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Eingrenzung

Zur Berechnung der Bewegung eines Fluggerits, das durch die mechanischen Eigenschaften Masse, Trag-
heitstensor und duflere Gestalt (=Konfiguration) charakterisiert ist, dient die Flugdynamik; diese baut auf
den Ergebnissen der instationdren Stromungsmechanik auf, die die von der Umstromung hervorgerufenen
Luftkréfte und Momente auf das Gerét berechnet.

Da die Gerétegeometrie i.a. nicht starr ist, bilden Strémungsmechanik und Flugdynamik ein gekoppeltes
System in den vier unabhiingigen Variablen z,y, z,t, das (theoretisch:) simultan bzw. (approximativ:)
iterativ zu losen ist — ein mathematisch und numerisch ungemein anspruchsvolles Verfahren — s. z.B.
Wagner[13].

Bei geringeren Anspriichen an Tiefe der Einsicht in die Physik und zahlenmiBige Ubereinstimmung mit
dem Experiment ist aber auch schon der erste Schritt einer solchen Iteration sinnvoll: die Berechnung der
Kréfte und Momente auf eine fest vorgegebene Konfiguration mittels der inkompressiblen und damit eo
ipso stationdren Aerodynamik; dafiir sind dann auch drastisch einfachere Strémungsmodelle und Rechen-
verfahren vertretbar: an die Stelle gekoppelter Hochstleistungsrechner tritt der einfache Biirocomputer.

Aufbau

Diese Arbeit befafit sich mit einem solchen Rechenverfahren. Sie ist folgerdermaflen gegliedert:

Das Berechnungsverfahren bestimmt zunéchst die Anstromung des Rotors aus dem Minus-Unendlichen
mittels einer im wesentlichen eindimensionalen Betrachtung, der sog. Strahltheorie (fiir die eine plausible
Erweiterung vorgeschlagen wird) und,
darauf aufbauend, die Krifte auf einen Profilschnitt (unter der Annahme einer zweidimensionalen Stro-
mung) und deren Integration iiber die Blattlinge mittels der sog. Blattelementtheorie.

Daran schlielen sich analytische Untersuchungen von Genauigkeitsfragen, der Darstellung von Kenn-
groflen und dem Verhalten eines Einzelblatts im allgemeinen Flugzustand an.

Die Anwendung auf Rotorsysteme befafit sich mit der Berechnung der Kréfte und Momente auf Sys-
teme von mehreren Rotoren (fast jeder Hubschrauber besitzt zwei Rotoren, auch der sog. Normal-
hubschrauber mit Haupt- und Heckrotor), denn ein solches mehrrotoriges System zeigt aufler seiner
Hauptaufgabe, Auf- und Vortrieb zu erzeugen, noch z.T. génzlich unerwartete Nebenwirkungen. Dies
wird an mehreren Beispielen gezeigt, hauptsichlich durch Diagramme der Steuer- und Stér-Momente.

Formelzeichen
0T, Y, 2 Luftdichte; Vorwérts-, Backbord-(=nach links gerichtete), Aufwirts-Koordinate
T, Polarkoordinaten: Radius, Azimut (Umfangswinkel; ¢ = 0 auf —y-Achse)
oB,J, A Massenbelegung des Blattes, Trégheitsmoment, Lock-Zahl
R, Fr,QR Rotorhalbmesser, (gesamte) Rotorfliche, Blattspitzengeschwindigkeit
n,T,A, D,ca,cp Blattanzahl, Profiltiefe, Auftrieb, Widerstand, Koeffzienten
v Kippwinkel der Rotorebene im Vorwértsflug (positiv nach vorn)
K Schlagwinkel eines Blattes aus der Rotorebene (positiv nach oben)
X, X Abweichung der Strahlrichtung von der z- bzw. Rotorachse
Uw Vorwirts-, Aufwirts-Geschwindigkeit des Geréts
Wi, Wi3 induzierte Geschwindigkeit in der Rotorebene bzw. weit stromab

wyEw; + W), wr  Geschwindigkeit senkrecht bzw. tangential zur Rotorebene
ws(=wss + W), us  Betrag bzw. x-Komponente der Strahlgeschwindigkeit weit stromab

Normierungsfragen

In dimensionierten Gleichungen werden alle vorkommenden Gréflen, auch ca und c¢p, mit einer Tilde ™

gekennzeichnet; in dimensionslosen sind sie mit Normierungsgrofen dividiert. Diese sind

o fiir Langen: der Rotorradius R [m]

o fiir Krifte: das (Gesamt-)Gewicht des Gerits G [N bzw. kgm/s?]

o fiir Geschwindigkeiten: die in der Rotorebene induzierte Geschwindigkeit im Schwebezustand
Wio(U=W=0) [m/s] —s. hierzu Abschn.1.2.1 !

o die normierte Blattspitzengeschwindigkeit QR /w;o bezeichnen wir mit Q

o die Zeit ist keine Variable der stationdren Stréomungsmechanik. Sie tritt nur im Abschn.2.4 auf.

o ¢4 und ¢p sind zwar dimensionslos; wir ”normieren” sie trotzdem, und zwar mit 27, dem theoretischen
Wert von dca/da fiir die angestellte ebene Platte. N.B.: déa/da =: ¢, wird iiblicherweise auf Winkel-
grade bezogen; in mathematischen Ausdriicken ist es daher auf das Bogenmafl umzurechnen!
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1 Das Berechnungsverfahren

1.1 Kriafte und Momente

Die von einem einzelnen Rotor auf ein Fluggerit ausgeiibten Kriifte und Momente sind

e die im Schwerpunkt des Gerits senkrecht nach unten wirkende Gewichtskraft G,

e die von den umlaufenden Bléttern erzeugte Luftkraft L,

e ein Drehmoment M , das als Riickwirkung des Rotors auf das Gerit infolge des Luftwider-
stands der Blétter entsteht, und auflerdem

e der auf den Rumpf wirkende Luftwiderstand.

Alle diese Elemente sind Vektoren, die man anschaulich durch einen Pfeil entsprechender Linge
und Richtung darstellt; Kréafte wirken in Richtung des Vektorpfeils, und fiir Momente gilt die sog.
Korkenzieher-Regel: blickt man in Richtung des Vektorpfeils, so erfolgt die Drehung ”rechtsherum”.
AuBlerdem ist zu beachten:

e ein Kraftvektor K ist an seine Wirkungslinie gebunden (er ist nicht ”frei”, sondern nur
”linienfliichtig”); beim Seitwartsverschieben um einen Streckenvektor a@ entsteht ein zusétz-
liches Moment von der Grofie M = K x @. Dieser Umstand ist wichtig, da wir die Kréfte
am Rotorkopf berechnen werden, wéhrend sie letztlich als im Gerédteschwerpunkt angreifend
gefragt sind.

e Momentvektoren dagegen sind ”frei” und konnen beliebig parallel verschoben werden.

Wir beschreiben die auftretenden Krifte und Momente in einem geridtegebundenen Koordinaten-

Z,N system aus Langs-, Quer- und Hochachse; die Komponenten sind:

Hach 4 achze L* Vortriebskraft, M?* Rollmoment

T Bieren LY  Querkraft, MY  Nickmoment

s L#  Auftrieb, M?  Giermoment,

] Buer- K,U jeweils positiv in Richtung der zugehorigen Achse.

ach?é‘ o -7 Laengs- Die Vertikalgeschwindigkeit W des Geréts ist positiv in Richtung
C Q achze der z-Achse, die Horizontalgeschwindigkeit U zeigt in Richtung der
Nicken Rollen x-Achse. Eine Quergeschwindigkeit betrachten wir generell nicht.

Wenn das Gerét ohne jede Beschleunigung steigen, schweben oder sinken soll, mufl die Summe
aller (im Schwerpunkt wirkenden) Kriifte und Momente null sein:
1) L* =G  d.h. der Auftrieb mufl das Gewicht tragen (”Gleichgewichtsbedingung”);
2)L* =LY =M*=MY=0 dh. die Horizontalkriifte und -momente miissen verschwinden;
3) M* =0 d.h. das stets vorhandene (aus dem Luftwiderstand der Blétter resultierende)
Riickwirkungs-(Gier)moment MGier des Rotorsystems — also aller Rotoren — muf durch ein
gleichgrofles, entgegengerichtetes Moment kompensiert werden.

Beim Normal-Hubschrauber mit einem Hauptrotor setzt man fiir die Erfiillung der Bed.3) einen
Heckrotor ein, der allerdings einen Teil der zur Verfiigung stehenden Antriebsleistung verbraucht.

Eine andere, im energetischen Sinn effektivere Moglichkeit ist die Verwendung von zwei baugleichen,
aber gegensinnig drehenden Rotoren; sie erzeugen bei gleichem Blatt-Anstellwinkel die beiden
gleichgroBen und gleichgerichteten Teil-Luftkrifte L = L = G/2 und die beiden gleichgrofien,
aber wegen des unterschiedlichen Drehsinns einander entgegengesetzt gerichteten Teil-Momente
MF und M5 = —MZ, es ist also, wie gefordert, M* = M7 + M5 = 0.

Da Momente frei verschieblich sind, sind auf dieser Grundidee verschiedene Bauarten moglich, z.B.:

e beim Koaxial-Rotor befinden sich die Rotoren iibereinander mit gemeinsamer Drehachse,

e beim Tandem sind die Rotoren an Bug und Heck angeordnet mit einem Rotorkopf-
Abstand Z; fiir Z < 2R sind die Rotoren hohengestaffelt,

e beim Flettner-Typ haben die beiden Rotorkopfe einen Abstand Z < R quer zur Lings-
achse; um ein beriihrungsfreies Ineinanderkédmmen (”Intermeshing”) zu erméglichen, sind
sie nach rechts bzw. links auflen um den Winkel S schriag gestellt und iiber ein Getriebe
zwangssynchronisiert.

Man sieht sofort, dafl bei allen diesen Bauarten die Schwebebedingungen erfiillbar sind.
Zu beachten sind dabei allerdings zwei Aussagen, die aus der oben angegebenen Formel fiir das
Verschieben von Kriiften hervorgehen:

(A) Liegen die Achsen zweier gegensinnig drehender Rotoren zwar in einer Ebene, sind aber nicht
parallel, so tritt ein zusédtzliches Moment auf.



(B) Sind die Achsen zweier beliebig drehender Rotoren zueinander windschief, so treten eine zusétz-
liche Kraft und ein zusétzliches Moment auf.

Krifte und Momente dieser Entstehungsart sind gewissermaflen ” Geburtsfehler”; man nennt sie
inhdrent.

Ein Beispiel fiir (A), bei dem diese Nebenwirkung im Flug besonders drastisch in Erscheinung tritt,
ist der schon oben erwéihnte Flettner-Typ:
infolge der Schrigstellung der Rotorachsen (s. die Skizze) hat man
vertikal:  L? = Lycos B, L = L%, M7 = Mycosf3, Mi=—M;?
horizontal: LY = |L|sin 8, LY = —LY, MY = |M;|sin 8, MY = MY
Das bedeutet:
e die LY— und M?*—Komponenten heben sich, wie gewiinscht, gegenseitig auf;
. e die M¥—Komponenten dagegen addieren sich zum
L. inhdrenten Nickmoment M} = Minjcr = —2M sinf !

X >

Wie man sofort sieht, gibt es hier zwei Moglichkeiten

"Brust—
a) Rotor 1 dreht im Uhrzeiger, R2 im Gegen- é schuinmer”
zeiger: dieser Typ, dem wir die anschauliche
Bezeichnung ” Brustschwimmer” geben, "Ruecken-
erzeugt wegen M, ik < 0 ein Auf-Nickmoment, schuimmer”
b) das Gegenteil: der ”Riickenschwimmer”-Typ erzeugt wegen M,y > 0 ein Ab-Nickmoment.
N.B.: Das Flugverhalten der beiden Typen ist drastisch unterschiedlich (s. Wieland[14]).

nose
doLn

Als Beispiel fiir die Aussage (B) s. z.B. die Analyse des Normalhubschraubers im Abschn.3.

Die Strahltheorie: Allgemeines

Die stromungsmechanischen Grundlagen der Strahltheorie sind:
1. die Annahme einer inkompressiblen, reibungsfreien Stromfadenstrémung, mit anderen Worten:
einer Potentialstromung mit dem (Bernoullischen) Gesamtdruck ppeo = %(02 + W?) und
2. die Vorstellung einer ”Wirkscheibe” (WS, ”actuator disk”) anstelle des Rotors,
a) die der durchflieBenden Stromung einen Drucksprung Ap aufprégt, sodafl hinter der WS ein
begrenztes Gebiet (der ”Strahl”) mit dem Gesamtdruck pp = ppoo + Ap definiert ist, und
b) die auflerdem der Grundgeschwindigkeit U+W eine lokal verdnderliche, "induzierte” Zusatzge-
schwindigkeit aufprigt, die in der Ebene der WS senkrecht zu dieser steht und dort den Betrag
w; hat; weit stromab im Strahl hat sie den Betrag w;s.
¢) Infolgedessen ist die Normalkomponente der Stromungsgeschwindigkeit am Ort der WS, @y,
gleich der Normalkomponente von U+W plus der induzierten Geschwindigkeit w;;
sehr weit stromab ist der Strahlgeschwindigkeitsvektor U +V_[7+117¢3 .

1.2 Die Strahltheorie des Vertikalflugs

Man beobachtet am Hubschrauber ganz allgemein drei unterschiedliche Flugzustidnde, die wir im
folgenden getrennt behandeln.

1.2.1 Steigen, Schweben und langsames Sinken

Die Berechnung beruht auf den Erhaltungsséiitzen fiir Masse, Impuls und Energie:
1. Die Kontinuitétsgleichung sagt aus: durch die WS und weiter durch den Strahl fliefit

die Masse pro Zeiteinheit m = oFrioy = oF3wW3 = const . (1.2:1)
2. Der einstrémende Impuls plus dem erforderlichen Rotorschub (hier: dem Gewicht G)
ist gleich dem ausstrémenden Impuls: mW + G = mas bzw. G = m(ws — W) (1.2:2)

3. Die einstromende Energie plus der am Rotor wirkenden Leistung ist gleich der ausstromenden
Energie:  2W?+ Gy = 203 bzw. Gy = 2 (0} — W?) = 2 (b3 — W)(ws + W) (1.2:3)
4. (1.2:3)+(1.2:2) liefert Wy = 3 (w3 + W)
bzw. mit Wy = @; + W : Wiz = 2, (1.2:4)
das heift: die induzierte Zusatzgeschwindigkeit im Strahl erreicht weit stromab den doppelten
Wert der induzierten Geschwindigkeit in der WS-Ebene.



5. Damit wird (1.2:2) G = 2m; bzw. mit 7 aus (1.2:1) : 29% = w7 + Wb (1.2:5)

6. Fiir den Sonderfall ”Schweben”, W = 0, schreiben wir umgekehrt w2 = 20Fr/G und definieren
damit eine durch die Geritedaten festgelegte Konstruktionsgrifle: sie ist (bis auf die schwache
Einschréinkung konstanter Luftdichte) der Quadratwurzel des Kehrwerts der Flichenbelastung
proportional, und daher wie diese eine Fundamentalgriffie der Aerodynamik. Sie hat die Dimensi-
on einer Geschwindigkeit und bietet sich als Normierungsgrofle fiir alle Geschwindigkeiten an;

wir verwenden sie durchgehend. — Typische Zahlenwerte liegen bei w;o = 4m/s.

N.B.: Wir befinden uns hier in bewufStem Gegensatz zum tblichen Vorgehen, die Blattspitzen-
geschwindigkeit QR als Normierungsgrofie zu verwenden. Da ) nur im unbeschleunigten Nor-
malflug ohne Steuer- und/oder Regelungseingriff konstant sein kann, ist QR keine (konstante)
Konstruktions-, sondern nur eine Betriebskenngrife, deren Nichtkonstanz sich z. B. im Ubergangs-
bereich der Autorotation und des "flares” beim Landen bemerkbar macht.

7. Wir schreiben also die Gleichung (1.2:5) in dimensionsloser Form: 1=w? +w;W

mit der Losung wi:f%Jr\/(%)QJrl bzw. wy = %+\/(%)2+1 . (1.2:6)

Diese Formel gilt nicht nur fiir W > 0, sondern in ertréglicher Ndherung als ”langsames Sinken”
auch noch fiir moderat negative Werte von W, etwa bis W ~ —0.5.

1.2.2 Schnelles Sinken

Unter schnellem Sinken verstehen wir den Fall, dafl aufler W < 0 auch wy < 0; es ist also nicht nur
die Anstromung von unten nach oben gerichtet, sondern es wird auch die Wirkscheibe von unten
nach oben durchstrémt, und der Strahl ist nach oben gerichtet.

Infolgedessen lautet der Impulssatz jetzt mW — G = s ,

und wenn man damit die Rechnung genau wie oben durchfiihrt, so erhilt man

wi= =W /(%) —1 und wy =% /() -1, (1.2:7)

Der Radikand ist negativ fiir |[W| < 2; fiir den Bereich zwischen der oben angegebenen Giiltigkeits-
grenze der Gl1.(2.0) und W < —2 existiert also keine relle Losung.

Dieser mathematische Befund hat sein Gegenstiick im Physikalischen: bei Vertikalgeschwindigkei-
ten W < —0.1 geht die glatte Strahlstromung zuerst iiber in das instabile sog. ”"Wirbelring”-
Stadium und dann, im Bereich wy = 0, in ein ungeordnet turbulentes ” Nachlauf”-Stadium.

Fiir diesen gesamten Bereich existieren nur Niherungslosungen (s. den folgenden Abschnitt), die
sich an den (sehr stark streuenden) experimentellen Befunden orientieren.

1.2.3 Darstellung

Wir stellen die Ergebnisse der beiden vorhergehenden Unterabschnitte in der iiblichen Weise dar:
Das Diagramm zeigt iiber der gegebenen Vertikalgeschwindigkeit W die Verldufe von w; und wy.
Der erfafite Bereich der Vertikalgeschwindigkeit deckt den praktisch vorkommenden sicher ab:
Vertikalgeschwindigkeiten eines Hubschraubers von mehr als +30ms~! diirften kaum auftreten.
Fiir den oben bereits angesprochenen Zwischenbereich
—2 < W < 0 schlagen wir eine Néherungslosung vor:

den zweiten Quadranten einer gescherten, verallgemeiner-
ten Ellipse:

, wi:f%Jr\/W, wN:%Jr\/W (1.2:8)

Mit m = 2 wiirde sich dieser Ausdruck formal eng an die
oben abgeleiteten Funktionen anschlieflen; eine bessere
Ubereinstimmung mit experimentellen Kurven ergibt sich
allerdings mit m > 2; wir wahlen m = 10.

by

Punktiert eingezeichnet ist eine an Messungen angepafite
"best-fit”-Kurve 4.0rdnung [10].

Die vom Rotor aufgenommene Leistungist N = Guny =G (W;+W);  sie setzt sich also zusam-
men aus der erforderlichen Hubleistung G W und der fiir die Induzierung der Zusatzgeschwindigkeit
w; des Strahls notwendigen Schwebeleistung G w; .



Die Leistung wird null, wenn wy = 0. Dieser Fall entspricht dem antriebslosen Gleitflug des Starr-
fliiglers (Segelflugzeug) beim optimalen Gleitwinkel; er wird als (ideale) ” Autorotation” bezeichnet.
Fiir wy < 0 nimmt der Rotor wie eine Turbine aus der Stromung Leistung auf, er fahrt im sog.
”Windmiihlenstadium”. Diese Leistung muf} irgendwie abgefiihrt werden (z.B. durch die Motor-
bremse), da sie sonst zu einer Abwirtsbeschleunigung fiihrt. Das Windmiihlenstadium entspricht
also dem Sturzflug des Starrfliiglers.

Im Ubergangszustand zwischen Autorotation und Windmiihlenstadium, dem sog. turbulenten
Nachlaufstadium, verhélt sich der nur schwach und ungleichméflig durchstromte Rotor annédhernd
wie ein Sieb mit grolem Widerstandsbeiwert.

1.3 Die Strahltheorie des Schrigflugs

Wir verallgemeinern das Anwendungsgebiet der Strahltheorie durch Hinzunahme einer Horizon-
talgeschwindigkeit U.

Dabei sind zunéchst die physikalischen Folgen der erweiterten Geometrie zu beriicksichtigen: im
Vorwértsflug darf der Widerstand Dp des Rumpfes nicht mehr wie bisher durch ein geringfiigig
erhohtes Gewicht G beriicksichtigt werden, da er nunmehr eine Horizontalkomponente besitzt.
Wir setzen ihn der Einfachheit halber als Funktion des Quadrats der Vorwirtsgeschwindigkeit
an: Dp = fppUZ2G. In den Faktor fpp geht auBer dem Widerstandskoeffizienten cpp, den wir
= 1 setzen, vor allem das Verhiltnis Rotorfliche/Rumpfquerschnitt ein; dieses liegt im Bereich
60...200. In Beispielrechnungen verwenden wir einen typischen mittleren Wert: fpp = 144, sodafl
Dp = (U/12)%G.

Die unmittelbare Folge der Existenz der Horizontalkomponente ist die Notwendigkeit, die Rotor-
ebene um den Kippwinkel v nach vorn zu neigen; dieser ist bestimmt durch

tanv = Dp/G; typischer Wert also v = arctan(&)? .
Mit der Schrigstellung der WS vermindert sich auch die Vertikalkomponente des das Gewicht
tragenden Rotorschubes um den Faktor cosv; an die Stelle von G tritt daher bei der Berechnung
der Wert G' =G/cosv .

NB.: der Akzent ' kennzeichnet auf die schriiggestellte WS bezogene Grofien.

1.3.1 Berechnung

Die fiir die Berechnung wichtige Normalkomponente der Zustrémung zur WS folgt schematisch-
1

geometrisch aus der linken Teilskizze als  wy = w; + W’
(mit W/ =W cosv+ Usinv , U' = U cosv — Wsinv).

Diese Definition fiihrt jedoch zu falschen Ergebnissen,
deren Abweichungen vom Ezperiment mit U zunehmen.

Der Grund hierfiir ist eine sukzessive Verdnderung des Stromungs-

bildes, die wir hier sehr stark vereinfacht beschreiben:

o Fiir U = 0 (rechte Teilskizze) wird die Stromung bestimmt
durch einen kreisrunden Randwirbel-Schlauch.

o Die Randwirbel werden mit zunehmender Horizontal-
geschwindigkeit parallel verschoben: der Wirbelschlauch
wird ”flach gequetscht” (mittlere Teilskizze).

o Im Grenzfall U > (W, w; ...) (linke Teilskizze) degeneriert
er zur flachen Wirbelschicht,

und dies ist das Bild der Wirbelschleppe eines endlichen Tragfiigels!

Ohne auf die Theorie (s. z.B. [1]) einzugehen stellen wir nur fest, daf in diesem Fall der oben in
der rechten Teilskizze dargestellte Ausdruck wy = +/(w; + W)2 +U" gilt.
Dieser Ausdruck geht aber fiir U — 0 in die fiir den Vertikalflug korrekte Formel wy = w; + W
iiber; dem Vorschlag von Glauert|[6] folgend betrachtet man ihn daher auch fiir den Zwischenbereich
als akzeptable Naherungs-Losung — wenn auch ohne jede physikalische Begriindung!




Unter Beriicksichtigung dieser Betrachtungsweise gehen wir nun nach Transformation auf das um
v gekippte Koordinatensystem genauso vor wie im Abschn.1:

o 1. Die Kontinuitétsgleichung sagt aus: durch die Wirkscheibe und weiter durch
B den Strahl flieBt eine Masse 1 = const.
Hier ist die Glauertsche Ndherung einzusetzen, also nicht wie in der Skizze
1 s

H LJN:":M | schwarz gezeichnet: w; + W', sondern (rot): 1y = \/(IDZ +WN24072;

+f " der Vektor wy wird also gewissermaflen in die Normale zur WS herumgeklappt.
vy | Damit ist die durchflieBende Masse in der Rotorebene

. — m = oFRUN (1.3:1)

2. Nach dem Impulssatz ist der ausstromende Impuls gleich der Summe aus dem einstromenden
Impuls und der Kraft auf die WS:
mit @ = w3+ W st (g + W) =W + G~ G = s (1.3:2)
3. Nach dem Energiesatz ist die ausstromende Leistung gleich der Summe aus der einstrémenden
und der Leistung an der WS: (w2 + W'2) = 2’ + G'w' x

~ G (B + W) = Liinas (iz + 2W) (1.3:3)
4. (1.3:2) in (1.3:3) eingesetzt liefert nach vereinfachender Umformung genau wie im Fall des reinen
Vertikalflugs: W;3 = 2W; . (1.3:4)

5. (1.3:4) in (1.3:2) eingesetzt, G’ = 1n(2w; + W') , ergibt, dem Abschn.1.1 Ziff.5 entsprechend

und mit dem dort eingefiihrten w;y dimensionslos gemacht:
1/cosv=wnw; ~ 1/cosv=w;\/(w;+W')2+U" (1.3:5)

6. G1.(1.3:5) ist im Gegensatz zur expliziten Gl.(1.2:6) eine implizite Gleichung 4.Grades fiir w;,
fiir die eine geschlossene formelméifBige Losung nicht bekannt ist. Thre numerische Losung macht
allerdings keine Schwierigkeiten; z.B. erweist sich ein Eingabeln des Residuums als ebenso robust
wie schnell.

7. Nach Losung von (1.3:5) ist mit w; auch w;3 = 2w; bekannt; die daraus folgende Geometrie der
Strahlstromung ist hier skizziert. Man liest folgende Winkel ab:

o fiir die (iiber den ganzen Raum ausgedehnte) Grundstrémung

T f\‘;{\uj\_\ Yo = arctan(W/U)

7O fiir die Anstréomung der Rotorscheibe
rgh\g*é\:;}" Vg = arctan((W' +w;)/U’) —v

o fiir den Strahl am Ende des Ubergangsbereichs von pp, — poo
¥3 = arctan((W' 4+ w;3)/U') — v .
Im Stromab-Unendlichen mufl der Strahl wieder die Richtung
der Grundstréomung ¥y annehmen, d.h. er mufl sich kriimmen.
Da der Enddruck p.o schon am Ende des Ubergangsbereichs er-
reicht ist, bleibt dabei gem#fl der Bernoullischen Gleichung die
Strahlgeschwindigkeit konstant: pgirahic0c = Poc = p3, daraus
folgt |[Wstranico| = v/(wiz +W')2+U? . In der Skizze ist die-
ser Ubergang als roter Kreisbogen angedeutet.

1.3.2 Graphische Darstellungen

iy -tg -y 1. Das Diagramm stellt die Fliche wy = f(W;U) iiber
2] L2 ; der W, U-Ebene perspektivisch dar — die U-Achse ragt nach
4 vorn/rechts aus der Papierebene heraus.
Man sieht, dafl die fiir den Bereich ”Schnelles Sinken” be-
schriebenen Schwierigkeiten infolge der radikalen Anderungen
W des Stromungsbildes mit zunehmender Horizontalgeschwin-
5 digkeit immer geringer werden: der Wirbelschlauch wird mehr
und mehr nach hinten weggeblasen und verliert damit seinen
u Einfluf} auf die Stromung im WS-Bereich.

Der Anwendungsbereich der Glauertschen N#herung ver-
groflert sich dementsprechend bis U ~ —0.75. Fiir W < —0.5

beschranken wir uns auf Berechnungen des Vertikalflugs.




2. Das Diagramm stellt die erforderliche Triebwerksleistung
dar: N =Guw'y = G(; + W)

bzw. dimensionslos: N/(Gﬂ')io) = N=w;,+W.

Auffillig ist die Abnahme von N mit zunehmender Horizon-
talgeschwindigkeit; Ursache ist die Abnahme der induzierten
Geschwindigkeit w; mit zunehmender Horizontalgeschwindig-
keit (s. das vorhergehende Diagramm). Diese Abnahme geht
jedoch mit U — 0o gegen Null, soda$} ab einer gewissen (von
QR abhiingigen) Geschwindigkeit der Einflul von W iiber-
wiegt und N wieder ansteigt.

Das Minimum hat den selbsterklérenden Namen

_q] -2 Upgroc (=BestRateOfClimb).

3. Die beiden folgenden Diagramme stellen Einzelheiten der Strahlgeometrie dar: links den Winkel
der Grundstrémung: ¥y = ¥ , rechts (schwarz) die Abweichungen der Strahlrichtung im Bereich
der Wirkscheibe: 9z —1y und (blau) am Ende des Ubergangsbereichs: 93 —1q.

and #Ha

1 2 3 4 5 =&
Fiir U = O(1) hat also eine gedachte Strahlachse einen erheblichen S-Schlag. Von Interesse sind
daher auch die Knickwinkel y bzw. y/,
um die der Geschwindigkeitsvektor Vg
langs des Strahls von der z-Achse bzw.
von der Normalen zur Rotorebene ab-
weicht (s.a.Abschn.1.4.2, Ziff.2.b);

aus der Skizze liest man ab:

U+ w;siny

W + w; cosv

x' = arctan(U’ Jwy) . (1.3:6)

X = arctan

Der Verlauf von x’ mit einem Maximum um U ~ 2 findet sich auch in der folgenden Ubersichts-

Darstellung wieder, die der Verdeutlichung des Ganzen dienen soll: im Gegensatz zu den Analyse-

Skizzen in den obigen Abschnitten zeigt sie korrekte mafistébliche Geschwindigkeiten und Winkel.

Die Wirkscheibe ist rot markiert; der Kippwinkel v ist so klein (s. die Tabelle), dafl er graphisch

kaum aufscheint.

o Die Grundstrémung hat die Komponenten W = 0 und U = 0.25;0.5; 1; 2; 4; ihr Vektor ist fiir die
Zustromung oben rechts eingezeichnet.

o An die WS angehéngt ist der Vektor Wy,

o daran der Vektor w3, und

o daran der Vektor Wsitreni,oo Nach dem Erreichen des Umgebungsdruckes; er hat die Richtung
der Grundstréomung, aber einen grofleren Betrag.

Diese Darstellung zeigt daher zwar nicht den exakten Verlauf, aber die korrekten Richtungen.

Bemerkung: der Umgebungsdruck po, (und damit die Endgeschwindigkeit ws) wird im Strahl
relativ rasch erreicht; die Lauflingen liegen in der Groflenordnung des Rotordurchmessers.

= 0.25 0.50 1.00 2.00 3.00
ui o= 0,984 0.923 0,724 0.483 0.330
¥oo= 0,02 0.10 0.40 1.59 3.58
4y = e 1.3 38.0 13.5 .2
&y = go7 ~5.0 572 25.5 12,2



1.4 Modellierung der Strahltheorie

Die Strahltheorie ist eine strikt eindimensionale Theorie, d.h. die berechneten Werte werden als
konstant iiber den Querschnitt der Stromrohre angesehen. Das ist nur solange korrekt, wie man
den Rotor als Wirkscheibe definiert: eine ebene Fléiche, bei deren Durchstromung einzig und allein
der statische Druck um einen iiber die gesamte WS gleichen Betrag Ap = const erhoht wird,
wihrend die Geschwindigkeit unversindert bleibt!. Bildlich gesprochen handelt es sich also bei der
Zustromung zur WS um ein Scheiben- oder S-Modell (in der englischsprachigen Literatur steht in
diesem Zusammenhang der Ausdruck linear inflow).

In Wirklichkeit trifft dieses Bild jedoch nicht zu, denn

1. geht die Induktion der Zusatzgeschwindigkeit w; vom Rotorblatt aus und ist daher im dufleren
Blattbereich infolge der dort hoheren Geschwindigkeit deutlich grofler als im inneren: w; nimmt
von innen nach auflen zu, und

2. findet im unmittelbaren Achsbereich infolge der Verbauung durch die Rotorkopfmechanik iiber-
haupt keine aerodynamisch sinnvolle Durchstrémung statt.

Wenn man also die Strahltheorie als Grundlage des Blattelementverfahrens verwenden will (s.
Abschn.2), dann ist es sinnvoll, das Ergebnis des einfachen Wirkscheibenmodells entsprechend zu
interpretieren; d.h man mufl — aufler dem im Abschn.1.4.2 zu behandelnden Einflu} der Horizon-
talgeschwindigkeit U — auch die Abhéngigkeit vom Radius r berticksichtigen.

1.4.1 Vom Scheibenmodell zum Trichtermodell: Vertikalflug
Wir betrachten zuerst den einfachen Fall des Vertikalflugs (U = 0 und wy # f(¢)).

1. Die durch die Strahltheorie berechnete Normalkomponente der Zustromgeschwindigkeit zur Ro-
torebene miissen wir nach dem oben Gesagten als Mittelwert iiber die gesamte Rotorfliche
betrachten, wir versehen sie daher mit einem Uberstrich: @ .

Da wy in der Kontinuitéitsgleichung (1.2:1) zur Geltung kommt, ist fiir den Ansatz wy = f(7)
jede Funktion zuléssig, die der iiberaus schwachen Einschrankung der Integrierbarkeit iiber 7
gentiigt; denkbar ist z.B. eine Blattspitzenkorrektur nach Prandtl.

i
fos] ]

Wir wéihlen jedoch als einfachste nicht-konstante Verteilung die lineare: 1wy = a
Der Erhaltungssatz fiir die Masse lautet: @wy7TR? = fOR a 7dF X 277 ;

die Integration tiber r ergibt m = ngjN2zr“T’" = oWNTT ~ a=3/2,

wir schreiben also Wy (F) = 3wnE  bzw. normiert:  wy(r) = 3wy 7.

Stellt man sich das Ganze rdumlich vor, so tritt an die Stelle der Scheibe wy = Wy = const
iiber der Nullebene (linear inflow) ein Trichter mit der Spitze im Mittelpunkt der Nullebene
und dem Rand in der Hohe %EN dariiber: wir bezeichnen dieses Modell als Trichter- oder
T-Modell; fiir den englischen Sprachbereich bietet sich der Ausdruck conical inflow an.

2. Die Tangentialkomponente der Zustromgeschwindigkeit ist im Vertikalflug einfach:

wr(7) = QR bzw. normiert: wr(r) = Qr.

Mit der Festlegung von wy (r) und wy(r) kann man nun die beiden zentralen Begriffe der Blattele-
menttheorie berechnen: erstens die ” Anstromgeschwindigkeit im Unendlichen”, we, = /w2 + w3,

und zweitens den Zustromwinke dp = arctan Z—’Tv; in Kleinwinkelndherung:  dp = wgig)
Zwar ist also im allgemeinen Jg eine Funktion von r; unsere spezielle Wahl des T-Modells fiihrt
jedoch fiir den Vertikalflug auf 0p = arctan ?—QN ~ ?’;ﬂ—é\f = const! (1.4:1)

Daraus folgt, daf im T-Modell das Rotorblatt im Vertikalflug keine Schrinkung (= Verwindung)
braucht! Bemerkung: im Hubschrauber-Modellbau werden fast ausschliefflich ungeschrinkte Blitter ver-
wendet.

1Die Definition der WS als Rotor mit unendlicher Blattzahl fithrt auf eine erweiterte Strahltheorie, die auch noch
wirbelinduzierte Geschwindigkeiten berticksichtigt.



1.4.2 Schrigflug

Die wichtigste Folge einer Horizontalkomponente der Geschwindigkeit ist, dafy sowohl die Tangenti-
alkomponente wr der Blattanstrémung als auch ihre Normalkomponente wy azimutwinkelabhéngi-
ge Anderungen erfahren; auflerdem ergeben sich zusitzliche Komplikationen durch die Einbezie-
hung des Nickwinkels v und des (erst im Abschn.2.4 einzufithrenden) Kegelwinkels «, der von den
per Elastizitit und/oder Schlaggelenk nach oben ausweichenden Rotorblittern gebildet wird.

1. Die Tangentialkomponente wr hat zunichst, genau wie im Vertikalflug, den immanenten
Anteil Q7 aus der Umfangsgeschwindigkeit des Blattes: s. die nebenstehende Skizze. Dazu treten
jetzt als Folge der in die Rotorkreisebene |2/, y, 2’] fallenden Kom-
ponente U’ = U cosv — W sinv der Gesamtgeschwindigkeit

a) eine einwérts gerichtete Radialkomponente U,=0' cos
(die wir erst in Ziff.2.b bendtigen) sowie

b) eine Normalkomponente U’ sin ), die zu g hinzukommt;
esist also  wr(F,¢) = QF + U'sing = QR L + U’ sinep .
QR ist die Blattspitzengeschwindigkeit, und wir definieren
mit ihr den Vorwértsgeschwindigkeitsparameter

VHeck W' =U'/(QR). (1.4:2)
Damit wird in dimensionierter Form  wr(7,v) = QR (% + sin ”(/}w/),
bzw. normiert: wrp(r, ) = Q(r+singw’)  mit Q= (QR)/by0.

Bemerkung: Wie schon in Abschn.1.2.1 ausgefiihrt ist die Blattspitzengeschwindig-
keit QR keine Konstruktionskenngrofie wie w;o, sondern eine (drehzahlabhéngige !)
Betriebskenngrofle. Typische Zahlenwerte liegen bei Q2 = 20...25.

Die Zusatzkomponente w’ sin ) bewirkt, daf} fiir 7 < ¢ < 27, also auf der Seite des riicklaufenden
Blattes, ein Gebiet existiert, in dem Qr < |U’sin |, d.h. hier wird das Blatt rickwdrts angestromt.
Die Grenze dieses Gebiets ist gegeben durch den Radius 7o = w’sin; dies ist die Parameterglei-
chung eines Kreises mit dem Mittelpunkt ry, = %, Yy = %W und dem Radius w’/2 (s. die Skizze).

Né&here Betrachtungen:
a) Im Riickstromungsbereich herrscht keine mit dem hier verwendeten Stréomungsmodell sinnvoll
berechenbare Blattumstromung, und er gehort damit — genau genommen — nicht zum Berechnungs-
gebiet. Man hat nun drei Moglichkeiten fiir die Eingrenzung:

aa) den Ausschlu8 nur des ”Riickanstrém-Lochs”, etwa durch o’ M%mw <r <1,

bb) den Ausschlufl des gesamten Kreisgebiets W <r <1,

cc) das Ignorieren der Riickanstromung 0<r<1.

Die Moglichkeit b) folgt aus der Feststellung, daf das Gebiet um die Rotorachse bis zu einem
Radius ry = 0.2 sowieso von der Mechanik des Rotorkopfes verbaut ist und sowohl deshalb als
auch infolge der dort geringen Umfangsgeschwindigkeit, die ja quadratisch in die Formeln eingeht,
nur unwesentlich zu Auftrieb, Widerstand und Rotorschub beitrigt.

Die Moglichkeit ¢) interpretiert diesen Umstand andersherum: wegen der Kleinheit des Beitrags
kann der Bereich w’ < 0.2 einfach "normal” mitberechnet werden.

b) Unser Stromungsmodell setzt eine inkompressible Stromung voraus; das heifit, sie ist nur solange
eine akzeptable Nidherung, wie die realen Dichtednderungen unter der Mefligenauigkeit bleiben.

Die Grenze kann man folgendermaflen abschétzen: fiir isentrope Stromungen gilt d—gg = %i)—p und
P
aus dem Energiesatz folgt dp = 4w? , sodaB d—g" = z—zg%z = %i’—j, aufgelost: w = /2do/o.

Legen wir eine Mefigenauigkeit von dg/o = 0.005 zugrunde, so folgt als Grenzgeschwindigkeit
War & 33m/s, was mit — beispielsweise — w;p ~ 4m/s und Q ~ 20 — auf wg,, = 0.4 fiihrt.

Wir wihlen (aufler in wenigen Ausnahmefillen) die Moglichkeit ¢) und eine Giiltigkeitsbegrenzung
auf w’ <0.2.

2. Fiir die Normalkomponente wy () stellen wir fest:

a) im rotorfesten, um v gekippten Koordinatensystem z’,y, 2" ist
U’ =Ucosv und W’ = U sinv, und mit diesen Werten ist jetzt
nach GI.(1.3:5) die aus der Strahltheorie (nach Glauert) folgende
iiber die Rotorfliche konstante (unmodellierte) Zustromgeschwin-
digkeit zur Wirkscheibe zu berechnen: 1wy =w; + W’ .

N.B.: oy = f(U,W) — s. Abschn.1.3.1 !
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b) Zur Fein-Modellierung erweitern wir — vergl.[10] — den Ansatz aus Abschn.1.4.1 auf
wy (r,Y) = 3wn[l 4 ccostp + ssiny]r  (T-Modell)
bzw. wy(r,1) = Wy [l + (ccosy + ssiny)r]  (S-Modell) ;
er erfiillt die Kontinuitdtsgleichung im gleichen Umfang wie im Vertikalflug, da die Anteile von
ccos®y und ssiny bei der Integration iiber einen Umlauf wegen Periodizitéit herausfallen; die
Koeflizienten c und s sind daher aus dieser Sicht beliebig. Wir benutzen sie zur Beriicksichtigung
der zusétzlichen Einfliisse aus der Horizontalgeschwindigkeit:

o s beriicksichtigt Quereinfliisse (proportional —y), die dem unterschiedlichen Auftrieb zwischen
vor- und riicklaufendem Blatt entspringen; die Literatur nennt als empirischen Wert s = —2w’ .
e ¢ beriicksichtigt Langseinfliisse (proportional —z):
aa) infolge des Offnungswinkels % des Rotorkreiskegels erzeugt die (schon in Ziff.1 erwihnte)
Radialkomponente der Anstromgeschwindigkeit: U = U’ cos v eine zusétzliche Geschwindigkeits-
komponente senkrecht zum Blatt: U} sin % cos; in Kleinwinkeln&herung und mit (1.4:2) folgt
%0 cos Yw'.
bb) zu F tritt weiter die Strahlablenkung (s. Abschn.1.3.2) um den Winkel x’ gegeniiber der
Normalen zur Wirkscheibe hinzu. Im Einklang mit Messungen (Drees in [10]) ist 2y einzu-
setzen; x' ist mit (1.3:6) gegeben.
Bemerkung: Drees benutzt nicht ’, sondern ¥, aber als Teil einer Formel, die fiir U <4 eine
akzeptable Ndherung an gx' darstellt; s. Anh.A2.

Insgesamt ist damit c= %X’ + £Qw’ mit ¥’ = arctan %

Zusammengefaf3t lautet also das Ergebnis dieses Abschnitts dimensioniert bzw. normiert:

(7, ) = QR(F + singw’) und @y (7, 9) = 2y [+ ccosp+ssiny] 5 (T-Mod.)  (1.4:3)
bzw. Wy (F,¢) = Wy [1 + (ccostp+ssing) 5] (S-Mod.)

wr(r,) = Qr +sinyw’)  und wy(r,¥) = Swy [1+ ccosyp+ssiny]r (T-Mod.)  (1.4:4)
bzw. wy (r,1) = Wy [1 + (ccosp+ssin)r] (S-Mod.)

Anmerkungen:

1. Aus formalen Griinden verwenden wir gelegentlich die Schreibweisen ¢’ = ¢/w’ und s’ = s/w.

2. Wenn die Kleinwinkel-Niherung dp = arctan(wy /wr) & wy /wr zuldssig ist, kann man beim
T-Modell 3@y durch QRSg (bzw. 3wy durch Q6R) ersetzen.

3. Den Ausdruck ccost + ssint kann man auch in Form einer Fouriereihe 2.Art (s. Anhang
A1) benutzen, z.B. ccostp + ssinth = v/c? + s? sin(y) + arctan 2)

Hinweis: die Normalgeschwindigkeit enthilt im Faktor @y bzw. @y hauptsichlich Information aus
der Vertikalgeschwindigkeit;
die Horizontalgeschwindigkeit dagegen beeinfluf3t vor allem die azimutabhéngigen Terme.

Zum Abschlufl dieses Abschnitts iiber die Modellierung folgt ein Vergleich mit dem Experiment:

Das Diagramm vergleicht unser T-Modell und ein literaturgéingiges S-Modell? mit MeBergebnissen:

die Mefipunkte (kleine Quadrate) liegen bei |r| > 0.2, und
bei Betrachtung nur dieser Punktreihe scheint gegeniiber
der Strahltheorie mit wy = const das lineare Modell ge-
rechtfertigt.

T Bezieht man jedoch den auf jeden Fall vorhandenen Stau-
T punkt mit wy =0 in r =0 in die Betrachtung ein (gestrichel-
te Verbindungslinien), so folgt einigermaflen iiberzeugend
das T-Modell.

" Es ist daher im Folgenden das Modell der Wahl.

T
=

3

e ———

R

2Drees; umgezeichnet aus [10], p.160.
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1.5 Die Blattelementheorie

Die Blattelementtheorie fufit auf der zweidimensionalen Umstromung eines Tragfliigelprofils.

1. Wir betrachten ein Element des Blattes an der Stelle 7; es hat die Tiefe T und erstreckt sich
iiber ein Léngenelement dr in Spannweitenrichtung; ¢4 und ¢p sind bekannt.
2. Die Umstromung dieses Blattelements sei gleich der eines unendlich ausgedehnten Profils in
einer unendlichen ebenen Stromung mit bekannter Grole und Richtung ﬁ)oo; damit gilt:
dA(F, ) = ¢Tw? éadi und dD(7, ) = T2, épdF.
3. Aus der Skizze lesen wir ab:
a) Die Nullauftriebsrichtung des Profils bildet mit der Rotations- ~ geomoes
ebene den Einstell- oder Pitch-Winkel II; er ist dadurch fest- d=
gelegt, dafl in Mittelstellung des Pitchhebels, IT = 1y, das Gerit
im unbeschleunigten Flugzustand verharrt.
b) Die Anstromung des Blattelements erfolgt mit der Geschwin-
digkeit Woo unter dem Winkel dr = arctan(wy /Weo) ,
also ist cosdp = Wy /Weo und sindg = Wy /Weo-
¢) Der Auftrieb dA steht senkrecht auf ., der Widerstand dD
weist in Anstromrichtung.
Auf das Blattelement wirken also folgende Luftkrifte: die Normalkomponente

! dA

MWullauftr.—
chtung

L

dD

dL?(7,¢)) = dAcos6r — dDsindg = ... = 2TW2 érdif mit &, = a2 — ¢p iy (1.5:1)
und die Tangentialkomponente R i i
dL*(F,¢) = dAsindgr + dDcosdp = ... = %Tﬁ}goéMdf mit ¢y = éAZ‘ji + 6D:Z‘j—i; (1.5:2)

daraus folgen:
das differentielle Schlagmoment dM¥ (7,v) = dL*7 ,
das differentielle Drehmoment dM? (F,) = dL¥7 und damit, vom Motor aufzubringen,
die differentielle Leistung dN (7, 1) = dL*Qf.
Auf dieser Grundlage ist nun wie folgt weiterzurechnen:
4. Integration iiber die Blattlinge liefert A(y)) = f;: dAdr, D(v¢) = f;: dDdf u.s.f. bis N (1), also
die entsprechenden Werte pro Blatt an der Stelle 1.
5. Fiir einen Rotor mit n Blittern gelten die nfachen Werte; aus der Gesamtheit aller Rotoren
ergeben sich der Kraft- und der Momentenvektor, die auf das Gerét einwirken.
6. Der Kraftvektor mufl auf jeden Fall der schon in Abschn.1.1,Ziff.2 genannten Gleichgewichts-
bedingung geniigen: seine Vertikalkomponente mufl das Gewicht G (bzw. normiert: 1) tragen.
7. Da o und T festliegen, steht wegen ¢4, ép =fcts(a) nur noch der Anstellwinkel « zur Erfiillung
der Gleichgewichtsbedingung zur Verfiigung; diese lautet jetzt im allgemeinen Fall, also unter
Beriicksichtigung des durch eine Horizontalgeschwindigkeit U # 0 bedingten Nickwinkels:
L*(a) = G/cosv ! baw. L*(a)=1/cosv !
8. Diese Gleichung ist i.a. nicht nach dem Anstellwinkel auflésbar, die Berechnung von « mittels
eines Iterationsverfahrens beliebiger numerischer Genauigkeit ist jedoch kein Problem.
9. Sobald o bestimmt ist, kann man alle interessierenden Werte in ihrer Abhéingigkeit von W und
U berechnen — damit ist das Ziel der Blattelementtheorie grundsitzlich erreicht.

Wir ergédnzen diese Beschreibung aus der Sicht des Programmierens:

Als Funktionen definiert man vorteilhafterweise nicht nur

o die Beiwerte ¢4 (a) — z.B. function cA(a)—cA:=0.1*a — und ¢p, sondern auch

o den Auftrieb A(a) — z.B.(hier verkiirzt!) function fA(a)—fA:=rho/3*sqr (Om*R)*T*R*cA(a) —
und den Widerstand ﬁ(a); daraus zusammengesetzt

o die Luftkraft L(a) - function fL(a)—fL:=fA(a)*cos(dR)-fD(a)*sin(dR) —
und das Riickdreh-Moment M () und schlieBlich, wiederum aus diesen zusammengesetzt:

o die Summe XL — function SL—fL(a+dk)+fL(a-dk) — sowie entsprechend die Differenz AL,
und dem entsprechend XM und AM;

die so definierten Funktionsbezeichnungen finden durchgehend im Abschn.3. Verwendung.

Nach der Vorgabe von U und W sind nach Abschn.1.4.2 der Reihe nach zu bestimmen:

o v und alle seine Funktionen sowie U’, W', '

o wr und wy, und damit w? .

o Aus der Gleichgewichtsbedingung fLg—1/cosv = 0! ist — z.B. durch Eingabeln — das Residuum
auf den gewiinschten Restwert zu iterieren.

NB: Da die vorliegende Arbeit vor allem Ubersichten und Gesamtaussagen zum Ziel hat, behandeln
wir nur ungeschrinkte Rechteckblédtter und verwenden ausschliellich das Trichter-Modell.
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2 Analytische Untersuchungen

2.1 Grundformeln

Die Normalkomponente der Luftkraft ist durch (1.5:1) gegeben; in normierter Form folgt

. w
dL*(r,¢) = %Tchgodr mit ¢p = cAﬁ — CD%.

Da sowohl ¢4 > c¢p als auch wr > wy, ist in guter Néherung ¢y, =~ ¢4 ~ ¢y, und damit folgt

fiir ein Blattelement:  die Luftkraft —dL?(r,¢)~dA(ry)~ %Tchawgodr (2.1:1)
und das Schlagmoment — dMY(r, 1)) ~ 3T ow? rdr. (2.1:2)
dabei ist w? = w3 + w3 mit wr, wy aus (1.4:4).

(Die Tangentialkomponente nach (1.5:2) tritt in diesem Abschnitt nicht auf.)

Da wir hier nur ungeschréinkte Rechteckbldtter betrachten, ist %Tc;‘a = const und die Integration
beschrankt sich auf das Quadrat der Anstromgeschwindigkeit bzw. ihres Produkts mit r.

Das Resultat enthélt quadratische Terme von sin und cos, und diese miissen mittels der bekannten
Beziehungen sin? ¢) = %(1 —cos21)), cos? ) = %(1 + cos 2¢)) und sin v cosp = % sin 21 auf Fourier-
Form gebracht werden. Dabei fallen zusétzliche Terme im Absolutglied an, und wir erhalten als
vollsténdige, exakte Formen fiir die Berechnung von

a) Kréften: w2 () = %{Ak + Ay} mit Ay =1+ 6%+ [3+ #(ﬁ%ﬁu’z (2.1:4)
und A, = [2¢6% cos ) + (3 4 25'6%) sinyp|w’ + [(#5% — 3) cos 24p + /s 6% sin 29w’
b) Momenten: w2 (¢) = %{Dk +D,}  mit D =1+6%+ [1+ 6/25512 6%)]w’™ (2.1:5)

C/2 75’2

und D, =[2¢/6% cosp + (§ + 25'6%) sinp|w’ + [(S52-6% — 1) cos 24 + ¢s'6% sin 2p]w'?).

Darin sind A, Dy die Mittelwerte (=0.Terme der betr. Fourier-Reihe), und die A,, D, enthalten
jeweils die Grund- und die erste (=einzige!) Oberschwingung.

Das Ergebnis (fiir ein Blatt) ist also L*(¢) = %chqf\lg{A;C + A}« (2.1:6
und MY () = LT, 02Dy + D,} a (2.1:7

~—

Bei analytischen Untersuchungen werden h#ufig Vereinfachungen verwendet, und literaturiiblich

sind hierfiir die 0.Néherungen: w2, ((¢) = %2 bzw. (fiir Momente) = %2

Eine néhere Untersuchung scheint angebracht: als weniger grobe Formen bieten sich beispielsweise
an: o das Weglassen der Fein-Modellierung nach Abschn.1.4.2,Ziff.2 ~»c¢=s=0,
o die Vernachlissigung von Gliedern der Ordnung w’?.

Daraus wiirden folgen:
2

o)}

2.Néherungen: w2, ,(¢)) = 7/{\1 + 3w? + 6% + 3sinyw’ — 2 cos 2¢w? }

bzw. = Q72{1 + w'? 4 0% + 5 singw’ — cos 2Pw'? }
1.Ndherungen: w2, ;(¢) = Q?2{1 + 0% + [2¢/0% cos ¥ + (3 + 25'0%) sinp|w'}

bzw. w2, | (¢) = Q72{1 + 0% + [2¢/6% cos ¥ + (& + 25'6%) sin ] w'}
oo - FI:I - Um einen Eindruck von den Folgen solcher Vernachléssigungen zu

1 I_‘1 - vermitteln, sind im Diagramm die Fehler der (azimut-unabhéngi-

0.081 o gen) Mittelwerte dieser drei Ndherungen bezogen auf den exakten
0. 0 Wert dargestellt: Fy=1-w?/w?, .., fir i=0,1,2

(c und s sind mit den typischen Werte 0 = 25 und % = 3° berech-
net.)

Die Nachteile der 0. und 1. N#herung vor allem im Schwebebe-
i " reich (Autorotation !) sind augenfillig, aber auch die 2.N&herun-
0. DD'D i1 2 2 4 | gen fithren fiir groBere Schrigflug-Geschwindigkeiten noch zu

0. 04 4
0,02 4

-
mo e

Fehlern im Prozentbereich. Auch diese sind vermeidbar:

Fazit und Hinweis zur Rechenpraxis: Man rechnet am besten unter Benutzung der exakten
Formeln mit den formalen Symbolen Ay ... D, und ersetzt diese erst am Schlufl durch — warum
auch immer — gewiinschte Naherungen.
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2.2 Anstell-, Zustrom-und Pitchwinkel

Diese Winkel sind gem#fl Abschn.1.5,Ziff.7-9 in jedem Einzelfall als Funktionen der jeweiligen
Konstruktions- und Betriebsgréfien zu berechnen.

Hier dagegen interessiert uns nur der Uberblick iiber das Gesamtverhalten im Schrigflug, also bei
beliebigen Wertepaaren von Horizontal- und Vertikalgeschwindigkeit; dafiir stellen wir (fiir einen
Zweiblatt-Rotor, n = 2) das Verhiiltnis aus dem betreffenden Wert fiir beliebiges U, W zum Wert
im Schwebefall U=W =0 (Index (o) dar und beschrinken uns auf Mittelwerte, sodafl A, = 0.

1. Zur Berechnung des Anstellwinkels erhalten wir damit aus (2.1:6)  L* = %Tc;,(AZQAk&.
Die Gleichgewichtsbedingung pro Blatt fordert L? = —L—1  soda8l durch Umkehr folgt

ncosv "’

a=6/{ncos VT, Q2 AL} (2.2:1)
und fiir den Schwebezustand W = U = 0: agp = 6/{nTc’A§\22(1 +62)}.
Die darzustellende Grofe ist also a _ 1+ o . (2.2:2)
Qoo cosvAy e

anzumerken ist, daf§ die Konstruktionsgrofien n, T', ¢/, und Q bei der Quotientenbildung herausfal-
len, die Beziehung gilt also allgemein. Das linke Diagramm zeigt sie mit dem exakten Wert von
Ay; die Abhéngigkeit von W ist sehr gering.

2. Im Gegensatz zum Anstromwinkel ist der Zustromwinkel durch das Verhiltnis von Vertikal- zu
Horizontalgeschwindigkeit (mit wy und wr aus den Gln.(1.4:3,4)) gegeben und damit weit stérker
von W abhéngig: s. das mittlere Diagramm. — Die Unabhéngigkeit von den Konstruktionsgréfien
gilt auch hier.

1.5
|'C_I.I'IICI|:||:| ]
1.00 T T T U 1.0
0.5 -
0.95 ]
[':IDE|=5- &9 grd t5|q|:||:|=4_ 20 grd ]TDD =10.93 grd ]

3. Der vom Piloten (per Taumelscheibe) einzustellende Pitchwinkel IT setzt sich, wie die Skizze im
Abschn.1.5 zeigt, additiv zusammen aus dem Zustromwinkel und dem Anstellwinkel: IT = a + dg;
daher ist hier die Abhéngigkeit von U, W etwas geringer, aber dhnlich gebaut wie die von dr/droo-
IT ist nicht mehr von den Konstruktionsgréffen unabhéingig, dem rechten Diagramm liegen daher
folgende typische Werte zugrunde: n=2, Q = 20,7 = 0.07, ¢, = 0.1/(2r), die daraus resultierenden
Werte fiir den Schwebezustand sind unterhalb der Diagramme angegeben.

2.3 Der starre Zweiblatt-Rotor

Das Schrégbild zeigt die vom Rotor erzeugten Kriifte und Momente: die beiden Blétter 1 und 2
laufen in der z’,y-Ebene um, die gegen die x,y-Ebene um den Winkel
v(U) gekippt ist (s. Abschn.1.3). Sie erzeugen
a) je einen auf der z’,y-Ebene senkrechten Luftkraft-Vektor L7 (diese
beiden sind hier schon als via 1 / cosv in z-Richtung wirkend gezeichnet)
und
b) je einen in der ', y-Ebene liegenden Moment-Vektor le , der senk-
recht zum Blatt und in v-Fortschrittsrichtung positiv ist.
. Wegen der starren Konstruktion ist der Anstellwinkel o = const = a.
Der Vorgang ist — wegen n = 2 — periodisch mit der Periode 7, sodafl
(cos, sin)ie = —(cos, sin)y, aber (cos, sin)2te = (cos, sin)2). (2.3:1)
1. Die (normierte) Luftkraft ist  L*() = L(Lf + L3) = ST, Q2 {24), + Ay + Ao }a;
unter Beriicksichtigung von (2.3:1) folgt
z 17 O2 e ) 3 Pl §2 o 2\ ~
L*(¢) = s T, Q*{ Ap + [(“F06% — 2) cos 2p + /s 6% sin 2¢|w’ &
Die Gleichgewichtsbedingung fordert L* = %Tc;‘(AZQAkd =11
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= - "

] 1=l ¢ und damit wird durch Umkehr & =6/{ cosvTd,Q? A} (2.3:2)
1,03 : sodaB

1 : ; A+ [( 0/253/2 6% — 2) cos 21p + /s 0% sin 2w’ .

2 P LA(Y) = oS U AL (2.3:3)
1.00 1 H— Das Diagramm zeigt den Verlauf in Abhéngigkeit von der Horizon-
talgeschwindigkeit, exemplarisch fiir W = 0 und Q = 25.

. fj =75 Die Luftkraft schwankt harmonisch mit der doppelten Umlauffre-

0. 97 LI=0 . quenz, die Amplitude ist ~ U? und liegt im Prozentbereich.

2. Der Betrag des Schlagmoments M¥ = |M Y| ist wegen der Antiparallelitit von M; und M, gleich

der Differenz M{/) - Mg): Mf(z/;) = %TCQ‘QQ{DM - Dvg}d;
wegen (2.3:1) und mit (2.3:2) folgt nach Unformung
MY () = M{Qctﬁ% costp + (Jw’ + 256%) sinep }. (2.3:4)

Diese Formel zeigt das linke Diagramm (unten) in kartesischen Koordinaten; dem Vektorcharakter
besser angepaf}t ist jedoch die Polardarstellung:

das rechte Diagramm zeigt, wie der Momentvektor, von ¢ = 0 im Koordinatenursprung ausgehend
und im Uhrzeigersinn drehend, abnickend und linkssrollend wirkt, bei ¢ =7/2 das Rollmoment-
Maximum erreicht und dann iiber ein Aufnicken und abnehmendes Linksrollen wieder auf den
Momentennullpunkt bei ©» = 7 zuriickkehrt; die Amplitude ist ~ U.
Der anschlieBende néchste Umlauf ist (bis
H"r‘ 4=|] W auf die Blattindizes) identisch, d.h. der
RechtstRollen Momentvektor ist wiederum positiv, wirkt
U fuf-N. | Bb-Nicken also, was das Rollen betrifft, wiederum

0. H

Die Harmonische Analyse dieser Schwin-
gung, also die Entwicklung in eine Fourier-
Reihe, ist sehr einfach: (fiir unseren Fall ist
das fertige Ergebnis schon in jeder besseren

/
Formelsammlung zu finden): MY () = W (1 — % cos 2 — 3—10 cosd) ... )
T COSV w

0. 24 } linksrollend. Die Fortsetzung des linken
] 0.z Diagramms wiirde also wieder eine positive

0.1 Sinus-Halbwelle zeigen: die Schwingung ist
r y o nicht harmonisch.

0. O ; o

ﬁ:EE =0 rRollen

Folgen fiir die Flugdynamik

L? und M¥ wiren nun in die Bewegungsgleichungen fiir das Gesamtgerit einzusetzen, um dessen
dynamisches Verhalten zu berechnen. Da wir in dieser Arbeit auf alle Berechnungen zur Flugdy-
namik verzichten (s. Seite 1, ” Eingrenzung”), stellen wir hier nur ganz allgemein fest:

Schon bei geringen Horizontalgeschwindigkeiten (Seitenwind!) “hopst” 3,
rollt und nickt das Gerdt mit der doppelten Umlauffrequenz.

Es ist leicht einzusehen, dafl katastrophale Folgen unvermeidbar sind: s. die Tragschrauber-Versuche
in den frithen 1920ern.
Generelle Abhilfe bringt das aus diesem Anlafl von dela Cierva 1923 eingefiihrte Schlaggelenk:

2.4 Das Einzelblatt mit Schlaggelenk

Das Blatt ist nicht starr am Rotorkopf angebracht, sondern kann sich im allgemeinsten Fall
e um das Schlaggelenk (L Rotorachse) auf und ab bewegen, ”schlagen”;
e um das Schwenkgelenk (|| Rotorachse) vor und zuriick bewegen, ”schwenken”.

Damit kommt ein nicht-aerodynamisches Gebiet der Physik mit einer weiteren Grofie ins Spiel: die
Schwingungslehre, und wir benutzen wegen des Auftretens der Zeit ¢ die dimensionierte Form der
Gleichungen (2.1:6) und (2.1:7):

L*(¢) = 2TE QPR*{ A + Ay} @ und MY () = 2T, Q*RY Dy + Dy} @ (2.4:1)und(2.4:2)

3Dies ist nicht die sog. ” Boden-Resonanz”!
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Wir behandeln hier nur den erstgenannten Freiheitsgrad: die Auf-undAbbewegung um ein Schlag-
gelenk, das wir uns zudem direkt an der Rotorachse angebracht denken*, und legen zudem das
einfachste Modell zugrunde: ein rechteckiges Rotorblatt mit der Massenbelegung op = const (in

kg/m); das Trégheitsmoment beziiglich der Schlaggelenkachse ist damit J = QB%J.

2.4.1 Das Einzelblatt mit Schlaggelenk im Vertikalflug

1. Der Vorgang ist nicht von ¢ abhingig, sodafi G1.(2.4:1) ~» L= %TE;‘QzRSAk@; wegen der

Gleichgewichtsbedingung L* = G'! folgt durch Umkehr & = 6G/{0T¢ Q*R3Ay}. (2.4:3)
2. Entsprechend wird aus Gl.(2.4:2) MY = %Té'AQQR‘lea.
| 42 Wie die Skizze zeigt, iibt die Zentrifugalkraft dZ = o BQ2FdF wegen

din i d7 des Kegelwinkels « ein Moment dMy; = —dZ sin k aus;

' ~ 3
{fgs-;' _________ TET integriert und in Kleinwinkelndherung folgt My = 79293%/@
dz I-Ci : somit ist das Schlagmoment
| R Mg = MY + My = 87,02 R* Dya — Q2052 k.
Nach Division mit J fithren wir die dimensionslose Lock-Zahl A = 3{# ein °, sodaB
@ = Q?[4 Do — k. (2.4:4)

a) Bei stationdrer Umdrehung (mit @ — &,k — &) muf} sein Mittelwert iiber eine Umdrehung
verschwinden, sodal &= 4Dya  bzw. mit (2.4:3): = 3A/{4ch4§2}%’;. (2.4:5)

b) Aber: das so definierte Blatt ist ein Drehpendel, d.h. es kann um den mittleren Konuswinkel
herum schwingen, sodafl. k =k + Ak(t); die zeitlichen Ableitungen sind & = Ak und & = A&.
Infolge dieser Schlaghewegung Ak (t) ergibt sich nun eine Anderung der Auftriebskraft:

Rl iebo wie aus der Skizze abzulesen verdndert sich der Anstellwinkel & um
den aus der Aufwirtsbewegung A&7 resultierenden ”schlaginduzierten

richtung

Et__ Abwindwinkel” g = arctan(A&T)/(Q7) ,
1 R
O sodafl (in Kleinwinkelnidherung) a=a—-Ar/Q,
und das Schlagmoment wird jetzt ]‘?[]S = Q?[(4Dr(a — &E) — (R + Ar)].
Wegen Gl.(2.4:4) wird daraus: e —%DkQA/{ A (2.4:6)
Wir setzen dies in die Grundform der Schwingungsgleichung Ak = Aés ein und erhalten deren

dimensionsbehaftete Form Ak + %DkQAKZ +O2Ak=0.

Diese Gleichung ist homogen; das hat zur Folge, dafl auer Ax = f(¢) auch Ax = 0 eine Losung
ist; wie oben schon gesagt: das Blatt kann schwingen, muf} es aber nicht.
Bemerkungen dazu:
1. Der Faktor von Ak ist das Quadrat der Eigenfrequenz der ungedimpften Schwingung; sie ist also
gleich der Umlauffrequenz des Rotors.
2. Der Faktor von Ak ist das Doppelte des sog. Ddmpfungskoeffizienten; aus der Pendeltheorie folgt da-
mit als Frequenz der geddmpften Schwingung Qo = Q2+/1 — [I%Dk]?. Die Wurzel ist hier stets reell und
ihr Betrag typischerweise knapp unter eins, sodafl Einschwingvorgénge rasch abklingen: einmal angesto-
Ben wiirde das mit 2 umlaufende Blatt mit Qg < Q auf und ab schwingen, d.h. der Maximalausschlag
wiirde mit fallender Amplitude langsam entgegen der -Richtung wandern.

Es ist sinnvoll, von der physikalischen Zeit t auf den Azimutwinkel des Rotorblattes ¢ = Qt als
Unabhiingige iiberzugehen (die Hochkommata bedeuten Differentiation nach v);

wegen Ax’ = QA% und Ax” = Q?Ak folgt nach Division mit Q2 die

normierte Schwingungsgleichung: A" + %DkAH/ +Ak=0; Ar =ds. (2.4:7)

2.4.2 Das angesteuerte Einzelblatt im Vertikalflug

Um ein gewiinschtes Steuermoment zu produzieren, das Blatt anzusteuern, prigen wir dem eben
beschriebenen schwingungsfahigen Gebilde ein zyklisches Zwangsmoment auf, indem wir die Tau-
melscheibe um einen gewissen Winkel §, in eine gewisse Richtung 1, kippen, sodafl

a=a+Aa mit Aa =4, cos(y) —1,). (2.4:8)

Mit dieser MaBnahme erzeugen wir einen Zusatzauftrieb dL? bzw. ein Zusatzmoment

4Blitter mit einem Schlaggelenk abseits der Achse oder elastische Blitter verhalten sich weitgehend gleichartig.
5Der Zahlenwert von A liegt zwischen 2 (fiir sehr schwere Blitter) und 10.
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dM(F) = dL7 = £T&,0% (1 + 0%) 0. cos(yp — 1, )dF,
das das bisher nur schwingungsfihige Blatt zu Schwingungen zwingt: integriert und mit J 02
dividiert folgt: %{Z = %(1 +6%)0, cos(¢p — 1,); die Schwingungsgleichung lautet also:
Ar” + AAK + Ak = 2(1+62)5. cos(v — ) . (2.4:9)
Wegen des oben erwdhnten raschen Abklingens von Einschwingvorgéngen ist nur eine spezielle
Losung dieser inhomogenen Gleichung von Interesse; fiir diese machen wir den Ansatz
Ar =C(1+4 6%)sin(¢p —¢¢c); zweimalige Differentiation liefert

Ar' = C(1+6%) cos(tp —pe) und Ax” = —C(1+ 6%)sin( — o) = —Axk.
Setzt man diese Terme in die Schwingungsgleichung ein, so sieht man sofort, dafl diese in zwei
unabhéngige Gleichungen zerfillt: 1.  C'cos(¢p — ¥¢) = d, cos(vp — 1) (2.4:10)
und 2. Ar' = (1+ %), cos(vp — 1,). (2.4:11)

1. Aus (2.3:10) folgt unmittelbar C' = §, und ¢c = 1, und damit ist die gesuchte Lisung
Ak = §,(1+4 6%)sin(y) — ) .
2. Noch wichtiger ist aber folgende Erkenntnis aus (2.5:11): da die linke Seite, Ax’ = % = dg,

die Schlagbewegung darstellt und die rechte, (1 + 6%)d, cos(¢) — 1)), via GL.(2.3:7) die Auftriebs-
schwankung représentiert, gilt

Auftriebsschwankungen werden von der Schlagbewequng kompensiert !

Diese Feststellung hat zwei Folgen:
a) der in die Auftriebsformel (2.1:6) eingehende Winkel ist einfach: o = & = const

b) entsprechend Ak = ,(1+ 6%) sin(¢) — 1,) pendelt der Konuswinkel mit der gleichen Amplitude
d, um den Gleichgewichts-Konuswinkel wie der Steuerwinkel, aber um /2
! ! phasenverschoben; das heift:
y I aa) der Offnungswinkel des Rotorkonus’, m — 2k, bleibt gleich, aber

bb) seine Achse ist nicht mehr senkrecht (identisch mit der mechanischen
Rotationsachse), sondern neigt sich um den Winkel J, in die Richtung
Yp = wz + 77/2-a

cc) Daraus resultiert eine Horizontalkomponente des Auftriebs: I:f =Lé.;
sie verursacht (mit H =Abstand der Rotornabe vom Schwerpunkt)
ein Rollmoment i;fH und, als Querkraft, eine horizontale Beschleunigung
des Hubschraubers, beides in Richtung vy, .

“mit in der Literatur (z.B.[7]) gelegentlich verwendeten Begriffen: die ”NoFeathering-
Plane” und die " TipPathPlane” fallen zusammen.

d) Der Drehmomentvektor, der ja (je nach Drehsinn) parallel oder antiparallel zum Luftkraft-
vektor ist, hat ebenfalls eine Horizontalkomponente. Wir beriicksichtigen sie erst im Kap.3.

Die folgende Skizze macht den geschilderten Ansteuervorgang anschaulich; schematisch dargestellt
ist der azimutabhéngige Verlauf von dr, g und II: 1. Der (aus der Strahltheorie stam-
mende) Winkel 6 ist konstant;
2. der Pitchwinkel II(¢)) ist durch die
e PP Steuerung (per Kniippel und Taumel-
richtung scheibe) vorgegeben, und
- 3. der schlaginduzierte Abwindwinkel
Wi ‘5n[ [ ds = AFk/Q folgt ihm qua Theorie, so-
T, daB die Differenz -6 (= a!) kon-
LT stant bleibt.

Steusrung?

2.4.3 Das Einzelblatt im Schrigflug

Wir gehen genauso vor wie im Abschn.2.4.1, nur daff in den Formeln jetzt auch die von U und ¢

abhiéngigen Terme A, und D, stehen, also  L*(1)) = %T&’AQQRS{Ak + A, ta (2.3:7)
Mit der Gleichgewichtsbedingung i= chu ! und Umkehr folgt (normiert)

a = 6/{ CcOosS I/TC{AQZA]C} (2412) [entspr. (2.4:3)]
Ebenso finden wir MY (1) = %T&’AQQR‘I{D;c + D, }a

und damit folgt durch Hinzunahme des Moments der Zentrifugalkraft, Einfithrung der Lock-Zahl
und Division mit J das Schlagmoment
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%(w) = Qz{%(Dk + Dv)a — K,}. (2413) [entspr. (2.4:6)]
Fiir den Mittelwert iiber eine Umdrehung folgt somit %Dkd =K.

Wir schreiben jetzt (2.4:13) mit den schon im Abschn.2.4.1 eingefiihrten Aufspaltungen, multipli-
zieren aus und erhalten nach Beachtung von (2.4:12) und Umstellung
M A : 2 2 3A D
28 = —2(Dp + D, )QAR — Q*Ax + Q5 —22 = 2.4:14
7 W) 3 (Dx ) 4cosvTc 2 Ay ( )
Die Schwingungsgleichung ” Schlagwinkelbeschleunigung=Schlagmoment” wird also nach Ubergang
auf ¢ anstelle von ¢ als Variable:
AK;”—F%(%sinw—w’QCOSQw))An'—FAK: %% (2.4:15).
dcos VT Q) 2k
Wihrend im Fall des Vertikalflugs die Schwingungsgleichung homogen ist, das Blatt also Schwin-
gungen ausfithren kann, aber nicht muf, ist sie jetzt, fiir U bzw.w’ # 0, inhomogen: die rechte
Seite stellt ein periodisches Zwangsmoment dar, das genau wie das Zusatzmomrnt des angesteu-
erten Blatts im Abschn.2.4.2 ein Schwingen erzwingt, wobei das Zwangsmoment im wesentlichen
durch die Grundschwingung im Term D, also [2¢/6% cos ) + (§ + 250%) sin¢)]w’ bestimmt ist.

Der Unterschied zum starren Blatt (Abschn.2.2) besteht darin, dafl die instationédren Anteile des
Luftkraftvektors L und des Schlagmoments Mg — ebenso wie im Abschn.2.4.2 beschrieben — vom
schwingenden Blatt ”aufgefangen” und vollstéindig kompensiert werden; der Preis dafiir ist ein
Abwandern der Achse des Rotorkreiskegels und damit der Richtung von L von der mechanischen
Drehachse mit der Folge des Auftretens einer Horizontalkomponente.

Fiir die Flugpraxis bedeutet das Ganze:
das Zwangsmoment mufl durch ein entgegengerichtetes Steuermoment ausgesteuert werden!

Diesen Vorgang der Aussteuerung im Unterschied zur Ansteuerung (Abschn.2.3.2) macht die fol-
gende Skizze noch einmal anschaulich:

tAussteusrungy 1. der von der (aus der Strahltheorie
- stammenden) Anstromgeschwindigkeit
bestimmte Winkel dr schwankt infolge

Hull-
auftriebs—
richtung

KF &g der Horizontalkomponente U'.

R e - 2. Die Schlagbewegung kompensiert die

N 59[ B LR Horiz. beueg.) | dadurch bedingten Auftriebsschwan-
kungen, d.h. dg bleibt konstant.

T

Das Zwangsmoment ist durch die rechte Seite von (2.4:15) gegeben:

das Diagramm zeigt (fur T’ = 0.07,¢/y = 0.05/7,Q = 25, A = 8) den Verlauf der Amplituden von
0.0HMz . Grund- und Oberschwingung iiber 1 fiir zwei Werte von U bei

g W =0.

iBtase Die Abhéngigkeit von W (hier nicht dargestellt) liegt fast in-

0.0z

0.001— a AY nerhalb der Zeichengenauigkeit.

oz : Auffillig ist die Kleinheit der Oberschwingung (punktiert, und
B 10fach iiberhtht gezeichnet): ihre Amplitude liegt nur bei etwa

—0.04 5% der Amplitude der Grundschwingung.

Wesentlich aussagekriiftiger als dieses Diagramm ist, wie im Abschn.2.4.2, die polare Darstellung.
Hier beschranken wir uns auf die Glieder bis zur O(w’) und damit auf die Grundschwingung ¢ und
gehen auf die Darstellung als Fourier-Sinus-Reihe iiber (s. Anh.A1l), sodal das Zwangsmoment die
Form

3A 8 1522 1522 ( _ 4/3 + s'6%
Teos T, 02 (1 5 0% \/(3+2$ 0%)? + (2¢/6%,)? cos (¢ — arctan 757

daraus kann man die Amplitude und den Winkel gegen die (—z')—Achse der Grundschwingung
direkt ablesen.

) erhalt;

6denn nur diese kann die Taumelscheibe (als lineares Element i.S. der Getriebe-Mechanik) aussteuern.
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Das Diagramm zeigt Grofle und Richtung des Zwangsmoments bzw. q =t > ard
die seiner Komponenten Roll- und Nickmoment; das zur Aussteue- R
rung erforderliche Steuermoment (d.h. fiir die Praxis: der Kniippel- 1 1 vrollen
Ausschlag) liegt folglich zentralsymmetrisch entgegengesetzt. -

.. 1 = -
Im Flugschuljargon|[9] heifit es daher fiir den Ubergang vom Schwebe- - J{l:nT'E'f—
in den Vorwiirtsfluges einfach: L= kene

”FErsten Gang einlegen!” ] 3

denn: der erste Gang liegt beim Auto {iblicherweise links vorn. N.B.: Diese Anweisung gilt aber nur
fiir einen im mathematisch positiven Sinn, also im Gegenzeiger drehenden Rotor; exakt muf} sie heiflen:
”Driicken, und Querruder zur Seite des riicklaufenden Blattes geben”.!

2.5 Mehrblattrotoren
2.5.1 Unabhingig angelenkte Einzelblitter

Wir setzen voraus, daf3 sich im Rahmen der Blattelementtheorie die n Einzelbldtter in keiner Weise ge-
genseitig beeinflussen. Dann gelten fiir jedes Blatt die gleichen Uberlegungen und Berechnungen wie oben,
insbesondere auch die Folgerungen Ziff.1.und 2. im Abschn. 2.4 (einzige Ausnahme: die erforderliche Luft-
kraft pro Blatt sinkt auf 1/n). Jedes Blatt lduft also auf seinem eigenen gekippten Rotorkonus um und
bildet seinen eigenen Luftkraftvektor; da aber a und . nicht von 1 abhéngen, sind alle individuellen
Rotorkonen und Vektoren identisch und summieren sich zu dem oben fiir das Einzelblatt berechneten,
sodafl auch die oben dargestellten Folgerungen unveréndert gelten.

Das gilt selbstverstandlich auch fiir Schlaggelenkabsténde > 0 - s. Fuinote 6.

2.5.2 Der Wipprotor ("seesaw-", "teetering”-, ” gimballed”-rotor)

Hier sind zwei Blétter starr miteinander verbunden und die gemeinsame Schlagachse liegt auf der Rotor-
achse. Die Situation ist also die gleiche wie beim starren Zweiblatt-Propeller im Abschn.2.3, nur dafl
jetzt gemifl der Feststellung im Abschn.2.4.2 die Auftriebsschwankungen wihrend des Umlaufs von der
gemeinsamen Schlagbewegung kompensiert werden; der Wipprotor verhélt sich also wie ein Zweiblatt-Rotor
mit Schlagelenkabstand Null.

3 Systeme mit mehreren Rotoren

3.1 Katalog der Steuerungsarten, individuelle Formeln
Die einzelnen Hubschrauber-Typen werden unterschiedlich gesteuert. Die folgende Tabelle zeigt
eine Zusammenstellung fiir die drei Steuerungsarten:

Seitenruder (Giersteuerung), Querruder (Rollsteuerung) und Hohenruder (Nicksteuerung)

und zwar jeweils fiir den Normal-H.(”EinRot”), den Koaxial-H., den Tandem-H., und drei unter-
schiedlich gesteuerte Flettner-Typen (Bauart Wieland[14], Fa.Kaman, Original-Flettner 1945):

| [ EinRot | Koaxial [ Tandem |  E/KMAX | OKMAX | FI282 |
Seitenruder || HR-koll | diff-koll | diff-zykl | diff-koll4-diff-zykl | diff-koll+diff-zykl | diff-koll
Querruder zykl sim-zykl | sim-zykl sim-zykl sing-zykl sim-zykl
Hohenruder zykl sim-zykl | diff-koll sim-zykl sim-zykl sim-zykl

Die gleich- bzw. gegensinnige Verstellung zweier Rotoren ist mit ”sim” bzw. ”diff” charakterisiert,
"sing” bedeutet Verstellung nur eines Rotors;

die Abkiirzungen ”koll” bzw. "zykl” zeigen die kollektive bzw. zyklische Verstellung der Blitter
eines Rotors an.

Fiir jede Zelle der obigen Tabelle sind nun die individuellen Formeln fiir die Kréifte und Momente
zu ermitteln.

Wir erkldren das Vorgehen zunéchst ausfiihrlich am Beispiel des einrotorigen Normalhubschrau-
bers; er ist zwar wegen der unterschiedlichen, windschiefen Achsorientierungen von Haupt- und
Heckrotor umsténdlicher zu behandeln, aber infolge der Trennung der Aufgaben (Hauptrotor:
Auftrieb, Heckrotor: Gegendrehmoment) iibersichtlicher als die anderen Systeme.
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3.1.1 Der Normal-Hubschrauber

Zur anschaulichen Darstellung der Krifte und Momente dienen die folgenden Analyse-Skizzen:

L=
= Hggfisl:;']l-_l{elr:er M= b» das=selbe, c» GQuerruder— d» Hoshenruder-—
phgsikalisn:?ﬁ’e alles in = aus=chlag ausschlag
Korfiguration angreifend
L= L=
— HS &
1
M=
|
| A
. LyH LyH
L-% —HH MyH FiH
LiyH v .-~ S# —o0O \>r5 é
- - 2 MascH MacH Hl._l Ll._,l
MygH
G e = o

Analyse-Skizzen fiir: Gleichgewichtszustand, Gieren, Rollen, Nicken

Schweben (Gleichgewichtszustand)
Die Teilskizze a) zeigt die physikalische Konfiguration mit den Kriften G,L?*, LY, und den Mo-
menten M*, M},, die vom Haupt- und Heckrotor auf das Geriit ausgeiibt werden. Verschiebt man
— Teilskizze b) — alle Kréfte und Momente in den Schwerpunkt, so tritt zusétzlich ein Moment
M% = —fLyo Hy auf (s. Abschn.1.1).
Die Berechnung gestaltet sich wie folgt:

1.Schritt: im Gleichgewichtszustand mufl L? = G'! sein, d.h.

a) nach Vorgabe von W sind die induzierte Geschwindigkeit w;(W) und der Anstrémwinkel

dr(W) zu berechnen, sodafl

b) durch Iteration von L*=fLy = G ! der Anstellwinkel o berechnet werden kann.

Damit sind jetzt L*=fLy und M?*= f M, bekannt.
2.Schritt: Zur Kompensation des Hauptrotor-Drehmoments dient das vom Heckrotor iiber den

Abstand Haupt-/Heckrotor ausgeiibte Moment; es muB also fMy = LY, Z ! sein.

a) Zur Berechnung von apo modifizieren wir die Strahltheorie: die (hier: horizontale!) An-
stromung aus dem Unendlichen ist null, daher ist (s. Abschn.1.2) die induzierte Geschwin-
digkeit gleich der auf den Heckrotor bezogenen Gerétekonstante, wobei an die Stelle der Ge-
wichtskraft der Heckrotorschub tritt; es folgt (wegen LY, = fLuo,) wino = \/LY/(20 Fn),
und daraus folgt der Heckrotor-Anstromwinkel dzpy.

b) Nun kann a g durch Iteration von  fMy/Z = fLgo! berechnet werden.

Damit sind jetzt auch LY, (= fLpuo) und M}, (= fMpuo) bekannt.
3.Ergebnis: Wir haben also im Gleichgewichtszustand (Pitchhebel und Kniippel in Nullstellung!)

noch eine Kraft und zwei Kopplungsmomente, die folglich als inhdrent (also auch ohne jeden
Steuereingriff vorhanden) zu bezeichnen sind:

eine inhirente Querkraft LY =LY = fLu(amo)
ein daraus folgendes inhérentes Rollmoment  M; =—LY Hy
ein inhérentes Nickmoment M,y =M}, = fMu(amo) -

Seitenruder (Gieren)
Hier wird im zweiten Schritt das Gegendrehmoment des Hauptrotors nicht kompensiert sondern
(fiir Linksgieren mit §, > 0:) erhoht, sodaB jetzt LY, = fLyy (statt fLgo); infolgedessen wird das
gesamte Giermoment Moo= fLu+Z.
Nach Abzug von M§ bleibt als gesteuertes (Nutz-)Giermoment  Meier = (f L+ — fLio)Z; darin
steckt auch eine gesteuerte (unerwiinschte) Querkrafterhohung: LY = fLgy — fLpyo.
Die gesteuerten Anteile der beiden (unerwiinschten) Kopplungsmomente sind also

Mgon = —fLupyHpg — Mg und Myicr, = fMpy — M;n.
(Fir Rechtsgieren tritt entsprechend wegen 6, < 0 fL(H_) auf.)
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Quer- und Héhenruder (Rollen/Nicken)
Wie aus den Analyse-Skizzen c) bzw. d) abzulesen ist, werden Luftkraft- und Momentenvektor
l_:, M um den Steuerwinkel 0, nach rechts bzw. vorn gekippt, es folgt:
1.Schritt L? = fLgcosd, = G! ergibt durch Iteration «p;
Bemerkung: ap wird dadurch a(d,), also, mit agg := ao(0), ag = o + Aap.
Aaqyg ist Funktion von W, aber vernachléssigbar klein.
2.Schritt: LY, Z = fM;cos6* ergibt durch Iteration agyq.

Durch die Schrégstellung von L und M treten Horizontalkomponenten LY bzw. L* und MY bzw.
M= auf, sowie, als Folge von LY bzw. L*, weitere Momente: M* = LYHg bzw. MY = L*Hg.

3.1.2 Hubschrauber mit Rotorpaaren
Die Vorgehensweise verdeutlichen wir ausfiirlich am Beispiel der

Querrudersteuerung des F1282;

sie erfolgt simultan-zyklisch, g = 7/2 und ist dadurch, dafl die gesamte Vektorgeometrie in eine
durch die Rotorachsen gehende Ebene féllt, mit einer ebenen und damit iibersichtlichen Analyse-
Skizze anschaulich zu machen; wir blicken von hinten in Richtung der x-Achse.

Wegen 6, = 0 sind die beiden Luftkraft- und Momentenvektoren jeweils gleich lang, erzeugen aber

. o Tz infolge der unterschiedlichen Winkel gegen die z-Achse
TAL ¢ (rechts B+ 6, = B4, links 8 — &, = B_) unterschiedlich
: lange Projektionen auf die y- und z-Achse. Aus der Skizze
liest man ab:

LYy = —fLysinBy, M{= —fMysinpB,

. Li=  fLocosfy, Mi=  fMycospy

< ME 2129202 Y Ly = fLosinfB_, MJ= —fMysinf_

? ' Li = fLocosB_, Mj;= —fMycosf_

HS (Komponenten in x-Richtung treten nicht auf)
L S

Die Berechnung verlduft grundsétzlich wie oben:

1.Schritt Als erstes miissen wir ag bestimmen, und zwar so, daf die erste Gleichgewichtsbedingung
erfiillt ist; dazu ist o in fL() auf o zu iterieren, so dafl L + L5 = G|

2.Schritt Mit den nun bekannten fLo und fMy kénnen LY ,, MY, und MY, berechnet werden.

3.Als letzten Schritt kombinieren wir (unter Beniitzung der Additionstheoreme der Winkelfunk-
tionen) diese Werte zu den gesuchten Steuermomenten:

a) M7{ und M3 summieren sich zu einem Giermoment: Mgier = ... = —2f My sin 5 sind,
b) L{ und L3 produzieren mit den Hebelarmen Z/2 ein Rollmoment:
Mpou1 = —(Lf — L3)2 = ... =2fLg sinB sind, %
¢) Die Querkraftsumme LY = LY — LY = ... = 2f L cos Bsind, ist in den um die Strecke Hg

unter dem Rotorkopf gelegenen Schwerpunkt zu verschieben. Daraus folgt (s. Abschn.1.1)
ein zuséatzliches Moment; hier ist es ein Rollmoment LY Hg, sodafl das gesamte Rollmoment
Mpou = Mpouy + LYHg = ... =2fLo(sin % + cos BHg)sind,  betragt.

d) MY und MY summieren sich zum Brutto-Nickmoment: Myex = ... = —2f M sin 3 cos d,
Das bereits in Abschn.1 erwdhnte, schon ohne jeden Steuereingriff vorhandene inhdrente Nickmo-
ment folgt mit §, = 0 sofort als M;ny = —2f My sin 3, sodaf der gesteuerte Anteil

Mpier — Min = 2f My sin B(1 — cosd,) .

Der ”Rest”

Die drei Steuerfille des Koaxial-Hubschraubers sind nach dem oben ausfiihrlich dargestellten Prin-
zip derart einfach zu behandeln, dafl wir sie nicht zu zeigen brauchen.

Die restlichen 4 x 3 = 12 Félle (Tandem und Flettner) lassen sich dagegen nur mithilfe perspektivi-
scher Analyse-Skizzen anschaulich machen und erfordern triviale, aber umfangreiche Kleinarbeit;
die Darstellung wiirde den Rahmen der Arbeit sprengen. Als Hinweis ist eine Sammlung von
Analyse-Skizzen im Anhang A3 zu finden.

Die Zusammenstellung aller resultierenden Formeln dagegen ist in der folgenden Tabelle gegeben,
gefolgt von graphischen Darstellungen.
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3.1.3 Zusammenstellung der Krifte und Momente

Fiihrt man die beschriebene Prozedur mutatis mutandis fiir simtliche Falle durch, so erhélt man
fiir die gesteuerten Grofien (ev. vorhandene inhirente Nickmomente sind in der jeweiligen Kopfzeile
vermerkt) die folgende Tabelle. Die mittlere Spalte enthiilt die Kraftkomponenten; die letzte die
gesteuerten Gier-, Roll- und Nick-Momente.

l EinRot

| LY = fLuo

Mir = —fLroHu, Min = fMmuo

Seitenruder; Heckrotor

LY = fLuy — L}

Mgier = —(fLuy — fLuo)Z
Mgou = —(fLu+ — fLuo)Hu
Mnyick = fMuy — fMmuo

Querruder; zykl (o = 7/2)

LY = —fLosiné,

Mpou = fLosiné.Hs — fLyoHnu
MNick = —fMo sin5Z

Hohenruder; zykl (o = 7)

L® = fLosind,

MRoll = fMo sin(SZ
]\4}\71‘51C = fLo sinész

l Koax

Seitenruder; diff-koll

Mgier = AM

Querruder; sim-zykl (Yo = 7/2)

LY = —2fLgsind,

MRoll = 2fL0 sin (5sz

Hohenruder; sim-zykl (o = )

L” = 2fLosind.

MNick = 2fL0 sin 5zHS

CHA47

Seitenruder; diff-zykl (o = 37/2)

MGier = fLo Sil’l 5zZ
Mpgonu = fLosind.(Hs2 — Hs1)
MNick = 2fM0 sin (52

Querruder; sim-zykl(yo = 7/2)

LY = —2fLosino.

Mpgou = fLosind. (Hs2 + Hs1)

L* = ALsin 6y

Hohenruder; diff-koll Mgier = =AM
Mpyick = ALZ
l E/KMAX [ M;ny = —2f My sin 3
Seitenruder; diff-koll + diff-zykl Maier = XLsind, 5+ AM cos 3cosd,
(o = 7,0, = Ok) LY = —ALsin 8 cos 0y Mpou = ALcosé,(sin BHg — cos B%)

+Y M sin d,
Mpyick = ALsind,Hs — XM sin 3 cosd,

Querruder; sim-zykl (o = 7/2)

LY = —2fLocosfBsind,

Mcgier = —2f My sin Bsind,
Mpou = 2fLo(cos BHs + sin BZ) sin 4.
Mnick = —2f Mo sin S cosd,

Hohenruder; sim-zykl (o = 7)

L® =2fLopsind,

Mpick =2fLosind,Hs — 2f My sin S cosd,

OKMAX

M;n = —2fM0 sin 5

Seitenruder; diff-koll 4 diff-zykl
(tho = m,0= = dk)

LY = —ALsin 3 cos d

L* = ALsin d;

Mgier = AM cos 0, cos f + X Lsind, 5

Mpon = AL cosd.(sin BHs — cos BZ)
+YM sind,

Mpick = ALsin§,Hs — XM sin 5 cos d»,

Querruder; sing-zykl (¢ = 7/2)
(kurveninnerer Rotor)

LY = —fLo(sin S+ — sin 3)

Mgier = fMo(cos B+ — cos B)

Mrou = fLo((sin B —sin B)Hs
—(cos B+ —cosB)%)

Mnick = —fMo(sin B+ + sin 3)

Hohenruder; sim-zykl (o = 7)

L* =2fLgsind,

Mpick =2fLosinéd,Hs — 2f Moy sin S cosd,

F1282

Ml'N = —2fM0 sin /3

Seitenruder; diff-koll

LY = —-ALsinfg

Mgier = AM cos 8
Mpgou = AL(sin SHs — cos 6%)
MNick' == XM sinﬂ

Querruder; sim-zykl (o = 7/2)

Ly

—2fLocosfBsind,

Mgier = —2f My sin 8sind,
Mpou = 2fLo(sin 8% + cos BHs) sin 4.
Mnick = —2f Moy sin 5 cosd,

Hohenruder; sim-zykl (o = )

L* =2fLosind,

Mpick =2fLosiné,Hs — 2f Moy sin S cosd,

Die Formeln dieer Tabelle gelten fiir den allgemeinen Schrigflug, also beliebige Werte von U, W.

In den Abschn.3.2 und 3.3 beschrinken wir uns aber auf den reinen Vertikalflug mit U = 0 bzw.

w’ =0, sodaB in (2.1:4) und (2.1:5)
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3.2 Graphische Darstellung

Eine vollstéindige, umfassende Darstellung der Steuerungsmomente der drei Typen mit bis zu drei
Momenten fiir jede der drei Steuerungsarten in Abhéngigkeit von je zwei Steuerwinkeln verbietet
sich aus Platzgriinden; wir beschrinken uns daher auf eine Auswahl.

Die Zahlenwerte der berechneten Momente variieren sehr stark entsprechend den Unterschieden in
Gewicht, Abmessungen und Bauart. Es liegt daher nahe, nach einer passenden Normierungsgrofie
(mit der Dimension KraftxLénge) zu suchen, um die Ergebnisse auf eine gemeinsame Basis zu
reduzieren:

Wir benutzen als ”Normalmoment” das Produkt My, = m Frn?21073: damit sind nicht nur
Gewicht G = m g, Rotorhalbmesser R und Drehzahl n beriicksichtigt, sondern auch noch der bei
einigen Typen vorhandene Achsabstand Z.

Die folgenden Abbildungen zeigen die Umsetzung der Formeln in Diagramme M. /My = f(9) fiir
die spezifizierten Typen, und zwar fiir Steuerwinkel g, d, von 0 bis 3°.

Die Darstellung hat Matrix-Form:
die Hauptdiagonale enthélt die mit dem jeweiligen Ruderaussschlag gewiinschten Nutzmomente,
in den Nebendiagonalen stehen die Nebenwirkungs- (oder Kopplungs-)Momente.

EinRot Gieren Rollen Micken
Seitenruder  [MB[HO FR|HO THN|AHD : Mo
H H ¢ MM
ol H Liyg-3
kolly 1 B.0z N aky +3 1 / ,
#bszisse 'Sku grd grdi rd: ___,/ 20#MiN
4 + + e Houii
: H i 3
10#HMiR

Auetruder MR.~H0 FH|~HM0 ard

: +3§ ai0H
zukl : H. 1 o . H Elufu]
’ ; d 4 1 BOwha0
Pofm=to2 O Af -F f_i dRH.A0

Abszisse dz + * ? 3 Houid

Hoehenruder ENR -0 HMM[-HMO
| H +3

zukl, f. 02 H. 1

Walm=1 O rd ard
; : 4 4

fbszisse dz

MO = 8.7 Hm |
wil= 3.5 m-s !

___________________________________________________________

Der Normalhubschrauber hat in allen drei Steuerungsarten Nebenwirkungen: maximal ca.10% des
Nutzmoments beim Seitenruder und ca.25% bei Quer- und Hohenruder; ihre Stirke hiingt von der
Vertikalgeschwindigkeit ab.

Das Querruder-Rollmoment hingt geringfiigig von W ab.

Die schon in den Abschn.1.1 angesprochenen inhdrenten Krifte und Momente sind in dem kleinen
Diagramm rechts oben neben dem Hauptdiagramm angegeben; sie sind allesamt null im realen
Autorotationszustand, da dort das Riickwirkungsdrehmoment verschwindet — s. die Formeln im
Abschn.3.1.4.

Das darunter stehende kleine Diagramm stellt einige Winkel dar:

den Heckrotor-Anstellwinkel aor, die Anderung des Hauptrotor-Anstellwinkels A und den Zustromwin-
kel 6r des Heckrotors.
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Koax
Seitenruder

diff-kaoll
Abszisse b

Quetrruder

=im—zykl
Yoim=1-2
Abszisse b2

Hoshenr uder

sim—zykl
Yolm=1

fibszisse bz

CH47

Seitenruder

diff-zykl
LPD,."]'[: 1.2

fbszisse bz

Husrruder

sim—zykl
Yoim=1.-2

Abszisse bz

Hoshenruder

diff-koll

fbsziz=e &)

[N ]
o
2

F1282

Gieren

Rollen Micken

ME}-MO

oid=+3

Seitenruder

diff-koll
fibszis=se 5k

Der  koaxiale

Auerruder

=im—zykl
'.PDIT[: 1.2

fib=zi=s=ses 52

Hoehenruder

sim—zykl
Poim=1

Abszisse &2

MO =11.1 Hm
wild= 4.2 mrs=s

: HMRJ-MO : !
: : vollkommene Nebenwir-
: 0.1 o
: kungsfreiheit aus;
: rd H . .
! 3 : die Giersteuerung unter-
: i liegt der Steuerumkehr
(s. Abschn.3.3.1).
: : FHLTI0
0.1
00 ;
: : +
Gieren Rollen Micken
HS}-HO
1 .
grd .
3 : Die Tandem-Anordnung
: weist zwei von
Vertikalgeschwindigkeit
r H abhéngige Nebenwir-
kungsmomente
: das Nickmoment
O : Seitenruderausschlag
: erreicht max. 25%
: Nutzmoments,
e L H Giermoment bei Hohen-
MBT0 M0 ruderausschlag max.
R : 50 +3 10%.
rdi O rd
: 4 4
: Mot G2t
Gieren Raollen Micken brutta gesteusrter Anteil
MG} MO FMRbHD SMNEMO : CHN—Hi ND MO :
HeAid=+3 ' H H
1 0.5 {01 : 0,002 :
grd grd: ard! grd!
4 \ 41 4 4]
soFroel meetmrooosneesoossoeeoooooo :
ME}HO HR) MO FMp T : CHH-MENDMD
P oloio 0.2 lo.1 0.0002
gr-d _,__.-—-—"'"""_'_—r gr-d grdi rdi
: + 4+ 41 41
| = a a
: : MMM CMM=MiN2 MO
i i o2 0.1
O O grd / grd

Rotor
zeichnet sich durch eine



OKMAX

Seitenruder

diff—koll+
diff-zykl

Yoim=1
fibszisse &,
z=dk

Auerruder

=ing-zykl
Yoim=1.z
Abszisse &2

Hoehenruder

sim—zykl
Poim=1

Abszisse &2

MO =4.5 EMNm

Gieren Rollen Micken brutta gesteusrter Anteil
MGEMO Heoail=+3 MREMO TMM]H0 CMN-MiM» ~MO
P— : +3
3 2 1 : 0. 25
. : :
grd grd grd: grd:
AT et 4 4
i Sy : :
n—o—'—'_'_'__'_'_
n—o—'—'_'_'__'_'_ +3
HERHD MR T SM-HiM M0 :
: — :
0,03 0.2 1 0. 25
grd grd grdi rdi
4 I 4 4
— : +3
| :
L :
........................ I S,
”“:E_,-——f’ = ¢ FIN=Fi M2 M0
O O ard ard
—" !
;)—f“:fi_——f +3

wiO=7. 45 mss |

icken.-brutto gesteusrter Anteil
Mick
Seitenruder uln] CHH=MiM2 MO
dif—koll+ %/ i o2 :
diff-zykl +§rdi grd!
Yoim=1 S ot i
fibszisse &,
dz=dy :
Guetruder HEEHMD MREHO MHFHMO CHH-MiM» MO
: ] 2 i
sim—zgkl 0, 005 0.2 0.1 i 0. 0002 i
Yoim=1.-2 grd grd grd: rd:
Abszizse b2 * + + +
+3 +3
Hoehenruder MHEH0 CHH-MiNL M0
sim-zykl 0.2 0.1
Poim=1 O O +gt’d grd
fib=zi=s=ses 52 + +
MO = &.3 Hm
wild= 3.6 mss | i

Die Flettner-Typen zeigen die meisten, stirksten und variabelsten Nebenwirkungen.

Das Bild wird vor allem durch das inhdrente Nickmoment kompliziert; es ist weit stéirker als die Nutz-
momente. Da es nicht von den Steuerwinkeln 6z, . abhingt, kennzeichnen wir seine Grofle nur auf der
Mn-Achse mit kleinen Quadraten, von denen dann das gesamte (”Brutto-”) Nickmoment Mpyick (k)
ausgeht.

Der reine gesteuerte Anteil ist in einer rechts neben dem eigentlichen Diagramm wiederholten 4.Spalte im
jeweils passenden grofleren Mafistab dargestellt.

Besonderheiten der Typen OKMAX und EMAX sind erstens die zusétzliche differentiell-zyklische Seiten-
ruderansteuerung bei der Giersteuerung und zweitens die sing-zykl Rollsteuerung beim OKMAX.

Das AusmaB des Zusammenwirkens zweier voneinander unabhéngiger Steuerwinkel ist aus den abgeleiteten
Formeln nicht abzuschétzen und ihre Darstellung in Diagrammen wiirde hier durch das Auftreten von
Kurvenscharen anstelle einzelner Kurven uniibersichtlich. Wir haben deshalb im obigen Diagramm nur
den speziellen Fall §, = §x beriicksichtig und gehen erst im Abschn.3.4.2 niher auf das Grundsétzliche ein.

3.3 Besonderheiten
3.3.1 Einflu3 der Vertikalgeschwindigkeit, Steuerumkehr

Wie schon oben bemerkt, zeigen einige Einzeldiagramme M. (§...) eine starke Abhéngigkeit von der Ver-
tikalgeschwindigkeit W, andere dagegen nicht.
Das hat sowohl eine Ursache als auch Folgen.
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Ein Vergleich mit den Formeln in der Tabelle zeigt, dafl nur die Momente mit M-Anteilen diese Abhéngig-
keit zeigen. Dies ist folgendermaflen zu erkldren:
1. Wie oben beschrieben, ist der erste Schritt bei der Bestimmung der Krifte und Momente die
Erfillung der Gleichgewichtsbedingung; dadurch werden die Luftkraftkomponenten L? auf
das Tragen des Gewichts G fixiert, sodafl auch L*, LY unabhéngig von W bleiben.
2. Die aus der Umfangskomponente L* herrithrenden Momente dagegen sind stark von W abhingig:
wie in Abschn. 2 hergeleitet ist M = const(ca sindr + c¢p cosdr); mit ¢cp < ca und sindr =~ g
folgt M = const dr, und da dr stark von W abhingt, ist damit das Phdnomen erklirt.

Die fast ausnahmslos auftretende Folge dieser W-Abhéngigkeit der M —basierten Momente ist der
Nulldurchgang des betreffenden Moments, s. z.B. das Teildiagramm EMAX /Seitenruder/Gieren:

Ausgehend vom Schwebefall (W = 0, blaugriine Kurve) wird mit zunehmender Sinkgeschwindigkeit die
Wirkung des Seitenruderausschlags pro Grad immer geringer und (und zwar im Zustand der idealen Auto-
rotation) schlieBlich null. Bei noch hoherer Sinkgeschwindigkeit geht sie dann zunehmend ins Negative: die
Reaktion des Gerits auf einen Steuerausschlag erfolgt in der ”falschen” Richtung, d.h. die Steuerwirkung
kehrt sich um — ein Umstand, der sich in der bei schnellem Sinken sowieso meist stressbelasteten Situation
verhéngnisvoll auswirken kann.

Das L-basierte (Nebenwirkungs-)Rollmoment dagegen bleibt unbeeinflufit.

3.3.2 Der Flettner-Rollfaktor

Zusétzlich zu den schon erwdhnten zeigt die Seitenruder-Steuerung der Flettner-Typen noch eine im Flug-
betrieb aufillige Besonderheiten, die aus der differentiell-kollektiven Ansteuerung stammt:
Wie aus der Tabelle ersichtlich entstehen hier (und zwar infolge der unterschiedlichen Luftkréfte: Ly #*
[72) aufler dem gewiinschten Giermoment Mgier = AM cos 8 und dem inhérenten Nickmoment noch
zwei Nebenwirkungs-Rollmomente, die von den unterschiedlichen Komponenten LY und L* herriihren:
Mpouiz,y = ALsinBHs und Mgoui,- = —ALcos [3% ,
sodaB insgesamt  Mpgoy = AL(sin SHs — cosﬁ%) = ALcos BHg(tan 8 — Z—/SQ) .
RotorZ : Rotorl

R Der in Klammern stehende ”Flettner-Rollfaktor” ist durch die Konstruktion fest-
gelegt und kann theoretisch Werte iiber oder unter Null annehmen.
Wie man aus der Skizze abliest, ist er null, wenn sich die Rotorachsen auf der

Symmetrieebene genau im Schwerpunkt (bzw.auf Schwerpunkthéhe) schneiden,
z/2
Gl

HS

E denn dann ist tan g = S
Liegt dieser Schnittpunkt hoher als der Schwerpunkt, so ist der Rollfaktor (und
damit Mgy ) negativ: das Geréit kringt * zum Kurveninnern,
liegt er tiefer, so hiangt wegen Mpou > 0 das Gerit (gefithlt ”falsch”) nach aufen.

=

ngmJebene
1

%Der Ausdruck ”kringen” stammt aus dem Schiffsbau.

Setzt man die entsprechenden Konstruktionsdaten (s. Abschn.4) ein, so erhilt man
| EMAX | KMAX | FI282 | OKMAX
Rollfaktor || -0.084 | -0.093 | -0.188 | -0.211

Das Nebenwirkungs-Rollverhalten der hier untersuchten Typen ist also sehr unterschiedlich, aber stets
physiologisch richtig nach innen.

3.3.3 Das inhirente Nickmoment

{ Mui/Muio (austariers In Uberleitung zum nichsten Abschnitt stellt das Diagramm das
] inhdrente Nickmoment M,y = —2fM,sinf in Abhéangigkeit von
Horizontal- und Vertikalgeschwindigkeit dar, bezogen auf das Nickmo-
ment im Schwebeflug.

Es zeigt klar, dafl ein Austarieren (z.B. durch eine Schwer-
punktverlagerung) auf den durch den dicken Punkt markierten Schwe-
befall U =W =0 bei weitem nicht ausreicht:

sowohl im Steig-/Sinkflug, U ~ 0, als auch beim Ubergang zum Hori-
] zontalflug mit W0 treten Abweichungen in der Gréflenordnung Eins
-1 0 1 5 P 4 auf — extrem kritisch ist das Verhalten im Schrég-Sinkflug!

04

Auf jeden Fall ist also ein Aussteuern des Nickmoments zwingend erforderlich; auf einige der verschiedenen
Mboglichkeiten hierfiir gehen wir im néichsten Abschnitt anhand eines Einzelfalls (EMAX) ein.
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3.4 Schrigflug
3.4.1 Allgemeines

Die Beriicksichtigung der Horizontalkomponente U und damit der vollen Formen von (2.1:6) und (2.1:7)
scheint zundchst die Berechnung erheblich zu komplizieren. Da jedoch, wie im Abschn.2.4.2 nachgewiesen,
die Auftriebsschwankungen vom Schlagen der Bldtter kompensiert werden, geniigt es weiterhin, mit den
Mittelwerten (den 0.Gliedern der Fourier-Reihen) zu rechnen, also A, = D, = 0 zu setzen. Damit lassen
sich jetzt alle Rechenprogramme aus dem Abschn.3.1.4 entsprechend modifizieren, insbesondere tritt an
die Stelle der GIn.(1.2:6)...(1.2:8) die Glauertsche Lésung nach G.(1.3:5).

Aus der Schwierigkeit, nun mit U eine weitere Variable darstellen zu miissen, hilft die folgende Beobachtung:
die Diagramme fiir den Vertikalflug —s. Abschn.3.2 — zeigen, daf fast alle Nutz- und Stérmomente linear von
den Steuerwinkeln d; und 0. abhéingen; mit anderen Worten: die Steuerempfindlichkeiten dMa r,nN /ddr, -
sind in guter Ndherung konstant; wir setzen (Kleinwinkelndherung!) einfach dM/dé ~ M (1 grd). Anstelle
von drbzw.J, ist jetzt also U die Abszisse und die Steuerempfindlichkeiten sind die Ordinaten; W fungiert
weiterhin als Parameter.

Als erstes Beispiel steht hier der Tandem CHA47 — sein Steuerungsverhalten ist wenig eindrucksvoll:

CH47 Gieren Rollen Hicken wie schon das
__________________________________________________________ Vertikalflug-
Seltenruder CMEAM0s ~ged CHE-HMOs grd E(H M0 ~grd Diagramm
diff-zykl 2= 10.25 Poto.o1 nahelegt, sind
W12 R die meisten
m=1.- :
= + I + 4+ Ui Momente fast
: oder ganz
unabhéngig
Querruder i _ CME.MO3 . grd von Uund W;
i Parameter H= -1 los die zwei Aus-
sim—zukl E nahmen sind
Yoim=1-2 O E 0 O gréBenord-
: nungsméafig
(2%) im Ver-
broomossoeino : gleich mit den
Hoshernruder CHEAHMOD-grd H CHEAHMO02 -grd v .
: : zugehorigen
diff—koll T0.2 Nutzmomen-
—— i O I — ten vernach-
/=- m— U * U lassigbar.
Ganz anders verhéilt sich der Flettner-Typ:
EMAX Gisren Rollen Micken-brutto
Seiterruder [CHESMON - grd CHRMOs ~grd MM A grd
: 0. 11 +0.1 : s = —
diff—koll+ :
diff—zykl - N
Pofm=1 4 U 4 U} 4 U
Sp=d==1lard I —
Querruder WHEAMO2 cqrd CHPMOD ogrd CHRLMOD 2 grd
sim—zukl ! to.ooos {0,085 fo.0z
Poim=1.-2 : . . . . . . . . .
I S 0| L
P : CMy-MO3 - gr d
Hoshernr uder ! parameter W= —1 : =]
=im—=ykl a. D&;f . T
e 03O
S-=1grd 4 4+ U

den wir deshalb im Folgenden genauer untersuchen wollen.
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3.4.2 Spezielle Eigenschaften der Flettner-Typen

Wie schon das entsprechende Diagramm fiir den Vertikalflug im Abschn.3.2 zeigt, werden die Gier- und
Nickmomente stark durch die Vertikalkomponente W beeinflut; dies wirkt sich, wie Wieland[14] ausfiihr-
lich dokumentiert, vor allem im Autorotationsbereich stark auf das Flugverhalten aus.

Als erstes vergleichen wir im folgenden Diagramm die rein differentiell-kollektive Giersteuerung (z.B. F1282)
mit der differentiell-zyklischen (z.B. im Kaman KMax zusdtzlich verwendet).

Das folgende Diagramm stellt in der unteren Reihe den erstgenannten Fall dar, in der oberen den differentiell-
kollektiven Gegenpart. Bei den Nickmomenten sind nur die gesteuerten Anteile enthalten; die inhéirenten,
die fiir alle Flettner-Typen die gleichen sind, sind weggelassen.

Uergleich Gleren Rollen Micken

S N . Das Gier-Nutzmoment
Seit d MG grd C MR grd CHRLAMO2grd ;
ELLLEE A ? ! ? v der differentiell-zyklischen

Il 101 1.2 i Steuerung ist also im Ver-
. = i gleich mit der differentiell-
diff-koll | I

5, =lgrd : ; kollektiven um den Faktor

TS i fiinf bis zehn kleiner, dafiir
f . aber konstant, sein Stor-
W= == ,

Rollmoment ist praktisch

e nrn e : Die Stor-Nickmomente

-1, 45 i beider Typen sind gleich

-1.35 i und fallen daher bei der
07 0.1 0.2 i differentiell-kollektiven

- e — L .  Steuerungsart weniger

glzifqu.%kl 1 1 1_ ' ins Gewicht als bei der

differentiell-zylischen.

Von besonderem praktischen Interesse sind die Gier-Steuerempfindlichkeiten im Landeanflug, also im
Schrig-Sinkflug innerhalb oder nahe des Autorotationsbereichs.
Der Schrag-Sinkflug ist gekennzeichnet durch die Bahnneigung e gegen die Horizontale zusammen mit der
Bahngeschwindigkeit Vg als Parameter; diese ist im folgenden Diagramm fein unterteilt (s. die Legende).
Wir stellen vier verschiedene Kombinationen von 6y : §. vor (v.ln.r.):

o die "gutmiitigste”, am leichtesten zu fliegende Variante,

o die dem Original Kaman K-Max im normalen Flug entsprechende,

o dieselbe in einem Ubergangsgebiet zur Autorotation, und

o die im F1 282 ”Kolibri” eingesetzte.

EMAX Bemerkungen:
Seitenruder  |"" aal e el 1.Zeile: Der dominierende
| | | | Anteil der Nutz-Steueremp-
?i{f{f_—izlklf 0. 3 0.3 0.3 0.3 findlichkeit ist ox.
Polm=1 1 1 1 1 Im Bereich der Autorotation
Yy = 0.21 0. 2-% 0.2 0.2 tritt  die  flettner-typische
2 1 1 1 1 abrupte Anderung der Seiten-
o Sch?;e?aen f.11 0.11 8.1 8.1 ruder-Steuerempfindlichkeit
e ] | e ] c ‘.t.)el kleinen N'elgungsw%nkel—
B e S e I I T dnderungen in Erscheinung —
Spihy = 04 24 4 41 4 4.0 in auflerhalb liegenden Berei-
) chen ist das Verhalten weitaus
Wk, mwsamr meoDozs ROD oSS RCSET guimitiger.
2.Zeile: Das Stor-Rollmoment
0.4 e 0 e a 4_ﬂrﬂ,__ o] e ist nahezu konstant, sodafl wir
ikl o2l 0.2] 0.2l 0.2] es nur mit einem Zahlenwert
Yoim=t 0.2] b ——— 0.5 0.2] angeben.
&1 £ o oo f oM . 3.Zeile: Das Stoér-Nickmoment
M e T amas T ramemis e steigt nahezu linear mit dx.

Die Folgerungen fiir die Flugpraxis, insbesondere fiir das zu empfehlende Verhalten im Landeanflug, sind
in [14] ausfiihrlich beschrieben.
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4 Zahlenwerte

e Erdbeschleunigung g = 9.81m/s?, Luftdichte ¢ = 1.275kg/m?>

e Konstruktionsdaten
(alle Rotoren sind zweifliiglig)

[ “ EinRot [ Koax

CH47 | EMAX | KMAX | FI282 | OKMAX

l

Gewicht G N 53.96 78.5 24500 56.9 93.2 9810 26683
bezw. Masse m kg 5.5 8 2500 5.8 9.5 1000 2384
Rotorradius R m 0.76 0.76 9.15 0.71 0.76 6.0 7.37
Ry m 0.14 . : : . : .

Blatttiefe T m 0.06 0.06 0.8 0.05 0.06 0.29 0.45
Tu m 0.03 - - - - - -

spezif.Blattmasse oB kg/m 0.339 0.339 - 0.339 0.339 6.67 14.6
OBH kg/m 0.07 - - - - - -

Achsabstand Z m 0.927 0 12 1.54 0.165 0.589 1.600
Achsspreizung 2% f © - 0 0 12 12 12 12.5
Drehzahl Hauptrotor DS M s 1 30 25 2.5 25 25 2.97 2.97
" Heckrotor TPSH s 1 150 - - - - - -
Schwerpunktabstand Hs m 0.2 0.28 2.83/5.892) 0.26 0.27 0.75 1.85
Schwerpunktvorlage Ts m 0 0 0 0.024 0.029 0.078 0.194
Rotorflache Frot m? 1.767 1.815 424.2 1.708 2.003 118.4 188.3
Flichenbelastung G/F N/m? 30.5 43.2 57.8 32.6 46.5 82.9 141.7
ind.Geschw. bei W=0 wi0 m/s 3.46 4.12 4.76 3.57 4.27 5.70 7.46
Schwebe-Anst.winkel Q.0 © 1.41 1.42 1.91 1.52 1.69 5.32 5.03
Lock-Zahl A 3.650 2.762 2.009 2.762 2.612 4.978
Blattspitzengechwindigkeit QR =2mny R m/s 143.26 119.38 143.73 115.53 119.38 111.97 137.53
' normiert Q = QR/W;o 41.4 29.0 30.2 31.2 28.0 19.6 18.5
Blattiefe normiert T/R 0.079 0.079 0.087 0.070 0.079 0.048 0.061

1 =Achsabstand Hauptrotor-Heckrotor 2):Schwerpunktabstand Bugrotor-Heckrotor

In den Beispielrechnungen verwendete generische Werte: Q= 25,0 = bms 1, T =0.1,A =8 .

Erlduterungen:
e EinRot und Koax sind generische Typen.
e CHA47 simuliert den US-Transporthubschrauber Chinook. Die Daten sind z.T. unsicher.
¢ EMAX und KMAX sind von E.Wieland gebaute und geflogene Modellhubschrauber.
e OKMAX ist der Typ Kaman-Aerospace K1200. Der Schwerpunktabstand ist unsicher.

e F1282 ("Kolibri”) wurde von A.Flettner 1940-45 in Serie gebaut. Der Schwerpunktabstand ist unsi-
cher.

e Profileigenschaften (mit a in grd) fiir NACA0012 ("realitdtsnah” 1t. [8]):
Auftriebsbeiwert c4 = 0.1 o , Widerstandsbeiwert ¢cp = (1 + 0.0058a2) 1072 .

A Anhinge

A.1 Zur Fourier-Darstellung

Es ist gelegentlich vorteilhaft, von der Fourier-Reihe 1.Art: F = Z(an cos nY + by, sin ny)
auf die weniger bekannten Formen 2.Art: F, = Z cin cos(nY — Psin) 7cos-Reihe”
oder Fs= Z(czn sin(ny — s2n) 7sin-Reihe”
iiberzugehen. Die Transformationformeln sind leicht herzuleiten:

e fiir F. gilt

c1n cos(nY — Psin) = cinfcosny cos Ysin + sinny sinPsin] = an cosny + by sinny .
Diese Gleichung zerfillt sie in zwei unabhingige Teilgleichungen:
Cin COSYsin = an  und  ci,SiNYs1n = by

sodafl cin =Va3 +b2 und tantsin = bn/a, .
o fiir Fy gilt
Con SIN(NY — Psan) = consin ny cos Ygon — cosn sinthsan] = an cosnyh + by, sinny .
Zerfall: c2n costhsan =b, und consinyse, = —an
sodaB Con = Va2 +b2 und tantse, = —an /by .
Es ist also > (ancosny + by sinni) = > Va2 + b3 cos (ny — arctan(bn /an))
oder =" Va2 + b3 sin (ny + arctan(an /bn)).
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A.2 Niherungslosung fiir \/

Drees verwendet fiir das Scheibenmodell folgende Formel [10]p.160:
x = arctan (U + w; sinv) /(W + w; cosv)) .

darin ist

ke

2(1 = cosx — 1.8w%)/sinx ;

Wie das linke Diagramm zeigt, ist 1.2 k, eine im unteren Horizontalgeschwindigkeitsbereich akzeptable

Néiherung fiir den von uns eingefiihrten, auf die Rotorebene bezogenen Knickwinkel x’ = arctan (U’ /(W' + w;));

eine grobe Niherung fiir U < 1 ist x' = 1.6w’, womit die Verwendung von ¢’ (Abschn.1.4.2, 1.Anmerkung)

gerechtfertigt ist..

30
grd:
&0

EEI-AAY

A.3 Analyse-Skizzen

IJ= 1 2 34
- a0 ; T
[+ ad ard] * [rad
.0 607 " H. 0
I 304
I I:I_ latanl
| 0 1 me2

Das rechte Diagramm
zeigt (mit arctanU ge-
staucht) den Gesamtbe-
reich 0<U < oo:

der  Giiltigkeitsbereich
von X'prees ist also auf
U<4 Dbeschrankt.

Wie im Abschn.3.1.2 angedeutet, sind die meisten Analyse-Figuren, aus denen die Formeln fiir die einzelnen
Kraft- und Moment-Komponenten abzulesen sind, rdumlicher Art, also auf Papier nur als Schrigbilder
darstellbar; sie erfordern vom Betrachter ein gewisses Mafl an perspektivischem Sehvermogen.

Hohenruder (Driicken):

Koax sim-zukl Tandem difi-koll Flettner, KMax
R a5
Lz 2// Ly, 2 Lo =[L3 LT T=L, B LI
p . ;
ff" Mlz Nl L !
Mlz 1 ‘-,I :-'
ol
LT 2 / ‘
* |
Mz e MZ%%
H
=] :
— z =
i, Mz . &5
M2 | =M, sz%
Querruder (rechts):
Koax sin-zykl Tandem sim-zykl
Lz A
12,2\&‘"““ r I Lal Lz
1,2 = M= R Loh
Lé Ls 1 1 -0y
ME i
M
y D M
2 (LY +LEH MY LY o
" £ iH
Mo JME
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Seitenruder (links):

Koax

Mz

diti-koll Tandem diff-zgkl Flettner diff-koll KMax difi-koll + diff-zukl
L, Lz
1 1
L =z ;
' . > A e G Tz LEf™r L2 |_12<.-«
Lz Lo " M Ly ]
My T
62 Mlzhh“‘-a- ;
fi 1
62
]
q
Mg 2 1
SN
iH
5
Mo i3

Ein Vergleich von Flettner vs. KMax spiegelt das experimentell beobachtete komplizierte Flugverhalten
der differentiell-kollektiven + differentiell-zyklischen Giersteuerung wider - s. Abschn.3.4.2 und[14].
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