We investigated how dwell fatigue loading accelerates the crack propagation in bi-modal Ti–6Al–4V alloy. A fatigue test was programmed to include displacement holding for only one cycle at several ΔK. We found (1) crack tip strain evolved during the displacement holding, (2) the displacement holding increased fatigue striation spacing, and (3) the strain increment during the displacement holding was linearly correlated with spacing of the displacement-holding-extended striations. These facts indicate that the dwell loading assisted crack opening, which accelerated the crack propagation. Other analyses results and discussion are also presented, in terms of crack propagation mode, crack closure, and dislocation structure.
Best Paper Award 2023
In the field of metals, especially in magnesium alloys, a new concept has been reported that introducing a kink by applying compression or other deformation to a material with an LPSO structure, in which hard and soft layers are alternately stacked, results in higher strength. Because crystalline polymers are alternately layered with a crystalline phase, the hard layer, and an amorphous phase, the soft layer, it is expected that crystalline polymers can be made stronger if kinks can be introduced by applying compression or other deformation. In this study, the effects of a high-pressure press on the tensile properties and morphology of polypropylene (PP) were investigated. We found that a high-pressure press reduced the strain at break but increased the tensile modulus and the stress at break in the stress–strain curves. Thus, we succeeded in developing high-strength PP using a high-pressure press. In addition, it is found that the tensile properties were isotropic with no directional dependence after press. This implies that the tensile strength can be increased isotropically. Observing the morphology parallel to the press direction by small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS), it was found that the crystal lamellae spread isotropically. Conversely, observation of the morphology perpendicular to the press direction by optical microscopy (OM) and transmission electron microscopy (TEM) revealed the formation of a shear band where deformation was concentrated owing to pressure. In the shear band, it was found that lamella fragmentation occurred and a kinked structure was formed. In this region, the molecular chains may be constrained by pressure, and become a tension state, which leads to the improvement of the mechanical properties.
Young Author Best Paper Award 2024
High-strength dilute Mg–Y–Zn alloys with cluster-arranged layer/nanoplate (CAL/CANaP) precipitates were developed via combined processes of low-cooling-rate solidification and extrusion techniques. The effects of CANaP morphology and deformation kink bands installation on the tensile properties of the extruded Mg–Y–Zn alloys were investigated. A slow-cooling solidification process with a cooling rate range of 0.1–0.01 K·s−1 produces a CAL-aggregated region in the α-Mg matrix. The CAL-aggregated region comprises long-period stacking ordered (LPSO) nanoplates with an intergrowth structure and the solo-CAL precipitates. The area fraction of the CAL-aggregated region increased with decreasing cooling rate. The microstructure of the extruded Mg99.2Y0.6Zn0.2 alloys prepared from low cooling rate-solidified ingots consisted of three characteristic regions: (i) dynamically recrystallized (DRXed) fine α-Mg grains, (ii) worked coarse α-Mg grains with a CAL-aggregated region, and (iii) worked blocky LPSO grains. The strength and ductility of the extruded Mg–Y–Zn alloys may be controlled by the volume fractions of the worked and DRXed grains, respectively. It is desirable to control the CANaP thickness and spacing to ∼1 µm and ∼0.8 µm or more, respectively, to promote DRX. Conversely, it is necessary to control the CANaP thickness and spacing to ∼1 µm and ∼0.8 µm or less, respectively, to form the worked grains in which kink bands are introduced.
Young Author Best Paper Award 2024
To ascertain the effect of solution pH of Na2MoO4 chemical conversion treatment for aluminum/steel joints on corrosion resistance, AA5083 aluminum alloy and AISI 1045 carbon steel were immersed in 50 mM Na2MoO4 at pH ranges of 8–12 under galvanically coupled condition. Subsequently, in diluted synthetic seawater, the galvanic corrosion resistance of the AA5083 alloy connected to the AISI 1045 carbon steel was assessed. The number of localized corrosion damages was counted, and AA5083 treated at pH 11 was found to be the better corrosion resistance. The oxygen reduction current on bulk Al6(Fe, Mn) decreased with increasing solution pH of the conversion treatment. The Al6(Fe, Mn) particles on AA5083 were not preferential cathodes, and alkalization through oxygen reduction would not occur when the treatment was performed above pH 9. Auger electron spectroscopy analysis showed that Mo-accumulation, Fe-removal, and film thickening occurred on the particles of AA5083 treated at pH 11. These factors contributed to the suppression of the cathodic activity of the Al6(Fe, Mn) particles, resulting in the improved galvanic corrosion resistance of AA5083.
Young Author Best Paper Award 2024
CeNF/Al-based composites were prepared using CeNFs collected by a non-woven aluminum filter, followed by hot extrusion to obtain plates. Gel-like CeNFs were collected by an aluminum non-woven filter and compacted by a warm press to obtain a compressed form with a lighter specific density than pure aluminum. The compressed forms were hot extruded to fabricate bars and plates. Both bars and plates were observed in the macro-and microstructural morphology and XRD measurements. They were not significantly carbonized to graphite only, which was inferred to be present as CeNF under the present experimental conditions. Microstructural observations show that CeNFs are aggregated and present in the pores/cracks between the Al filters in the compressed forms. Al filters and CeNF aggregates were more finely mixed when the material was fabricated into hot extruded plates with a higher extrusion ratio. The maximum tensile strength of the CeNF/Al composite extruded plate was about 1.5 times higher than pure aluminum. In addition, the extruded plates could be cold-rolled by about 30%, and the maximum tensile strength of the extruded sheets was found to be about twice that of pure aluminum.
Best Paper Award 2023
We investigated how dwell fatigue loading accelerates the crack propagation in bi-modal Ti–6Al–4V alloy. A fatigue test was programmed to include displacement holding for only one cycle at several ΔK. We found (1) crack tip strain evolved during the displacement holding, (2) the displacement holding increased fatigue striation spacing, and (3) the strain increment during the displacement holding was linearly correlated with spacing of the displacement-holding-extended striations. These facts indicate that the dwell loading assisted crack opening, which accelerated the crack propagation. Other analyses results and discussion are also presented, in terms of crack propagation mode, crack closure, and dislocation structure.
Best Paper Award 2023
In the field of metals, especially in magnesium alloys, a new concept has been reported that introducing a kink by applying compression or other deformation to a material with an LPSO structure, in which hard and soft layers are alternately stacked, results in higher strength. Because crystalline polymers are alternately layered with a crystalline phase, the hard layer, and an amorphous phase, the soft layer, it is expected that crystalline polymers can be made stronger if kinks can be introduced by applying compression or other deformation. In this study, the effects of a high-pressure press on the tensile properties and morphology of polypropylene (PP) were investigated. We found that a high-pressure press reduced the strain at break but increased the tensile modulus and the stress at break in the stress–strain curves. Thus, we succeeded in developing high-strength PP using a high-pressure press. In addition, it is found that the tensile properties were isotropic with no directional dependence after press. This implies that the tensile strength can be increased isotropically. Observing the morphology parallel to the press direction by small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS), it was found that the crystal lamellae spread isotropically. Conversely, observation of the morphology perpendicular to the press direction by optical microscopy (OM) and transmission electron microscopy (TEM) revealed the formation of a shear band where deformation was concentrated owing to pressure. In the shear band, it was found that lamella fragmentation occurred and a kinked structure was formed. In this region, the molecular chains may be constrained by pressure, and become a tension state, which leads to the improvement of the mechanical properties.
Young Author Best Paper Award 2024
Present State of Wood Waste Recycling and a New Process for Converting Wood Waste into Reusable Wood Materials
Released on J-STAGE: September 06, 2005 | Volume 43 Issue 3 Pages 332-339
Yasushi Hiramatsu, Yuko Tsunetsugu, Masahiko Karube, Mario Tonosaki, Tsuyoshi Fujii
Views: 938
Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element
Released on J-STAGE: January 14, 2006 | Volume 46 Issue 12 Pages 2817-2829
Akira Takeuchi, Akihisa Inoue
Views: 503
Hall–Petch Relationship and Dislocation Model for Deformation of Ultrafine-Grained and Nanocrystalline Metals
Released on J-STAGE: December 25, 2013 | Volume 55 Issue 1 Pages 19-24
Masaharu Kato
Views: 235