. This requires the following

lemma.

Lemma 21.1. Let α and β be real numbers, then

max
t∈[0,2π)

(α cos t+ β sin t) =
√

α2 + β2 .

Proof. Let γ =
√

α2 + β2, then there is a ϕ such that α/γ = sinϕ

and β/γ = cosϕ. It follows that α cos t+β sin t = γ sin(t+ϕ) , which

immediately implies the result. �

Continuing with the proof, Lemma 21.1 shows that the maximum

of (40) is
√

1 + 2 sin2 u +
√

2 cos u ,

which can be rewritten as
√

3 − 2 cos2 u +
√

2 cos u .

Since cos u takes on all values in [−1, 1], maximizing this last form

over u is equivalent to maximizing
√

3 − 2x2 +
√

2x, x ∈ [−1, 1] . (41)

One checks for critical points by taking the derivative and setting it

equal to zero. This gives

√
2 − 2x

3 − 2x2
= 0 ,

so that x =
√

3/2 , and the resulting value in (41) is
√

6 . Since there

is only one critical point in [−1, 1] the only other possible maxima are

at x = ±1 , but these give 1 ±
√

2 which are both smaller than
√

6 .

It follows that the maximum value of (40) is
√

6 and plugging this

back into (39) gives the minimum value

5 − 2
√

6 =
1

5 + 2
√

6
.
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The result then follows by substitution.

Remark 21.1. A. Shen notes [9] that there is an elegant solution to

the problem that follows. Consider two spheres with center at the

center of the cube with each containing one of the circles mentioned

in the problem. Clearly, the distance between the circles cannot be

less than the distances between the spheres. On the other hand, it

is easy to see that there is a ray from the center that intersects both

circles. It follows that this distance is minimal.

Problem 22. Given k segments in a plane, show that the number

of triangles all of whose sides belong to the given set of segments is

less than C k3/2, for some constant C > 0 .

Solution. One has to interpret this as asking for triangles whose

edges exactly belong to the set of given segments, see Section 4.

The problem is equivalent to bounding the number of triples

{a, b}, {b, c}, {c, a}, where {a, b}, {b, c}, {c, a} correspond to the

endpoints of 3 distinct segments. Under this formulation it becomes

clear that the fact that ei are line segments is unimportant and that

the problem rests on the fact that each ei joins its 2 endpoints. In

other words, one is really considering a (combinatorial) graph V with

vertices the endpoints of the segments and edges the ei’s. The prob-

lem can therefore be restated as follows. Let V be a graph, then the

number of triangles in the graph is not greater than C k3/2, where k

is the number of edges in the graph. Note that a triangle in a graph

is a simply a set of 3 vertices that is completely connected. The main

idea is the following.

Lemma 22.1. Given a graph with k edges, the number of unordered

pairs of distinct triangles, which have a common edge, is not greater

than 2k2.

Proof. Let e1, . . . , ek be the edges. To each unordered pair of edges

(e, e′), where e = {u, v} and e′ = {u′, v′}, one associates the 4 pairs

of triangles

{uvu′, u′v′u}, {vuu′, u′v′v}, {uvv′, v′u′u}, {vuv′, v′u′v} .
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u

v

u’

v’

v

u

u’

v’

u

v

v’

u’

v

u

v’

u’

Thus each unordered pair of edges gives rise to at most 4 pairs

of triangles with a common edge. Moreover, it is clear that any pair

of triangles with a common edge will be generated in this way. It

follows that the number of pairs of triangles with a common edge is

not more than 4 times the number of unordered pairs of edges. Since

the number of unordered pairs of edges is k(k − 1)/2 ≤ k2/2 , the

result follows. �

Now, given a graph V , let T be the total number of triangles, and

for each edge e, let te be the number of triangles containing e. For

each edge e, the number of pairs of triangles having e as a common

edge is te (te − 1)/2 . Since distinct triangles cannot have more than

one edge in common, the estimate of Lemma 22.1 implies

∑

e

te (te − 1)

2
≤ 2 k2 .

A simple computation shows that

t ≤ t(t− 1)

2
for t ≥ 3 ,

so

∑

e

t2e ≤ 4k2+
∑

e

te ≤ 4k2+
∑

e

te(te − 1)

2
+ 2

∑

e

1

≤ 6k2 + 2k ≤ 7k2 ,

(42)

since
∑

e 1 = k is the number of edges (it is assumed that k ≥ 3 ,
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otherwise there are no triangles). Now

(

∑

e

te

)2

≤ 2
∑

te

∑

t
e
′≤te

te te′ ≤ 2k
∑

te

t2e ≤ 14 k3 , (43)

by (42). One concludes, by noting that each triangle contains exactly

3 edges, that
∑

e

te = 3T .

Plugging this into (43), one obtains

T ≤
√

14
3

k3/2 ,

which gives the result with C =
√

14
3

.

Remark 22.2. Ofer Gabber has noted that the above method can be

improved to give the optimal constant C =
√

2/3 . This can be done

using almost exactly the same techniques as follows (Ofer Gabber

used a different approach). As before, one begins with a lemma.

Lemma 22.2. Given a graph with k edges, the number of or-

dered pairs of triangles which have a common edge is not greater

than 2 k(k − 1).

Proof. One considers ordered pairs of distinct edges. Thus, let

(uv , u′v′) be an ordered pair of edges. First assume that none of

u , v equals u′, v′. Then, as in the above, one can make at most 4

ordered pairs of triangles with a common edge, where one always

lets the triangle containing uv be the first component of the pair.

However, any such pairs of triangles, if they exist, will be counted

twice in total. For example, if the triangles uvu′ and u′v′u exist, then

u′v and uv′ are edges, so that the ordered pair (uvu′, u′v′u) will also

be counted by (u′v , uv′).

Next assume that one of u, v equals one of u′, v′, without loss of

generality, say u′ = u. Then the possible pairs of triangles one can

construct are {uvv′, uvv′}, i.e. the two triangles are equal, and pairs

{uvw , v′uw}, where w is another vertex unequal to u , v , v′. This last

possibility will already have been counted twice above by the ordered
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pairs (uv , v′w) and (vw , v′u) with distinct vertices, so it can be left

out of this count. In the first case, the pair of {uvv′, uvv′}, if it

exists, will be counted 6 times: once by each of (uv , uv′), (uv′, uv),

(vu , vv′), (vv′, vu), (vv′, v′u), (v′u , vv′).

Now let M be the number of ordered pairs of edges with no com-

mon vertex and N be the number of distinct ordered pairs of edges

with a common vertex. Once again, one let te be the number of

triangles containing the edge e. The above shows that

2
∑

e

te(te − 1) ≤ 4M , 6
3

∑

e

te ≤ N .

The second inequality follows from the above argument and the fact

that
∑

e te counts each triangle 3 times. It follows that
∑

e

t2e ≤ 2M + 2N ≤ 2k(k − 1) , (44)

since M +N = k(k − 1) is the number of ways of choosing distinct

pairs of edges. �

One applies the improved inequality (better known as the Cauchy-

Schwarz inequality)
(

∑

i

aibi

)2

≤
(

∑

i

a2
i

)(

∑

i

b2i

)

, (45)

and (44) to get
(

∑

e

te

)2

≤ 2k2(k − 1) ,

and the result follows as before.

The fact that the value C =
√

2/3 is optimal is proved by consid-

ering the complete graph with n vertices which has εn = n(n− 1)/2

edges and τn = n(n− 1)(n − 2)/6 triangles, so that

τn

ε
3/2
n

→
√

2

3
, as n→ ∞ .

Remark 22.2. The argument directly generalizes to show that for

each n, there is a constant Cn such that the number of n-gons all of
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whose sides belong to the segments is not greater than Cn k
n/2. In

fact, Lemma 22.1 already proves this for n = 4 .

Remark 22.3. Igor Rivin has proved all the above results using

algebraic methods, i.e. using the spectral theory of the adjacency

matrix [11]. Moreover, his paper proves the analogous optimal results

for higher length cycles.

Problem 23. Use ruler and compasses to construct the coordinate

axes from the parabola y = x2.

Solution. Let A =
(

a, a2
)

and B =
(

b, b2
)

be two points on the

parabola.

A

B

C

D

E 

F

One can draw the line segment joining AB with ruler and compass.

This line has slope

b2 − a2

b− a
= a+ b .

Let C= (c, c2) be a point on the parabola unequal to A or B. One

can then use ruler and compass to draw a line L through C parallel

to AB and say that this line meets the parabola at D = (d, d2).

Since CD has the same slope as AB, it follows that a + b = c + d.

One can then use ruler and compass to construct E, the midpoint of

AB, and F , the midpoint of CD. It follows that

E =
(

a+b
2

, a
2+b2

2

)

and F =
(

c+d
2

, c
2+d2

2

)

.

Using ruler and compass one constructs the line segment EF .
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Since a + b = c + d, it follows that EF is parallel to the y-axis.

Using ruler and compass, one constructs a line L′ perpendicular to

EF through E. Let L′ meet the parabola at points G and H. Using

ruler and compass, one constructs I, the midpoint of GH, and then

draws through I a line L′′ parallel to EF . It follows that L′′ is the y-

axis. Let L′′ intersect the parabola at J . Using ruler and compass,

one constructs the line L′′′ through J which is perpendicular to L′′.

Then L′′′ is the x-axis.

Problem 24. Find all a such that for all x < 0 we have the inequality

ax2 − 2x > 3a− 1 .

Answer. The condition is that 0 ≤ a ≤ 1/3 .

Proof. By letting x 7→ −x, the condition is equivalent to character-

izing a for which

ax2 + 2x > 3a− 1, x > 0, (46)

holds. If 0 ≤ a ≤ 1/3 , then 3a − 1 ≤ 0 , so the right side of (46) is

non-positive, while the left side is positive, so the inequality holds.

On the other hand, if a > 1/3 , then 3a − 1 > 0 , so there is a small

positive value of x for which (46) fails. Thus, if 1 > a > 1/3 , then

one can take x = 3a−1
3

, since

ax2 + 2x < 3x < 3a− 1 .

If a ≥ 1 , then one can take x = 1
3
√
a

since

ax2 + 2x = 1
9

+ 2
3
√
a
< 1 < 3a− 1 .

Finally, if a < 0 , then ax2 + 2x→ −∞ as x→ ∞ , i.e. Eq. (46) fails

for all sufficiently large x.

Problem 25. Let A,B,C be the angles and a, b, c the sides of a

triangle. Show that

60◦ ≤ aA+ bB + cC

a+ b+ c
≤ 90◦ .

89
Mekhmat Entrance Examinations Problems



January 7, 2005 12:14 WSPC/Trim Size: 9in x 6in for Proceedings MekhmatFinal

69

Solution. Since A+B + C = 180◦, the statement can be rewritten

as

A+B + C

3
≤ aA+ bB + cC

a+ b+ c
≤ A+B + C

2
. (47)

To prove the right hand inequality, one multiplies by 2(a+ b+ c) to

get the equivalent statement

Ab+Ac+Ba+Bc+ Ca+ Cb−Aa−Bb−Cc ≥ 0 .

Collecting terms, this can be rewritten as

A(b+ c− a) +B(a+ c− b) + C(a+ b− c) ≥ 0 .

One now observes that each summand is positive. This follows from

the triangle inequality which implies that

b+ c > a , a+ c > b , a+ b > c .

One can therefore conclude that the inequality on the right of (47)

is strict.

To prove the left hand inequality, one multiplies by 3(a + b + c)

to get the equivalent statement

2aA+ 2bB + 2cC − aB − aC − bA− bC − cA− cB ≥ 0 .

Upon collecting terms, this becomes

(A−B)(a− b) + (A−C)(a− c) + (B − C)(b− c) ≥ 0 .

One now observes that, as in Problem 13, each of these terms is

non-negative. For example, a ≥ b if and only if A ≥ B, so

(A−B)(a− b) ≥ 0 ,

and similarly for the other terms.

3. Notes

Problem 1. This problems appears to be a standard result in

elementary geometry, “the butterfly theorem” [12] (French edition

only), [10,13–15]. However, this result was not included in any stan-

dard geometry textbooks used by the candidates [9]. In Ref. 10, it is
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stated that a proof was given in 1815 by W.G. Horner (of Horner’s

method for polynomials) and that the shortest proof depends on

projective geometry [14]. Marcel Berger [12] has stated that the but-

terfly theorem is a good example of a deceptive result. In particular,

it is a statement about circles and lengths which lead one to look for

a metric proof. However, as is seen above such arguments are quite

awkward, whereas the correct point of view is projective. A projec-

tive generalization is given in Refs. 13 and 14. Using the notation of

the problem, this can be stated as follows. Let AB be a chord of

a conic section and let MN,ST be chords whose intersection does

not lie on AB. If MN and ST both intersect AB at K and SN

intersects AB at Q and MT intersects AB at Q, then K has the

same harmonic conjugate with respect to P and Q and with respect

to A and B.

The proofs of Pavol Severa and David Ruelle both seem to be

candidates “for the book” [16].

The first solution found by the author proceeded by converting it

into a purely algebraic framework (the same is true for Problem 2.

This has the advantage of almost guaranteeing a solution, even if

one has missed the “idea” of the intended solution (this is confirmed

by the fact that this in fact worked). Moreover, the “conceptual”

solution of problem 1 used intermediate results, e.g. Lemma 1.2,

which seemed to be as subtle as the original statement, whereas the

algebraic proof was fairly direct.

However, algebraic methods have the disadvantage that they re-

quire much algebraic computation in which any slight error destroys

any possibility of obtaining the solution. Moreover, in order to keep

the computations at a manageable level, one must be somewhat

clever in setting up the algebraic formulation, as well as deciding how

to proceed with the computation, e.g. see the solution to problem 2.

On the other hand, these considerations vanish almost completely if

one allows oneself the use of a computer algebra system. Using such

a system, the answer follows almost immediately from the algebraic

formulation. One can argue that such proofs are more in the nature

of verifications, in particular, they may not reveal how the result was

originally discovered. These issues are discussed in Refs. 17 and 18.
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Problem 3. This question appears as problem 10.13.11 in Ref. 12.

Problem 4. This question is a special case of a problem of Erdős and

Woods [19, 20]. Thus, for an integer k ≥ 2 , one considers m, n for

which m+ i , n+ i have the same prime divisors for i = 0 , . . . , k−1 .

The problem in question is k = 2 for which all the known exam-

ples are given in the above solution. It is conjectured that there

exists k > 2 such that if m + i , n + i have the same prime divisors

for i = 0 , . . . , k − 1 , then m = n. This conjecture has applications

to logic [20]. This question and its generalizations has been studied

by Balasubramanian, Langevin, Shorey, and Waldschmidt [21,22].

Problem 5. In the formulation of Ref. 2, the word “perimeter” is

given as “circumference.”

Problem 6. In Ref. 2, the condition 0 < x < π/2 is omitted which

renders the condition invalid. To see this, note that the left hand

side of (23) equals zero when x = π/2 , but the derivative of the left

hand side at x = π/2 is −16/π3 < 0 , so there is a small ε > 0 for

which the left hand side of (23) is negative in (π/2 , π/2 + ε).

Problem 8. In Ref. 2, the condition is incorrectly given as

a2 + b2 = 4 , cd = 4 ,

and the corresponding statement is false. In fact, the minimum value

of (a− d)2 + (b− c)2 is 4 · (3− 2
√

2) which is smaller than 1.6 and is

actually smaller than 1, since

4 · (3 − 2
√

2) =
4

3 + 2
√

2
< 1 .

The minimum value in this case is found as in the solution of Prob-

lem 8 given above: one is computing the distance between the curves

x2 + y2 = 4 and xy = 4 . The first of these is a circle of radius 2,

while the second is a hyperbola.

Let L be the line x + y = 2
√

2 , then this is clearly a tangent

to the circle since it meets the circle at the point (
√

2 ,
√

2 ) and is

perpendicular to the radius. Likewise, the line L′ given by x+y = 4 is

tangent to xy = 4 since it meets it at (2 , 2) and the slope of y = 4/x
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at x = 2 is

− 4

22
= −1 .

Lemma 8.1 implies that the minimum distance between the two

curves is not less than the distance between L and L′. However, the

line joining (
√

2 ,
√

2 ) and (2 , 2) has slope 1 so is perpendicular to

L and L′, thus the distance between these two points will be the

actual minimum distance between the curves. One then computes

the minimum distance to be
√

2 · (2 −
√

2)2 =
√

2 · (2 −
√

2) = 2
√

2 − 2 ,

so that the minimum of (a− d)2 + (b− c)2 is

(2
√

2 − 2)2 = 4 · (3 − 2
√

2) ,

as claimed.

Problem 14. In Ref. 2, the examiners were incorrectly given as

Ugol’nikov and Kibkalo.

Problem 15. In Ref. 2, the examiners were incorrectly given as

Ugol’nikov and Kibkalo.

Problem 21. In Ref. 2, this is given as an example of a “murderous”

problem, as it was the most difficult problem of the second round of

the All-Union Olympiad in 1985. It was solved by 6 participants,

partly solved by 3 people, and not solved by 91.

Problem 22. In Ref. 2, the original formulation was the following.

Given k segments in the plane, give an upper bound for the number

of triangles all of whose sides belong to the given set of segments.

[Numerical data were given, but in essence one was asked to prove

the estimate O(k15).]

This formulation has the typographical error O(k15) for O(k1.5).

Parting thought. The following is my own suggestion for the type

of problem considered in this paper and I leave it as an exercise for

the reader. Consider two triangles whose perimeters add up to a

constant. What is the minimum value of the sum of the squares of
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the lengths of the edges of their symmetric difference (points which

belong to exactly one triangle)?
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English translation: Geometry, 2 Vols., (Springer–Verlag, Berlin, 1980).
13. R. Bix, Topics in Geometry, (Academic Press, New York, 1994).
14. H. S.M. Coxeter, Projective Geometry, 2nd Edition,

(Springer–Verlag, New York, 1998).
15. R.A. Johnson, Advanced Euclidean Geometry, (Dover, New York 1960).
16. M. Aigner and G. M. Ziegler, Proofs from the book,

(Springer–Verlag, New York, 1998).
17. S. B. Ekhad, “Plane Geometry: An Elementary School Textbook (ca. 2050

AD),” Mathematical Intelligencer 21 (1999), 64–70.
18. D. Zeilberger, Guess what? Programming is even more fun than proving, and,

more importantly it gives as much, if not more, insight and understanding,

Opinion 37 at www.math.temple.edu/~zeilberg/OPINIONS.html.
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SOLUTIONS TO THE YEAR 2000 INTERNATIONAL

MATHEMATICAL OLYMPIAD

ILAN VARDI

This article is meant to complement my earlier paper on Mekhmat

entrance examinations [1]. In that paper I stated that the Mekhmat

problems appeared to be at the level of Olympiad problems which

were an appropriate standard for comparison. In order to verify

this claim, I decided to solve under similar conditions (without use

of outside references or help) all the problems for a given Olympiad

year. Doing all problems in a given year appears to be the fairest test

of problem solving, as one cannot simply choose the problems one is

best at. Finally, since many people work on Olympiad problems, one

can compare one’s solution with the best that has been found (this

was not always possible with the Mekhmat problems).

My conclusion is that the IMO problems are generally much more

challenging than the Mekhmat problems. In particular, it took me

about 6 weeks to complete all the Olympiad problems and 6 weeks

for all the Mekhmat problems. However, there were 6 Olympiad

problems versus 25 Mekhmat problems.

On the other hand, the Olympiad problems were in general less

interesting than the Mekhmat problems. In fact, I only found

Olympiad Problems 3 and 6 to be interesting. Problem 3 required

an interesting idea, which took me a long time to discover (3 weeks!),

and it also took me a long time to find an idea for Problem 6, which

follows from a result of some independent interest (Lemma 6.3).

The other problems were solved in a relatively short time with-

out too much difficulty. If there was an idea in Problem 2 then I

missed it as my solution consists of a completely unmotivated al-

gebraic manipulation. Problem 5 is stated confusingly and has an

alternate, possibly intractable interpretation. The lack of clarity

might have been intentional in order not to give away the solution,

1
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see Remark 5.1.

The statements of the geometry Problems 1 and 6 are of Byzantine

complexity, and this appears to be typical of the geometry questions

posed in the IMO. Moreover, Problem 1 is in some sense deceptive.

In comparison, the Mekhmat geometry problems were very elegant

and in general interesting. Mekhmat Problems 1 and 2 were of com-

parable difficulty to the geometry problems posed here.

Since the source of the Mekhmat problems [2] only included one

number theory question and one combinatorial question, it is less

meaningful to compare the other problems to the Mekhmat ques-

tions.

I would like to thank K. S. Sarkaria and Harry Tamvakis for

helpful comments. Alternate solutions appear on John Scholes’ IMO

web site [3]. Further IMO problems are given in Refs. [4–7].
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Problems

Day 1

1. Two circles Γ1 and Γ2 intersect at M and N . Let ` be the common

tangent to Γ1 and Γ2 so that M is closer to ` than N is. Let ` touch

Γ1 at A and Γ2 at B. Let the line through M parallel to ` meet the

circle Γ1 again at C and the circle Γ2 again at D. Lines CA and DB

meet at E; lines AN and CD meet at P ; lines BN and CD meet

at Q. Show that EP = EQ.

2. Let a, b, c be positive real numbers such that abc = 1 . Prove that
(

a − 1 + 1
b

)(

b − 1 + 1
c

)(

c − 1 + 1
a

)

≤ 1 .

3. Let n ≥ 2 be a positive integer. Initially, there are n fleas on a hor-

izontal line, not all at the same point. For a positive real number λ,

define a move as follows.

1) Choose any two fleas, at points A and B, with A to the left of B.

2) Let the flea at A jump to a point C on the line to the right of B

with BC/AB = λ .

Determine all values of λ such that, for any point M on the line and

any initial positions of the n fleas, there is a finite sequence of moves

that will take all the fleas to positions to the right of M .

Day 2

4. A magician has one hundred cards numbered 1 to 100. He puts

them into three boxes, a red one, a white one and a blue one, so that

each box contains at least one card.

A member of the audience selects two of the three boxes, chooses

one card from each and announces the sum of the numbers on the

chosen cards. Given this sum, the magician identifies the box from

which no card has been chosen.

How many ways are there to put all the cards into boxes so that

this trick always works? (Two ways are considered different if at

least one card is put into a different box.)
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5. Determine whether or not there exists a positive integer n such

that n is divisible by exactly 2000 different prime numbers, and 2n+1

is divisible by n.

6. Let AH1, BH2, CH3 be the altitudes of an acute-angled triangle

ABC. The circle inscribed in the triangle ABC touches the sides

BC, CA, AB at T1, T2, T3, respectively. Let the lines `1, `2, `3

be the reflections of the lines H2H3, H3H1, H1H2 in the lines T2T3,

T3T1, T1T2, respectively.

Prove that `1, `2, `3 determine a triangle whose vertices lie on the

inscribed circle of the triangle ABC.
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Solutions

Problem 1

Two circles Γ1 and Γ2 intersect at M and N . Let ` be the common

tangent to Γ1 and Γ2 so that M is closer to ` than N is. Let ` touch

Γ1 at A and Γ2 at B. Let the line through M parallel to ` meet the

circle Γ1 again at C and the circle Γ2 again at D.

Lines CA and DB meet at E; lines AN and CD meet at P ; lines

BN and CD meet at Q.

Show that EP = EQ.

E

P Q

The somewhat complicated formulation of this problem is deceptive,

and it is easily seen to be a combination of two simple results.

One starts by looking at a subproblem which can be ana-

lyzed by consideration of similar triangles, that is, the points

A,B,C,D,E,M . In order to do this, one introduces 3 new points

U, V,W , which are the midpoints of CM , MD and AB, respectively.

A B

E

C DMU V

W

Since CM is a chord of the circle Γ1 and A lies on Γ1, it follows that

AC = AM . Thus, ∠MCA = ∠CMA. Since CM is parallel to AB,

∠CMA = ∠BAM .
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It follows that CU =UM =AW . Similarly, DV =VM =BW. One

therefore sees that

CD = 2CU + 2DV = 2AB .

But, since CD and AB are parallel, the triangle CDA is similar

to the triangle ABE, so it follows that CE = 2AE, in other words,

that CA = AE. Finally, since ∠BAE = ∠BAM , one sees that EM

is perpendicular to AB. The first result is therefore a lemma that

follows.

Lemma 1.1. Under the assumptions of Problem 1, EM is perpen-

dicular to AB.

This result clarifies the situation considerably since it is now clear

that EP = EQ if and only if MP = MQ, since CD is also perpen-

dicular to EM .

A B

P Q

X

One therefore turns to the proof of MP = MQ. Extend the line MN

to intersection AB at X. Since CD is parallel to AB, it follows that

triangle NPM is similar to triangle NAX and that triangle NQM

is similar to triangle NBX. The result therefore follows from the

following interesting fact.

Lemma 1.2. Let a line be tangent to two distinct circles at two

different points A and B. Then the line joining the intersections of

the two circles (or the tangent line if they touch once) bisects the

line segment AB.

Proof. The proof uses some elementary properties of inversion [8].

Let the notation be as in Problem 1, i.e. let Γ1,Γ2 be the circles, M

and N be the intersection points and X the midpoint of AB.
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Consider the circle Γ with center at X and radius AX. One does

an inversion with respect to this circle. Since Γ1 and Γ2 are orthog-

onal to Γ (this is obvious at A and B), they are preserved. Since the

line containing MN passes through infinity, it is transformed into a

line or circle passing through X.

A B

However, since Γ1 and Γ2 are preserved, M is mapped to N and N

is mapped to M . Finally, let the line MN intersect Γ at Y , then Y

is fixed, since it lies on Γ. Thus, the line MN goes to a line or circle

containing X, M , N , and Y . However, M , N , and Y lie on a line,

therefore MN goes to a straight line, in particular to itself. One con-

cludes that the line MN passes through X, which is the midpoint of

AB and the result follows. The case in which the circle are tangent

is left as an exercise.

Remark 1.1. Harry Tamvakis has noted that Lemma1.2 follows

easily using the power of a point with respect to a circle. In other

words, it is easily shown that if the point X is external to a cir-

cle Γ, then for any line XMN touching the circle at M and N , then

XM × MN is a constant (in the case where the line XA is tangent

to the circle, one takes XA ×XA).

Problem 2

Let a, b, c be positive real numbers such that abc = 1. Prove that
(

a − 1 + 1
b

)(

b − 1 + 1
c

)(

c − 1 + 1
a

)

≤ 1 .

The solution relies on identity of Lemma 2.1.
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Lemma 2.1. Let a, b, c be positive real numbers such that abc = 1,

then

1 −
(

a − 1 + 1
b

) (

b − 1 + 1
c

)(

c − 1 + 1
a

)

=
(

c + 1
c
− 2

) (

a + 1
b
− 1

)

+
(

1 − 1
a

)

(1 − b) .

(1)

This identity easily implies the result. To see this, note that if

abc = 1 , then at least one of a, b, c is ≥ 1 and at least one is ≤ 1. It

follows that at least one of the ordered pairs (a , b), (b , c), or (c , a)

has its first element ≥ 1 and the second ≤ 1. One can, without loss

of generality, take this ordered pair to be (a , b). The reason is that

Lemma 2.1 will be applied, and its result also holds with the vari-

ables on the right hand side of (1) interchanged as (a, b, c) 7→ (c, a, b)

or (a, b, c) 7→ (b, c, a), since the left hand side of (1) is invariant under

these cyclic shifts.

One now applies Lemma 2.1. First the arithmetic-geometric in-

equality is used, which gives

1
2

(

c + 1
c

)

≥
√

c · 1
c

= 1 ,

so that

c + 1
c
− 2 ≥ 0 .

Since a ≥ 1 and b ≤ 1, one has

a + 1
b
− 1 ≥ 0 , 1 − 1

a
≥ 0 , 1 − b ≥ 0 .

It follows that each term on the right hand side of (1) is nonnegative

which proves the result.

Proof of Lemma 2.1. Using the transformation rules

ab 7→ 1
c

, ac 7→ 1
b

, bc 7→ 1
a

,

one expands
(

a − 1 + 1
b

) (

b − 1 + 1
c

)(

c − 1 + 1
a

)

.
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Thus,

(

b − 1 + 1
c

) (

c − 1 + 1
a

)

= 1
a
− b + b

a
− c + 1 − 1

a
+ 1 − 1

c
+ b

= b
a

+ 2 − c − 1
c

.

One continues with
(

a − 1 + 1
b

) (

b
a

+ 2 − c − 1
c

)

= b + 2a − 1
b
− a

c
− b

a
− 2 + c + 1

c
+ 1

a
+ 2

b
− c

b
− a

= a + 1
a

+ b + 1
b

+ c + 1
c
− a

c
− c

b
− b

a
− 2 .

Thus, the left hand side of (1) equals

3 + a
c

+ c
b

+ b
a
− a − 1

a
− b − 1

b
− c − 1

c
. (2)

One now computes

(

c + 1
c
− 2

) (

a + 1
b
− 1

)

= 1
b

+ c
b
− c + a

c
+ a − 1

c
− 2a − 2

b
+ 2

= 2 + a
c

+ c
b
− a − 1

b
− c − 1

c
,

(3)

and
(

1 − 1
a

)

(1 − b) = 1 − b − 1
a

+ b
a

. (4)

It is seen that the right hand sides of (3) and (4) add up to the

expression (2), which proves Lemma 2.1.

Remark 2.1. This proof appears to be completely unmotivated.

In particular, there does not seem to be a conceptual explanation

for the identity of Lemma 2.1. However, this identity fits into the

general principle that inequalities should follow from identities, e.g.

from the positivity of perfect squares [9].

Remark 2.2. A similar argument was found by Robin Chapman [3]
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using the identity

(

a − 1 + 1
b

)(

b − 1 + 1
c

)

= b

(

a2 −
(

1 − 1
b

)2
)

.

This shows that the left hand side is ≤ b a2, so the product of the

three such identities is not greater than b a2 c b2 ac2 = 1, which yields

the square of the desired inequality. This works if all terms in the

product are positive, but it is easily shown that at most one such

term can be negative, in which case the inequality also holds.

Remark 2.3. One can try the general method of Lagrange multipli-

ers to solve this problem. However, this method is usually considered

beyond the scope of the High School curriculum.

Problem 3

Let n ≥ 2 be a positive integer. Initially, there are n fleas on a hori-

zontal line, not all at the same point. For a positive real number λ,

define a move as follows:

1) Choose any two fleas, at points A and B, with A to the left of B.

2) Let the flea at A jump to a point C on the line to the right of B

with BC/AB = λ .

Determine all values of λ such that, for any point M on the line and

any initial positions of the n fleas, there is a finite sequence of moves

that will take all the fleas to positions to the right of M .

Answer. All such values of λ are given by λ ≥ 1
n−1

.

(a) Let us assume that λ ≥ 1
n−1

. Let us define a big move as a move

involving the leftmost and the rightmost fleas. Then the fleas will all

go to +∞ using a succession of big moves.

First, let us consider the case where the fleas are all at different

positions and let the positions be xn < xn−1 < . . . < x1 . Let m be

the minimum distance between consecutive fleas.

One now performs a big move which puts the fleas at new posi-

tions x′
n < x′

n−1 < . . . < x′
1, where x′

n = xn−1 , . . . , x′
2 = x1 , and

x′
1 = x1 + λ(x1 − xn).
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Let m′ be the minimum between consecutive fleas in their new

positions. Since x′
n , . . . , x′

2 are the same as initially, it follows that

the new minimum satisfies

m′ ≥ min
(

m , x′
1 − x′

2

)

.

However,

x′
1 − x′

2 = λ(x1 − xn) and x1 − xn ≥ (n − 1)m .

It follows that

m′ ≥ min
(

m , λ(n − 1)m
)

≥ m ,

since λ(n − 1) ≥ 1, by assumption.

It follows that the minimum distance between consecutive fleas

is nondecreasing. Thus, let M > 0 be a lower bound for all these

minimum distances. It follows that x′
n ≥ xn + M , i.e. the position of

the rightmost flea is increased at least by M upon every big move.

This shows that all the fleas go to +∞.

If the fleas are not all distinct, then, since at least two fleas are

distinct, it is clear that after at most n − 1 iterations of big moves,

all fleas will become distinct, which reduces to the previous case.

(b) Let us assume that λ < 1
n−1

now. This case seems to require

some kind of physical reasoning, as direct methods such as those in

part (a) do not seem to work, see Remark 3.1.

Thus, one sees that there is a tradeoff between the position of the

rightmost flea and the distance between the fleas. In other words, a

greater distance to the right incurs a penalty in the distance between

the fleas. Thus, one is led to the consideration of an energy to each

placement of the fleas, where the position of the fleas is the kinetic

energy, and the distances between the fleas is the potential energy.

By careful examination of the case of two fleas, one is led to the

following definition.

Definition. Let the position of the fleas be x = (x1 , x2 , . . . , xn),

where xn ≤ . . . ≤ x2 ≤ x1, then the kinetic energy K(x) and the
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potential energy Pα(x) are

K(x) = x1, Pα(x) = α
n

∑

i=2

(x1 − xi) ,

where α is a constant. The total energy is Eα(x) = K(x) + Pα(x).

This leads to the following Lemma.

Lemma 3.1. If α = λ
1−(n−1)λ

, then the total energy is never in-

creased by a move.

The main result follows directly from Lemma 3.1. Indeed, one has

λ
1−(n−1)λ

> 0 ,

since λ < 1
n−1

. Then the potential energy

P (x) = P λ

1−(n−1)λ
(x) .

is always positive. The Lemma shows that K(x) + P (x) ≤ E for

some E independent of x, thus, for all x, K(x) ≤ E − P (x) ≤ E and

the result follows.

Proof of Lemma 3.1. First consider the case of a big move. Thus,

the fleas are initially at xn ≤ · · · ≤ x1 and that at xn jumps to

x′
1 = x1 + λ(x1 − xn) ,

while the other fleas remain at the same positions, i.e.

x′
n = xn−1 , . . . , x′

2 = x1 .

The change in potential energy is

Pα(x′) − Pα(x) = α

n
∑

i=2

(x′
1 − x′

i) − α

n
∑

i=2

(x1 − xi)

= α
n−1
∑

i=1

[

(x′
1 − x1) + (x1 − xi)

]

− α
n

∑

i=2

(x1 − xi)

= (n − 1)α (x′
1 − x1) − α(x1 − xn)

= α
[

(n − 1)λ − 1
]

(x1 − xn) .
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Moreover, the change in kinetic energy is

K(x′) − K(x) = x′
1 − x1 = λ(x1 − xn) .

Thus, the difference in total energy is

Eα(x′) − Eα(x) = K(x′) − K(x) + Pα(x′) − Pα(x)

= λ(x1 − xn) + α
[

(n − 1)λ − 1
]

(x1 − xn)

= (x1 − xn)
(

λ + α
[

(n − 1)λ − 1
]

)

,

which is clearly zero when α = λ
1−(n−1)λ

. One has therefore proved

the following lemma.

Lemma 3.2. If α = λ
1−(n−1)λ

, then the total energy is preserved

by a big move.

One now considers other types of moves. The first possibility is if

x′
1 = x1, i.e. the position of the rightmost flea does not change.

In this case, the kinetic energy stays the same, while the potential

energy decreases, for any α > 0. This is obvious, since

Pα(x′) − Pα(x) = α(xi − x′
j) < 0 ,

where the move consists in flea xi jumping to x′
j , and x′

j > xi .

Finally, one considers the case where a flea jumps to x′
1 > x1

but from xj > xn , i.e. it is not a big move. One performs the same

computation as with a big move. The change in potential energy is

Pα(x′) − Pα(x) = α

n
∑

i=2

(x′
1 − x′

i) − α

n
∑

i=2

(x1 − xi)

= α
∑

1≤i≤n

i6=j

[

(x′
1 − x1) + (x1 − xi)

]

− α
n

∑

i=2

(x1 − xi)

= (n − 1)α (x′
1 − x1) − α(x1 − xj)

≤ α
[

(n − 1)λ − 1
]

(x1 − xj) ,
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since x′
1 − x1 ≤ λ(x1 − xj), as xj could at most jump over x1. Simi-

larly, the change in kinetic energy is

K(x′) − K(x) = x′
1 − x1 ≤ λ(x1 − xj) ,

so that the total change in energy is

E(x′) − E(x) ≤
(

λ + α
[

(n − 1)λ − 1
]

)

(

x1 − xj

)

= 0 ,

if α = λ
1−(n−1)λ

.

This shows that the total energy is nonincreasing, which finishes the

proof of Lemma 3.1.

Remark 3.1. This type of solution was previously discovered by

Gerhard Woeginger [3].

Remark 3.2. It can be shown directly that the strategy used in

part (a), i.e. using only big moves, does not take the fleas to +∞. In

fact, a big move is a linear transformation x′ = Ax, where A is the

matrix

A =



















1 + λ 0 · · · 0 −λ

1 0 · · · 0 0

0 1 · · · 0 0

...
...

...
...

0 0 · · · 1 0



















.

This matrix has characteristic polynomial of the form
(

x − 1
)(

xn−1 − λ(xn−2 + xn−3 + . . . + 1)
)

,

which has one eigenvalue 1 while all other eigenvalues have absolute

value strictly less than 1 , when λ < 1
n−1

.

Using this method, or equivalent methods, it is simple to show

that x1 − xn → 0 exponentially, i.e. the distance between the right-

most flea and the leftmost flea goes to zero exponentially. Since, in

a simple iteration of big moves, the position of the rightmost flea is

essentially the sum of these distances, one gets that the position of

the rightmost flea is bounded above.
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However, this argument seems to break down if other types of

moves are allowed. In particular, the distance between the rightmost

and leftmost fleas no longer has to go to zero, e.g., if the leftmost

flea never moves. Moreover, for moves other than big moves, the re-

labelling of the fleas is no longer unique, as a flea may land between

any two others, to that the choice of matrix is no longer unique. Fi-

nally, even without this problem, the asymptotics of random matrix

products is a nontrivial question.

Problem 4

A magician has one hundred cards numbered 1 to 100. He puts them

into three boxes, a red one, a white one and a blue one, so that each

box contains at least one card.

A member of the audience selects two of the three boxes, chooses

one card from each and announces the sum of the numbers on the

chosen cards. Given this sum, the magician identifies the box from

which no card has been chosen.

How many ways are there to put all the cards into boxes so that

this trick always works? (Two ways are considered different if at

least one card is put into a different box.)

Answer. There are 12 ways. If the boxes are denoted R,W,B, then

the 2 basic configurations are

R = {1, 4, 7, . . . , 100}, W = {2, 5, 8, . . . , 98}, B = {3, 6, 9, . . . , 99},

and

R = {1}, W = {2, 3, 4, . . . , 99}, B = {100} ,

and the 12 solutions consists of the 6 permutations of each basic con-

figuration.

Solution. Let the boxes be A,B,C. One first notes that n 7→ 101−n

preserves {1, 2, . . . , 100}, and in the following, the expression “by

symmetry” will include this map. One begins the proof with the

following useful results.

Lemma 4.1. If A, B, C satisfy the conditions of the problem, and

a and a + k are in A, then it is not possible to have b in B such that
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b + k is in C.

Proof. In fact, it is easily seen that this is equivalent to the condi-

tions of the problem. Thus, if b ∈ B and c + k ∈ C, then a + b + k

is in A + B and in A + C, which is not allowed. �

Lemma 4.2. If A, B, C satisfy the conditions of the problem, and

A contains a and a + k and box B contains b and b + k, then if c is

in C and 1 ≤ c + k ≤ 100, then c + k is in C.

Proof. One applies Lemma 4.1 twice. Thus, applying it with respect

to A shows that c + k cannot be in B, and applying it with respect

to B shows that c + k cannot be in A. The result follows. �

Lemma 4.3. Let A, B, C satisfy the conditions of the problem ,

then it is not possible to have a , a + k ∈ A and b , b + k ∈ B, where

k = 1 or k = 2 .

Proof. Assume that such a and b exist. Then C has an element c

such that

1 ≤ c + k ≤ 100 or 1 ≤ c − k ≤ 100 ,

so there exists c′ such that c′ + k ∈ C. It follows from Lemma 4.2

that

1 ≤ a ± rk ≤ 100 , r ∈ Z ,

are all in A and similarly,

1 ≤ b ± rk ≤ 100 , r ∈ Z , and 1 ≤ c ± rk ≤ 100 , r ∈ Z ,

are all in B and C, respectively. If k = 1, then each set has 100

elements while if k = 2, each set has 50 elements, so A, B, C do not

form a partition of {1, 2, 3, . . . , 100}. This contradiction proves the

result. �

The proof will now be split up according to the minimum of all the

differences of two elements which are in the same box.

(a) The minimum is 1. Without loss of generality, one can assume

that a , a+1∈A. Now either B and C are of the form {1} and {100},

or there exist (without loss of generality) b ∈ B such that 1 < b < 100

and (by the symmetry n 7→ 101 − n) c ∈ C such that c < 100 .
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By Lemma 4.3, b + 1 and c + 1 are in A. It follows that b + c + 1

is in A + B and in A + C, which is not allowed. This possibility is

therefore excluded unless B and C are of the form {1} and {100}.

(b) The minimum is 2. Without loss of generality, one can assume

that a , a + 2 ∈ A. Since the minimum is 2, a + 1 is not in A and

thus, without loss of generality, a + 1 ∈ B. Now either a + 3 ≤ 100

or a− 1 ≥ 1. By symmetry (n 7→ 101−n), assume that a+3 ≤ 100 .

By Lemma 4.1, one cannot have a + 3 ∈ C. By Lemma 4.2, one

cannot have a + 3 ∈ B. From part (a), it follows that one cannot

have a + 3 ∈ A, since a + 2 ∈ A. This case is therefore excluded.

(c) The minimum is 3. One of the sets A, B, C must have at least 34

members, since they form a partition of {1 , 2 , . . . , 100}, otherwise

one would have |A| + |B| + |C| ≤ 33 + 33 + 33 = 99. Without

loss of generality, let this set be A. Now split up A into 33 bins

{1 , 2 , 3}, {4 , 5 , 6} , . . . , {97 , 98 , 99}. Since the minimum difference

of elements of A is 3, each bin can have at most one element. But

since there are more than 33 elements, and only 100 is left over, each

bin has one element, thus exactly one element. Since there are at

least 34 elements, it follows that 100 is in A. Since 100 ∈ A, one

cannot have 98 or 99 in A, and therefore 97 ∈ A. Similarly, one

has 94 , . . . , 7 , 4 , 1 ∈ A. It follows that A = {1 , 4 , 7 , . . . , 100}.

From a similar argument, one has that B and C are {2 , 5 , . . . , 98}

and {3 , 6 , . . . , 99} in some order.

(d) The minimum is greater than 3. This is not possible, as one of

the boxes has at least 34 elements, and thus minimum difference ≤ 3,

by the argument used in (c).

Remark 4.1. Harry Tamvakis has found the following simpler ar-

gument. It begins with considering the general problem with cards

numbered 1 to n. One also shows that there are only two types of

solutions, namely,

{3a + k} , k = 0 , 1 , 2 , and {1} , {2 , . . . , n − 1} , {n} ,

but the main point is that the first type of solution is stable under

n 7→ n + 1,(by adding the card numbered n + 1 to the solution with

n cards), while the second is not. This observation yields a simple
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induction argument that follows. Assume that the result holds for

n, then given a legal configuration with n + 1 cards, remove card

n + 1 from the boxes. This is a solution for n cards and therefore

of first type, unless removing card n + 1 left one box empty. In the

first case, one easily shows that card n + 1 must fit into the correct

arithmetic progression modulo 3, yielding the first type of solution.

In the second case, one similarly removes card 1 from the boxes

which shows that its box only contained this one card, and one gets

the second solution.

Problem 5

Determine whether or not there exists a positive integer n divisible

by exactly 2000 different prime numbers, and 2n +1 is divisible by n.

Answer. Yes, there exists such a number. In fact, for any positive

integer k, there exists a positive integer nk divisible by exactly k

different prime numbers such that nk divides 2nk + 1.

Solution. The proof is by induction. We begin the induction

with k = 1 and n1 = 3, since 3 divides 9 = 23 + 1.

Let us assume now that nk has been constructed with nk divid-

ing 2nk + 1, and nk having exactly k different prime factors. One

uses the following steps to construct nk+1 (for ease of notation,

let N = nk).

a) If pα is the largest power of p dividing N and pβ is the largest

power of p dividing 2N + 1, then pα+β is the largest power of p

dividing 2N2
+ 1.

b) N2 divides 2N2
+ 1.

c) There is a prime q not dividing N but dividing 2N2
+ 1.

d) Let nk+1 = N2q, then nk+1 satisfies the above conditions.

Proof of a). Let p be any prime dividing N with pα and pβ as

in a). One can therefore write 2N = Apβ− 1 for some integer A not

divisible by p. One now uses the binomial theorem to compute
(

2N
)p

=
(

Apβ − 1
)p

= A′ pβ+2 + Apβ+1 − 1 = A1 pβ+1 − 1 ,

for some integer A1 = A′ p + A not divisible by p. Iterating this
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gives (2N )p
α

= Aα pα+β − 1 , for some integer Aα not divisible by p.

Similarly,

2N2
=

(

(

2N
)pα

)

N
pα

=
(

Aα pα+β − 1
)

N
pα

= A′′ pα+β+1 + Aα

(

N

pα

)

pα+β − 1 .

Since Aα is not divisible by p and, by definition, N/pα is not divisible

by p, it follows that 2N2
+ 1 is divisible by pα+β, but by no higher

power, as claimed.

Proof of b). Note that, by assumption, β ≥ α, so one has that p2α

divides 2N2
+ 1. Since this holds for every p dividing N , it follows

that N2 divides 2N2
+ 1.

Proof of c). Let M be the largest divisor of 2N + 1 such that M

is divisible only by primes that divide N . Similarly, let M ′ be the

largest divisor of 2N2
+ 1, such that M ′ is divisible only by primes

that divide N . It follows from part a) that M ′ = MN , since part a)

proves this for each separate prime power dividing N . Since M and

N both divide 2N + 1 it follows that both M and N are smaller or

equal to 2N + 1. Therefore

M ′ = MN ≤
(

2N + 1
)2

≤
(

2N+1
)2

= 22N+2 .

On the other hand, using N ≥ 3,

2N2
=

(

22N
)

N
2 = 22N

(

22N
)

N
2 −1

≥ 22N+3 ,

since N
2
− 1 ≥ 3

2
, and thus 2N

(

N
2
− 1

)

≥ 3 .

It follows that M ′ < 2N2
+ 1, and thus 2N2

+ 1 must be divisible

by a prime q that does not divide N .

Proof of d). Let nk+1 = N2q. Then by b) one has

2N2
≡ −1

(

modN2
)

,

so that

2nk+1 ≡
(

−1
)q

= −1
(

mod N2
)

,
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recalling that q must be odd since it divides a power of 2 plus 1. By

the choice of q, one also has that

2N2
≡ −1 (mod q) ,

so that

2nk+1 ≡ (−1)q = −1 (mod q) .

The result follows from the Chinese Remainder Theorem.

Remark 5.1. The statement of the problem can be interpreted to

mean: “n is divisible by exactly 2000 different prime numbers, each

with multiplicity one.” In other words, n is assumed to be squarefree.

It is conceivable that a more precise form of the question was avoided

in order not to give away the idea of the solution, which depends on

having primes with high multiplicities.

The alternate question appears to be intractable, in the nature

of resolving whether there are an infinite number of primes of the

form 2p − 1. See Ref. [10] for examples of these types of unsolved

problems.

Problem 6

Let AH1, BH2, CH3 be the altitudes of an acute-angled triangle

ABC. The circle inscribed into the triangle ABC touches the sides

BC, CA, AB at T1, T2, T3, respectively. Let the lines L1 , L2 , and

L3 be the reflections of the lines H2H3 , H3H1 , and H1H2 in the lines

T2T3 , T3T1 , and T1T2 , respectively.

Prove that L1 , L2 , L3 determine a triangle whose vertices lie on

the circle inscribed into the triangle ABC.

The solution requires some basic results from triangle geometry

which are easy to prove, but which will only be quoted here.

Theorem 6.1. Let the notations be as in the statement of Prob-

lem 6. Then the following statements hold.

a) The center of the inscribed circle is the intersection of the bisec-

tors of angles A, B, C.

b) The center of the circumscribed circle is the intersection of the

right bisectors of the sides AB, BC, CA.
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c) The triangle AH2H3 is similar to the triangle ABC, i.e. corre-

sponding angles are equal. Similar statements hold for BH3H1

and CH1H2 .

A B

C

H1

H2

H3

T1

T2

L1

L3

L2

T3

These results immediately allow some progress.

Lemma 6.1. Let the notations be as in the statement of Problem 6,

then L1, L2 , L3 determine a triangle (possibly a point) similar to

triangle ABC.

A B

C

IH2

H3

T2

T3

Proof. Let I be the center of the inscribed circle. Since AH2H3

is similar to ABC, and AI bisects the angle BAC, reflecting H2H3

about AI makes it parallel to BC. Since T2T3 is perpendicular to AI,
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it follows that reflecting H2H3 in T2T3 also makes it parallel to BC,

since a sequence of two reflections along two perpendicular axes is

equivalent to one rotation by 180◦. Thus, L1 is parallel to BC. Sim-

ilarly, L2 is parallel to AC and L3 is parallel to AB. Note also that

L1 is opposite to A, L2 is opposite to B, and L3 is opposite to B . �

In order to proceed, one introduces coordinates for points inside a

triangle by their distance from the sides. Thus, a point P inside the

triangle ABC will be denoted by (x , y , z), where x, y, z are the dis-

tances from P to BC, AC, and AB, respectively (since the triangle

is assumed to be acute, the question of signs does not arise). Note

that P is uniquely determined by any two of x , y , z .

Remark 6.1. This parametrization corresponds to the usual

barycentric coordinates since it is easy to show that, with h1 the

length of AH1, etc., one has

P = x
h1

A + y
h2

B + z
h3

C , where x
h1

+ y
h2

+ z
h3

= 1 .

The advantage of this parametrization is that it characterizes the

centers of the inscribed and the circumscribed circles from knowledge

of the sides alone.

Lemma 6.2. Let the notation be as in the statement of Problem 6,

and P a point in the triangle with coordinates (x, y, z).

a) If (x, y, z) = (r, r, r), then P is the center and r the radius of the

circle inscribed into the triangle.

b) If (x, y, z) = (R cosA ,R cosB ,R sinC) , where A = ∠BAC etc.,

then P is the center and R the radius of the circle circumscribed

around the triangle.

Proof. Part a) is trivial. To prove part b), let O be the center of

the circumscribed circle. Since triangle ABC is acute, O lies inside

the triangle, and R = |OB| is the radius of the circumscribed circle.

Let

α ≡ ∠OBC = ∠OCB ,

so that x = R sin α. Furthermore, let

β ≡ ∠OCA = ∠OAC and γ ≡ ∠OAB = ∠OBA .
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Since 2 (α+β+γ) = 180◦ it follows that α = 90◦−(β+γ). But also,

one has β + γ = ∠A, so that sinα = cos A. The result follows. �

A B

C

x

R

O

The final result is obtained directly from the following lemma.

Lemma 6.3. Let the notations be as in the statement of Problem 6,

and let I ′ be the reflection of I, the center of the inscribed circle, in

the line T2T3 . Then I ′ is the center of the inscribed circle of AH2H3 .

Indeed, assume that Lemma 6.3 holds. Then the distance between I ′

and the line H2H3 is the radius of the inscribed circle of the triangle

AH2H3 . By Theorem 6.1c, this triangle is similar to the triangle

ABC, so the radius of its inscribed circle is that of ABC multiplied

by the factor of similarity. By Theorem 6.1c, the factor of similarity

is

|AH3|
|AC|

= cos A ,

since CH3 is an altitude. It follows that the distance from I ′ to the

line H2H3 is r cosA.

One now notes that, the distance from I ′, the reflection of I

in T2T3 , to the line H2H3 is exactly the same as the distance between

I and the line L1, the reflection of H2H3 in T2T3 . One concludes that

the distance from I to L1 is r cosA. Similarly, the distance from I to

L2 is r cosB and the distance from I to L3 is r cosC . Lemma 6.1 and

Lemma 6.2 b show that I is the center of the circumscribed circle of

the triangle with sides L1 , L2 , L3 , and that this circle has radius r.

The result is therefore proved, given that Lemma 6.3 holds.
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A B

C

I

V

I’

W

T2

T3

Proof of Lemma 6.3. In order to prove this, one uses the fact just

proved above that the triangle AH2H3 has ratio of similarity cos A

with respect to triangle ABC, so the radius of the inscribed circleis

r cosA, and then apply Lemma 6.2a.

One therefore needs to compute the distance from I ′ to AB. Thus,

let W be the point on AB such that AWI ′ is a right angle. The axis

of reflection T2T3 cuts the line AI perpendicularly, so that

r = |T3I| = |T3I
′| .

It follows that

|I ′W | = r cos
(

∠T3I
′W

)

.

Let δ = ∠BAI. Since AWI ′ is a right angle,

∠AI ′W = ∠AIT3 = 90◦ − δ .

Since |T3I| = |T3I
′|, one also has ∠T3I

′I = 90◦ − δ . It follows that

∠T3I
′W = 2δ

and thus

|I ′W | = r cos(2δ) .

By Theorem 6.1a, the line AI bisects ∠A, so it follows that

|I ′W | = r cosA. Moreover, the fact that this line bisects ∠BAC

implies that the distance from I ′ to AC is also r cosA. Since two

distances to the sides determine a point uniquely and the radius of

the inscribed circle is r cosA, it follows that I ′ is the center of the
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inscribed circle, as claimed. �

Remark 6.2. The above proof relies on two results: Lemma 6.1

and Lemma 6.3. The first is “soft” in the sense that it follows from

known results without any computation. The second is the heart of

the technical argument and appears to be of independent interest.

Remark 6.3. The above argument was discovered only after using

a brute force algebraic method to prove the result. The following is

a brief outline of this method.

Without loss of generality, one can assume that

A = (0 , 0) , B = (1 , 0) , C = (m ,n), where 0 < m < 1 and n > 0 .

Furthermore, let

a =
√

(1 − m)2 + n2 and b =
√

m2 + n2

be the lengths of the sides opposite to A and B, respectively, and

p = 1 + b + c

the perimeter of the triangle.

Once again, let the center of the inscribed circle be I, then it is

easily computed that I has coordinates

I
(

m+b
p

, n
p

)

, and so r = n
p

.

If V is once again the intersection of T2T3 with AI, then

V = m+b
2b

I .

The reflection of a point U in T2T3 is given by

U 7→ U + 2
(

1 − U ·V
‖V ‖2

)

V .

Thus, if H ′
2 and H ′

3 are the images of H2 and H3 under a reflection

in T2T3 , then

H ′
2 = − m

b
B + 2V and H ′

3 = − m
b

C + 2V .

A computation shows that line L1 is given by equation

y = n
m−1

x + n
bp (m−1)

(

ma − b (b + 1)
)

.
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We now derive the equation of L2 by using the symmetry x 7→ 1−x,

which provides a 7→ b and m 7→ 1−m. It follows that L2 is given by

equation

y = n
m

x − n
m

− n
apm

(

(1 − m)b − a(a + 1)
)

.

Fairly straightforward algebraic computation eventually yields the

coordinates (x′, y′) of the intersection of L1 and L2, which are

x′ =
b2(m−1)2− a2m2

abp
+ b+m

p
, y′ =

n (b2(m−1)− a2m)
abp

+ n
p

.

Since

I =
(

b+m
p

, n
p

)

,

it is then easy to check that (x′, y′) is at distance r = n
p

from I .

Since this holds for any two vertices, the result is proved.
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MY ROLE AS AN OUTSIDER

ILAN VARDI’S EPILOGUE

However, the majority of our contemporary academics

disguise what is true with what is false and never surpass

the limits of scientific fraud and posturing, using the science

they have at their command only for vile material interest.

And when they meet a man who sincerely searches for the

truth, refusing falseness and lies, and rejecting ostentation

and fraud, they take him for a fool and ridicule him.

The above was written by Omar Khayyam (1048–1131) in his book
Treatise on Algebra. In the intervening millenium things have certainly
improved, but the phenomenon certainly persists, and nowhere is this
more true than in the process of career advancement where admission to
the best universities is a key factor. I have been continually amazed to
see mathematicians who pride themselves on their rigour and objectiv-
ity, when it comes to their research, discard this mental discipline, when
political advancement is concerned. Perhaps it is for this reason that
many of the regretable stories recounted in this book do not surprise or
shock me. And yet, these events are compelling because they feature
a unique chapter in the history of mathematics – the only example of
mathematics itself being used as a political tool. Indeed, much of the
other excesses of the committees remind one of the shady dealings of
many a hiring committee, the only difference being that in almost all
such cases, victims are singled for purely personal reasons, whereas the
events recounted in this book have a racial motivation affecting a large
class of people.

It is the unique involvement of mathematics itself that made this
book worth compiling and it is for this reason that it is worth reading.
Indeed, I have just finished reading the article Intellectual Genocidea de-

aThis essay written by B. Kanevsky and V. Senderov is published in Part 2 of the

1

122



scribing these events in detail, and its mathematical content convinces
me more than ever that my work, as an outsider – I have never been
to Russia and I don’t speak a word of Russian – is an essential part of
this story. The thing that made me realise this was the following prob-
lem given to Jewish students: it asks for the solutions of the equation
√

x + 1(4−x
2) = 0 , and one finds out that two students were cheated by

the examiners using the trivial semantic point of the two wordings “−1
and 2” versus “−1 or 2”. That professional mathematicians resorted to
such tactics is shocking. But much more shocking to me is the fact that
the solution x = −2 is never mentioned. I could not understand why
this was, and it had to be explained to me by Editor Mikhail Shifman:
In the period in which these problems were given, neither the professors
nor the students would ever mention complex numbers in a problem
solution, and a student would be immediately excluded if he did so. To
me, it seems completely incredible that a professional mathematician
would refuse to accept complex numbers as valid solutions to a prob-
lem. Confirmation that my position is far removed from that period is
given by the fact that over the last 24 years, it had never occured to
anyone reporting about the problems to even mention this supplemen-
tary solution (note that all these people were involved in that system
in one way or another). And yet, −2 is also a solution, to paraphrase
Galileo, an analogy which highlights the unscientific nature of the pe-
riod. The title Intellectual Genocide is quite appropriate, but I believe
that it should be applied to all parties involved.

The above example is far from isolated. The number of alternate
solution not found by professors or students at the time, or by writers
describing the events is quite significant. Moreover, the description of
the difficulty of the problems is most often inaccurate. The description
of some killer problems given in the article Intellectual Genocide appears
to be largely incorrect; the only problems which are accurately appraised
are the ones which the authors actually worked through completely. The
moral of the story: If you want to understand the problems, then solve
the problems, don’t just talk about them. It should not come as too
much of a surprise that many of the people who do the talking and not

present Collection. –Editor’s note

2
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the solving are the politicians. And this is exactly how I got interested
in this project.

It is now five years since I completed my paper on the Mekh–Mat
problems and it is finally appearing in book form. This would not
have been possible without the tireless energy of Mikhail Shifman who
was also able to include the original articles I drew on as well as some
important personal accounts of the period in question, these previously
only available in limited distribution as typewritten notes in Russian.

I first became aware of these problems while I was visiting the IHESb

(one of the world’s leading mathematics research institutes) in the sum-
mer of 1999. A visiting professor was attempting to prevent two Russian
mathematicians from coming to the institute due to their involvement
in anti-Semitic Mekh–Mat practices. Since I am not interested in poli-
tics but interested in mathematics, I was immediately intrigued by the
problems themselves and began working on them continuously until I
solved all 25 in the list in a period of six weeks. The paper is a result
of this effort.

As for the political question, I was opposed to any attempt at re-
taliation, but referred the director to Anatoly Vershik who had written
one of the original articles. He was also vehemently opposed to any
action blocking the visits of the two Russian mathematicians, and this
convinced the IHES administration to let them visit.

In subsequent years, my work on the Mekh–Mat Problems put me
in the position of arbiter for such conflicts. On at least two occasions, I
had to intervene on the behalf of Russian mathematicians whose visits
to universities were in jeopardy due to their previous political activity.
I am glad to say that my efforts were successful.

I hope that this will convince anyone looking at this book that its
purpose is not retaliation against former wrongs. On the contrary, the
authors of this work have been instrumental in protecting the rights
of the perpetrators of wrongs described in this work. Even Kanevsky
and Senderov, the authors of Intellectual Genocide, admit that their
evidence is anectodal, so their work should only be taken as a record of

bInstitut des Hautes Études Scientifiques in Bures-sür-Yvette (France), an insti-
tute of advanced research in mathematics and theoretical physics. –Editor’s note
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a highly regretable period in recent history.

Ilan Vardi

Paris, November 29, 2004
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Part 2



Valery Senderov
(photograph circa 1980)
Born in 1945. Graduated from Moscow Institute of Physics 
and Technology. Authored several dozen papers on functional 
analysis. In the 1980, together with Bella Subbotovskaya and
Boris Kanevsky, was instrumental in the making of the “Jewish
People’s University.” In 1982 was arrested for the anti-Soviet 
agitation and propaganda. The essay Intellectual Genocide
the English translation of which is published below was used 
as an important part of incriminating evidence. He was found 
guilty and sentenced to seven years in hard-labor camps, with 
the subsequent five-year exile. Released in 1987 in connection
with perestroika.  Currently Valery Senderov lives in Moscow
and continues his scientific and pedagogical activities in 
mathematics. He is also a free-lance writer on historical, 
philosophical and sociological topics. His articles appear on
a regular basis in Novy Mir, Posev, Voprosy Philosofii, and other
journals. A member of the International Human Rights Society.

Boris Kanevsky

Born in 1944. Graduated from Moscow University.
In 1978-82 participated, with Senderov and Subbo-
tovskaya, in Jewish People’s University. Arrested in
1982 for “anti-Soviet slander.” Released in 1985, in 
the very beginning of perestroika. Moved to Israel 
in 1987. Boris Kanevsky now lives near Jerusalem   
and teaches mathematics at a Jerusalem high 
school and Hebrew and Tel-Aviv Universities.
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The following article required extensive commentary. Foot-
notes were provided by the Editor, while comments on math-
ematical aspects, appended at the end of the article, were
written by Ilan Vardi.
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INTELLECTUAL GENOCIDE

Entrance Examinations for Jews at MGU, MFTI, MIFIa

B. I. KANEVSKY, V. A. SENDEROV

Second extended edition,b 1980

“. . . no cause can succeed without trampling

a few delicate national flowers. But nothing

in history was achieved without violence and

implacable cruelty.”

Karl Marx and Friedrich Engels

Introduction

As far as Moscow is concerned, the most prestigious science and engi-
neering institutions are the departments of natural sciences of Moscow
University, the Moscow Institute for Physics and Technology and the
Moscow Institute for Engineering and Physics. These institutes train a
significant proportion of the country’s researchers.

According to Soviet law every USSR citizen must have a passportc

indicating his or her ethnic origin. If both parents are Jews, the passport
must show “Jew” in the ethnic origin entry. Children of mixed marriages
are allowed to choose either one of their parents’ ethnic origin.

Admission committees require applicants to fill in forms stating their

a These acronyms stand for: MGU = Moscow State University (the most presti-
gious university in Russia), MFTI = the Moscow Institute for Physics and Technology
and MIFI = Moscow Institute for Engineering and Physics. The latter two institutes
are Russian analogues of MIT. – Editor’s note

b This was a samizdat typewritten “publication.” People retyped these publica-
tions using mechanical type-writers and carbon paper. Typewritten copies of this
article obtained from various archives have slight differences. – Editor’s note

c Soviet “passport” was in fact an internal ID card carrying extensive information
such as home address, marital status, etc. Ethnicity — which in the Soviet parlance
was referred to as “nationality” — was entry # 5. Entry # 5 became a euphemism
for “Jewish.” – Editor’s note
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ethnicity, but not those of their parents.d However, each applicant must
submit his or her parent’s first name, patronymic, family name, and
place of work, allowing the admission committee to ascertain easily the
ethnic origins of parents and grandparents.

In the present paper, any applicant having at least one Jewish grand-
parent will be referred to as a “Jew,” following the standard admis-
sion committee practice, see Document No. 112 of the Moscow Helsinki
group.

1 Mekhmat of MGU
[Department of Mechanics and Mathematics]

In 1980, entrance examinations were held at the MFTI and MIFI in July,
as usual. However, MGU examinations were were held in August and
September, at the same time as other Moscow higher-education institu-
tions, which was one reason why there was practically no competition
for entrance to the Mekhmat among Muscovites. (The competition was
held separately for applicants from Moscow and those from other cities
because of space limitations in student hostels for non–Muscovites.) In
fact, the number of applications practically coincided with the number
of students to be admitted.

Among graduates of the leading Moscow physical and mathemati-
cal high schools e (there were more than 400 graduates from the best
schools: No. 2, 7, 57, 91, and 179), not a single one with passport en-
try stamped “Jew” applied to the Mekhmat, accurately reflecting the
hopelessness of this endeavor. However, some Jews with no identifying
stamp — as a rule, recipients of awards and commendations for their
physics and mathematics olympiads accomplishments — did apply hop-
ing that, because of the lack of competition, they would not be subject
to discriminatory selection. Also applying were Jews from less presti-
gious schools not as well connected to mathematical circles and where

d No rule is without exception. In 1980, MIFI applicants were required to indicate
their parents’ ethnic origin in an attached biography.

e In the 1960’s special schools were established for gifted students in science and
technology. They were allowed to transfer to a school or special class having an
advanced curriculum in the area of their choice.
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the scale of Mekhmat anti–Semitism was not fully understood.

Since the total number of Jews from physics and mathematics high
schools applying to Mekhmat was not large it is not reasonable to com-
pile tables and perform statistical analysis — the sample is too small.
Instead, we will consider several Jewish applicants’ “Mekhmat entrance
examinations experiences” which should provide a clear picture of what
went on.

That year, eight graduates of mathematics school No. 91 applied to
the Mekhmat: Andreeva, Ermolaeva, Kontsevich, Pantaev were Rus-
sians, and Grilli, Gundobin, Krichevskii, Lavrovskii were Jews. The
first four were admitted. The treatment of the four others was openly
discriminatory. Krichevskii and Lavrovskii got a ‘2’ in the first exam,f

a written test, see below. Gundobin got a ‘2’ in the second exam, an
oral test. One of the problems given to him was to prove a compli-
cated theorem not in the school curriculum, see problem # 26 from
the samizdat compilation “Selected Problems from Oral Math Exami-
nations, Mekhmat MGU, 1980.” Every mathematician knows this the-
orem; therefore, the possibility that his examiners suggested it by mis-
take can be completely ruled out. The fourth Jew, Grilli, got a ‘2’ in
composition.g The grader’s comment was standard for such cases: “The
theme is not worked out.” In the course of his appeal Grilli was denied
access to his composition and the examiner’s remarks. With no exam-
iners’ remarks in his hands, Grilli could provide no arguments in his
favor to the Departmental Committee. Subsequent complaints were all
in vain.

f The grading system in Russia is based on a five-point scale. The highest grade
is 5 (corresponding to an American A), the next is 4 (corresponding to B), and so
on. A ‘2’ means that the student failed, barring him from any further exam. The
“barely passed” level starts at ‘3’. –Editor’s note

gEntrance examinations to Soviet institution always included a literary essay on
topics suggested by the admissions committee. Usually, these topics were ideologi-
cally charged. –Editor’s note
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Written exam

Five problems were given and graded on a “pure plus system” meaning
that if, in the examiners’ opinion, a solution had any flaw, then it would
not be counted. Two problems marked by pure plusses guaranteed a
passing grade (‘3’ or higher).

Jewish applicants aware of this grading system would often select
the two or three simplest problems and spend all the examination time
trying to work out perfect solutions. Let us have a closer look, how far
this strategy could go.

Sergei Krichevskii

In 1978, Krichevskii was one of the winners of the Moscow Mathematical
Olympiad and of the Moscow branch of the All–Union Mathematical
Olympiad. He solved three problems. We will limit our discussion to
two of them as we do not have full information regarding the third one.
Note again that two pure pluses would give Krichevskii a passing grade
allowing him to get to the oral exam.

Problem 1.

Solve the equation
√

x + 1(4 − x2) = 0 .

Krichevskii’s solutionh that x =−1 or x = 2 was declared flawed.i An-
other flaw was writing the answer as {x} = {−1; 2}.

h In some other works, for example, in that of Trutnev, see below, writing x=−1
and x=2 was declared incorrect.

iThe reader may be surprised to know why neither Krichevskii nor Kanevsky
and Senderov mention the solution x = −2. The Soviet high school curriculum at
that time defined the function

√
x as a function well-defined only for non-negative

real values of x. Those students who knew that, in fact, it could be defined in the
complex plane, were supposed to conceal their knowledge. Anybody who answered at
the entrance examination to any university in the USSR that

√
x + 1 = ±i at x = −2

would be given a failing grade right away, and be barred from further examinations
with no possibility of appeal. High school students were taught that in solving the
equation (4−x

2)
√

x + 1 = 0 the first thing to do was to write down that “the domain
of definition” is x ≥ −1. Formally, the examination requirements all over the country
were standardized. –Editor’s note
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Problem 2.

Solve the equation sin 2x =
√

3 sin x.

The only “flaw” was a slip of the pen — “n” instead of “π”.

One of Krichevskii’s “flaws” in solving the third problem was that
he denoted an angle using the symbol “∠” which the examiners told him
was incomprehensible. In his appeal Krichevskii wrote that examiners
not understanding school textbook notation was not his fault. This
appeal was not accepted for consideration as it showed “contempt for
the examiners.”

Krichevskii’s grade of ‘2’ was left unchanged. “Even if you were right
we would not have given you ‘3’ anyway,” they “consoled” Krichevskii.

Dmitrii Lavrovskii

Problem 1.

Solve the equation
√

2 − x (9 − x2) = 0 .

Lavrovskii divided the solution of the problem into parts. In the first
part, he defined the domain of admissible values x ≤ 2. In the second
part, Lavrovskii passed to an equivalent (within the domain) set of
equations 9−x2 = 0 or 2−x = 0 , which the examiners called a mistake.

A remark of a similar nature was made regarding the solution to the
second problem. In the appeal, the examiners removed the remark, yet
did not accept Lavrovskii’s objection to the remarks pertaining to the
first problem’s solution. The ‘2’ grade was left unchanged.

Apparently, the tactic of perfect solutions to two or three problems
does not bring success. As will be seen, solving all the problems does
not help undesirable applicants either.

Alexander Trutnevj

Trutnev solved all five problems yet the grade for his work was ‘2’. Trut-
nev’s appeal was rejected on the grounds that there were no two “cleanly

j Based on his score in the 1980 MGU Mathematical Olympiad, Trutnev received
a personal invitation to study at the Mekhmat.
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solved” problems in his examination work. A typical reason for refusal
was given by Professor A.S. Mishchenko, the Chair of the Appeals Com-
mittee, who, in considering the first problem whose answer was written:
“x = −1 and x = 2”, stated that this was a gross error because “and”
does not have the same meaning as “or”, i.e., had Alexander written the
answer as “x = −1 or x = 2”, the solution would have counted. Note
that in the Krichevskii case above, the same Professor Mishchenko told
the applicant that one was not supposed to use the word “or” here.

Oral exam

A number of techniques for “evaluating knowledge” were applied to
Jewish applicants but one can single out two main ones. At the start is
an exhausting two hour long cross–examination and during the third,
fourth, and fifth hours of examination are given the so–called killer prob-
lems. Not more than 20 minutes is allocated to solving each problem;
we are aware of no case when a student got more than half an hour to
prepare an answer. This resulted in the failure of even the most capable
and best-prepared of the undesired candidates; occasions when students
got a ‘3’ are rare. (We know of one exception to this rule this year.)

Let us now turn to oral examination stories.

Igor Averbakh

The year he applied, Averbakh had graduated with a gold medal from
Chelyabinsk school No. 121. In the previous four years Igor had been
winner of the Chelyabinsk Mathematical Olympiad; in the 8th and 9th
grades he had participated in the All–Union Mathematical Olympiads;
in 1978, he was one of the winners of the All–Russia and All–Union
Mathematical Olympiads. In July of 1980, he passed the entrance ex-
aminations at the MFTI with all 5’s but was not admitted.

“Grades received at entrance examinations do not play a decisive
role for admission to our Institute” — from the MFTI prospectus.

Igor Averbakh applied to Moscow University and in August tried
to pass the Mekhmat entrance examinations. His grade in the written
math test was ‘3’.

7
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His grade in oral math was also ‘3’. His examiners were Filimonov
and Proshkin. The problems given at his oral examination were:

Problem 1.

The equation x2−A= |x − B | is given.

For any non–negative integer n, find a set Mn of pairs (A,B) of
parameters, for which the equation considered has exactly n solutions.
Plot these sets on the (A,B) plane.k

Problem 2.

Solve the equation

sin3 x cos x
2

+ 1
2

sin x sin x
2

(

1 + 2 cos x
2

)

= 1 + 6 sin2 x
2

.

Problem 3.

A point K on the base AB of the trapezoid ABCD is given. Find
a point M on CD such that the area of a quadrangle formed by the
intersection of triangles AMB and CDK will be the smallest.

A version of the latter problem — with the question of finding the
the largest area — was given to 9th and 10th grade students at a special
round of the 1973 MFTI Olympiad for special physics and mathematical
schools of Moscow, where six problems were given in five hours. This
same problem was given to 10th graders in the final round of the 1978
Kiev Mathematical Olympiad. There five problems were given in four
hours. Only two students solved the problem at the Kiev Olympiad.

k In 1979, this problem was suggested to applicant Leonid Polterovich at the oral
exam. Polterovich submitted an appeal, in which he complained, in particular, about
the cumbersome nature of the solution to the problem. In considering the appeal,
examiner Vavilov, trying to prove the pertinence of this problem for an oral math
examination, got confused in the derivation of the solution. As a result, the Appeal
Committee qualified this problem as unfit for oral examinations. Leonid Polterovich
was admitted to the Mekhmat after numerous complaints and appeals.
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The two versions of the problem are approximately equal in complex-
ity level. Two solutions of Problem 3 obtained by the present authors
use the largest area problem as a lemma.

After the examination, Igor Averbakh wrote the following appeal.

“At the oral examination in mathematics, I gave full and correct
answers to both required questions as well as to several supplementary
questions. (Three or four of them were recorded.) Two hours after re-
ceiving the required questions, I got three additional problems. I ran
out of time on the first problem, the solution of which is very time
consuming, and was stopped by the examiner. I correctly solved the
second problem and got “plus” for it. I was then given a third prob-
lem, after the three hour long examination session. The third problem
was definitely at Olympiad level, for example, it was given at the 1978
Kiev Mathematical Olympiad where it was the most difficult, in judges’
opinion. Thus, I was forced to solve an olympiad problem under the
condition of extreme fatigue, which I informed my examiner. The ex-
amination was conducted with gross violations of the Directive Letter
No. 21 issued by the Ministry of Higher Education of the USSR on May
22, 1980, as well as of the internal rules of Mekhmat:

1) Many additional questions that I was asked, were not recorded
by the examiners, despite the guidelines of the above Directive
Letter.

2) The examination session lasted longer than 3.5 hours.

3) Despite the Mekhmat rules (see “Examiner’s Memo”), I was given
an Olympiad problem, and this after a three hour session.

The standards applied to my written work are beyond the level of
school coursebooks. Many examiners’ remarks were not correct in their
essence. I consider my grades for the written and oral math examina-
tions to be unfairly low and request the revision of both grades.

08.27.1980 Averbakh.”

Both this and all subsequent complaints were declined. See below
on how complaints are considered by the Mekhmat.
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Dilyara Vegrina

In 1979 Dilyara graduated from Mathematical School No. 2, the best
in Moscow, with all 5’s in mathematics. In July 1979 she made an at-
tempt to enter MGU’s Mekhmat. Although Vegrina received prizes at
the Moscow Mathematical Olympiads in the eighth and ninth grades,
and in the tenth grade she was awarded a prize at the All-Union Math-
ematical Olympiad, she got a ‘2’ at the very first examination (written
mathematics). Her appeals and complaints proved to be in vain.

In August of the same year, Dilyara Vegrina applied to the Moscow
Institute of Electronic Machine Building. Her grades at the entrance
examinations were: written mathematics – ‘3’; oral mathematics – ‘3’;
oral physics – ‘2’. Upon appeal, the grade was left unchanged.

In September of 1979, she enrolled in the correspondence school sec-
tion of the Kalinin University Mathematics Departmentl and completed
the two year curriculum in one year. In August of 1980, Vegrina made
a second attempt to enter MGU’s Mekhmat. Her written math grade
was ‘3’.

Here are the problems Vegrina was given in her mathematics oral
exam with examiners Pobedrya and Proshkin:

Problem 1.

Solve the inequality 3y log3(9 − x2) ≤ 1 + 32y.

Problem 2.

The same as Problem 1 given to Averbakh.

Problem 3.

Can a plane intersect a trihedral angle in such a way that the cross
section is an equilateral triangle? m

lCurrently, the Tver University. –Editor’s note
m This is one of the problems recommended by the Central Organizing Committee

of the 1976 All–Union Olympiad for its third round. There, four hours were allocated
for solving five problems. The concept of trihedral angle is absent from the The En-

trance Examinations Program for Applicants to USSR Higher Education Institutions
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Problem 4.

Solve the equation cot x = sin(x + π
4
), where 0 < x < π.

Problem 5.

A function f(x) is continuous on the interval [0, 1]. Numbers A and
B are such that 0 <A≤ f(x)≤B. Prove the inequalityn

AB

∫

1

0

dx

f(x)
≤ A + B −

∫

1

0

f(x)dx .

Vegrina solved Problems 1 and 4. She was not allowed to finish
Problem 2. Her math skills were evaluated as unsatisfactory, and she
received a ‘2’.

“To the Appeal Committee of Mekhmat of
MGU from the applicant D. Vegrina,
Examination registration 110404 (110464?)

Statement

I request a change in my oral math examination grade. I answered
all required examination questions and two of five additional problems
were evaluated as solved by my examiner. The third additional prob-
lem was in fact recommended for the National Mathematical Olympiad
while the second and fifth problems are also of Olympiad level. My
examination session lasted for more than five hours (from 1:20 p.m. till
6:50 p.m.). At the end of the session, I was unable to answer examiner’s
question.

I consider my grade ‘2’ — not passed —as unfair since four questions
out of seven were answered correctly, and that the length of the exam-
ination session is obviously not within reasonable human endurance.

Vegrina”

in 1980.
n Solving this problem requires integration of the inequality. The school curricu-

lum does not include integration of inequalities.
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This letter as well as further appeals failed to change the exami-
nation result. Vegrina’s appeals will be considered in more detail in a
subsequent section.

Mikhail Temchin

Based on results of the 1980 Mekhmat Olympiad, Temchin received
a personal invitation to the Mekhmat. He got a ‘3’ in the written
math examination after having solved four problems. The “flaw” in
the first problem coincided with the one attributed to Lavrovskii in a
corresponding problem (see above). The “flaw” in the second problem

was the “unsubstantiated inequality”
√

6

2
> 1 used by Temchin in his

solution.

The oral examination started at 10 a.m. and, after 40 minutes of
preparation, Temchin asked for permission to start giving his solutions.
One of the examiners agreed but, after a closer look at the examina-
tion registration, asked for a delay. This procedure was repeated several
times and only at 1 a.m. was Temchin called to answer, i.e., three hours
after the beginning of the examination session. Temchin’s answers to
the required questions were the subject of some interesting remarks by
the examiners. For example, he used the term “asymptote” in answer-
ing a question on the properties of the function y = k

x
. This incited

the following remark from the examiner: “Don’t fool me!” The defini-
tion of an angle routinely found in school textbooks was first declared
completely wrong but was accepted after some clarification. After all
required questions were answered, the examiners told Temchin that his
answers “were right but only formally.” (What this means is unclear.)

We present here the supplementary problems given to Temchin at
his oral examination.

Problem 1.

A function f(x) is given, such that f(0)=0; f(1)=1; f(88)=
√

2.
Prove that there exists a natural number k and real numbers x and y
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such that the inequalities

{

|x − y| ≤ 4 ,
(

f(x + 1) − f(x)
)
∣

∣f(y + 2k) − f(y)
∣

∣ > 0 .

are valid.

Problem 2.

Identical to Problem # 2 given to Averbakh.

Problem 3.

Let P be an arbitrary point P inside an equilateral hexagon of unit
side. Prove that the sum of distances from P to all corners is not greater
than 2/(2 −

√
3).

Temchin did not solve the supplementary problems, and got the
grade ‘2’.

When examiners hesitate to pass, the standard practice is to let last
question determine the grade: ‘3’ (barely passed) or ‘2’ (not passed).
This means that Problem # 3 given to Temchin should be considered
a “barely passed/not passed” question. Let us dwell on this problem in
more detail. Its solution requires the following:

1. Consideration of a function of two variables — let us denote it as
f(x, y).

2. Reducing it to a function of one variable, ϕx0
(y) = f(x0 , y).

3. Investigation of the function ϕ(y)

a) either with the aid of the second derivative,

b) or using convexity of this function.

It is practically impossible for this problem to be solved by a student at
the entrance examination for two reasons. First, all concepts necessary
in point 3 of the solution are absent from the High School curriculum; it
contains neither function analysis based on second derivatives, nor the

13
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concept of convex function; the very concept of partial derivative is not
in the curriculum.

The second reason is as follows. The line of reasoning 1 → 3a or
1→3b, standard in calculus, is not in spirit of High School mathematics;
nor does it belong there ideologically. Only the rudiments of calculus are
studied in High School and derivations similar to that outlined above
are unfamiliar to the students.

The exam took place on August 26. On August 28 Temchin’s father
died. Appeals of the oral examination results failed (see below).

Dmitrii Markhashov

Dmitrii Markhashov graduated from Moscow High School No. 21. His
written math grade was ‘3’ and his oral grade was ‘2’. After Markhashov
successfully answered all required oral examination questions, the fol-
lowing additional problems were given to him.

Problem 1.

A point O is on the base of the triangular pyramid MABC. Prove
that the sum of angles formed by the line OM with the edges MA, MB,
and MC, is smaller than the sum of the plane angles at the top M , and
greater than half this sum.o

Problem 2.

Solve the equation (sin x)
11

7 + (cos x)
19

11 =
√

19

7
.

Problem 3.

Prove the inequality
3
√

3 − 3
√

3 +
3
√

3 + 3
√

3 < 2 3
√

3 .

oThe first inequality in this problem can be found in the book by L. M. Lopovok,
Compilation of Problems in Stereometry, (Moscow, Uchpedgiz, 1959), Problem #
261*. This is a problem “with asterisk”, which means of increased difficulty. Imme-
diately after the formulation of the problem in the above book, there is a hint which
is in essence a full proof of this inequality. It is based on properties of plane angles of
a trihedral angle. As has been already mentioned, the concept of the trihedral angle
is not in the The Entrance Examinations Program.
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Let us consider the last problem in more detail. It should be re-
minded that it was considered as a “barely passed/not passed” threshold
problem — see comments to Temchin’s problems.

Solution 1. The problem’s assertion follows directly from convexity
(upward) of the function f(x) = 3

√
x,

f(3 + 3
√

3) + f(3 − 3
√

3)

2
< f

(

(3 + 3
√

3) + (3 − 3
√

3)

2

)

.

However, since the concept of convex functions is not taught in High
Schools, let us consider other solutions.

Solution 2. Using the derivative, it is seen that the function

f(x) = 3
√

3 + x + 3
√

3 − x

attains its maximum value at x=0 and only at this point. Consequently,
f(0) > f( 3

√
3).

Regarding this solution, we note that proving inequalities using
derivatives is not included in the school curriculum. Recall that ap-
plicants are familiar only with the rudiments of calculus. Therefore,
discovering the above technique in twenty minutes during an examina-
tion seems unreasonable.

Solution 3. Let us rewrite the inequality to be proved in form

3

√

1 +
3
√

3
3

+
3

√

1 −
3
√

3
3

< 2 .

The inequality
3
√

1 + x < 1 +
x

3

is seen to hold for x > −9. Using this inequality twice, we derive the
assertion of the problem.

From a formal point of view, this solution only uses elementary
techniques. However, from an ideological standpoint, it is more compli-
cated, to our mind, than the first two solutions. Namely, this solution
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requires exploiting an auxiliary inequality 3
√

1 + x < 1 + x
3

. The most
straightforward way to arrive at this auxiliary inequality is using Tay-
lor’s expansion so the simplicity of the means is illusory.

Solution 4. Let us denote

x0 =
3

√

3 +
3
√

3 +
3

√

3 − 3
√

3 .

We have
x3

0 = 6 + 3
3

√

9 − 3
√

9 x0 .

Thus, x0 is a root of the polynomial

P3(x) = x3 − 3
3

√

9 − 3
√

9x − 6 .

But

P3(0)<0 , P ′
3(0)<0 .

Therefore, to prove the inequality x0 <2 3
√

3 , it is sufficient to prove that
P3(2

3
√

3)>0 . The latter can be directly verified.

The idea to use a polynomial to prove an inequality is undoubtedly
nontrivial. It certainly is not in the High School curriculum. First,
the solution under consideration is based on this idea and, second, it
uses methods of calculus. As for the latter, see comments to Solution
2. (Such algebraic considerations associated with Vieta’s formulas are
hindered by the fact that the Vieta formulas are not studied in High
School.)

For these reasons, expecting such a solution in an examination and
in no more than twenty minutes is unreasonable.

Solution 5.

Lemma

The numbers (a + b + c), where at least two terms are unequal, and
(a3+ b3+ c3− 3abc) are of the same sign.

Proof

a3+ b3+ c3− 3abc = (a + b + c)(a2+ b2+ c2− ab − ac − bc) .
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It is easy to see that the polynomial in the right hand brackets of the
right hand side of this equation is always positive (except the trivial
case a = b = c), proving the lemma.

Solution

By the Lemma, the inequality from the problem is equivalent to

6 − 24 + 3
3

√

9 − 3
√

9 · 2 · 3
√

3 < 0 ,

or 3 >
3
√

3 · 3

√

9 − 3
√

9 , i.e.

27 > 27 − 3 · 3
√

9 .

Quod Erat Demonstrandum. The complexity of the above solution re-
quires no comment.

Solution 6.

Lemma
Let a + b ≥ 2 , a 6= 1 . Then a3 + b3 > 2.

Proof
Let a = 1 + t. Then b ≥ 1 − t. Consequently,

a3 + b3 ≥ (1 + t)3 + (1 − t)3 > 2 .

The lemma is proved.

Solution

We rewrite the inequality as

3

√

1 +
3
√

3
3

+
3

√

1 −
3
√

3
3

< 2 .

Let
3

√

1 +
3
√

3
3

= a,
3

√

1 − 3
√

3

3
= b. Let us assume that a+b ≥ 2 . Then,

by the lemma, a3 + b3 > 2. But a3 + b3 = 2. The inequality is proved.

We make only one comment regarding this solution: It seems easy to
single out the number 2 as a “reference number” which, in turn, implies
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the above lemma, based on convexity considerations on the function
f(x) = x3 for x > 0. See our comments to the first solution.

One can certainly continue searching for further artificial solutions.
However, what we have already written seems sufficient to characterize
the nature of this “barely passed/not passed” threshold problem.

“To the Appeals Committee of the MGU
Mekhmat
from applicant D. Markhashov,
Examination registration 120341

Statement

I request reconsideration of my oral math examination results. I
answered fully and correctly all required questions and extra questions
were raised en route. Neither the extra questions nor my answers were
recorded by the examiners, which is a violation of Directive Letter No. 21
dated May 22, 1980, which establishes a procedure for entrance exami-
nations to higher education institutions. My examination session lasted
longer than 4 hours and, as a result, I was very tired by the end.

After solving the required problems, I was given three supplemen-
tary problems, which I did not solve. It has to be noted that the diffi-
culty level of these problems is significantly higher than that of problems
usually proposed at MGU oral math examinations, see, for example, the
book by A. Tooma, V.Gutenmakher, N.Vasil’ev, and E.Rabbot.

The first problem given to me is listed in Lopovok’s problem compi-
lation as a problem of increased difficulty, where its full solution is given
in the form of a note. The last problem given to me is based on the the-
ory of convex functions, which is beyond the scope of the High School
curriculum. During the examination session, the examiner rudely told
me that I was thinking too slowly, which broke my concentration exactly
when most needed to solve these difficult problems.

Therefore, I consider my grade unfairly low.

08.27.1980. Markhashov”

This written appeal and all subsequent ones submitted by
Markhashov were rejected. But when, by the order of the Central Ad-
mission Committee (CAC), the Mekhmat provided Markhashov with
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solutions to the three supplementary problems he had been given during
the session, Dmitrii discovered errors in two out of the three Mekhmat
solutions, and informed CAC of these errors.

Two things then happened: first, the examiners told Markhashov
that their mistakes were inconsequential and second, they changed
Markhashov’s oral math grade to ‘3–’.

The next day was devoted to composition for which Markhashov
got a ‘4’. The following day, he took physics examination for which he
got a ‘2’. All appeals proved futile.

For comparison, we present a set of problems for which a “desir-
able” applicant to the Mekhmat received a ‘5’ at the 1980 oral math
examination.

Problem 1.

Prove the inequality sin x + cos x ≤
√

2 .

Problem 2.

Simplify the expression

1
1

log
a
x

+ 1
log

b
x

.

Problem 3.

Plot y vs. x where y(x) is given by

|y| + |x − 1| = 1 .

Problem 4.

Solve the equation
cos x = cos 2x .

Despite all this, some Jewish students still managed to pass ex-
aminations with all ‘3’s. Usually, this outcome was welcome by the
Mekhmat Admission Committee because these applicants would find
themselves at the bottom of the list and would not be admitted due to
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the limit on total number of admissions. However, in 1980, there was no

competition among Muscovites applying to the Mekhmat. Nevertheless,
the Admission Committee set the passing total at 18.5, in violation of
the principle of competitive selection.

Igor Averbakh, whom we have already mentioned, registered him-
self using his uncle’s Moscow address and managed to take the exam-
ination competing within the Muscovite quota. He was not admitted
to the Mekhmat. The Admission Committee announced to his father
that part of Moscow’s quota had suddenly been reserved for contestants
originating from peripheral Soviet republics. Later on, evidence sur-
faced that 30 places of the total Mekhmat enrollment were transferred
by the Mekhmat to other departments which could then recruit students
having failed the competitive selection in these departments.

The discrimination against Jewish applicants at the Mekhmat can-
not be concealed. At times, it emerges with comic spontaneity. For ex-
ample, senior examiner, Professor A. S.Mishchenko, told S.Krichevskii
(see above) that he — Krichevskii — had acted discourteously, by stress-
ing in his appeals exactly those examiner’s comments where he —
Krichevskii — was most certainly right (!).

However, the Admission Committee carefully covers up all traces of
attempts to prevent the dissemination of information by removing or
destroying written evidence.

For instance, on August 25, the Deputy Secretary in charge of the
Admission Committee, one Tatarinov, forbade applicants to talk to each
other while writing appeals regarding the written mathematics exami-
nation. (They were writing about their answers and trying to compare
their grades.) The appeals themselves were subject to double censor-

ship which was disguised as “reviewing.” At first, a member of the

examination commission, who remains unknown, made decisions as to

whether to let an appeal through to Tatarinov for a review. Then there
was Tatarinov’s review: he selected texts that he did not like suggesting
that applicants rewrite them, “if they want to complain.” Tatarinov
announced to applicants that he could bar any appeal he disliked from

being considered.

The same is true for the oral examination. Complaints about exam-
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iner rudeness, unfairly low grades, violations of rules and instructions,
had no chances of being considered by the Appeals Committee and, thus,
make it into the applicant’s personal file. Sure enough, D.Markhashov
and I.Averbakh’s complaints discussed above were not even accepted
for consideration. Averbakh’s appeal provoked the rage of Professor

A. S.Mishchenko, who tried to intimidate the applicant by aggressively
asking how he dared to refer to the Ministry’s Directive Letter, and
demanding to know who made the Examiners’ Memo available to him,
thereby committing malfeasance (!). In other words, the Admission
Committee treats the existing rules and provisions on the entrance ex-
amination procedure as “classified information,” hiding them from ap-
plicants.

Consideration of complaints by appeal committees

The MGU’s Admission Committee introduced a rule, according to which
appeals on written and oral math examinations had to be submitted
within one hour of the end of the examination session. We will not
dwell on this rule requiring exhausted applicants, to compose a well
thought document immediately after their oral exam session — a hard
task in itself. Instead, let us turn to the appeals process per se. The
simplest way is again to present examples.

I. Averbakh

The first appeal. “No, it is not ‘3”’ — Professor Mishchenko exclaims
after reading Igor’s complaint. Then, after a pause. — “It is ‘2’ ! The
examiner who gave you ‘3’ for such an answer deserves a reprimand.
Give me your examination form!” Mishchenko takes Averbakh’s ex-
amination form and is about to cross out ‘3’ and replace it with ‘2’.
Someone from the Appeals Committee says: “We should discuss this
first.” They ask the applicant to leave the room. After approximately
10 minutes, they call him back and inform him that they decided not
to change the grade ‘3’ to ‘2’ by a one vote margin.

The second appeal (to the Central Admission Committee).
Among the members are the Mekhmat Dean O. B. Lupanov, Professor
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A. S.Mishchenko, already mentioned, and others.

They ask Averbakh: “Is it possible to solve the problems given to
you by methods included in the school curriculum?” “It is possible” —
answers Igor. “Then what are you complaining about?” They would
not, however, listen to what Averbakh had complained about.

D. Vegrina

The text of her appeal was quoted above. In response to this appeal,
Dilyara was informed that she was supposed to solve problems, and she
could not. As for the duration of the examination session: “The longer,
the better for you,” they told her, “you have more time to think.” This
ended consideration of Vegrina’s appeal. p

A. Trutnev

Quite often, appeals to the Central Appeals Committee (CAC), to which
applicants’ complaints about Mekhmat’s Appeal Committee were sent,
were actually given to Mekhmat representatives for consideration. For
instance, Professor Sadovnichii, a Mekhmat faculty member,q (conceal-

p As a correspondence student of Kalinin University, as mentioned above,
D.Vegrina tried to transfer to the Mekhmat leading to the following events. On
August 28, Mel’nikov (Associate Dean?) told Dilyara’s father that she had no right
to apply to Moscow University. Let us note that barring a student of a higher ed-
ucational institution to apply to Moscow University is not mentioned anywhere in
the admission rules. “Then,” continued Mel’nikov, “we will investigate whether her
documents are fake and whether a criminal case should be opened on the charge
of possible falsification of documents.” They never followed up with this, however.
They “simply” refused to transfer Dilyara.

q Currently, Professor Viktor Sadovnichii is the Rector of Moscow University. In
a conversation which took place in 2003, Valery Senderov told me that, in his mind,
Professor Sadovnichii was not an ideological anti-Semite, but rather used the pre-
vailing currents to propel himself to higher positions. It is curious to note that on
December 9 2004, the Russian media outlet Echo Moskvy reported that Professor
Sadovnichii vehemently opposed the idea of admission to Moscow University based
on the results of a standardized test analogous to SAT. “We must protect a multi-
variant admission procedure in our University so that no talented kid is left behind.
We should look for talents, in particular, at Olympiads and scholarly competitions,”
declared Professor Sadovnichii. –Editor’s note
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ing his position at Mekhmat) told Trutnev’s parents that “CAC has
complete trust in Mekhmat experts, the more so as CAC per se is not
competent in such matters”. Sadovnichii suggested that Trutnev should
send his appeal back to Mekhmat (recall that this appeal contained com-
plaints about Mekhmat actions).

M. Temchin

The case of applicant M. Temchin was considered by the CAC as a
special case. Since Temchin’s father died two days after he received ‘2’
on the oral math examination, he could not appeal within the allowed
time.

In early September, when he addressed the CAC with a request to
reconsider the result of his oral math examination, he was told that,
due to special circumstances and despite the late complaint, his case
would be reopened. They notified M. Temchin to appear a week later.
The next week, they repeated this notification, and when he came to
the CAC for the third time, he was informed that his appeal was denied
as it was submitted past the deadline.

Non–University Levels

Information for 1980, the year in which this document was compiled, is
quite scarce so far because the bureaucratic details drag on for months.
However, experience of previous years indicates that appeals and com-
plaints regarding the Mekhmat’s actions are routinely handled by for-
warding them back to the Mekhmat.

This year everything is being repeated: both bureaucratic red tape
in response to complaints as well as the responses themselves : “Your
statement is forwarded to the MGU for consideration. MGU will inform
the complainant of the results.”

D. Vegrina and Trutnev’s mother have already received such formal
replies. It took the Ministry of Higher and Secondary Special Education
of the USSR about a month to give the very same reply to Trutneva.
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2 MIFI and MFTI

The number of Jewish applicants to the MIFI and MFTI is sufficient
large that an illustrative table can be made.r

The graduates of schools No. 2, 7, 57, 91, and 179, who applied to the
MFTI and MIFI in 1980, were divided by the authors of this document
into two groups.

Group 1 consists of non–Jewish applicants, and Group 2 of Jewish
applicants.

In 1980, of the 83 graduates from the above schools applying to the
MIFI, 54 were non–Jewish (Group 1) and 29 Jewish (Group 2). Of
the former 54, there were 36 admitted and of the latter 29 only 3 were
admitted.

In 1980, of the 85 graduates from the above schools applying to the
MFTI, 53 were in Group 1 and 32 in Group 2. Of the former 53 there
were 39 admitted, and from the latter 32, there were 4 admitted.

Thus, the 107 applicants to both institutes from Group 1 yielded 75
admissions, while there were only 7 admissions from the 61 of Group 2.
Applying standard methods of mathematical statistics shows that the
probability of bias against Jewish applicants exceeds a 99.9% confidence
level.

We should note that 3 out of 7 Jews admitted to these institutes
were close relatives of scientists working there.

We further note that we encountered natural technical difficulties
while gathering information on the MFTI and MIFI (which, in com-
bination have more than 10 departments). Therefore, our table may
contain some errors. However, in every case where our information was
incomplete we gave the benefit of the doubt to the Admission Commit-
tee of the corresponding Institute. For example, we assigned all failed
applicants on whom we did not have precise data to Group 1.

We also considered the Medical Evaluation Committees of the MFTI
and MIFI as one of the elements of the selection process, subject to the

rThe table containing the names of the 182 graduates, their ethnic origins and
examination grades is appended to the Russian original of this article. We omit it in
the English translation. – Editor’s note
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same statistical regularities as the Examination Committees. Therefore,
applicants who were rejected on grounds of their medical status are also
included in our table.

In column 5, the plus sign indicates that the applicant was admitted,
with the minus sign signifying the contrary. Columns 3 and 4 indicate
the applicant’s ethnicity. A ‘2’ in column 3 of the Table means that the
ethnicity entry in the applicant’s passport is “Jew”, while ‘0’ is entered
in all other cases.

In column 4 the notation is as follows: ‘0’ indicates the absence of
Jewish grandparents, 1/2 stands for exactly one grandparent Jewish, 1
for exactly one parent Jewish, 2 for both parents Jewish.

Moscow, 1980

Translated from Russian by

Nodira Dadabayeva and Alexei Kobrinskii
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REMARKS

ILAN VARDI

Page 5, Problem 1 given to Krichevskii: As often happens in these
accounts, everyone overlooked an additional solution, namely x = −2.
Apparently, it was assumed that only real numbers could be involved,
since the solution x = −2 gives rise to the complex number

√
−1. In

any case, the fact that the examiners, who were professional mathe-
maticians, did not use this mathematical technicality to trap applicants
instead of arguing trivial semantics provides a good insight into their
lack of mathematical culture.

Page 8, Problem 1 given to Averbakh: The statement of this
problem is somewhat confusing. Apparently, for each of n = 0, 1, 2, . . .,
one must generate pairs (Ak, Bk), k = 1, . . . ,m, such that the total
number of solutions to

x2−Ak = |x − Bk| , k = 1, . . . ,m ,

is exactly n. Before giving a solution, one should note that there is
clearly no unique solution to the problem just stated, and that even if
there were, one could not plot an infinite set.

Solution: This solution is very straightforward, and the only case re-
quiring some thought is when n = 1, which will therefore be left for the
end. In fact, since the solution is the set {(1, 0), (2, 0), ..., (N, 0)}, ex-
cept for the cases n = 0, 1, one cannot call this solution “cumbersome”
(unless, of course, the interpretation of the problem is incorrect).

Case n = 0: The problem asks to find parameters for which there is
no solution at all. This is clearly satisfied by the pair (−1, 0) since the
graphs of y = x2 + 1 and y = |x| do not cross. The set can be taken to
be {(−1, 0)}.
Case n = 2: This is the simplest case. For A > 0, the parabola y =
x2 − A runs below the x–axis, therefore crosses y = |x| exactly twice.
The set can be taken to be {(1, 0)}.
Case n = 3: This is also easy. Since the equation x2 = |x| has exactly
3 solutions x = −1, 0, 1, the set can be taken to be {(0, 0)}.
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Case n = 2r, r > 1: By the above, one can use the set
{(1, 0), (2, 0), . . . , (r, 0)}.

Case n = 2r + 3, r > 0: By the above, one can use the set
{(0, 0), (1, 0), (2, 0), . . . , (r, 0)}.

Case n = 1: This case is slightly harder, as one must find a pair (A,B)
with only one solution. This is conceptually easy: One lifts the parabola
y = x2 − A up from the x–axis (so that it no longer intersects y = |x|)
and moves the V–shaped graph of y = |X − B| to the right until it
is tangent to the parabola on the left side. This is clearly sufficient
to prove existence, but if one insists on an explicit solution, one can
do so as follows without using derivatives, only elementary High school

techniques.

By the geometric argument, one sees that A will be negative and B
will be positive, and that one considers the intersection of y = x2 − A
with y = −x + B for x < B. This will happen when the equation
x2 + x − A − B = 0 holds, and there will be a unique solution exactly
when the discriminant 1 + 4(A + B) = 0, that is, when B = −1/4 − A.
One can choose A = −1 and the set can be taken to be {(−1, 3/4)}.

Page 8, Comment on Problem 3 given to Averbakh: This
question of finding the maximum is exactly Problem 9 in the Chap-
ter “Mekhmat Entrance Examination Problems” of this book.

Page 10, Problem 3 given to Vegrina: This is Problem 10 in the
Chapter “Mekh–mat Entrance Examination Problems” of this book.
Interestingly, it appears that a complete answer to this question is an
open problem (that is, not completely solved), so the problem can be
considered difficult.

Page 11, Problem 5 given to Vegrina: In retrospect this problem
seems easier than “hard” killer problems or Olympiad problems and the
comment “Solving this problem requires integration of the inequality”
is definitely incorrect – one only needs to know that the definite integral
is the area between the graph of the curve given in the integrand, the
x–axis, and the two vertical lines defined the upper and lower values on
the definite integral symbol.
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One first proves that AB/y + y ≤ A + B for all A ≤ y ≤ B.
This inequality is completely trivial to prove, but it I only found this
proof after having read enough of this article to understand that my
original method using a convexity argument and the characterisation of
the critical points of the graph was taboo in the High School curiculum
(which goes to show that triviality can sometimes be hard, which can
be interpreted as evidence of the tricky nature of these problems). In
any case, since y ≥ A and B − y ≥ 0 one has

A(B − y)

y
≤ B − y .

The left side can be rewritten into two terms yielding

AB

y
− A ≤ B − y ,

which gives the result after A and y exchange sides.

This shows that the graph of AB/f(x)+ f(x) is always on or below
the line y = A + B, for 0 ≤ x ≤ 1. Therefore, the area under this graph
between x = A and x = A (which, by definition, is the definite integral
∫

1

0
AB/f(x) + f(x)dx) is less than A + B. Note that the condition that

f(x) be continuous is completely superfluous and the result can even
be made to hold for any function satisfying the inequalities, e.g., if one
generalises the integral with the outer measure of the set between the
graph and the x–axis. Once again, this is a testimony of the examiners’
mathematical culture.

Page 12, Supplementary Problem 1 given to Temchin: The com-
plexity of the problem’s statement may put one off, but the solution is
actually fairly straightforward and corresponds to the binary expansion
88 = 26 + 24 + 23: First note that if f(64) 6= 0 then x = 0, y = 0, k = 6
is a solution. Similarly, if f(65) 6= 0 then x = 0, y = 1, k = 6 is a
solution. So assume that f(64) = 0 and f(65) = 1. Now if f(80) 6= 0
then x = 64, y = 64, k = 4 is a solution. Similarly, if f(81) 6= 1 then
x = 64, y = 65, k = 4 is a solution. So assume that f(80) = 0 and
f(81) = 1. Since f(88) 6= 0, by assumption, it follows that x = 80,
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y = 80, k = 3 is a solution. This answer shows that the result holds
with the more restrictive upper bound |x − y| ≤ 1.

Page 13, Appraisal of supplementary Problem 3 given to Tem-
chin: This apraisal of the problem appears to be completely incorrect.
I should first note that I found the problem itself to be challenging and
at the same level as an Olympiad problem (note that geometry is my
weak point). When I posted this problem on the French mathemat-
ics electronic newsgroup fr.sci.maths, solutions were posted within
24 hours by two users, and they were essentially similar to my solu-
tion given below. Though the difficulty of this problem is debatable,
the following definitely shows that every single statement made above
about the solution’s requirements is false. In particular, the following
solution uses on elementary High School techniques, and the first part
of the solution is very intuitive and requires no special formulas, while
the technical details of the other parts (trigonometric formulas) can
be replaced with simple elementary geometry arguments, as was done
by Patrick Coilland, one of the solvers on the internet newsgroup, see
below.

The first part of the proof uses the following obvious fact:

Lemma. Consider a triangle ABC and a point P in its interior. Then

the perimeter of the triangle ABC is greater than the perimeter of the

triangle PBC.

Proof: This is the simplest case of the famous Archimedes axiom “If
two convex curves have the same two endpoints and one lies entirely
inside the other, then the outside curve (with respect to the line segment
connecting the endpoints) has greater length.” This simplest case has
a direct proof: Consider the line L which bisects the angle BPC, and,
without loss of generality, intersects AC at D. The angles BPD and
CPD are both greater than 90 degrees, therefore BD > BP and CD >
CP . Moreover, by the triangle inequality (possibly degenerate), BA +
AD ≥ BD. The result follows.

Proof of result: Let the vertices of the hexagon be A,B,C,D,E,F in
counterclockwise order, the center K and let M be the midpoint of AB.
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When considering a point lying in the hexagon, one can, by symmetry,
limit it to the triangle AMK, so consider a point P lying in this triangle.

Claim 1: If P is a point lying strictly inside the triangle AMK and
Q is the point on MA such that PQ is perpendicular to MA, then the
sum of the distances to the vertices is greater at Q than it is at P .

To see this, consider the triangle XQY , where (X,Y ) is a pair of
diametrically opposed vertices, that is, (A,D), (B,E), or (C,F ). Then
it is clear that P lies inside XQY . The Lemma therefore shows that
the sum of the distances from Q to any pair of diametrically opposed
vertices is greater than the corresponding distance from P . This proves
the claim.

Claim 2: If Q is a point on MA, then |QC| + |QF | ≤ |AC| + |AF |.
The proof uses basic trigonometry. Let θ be the angle CQF and let

c = |QC|, f = |QF |, d = |CF |. Instead of directly considering the sum
c + f , look at its square

(c + f)2 = c2 + f2 + 2cf .

The law of cosines states that

c2 + f2 = d2 + 2cf cos θ ,

so

(c + f)2 = d2 + 2cf(1 + cos θ) .

Moreover, one has the elementary formula for the area ∆ of the triangle
CQF

∆ =
1

2
cf sin θ ,

which therefore gives

(c + f)2 = d2 + 4∆
1 + cos θ

sin θ
.

Note that for all Q on MA, the values of d and ∆ remain constant. On
the other hand, if Q 6= A then the angle θ is greater than 90 degrees.
(To be convinced of this, note that the angle CRF is equal to 90 degrees
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for all R on the circle defined by ACF and that Q lies strictly inside
this circle.) The claim follows on noting that the virtually trivial fact
that

1 + cos θ

sin θ
< 1

when θ is strictly greater than 90 degrees and less than 180 degrees, and
that this function has value = 1 when θ equals 90 degrees at Q = A.

Claim 2: If Q is a point on MA, then |QD| + |QE| ≤ |AD| + |AE|.
The proof uses the same ideas as the previous one. A similar trigono-

metric formula for (|QD|+ |QE|)2 can be derived, and the claim follows
from the observation that the angle DQE is less than or equal to 90
degrees and the simple observation that

1 + cos θ

sin θ

is increasing as θ decreases from 90 degrees to zero degrees.

A much simpler proof for both Claim 1 and Claim 2 was given by
Patrick Coilland based on the following result:

Lemma PC. Consider a line segment AB and a parallel line segment

CD lying symmetrically above AB, i.e., the line joining the midpoints

of AB and CD is perpendicular to AB and to CD. Then the distance

|AP | + |PB| when P is on CD is maximal for P = C or P = D.

Proof: Without loss of generality, one can consider the point P to lie
on AM , where M is the midpoint of AB. Now let B′ be the point which
is the mirror image of B with respect to the line CD, and let E be the
intersection of the lines AC and B′P . By symmetry, one has

|BC|+ |CE| = |B′C| + |CE| ,

and

|B′C| + |CE| ≥ |B′E| ,

by the triangle inequality. By symmetry, one has

|B′E| = |B′P | + |PE| = |BP | + |PE| .
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One therefore gets the inequality

(∗) |BC|+ |CE| ≥ |BP | + |PE| .

By the triangle inequality, one has

|PE| + |EA| ≥ |PA| .

Adding this to (∗) gives

|BC|+ |CE| + |EA| + |PE| ≥ |BP | + |PA| + |PE| ,

and the result of the Lemma follows on noting that |CE|+ |EA| = |AC|
and cancelling out |PE|.

It is clear that the solution consisting of the two Lemmas and Claims
1, 2, 3 uses no concept from calculus and not only does it not appeal to
any concept or technique not in the High School curiculum, but it does
not even appeal to any concept or technique not in the Middle School
(up to 14–15 years of age) curiculum. One could criticise this solution
for not giving a rigourous proof in Claim 1 that the point P lies strictly
inside the triangle XQY , but this point can be easily fixed up. The
reader is invited to find other elementary solutions.

Page 19, Problems given to desirable applicants: For the record,
here are solutions to problems 1, 2, 4:

Problem 1. It is sufficient to show that (sin x+ cos x)2 ≤ 2. The most
basic trigonometric formulas give

(sin x + cos x)2 = sin2 x + cos2 x + 2 sin x cos x = 1 + sin 2x ≤ 2.

Problem 2. By definition, logc x = (log x)/(log c), so one has

1
1

loga x
+ 1

logb x

=
log x

log a + log b
= logab x .

This formula directly generalises to a larger sum of terms, and multi-
plying both sides of the identity by the number of terms yields the in-
teresting formulation: The harmonic mean of the logarithms of a given
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number to different bases is the logarithm of the number to the base
equal to the geometric mean of the bases.

Problem 4. Basic trigonometric formulas show that

cos 2x − cos x = cos2 x − sin2 x − cos x = 2cos2 x − cos x − 1 .

The question is to determine for which x this equals zero. Let y = cos x,
then

2y2 − y − 1 = (2y + 1)(y − 1) = 0

holds exactly when y = 1 or y = −1/2. The corresponding values for x
are: x equals zero or x equals 120 degrees or x equals 240 degrees. To be
completely precise, one should include all values of x which differ from
these by an integer multiple of 360 degrees (I avoid semantic questions
regarding to the use of the words ‘and’ and ‘or’ in the previous sentence).

These solutions give convincing evidence that these problems are
much easier than the ones given above.
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SCIENCE AND TOTALITARIANISM
a

A. VERSHIK

Mathematical Institute of the Russian Academy of Sciences

27 Fontanka, 191011 St. Petersburg, Russia

Let us turn to the 1970s and more recent years. This was a time of
gradual disintegration of the Soviet system. After erroneous hopes of
some intelligentsia about liberalization of the regime in the 1950s and
1960s, people came to the understanding (especially after Czechoslo-
vakiab) that the system was already incapable of change. The author-
ities made a desperate attempt to preserve the general features of the
regime without changing anything essential. State-organized terror in
the scientific community manifested itself at all levels of preparation
and work of scientists: admission to universities and graduate studies,
defense of dissertations, work recruitment, degree and title awarding,
travels abroad, and contacts with world science were under the most
severe control by the authorities. A new tendency omnipresent at that
time was full mutual understanding between the Communist party and
personnel-controlling bodies, i. e. KGB.c A de facto merging of the so-
called “public organizations” and Secret Service was completed by the
end of the 1960s and 70s. During Stalin’s years, if Stalin so desired,
he could nominate obviously (or outwardly) nonorthodox but compe-
tent specialists to important scientific and organizational positions (up
to the President of the Academy of Sciences of USSR). Among such
nominees were people who were not members of the Communist party,
a practice totally abandoned under Brezhnev’s rule. During Brezhnev’s
years, data from application questionnairesd became the only criteria.

aThis is the English translation of Part 2 of A. Vershik’s article published in

Russian in 1998 in the magazine Zvezda, # 8, p. 181.
bThe author refers to the invasion of Czechoslovakia by the Warsaw pact countries

led by the USSR in August 1968. –Editor’s note
cThe Soviet Secret Police. –Translators note
dSuch questionnaires contained a few dozen entries, including ethnic origin, mem-

bership in the Communist party, detailed data on close and not so close relatives,

trips to foreign countries and contacts with foreign organizations, service in the Soviet
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Professional qualities played no role.

A direct consequence of these policies was expulsion of talented
youth; because of “inappropriate” data in their application question-
naires or based on other grounds, many young people could not get ad-
equate positions in academia and were driven into insignificant second-
rate institutionse where selection was not so strict. Only a few mathe-
maticians who brought glory to their science during the 1960s, 70s and
80s, belonged to the officially supported establishment, which was quite
loyal to the authorities. It is sufficient to compare the lists of those who
were officially nominated and supported by the National Committee of
Soviet Mathematicians to those whose reputations were indeed high.
The latter list included mostly people who were marginalized, denied
promotion, not allowed to travel abroad, who worked in some kinds of
sharashkaf or played secondary roles at universities, who did not follow
or did not want to follow the Soviet standards.

A special role in establishing such a climate in mathematics in the
1970s and 1980s belonged to big shots – Academicians I. M. Vinogradov,
L. S. Pontryagin and others. These scientists, who had formerly been
leaders in their fields and did not belong — at least superficially —
to the Communist party/Soviet state elite, actually made an unwritten
deal with the authorities which allowed them to set policy in mathemat-
ics. The power of this clique in mathematics was unlimited. They pro-
vided directors to the Institute of Mathematics of the Soviet Academy of
Sciences, for many years; all significant administrative bodies — VAKg

(responsible for confirmation of academic degrees and titles), National

Army, and so on. –Editor’s note.
eIn the Russian original, “boxes.” Here Prof. Vershik refers to numerous insti-

tutions conducting classified research for the military. Since many of them had no

official unclassified names, they were known as PO box number such and such. In So-

viet newspeak “post-office box” or just “box” became synonymous to a low-efficient

technical research institute with a monstrous number of personnel and virtually no

scientific output. –Editor’s note
fApproximately the same as the “post office box”, see the previous footnote. –

Editor’s note
gAbbreviation for Supreme Attestation Committee. PhD and other academic

degrees in the Soviet Union were not considered valid until they were “confirmed”

by VAK. –Editor’s note
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Committee of Soviet Mathematicians (supervising Soviet participation
in mathematical congresses abroad and international conferences), edi-
torial boards of the leading journals, editorial committees (issuing per-
mits for book publication), and, of course, elections to the Academy of
Sciences (awarding prizes and many other issues) — all of the above
were in their hands.

Scandals associated with the rejection of excellent dissertations, as
well as impediments to publications and international travel to con-
ferences and congresses became the norm of mathematical life for the
“undesirables” in those years.

Needless to say, their policies were highly anti-Semitic; but yet more
important for them was to distinguish “their folks” from “aliens” — the
latter included not only Jews but a significant number of active mathe-
maticians in general. Gradually, these aging rulers of the mathematical
community, as well as the supreme rulers of the country, lost all contact
with both science and reality. On the other hand, their work discredited
the official science and caused it moral damage, which did not seemingly
concern the authorities at all. By the last years of Brezhnev’s rule,
far-sighted scientists from Western countries had already realized that,
rather than dealing with Soviet officials and establishment, one should
deal directly with scientists. The long-term effects of these policies are
yet to be understood. In any case, the situation in Soviet science in
the 1970s outlined above played a considerable role in brain drain and
emigration of mathematicians.

There is one more important circumstance. Among the social ills
of Soviet society, the one most difficult to cure was its moral degrada-
tion, manifesting itself, in particular, in the character of relationships
between people, scientists, and collectives. As soon as the principle
of “clean personal data” became a major factor in staff selection and
a mandatory regulation for admission to universities and prestigious
institutions, award nominations, international travel and other similar
issues, it was turned into a powerful weapon against scientific oppo-
nents and competitors whose academic advancement could be blocked
with ease.

It would be instructive to take a respectable university, for example,
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Leningrad University, or a research institute of the Soviet Academy of
Sciences, and carefully trace consequences of the above policy: grad-
ual expulsion of talent, decay and death of excellent scientific schools,
appointment of slimeballs — protegés of the Communist Party appara-
tus and KGB — to administrative positions, creation of sham scientific
reputations, triumph of mediocrity, and, most importantly, mental mu-
tilation of youth who were trained to adhere to subservience and dou-
blethink. What could they learn from everyday examples of fake compe-
titions, mock admission examinations aimed at discriminating against
“undesirable applicants” who had no chance to be admitted?

One can give dozens of examples demonstrating how the full-blown
perverted system of relations gave to mediocre administrators and part-

komsh huge powers over scientists, putting them (scientists) into a hu-
miliating position. Here is one of them, referring to the Moscow Uni-
versity in the 1970s. A departmental official learned that the outstand-
ing mathematician, V.I. Arnold, agreed to serve on the editorial board
of a foreign journal without getting appropriate permission (which, by
the way, was not necessary in the given case because the journal’s sole
task was publication of articles from the Soviet Union translated from
Russian in English). This was sufficient grounds for not granting him
permission for participation in the international congress of mathemati-
cians in Warsaw, where he was invited as one of the major speakers. Let
me mention another example, this time at the Department of Mathe-
matics at Leningrad University. V.A. Rokhlin (1919–1984), a world
caliber mathematician, who created a topology seminar at Leningrad
University, one of the best in the world, during his 20 year-long tenure
in the Department, was not allowed to keep any of his students in the
Department. By doing so, the university deprived itself of the oppor-
tunity to create a brilliant school, members of which now represent the
elite of world science. They emigrated in the 1970s and 1980s and are
presently faculty in the best Western universities.

The fate of V.A. Rokhlin is a separate story; I would just like to
mention that the university nobodies forced him into retirement at the
age of 60; they could not forgive this wonderful scientist his independent

hLocal Committees of the Communist Party. –Editor’s note
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personality, his gulag past, and the emigration of his son. I remember
that when I organized a meeting devoted to his 60th anniversary in
1979, this caused a flurry at the partkom; the party secretary had to
seek advice from the raikomi on how to handle this matter. Only later
I learned the reason for their concern: coincidentally, our meeting was
held on December 10, the human rights day, and watchful members of
the partkom saw in this coincidence a dangerous plot of political enemies.

Almost none of my best students were accepted to graduate studies
in the 1970s and 80s; even if rarely one would slip into grad school with
incredible difficulty, after his or her PhD there were no employment op-
portunities. The doors of universities or other research institutions were
closed for my students. Many of them asked me (prior to emigration)
if there was any hope at all that I could hire him or her in one of my
laboratories, or at the Math Department, or any other place, for con-
tinuation of scientific work. My reply was always honest; I had no such
hope. Moreover, when I tried to intervene to help a bright schoolboy or
schoolgirl get admission to our Mathematical Department, this always
had negative consequences; the admission was never granted. It was the
same story with graduate students. For a certain period of time I was
forbidden to have graduate students at all.

The example of our university exhibits in a clear way how the criteria
of loyalty at that time led to rejection of active scientists. For instance,
a person could not get a professorship unless he or she completed a
course at the so-called university of Marxism-Leninism. Volunteering
for the “public benefit” was mandatory for getting positive references
(necessary for all sorts of appointments, foreign travel permission, and
so on). “Public benefit” was exclusively defined as ideology-motivated
activities. For a long time, I was handling the day-to-day running of
the Leningrad (now St. Petersburg) Mathematical Society, a public or-
ganization dedicated to the advancement of science and independent of
Leningrad University. According to rational thinking, this should be
called public service; however, a university official told me: “How can
it be public service if, in fact, you enjoy it?”

The influence of the KGB in science was destructive not only in the

iRegional Communist Party Committee. –Editor’s note
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issue of research personnel selection. The system of the so-called “expert
certification” of scientific publications was an obstacle for publication of
scientific papers because it was very difficult to get such a“certification”
for a person who was not an employee of an institution officially desig-
nated to carry out research in the given area.

In the 1970s and 80s, the technique of rejecting talented students,
especially at Moscow University, became quite contrived: special peo-
ple assembled problem sets for entrance examinations which could not
be solvedj ; “undesired” applicants were assigned to separate groups in-
tended for “special treatment,” sophisticated methods were developed,
effectively barring “undesired” applicants and their parents from a fair
appeal process. The motivations of people who carried out “the order
of the party”k were quite versatile: some were blackmailed for past mis-
deeds; others did it for their own pleasure. At Leningrad University, the
way the “party order” was implemented was simpler. Here the appli-
cants to the Math Department were flunked by physicists or literature
instructors, the graders of literary essays.l Of course, all this was orches-
trated by the partkom and the department of personnel which controlled
the work of all admission committees. In many cases, the cynicism of
the admission committees was so obnoxious that they did not consider
it necessary to disguise what they did. For example, a perfectly correct
solution to an exam problem would be declared wrong, and so on.

The question of why all this was done, in my opinion, does not have
a rational answer. Certainly, the 1970’s were the years of omnipresent
corruption. Preferential treatment for children of functionaries and cor-
rupted officials was common. Guaranteed admission of such children to
highly respected educational institutions meant denial of admission to
truly deserving aspiring students. But this is only a part of the story.
It is known that TsKm issued a [secret] decree (1975–76) on personnel
policies where, I was told, it was stated that admission to prestigious

jThe infamous killer problems. –Translators note
kThe author means the Communist Party of the Soviet Union, the only one that

existed in the country. –Translators note
lCompositions or essays on Soviet literature were mandatory as a part of entrance

examinations to all departments. –Editor’s note
mThe Central Committee of the Communist Party. Translators’ note
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higher-education institutions as well as career advancement of individu-
als whose “nationalityn related to countries conducting anti-Soviet pol-
icy,” had to be limited. The essence here is not only anti-Semitism —
the above statement covers also ethnic Germans, Greeks, Chinese and
other ethnic groups — or discrimination on ethnic and political grounds.
The main aspect here is that the decree unleashed, and even instructed,
to carry out selections. Why? It was done for the purpose of getting
an obedient and loyal work force whose professional qualifications were
not necessarily important. Talented people had to be restrained by the
system as they were a potential source of disobedience. This short-
sighted and destructive policy finally led to a crisis in all spheres of
life. The absence of professional skills and work ethicso caused destruc-
tive trends in the economy, politics, and science. One of the glaring
examples of non-professionalism in science policy was a relocation of
Leningrad University from the city center to Petergof (more accurately,
the village Martyshkino), which resulted in ruining scientific life and the
educational process in all relocated departments of the University.

I would like to compose a “White Book” of all these misdeeds. Al-
most ten years of openness have elapsed — have we ever heard of these
issues? Functionaries and scientific persecutors of those years live nicely
alongside us and even hold the same or sometimes higher positions. In
1987, I tried to publish my thoughts on the admission practices in Soviet
universities in the liberal weekly Moskovskie Novosti [Moscow News].
My attempt was stonewalled. Recently, I co-authored (with A. Shen)
an article On Admission to Mathematical Departments in the 1970s and

80s. It was published in a popular international journal, The Mathemat-

ical Intelligencer.p This article gives numerous examples, mainly taken
from Moscow University practice, showing how “undesirable” applicants

nIn Russian the word “nationality” is used for ethnic origin. What is known as

nationality in the West is called citizenship. First and foremost this decree was aimed

against Jews who were considered to be associated with Israel, which, in turn, was

considered to be one of the main enemies of the USSR. –Translators note
oThe author uses here the word “Chernobylism,” a self-constructed noun describ-

ing the wide-spread slovenliness of the type which led to the Chernobyl nuclear

disaster in April 1986. –Editor’s note
pAlso reprinted in the present Collection. –Editor’s note
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were flunked. We gave examples of killer problems, which probably
would not have been solved by many professors, as well as the names
of the examiners and organizers of what we called “the gas chambers
for undesirable applicants.” The names include the current Rector of
Moscow University (in the past, an active party functionary), the re-
cent secretary of the partkom at Leningrad University, and many other
former activist executioners of the party line on the issues of personnel.
It seems that they are not concerned about the past; they hold highly
visible positions and are engaged in “building” a new Russia. Their fear
of public exposure faded, there is no reason to confess and nothing to
regret about.

Up to now the public has not been aware of many important details
related to the practices of those years, for example, the above-mentioned
secret instruction of TsK on personnel policies. It is interesting to note
that if they need to (for instance, during election campaigns) the current
authorities willingly talk about the crimes of the Soviet government in
the 1930s and 40s. As for the more recent past — the activities of the
Communist Party in the 1960s, 70s and 80s, which were not as bloody
but no less destructive with respect to our own country than the tragedy
of the 1930s — the authorities keep silent.

When I write this, in no way do I have in mind a witch hunt, but we
cannot free ourselves from the stinking traits of the Soviet past with-
out an open discussion of all aspects of this past. On the other hand,
this is a question of confidence in the new power, which cannot exist if
a former activist of the Brezhnev epoch becomes a distinguished func-
tionary in the 1990s and expertly talks about democracy, organizing
meetings commemorating the regime victims, or consecrating a church.
Unfortunately, the victims themselves are in no rush to step forward
and tell their stories. This silence is no evidence of forgiveness or mod-
esty and does not contribute to the purification of the moral climate in
the country. Nor does it help to guarantee that past misdeeds will not
be repeated in the future.

I should add that there were noble people, too, who risked their
careers and did not fear to raise their voice against vileness at their
institutes and universities. Their names should became known too.
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S. P. Merkuryev, the late Rector of St. Petersburg University, with
whom I discussed the possibility of studying the history of the university
admission practices and other aspects of activities of the party fuctionar-
ies, was ready to assist in this investigation. But he warned me that
I would find hardly anyone who would be willing to conduct a profes-
sional investigation; people continue to fear big shots of the past as they
still have power now. And Merkuryev was right. As I found out shortly
after our conversation, former communists who retained power, slightly
disguising themselves in the clothes of democracy-builders, managed to
intimidate a few decent historians, whom I addressed. I am afraid that
the appropriate moment and the opportunity for such an investigation
have been missed. Evidently, it will be the scholars of the XXI century
who will engage in the historical studies of the humiliation of science.

Translated from Russian by

Nodira Dadabayeva and Alexey Kobrinskii
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ADMISSION TO THE MATHEMATICS DEPARTMENTS

IN RUSSIA IN THE 1970s AND 1980s
a

A. VERSHIK
Mathematical Institute of the Russian Academy of Sciences

27 Fontanka, 191011 St. Petersburg, Russia

For a number of years now, the universities of the former Soviet
Union have been free of [Communist] party committees (partkom’s).
These committees were made up of individuals whose job was to see
that the party line was followed, and above all to watch over the purity
of the cadres — the loyalty of professors and students, the purity of their
curricula vitae, and preferment to the necessary people. Now the offices
of party committees have been allotted to computer centers, centers for
“intellectual investigations,” and so on. Many of their present occupants
occupied them in the past, but now they investigate problems of the
interaction of science and religion, they criticize Marxism, they invite
new-wave politicians and psychics, they talk about their past difficulties
at work.

The one thing they do not talk about is their cadre work during
the period of stagnation. The top partkom secretary of one of the
finest Russian universities (Leningrad), who very carefully carried out
party directives about the purity of the cadres, is now the director of
a cultural center where he organizes evenings of Jewish culture. The
vice-rector of another university (Moscow), once extremely active in all
official campaigns and purges and in the organization of “selections”
in university admissions, has now become an ardent democrat and an
organizer of the most progressive projects.

Of course this is wonderful — only, one may still ask, “why, gen-
tlemen, are you silent about how things were done, how you managed
education, admission to universities, selection of cadres?” It would be
useful for the educational community to know how and why the science
lost hundreds, and possibly thousands, of undoubtedly talented individ-
uals, potential leaders, hard workers profoundly dedicated to learning,

aReprinted from The Mathematical Intelligencer, Vol. 16, No. 4, p. 4, 1994.
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whose lives have been distorted, often irreparably so.

One of the most important objectives of cadre politics at the leading
universitites, particularly in the capital, seems to have been to limit the
admission of Jews and members of certain other ethnic minorities. Of
course, this was not the only objective. It was important not to admit
political pariahs (and their children!) as students, graduate students,
researchers, and professors. Likewise, it was important to help children
and relatives of the nomenclatura (party and government officials, KGB)
who were [falsely] classified as children of workers. And workers, in the
“proletarian” state, enjoyed a mandatory quota of admissions.

Once emigration was permitted there was, so to say, an official pre-
text for not accepting Jews or not assigning them to prestigious work,
for not providing incentives, awarding degrees, etc. Thus, one killed two
birds with one stone: the country got rid of some of the disaffected, and
at the same time one restricted them at home.

But there was one more objective, perhaps the most important one,
that one never talked openly about, namely holding down the number

of talented people. The mediocrity of official Soviet Union during the
era of mature socialism did not just happen; it was imposed from above
and readily accepted below. It was in full accord with the lack of talent
in the whole leadership, mitigated only by isolated fluctuations.

To this date, we do not know the details of the secret instruction
of the early 1970s which (I was told) was more or less to the following
effect: restrict or delay the admission to certain postsecondary schools
of individuals with ties to states whose politics are hostile to the USSR.
Apparently, these could be only Jews, Germans, Koreans, Greeks, and
possibly Taiwanese Chinese.

Many of us know quite a few concrete stories. I could tell how much
unbelievable was my admission to the Leningrad Mekh-mat (Faculty
of Mathematics and Mechanics) in 1951, at the height of Stalin’s war
against the cosmopolites; how crudely they used to fail capable students
whom I tried to help enter the university in the 1970s by recommend-
ing them to the then dean; how I was prevented from hiring talented
graduate students and how these very same students eventually man-
aged to find positions at the most prestigious Western universities; and
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finally, how in 1985, almost in the time of perestroika, my daughter,
with a scholarly paper accepted for publication, was not admitted to
the Philological Department of Leningrad University.

It is surprising that so few testimonies of the hundreds of victims and
witnesses have so far appeared in print. All we have is G. Freiman’s It

Seems I am a Jew b with some problems and remarks by A. D. Sakharov,
and materials collected by B. Kanevsky and V. Senderov.

It is just as surprising that so far, to the best of my knowledge,
none of the hundreds of people from the departments of personnel, from
partkoms, from the lecturers who conducted purges at the examinations
— no one from “the other side” has provided testimony. After all, not
all of these people are naive, and not all are absolute scoundrels. Some
of them were victims of circumstances. They have hardly any reason
to fear revenge, even less court action. All echoes of these tragedies
are fading; justice demands confessions. But no — they are silent.
Some have become democrats, some profess love of Jews, and some
propose to emigrate and ask people whom they had earlier slighted for
recommendations. Some maintain that nothing wrong took place. And
some do not deny that it all happened but insist all was done “correctly.”

There are very few documents left. The perpetrators realized that
it would not do any good to leave traces.

When I approached S. P. Merkuryev, Rector of St. Petersburg Uni-
versity (he died a short time ago) and asked him if it is possible to see
the archives of the party committee that dealt with these matters, he
offered to help me but warned that I should not overestimate the change
since the putsch; almost all the organizers of these things have retained
not only their former positions but also power at the University, and, for
example, he was unable to remove one of the particularly odious deans.

I soon saw a confirmation. When I attempted to encourage two
historians — who had earlier been expelled from the University partly
because they tried to object to scandalous practices of the kind I describe
here — to work in the archives, they refused, saying, “We are afraid that
‘they’ will get us.”

In 1987 I brought an article about a case of admission to the pro-

bSouthern Illinois University Press, 1980.
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gressive weekly Moscow News. The head of the department told me,
“We cannot print the article dealing with this topic. There will be a
flood of angry letters.”

But I hope that the conspiracy of silence will not last forever. I am
glad that I was able to persuade Alexander Shen, who has worked a lot
with the university and secondary students, to write of the materials he
has collected.

Mathematical audiences (not only in the West) will find it inter-
esting to learn some details and solve the little problems that a school
graduate was supposed to solve in a few minutes. Try to imagine a
young boy or girl who has made a commitment to learning, who may
have good basis for this decision (participation in olympiads, math cir-
cles, and so on), and who faces an examiner who has his instructions and
his arsenal of killer problems. These examiners and admissions chairs
were generally boorish and treated the school graduates shamefully. As
is often the case, we know the names of those who carried out the in-
structions (the examiners) but not those who gave them. It would make
sense to list secretaries of admissions, deans, and so on, who knew of the
scandal and covered it up, right to the top of the party–KGB structure.
Even these names are not such a deep secret.

We have used here materials only on admissions to Mekh-mat at
Moscow University and only from the 1980s and, in part, the 1970s.
There are other departments, other universities, and institutes. And
there are questions of defenses of dissertations (VAK), of employment
of young scholars, and many others.

Is there anything surprising about the drain of Russian science, emi-
gration, apathy, and the low prestige of official institutes and academies?
All of this was predictable from what was done.
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ENTRANCE EXAMINATION TO THE MEKHMAT a

A. SHEN

Institute for Problems of Information Transmission
Ermolovoi 19, 101447 Moscow, Russia

and
Independent University of Moscow, Bolshoy Vlasyevskiy Pereulok 11,

119002 Moscow, Russia

Preliminaries

Some time ago, discrimination against Jews in entrance examinations to
the leading postsecondary institutions, especially Mekhmat at Moscow
State University (MGU), was a fiercely debated subject. I think that
we can now afford to look more calmly at the events and see their role
in the history of Russian mathematics.

This kind of discrimination was sometimes talked about as if it were
the main, and virtually the only, blemish on the otherwise spotless rep-
utation of the national party. This tone was sometimes understandable
(for example, one had to talk this way in complaints about Mekhmat
submitted to the Committee of Party Control of the Central Commit-
tee of the Communist Party). In reality, of course, this was just one of
many injustices, some far worse.

I entered the Mekhmat in 1974, began my graduate studies in 1979,
and completed them in 1982. I have worked in mathematical schools
from 1977 until today. I will write mostly about things I have had direct
contact with. Let us hope my account will be supplemented by others.

In many countries, including Russia, the proportion of Jews is appre-
ciably greater among scholars than in the whole population. In entrance
to mathematical classes and schools (with equal requirements for all
applicants), the proportion of Jews among those who passed the exam-
inations (and among those taking them) is significantly higher than in
the population as a whole. Whatever the meaning of this phenomenon,

aReprinted from The Mathematical Intelligencer, Vol. 16, No. 4, p. 6, 1994.
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it has to be kept in mind.

Elimination of Undesirable School Graduates

After certain events in 1967 (the well-known letter of 99 mathemati-
cians in defense of Esenin-Volpinb) and especially in 1968 (mathemati-
cians protesting the intervention in Czechoslovakia), the situation at the
Mekhmat worsened significantly. I. G. Petrovskii (“the last non-party
rector of MGU”), who had done many good things, died in 1973. His
successor, R. V. Khokhlov (“the last decent rector of MGU”), perished
in 1977. By 1973, the “special program” of elimination of undesirable
graduates, especially Jews, was in full swing. The category of “unde-
sirables” included the (small) group of those who did not belong to the
Komsomol.c From that time on and until 1989–1990, when this prac-
tice was halted, the situation stayed much the same. The number of
victims did change: in later years, the potential victims, aware of the
barriers, did not try to apply. Also, in the mid-80s there was a time
when Mekhmat students — unlike students at other institutions — were
drafted. This reduced the number of applicants to Mekhmat.

Yet another form of discrimination began in 1974. It was open but
no less unjust. It involved separate quotas for Muscovites and non-
Muscovites (the same number of places were reserved for each group
although non-Muscovites were more numerous). The ostensible reason
was the shortage of rooms. An applicant who did not ask for a place
in a hostel (but had no close relations in Moscow) was, however, also
classified as a non-Muscovite. The harm from this discrimination was
offset by the lower level of the competition for non-Muscovites.

During the period of anti-Jewish discrimination the following people
were among the responsible officers of the admissions committee (in var-
ious capacities): Lupanov (current dean of the Mekhmat), Sadovnichii
(current rector of MGU), Maksimov, Proshkin, Sergeev, Chasovskikh,

bAlexander Esenin-Volpin, a prominent mathematician and one of the pioneers of

the human rights movement in Soviet Union. Esenin-Volpin was arrested on charges

of anti-Soviet agitation and held in a psychiatric hospital. —Editor’s note
cYoung Communist League. —Editor’s note
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Tatarinov, Shidlovskii, Fedorchuk, I. Melnikov, Aleshin, Vavilov, and
Chubarikov.

How Things Were Done: The Procedure

Direct discrimination was a natural concomitant of the shabby conduct
of the examinations. The written part of the examination in mathemat-
ics consisted of a few simple problems that required only computational
accuracy, and one or two very involved and artificial problems (the last
problem was usually of this kind). Only “pure pluses” were counted.
A flaw in the solution (sometimes invented and sometimes due to the
examiner’s failure to understand the work) meant loss of most of the
credit for the problem. As a result, most of the applicants got threes and
twos (out of five); the examination was almost totally uninformative.

Now we come to the oral part of the examination in mathematics.
Even if there were no discernible discrimination, it is virtually impossible
for all examiners to make the same demands on applicants. The required
questions are very general and imprecise, and the requirements of the
examiners are necessarily non-comparable; all the more so because, as
a rule, the examiners had no school contact with the students.

The examination included writing a composition and passing an oral
test in physics. The physics exam was given by members of the MGU
Physics Department. It was not a particularly brilliant department,
and the task of giving examinations was assigned to its less brilliant
members.

Some Examples. In 1980 no credit was given for the solution of
a problem (an equation in x) because the answer was in the form “x =
1; 2” and the required answer was “x = 1 or x = 2” (the school graduate
was Krichevskii, the senior examiner in mathematics was Mishchenko;
source: B. I. Kanevsky, V. A. Senderov, Intellectual Genocide, Moscow,
Samizdat, 1980). In 1988, during an oral examination, a student who
defined a circle as “a set of points equidistant — that is, at a given
distance — from a given point” was told that his answer was incorrect
because he hadn’t stipulated that the distance was not zero (the text-
book had no such stipulation). The graduates’s name was Arkhipov and
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the names of the examiners were Kovalev and Ambroladze. The 1974
examination in physics included the question: What is the direction of
the pressure at the vertical side of the a glass of water. The answer
“perpendicular to the side” was declared to be incorrect (pressure is
not a a vector and is not directed anywhere — graduate Muchnik).

Procedural Points. Sometimes the questioning began a few hours
after the distribution of examination questions (school graduate Tem-
chin, 1980, waited three hours). The questioning could last for hours
(5.5 in the case of the graduate Vegrina; examiners Filimonov and
Proshkin, 1980; cited by B. T. Polyak, letter to Pravda, Samisdat,
1980). Parents and teachers of the graduates were not allowed to see
the student’s papers (letter 05-02/27, 31 July 1988, secretary of the
admissions committee L. V. Yakovenko). An appeal could be lodged
only within an hour after the oral examination. The hearing involved
in the appeal was extremely hostile (in 1980, A. S. Mishchenko faulted
graduate Krichevskii at the hearing for appealing against precisely those
remarks of the examiners where he (Krichevskii) was clearly in the right;
Kanevsky and Senderov, op. cit.).

How It Was Done: “Killer” Problems

An important tool (in addition to procedural points and pickiness) was
the choice of problems. The readers who are mathematicians can eval-
uate the level of difficulty of the problems below by themselves. We
can assure non-mathematical readers that the level of difficulty of the
“killer” problems is comparable to that of the All-Union Mathematical
Olympiads, and many of them are olympiad problems. (For example,
problem No.2 of Smurov and Balsanov turned out to be the most dif-
ficult problem of the second round of the All-Union Olympiad in 1985.
It was solved by 6 participants, partly solved by 3, and not solved by
91.)

For comparison, we adduce first typical ordinary problems (from the
mid-1980s). Grades quoted are out of 5 (5 is excellent).

First variant (those who solve both parts get “5”).

1. Show that in a triangle the sum of the altitudes is less than the
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perimeter.

2. The number p is a prime, p ≥ 5. Show that p2 − 1 is divisible by
24.

Second variant (those who solve the first two parts get “4”).

1. Draw the graphs of y = 2x + 1, y = |2x + 1|, y = 2|x| + 1.

2. Determine the signs of the coefficients of a quadratic trinominal
from its graph.

3. x and y are vectors such that x + y and x − y have the same
length. Show that x and y are perpendicular.

Now the “killer” problems. The names of the examiners and the
years of the examination are given in parentheses.

1. K is the midpoint of a chord AB. MN and ST are chords that
pass through K. MT intersects AK at a point P and NS intersects
KB at a point Q. Show that KP = KQ.

2. A quadrangle in space is tangent to a sphere. Show that the
points of tangency are coplanar. (Maksimov, Falunin, 1974)

1. The faces of a triangular pyramid have the same area. Show that
they are congruent.

2. The prime decompositions of different integers m and n involve
the same primes. The integers m + 1 and n + 1 also have this property.
Is the number of such pairs (m,n) finite or infinite? (Nesterenko, 1974)

1. Draw a straight line that halves the area and circumference of a
triangle.

2. Show that (1/ sin2 x) ≤ (1/x2) + 1 − 4/π2.

3. Choose a point on each edge of a tetrahedron. Show that the
volume of at least one of the resulting tetrahedrons is ≤ 1/8 of the
volume of initial tetrahedron. (Podkolzin, 1978)

We are told that a2 + b2 = 4, cd = 4. Show that (a−d)2 +(b− c)2 ≥
1.6. (Sokolov, Gashkov, 1978)
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We are given a point K on the side AB of a trapezoid ABCD. Find
a point M on the side CD that maximizes the area of quadrangle which
is the intersection of the triangles AMB and CDK. (Fedorchuk, 1979;
Filimonov, Proshkin, 1980)

Can one cut a three-faced angle by a plane so that the intersection
is an equilateral triangle? (Pobedrya, Proshkin, 1980)

1. Let H1, H2, H3, H4 be the attitudes of a triangular pyramid.
Let O be an interior point of the pyramid and let h1, h2, h3, h4 be the
perpendiculars from O to the faces. Show that H4

1 + H4
2 + H4

3 + H4
4 ≥

1024 h1 · h2 · h3 · h4.

2. Solve the system of equation y(x + y)2 = 9, y(x3 − y3) = 7.
(Vavilov, Ugol’nikov, 1981)

Show that if a, b, c are the sides of a triangle and A, B, C are its
angles, then

a+b−2c
sin(C/2) +

b+c−2a
sin(A/2) +

a+c−2b
sin(B/2) ≥ 0

(Dranishnikov, Savchenko, 1984)

1. In how many ways can one represent a quadrangle as the union
of two triangles?

2. Show that the sum of the numbers 1/(n3 + 3n2 + 2n) for n from
1 to 1000 is < 1/4. (Ugol’nikov, Kibkalo, 1984)

1. Solve the equation x4 − 14x3 + 66x2 − 115x + 66.25 = 0

2. Can a cube be inscribed in a cone so that 7 vertices of the cube
lie on the surface of the cone? (Evtushik, Lyubishkin, 1984)

1. The angle bisectors of the exterior angles A and C of a triangle
ABC intersect at a point of its circumscribed circle. Given the sides
AB and BC, find the radius of the circle. [The condition is incorrect:
this does not happen — A. Shen.]

2. A regular tetrahedron ABCD with edge a is inscribed in a cone
with a vertex angle of 90◦ in such a way that AB is on a generator of
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the cone. Find the distance from the vertex of the cone to the straight
line CD. (Evtushik, Lyubishkin, 1986)

1. Let log(a, b) denote the logarithm of b to a base a. Compare the
numbers log(3, 4) · log(3, 6) · . . . · log(3, 80) and 2 log(3, 3) · log(3, 5) · . . . ·
log(3, 79).

2. A circle is inscribed in a face of a cube of side a. Another circle
is circumscribed about a neighboring face of the cube. Find the least
distance between points of the circles. (Smurov, Balsanov, 1986)

Given k segments in a plane, give an upper bound for the number
of triangles all of whose sides belong to the given set of segments. (An-
dreev, 1987) [Numerical data were given, but in essence one was asked
to prove the estimate O(k15). A. Shen.]

Use ruler and compasses to construct, from the parabola y = x2,
the coordinate axes. (Kisilev, Ocheretyankinskii, 1988)

Find all a such that for all x < 0 we have the inequality
ax2 − 2x > 3a − 1. (Tatarinov, 1988)

Given the graph of a parabola, construct the axes. (Krylov E. S.,
Kozlov K. L., 1989) [These examiners told a graduate that an extremum
is defined as a point at which the derivative is zero. They also reproached
another graduate for not saying “the set of ALL points” when he defined
a circle as the set of points at a given distance from a given point.]

Let A, B, C be angles and a, b, c the sides of a triangle. Show that

60◦ ≤ aA+bB+cC

a+b+c
≤ 90◦.

(Podol’skii, Aliseichik, 1989)

Statistics — The Mekhmat at MGU and Other Institutions

The most detailed data on graduates of mathematical schools were ob-
tained in 1979 by Kanevsky and Senderov. They divided the graduates
of schools 2, 7, 19, 57, 179, and 444 who intended to enter the Mekhmat
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into two groups. One group of 47 consisted of students whose parents
and grandparents were not Jews. Another group of 40 consisted of stu-
dents with a Jewish parent or a grandparent. The results of olympiads
(see the Table below) show that the graduates were well prepared, but
when it comes to admission, the results are noticeably different.

Mekhmat at MGU

First group Second group
Total graduates 47 40
Olympiad winners 14 26
Multiple winners 4 11
Total olympiad prizes 26 48
Admitted 40 6

Kanevskii and Senderov give figures also for two other institutions:

MIFI

First group Second group
Total graduates 54 29
Admitted 26 3

MFTI

First group Second group
Total graduates 53 32
Admitted 39 4

Of course, the character of the entrance examinations became known
to school graduates, and those suspected of Jewishness began to apply
to other places, for the most part to departments of applied mathematics
where there was no discrimination. (One very well-known place was the
“kerosinka” — the Gubkin Oil and Gas Institute.)

Mathematical Schools and Olympiads

When we talk about mathematical schools, we exclude the boarding
school #18 at MGU. Proximity to the Mekhmat unavoidably leaves its
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imprint. In the remaining schools, discrimination by nationality was
mostly insignificant.

As a rule, selection of students for a particular class depended largely
on the teachers of mathematics and was controlled by the administra-
tion to a minor extent. In 1977, in school #91, the administration was
presented with a list of students in the math class and did not make any
changes. In 1982, in school #57, the situation was more complicated
because the school was subject to district administration, and the class
list had to be acceptable to the district committee. So, some students
favored by the district authorities were accepted outside the competi-
tion. In 1987, in school #57, “wartime resourcefulness” was successfully
applied: Russian names picked at random were added to the list of stu-
dents sent for approval to the district committee (which did not check
which of the students on the list later attended). It seems that after
that there were no problems (perestroika!).

One could speculate that discrimination in admissions to the Mekhmat
(very well-known to both teachers and students of math classes) and the
large percentage of Jews among teachers and students could give rise
to a problem of “interethenic relations” (injustice often gives rise to
injustice in reverse). I have often heard such speculations, but I am
convinced that in most mathematical classes (and the best ones) no
such things ever happened.

As for the olympiads, the Moscow city olympiad was quite a long
time relatively independent from official departments. But in the late
1970s, after Mishchenko’s letter to the partkom (it is amusing that re-
cently Mischenko asserted publicly that he was not in the least involved,
but he did not challenge the authenticity of his letter), control of the
olympiads was given to Mekhmat — and, to a large extent, to the very
same people who controlled the entrance examinations. It seems to me
that the result was not so much discrimination as plain incompetence.
(For example, in 1989, after my conversation with the people who man-
aged the olympiad, it became clear that a large bundle of papers got
lost. Following urgent requests, it was found. I was even permitted
to see the papers of the students in the class in which I lecture. A
significant portion of these papers were improperly graded.)
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General Remarks, History

It seems that now practically no one denies there was discrimination in
entrance examinations (that is, no one except possibly university ad-
ministrators — but then they are the people least able to shift respon-
sibility). In particular, Shafarevich mentions this kind of discrimination
in his article in the collection Does Russia have a Future?

This discrimination causes two kinds of harm. First, many gifted
students have been turned down or have not tried to enter the Mekhmat.
In addition to this direct harm, there is also an indirect kind: partic-
ipation in entrance examinations has become a means of checking the
loyalty of graduate students and co-workers, and a criterion for the
selection of co-workers. Many distinguished people (regardless of na-
tionality) who refused to be accomplices have not been employed by the
Mekhmat.

The situation has brought protests whose form depended on the
circumstances and the courage of the protesters. I probably know only
some of the incidents.

In 1979, document #112 of the Moscow group for implementing
the Helsinki agreements, entitled “Discrimination against Jews entering
the university,” was signed by E. Bonner, S. Kallistratova, I. Kovalev,
M. Landa, N. Meiman, T. Osipova and Yu. Yarem-Ageev. Included in
this document were the statistical data collected by B. I. Kanevsky and
V. A. Senderov.

On the basis of the 1980 admission figures, Kanevsky and Senderov
wrote, and distributed through Samizdat, the paper “Intellectual Geno-
cide: examinations for Jews at MGU, MFTI and MIFI.”

I remember well my reaction, at that time, to the activities of
Kanevsky and Senderov (which, I now realize, was largely a form of
cowardice): the result of their collecting data will be that students of
math schools will be rejected just like Jews. (This did not happen,
although there were such attempts.)

Also, Kanevsky, Senderov, mathematics teachers in math schools,
former graduates of math schools, and others, helped students and their
parents to write appeals and complaints. Incidentally, this activity was
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sometimes criticized in the following terms: “By inciting students to
fight injustice you are using others to fight your war with the Soviet
authorities, and you are subjecting children and their parents to nervous
stresses.” In some cases, the plaintiffs succeeded (by threatening to
cause an international scandal or by taking advantage of a blunder of
an examiner), but an overwhelming majority of complaints were without
effect.

There were attempts to help some very capable students (Jews or
those who could be taken for Jews) by behind-the-scene negotiations. I
myself took part in such attempts twice, in 1980 and in 1984. In one case
it was possible to convince the Admission Committee that the graduate
was not Jewish, that his name just sounded Jewish-like; and in the
second case they closed their eyes to the Jewishness of the graduate’s
father. It was not a simple matter to find a chain of people, ending
with a person who was a member of the Admission Committee, each of
whom could talk to the next one about such a delicate topic. (In one
case I know of, one member of such a chain was A. N. Kolmogorov.d To
this day I have second thoughts about the morality of these activities
of ours.

In 1979–1982, on the initiative of B. A. Subbotovskaya and with the
active support of B. I. Kanevsky, mathematics instruction was orga-
nized for those not going to the Mekhmat: once a week, every Saturday
afternoon, lectures on basic mathematical subjects were presented to
interested students. These sessions took place at the “kerosinka” or at
the humanities building of MGU (of course, without the knowledge of
the administration — we simply took advantage of the available empty
rooms). Xerox copies of the lectures were given out to the students.
These studies were referred to as “courses for improving the qualifica-
tions of lecturers in evening mathematical schools,” but the participants
called them “the Jewish People’s university.” This went on for a num-
ber of years, until one of the participants, and Kanevsky and Senderov,
were arrested for anti-Soviet activities; after an interrogation at the
KGB, Bella Subbotovskaya died in a car accident under unclear cir-
cumstances. It should be noted that some of the participants in these

dA famous Russian mathematician. – Editor’s note
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studies who were not Mekhmat students (some were Mekhmat students)
were very gifted, but very few of them became professional mathemati-
cians.

I remember my reaction, at the time, to the arrest of Senderov
and others: well, instead of teaching mathematics they engaged in anti-
Soviet agitation, and because of them (!) now everyone has been caught
in the act.

Other attempted protests: in 1980 and 1981 B. T. Polyak wrote to
Pravda about scandalous practices (without bringing in the issue of anti-
Semitism — he must have hoped that he could influence the Mekhmat
within the existing system).

Perestroika began in 1988 and one could openly and safely write
about anti-Semitism (even to the Committee of Party Control, then
still in existence). Some people, including Senderov, then released from
prison, went to various departments, including the city partkom and
the city Department of Education, trying in some way to influence the
Mekhmat. “The dialogue with the opposition” took more concrete forms
and there were no accusations of anti-Soviet agitation, but the only pos-
itive result was that one of the graduates involved was allowed a special
examination. After that, the discussion continued inside the univer-
sity (at the meetings of the Scientific Council of the Mekhmat, in wall
newspapers, and so on). It died off gradually, because discrimination
in entrance examinations ceased, and many of the participants in the
discussion scattered all over the world.
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FREE EDUCATION AT THE HIGHEST PRICE:

A Brief Glimpse at Soviet Realities, Bella Abramovna
Subbotovskaya and “The Jewish People’s University”

KATHERINE TYLEVICH

This article is devoted to a unique page of Soviet history and mathe-
matics; it discusses the “Jewish People’s University,” a fascinating insti-
tution without walls that serves as alma mater for hundreds of today’s
leading physicists, mathematicians, professors and researchers who, in
their youth, were unjustly denied access to traditional Soviet universi-
ties. In its short existence in the late ’70s and early ’80s, “The Jewish
People’s University” delivered a rich intellectual and emotional stimulus
to hundreds of students and their professors, both Jewish and non, who
sought to pursue the study of math and physics in an academic, rather
than a politically overshadowed, environment.

Between 1978 and 1982, “The People’s University,” as it became
widely known, reputedly rivaled even Mekh-Mat (the Harvard of the
Soviet Union, so to speak) in terms of academics. Unlike some students
at Moscow’s leading university, those who studied at “The People’s
University” had no intentions of avoiding army draft; they had no such
luxury. They were there for the purpose of learning in its purest form.

If the “Jewish People’s University” had a formal agenda, then it was
certainly to offer a first-rate, advantageous education to those Jewish
students to whom higher university administrators and Soviet politics
unjustly closed the door. But off the record, “The People’s University”
was a powerful symbolic blow against Soviet anti-Semitism, and against
the Soviet system in general. Despite what we know or remember of
the late Soviet regime today, it is still difficult to believe that the figu-
rative fight waged by a select few in the late ’70s and early ’80s would
essentially result in two “prisoners of war.” It is even more difficult to
believe that this figurative fight would result in a literal death.

The fate of Bella Abramovna Subbotovskaya, coordinator and mas-
termind of the highly unusual university, is mysterious to say the least.
Reading less like non-fiction and more like a psychological thriller, the al-
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leged circumstances surrounding Subbotovskaya’s death involve a dark,
quiet night, an abandoned street, one unobservant or possibly crazed
driver going at high speed, and an unreliable, perhaps even malleable
witness. Officially, Bella Abramovna Subbotovskaya met her death as
the result of a careless driver. The sole witness reported a second car
that paused beside Subbotovskaya’s body, minutes following the colli-
sion. The ambulance came immediately.

Versions of reality may have changed in times of stress or pressure,
but authorized records remain the same to this day. These records claim
that the second car was the one to end Subbotovskaya’s life. Of course,
just as there is unofficial truth behind most sanctioned lies of the former
Soviet government, there is an unofficial, but widely believed explana-
tion for Subbotovskaya’s untimely death; an explanation that, although
simple to understand, is hard to digest: Subbotovskaya was purpose-
fully killed by the KGB as the result of her unapologetic safeguarding
of “The Jewish People’s University.”

Paranoia and suspicion are easy to succumb to, especially in a cul-
ture where the unpredictable, the unbelievable and the uncalled for are
very much a part of public consciousness. Surely, skeptics may doubt
the “conspiracy theory” behind Subbotovskaya’s death. After all, the
tragedy occurred the night of September 23, 1982 — long after the death
of Stalin, in an altogether different social and political period in the So-
viet Union. Notwithstanding, it is difficult to overlook the frightful, yet
essential details left out of the “closed case.” Carried to this day by
members of Subbotovskaya’s social, intellectual and familial circles, are
bits of information that do not simply imply, but provide what many see
as proof of premeditated murder. After all, devoted students and dedi-
cated professors were not the only regulars at this not-so-underground
university; members of the KGB frequented the sessions as if they, too,
stood to gain from the study of math and physics.

Politics were a strictly taboo subject at “The People’s University,”
regardless of whether a member of the KGB was thought to be present
at a lecture. In an effort to protect their students, Subbotovskaya and
her two colleagues, Valery Senderov and Boris Kanevsky, never strayed
from the institution’s blatant mission: To give those students — partic-

2

191
Free Education at the Highest Price



ularly those Jewish students — who crave it, the opportunity to study
math and physics at an advanced level. But if the frequent congregation
of mostly young, Jewish scholars was not enough to attract the attention
of the KGB, then the connection of Kanevsky and Senderov to these
assemblies certainly was. The two men were, after all, known and active
Soviet dissidents. In fact, the year “The People’s University” began to
truly develop, 1979, was the same year that the two mathematicians
orchestrated and executed a study that publicized the existence of me-
thodical anti-Semitic discrimination at all levels of entrance to Soviet
universities.a

Essentially, Kanevsky and Senderov used numbers — science — to
prove a point that was highly emotive. Their study followed 87 aspirants
seeking admission to Moscow University’s leading mathematics faculty.
The candidates had a lot in common: all were recent graduates of spe-
cialized math and physics high schools in Moscow, many of them were
nationally renowned in mathematics Olympiads. 40 of the candidates,
however, gave “undesirable” information on their entrance forms. 40
of them were Jewish either by passport or “by trace.” Entrance forms
required that students state their nationality alongside the names and
patronymics of their parents. Even an “officially” Russian student, sus-
pected of having even one Jewish grandparent, could be placed in a
group of undesirables.

The study clearly showed that Jewish candidates were methodically
forced outside the gates of the prestigious university, even though their
credentials were similar to, or better than those of other applicants. Of
the 47 aspirants who were not Jewish, 40 were accepted after taking
the entrance exam. Of the 40 candidates who had at least one Jewish
grandparent, all but six were rejected. To add insult to injury, Kanevsky
and Senderov also cite one case when examiners wrongly thought that
one applicant was Jewish and lowered his grades. After the applicant’s
mother proved that their family had no Jewish lineage, however, admin-
istrators immediately improved his grades and admitted him into the
university.

aKanevsky and Senderov “published” their results in Samizdat in 1980, see Intel-

lectual Genocide” in Part 2 of the present collection. –Editor’s note
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Kanevsky and Senderov confirmed the ends of a means that had
been know for years: Examiners made it virtually impossible for Jew-
ish students to receive high enough marks to enter the elite grounds of
Moscow University. Jewish students were, after all, tested with prob-
lems that took professors — expert mathematicians — hours, even days
to solve. Some problems had no solutions at all. The consequences of
such practice were not just inevitable, they were deliberate: As the
study shows, when Moscow University admitted 475 students to the
mathematics faculty in 1979, only 10 of them were Jewish. This was
no coincidence, but rather an example of common Soviet practice. In
bringing the idea of “The Jewish People’s University” to Subbotovskaya,
Kanevsky and Senderov went against that practice. And in bringing
“The Jewish People’s University” to life as organizer, mediator and
supporter, Subbotovskaya ultimately sacrificed herself for the sake of
knowledge and justice.

In the summer of 1982, an arrest of Kanevsky, Senderov and a stu-
dent of “The People’s University” intensified the KGB’s suspicion of
the university to a most-undesirable level of scrutiny and investigation.
Although the charges of anti-Soviet activity for which the men were de-
tained had no relation to “The People’s University,” the connection of
the suspects involved inescapably and unfortunately led KGB investi-
gators to the university’s figurative gates.

Bella Subbotovskaya provided the KGB with an easy scapegoat:
herself. While her two colleagues and one of her students faced im-
prisonment, Subbotovskaya faced the questions of the KGB. She did so
heroically — to a point where several versions of the investigation and
of her testimony have morphed to legendary proportions. One version
claims that after the KGB demanded that Subbotovskaya cease her un-
derground teaching, they asked her to present a written statement of
her purpose in upholding “The Jewish People’s University.” When she
wrote them that her intention was “to give Jewish children the oppor-
tunity to learn math,” the KGB commanded that she remove the word
“Jewish” from her statement.

Yet, there exists an even more striking version: When asked person-
ally, “What is the purpose of The People’s University,’” Subbotovskaya
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reportedly answered without pause. “To give Jewish children the op-
portunity to learn math,” she said. KGB members never wrote down
her answer.

Admirably, bravely, after years of teaching students, Subbotovskaya
took it upon herself to “teach” the KGB. As “legend” has it, she did
the unthinkable. Equipped with statistics and facts, Subbotovskaya per-
sonally requested a meeting with the notorious intelligence organization.
She was going to prove why anti-Semitic discrimination by universities
is a crime to the KGB. Everybody waited to hear news of her arrest, but
news of her death came instead ... and with it, whispers of premeditated
murder.

Subbotovskaya visited her mother regularly — a well-known fact.
On the night of September 23, 1982, she was leaving her mother’s
apartment; it was after 11:00 p.m., when there was virtually no traffic,
no pedestrians, no movement on the streets. Bella Abramovna Sub-
botovskaya always called her mother upon safe arrival home, so when
12:30 a.m. came without a phone ring, her mother called the police.
She received the news immediately: A terrible tragedy had occurred.
An accident.

The police had broken convention and legal code in a most suspicious
manner. It is atypical for members of the police force to deliver such
news to a caller ... atypical for them to do it so promptly.

Her funeral was a silent one. Amidst Subbotovskaya’s students, col-
leagues, friends, family, and admirers, stood several unwelcome guests
— several members of the KGB. Nobody volunteered to eulogize Sub-
botovskaya; nobody made a sound except for her mother. The el-
derly Rebecca Yevseyevna finally cried out: “Why won’t anybody pro-
nounce one word?” Bella Abramovna’s husband quickly escorted the
aged woman out of the funeral home.

A period of hushed judgments followed the mute memorial ser-
vice. Subbotovskaya’s family and friends all discussed in low voices;
all thought quietly as to why Subbotovskaya’s wounds did not match
the apparent cause of death. An unspoken consensus developed into a
softly spoken understanding. At the age of 44, Bella Abramovna Sub-
botovskaya became the first real victim of a seemingly non-combative,
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officially nonexistent, fight.

Charges of anti-Soviet activity and propaganda landed Boris Kanev-
sky and Valery Senderov behind bars, for 5 and 7 years respectively.
Senderov was to serve 5 additional years in exile. They received the
sentences the same year that Subbotovskaya lost her life. Officially,
the imprisonment and charges were unrelated to the existence of “The
Jewish People’s University.” But officially, like so many words in this
essay, almost always belongs in quotation marks. Apparently, when
Kanevsky and Senderov faced interrogation by the KGB, they largely
answered to questions regarding “The Jewish People’s University.”

For a year following Subbotovskaya’s death, “The Jewish People’s
University” continued to exist, but not to thrive. As was evident even
while she was living, Subbotovskaya was irreplaceable as the foundation
and the construction of “The People’s University.” The university had
no walls, and it was up to Subbotovskaya to build them before each
meeting. Initially, she opened her own home to students and professors,
and when the demand for knowledge grew bigger, she reserved any meet-
ing space that could hold hundreds of starving minds — sometimes class
names were invented for reservation of large auditoriums. She copied
notes for all of the students; she even kept them fed. And all for free. In
the end, the only people to pay a cost for the existence of “The People’s
University” were Subbotovskaya, Senderov and Kanevsky.

“The Jewish People’s University” began as a small gathering of 14
people in Subbotovskaya’s two-room apartment. A month later, it de-
veloped into a meeting of over 30. At the end of 1979, 110 students were
“enrolled.” And by the time “The Jewish People’s University” finally
closed its doors, it boasted well over 350 alumni — talented young men
and women, most of them victims of discrimination, many of them fu-
ture professors of nationally ranking universities, many of them future
famous mathematicians and physicists. They learned from the best.
Professors at “The Jewish People’s University” included D. Fuchs, A.
Shen, A. Sosinsky, B. Feigin, M. Marinov, among others; it even in-
cluded famous “visiting” Princeton University professor, John Milnor.

Bella Abramovna Subbotovskaya and her colleagues Kanevsky and
Senderov did a completely selfless act — in part for justice, in part for
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the unadulterated sake of education. The “Jewish People’s University”
gave Jewish children the opportunity to learn math — it is as simple as
that. It gave Jewish children the opportunity to focus on their studies,
instead of their ethnicity. In doing so, “The People’s University” defied
an entire social system.
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Ilan Vardi

Bella Abramovna Subbotovskaya
(circa 1980)
Courtesy of A. Kanel-Belov and I. Muchnik

Circa 1961
Courtesy of I. Muchnik197
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JEWISH UNIVERSITY
a

DMITRY B. FUCHS

Department of Mathematics, University of California (Davis)
Davis, California 95616, USA

To the Memory of

Bella Subbotovskaya

In the summer of 1980, I received at my home two guests with
whom I had not been previously acquainted — Valera Senderov and
Borya Kanevsky, both not yet in prison at that time. They came to me
to make the arrangements concerning my participation in the endeavor,
which proved to be quite successful for the last two years: parallel lec-
ture courses to the MekhMat curriculum for young people who had been
unfairly denied admission by the Moscow University Admission Com-
mittee. The names “Jewish University,” “Jewish People’s University,”
and even the acronym ENUb appeared later,c although what is true is
true: The majority of the victims of the scoundrels from the examina-
tion and the Admission Committee in Moscow University were sinful in
the fifth point.d (Actually, the students selected in 1980, whom I taught,
were victims only peripherally: this was the year of the Olympic Games,
and the privilege of taking July exams for early admission to the Uni-
versity and MIFIe was canceled, thereby depriving potential victims of
a “safety net” provided by “reserve” institutes where they could ap-

a Translated from the Russian by Roman K. Kovalev, The College of New Jersey,
Department of History, Ewing, NJ 08628, USA; e-mail: kovalev@tcnj.edu. Footnotes
marked by BKR belong to A. Belov-Kanel and A. Reznikov.

bEvreiskii Narodnyi Universitet.
cAn “official” name did exist: “Courses for the Upgrading of Professional Quali-

fication for Instructors of the Evening Mathematical Schools,” but, of course, it was
not used by the students. –BKR

dEthnicity — which in the Soviet parlance was referred to as “nationality” — was
entry # 5 in the Soviet passport. Entry # 5 became a euphemism for “Jewish.” –
Editor’s note

eMIFI is the acronym for Moscow Institute for Physics and Engineering. Regular
entrance examinations in all Soviet Universities begin on August 1. –Editor’s note.
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ply following the flunking of exams at MekhMat. In the absence of
the safety net, they, circumventing the University, sought admission to
various institutes of the “kerosinka” type.f No one wished to risk the
possibility of being drafted and sent to Afghanistan.

The “professorial” staff was quickly assembled. The team was ro-
bust: Alyosha Sossinsky taught algebra (Borya Feigin later replaced
him), Andrei Zelevinsky taught lessons on analysis, and I was left with
analytical geometry and linear algebra. I recall Andrei’s first lecture:
he wrote on the chalkboard the formula

∫
∞

−∞

e
−x2

dx =
√

π

and said that this formula contained all the mathematical wisdom: in-
tegral, differential, radical, e, π and infinity. In general, Andrei, lacking
experience in teaching calculus (neither had he experience in research in
analysis), delivered a brilliant course; I recall asymptotic series with the
convergence sectors of which I had no clue previously. My course was
more standard, although I recall that I introduced functors in the third
or fourth lesson (I attempted to explain something that I still do not
understand despite the fact that in every textbook it is written: the iso-
morphism between a finite-dimensional vector space and its conjugate
depends on its basis while the isomorphism with the second conjugate
does not depend on anything). All this came after the organizational
meeting at Bella Subbotovskaya’s apartment.

Several words should be said specifically about Bella. I studied
with her in the same group at MekhMat, and we had known each other
since 1955. We were not particularly great friends, since it was not
easy to be friends with Bella. Nervous, loud, unusually demanding of
everyone, she did not fit into the usual posse. Our class was very strong
(Serezha Novikov, Vitya Palamodov, Galya Tyurina, Sasha Olevsky,
Volodya Zorich, Sasha Vinogradov were all in our class); we showed
off to one another and never suspected that the awkward, noisy Bella
was one of the best mathematicians amongst us. I can best recall the

f
Kerosinka is a nickname for the Gubkin Oil and Gas Institute. The students of

the institute are known as kerosinshchiks. – Editor’s note
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various amusing stories. In the summer of 1957, packed into freight
train cars, several hundred university students were sent to work to
tselina.g Farewells — everyone was excited. And suddenly — who is
this? — but it is Bella, believe it or not, with a bald, shaved head. Her
mother is with her — Rebekka Evseevna — I knew her (her father was
killed in the War). But, mothers were saying their goodbyes to many,
including myself. Her mother was actually going with us to the Virgin
Lands! On some small way-station, a grim-looking komsomol worker
rolled up to our car and asked: “And why is your mother going?” In
response, Rebekka Evseevna took out of her purse a komsomol pass, all
is written there: she is going to the Virgin Lands by the calling of her
heart. The komsomol guy moved off. We ended up working in different
places at the Virgin Lands. I met Bella only once and received from her
a scolding for the strike we had initiated. But, the guys who worked in
the same team with the mother and daughter of Subbotovskayas spoke
endlessly about the dinners prepared by Rebekka Evseevna.

When we graduated from the University, our ways parted. I found
out later that she studied with Lupanov (the present chair of MekhMat;
I do not wish to speak of him) in graduate school, married, had a daugh-
ter, published (under the name Muchnik) several outstanding studies,
and defended her dissertation. Then, some sort of a rupture — I do not
know the details. There was a divorce with a reversion to her maiden
name, illness, and a return to life in the form of a teacher of elementary
classes in an ordinary Moscow secondary school. The only thing that
remained from her former life was the chamber orchestra of Moscow
University, where Bella played the viola until her last days (and the
orchestra bus later took her to the cemetery). Bella never taught at our
University. Her functions were strictly organizational — such was her
choice.

g
Tselina means virgin soil in Russian. In 1954 Nikita Khrushchev initiated the

“Virgin Lands Campaign” to open up vast tracts of unused (virgin) steppe in the
northern Kazakhstan and the Altai region of Russia. With all this new land, it was
necessary to bring there a vast amount of people from all over the Soviet Union.
The Komsomol (Young Communist League) was charged with providing appropriate
workforce. More than 300000 people — in particular, hundreds of thousands of
soldiers and students — were involved. –Editor’s note
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We worked selflessly with our students, wrote synopses of our lec-
tures (which were photocopied somewhere on copiersh), and arranged
home consultations. It was difficult for the students: technical drawing
and other technical disciplines, material sciences of all sorts during the
day, and contrived mathematics in the evening. Out of the students of
my course (and there were over 70 of themi), only a handful became pro-
fessional mathematicians: Vitia Ginzburg, Alyosha Belov-Kanel, Fedya
Malikov, Sasha Odessky, Andrei Reznikov, Borya and Misha Shapiro
— who else? But the benefit of the studies was brought to many, I
am sure. We changed our meeting places, assembled at Bella’s school,
at the Oil and Gas Institute (“Kerosinka”), at the Humanities building
and later at the Chemistry Department of Moscow University. In the
majority of cases, our “seminar” was more or less “legal” (I myself went
to the Chemistry Department to ask for permission from the assistant
chair; and at the “Kerosinka,” while I cannot be fully sure, I heard
that one of the students received a reprimand from the komsomol bu-
reau for missing my lectures). Bella collected the fiversj and brought
mounds of sandwiches (later KGB made attempts to present these fivers
as evidence of her guilt).

I forgot to mention, Borya and Valera came to one of the first classes
to question the kids concerning where they and their classmates had ap-
plied, and where they had been accepted (they were collecting this data
to document evidence of what all knew anyway, but many pretended
not to know — about the discrimination against Jews in the admission
to Moscow University). A year passed and we moved on to the sec-
ond year; Borya and Valera took on to pull the second assortment of
classes. (Incidentally, Valera Senderov was an instructor of the highest
quality). I switched over to differential geometry, while Borya Feigin
lectured about Lie algebras and D-modules. Our seminar was work-
ing. In March 1982, Jack Milnor, André Haefliger, Bob MacPherson,
and Duza McDuff came to Moscow for a private visit, as it is presently

hB. Kanevsky was able to make photocopies, a task totally impossible in those
days, in a “box”; see footnote e in Vershik’s article Science and Totalitarianism.
–BKR

i120 students came to the first lesson! –BKR
jFive-ruble notes. –Translator’s note

4

203
Jewish University



called. Milnor, a great mathematician and lecturer, gave a talk specifi-
cally for our students (Alyosha Sossinsky translated). There were many
people who were not our own — we gave room to all.

The academic year ended and suddenly all hell broke loose. I will
attempt to reconstruct the development of these dramatic events.

In June 1982, Serezha Lvovsky (whom I did not know at that time)
came to the Laboratory Building of Moscow University where I worked.
He took me outside. This was the news: Senderov and Kanevsky (and a
student from their section) had been arrested.k He explained the reason
for the arrests: In April, someone dispersed leaflets against subbotniks l

(can you imagine — subbotniks !). The left-over leaflets were not dis-
carded but were retained for the next year (oh, God!). And so they were
caught during the search (there were always enough informers) and had
the list of their class in the “Jewish University” confiscated. Information
about us, supposedly, did not surface — although who knows ...

We met with Andrei to discuss what we should say in the event we
were called to questioning (we were not). We phoned Bella and decided
not to resume the courses in the autumn (we had dreamed about the
third year).m Stressful months passed by, and in August (Brezhnev had
several months more to live), the KGB called on Bella. After she had
gone there, we met (this was our last meeting; we spoke once more later
by telephone). I will lay out the story as she told it to me.

On the morning of that day, her phone rings and a male voice states:
“Bella Abramovna, I — such-and-such (not clear), would like to meet
with you.” Bella took him for someone else, since she was expecting a
call. I, she said, am very busy today; I will be going to various places,
so let us meet up at the subway station — Kolomenskaya Station, first
car of the downtown-bound train. At the designated hour Bella is there.
She looks around — no one. But, there he is, a wide-shouldered person

kSenderov and Geltser were arrested on June 17, Kanevsky on June 21. -BKR
lFrom Russian Subbota — Saturday. In Soviet times subbotnik was allegedly en-

thusiastic and allegedly volunteer unpaid work of the population on Saturdays su-
pervised by the Communist Party officials and organized a few times a year. In fact,
it was neither enthusiastic nor volunteer. –Editor’s note

mThe classes, although in a different form, continued until the spring of 1983.
–BKR
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with a bull-like neck. “Clearly, not a hero of my novel,” Bella told me.

The train passes, and then another. Bella waits, and suddenly this
person walks up to her: “Bella Abramovna?” Bella, with a smile — “so
it is you who is waiting for me? I need to go to Kuznetsky Most now,
so let us go there together.”

“No,” — he answers — “we will go to a different address.” And
then he takes Bella by her arm. They go upstairs and there is a car
waiting there for them. They drive not to the Lubyanka but somewhere
else; Bella told me this address, but I do not remember it. They led
her into an office to a young person wearing shoulder-straps — a senior
lieutenant or a captain. In Moscow, he says, a gang of “tutors” is
operating, who rob people under the guise of preparing them for exams.
And there, he slaps down Senderov’s list on the desk. Bella, of course,
began to flirt with him (an incorrigible female fortune!). But, how can
you, she says, these people are already students and we instructed them
in mathematics for free (and the fivers? — and slap — another list — of
those who gave the fivers — also in Senderov’s class — but these fivers
are for snacks).

“And so you can also come — you probably also like mathematics.”
It was clear that she took a liking to the KGB officer. They spoke
about this and that — about mathematics. Well, goodbye and here is
your pass (for exiting — without it, one could not leave). And here
is a protocol — sign it. Bella reads the protocol — no, I did not say
this, so I will not sign. He begins to entreat her, saying that this is just
a formality that is expected of him. But, no, she entrenched (she was
always stubborn). Well, fine, do not sign it, but think about it some
more. If you change your mind, come back to us. He gave her his name,
internal telephone, and that was all.

Bella tells me all of this and suddenly says: I have decided to go
there again; he did call on me after all. I said: “under no circumstance
should you go!” Well, she said, I shall chat with him; he, it seems to
me, understands everything and this may be of benefit to our boys (who
had been arrested).

Just try to dissuade her! It would have been great to just tie her up
and not let her go ...
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The next day brings the last call from Bella. Well, did you go? Yes,
but he did not receive me. He said rather dryly: I do not need anything
else from you. Several days later,n Bella died under the wheels of a
truck in a quiet and deserted alley where even a bicyclist rarely passes
each hour. An account of an eyewitness: In a whirlwind, a truck ran
along the alley and struck Bella, who walked on a sidewalk or next to
it, and disappeared. Bella was delivered directly to the morgue. It was
difficult to recognize her in the coffin: her battered head had been poorly
reconstructed with clay at the morgue. There was a mass of people at
the funeral, but the conversations concerning the circumstances of her
death were limited — it was not the time. I do not know, has the
time come, has the truck been found and its driver; has the chain of
events been reconstructed from that side, that of the KGB? “Jewish
University” ceased to exist, and with perestroika, mass emigration and
the lifting of limitations on admission of Jews to Moscow University,
the problem itself ceased to exist. And here ends my story.

nIt occurred on the night of September 23, 1982. Bella Subbotovskaya was 44.
–BKR
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REMEMBERING BELLA ABRAMOVNA
a

ANDREI ZELEVINSKY
Department of Mathematics, Northeastern University,

Boston, Massachusetts 02115, USA

It was Dmitry Borisovich Fuchs who introduced me to Bella Abra-
movna Subbotovskya. This apparently occurred during the summer or
early autumn of 1980. She proposed that I participate in the work of
the“People’s University” and I recall that it did not take long for me
to consent. The risk of participating was apparent (even for me, in my
youthful thoughtlessness at that time); hence, the quick decision was not
so trivial. I had two reasons: an immediate sense of “rightness” of the
whole endeavor and that absolute feeling of trust which I felt towards
Bella Abramovna, something that never left me during the course of
our acquaintance and contact (which unfortunately was not very long).

A few words should be said about background. In those years, the
atmosphere of deep absurdity reigning in the Soviet society was so ap-
parent for the people of my circle that there was no need to discuss
it. The most cannibalistic era of the Soviet regime was in the past and
there were few who seriously accepted the official ideology. But, open
dissent was still punished. Official anti-Semitism was flourishing and
was promoted at all levels in conjunction with general distrust towards
the intelligentsia and culture. Since the majority of the population had
formed during the period of Soviet power, the regime appeared unshake-
able and eternal, while active dissidents seemed as quixotic idealists (as
the later developments had shown, in reality they proved to have more
foresight than my friends and I).

However, let us move closer to the matter. The individuals that
were responsible for admission to MekhMat of Moscow University by
then lost the last shred of human decency. The lightest suspicion of
Jewish origins was enough to make the admission practically impossible.
And in addition, for greater absurdity, many of the strong students who

a Translated from the Russian by Roman K. Kovalev, The College of New Jersey,
Department of History, Ewing, NJ 08628, USA; e-mail: kovalev@tcnj.edu.
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had graduated from the leading mathematical schools — often having
proven themselves at mathematical olympiads of various levels — were
weeded out regardless of nationality (apparently being “socially alien”).

Although cadre policy based on the same principles led to a dramatic
decline of the instructors’ level at MekhMat, there were still relatively
many mathematicians and instructors of high caliber, remains of the
past. One of the greatest virtues of MekhMat was the traditional sys-
tem of fundamental mathematical education at the lower level courses.
Without access to this system, for many of the most capable and se-
riously involved math students, the road to professional mathematics
was, if not totally closed, then at least greatly hampered.

Bella Abramovna’s and her like-minded people’s idea was humane
and simple: attempt to at least partially restore fairness by offering
students who were seriously interested in mathematics the possibility of
receiving that fundamental mathematical education which the admin-
istrators of MekhMat deprived them. This idea could not but evoke a
response from me, not only based on moral grounds, but also because,
being myself Jewish and a graduate of Moscow Mathematical School
No. 2, known at the time for its free-thinking spirit, I easily identified
myself with my future students (although I was lucky, and my journey
to mathematics was much easier).

Among the organizers of the People’s University, PU for short,b aside
from Bella Abramovna, I also met Boris Kanevsky and Valery Senderov.
I had no doubts that they all, in addition to organizing our classes, were
involved in other “illegal” activities. According to an unwritten agree-
ment, I never talked with them about these subjects, assuming (appar-
ently naively), that this may serve as a defense in the case of KGB’s
(Committee for State Security; I explain this to those lucky ones for
whom this dreadful acronym does not mean much) interest in my per-
sona: “well, I know nothing, they asked me to deliver a couple of lectures
on mathematics for young people, but why and for what reason, I had
no idea ...” I suspect that many of my colleagues at PU shared a similar
“ostrich-like” position with me. This agreement was observed with great

bA commonly accepted name, I believe, it did not have; among the other names
used I recall “Open University” and “Jewish University.”
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tact from the side of Bella Abramovna and Boris Kanevsky, with whom
I mainly dealt (Senderov, as far as I recall, appeared at our classes not
very often and was not involved in their day-to-day running. Perhaps,
this was different in other sections). The only exception that I can
now recall was an evening meeting with a bard-dissident, Petr Starchik,
at Bella Abramovna’s apartment, where she invited my wife and my-
self together with several students and instructors of PU. The evening,
incidentally, was wonderful; the reader can acquaint him/herself with
a biography of Starchik and his songs, for example on the webpage
http://www.bard.ru.

Several words should be said about the organization of lessons dur-
ing those two years (1980–81 and 1981–82) when I taught at PU. The
lessons were given once a week on Saturdays at various places: most
commonly at the Gubkin Oil and Gas Institute (the famous “kerosin-
ka”c), where many of our students had studied. Boris Kanevsky, in ad-
dition to running recitation sessions in my calculus course, photocopied
and distributed to the students lecture notes and handouts with exer-
cises (now it is almost impossible to imagine what a serious crime the
Soviet state considered the unsanctioned use of the photocopying ma-
chine; in accordance with the above-mentioned agreement, I never asked
him how he gained access to the photocopier and what other printed
material he created on it). The rest of the practical organization lay on
Bella Abramovna’s shoulders, who in my eyes was the soul of our cause.
She composed lists of students, led the count of enrollment, arranged
places for class meetings, informed all about any possible changes in
scheduling, made sure that classes met and adjourned on time, brought
all the materials necessary for classes (for instance, chalk), and even
made delicious sandwiches, which we all consumed during breaks. She
accomplished all these tasks with a smile and without obvious efforts.
In general, it always seemed to me that her mere presence at lessons and
breaks created a wonderfully pleasant, warm, and homely environment.

cKerosinka is a nickname for the Gubkin Oil and Gas Institute. A Russian
kerosinka is a kerosene-burning cooking device, low-tech but efficient in Russian
conditions. The students of the institute are known as kerosinshchiks. – Editor’s
note
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She took care of all practical everyday problems of all the instructors.
By the way, it goes without saying that no one received any money for
their work (I am not sure, perhaps a little contribution was collected
from the students for photocopies and such expenses).

During my two years of work at PU, I taught a lecture course
on calculus with elements of functional analysis. Fuchs, at the same
time, taught geometry, and algebra was at first taught by Aleksei Bro-
nislavovich Sosinsky, and then my old friend and classmate, Boris Feigin.

It took me some time to choose the program of my course. On the
one hand, the general idea was to explain basics of calculus, without
delving too much into more advanced topics. On the other hand, the
majority of our students studied full time at the applied mathematics
departments of decent technical schools, and thus already had some
knowledge of calculus, especially on a “technological” level. Therefore,
I did not wish to develop a course on the basis of a standard MekhMat
curriculum for freshmen: I was afraid that the students would quickly
lose interest, thinking that I am not telling them anything new. The
way I resolved this dilemma was by attempting to offer traditional ideas
in new packaging. The form of this packaging included ideas from sev-
eral, particularly French sources: “Foundations of Modern Analysis”
by J. Dieudonne, “Differential Calculus and Differential Forms” by H.
Cartan, and even “Functions of a Real Variable” by N. Bourbaki (may
V.I. Arnold please forgive me). With such an approach, the elements
of topology and functional analysis were introduced rather early, pro-
viding an opportunity to put forth the principles of differential and
integral calculus working with functions taking values in the Banach
spaces. Thus, even familiar standard facts were treated in a new light,
offering students an opportunity to better appreciate and feel the logic
of the arguments. It is not up to me to judge the success of this attempt.
In any event, it seemed to me that students received my course with
interest and understanding.

I am proud of the fact that a number of students who attended my
course overcame all the obstacles and became highly successful profes-
sional mathematicians: Aleksei Belov-Kanel, Arkady Berenstein, Viktor
Ginzburg, Feodor Malikov, Andrei Reznikov, Mikhail Shapiro (I ask for
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forgiveness if I have omitted to mention someone). I hope that in their
success there has been a grain of my input; but, unquestionably, they
owe a lot more to Bella Abramovna.

The studies at PU continued without obstruction for several years,
until the coming of the merciless hounding. Several people connected to
PU, including Kanevsky and Senderov, were arrested in June 1982, and
on the 23rd of September of that same year Bella Abramovna died trag-
ically. As far as I know, the circumstances of her death (assassination?)
have still not been uncovered. I can only say that every person with
whom I have discussed the matter, none of my friends and colleagues
had the slightest of doubts that the KGB arranged her assassination.
Why? If the authorities wanted to shut down PU as soon as possible
and without any extra noise, then extinguishing Bella Abramovna, pre-
senting her death as an accident, was the simplest means of achieving
this goal. As I said earlier, everything depended on her.

Unfortunately, I knew very little about Bella Abramovna (and found
out little during the course of our brief acquaintance), besides that she
finished MekhMat and was Fuchs’s classmate. Her warmth, kindheart-
edness, and optimism immediately made one predisposed towards her
and feel at ease with her. She showed motherly affection to PU’s stu-
dents and, as far as I can tell, evoked equally warm feelings in response.
The organization of PU demanded of her great courage and resolve,
and the support of its continuation demanded incessant efforts; but in
her behavior there was no sign of self-importance or “showing off.” In
the general atmosphere of “phoniness” — the most common feature of
Soviet society of those years — the very fact of precise and continuous
functioning of PU, provided by Bella Abramovna’s efforts, gave stu-
dents (and also the instructors) a significant lesson in professionalism
and responsibility.

I am grateful to fate for the acquaintance and cooperation with this
remarkable woman. For me she will always remain a moral compass,
and my work at PU — a subject of pride and wonderful recollections.
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BELLA ABRAMOVNA SUBBOTOVSKAYA
a

ILYA MUCHNIK

Department of Computer Science,
Rutgers University,

110 Frelinghuysen Road
Piscataway, New Jersey 08854-8019

It somehow worked out that, while I lived together with Bella for
ten years and then remained in close contact with her for another twelve
years after the divorce, we had no opportunity to tell one another about
our childhood and days of youth. This is a major oversight that limits
my description of Bella as a person, who was the soul of the People’s
University. However, there is one detail of her childhood I can relate.
Beginning with first grade, but perhaps even earlier, Bella had fallen
in love with mathematics. She read any book on mathematics that fell
into her hands and solved all mathematical problems and exercises in
her textbooks. Just imagine Berezanskii’s exercise book for 5th Grade
— a huge text containing several thousand problems. Bella received
this book in September and in October she had a pile of notebooks
filled with solutions to all of the exercises found in the text.

How do I know this? — From her own words. She attempted to
convey to me her vision of the beauty of mathematical problems. “A
problem cannot be uninteresting, it can only be simple or complicated”
— this was her saying. Bella was interested in mathematical logic,
but in every talk we attended together she found something beautiful
— even when the topic was topology, theory of measures, or computa-
tional grids for solving differential equations in partial derivatives. After
a seminar where a rather weak paper had been presented, Bella usually
put forward some sort of a remark suggesting how she would alter the
structure of the question, or how she would continue the inquiry posed
in the paper. She would make a completely different problem, and I
quite honestly could not find any relation between the two; I would ask,

a Translated from the Russian by Roman K. Kovalev, The College of New Jersey,
Department of History, Ewing, NJ 08628, USA; e-mail: kovalev@tcnj.edu.
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puzzled, what connection there was between the problem she posed and
the one we had heard about during the talk. Usually, she would point
to a curious association provoked by the topic of the presentation. Her
main interests lay not so much in the formulation of the question, but in
seeking connections between seemingly unrelated issues. She loved the
aphorism: “There will always be more questions than answers in mathe-
matics, because every answer gives birth to several new questions.” It is
a shame that I cannot recall who was the first to say this beloved phrase.
Even an answer to a not-so-interesting question provides a plethora of
new questions, amongst which one may very often encounter at least one
that is interesting. In this way, mathematics hides beauty, she loved to
say.

The most wonderful thing is that Bella did not just perceive ev-
erything beautiful in mathematics; she had the ability to convey her
perception to the most varied types of people. It should be said that
listening to her stories about the beauty in mathematics was a learn-
ing experience. It was the case especially when Bella spoke of some
“infinitely complex and unattractive” formulas. Derivations of such for-
mulas presented in themselves an endless row of technical calculations,
but Bella had the gift of being able to describe unique peculiarities of
the formulas so that they became beautiful. They did not become sim-
ple, but their complexities were understood after her explanation, and
seemed natural. “People” — Bella loved to say — “ found out that no
one is protected against complexities of the world through mathemat-
ics, after they had created it.” Before then, people did not think much
about the complexities of life, did not notice, and did not remember
them. Mathematics permitted the recording of everyday interactions
in the form of complex, but beautiful constructions. It is precisely this
beauty that permits us to hold these constructions in the field of our
attention and manipulate them. Bella considered “complex” as some-
thing that could be observed through a chain of a hundred or a thousand
simple things. The larger part of everyday relations, she believed, was
not perceived by humanity — it was left unnoticed. It could leave an
impression as an immaterial feeling, which is quickly washed away, and
then the construction ceases to exist for us.

2
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I have no specific intentions of characterizing Bella as a philosopher,
although she was unquestionably a person of acute thinking. With the
above statements I simply wished to observe that Bella’s love of beauty
in mathematics was astonishingly harmonized with her critical evalua-
tion of her own abilities in understanding the complexities of things. I
shall risk further by saying that Bella very keenly felt the principal lim-
itations of a human in comprehending complex constructions. In this
regard, it may seem paradoxical that Bella considered mathematics the
simplest of sciences, since the constructions studied in mathematics are
most precisely determined by and connected with logical trappings. On
many occasions, she brought to my attention that the most complex
issues, specifically those that are insurmountable, we encounter not in
mathematics, but in connection to nature, art, and, particularly, in our
human relationships.

Perhaps, she would say, there is utility in cybermodels of art, but
one should be aware that the insight provided by these models is totally
different from the kind of understanding which comes, for instance, from
listening directly to music. This direct, “instant” understanding cannot
in any way be mathematical because it is very personal. Its reception
cannot be recorded so as to imprint it into the memory of others. It
lives inside a person for so long as they live, and dies with them. The
unique advantage of mathematics is that it has the ability to capture
something significantly beautiful. Of course, it is far from everything,
but still something important. And it is this part that can be passed
from one individual to another.

I would like to relate an episode from our lives — how we met and
married. I believe it reveals the character of her nature which over-
whelmed everyone she encountered — her liberated sense of accepting
all of her surroundings.

I met Bella for the first time at A.A. Lyapunov’s seminar on cyber-
netics in 1960. Zaripov presented a paper on how he composed music
on the computer. She and I were very excited by this lecture, particu-
larly by the melodies composed by a machine, which not only did not
seem machine-like but also were simply interesting. Bella sat just in
front of me, and we often exchanged winks and nods during the course
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of the presentation. After the lecture, we wandered through univer-
sity corridors and discussed various possibilities of computer-generated
music. Somehow we immediately departed from the idea of composing
music and came to discuss the issue of how one might study musical
compositions with the help of a computer.

I was a very sassy character. With no musical background, half a
year prior to that seminar, I came up with the idea that I must study
the statistics of musical phrases in Jewish folksongs, and that this had
to be done using a computer. I had a large collection of these songs
— more than 800, some in various renditions. The main thought that
preoccupied me was to find an automatic method of distinguishing those
melody fragments in the songs that could be examined as independent
musical phrases.

So, it was this issue that Bella and I began to discuss after the sem-
inar. But, we had very different interests in our discourse. I attempted
to discuss the question that preoccupied me and seek ideas in Zaripov’s
presentation that could help me resolve this question. Bella, however,
was concerned with something entirely different. She suddenly under-
stood that with me she could sit, listen and understand songs that were
of great interest to her. Computer capabilities concerned her little. She
just immersed herself in Jewish folk melody.

To imagine for oneself the entire ridiculousness of our discussion, it
is imperative to note that Bella, at that time, was a “real cyber-guru,”
knowing a great deal and already possessing published results on the
comparative complexity of various bases of algebraic logic. In addition,
by that time she had already finished ten years of music school at the
conservatory, playing the violin. Besides, being a 5th-year student at
Moscow University, she was also a 1st-year student at the Gnessinykh
Musical Instituteb in vocal performance. It seemed as though she would
have been preoccupied mainly with questions of cyberscience in relation
to music. She had all the necessary knowledge to be involved in such

bGosudarstvennoe muzykalьnoe uqiliwe imeni Gnesinyh, a famous
school of music in Moscow. It was founded at the height of a new wave of Russian
enlightenment at the end of the nineteenth century by the sisters Eugenia, Helena
and Maria Gnessins. –Editor’s note

4

217
Bella Abramovna Subbotovskaya



issues.

Everything turned out to the contrary. At that time, I lived in
Gorky.c We agreed to meet regularly. It was a good thing that I could
arrange frequent trips to Moscow and my travel expenses were reim-
bursed. Bella promised to inform me in advance of planned seminars
that touched on subjects related to computers in music. We also agreed
to correspond on the topic of how to simplify the study of Jewish folk-
songs, so that it would be possible to begin the interesting work as soon
as possible.

We corresponded for several months very intensively and, although
the project took the lead in our letters, we wrote much about ourselves
to one another and about other subjects which were on our minds. At
the end of March, Bella became seriously ill and landed in the hospital.
I came to see her in early April and for one week we promenaded about
the hospital yard, often escaping over the fence and strolling through
the large park next to the hospital. The sensations were terrific and, at
the same time, it seemed that we were both in prison. It was then that
I proposed to Bella that we run away from this “prison” somewhere
far, far away, for instance, to the city of Zhukovsky,d where I had an
acquaintance.

During the course of this flight we decided to get married. This
occurred in the summer of 1961. We settled in a little wooden house,
in a 6-meter roome with a stove-heater, and an outhouse in the yard.
But, this was no ordinary yard. Around it was a “beehive” of similar
houses. In each lived three to four Jewish families with two or three
children, grandmothers and grandfathers who spoke Yiddish quite well.
Our wedding was held in this yard. (None of our neighbors had a room
large enough.) All the inhabitants of the surrounding houses attended
the wedding and sang many Jewish songs in Yiddish. Bella accompanied
them on the violin. Thereafter, three marvelous people came to the

cBefore 1917 and after 1990, Nizhny Novgorod. The city lies at the confluence of
the Volga and Oka rivers, 260 miles (420 km) east of Moscow. –Editor’s note

dThis remark is ironic. Zhukovsky is a small town located just 22 miles (35 km)
southeast of Moscow. It is known due to the Central Aero-Hydrodynamic Institute
located there. –Editor’s note

eApproximately 60 square feet. –Editor’s note
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wedding: Reveka Boyarskaya — a famous composer of Jewish songs in
the 1930s, her husband — a critic of Jewish Yiddish literature (who
had been just rehabilitated in 1960 after spending years in prison), and
Ovsey Driz — a wonderful Jewish poet, who became our close friend
for many years.

Driz brought with him the score of a brand new song, written by
Reveka Boyarskaya, based on his poems that were dedicated to the
memory of Baby Yar.f Driz sung it. Everyone wept, including the
children, who had not understood a single word but heard the endless
tragedy of the melody. And although this was a wedding, everyone asked
Driz to sing it again, and Bella and I were the first to ask. Bella also
proposed to accompany him on the violin. Following the performance,
everyone kissed her and Driz. This was the first performance of the
marvelous song to the people. How thankful Bella was to Boyarskaya
and Driz for the gift of this song! She was all around Boyarskaya,
touching her, gazing on her as if gazing on a living miracle. For half an
hour she forgot about the wedding and about me, and then later begged
for understanding that she had seen a treasure of the most brilliant
kind in Boyarskaya’s soul and had been unable to tear herself away.
Several years later, when the song became famous worldwide, thanks to
the concerts of the wonderful performer of Jewish folksongs Nechama
Lifshitsaite, Bella found a record in a store with the song (officially, the
song was entitled “Mother’s Song”). She bought two hundred copies of
the record to give to friends.

Love and grandiose creative plans permitted us to easily overcome
the mounting inconveniences of our existence in almost total absence of
money. Bella worked with A.A. Lyapunov on problems of optimization.
Concurrently, she entered graduate school where she continued com-
parative studies of the complexity of various bases of the algebraic logic
functions. I was engaged in biocybernetics at the A.A. Vishnevsky Insti-
tute of Surgery with a wonderful psychiatrist and thinker S.N. Braines.

We put our project of analyzing Jewish folksongs on the computer

fAlso spelled Babiy Yar or Babi Yar. A large ravine on the northern edge of the
city of Kiev in Ukraine, the site of a mass grave of at least 100000 Jews, whom Nazi
German SS squads murdered in 1941. –Editor’s note
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to the side, since Bella had to also continue her vocal studies at the
Gnesinykh Musical Institute, where she had already completed her first
year. But, she did not study there much the second year. In January
1962, she became engrossed in a totally different idea, which caused
her to sacrifice her studies at the Gnesinykh Institute. Just next to
our house, a school for adults was opened on the Preobrazhenka and
all the neighbors and teachers asked her to help get it started, since
they had no math teacher. Beginning with the first classes, Bella was
quite taken by the possibility and idea of teaching mathematics. Prior
to that, I had not heard from her or from any of her friends about her
love of teaching. I am almost certain that getting so seriously involved
was unexpected for her, too. Soon, teaching at the school for working
youth (as all evening schools were called at the time) came to occupy
the main role in the discussions between Bella and myself. Most of
her students were workers ranging from 25 to 40 years of age. She
explained to me that the key difficulty with teaching such students was
that they could not and did not want to do homework. For this reason,
all curriculum had to be covered in class. She came up with the idea of
grouping students into bunches of two–three people according to their
relative knowledge and preparing specially designed exercises for each
group. Six to eight such groups were formed. She found time to solve
all the problems with each group. Towards the end of each lesson, all
the exercises were solved in each group. Knowing that the majority
of the students would not do home assignments, Bella still gave out
homework, although these problems were very similar to those solved
by the students in the previous class. Sometimes, she hit the target
straight on as some students did do their homework. Such cases she
viewed as great achievements, something that made it all worth the
while to prepare homework assignments.

Her preparation at home for teaching was enormous. But, while
knowing how quickly she could do everything, I could not understand
how she managed to work in class with six to eight groups of students
all at once. Only after some two to three months did she show me her
“secrets.” It turned out that she did not just simply invent the exercises.
She also provided each problem visually in the form of a “hint.” Bella
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loved to share her impressions of her students. She spoke of many as
talented, but who had been tired by life. Quite often she noted that
if these students had had the opportunity to study in childhood, they
would have been able to organize their lives quite differently.

During February and March 1962, when we were expecting a baby,
Bella, continuing to teach her adults, began to discuss the problem of
“how to properly teach mathematics to the very young.” And, with time,
when our daughter was born, this question became the chief question
for Bella. We moved many times, and in every part of Moscow where
we lived, she was able to convince the school principals that it was
imperative to organize an additional class in mathematics for the 1st–
2nd graders. She called this class “Mathematics for the Curious.”

The class was taught regularly, twice a week, with homework. This
was not at all a little math club for resolving brain–rattling problems
and puzzles, although she did utilize in her lessons games found in books,
or of her own invention. This was a totally new program in the making.

Her friend, Olga Belyanina, who had married a Frenchman, signed
her up for a subscription to a monthly magazine dealing with the issue
of teaching children five to eight years of age. We bought books on
mathematical games. Bella believed that physical manipulation which
leads to solutions of logical and set-theoretical problems is a great mech-
anism for remembering emotional and spatial elements which acquaint
small children with abstract constructs. Therefore, she included motion
exercises in her lessons. Quite often, the space where she conducted
her classes tuned into a field for games as children solved mathematical
problems by moving from place to place.

Bella discussed with the editors of the journal that Olga had sub-
scribed to for her, her ideas on the role of game manipulation in teaching
children abstract concepts. In preparing her teaching programs, she con-
sulted with A.N. Kolmogorov, A.A. Markov, S.P. Novikov,g with a few
well-known French mathematicians, and her previous classmates who
had become teachers.

The most important thing I remembered was the special attention
she gave to the development of children’s abstract thinking in connec-

gRussian mathematicians of the world caliber. –Editor’s note
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tion with binary relations and their properties. She familiarized children
with the basics of set theory and described relations as graphs. She or-
ganized the lessons so that each mathematical construction was first
introduced in a “wrapper” made of surrounding objects and their inter-
connections. For instance, each child had to indicate who, among those
present, had been at his or her birthday celebration. As a result, a graph
of preferences emerged, and based on this graph it was determined that
the class had two leaders and that there were two girls and one boy who
were practically never invited to birthdays, while at the same time, they
had invited many to theirs. Bella explained to the children that next
time they should not forget to invite specifically those three children to
their birthdays.

Afterwards, she proposed to resolve another problem: “Let us find
all the children who were invited by both leaders. Then, let us note
those who were also invited by the three ‘forgotten’ children. The noted
children comprise a certain part of the graph. It includes ... (calls out
children’s names). A part of the graph is also a graph. To underscore
that this graph is part of a larger graph, it is called a subgraph of the
larger graph. It should be noted, that this subgraph contains many
arrows inside and many arrows coming from the parent (large) graph,
which do not belong to the subgraph. On the other hand, the number
of arrows that originate in the subgraph and go into the large graph
is small. Count the number of arrows lying inside the subgraph, those
that come in the subgraph, and those that leave it.”

The concept of the subgraph and arrows that enter the subgraph was
first presented in a blackboard picture of the graph. This picture she
made herself, asking for assistance from the students. Immediately after
such a concrete conceptualization, Bella taught more exact notions such
as subsets dual to a given subset, oriented cycles in the graphs, etc. She
possessed an amazing ability to bring a child into the sphere of complex
formal relations through concrete “living” situations, and then abstract
from such situations general formal properties. I could not believe that
children five to eight years old could understand and remember these
abstract concepts. I especially could not understand how lessons that
addressed and elucidated these concepts could be interesting to such
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small children. To show me how all this worked, Bella invited me to
her classes several times. All the children worked hard, with interest,
as if nothing were more fascinating. These were the most ordinary of
children. Every 10 minutes, Bella called for a 5-minute break, so that
the lesson took 30 minutes of the 45-minute class. Furthermore, Bella
divided the class of approximately twenty pupils into three groups: two
small groups consisting of five children each, and one large one com-
prised of ten. She permitted one of the small groups to play games
while the children in the second small group acted as her assistants.
Along with her, they drew pictures, counted, drilled the basics, and
learned to recognize their correct solutions in various situations. The
main secret was that these children–helpers, together with Bella, taught
the pupils in the larger group. Being the teacher’s assistants was held
in great esteem, but the helpers did not receive any points for correct
answers or actions. Points were given only to the children of the large
group. Bella re-configured the groups after each break and by trans-
ferring functions from one group to another and by controlling who, in
each group, performed various tasks during the lesson, she made sure
that, on average, each child participated uniformly. Perhaps this is not
particularly well stated, but I perceived these lessons of hers as a well-
directed play, performed at a good tempo to the great pleasure of the
actors (children).

In addition to teaching at school, Bella was preparing a project on
the larger program of teaching mathematics to groups of older kinder-
gartners, since our daughter was still attending kindergarten. Unfortu-
nately, Bella had no opportunity to test this program in actual lessons.
These materials were lost. I am sure that today they would be in de-
mand, especially her wonderful collection of exercises and games for
the very young. They were constructed differently than those for the
schoolchildren, although they were also directed to the comprehension
of basic concepts of set theory, the main operations with sets, and binary
relations.

While she was providing regular lessons in mathematical logic and
pedagogy of mathematics for the young, Bella held positions at various
technical research institutes, the last of which was the institute asso-
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ciated with the Frunze Machine-Building Factory. Bella made a living
only from this applied work. Although sometimes she was able to find
an interesting combinatorial problem even in this job, for the most part
she was involved in programming and numeric computations. Bella did
not like this engineering work, but performed it very carefully. She was
most disturbed when she had to write work plans, which were already
known to be impossible to fulfill by the designated time.

Our daughter Masha studied in a wonderful mathematics–oriented
school, the soul of which was Boris Geidman, the renowned, in my opin-
ion, teacher of mathematics. Bella, by want and not, came to be caught
up in the affairs of this school. Above all, she became actively involved
with the issue of where the children graduating from this school would
go to pursue further study. Given that the majority of the kids were
Jewish, with known limitations on entering an educational establish-
ment of higher learning, this was a real problem.

Once (I do not recall now when it was) Bella approached me and of-
fered the following: she would fully resign from her engineering job and
would not receive her salary. Instead, she would teach children who had
finished school, to prepare for the mathematics entrance exams to edu-
cational establishments of higher learning, especially to the Mekh-Mat
(Department of Mechanics and Mathematics) at Moscow University. In
addition, she decided to organize a public control over the procedure
for entrance of Jewish children to Mekh-Mat. She also took it upon
herself to help those who had “flunked” to put together petitions for
reconsideration. But, most importantly, she came up with the idea that
those who were denied entry to Mekh-Mat she would put through her
own high-quality preparatory program, taught by her at home and/or
at some public organization, disguised as a “math circle.” She asked me,
whether I agreed or not, to take on the financing of her and our daugh-
ter on some minimal level, as well as some additional minor expenses
which were necessary for her to institute this program. Specifically,
the latter involved the printing of teaching materials and food for the
children during recess (Bella believed it was imperative for children to
have a snack between classes). Of course, I agreed. Quite quickly, she
found enthusiastic assistants among the students of Moscow University
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and other institutions of higher learning, as well as among teachers and
professors. In this way, “People’s University” began its work at build-
ing # 15/2, apt. 28 on Nametkin Street in Moscow. This activity fully
engaged Bella and she was happy.

Bella took seriously and undertook with great zeal the preparation
of the program that would provide a high-quality education, comparable
to the level of the Mekh-Mat. She tapped into all of her acquaintances
among eminent teachers, to create a program of the highest order and,
at the same time, one that was compressed and realistic — one that
would allow her to realize the program in the home environment and
with a nominal workforce of enthusiasts. And this she was able to
achieve. The University functioned for three years and prepared almost
100 mathematicians.h

But, in the summer of 1982, people from the KGBi asked her to
dissolve it. They arrested V. Senderov, one of the key instructors at the
university, and began to call on Bella as a witness to his case. I saw her
off every time she went to the KGB. During this time we were practically
inseparable. She told me about the conversations on Lubyankaj and
shared her surprise at the fact that she felt no fear, but I was scared
for her. She could easily anger KGB officers, and to make a criminal
out of a witness was a common practice in Soviet Union. I thought she
was out of her mind when she gave them replies such as these: “Do you
truly need my answer to your question?” (to the question of whether
Senderov taught mathematics); “I do not think you are interested in my
children” (to the question regarding what she fed her children); “I do

hAccording to A. Belov-Kanel and A. Reznikov who wrote an introductory article
for the 2005 Almanac of Matematicheskoye Prosveshcheniye the class of 1978 con-
sisted of 14 students, while each of the classes of 1979–81 included over 100 students.
The peak was in 1980 when 120 new students began studies in “People’s University.”
For obvious reasons not all students managed to graduate. Belov-Kanel and Reznikov
estimate that the actual number of graduates was in the ballpark of 100. Twenty of
them became professional mathematicians and physicists at various universities and
research labs all over the world. –Editor’s note

iSoviet Secret Police. –Editor’s note
jLubyanka Square in Moscow is the site of the KGB headquarters. In Soviet times

it was called Dzerzhinsky Square; Lubyanka became a euphemism for KGB. –Editor’s
note
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not know why you are forcing me, for the fourth time, to acknowledge
that I do have propiska on Nametkin Street.”k

I had only two pieces of advice for her, which I repeated without
end: not to go there if at all possible (if they were calling her by tele-
phone) and to simply be silent, without remarks, when the questions
were derisive. Bella did not agree. She viewed her answers as a means
of retaining her composure and not saying anything unnecessary.

The collapse of the university did not break her. She began to
compose songs to Berns’ and Driz’s poems; she compiled a plan for the
composition of music to the large cycle of poems by Lorka. Her friends
organized a small concert where they sang her songs. Bella managed to
develop a program for the comparative study of infinite-basis algebraic
logic, and also obtained the first results in this new direction of her
mathematical explorations. It is difficult for me to imagine what kind
of a new life Bella would have made for herself, but it is easy to imagine
how happy she would have been with her grandson who is growing now
in our daughter’s family. She would have been just bursting with joy and
would have found free time to play with him, despite being preoccupied
by a thousand interesting things.

Bella’s life ended suddenly and tragically on October 24, 1982. She
was 44. Her motivation to live with a purpose did not come from great
“lovers of humanity.” It lived in her from birth. Her piercing desire to
be useful was felt, it seems to me, by everyone who met her at least
several times. I think that those several hundred people who knew her
through the “People’s University,” or others who met her before then
(for instance, during her student years), can recall that unique feeling
for life with which Bella Abramovna Subbotovskaya inspired us all.

I was a witness to the way she designed her teaching of mathematics
in the evening school for working youth; how she also accomplished
this task with 1st- and 2nd-grade schoolchildren; and, finally, how she
developed and realized the program of teaching an entire complex of
courses in mathematics at the university level. In all three of these

kIn Russian, propiska, a kind of a residence permit which, in effect, eliminated
the freedom of movement inside the country. It was impossible for a non-Muscovite
to settle in Moscow since the residence permit was never granted. –Editor’s note
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directions, she found novel opportunities in her preparations. They were
put through her vision of mathematics and her amazing commitment
to this discipline. She was absorbed by this work and very generously
gave it her life.
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Do you want to get acquainted with captivating and
challenging math problems created by Soviet mathematicians which
can be solved by means of elementary mathematics
(i.e. "mathematics before calculus")?

Do you want to find out whether you'd be admitted as a
freshman to the Department of Mathematics of Moscow University?

Do you want to learn of a bizarre page in the history of the
exact sciences -- the use of mathematics as a weapon of ideological
control of the educational process in the USSR?

If the answer to any of the above questions is yes, this is the
book for you. Two essays written by the Canadian mathematician
Ilan Vardi constitute its core. The first essay presents a thorough
analysis of contrived problems suggested to "undesirable"
applicants to the Department of Mathematics of Moscow University.
His second essay gives an in-depth discussion of solutions to the
Year 2000 International Mathematical Olympiad, with emphasis on
the comparison of the olympiad problems to those given at the
Moscow University entrance examinations.

The second part of the book provides a historical background
around a unique phenomenon in mathematics, which flourished in
the 1970s and 80s in the USSR. Specially designed math problems
were used not to test students' ingenuity and creativity but, rather,
as "killer problems," to deny access to higher education to
"undesirable" applicants. The focus of this part is the 1980 essay
Intellectual Genocide written by B. Kanevsky and V. Senderov. It is
being published for the first time.
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