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Eingrenzung
Zur Berechnung der Bewegung eines Fluggeräts, das durch die mechanischen Eigenschaften Masse,Träg-
heitstensor und äußere Gestalt (=Konfiguration) charakterisiert ist, dient die Flugdynamik ; diese baut auf
den Ergebnissen der instationären Strömungsmechanik auf, die die von der Umströmung hervorgerufenen
Luftkräfte und Momente auf das Gerät berechnet.
Da die Gerätegeometrie i.a. nicht starr ist, bilden Strömungsmechanik und Flugdynamik ein gekoppeltes
System in den vier unabhängigen Variablen x, y, z, t, das (theoretisch:) simultan bzw. (approximativ:)
iterativ zu lösen ist – ein mathematisch und numerisch ungemein anspruchsvolles Verfahren – s. z.B.
Wagner[13].
Bei geringeren Ansprüchen an Tiefe der Einsicht in die Physik und zahlenmäßige Übereinstimmung mit
dem Experiment ist aber auch schon der erste Schritt einer solchen Iteration sinnvoll: die Berechnung der
Kräfte und Momente auf eine fest vorgegebene Konfiguration mittels der inkompressiblen und damit eo
ipso stationären Aerodynamik; dafür sind dann auch drastisch einfachere Strömungsmodelle und Rechen-
verfahren vertretbar: an die Stelle gekoppelter Höchstleistungsrechner tritt der einfache Bürocomputer.

Aufbau
Diese Arbeit befaßt sich mit einem solchen Rechenverfahren. Sie ist folgerdermaßen gegliedert:
Das Berechnungsverfahren bestimmt zunächst die Anströmung des Rotors aus dem Minus-Unendlichen

mittels einer im wesentlichen eindimensionalen Betrachtung, der sog. Strahltheorie (für die eine plausible
Erweiterung vorgeschlagen wird) und,
darauf aufbauend, die Kräfte auf einen Profilschnitt (unter der Annahme einer zweidimensionalen Strö-
mung) und deren Integration über die Blattlänge mittels der sog. Blattelementtheorie.

Daran schließen sich analytische Untersuchungen von Genauigkeitsfragen, der Darstellung von Kenn-
größen und dem Verhalten eines Einzelblatts im allgemeinen Flugzustand an.

Die Anwendung auf Rotorsysteme befaßt sich mit der Berechnung der Kräfte und Momente auf Sys-
teme von mehreren Rotoren (fast jeder Hubschrauber besitzt zwei Rotoren, auch der sog. Normal-
hubschrauber mit Haupt- und Heckrotor), denn ein solches mehrrotoriges System zeigt außer seiner
Hauptaufgabe, Auf- und Vortrieb zu erzeugen, noch z.T. gänzlich unerwartete Nebenwirkungen. Dies
wird an mehreren Beispielen gezeigt, hauptsächlich durch Diagramme der Steuer- und Stör-Momente.

Formelzeichen
%;x, y, z Luftdichte; Vorwärts-, Backbord-(=nach links gerichtete), Aufwärts-Koordinate
r, ψ Polarkoordinaten: Radius, Azimut (Umfangswinkel; ψ = 0 auf −y-Achse)
%B , J,Λ Massenbelegung des Blattes, Trägheitsmoment, Lock -Zahl
R,FR,ΩR Rotorhalbmesser, (gesamte) Rotorfläche, Blattspitzengeschwindigkeit
n, T,A,D, cA, cD Blattanzahl, Profiltiefe, Auftrieb, Widerstand, Koeffzienten
ν Kippwinkel der Rotorebene im Vorwärtsflug (positiv nach vorn)
κ Schlagwinkel eines Blattes aus der Rotorebene (positiv nach oben)
χ, χ′ Abweichung der Strahlrichtung von der z- bzw. Rotorachse
U,W Vorwärts-, Aufwärts-Geschwindigkeit des Geräts
wi, wi3 induzierte Geschwindigkeit in der Rotorebene bzw. weit stromab
wN (=wi +W ), wT Geschwindigkeit senkrecht bzw. tangential zur Rotorebene
w3(=wi3 +W ), u3 Betrag bzw. x-Komponente der Strahlgeschwindigkeit weit stromab

Normierungsfragen

In dimensionierten Gleichungen werden alle vorkommenden Größen, auch cA und cD, mit einer Tilde ˜

gekennzeichnet; in dimensionslosen sind sie mit Normierungsgrößen dividiert. Diese sind

◦ für Längen: der Rotorradius R [m]

◦ für Kräfte: das (Gesamt-)Gewicht des Geräts G [N bzw. kgm/s2]

◦ für Geschwindigkeiten: die in der Rotorebene induzierte Geschwindigkeit im Schwebezustand

w̃i0(U=W =0) [m/s] – s. hierzu Abschn.1.2.1 !

◦ die normierte Blattspitzengeschwindigkeit ΩR/w̃i0 bezeichnen wir mit Ω̂

◦ die Zeit ist keine Variable der stationären Strömungsmechanik. Sie tritt nur im Abschn.2.4 auf.

◦ c̃A und c̃D sind zwar dimensionslos; wir ”normieren” sie trotzdem, und zwar mit 2π, dem theoretischen

Wert von dc̃A/dα für die angestellte ebene Platte. N.B.: dc̃A/dα =: c̃′A wird üblicherweise auf Winkel-

grade bezogen; in mathematischen Ausdrücken ist es daher auf das Bogenmaß umzurechnen!
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1.3 Die Strahltheorie des Schrägflugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Berechnung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Graphische Darstellungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Modellierung der Strahltheorie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.1 Vom Scheibenmodell zum Trichtermodell: Vertikalflug . . . . . . . . . . . . 9
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3.3.3 Das inhärente Nickmoment . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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1 Das Berechnungsverfahren

1.1 Kräfte und Momente

Die von einem einzelnen Rotor auf ein Fluggerät ausgeübten Kräfte und Momente sind

• die im Schwerpunkt des Geräts senkrecht nach unten wirkende Gewichtskraft G,
• die von den umlaufenden Blättern erzeugte Luftkraft ~L,
• ein Drehmoment ~M , das als Rückwirkung des Rotors auf das Gerät infolge des Luftwider-

stands der Blätter entsteht, und außerdem
• der auf den Rumpf wirkende Luftwiderstand.

Alle diese Elemente sind Vektoren, die man anschaulich durch einen Pfeil entsprechender Länge
und Richtung darstellt; Kräfte wirken in Richtung des Vektorpfeils, und für Momente gilt die sog.
Korkenzieher-Regel: blickt man in Richtung des Vektorpfeils, so erfolgt die Drehung ”rechtsherum”.
Außerdem ist zu beachten:
• ein Kraftvektor ~K ist an seine Wirkungslinie gebunden (er ist nicht ”frei”, sondern nur

”linienflüchtig”); beim Seitwärtsverschieben um einen Streckenvektor ~a entsteht ein zusätz-

liches Moment von der Größe ~M = ~K × ~a. Dieser Umstand ist wichtig, da wir die Kräfte
am Rotorkopf berechnen werden, während sie letztlich als im Geräteschwerpunkt angreifend
gefragt sind.
• Momentvektoren dagegen sind ”frei” und können beliebig parallel verschoben werden.

Wir beschreiben die auftretenden Kräfte und Momente in einem gerätegebundenen Koordinaten-
system aus Längs-, Quer- und Hochachse; die Komponenten sind:

Lx Vortriebskraft, Mx Rollmoment
Ly Querkraft, My Nickmoment
Lz Auftrieb, Mz Giermoment,

jeweils positiv in Richtung der zugehörigen Achse.
Die Vertikalgeschwindigkeit W des Geräts ist positiv in Richtung
der z-Achse, die Horizontalgeschwindigkeit U zeigt in Richtung der
x-Achse. Eine Quergeschwindigkeit betrachten wir generell nicht.

Wenn das Gerät ohne jede Beschleunigung steigen, schweben oder sinken soll, muß die Summe
aller (im Schwerpunkt wirkenden) Kräfte und Momente null sein:

1) Lz = G d.h. der Auftrieb muß das Gewicht tragen (”Gleichgewichtsbedingung”);
2) Lx = Ly = Mx = My = 0 d.h. die Horizontalkräfte und -momente müssen verschwinden;
3) Mz = 0 d.h. das stets vorhandene (aus dem Luftwiderstand der Blätter resultierende)

Rückwirkungs-(Gier)moment ~MGier des Rotorsystems – also aller Rotoren – muß durch ein
gleichgroßes, entgegengerichtetes Moment kompensiert werden.

Beim Normal-Hubschrauber mit einem Hauptrotor setzt man für die Erfüllung der Bed.3) einen
Heckrotor ein, der allerdings einen Teil der zur Verfügung stehenden Antriebsleistung verbraucht.

Eine andere, im energetischen Sinn effektivere Möglichkeit ist die Verwendung von zwei baugleichen,
aber gegensinnig drehenden Rotoren; sie erzeugen bei gleichem Blatt-Anstellwinkel die beiden
gleichgroßen und gleichgerichteten Teil-Luftkräfte Lz1 = Lz2 = G/2 und die beiden gleichgroßen,
aber wegen des unterschiedlichen Drehsinns einander entgegengesetzt gerichteten Teil-Momente
Mz

1 und Mz
2 = −Mz

1 , es ist also, wie gefordert, Mz = Mz
1 +Mz

2 = 0.

Da Momente frei verschieblich sind, sind auf dieser Grundidee verschiedene Bauarten möglich, z.B.:

• beim Koaxial-Rotor befinden sich die Rotoren übereinander mit gemeinsamer Drehachse,
• beim Tandem sind die Rotoren an Bug und Heck angeordnet mit einem Rotorkopf-

Abstand Z; für Z < 2R sind die Rotoren höhengestaffelt,
• beim Flettner-Typ haben die beiden Rotorköpfe einen Abstand Z � R quer zur Längs-

achse; um ein berührungsfreies Ineinanderkämmen (”Intermeshing”) zu ermöglichen, sind
sie nach rechts bzw. links außen um den Winkel β schräg gestellt und über ein Getriebe
zwangssynchronisiert.

Man sieht sofort, daß bei allen diesen Bauarten die Schwebebedingungen erfüllbar sind.
Zu beachten sind dabei allerdings zwei Aussagen, die aus der oben angegebenen Formel für das
Verschieben von Kräften hervorgehen:

(A) Liegen die Achsen zweier gegensinnig drehender Rotoren zwar in einer Ebene, sind aber nicht
parallel, so tritt ein zusätzliches Moment auf.
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(B) Sind die Achsen zweier beliebig drehender Rotoren zueinander windschief, so treten eine zusätz-
liche Kraft und ein zusätzliches Moment auf.

Kräfte und Momente dieser Entstehungsart sind gewissermaßen ”Geburtsfehler”; man nennt sie
inhärent.

Ein Beispiel für (A), bei dem diese Nebenwirkung im Flug besonders drastisch in Erscheinung tritt,
ist der schon oben erwähnte Flettner-Typ:

infolge der Schrägstellung der Rotorachsen (s. die Skizze) hat man

vertikal: Lz1 = ~L1 cosβ, Lz2 = Lz1, Mz
1 = ~M1 cosβ, Mz

2 = −Mz
1

horizontal: Ly1 = |~L1| sinβ, Ly2 = −Ly1, My
1 = | ~M1| sinβ, My

2 = My
1

Das bedeutet:
• die Ly− und Mz−Komponenten heben sich, wie gewünscht, gegenseitig auf;
• die My−Komponenten dagegen addieren sich zum

inhärenten Nickmoment My
i = MiNick = −2M sinβ !

Wie man sofort sieht, gibt es hier zwei Möglichkeiten:

a) Rotor 1 dreht im Uhrzeiger, R2 im Gegen-
zeiger: dieser Typ, dem wir die anschauliche
Bezeichnung ”Brustschwimmer” geben,
erzeugt wegen MiNick < 0 ein Auf -Nickmoment,

b) das Gegenteil: der ”Rückenschwimmer”-Typ erzeugt wegen MiNick > 0 ein Ab-Nickmoment.

N.B.: Das Flugverhalten der beiden Typen ist drastisch unterschiedlich (s. Wieland[14]).

Als Beispiel für die Aussage (B) s. z.B. die Analyse des Normalhubschraubers im Abschn.3.

Die Strahltheorie: Allgemeines

Die strömungsmechanischen Grundlagen der Strahltheorie sind:
1. die Annahme einer inkompressiblen, reibungsfreien Stromfadenströmung, mit anderen Worten:

einer Potentialströmung mit dem (Bernoullischen) Gesamtdruck pB∞ = %
2 (Ũ2 + W̃ 2) und

2. die Vorstellung einer ”Wirkscheibe” (WS, ”actuator disk”) anstelle des Rotors,
a) die der durchfließenden Strömung einen Drucksprung ∆p aufprägt, sodaß hinter der WS ein

begrenztes Gebiet (der ”Strahl”) mit dem Gesamtdruck pB = pB∞ + ∆p definiert ist, und

b) die außerdem der Grundgeschwindigkeit ~U+~W eine lokal veränderliche, ”induzierte” Zusatzge-
schwindigkeit aufprägt, die in der Ebene der WS senkrecht zu dieser steht und dort den Betrag
w̃i hat; weit stromab im Strahl hat sie den Betrag w̃i3.

c) Infolgedessen ist die Normalkomponente der Strömungsgeschwindigkeit am Ort der WS, w̃N ,

gleich der Normalkomponente von ~U+ ~W plus der induzierten Geschwindigkeit w̃i;
sehr weit stromab ist der Strahlgeschwindigkeitsvektor ~U+ ~W+ ~wi3 .

1.2 Die Strahltheorie des Vertikalflugs

Man beobachtet am Hubschrauber ganz allgemein drei unterschiedliche Flugzustände, die wir im
folgenden getrennt behandeln.

1.2.1 Steigen, Schweben und langsames Sinken

Die Berechnung beruht auf den Erhaltungssätzen für Masse, Impuls und Energie:
1. Die Kontinuitätsgleichung sagt aus: durch die WS und weiter durch den Strahl fließt

die Masse pro Zeiteinheit ṁ = %FRw̃N = %F3w̃3 = const . (1.2:1)
2. Der einströmende Impuls plus dem erforderlichen Rotorschub (hier: dem Gewicht G)

ist gleich dem ausströmenden Impuls: ṁW̃ +G = ṁw̃3 bzw. G = ṁ(w̃3 − W̃ ) (1.2:2)
3. Die einströmende Energie plus der am Rotor wirkenden Leistung ist gleich der ausströmenden

Energie: ṁ
2 W̃

2 +Gw̃N = ṁ
2 w̃

2
3 bzw. Gw̃N = ṁ

2 (w̃2
3 − W̃ 2) = ṁ

2 (w̃3 − W̃ )(w̃3 + W̃ ) (1.2:3)

4. (1.2:3)÷(1.2:2) liefert w̃N = 1
2 (w̃3 + W̃ )

bzw. mit w̃N = w̃i + W̃ : w̃i3 = 2w̃i , (1.2:4)
das heißt: die induzierte Zusatzgeschwindigkeit im Strahl erreicht weit stromab den doppelten
Wert der induzierten Geschwindigkeit in der WS-Ebene.
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5. Damit wird (1.2:2) G = 2ṁw̃i bzw. mit ṁ aus (1.2:1) : G
2%FR

= w̃2
i + W̃ w̃i. (1.2:5)

6. Für den Sonderfall ”Schweben”, W̃ = 0, schreiben wir umgekehrt w̃2
i0 ≡ 2%FR/G und definieren

damit eine durch die Gerätedaten festgelegte Konstruktionsgröße: sie ist (bis auf die schwache
Einschränkung konstanter Luftdichte) der Quadratwurzel des Kehrwerts der Flächenbelastung
proportional, und daher wie diese eine Fundamentalgröße der Aerodynamik. Sie hat die Dimensi-
on einer Geschwindigkeit und bietet sich als Normierungsgröße für alle Geschwindigkeiten an;
wir verwenden sie durchgehend. – Typische Zahlenwerte liegen bei w̃i0 = 4m/s.

N.B.: Wir befinden uns hier in bewußtem Gegensatz zum üblichen Vorgehen, die Blattspitzen-
geschwindigkeit ΩR als Normierungsgröße zu verwenden. Da Ω nur im unbeschleunigten Nor-
malflug ohne Steuer- und/oder Regelungseingriff konstant sein kann, ist ΩR keine (konstante)
Konstruktions-, sondern nur eine Betriebskenngröße, deren Nichtkonstanz sich z.B. im Übergangs-
bereich der Autorotation und des ”flares” beim Landen bemerkbar macht.

7. Wir schreiben also die Gleichung (1.2:5) in dimensionsloser Form: 1 = w2
i + wiW

mit der Lösung wi = −W2 +

√(
W
2

)2
+ 1 bzw. wN = W

2 +

√(
W
2

)2
+ 1 . (1.2:6)

Diese Formel gilt nicht nur für W ≥ 0, sondern in erträglicher Näherung als ”langsames Sinken”
auch noch für moderat negative Werte von W, etwa bis W ≈ −0.5.

1.2.2 Schnelles Sinken

Unter schnellem Sinken verstehen wir den Fall, daß außer W < 0 auch wN < 0; es ist also nicht nur
die Anströmung von unten nach oben gerichtet, sondern es wird auch die Wirkscheibe von unten
nach oben durchströmt, und der Strahl ist nach oben gerichtet.
Infolgedessen lautet der Impulssatz jetzt ṁW̃ −G = ṁw̃3 ,
und wenn man damit die Rechnung genau wie oben durchführt, so erhält man

wi = −W2 −
√(

W
2

)2 − 1 und wN = W
2 −

√(
W
2

)2 − 1 . (1.2:7)

Der Radikand ist negativ für |W | < 2; für den Bereich zwischen der oben angegebenen Gültigkeits-
grenze der Gl.(2.0) und W < −2 existiert also keine relle Lösung.

Dieser mathematische Befund hat sein Gegenstück im Physikalischen: bei Vertikalgeschwindigkei-
ten W < −0.1 geht die glatte Strahlströmung zuerst über in das instabile sog. ”Wirbelring”-
Stadium und dann, im Bereich wN ≈ 0, in ein ungeordnet turbulentes ”Nachlauf”-Stadium.
Für diesen gesamten Bereich existieren nur Näherungslösungen (s. den folgenden Abschnitt), die
sich an den (sehr stark streuenden) experimentellen Befunden orientieren.

1.2.3 Darstellung

Wir stellen die Ergebnisse der beiden vorhergehenden Unterabschnitte in der üblichen Weise dar:
Das Diagramm zeigt über der gegebenen Vertikalgeschwindigkeit W die Verläufe von wi und wN .
Der erfaßte Bereich der Vertikalgeschwindigkeit deckt den praktisch vorkommenden sicher ab:
Vertikalgeschwindigkeiten eines Hubschraubers von mehr als ±30ms−1 dürften kaum auftreten.

Für den oben bereits angesprochenen Zwischenbereich
−2 ≤W < 0 schlagen wir eine Näherungslösung vor:
den zweiten Quadranten einer gescherten, verallgemeiner-
ten Ellipse:

wi=−W2 +
√

1−
(
W
2

)m
, wN = W

2 +
√

1−
(
W
2

)m
(1.2:8)

Mit m = 2 würde sich dieser Ausdruck formal eng an die
oben abgeleiteten Funktionen anschließen; eine bessere
Übereinstimmung mit experimentellen Kurven ergibt sich
allerdings mit m� 2; wir wählen m = 10.

Punktiert eingezeichnet ist eine an Messungen angepaßte
”best-fit”-Kurve 4.Ordnung [10].

Die vom Rotor aufgenommene Leistung ist N = Gw̃N = G(w̃i+W̃ ) ; sie setzt sich also zusam-
men aus der erforderlichen Hubleistung G W̃ und der für die Induzierung der Zusatzgeschwindigkeit
w̃i des Strahls notwendigen Schwebeleistung G w̃i .
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Die Leistung wird null, wenn wN = 0. Dieser Fall entspricht dem antriebslosen Gleitflug des Starr-
flüglers (Segelflugzeug) beim optimalen Gleitwinkel; er wird als (ideale) ”Autorotation” bezeichnet.
Für wN < 0 nimmt der Rotor wie eine Turbine aus der Strömung Leistung auf, er fährt im sog.
”Windmühlenstadium”. Diese Leistung muß irgendwie abgeführt werden (z.B. durch die Motor-
bremse), da sie sonst zu einer Abwärtsbeschleunigung führt. Das Windmühlenstadium entspricht
also dem Sturzflug des Starrflüglers.
Im Übergangszustand zwischen Autorotation und Windmühlenstadium, dem sog. turbulenten
Nachlaufstadium, verhält sich der nur schwach und ungleichmäßig durchströmte Rotor annähernd
wie ein Sieb mit großem Widerstandsbeiwert.

1.3 Die Strahltheorie des Schrägflugs

Wir verallgemeinern das Anwendungsgebiet der Strahltheorie durch Hinzunahme einer Horizon-
talgeschwindigkeit Ũ .
Dabei sind zunächst die physikalischen Folgen der erweiterten Geometrie zu berücksichtigen: im
Vorwärtsflug darf der Widerstand DB des Rumpfes nicht mehr wie bisher durch ein geringfügig
erhöhtes Gewicht G berücksichtigt werden, da er nunmehr eine Horizontalkomponente besitzt.
Wir setzen ihn der Einfachheit halber als Funktion des Quadrats der Vorwärtsgeschwindigkeit
an: DB = fDBU

2G. In den Faktor fDB geht außer dem Widerstandskoeffizienten cDB , den wir
= 1 setzen, vor allem das Verhältnis Rotorfläche/Rumpfquerschnitt ein; dieses liegt im Bereich
60 . . . 200. In Beispielrechnungen verwenden wir einen typischen mittleren Wert: fDB = 144, sodaß
DB = (U/12)2G.

Die unmittelbare Folge der Existenz der Horizontalkomponente ist die Notwendigkeit, die Rotor-
ebene um den Kippwinkel ν nach vorn zu neigen; dieser ist bestimmt durch

tan ν = DB/G ; typischer Wert also ν = arctan( U12 )2 .
Mit der Schrägstellung der WS vermindert sich auch die Vertikalkomponente des das Gewicht
tragenden Rotorschubes um den Faktor cos ν; an die Stelle von G tritt daher bei der Berechnung
der Wert G′ = G/ cos ν .

NB.: der Akzent ′ kennzeichnet auf die schräggestellte WS bezogene Größen.

1.3.1 Berechnung

Die für die Berechnung wichtige Normalkomponente der Zuströmung zur WS folgt schematisch-

geometrisch aus der linken Teilskizze als wN = wi +W ′

(mit W ′ = W cos ν + U sin ν , U ′ = U cos ν −W sin ν).

Diese Definition führt jedoch zu falschen Ergebnissen,
deren Abweichungen vom Experiment mit U zunehmen.

Der Grund hierfür ist eine sukzessive Veränderung des Strömungs-
bildes, die wir hier sehr stark vereinfacht beschreiben:

◦ Für U = 0 (rechte Teilskizze) wird die Strömung bestimmt
durch einen kreisrunden Randwirbel-Schlauch.
◦ Die Randwirbel werden mit zunehmender Horizontal-

geschwindigkeit parallel verschoben: der Wirbelschlauch
wird ”flach gequetscht” (mittlere Teilskizze).
◦ Im Grenzfall U � (W,wi . . .) (linke Teilskizze) degeneriert

er zur flachen Wirbelschicht,

und dies ist das Bild der Wirbelschleppe eines endlichen Tragflügels!

Ohne auf die Theorie (s. z.B. [1]) einzugehen stellen wir nur fest, daß in diesem Fall der oben in
der rechten Teilskizze dargestellte Ausdruck wN =

√
(wi +W ′)2 + U ′2 gilt.

Dieser Ausdruck geht aber für U → 0 in die für den Vertikalflug korrekte Formel wN = wi + W
über; dem Vorschlag von Glauert[6] folgend betrachtet man ihn daher auch für den Zwischenbereich
als akzeptable Näherungs-Lösung – wenn auch ohne jede physikalische Begründung!
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Unter Berücksichtigung dieser Betrachtungsweise gehen wir nun nach Transformation auf das um
ν gekippte Koordinatensystem genauso vor wie im Abschn.1:

1. Die Kontinuitätsgleichung sagt aus: durch die Wirkscheibe und weiter durch
den Strahl fließt eine Masse ṁ = const.

Hier ist die Glauertsche Näherung einzusetzen, also nicht wie in der Skizze

schwarz gezeichnet: w̃i + W̃ ′, sondern (rot): w̃N =
√

(w̃i + W̃ ′)2 + Ũ ′2 ;

der Vektor ~wN wird also gewissermaßen in die Normale zur WS herumgeklappt.
Damit ist die durchfließende Masse in der Rotorebene

ṁ = %FRw̃N (1.3:1)

2. Nach dem Impulssatz ist der ausströmende Impuls gleich der Summe aus dem einströmenden
Impuls und der Kraft auf die WS:
mit w̃′3 = w̃i3 + W̃ ′ ist ṁ(w̃i3 + W̃ ′) = ṁW̃ ′ +G′ ; G′ = ṁw̃i3 (1.3:2)

3. Nach dem Energiesatz ist die ausströmende Leistung gleich der Summe aus der einströmenden
und der Leistung an der WS: 1

2ṁ(w̃3
′2 + W̃ ′2) = 1

2ṁW̃
′2 +G′w̃′N

; G′(w̃i + W̃ ′) = 1
2ṁw̃i3(w̃i3 + 2W̃ ′) (1.3:3)

4. (1.3:2) in (1.3:3) eingesetzt liefert nach vereinfachender Umformung genau wie im Fall des reinen
Vertikalflugs: w̃i3 = 2w̃i . (1.3:4)

5. (1.3:4) in (1.3:2) eingesetzt, G′ = ṁ(2w̃i + W̃ ′) , ergibt, dem Abschn.1.1 Ziff.5 entsprechend
und mit dem dort eingeführten w̃i0 dimensionslos gemacht:

1/ cos ν = wNwi ; 1/ cos ν = wi
√

(wi +W ′)2 + U ′2 (1.3:5)
6. Gl.(1.3:5) ist im Gegensatz zur expliziten Gl.(1.2:6) eine implizite Gleichung 4.Grades für wi,

für die eine geschlossene formelmäßige Lösung nicht bekannt ist. Ihre numerische Lösung macht
allerdings keine Schwierigkeiten; z.B. erweist sich ein Eingabeln des Residuums als ebenso robust
wie schnell.

7. Nach Lösung von (1.3:5) ist mit wi auch wi3 = 2wi bekannt; die daraus folgende Geometrie der
Strahlströmung ist hier skizziert. Man liest folgende Winkel ab:

◦ für die (über den ganzen Raum ausgedehnte) Grundströmung
ϑ0 = arctan(W/U)

◦ für die Anströmung der Rotorscheibe
ϑR = arctan((W ′ + wi)/U

′)− ν
◦ für den Strahl am Ende des Übergangsbereichs von ph → p∞

ϑ3 = arctan((W ′ + wi3)/U ′)− ν .
Im Stromab-Unendlichen muß der Strahl wieder die Richtung
der Grundströmung ϑ0 annehmen, d.h. er muß sich krümmen.
Da der Enddruck p∞ schon am Ende des Übergangsbereichs er-
reicht ist, bleibt dabei gemäß der Bernoullischen Gleichung die
Strahlgeschwindigkeit konstant: pStrahl,∞ = p∞ = p3, daraus

folgt |~wStrahl,∞| =
√

(wi3 +W ′)2 + U ′2 . In der Skizze ist die-
ser Übergang als roter Kreisbogen angedeutet.

1.3.2 Graphische Darstellungen

1. Das Diagramm stellt die Fläche wN = f(W ;U) über
der W,U -Ebene perspektivisch dar – die U -Achse ragt nach
vorn/rechts aus der Papierebene heraus.
Man sieht, daß die für den Bereich ”Schnelles Sinken” be-
schriebenen Schwierigkeiten infolge der radikalen Änderungen
des Strömungsbildes mit zunehmender Horizontalgeschwin-
digkeit immer geringer werden: der Wirbelschlauch wird mehr
und mehr nach hinten weggeblasen und verliert damit seinen
Einfluß auf die Strömung im WS-Bereich.
Der Anwendungsbereich der Glauertschen Näherung ver-
größert sich dementsprechend bis U ≈−0.75. Für W <−0.5
beschränken wir uns auf Berechnungen des Vertikalflugs.
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2. Das Diagramm stellt die erforderliche Triebwerksleistung
dar: Ñ = Gw̃′N = G(w̃i + W̃ )
bzw. dimensionslos: Ñ/(Gw̃i0) = N = wi +W .
Auffällig ist die Abnahme von N mit zunehmender Horizon-
talgeschwindigkeit; Ursache ist die Abnahme der induzierten
Geschwindigkeit wi mit zunehmender Horizontalgeschwindig-
keit (s. das vorhergehende Diagramm). Diese Abnahme geht
jedoch mit U→∞ gegen Null, sodaß ab einer gewissen (von
ΩR abhängigen) Geschwindigkeit der Einfluß von W über-
wiegt und N wieder ansteigt.
Das Minimum hat den selbsterklärenden Namen
UBROC (=BestRateOfClimb).

3. Die beiden folgenden Diagramme stellen Einzelheiten der Strahlgeometrie dar: links den Winkel
der Grundströmung: ϑ0 = W

U , rechts (schwarz) die Abweichungen der Strahlrichtung im Bereich

der Wirkscheibe: ϑR−ϑ0 und (blau) am Ende des Übergangsbereichs: ϑ3−ϑ0.

Für U = O(1) hat also eine gedachte Strahlachse einen erheblichen S-Schlag. Von Interesse sind
daher auch die Knickwinkel χ bzw. χ′,
um die der Geschwindigkeitsvektor ~VR
längs des Strahls von der z-Achse bzw.
von der Normalen zur Rotorebene ab-
weicht (s.a.Abschn.1.4.2, Ziff.2.b);
aus der Skizze liest man ab:

χ = arctan U + wi sin ν
W + wi cos ν

χ′ = arctan(U ′/wN ) . (1.3:6)

Der Verlauf von χ′ mit einem Maximum um U ≈ 2 findet sich auch in der folgenden Übersichts-
Darstellung wieder, die der Verdeutlichung des Ganzen dienen soll: im Gegensatz zu den Analyse-
Skizzen in den obigen Abschnitten zeigt sie korrekte maßstäbliche Geschwindigkeiten und Winkel.
Die Wirkscheibe ist rot markiert; der Kippwinkel ν ist so klein (s. die Tabelle), daß er graphisch
kaum aufscheint.
◦ Die Grundströmung hat die Komponenten W = 0 und U = 0.25; 0.5; 1; 2; 4; ihr Vektor ist für die

Zuströmung oben rechts eingezeichnet.
◦ An die WS angehängt ist der Vektor ~wN ,
◦ daran der Vektor ~w3, und
◦ daran der Vektor ~wStrahl,∞ nach dem Erreichen des Umgebungsdruckes; er hat die Richtung

der Grundströmung, aber einen größeren Betrag.
Diese Darstellung zeigt daher zwar nicht den exakten Verlauf, aber die korrekten Richtungen.

Bemerkung: der Umgebungsdruck p∞ (und damit die Endgeschwindigkeit w3) wird im Strahl
relativ rasch erreicht; die Lauflängen liegen in der Größenordnung des Rotordurchmessers.
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1.4 Modellierung der Strahltheorie

Die Strahltheorie ist eine strikt eindimensionale Theorie, d.h. die berechneten Werte werden als
konstant über den Querschnitt der Stromröhre angesehen. Das ist nur solange korrekt, wie man
den Rotor als Wirkscheibe definiert: eine ebene Fläche, bei deren Durchströmung einzig und allein
der statische Druck um einen über die gesamte WS gleichen Betrag ∆p = const erhöht wird,
während die Geschwindigkeit unverändert bleibt1. Bildlich gesprochen handelt es sich also bei der
Zuströmung zur WS um ein Scheiben- oder S-Modell (in der englischsprachigen Literatur steht in
diesem Zusammenhang der Ausdruck linear inflow).

In Wirklichkeit trifft dieses Bild jedoch nicht zu, denn
1. geht die Induktion der Zusatzgeschwindigkeit w̃i vom Rotorblatt aus und ist daher im äußeren

Blattbereich infolge der dort höheren Geschwindigkeit deutlich größer als im inneren: wi nimmt
von innen nach außen zu, und

2. findet im unmittelbaren Achsbereich infolge der Verbauung durch die Rotorkopfmechanik über-
haupt keine aerodynamisch sinnvolle Durchströmung statt.

Wenn man also die Strahltheorie als Grundlage des Blattelementverfahrens verwenden will (s.
Abschn.2), dann ist es sinnvoll, das Ergebnis des einfachen Wirkscheibenmodells entsprechend zu
interpretieren; d.h man muß – außer dem im Abschn.1.4.2 zu behandelnden Einfluß der Horizon-
talgeschwindigkeit U – auch die Abhängigkeit vom Radius r berücksichtigen.

1.4.1 Vom Scheibenmodell zum Trichtermodell: Vertikalflug

Wir betrachten zuerst den einfachen Fall des Vertikalflugs (U = 0 und wN 6= f(ψ)).

1. Die durch die Strahltheorie berechnete Normalkomponente der Zuströmgeschwindigkeit zur Ro-
torebene müssen wir nach dem oben Gesagten als Mittelwert über die gesamte Rotorfläche
betrachten, wir versehen sie daher mit einem Überstrich: ˜̄wN .
Da ˜̄wN in der Kontinuitätsgleichung (1.2:1) zur Geltung kommt, ist für den Ansatz w̃N = f(r̃)
jede Funktion zulässig, die der überaus schwachen Einschränkung der Integrierbarkeit über r̃
genügt; denkbar ist z.B. eine Blattspitzenkorrektur nach Prandtl.

Wir wählen jedoch als einfachste nicht-konstante Verteilung die lineare: w̃N = a ˜̄w r̃
R .

Der Erhaltungssatz für die Masse lautet: ˜̄wNπR
2 =

∫ R
0
a r̃dr̃ × 2πr̃ ;

die Integration über r ergibt ṁ = %w̄N2π am3 = %w̄Nπ ; a = 3/2 ,

wir schreiben also w̃N (r̃) = 3
2

˜̄wN
r̃
R bzw. normiert: wN (r) = 3

2 w̄N r .

Stellt man sich das Ganze räumlich vor, so tritt an die Stelle der Scheibe wN = w̄N = const
über der Nullebene (linear inflow) ein Trichter mit der Spitze im Mittelpunkt der Nullebene
und dem Rand in der Höhe 3

2 w̄N darüber: wir bezeichnen dieses Modell als Trichter- oder
T-Modell ; für den englischen Sprachbereich bietet sich der Ausdruck conical inflow an.

2. Die Tangentialkomponente der Zuströmgeschwindigkeit ist im Vertikalflug einfach:
w̃T (r̃) = ΩR r̃

R bzw. normiert: wT (r) = Ω̂r.

Mit der Festlegung von wN (r) und wT (r) kann man nun die beiden zentralen Begriffe der Blattele-
menttheorie berechnen: erstens die ”Anströmgeschwindigkeit im Unendlichen”, w∞ =

√
w2
T + w2

N ,

und zweitens den Zustromwinke δR = arctan wN

wT
; in Kleinwinkelnäherung: δR = wN (r)

wT
.

Zwar ist also im allgemeinen δR eine Funktion von r; unsere spezielle Wahl des T-Modells führt
jedoch für den Vertikalflug auf δR = arctan 3w̄N

2Ω̂
≈ 3w̄N

2Ω̂
= const! (1.4:1)

Daraus folgt, daß im T-Modell das Rotorblatt im Vertikalflug keine Schränkung (= Verwindung)
braucht! Bemerkung: im Hubschrauber-Modellbau werden fast ausschließlich ungeschränkte Blätter ver-

wendet.

1Die Definition der WS als Rotor mit unendlicher Blattzahl führt auf eine erweiterte Strahltheorie, die auch noch
wirbelinduzierte Geschwindigkeiten berücksichtigt.
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1.4.2 Schrägflug

Die wichtigste Folge einer Horizontalkomponente der Geschwindigkeit ist, daß sowohl die Tangenti-
alkomponente wT der Blattanströmung als auch ihre Normalkomponente wN azimutwinkelabhängi-
ge Änderungen erfahren; außerdem ergeben sich zusätzliche Komplikationen durch die Einbezie-
hung des Nickwinkels ν und des (erst im Abschn.2.4 einzuführenden) Kegelwinkels κ, der von den
per Elastizität und/oder Schlaggelenk nach oben ausweichenden Rotorblättern gebildet wird.

1. Die Tangentialkomponente w̃T hat zunächst, genau wie im Vertikalflug, den immanenten
Anteil Ωr̃ aus der Umfangsgeschwindigkeit des Blattes: s. die nebenstehende Skizze. Dazu treten

jetzt als Folge der in die Rotorkreisebene [x′, y, z′] fallenden Kom-
ponente Ũ ′ = Ũ cos ν − W̃ sin ν der Gesamtgeschwindigkeit

a) eine einwärts gerichtete Radialkomponente Ũ ′r = Ũ ′ cosψ
(die wir erst in Ziff.2.b benötigen) sowie

b) eine Normalkomponente Ũ ′ sinψ, die zu w̃T hinzukommt;
es ist also w̃T (r̃, ψ) = Ωr̃ + Ũ ′ sinψ = ΩR r̃

R + Ũ ′ sinψ .

ΩR ist die Blattspitzengeschwindigkeit, und wir definieren
mit ihr den Vorwärtsgeschwindigkeitsparameter

ω′ = Ũ ′/(ΩR). (1.4:2)

Damit wird in dimensionierter Form w̃T (r̃, ψ) = ΩR
(
r̃
R + sinψω′

)
,

bzw. normiert: wT (r, ψ) = Ω̂ (r + sinψω′) mit Ω̂ = (ΩR)/w̃i0.

Bemerkung: Wie schon in Abschn.1.2.1 ausgeführt ist die Blattspitzengeschwindig-
keit ΩR keine Konstruktionskenngröße wie w̃i0, sondern eine (drehzahlabhängige !)

Betriebskenngröße. Typische Zahlenwerte liegen bei Ω̂ = 20 . . . 25.

Die Zusatzkomponente ω′ sinψ bewirkt, daß für π < ψ ≤ 2π, also auf der Seite des rücklaufenden
Blattes, ein Gebiet existiert, in dem Ωr < |U ′ sinψ|, d.h. hier wird das Blatt rückwärts angeströmt.
Die Grenze dieses Gebiets ist gegeben durch den Radius r0 = ω′ sinψ; dies ist die Parameterglei-
chung eines Kreises mit dem Mittelpunkt rM = ω′

2 , ψM = 3
2π und dem Radius ω′/2 (s. die Skizze).

Nähere Betrachtungen:
a) Im Rückströmungsbereich herrscht keine mit dem hier verwendeten Strömungsmodell sinnvoll
berechenbare Blattumströmung, und er gehört damit – genau genommen – nicht zum Berechnungs-
gebiet. Man hat nun drei Möglichkeiten für die Eingrenzung:

aa) den Ausschluß nur des ”Rückanström-Lochs”, etwa durch ω′ | sinψ|−sinψ
2 ≤ r ≤ 1 ,

bb) den Ausschluß des gesamten Kreisgebiets ω′ ≤ r ≤ 1 ,
cc) das Ignorieren der Rückanströmung 0 ≤ r ≤ 1 .

Die Möglichkeit b) folgt aus der Feststellung, daß das Gebiet um die Rotorachse bis zu einem
Radius r0 ≈ 0.2 sowieso von der Mechanik des Rotorkopfes verbaut ist und sowohl deshalb als
auch infolge der dort geringen Umfangsgeschwindigkeit, die ja quadratisch in die Formeln eingeht,
nur unwesentlich zu Auftrieb, Widerstand und Rotorschub beiträgt.
Die Möglichkeit c) interpretiert diesen Umstand andersherum: wegen der Kleinheit des Beitrags
kann der Bereich ω′ ≤ 0.2 einfach ”normal” mitberechnet werden.

b) Unser Strömungsmodell setzt eine inkompressible Strömung voraus; das heißt, sie ist nur solange
eine akzeptable Näherung, wie die realen Dichteänderungen unter der Meßgenauigkeit bleiben.
Die Grenze kann man folgendermaßen abschätzen: für isentrope Strömungen gilt d%

% = cv
cp

dp
p und

aus dem Energiesatz folgt dp = %
2 w̃

2 , sodaß d%
% = cv

cp

%
2
w̃2

p = 1
2
w̃2

a2 ; aufgelöst: w̃ =
√

2d%/%.

Legen wir eine Meßgenauigkeit von d%/% = 0.005 zugrunde, so folgt als Grenzgeschwindigkeit
w̃Gr ≈ 33m/s, was mit – beispielsweise – w̃i0 ≈ 4m/s und Ω̂ ≈ 20 – auf ω′Gr = 0.4 führt.

Wir wählen (außer in wenigen Ausnahmefällen) die Möglichkeit c) und eine Gültigkeitsbegrenzung
auf ω′ ≤ 0.2 .

2. Für die Normalkomponente wN (r) stellen wir fest:

a) im rotorfesten, um ν gekippten Koordinatensystem x′, y, z′ ist
U ′ = U cos ν und W ′ = U sin ν, und mit diesen Werten ist jetzt
nach Gl.(1.3:5) die aus der Strahltheorie (nach Glauert) folgende
über die Rotorfläche konstante (unmodellierte) Zuströmgeschwin-
digkeit zur Wirkscheibe zu berechnen: w̄N = wi +W ′ .
N.B.: w̄N = f(U,W ) – s. Abschn.1.3.1 !
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b) Zur Fein-Modellierung erweitern wir – vergl.[10] – den Ansatz aus Abschn.1.4.1 auf
wN (r, ψ) = 3

2 w̄N [1 + c cosψ + s sinψ]r (T-Modell)
bzw. wN (r, ψ) = w̄N [1 + (c cosψ + s sinψ)r] (S-Modell) ;

er erfüllt die Kontinuitätsgleichung im gleichen Umfang wie im Vertikalflug, da die Anteile von
c cosψ und s sinψ bei der Integration über einen Umlauf wegen Periodizität herausfallen; die
Koeffizienten c und s sind daher aus dieser Sicht beliebig. Wir benutzen sie zur Berücksichtigung
der zusätzlichen Einflüsse aus der Horizontalgeschwindigkeit:

• s berücksichtigt Quereinflüsse (proportional −y), die dem unterschiedlichen Auftrieb zwischen
vor- und rücklaufendem Blatt entspringen; die Literatur nennt als empirischen Wert s = −2ω′ .
• c berücksichtigt Längseinflüsse (proportional −x):
aa) infolge des Öffnungswinkels κ̄ des Rotorkreiskegels erzeugt die (schon in Ziff.1 erwähnte)

Radialkomponente der Anströmgeschwindigkeit: U ′r = U ′ cosψ eine zusätzliche Geschwindigkeits-
komponente senkrecht zum Blatt: U ′r sin κ̄ cosψ; in Kleinwinkelnäherung und mit (1.4:2) folgt

κ̄Ω̂ cosψω′.

bb) zu κ̄ tritt weiter die Strahlablenkung (s. Abschn.1.3.2) um den Winkel χ′ gegenüber der
Normalen zur Wirkscheibe hinzu. Im Einklang mit Messungen (Drees in [10]) ist 5

6χ
′ einzu-

setzen; χ′ ist mit (1.3:6) gegeben.
Bemerkung: Drees benutzt nicht χ′, sondern χ, aber als Teil einer Formel, die für U<4 eine

akzeptable Näherung an 6
5
χ′ darstellt; s. Anh.A2.

Insgesamt ist damit c = 5
6χ
′ + κ̄Ω̂ω′ mit χ′ = arctan U ′

w̄N
.

Zusammengefaßt lautet also das Ergebnis dieses Abschnitts dimensioniert bzw. normiert:

w̃T (r̃, ψ) = ΩR( r̃R + sinψω′) und w̃N (r̃, ψ) = 3
2

˜̄wN [1 + c cosψ+s sinψ] r̃R (T-Mod.) (1.4:3)

bzw. w̃N (r̃, ψ) = ˜̄wN
[
1 + (c cosψ+s sinψ) r̃R

]
(S-Mod.)

wT (r, ψ) = Ω̂(r + sinψω′) und wN (r, ψ) = 3
2 w̄N [1 + c cosψ+s sinψ] r (T-Mod.) (1.4:4)

bzw. wN (r, ψ) = w̄N [1 + (c cosψ+s sinψ)r] (S-Mod.)

Anmerkungen:
1. Aus formalen Gründen verwenden wir gelegentlich die Schreibweisen c′ = c/ω′ und s′ = s/ω.
2. Wenn die Kleinwinkel-Näherung δR = arctan(wN/wT ) ≈ wN/wT zulässig ist, kann man beim

T-Modell 3
2

˜̄wN durch ΩRδR (bzw. 3
2 w̄N durch Ω̂δR) ersetzen.

3. Den Ausdruck c cosψ + s sinψ kann man auch in Form einer Fouriereihe 2.Art (s. Anhang
A1) benutzen, z.B. c cosψ + s sinψ =

√
c2 + s2 sin(ψ + arctan sc )

Hinweis: die Normalgeschwindigkeit enthält im Faktor ˜̄wN bzw. w̄N hauptsächlich Information aus
der Vertikalgeschwindigkeit;
die Horizontalgeschwindigkeit dagegen beeinflußt vor allem die azimutabhängigen Terme.

Zum Abschluß dieses Abschnitts über die Modellierung folgt ein Vergleich mit dem Experiment:

Das Diagramm vergleicht unser T-Modell und ein literaturgängiges S-Modell2 mit Meßergebnissen:

die Meßpunkte (kleine Quadrate) liegen bei |r| ≥ 0.2, und
bei Betrachtung nur dieser Punktreihe scheint gegenüber
der Strahltheorie mit wN = const das lineare Modell ge-
rechtfertigt.
Bezieht man jedoch den auf jeden Fall vorhandenen Stau-
punkt mit wN =0 in r=0 in die Betrachtung ein (gestrichel-
te Verbindungslinien), so folgt einigermaßen überzeugend
das T-Modell.
Es ist daher im Folgenden das Modell der Wahl.

2Drees; umgezeichnet aus [10], p.160.
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1.5 Die Blattelementheorie

Die Blattelementtheorie fußt auf der zweidimensionalen Umströmung eines Tragflügelprofils.

1. Wir betrachten ein Element des Blattes an der Stelle r̃; es hat die Tiefe T̃ und erstreckt sich
über ein Längenelement dr̃ in Spannweitenrichtung; c̃A und c̃D sind bekannt.

2. Die Umströmung dieses Blattelements sei gleich der eines unendlich ausgedehnten Profils in
einer unendlichen ebenen Strömung mit bekannter Größe und Richtung ~̃w∞; damit gilt:

dÃ(r̃, ψ) = %
2 T̃ w̃

2
∞ c̃Adr̃ und dD̃(r̃, ψ) = %

2 T̃ w̃
2
∞ c̃Ddr̃.

3. Aus der Skizze lesen wir ab:
a) Die Nullauftriebsrichtung des Profils bildet mit der Rotations-

ebene den Einstell- oder Pitch-Winkel Π; er ist dadurch fest-
gelegt, daß in Mittelstellung des Pitchhebels, Π = Π0, das Gerät
im unbeschleunigten Flugzustand verharrt.

b) Die Anströmung des Blattelements erfolgt mit der Geschwin-
digkeit w̃∞ unter dem Winkel δR = arctan(w̃N/w̃∞) ,
also ist cos δR = w̃T /w̃∞ und sin δR = w̃N/w̃∞.

c) Der Auftrieb dÃ steht senkrecht auf w̃∞, der Widerstand dD̃
weist in Anströmrichtung.

Auf das Blattelement wirken also folgende Luftkräfte: die Normalkomponente
dL̃z(r̃, ψ) = dÃ cos δR − dD̃ sin δR = . . . = %

2 T̃ w̃
2
∞c̃Ldr̃ mit c̃L = c̃A

w̃T

w̃∞
− c̃D w̃N

w̃∞
(1.5:1)

und die Tangentialkomponente
dL̃u(r̃, ψ) = dÃ sin δR + dD̃ cos δR = . . . = %

2 T̃ w̃
2
∞c̃Mdr̃ mit c̃M = c̃A

w̃N

w̃∞
+ c̃D

w̃T

w̃∞
; (1.5:2)

daraus folgen:
das differentielle Schlagmoment dM̃ψ(r̃, ψ) = dL̃z r̃ ,
das differentielle Drehmoment dM̃z(r̃, ψ) = dL̃ur̃ und damit, vom Motor aufzubringen,
die differentielle Leistung dÑ(r̃, ψ) = dL̃uΩr̃.

Auf dieser Grundlage ist nun wie folgt weiterzurechnen:

4. Integration über die Blattlänge liefert Ã(ψ) =
∫ R
r̃0
dÃdr̃, D̃(ψ) =

∫ R
r̃0
dD̃dr̃ u.s.f. bis Ñ(ψ), also

die entsprechenden Werte pro Blatt an der Stelle ψ.
5. Für einen Rotor mit n Blättern gelten die nfachen Werte; aus der Gesamtheit aller Rotoren

ergeben sich der Kraft- und der Momentenvektor, die auf das Gerät einwirken.
6. Der Kraftvektor muß auf jeden Fall der schon in Abschn.1.1,Ziff.2 genannten Gleichgewichts-

bedingung genügen: seine Vertikalkomponente muß das Gewicht G (bzw. normiert: 1) tragen.
7. Da w̃∞ und T̃ festliegen, steht wegen c̃A, c̃D =fcts(α) nur noch der Anstellwinkel α zur Erfüllung

der Gleichgewichtsbedingung zur Verfügung; diese lautet jetzt im allgemeinen Fall, also unter
Berücksichtigung des durch eine Horizontalgeschwindigkeit Ũ 6= 0 bedingten Nickwinkels:

L̃z(α) = G/ cos ν ! bzw. Lz(α) = 1/ cos ν !
8. Diese Gleichung ist i.a. nicht nach dem Anstellwinkel auflösbar, die Berechnung von α mittels

eines Iterationsverfahrens beliebiger numerischer Genauigkeit ist jedoch kein Problem.
9. Sobald α bestimmt ist, kann man alle interessierenden Werte in ihrer Abhängigkeit von W̃ und
Ũ berechnen – damit ist das Ziel der Blattelementtheorie grundsätzlich erreicht.

Wir ergänzen diese Beschreibung aus der Sicht des Programmierens:

Als Funktionen definiert man vorteilhafterweise nicht nur
◦ die Beiwerte c̃A(α) – z.B. function cA(a)→cA:=0.1*a – und c̃D, sondern auch
◦ den Auftrieb Ã(α) – z.B.(hier verkürzt!) function fA(a)→fA:=rho/3*sqr(Om*R)*T*R*cA(a) –

und den Widerstand D̃(α); daraus zusammengesetzt
◦ die Luftkraft L̃(α) – function fL(a)→fL:=fA(a)*cos(dR)-fD(a)*sin(dR) –

und das Rückdreh-Moment M̃(α) und schließlich, wiederum aus diesen zusammengesetzt:
◦ die Summe ΣL – function SL→fL(a+dk)+fL(a-dk) – sowie entsprechend die Differenz ∆L,

und dem entsprechend ΣM und ∆M ;
die so definierten Funktionsbezeichnungen finden durchgehend im Abschn.3. Verwendung.

Nach der Vorgabe von U und W sind nach Abschn.1.4.2 der Reihe nach zu bestimmen:
◦ ν und alle seine Funktionen sowie U ′,W ′, ω′

◦ wT und wN , und damit w2
∞.

◦ Aus der Gleichgewichtsbedingung fL0−1/ cos ν = 0! ist – z.B. durch Eingabeln – das Residuum
auf den gewünschten Restwert zu iterieren.

NB: Da die vorliegende Arbeit vor allem Übersichten und Gesamtaussagen zum Ziel hat, behandeln
wir nur ungeschränkte Rechteckblätter und verwenden ausschließlich das Trichter-Modell.
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2 Analytische Untersuchungen

2.1 Grundformeln

Die Normalkomponente der Luftkraft ist durch (1.5:1) gegeben; in normierter Form folgt

dLz(r, ψ) = 1
2TcLw

2
∞dr mit cL = cA

wT
w∞ − cD

wN

w∞ .

Da sowohl cA � cD als auch wT � wN , ist in guter Näherung cL ≈ cA ≈ c′Aα, und damit folgt
für ein Blattelement: die Luftkraft dLz(r, ψ)≈dA(r.ψ)≈ 1

2Tc
′
Aαw

2
∞dr (2.1:1)

und das Schlagmoment dMψ(r, ψ) ≈ 1
2Tc

′
Aαw

2
∞rdr. (2.1:2)

dabei ist w2
∞ = w2

T + w2
N mit wT , wN aus (1.4:4).

(Die Tangentialkomponente nach (1.5:2) tritt in diesem Abschnitt nicht auf.)

Da wir hier nur ungeschränkte Rechteckblätter betrachten, ist 1
2Tc

′
Aα = const und die Integration

beschränkt sich auf das Quadrat der Anströmgeschwindigkeit bzw. ihres Produkts mit r.

Das Resultat enthält quadratische Terme von sin und cos, und diese müssen mittels der bekannten
Beziehungen sin2 ψ = 1

2 (1− cos 2ψ), cos2 ψ = 1
2 (1 + cos 2ψ) und sinψ cosψ = 1

2 sin 2ψ auf Fourier-
Form gebracht werden. Dabei fallen zusätzliche Terme im Absolutglied an, und wir erhalten als
vollständige, exakte Formen für die Berechnung von

a) Kräften: w2
∞(ψ) = Ω̂2

3

{
Ak +Av

}
mit Ak = 1 + δ2

R +
[

3
2 + c′2+s′2

2 δ2
R

]
ω′2 (2.1:4)

und Av =
[
2c′δ2

R cosψ + (3 + 2s′δ2
R) sinψ

]
ω′ +

[
( c
′2−s′2

2 δ2
R − 3

2 ) cos 2ψ + c′s′δ2
R sin 2ψ

]
ω′2

b) Momenten: w2
∞(ψ) = Ω̂2

4

{
Dk +Dv

}
mit Dk = 1 + δ2

R +
[
1 + c′2+s′2

2 δ2
R)
]
ω′2 (2.1:5)

und Dv=
[
2c′δ2

R cosψ + ( 8
3 + 2s′δ2

R) sinψ
]
ω′ +

[
( c
′2−s′2

2 δ2
R − 1) cos 2ψ + c′s′δ2

R sin 2ψ
]
ω′2).

Darin sind Ak, Dk die Mittelwerte (=0.Terme der betr. Fourier-Reihe), und die Av, Dv enthalten
jeweils die Grund- und die erste (=einzige!) Oberschwingung.

Das Ergebnis (für ein Blatt) ist also Lz(ψ) = 1
6Tc

′
AΩ̂2{Ak +Av} α (2.1:6)

und Mψ(ψ) = 1
8Tc

′
AΩ̂2{Dk +Dv} α (2.1:7)

Bei analytischen Untersuchungen werden häufig Vereinfachungen verwendet, und literaturüblich

sind hierfür die 0.Näherungen: w2
∞,0(ψ) = Ω̂2

3 bzw. (für Momente) = Ω̂2

4

Eine nähere Untersuchung scheint angebracht: als weniger grobe Formen bieten sich beispielsweise
an: ◦ das Weglassen der Fein-Modellierung nach Abschn.1.4.2,Ziff.2 ; c = s = 0,

◦ die Vernachlässigung von Gliedern der Ordnung ω′2.

Daraus würden folgen:

2.Näherungen: w2
∞,2(ψ) = Ω̂2

3

{
1 + 3

2ω
′2 + δ2

R + 3 sinψω′ − 3
2 cos 2ψω′2

}
bzw. = Ω̂2

4

{
1 + ω′2 + δ2

R + 8
3 sinψω′ − cos 2ψω′2

}
1.Näherungen: w2

∞,1(ψ) = Ω̂2

3

{
1 + δ2

R +
[
2c′δ2

R cosψ + (3 + 2s′δ2
R) sinψ

]
ω′}

bzw. w2
∞,1(ψ) = Ω̂2

4

{
1 + δ2

R +
[
2c′δ2

R cosψ + ( 8
3 + 2s′δ2

R) sinψ
]
ω′}

Um einen Eindruck von den Folgen solcher Vernachlässigungen zu
vermitteln, sind im Diagramm die Fehler der (azimut-unabhängi-
gen) Mittelwerte dieser drei Näherungen bezogen auf den exakten
Wert dargestellt: Fi = 1− w̄2

i

/
w̄2
exakt für i = 0, 1, 2

(c und s sind mit den typischen Werte Ω̂ = 25 und κ̄ = 3o berech-
net.)

Die Nachteile der 0. und 1. Näherung vor allem im Schwebebe-
reich (Autorotation !) sind augenfällig, aber auch die 2.Näherun-
gen führen für größere Schrägflug-Geschwindigkeiten noch zu

Fehlern im Prozentbereich. Auch diese sind vermeidbar:

Fazit und Hinweis zur Rechenpraxis: Man rechnet am besten unter Benutzung der exakten
Formeln mit den formalen Symbolen Ak . . . Dv und ersetzt diese erst am Schluß durch – warum
auch immer – gewünschte Näherungen.
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2.2 Anstell-, Zustrom-und Pitchwinkel

Diese Winkel sind gemäß Abschn.1.5,Ziff.7-9 in jedem Einzelfall als Funktionen der jeweiligen
Konstruktions- und Betriebsgrößen zu berechnen.
Hier dagegen interessiert uns nur der Überblick über das Gesamtverhalten im Schrägflug, also bei
beliebigen Wertepaaren von Horizontal- und Vertikalgeschwindigkeit; dafür stellen wir (für einen
Zweiblatt-Rotor, n = 2) das Verhältnis aus dem betreffenden Wert für beliebiges U,W zum Wert
im Schwebefall U=W =0 (Index 00) dar und beschränken uns auf Mittelwerte, sodaß Av = 0.

1. Zur Berechnung des Anstellwinkels erhalten wir damit aus (2.1:6) L̄z = 1
6Tc

′
AΩ̂2Akᾱ.

Die Gleichgewichtsbedingung pro Blatt fordert L̄z = 1
n cos ν ! , sodaß durch Umkehr folgt

ᾱ = 6
/
{n cos νTc′AΩ̂2Ak} (2.2:1)

und für den Schwebezustand W = U = 0: ᾱ00 = 6
/
{nTc′AΩ̂2(1 + δ2

R)}.

Die darzustellende Größe ist also ᾱ
ᾱ00

=
1 + δ2

R
cos νAk

; (2.2:2)

anzumerken ist, daß die Konstruktionsgrößen n, T, c′A und Ω̂ bei der Quotientenbildung herausfal-
len, die Beziehung gilt also allgemein. Das linke Diagramm zeigt sie mit dem exakten Wert von
Ak; die Abhängigkeit von W ist sehr gering.

2. Im Gegensatz zum Anströmwinkel ist der Zustromwinkel durch das Verhältnis von Vertikal- zu
Horizontalgeschwindigkeit (mit wN und wT aus den Gln.(1.4:3,4)) gegeben und damit weit stärker
von W abhängig: s. das mittlere Diagramm. – Die Unabhängigkeit von den Konstruktionsgrößen
gilt auch hier.

3. Der vom Piloten (per Taumelscheibe) einzustellende Pitchwinkel Π setzt sich, wie die Skizze im
Abschn.1.5 zeigt, additiv zusammen aus dem Zustromwinkel und dem Anstellwinkel: Π = α+ δR;
daher ist hier die Abhängigkeit von U,W etwas geringer, aber ähnlich gebaut wie die von δR/δR00.
Π ist nicht mehr von den Konstruktionsgrößen unabhängig, dem rechten Diagramm liegen daher
folgende typische Werte zugrunde: n=2, Ω̂ = 20, T = 0.07, c′A = 0.1/(2π), die daraus resultierenden
Werte für den Schwebezustand sind unterhalb der Diagramme angegeben.

2.3 Der starre Zweiblatt-Rotor

Das Schrägbild zeigt die vom Rotor erzeugten Kräfte und Momente: die beiden Blätter 1 und 2

laufen in der x′, y-Ebene um, die gegen die x, y-Ebene um den Winkel
ν(U) gekippt ist (s. Abschn.1.3). Sie erzeugen

a) je einen auf der x′, y-Ebene senkrechten Luftkraft-Vektor Lzi (diese
beiden sind hier schon als via 1

/
cos ν in z-Richtung wirkend gezeichnet)

und
b) je einen in der x′, y-Ebene liegenden Moment-Vektor Mψ

i , der senk-
recht zum Blatt und in ψ-Fortschrittsrichtung positiv ist.
Wegen der starren Konstruktion ist der Anstellwinkel α = const = ᾱ.

Der Vorgang ist – wegen n = 2 – periodisch mit der Periode π, sodaß
(cos, sin)ψ2 = −(cos, sin)ψ, aber (cos, sin)2ψ2 = (cos, sin)2ψ. (2.3:1)

1. Die (normierte) Luftkraft ist Lz(ψ) = 1
2 (Lz1 + Lz2) = 1

12Tc
′
AΩ̂2

{
2Ak +Av1 +Av2

}
ᾱ;

unter Berücksichtigung von (2.3:1) folgt

Lz(ψ) = 1
6Tc

′
AΩ̂2

{
Ak +

[
( c
′2−s′2

2 δ2
R − 3

2 ) cos 2ψ + c′s′δ2
R sin 2ψ

]
ω′2
}
ᾱ.

Die Gleichgewichtsbedingung fordert L̄z = 1
6Tc

′
AΩ̂2Akᾱ = 1

cos ν ! ,
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und damit wird durch Umkehr ᾱ = 6
/{

cos νTc′AΩ̂2Ak
}

(2.3:2)
sodaß

Lz(ψ) =
Ak +

[
( c
′2−s′2

2 δ2
R − 3

2 ) cos 2ψ + c′s′δ2
R sin 2ψ

]
ω′2

cos νAk
(2.3:3)

Das Diagramm zeigt den Verlauf in Abhängigkeit von der Horizon-
talgeschwindigkeit, exemplarisch für W = 0 und Ω̂ = 25.

Die Luftkraft schwankt harmonisch mit der doppelten Umlauffre-
quenz, die Amplitude ist ∼ U2 und liegt im Prozentbereich.

2. Der Betrag des Schlagmoments Mψ = | ~Mψ| ist wegen der Antiparallelität von ~M1 und ~M2 gleich

der Differenz Mψ
1 −M

ψ
2 : Mψ

i (ψ) = 1
8Tc

′
AΩ̂2

{
Dv1 −Dv2

}
ᾱ;

wegen (2.3:1) und mit (2.3:2) folgt nach Unformung

Mψ(ψ) = 3

4 cos νAk

{
2cδ2

R cosψ + ( 8
3ω
′ + 2sδ2

R) sinψ
}

. (2.3:4)

Diese Formel zeigt das linke Diagramm (unten) in kartesischen Koordinaten; dem Vektorcharakter
besser angepaßt ist jedoch die Polardarstellung:

das rechte Diagramm zeigt, wie der Momentvektor, von ψ = 0 im Koordinatenursprung ausgehend
und im Uhrzeigersinn drehend, abnickend und linkssrollend wirkt, bei ψ= π/2 das Rollmoment-
Maximum erreicht und dann über ein Aufnicken und abnehmendes Linksrollen wieder auf den
Momentennullpunkt bei ψ = π zurückkehrt; die Amplitude ist ∼ U .

Der anschließende nächste Umlauf ist (bis
auf die Blattindizes) identisch, d.h. der
Momentvektor ist wiederum positiv, wirkt
also, was das Rollen betrifft, wiederum
linksrollend. Die Fortsetzung des linken
Diagramms würde also wieder eine positive
Sinus-Halbwelle zeigen: die Schwingung ist
nicht harmonisch.

Die Harmonische Analyse dieser Schwin-
gung, also die Entwicklung in eine Fourier-
Reihe, ist sehr einfach: (für unseren Fall ist

das fertige Ergebnis schon in jeder besseren

Formelsammlung zu finden): Mψ(ψ) = 4ω′

π cos ν(2 + 3ω′2)

(
1− 1

6 cos 2ψ − 1
30 cos 4ψ . . .

)
.

Folgen für die Flugdynamik

Lz und Mψ wären nun in die Bewegungsgleichungen für das Gesamtgerät einzusetzen, um dessen
dynamisches Verhalten zu berechnen. Da wir in dieser Arbeit auf alle Berechnungen zur Flugdy-
namik verzichten (s. Seite 1, ” Eingrenzung”), stellen wir hier nur ganz allgemein fest:

Schon bei geringen Horizontalgeschwindigkeiten (Seitenwind!) ”hopst” 3,
rollt und nickt das Gerät mit der doppelten Umlauffrequenz.

Es ist leicht einzusehen, daß katastrophale Folgen unvermeidbar sind: s. die Tragschrauber-Versuche
in den frühen 1920ern.

Generelle Abhilfe bringt das aus diesem Anlaß von de la Cierva 1923 eingeführte Schlaggelenk:

2.4 Das Einzelblatt mit Schlaggelenk

Das Blatt ist nicht starr am Rotorkopf angebracht, sondern kann sich im allgemeinsten Fall
• um das Schlaggelenk (⊥ Rotorachse) auf und ab bewegen, ”schlagen”;
• um das Schwenkgelenk (‖ Rotorachse) vor und zurück bewegen, ”schwenken”.

Damit kommt ein nicht-aerodynamisches Gebiet der Physik mit einer weiteren Größe ins Spiel: die
Schwingungslehre, und wir benutzen wegen des Auftretens der Zeit t die dimensionierte Form der
Gleichungen (2.1:6) und (2.1:7):

L̃z(ψ) = %
6 T̃ c̃

′
AΩ2R3{Ak +Av} α und M̃ψ(ψ) = %

8 T̃ c̃
′
AΩ2R4{Dk +Dv} α (2.4:1)und(2.4:2)

3Dies ist nicht die sog. ”Boden-Resonanz”!

15



Wir behandeln hier nur den erstgenannten Freiheitsgrad: die Auf-undAbbewegung um ein Schlag-
gelenk, das wir uns zudem direkt an der Rotorachse angebracht denken4, und legen zudem das
einfachste Modell zugrunde: ein rechteckiges Rotorblatt mit der Massenbelegung %B = const (in

kg/m); das Trägheitsmoment bezüglich der Schlaggelenkachse ist damit J = %B
R3

3 .

2.4.1 Das Einzelblatt mit Schlaggelenk im Vertikalflug

1. Der Vorgang ist nicht von ψ abhängig, sodaß Gl.(2.4:1) ; ˜̄L
z

= %
6 T̃ c̃

′
AΩ2R3Akᾱ; wegen der

Gleichgewichtsbedingung L̄z = G ! folgt durch Umkehr ᾱ = 6G
/{
%T̃ c̃′AΩ2R3Ak

}
. (2.4:3)

2. Entsprechend wird aus Gl.(2.4:2) M̃ψ = %
8 T̃ c̃

′
AΩ2R4Dkα.

Wie die Skizze zeigt, übt die Zentrifugalkraft dZ = %BΩ2r̃dr̃ wegen
des Kegelwinkels κ ein Moment dM̃Z = −dZ̃ sinκ aus;

integriert und in Kleinwinkelnäherung folgt M̃Z = −Ω2%B
R3

3 κ,
somit ist das Schlagmoment

M̃S = M̃ψ + M̃Z = %
8 T̃ c̃

′
AΩ2R4Dkα− Ω2%B

R3

3 κ.

Nach Division mit J führen wir die dimensionslose Lock -Zahl Λ ≡ 3%T̃ c̃′AR
%B

ein 5, sodaß
M̃S

J = Ω2
[

Λ
8Dkα− κ

]
. (2.4:4)

a) Bei stationärer Umdrehung (mit α → ᾱ, κ → κ̄) muß sein Mittelwert über eine Umdrehung

verschwinden, sodaß κ̄ = Λ
8Dkᾱ bzw. mit (2.4:3): = 3Λ

/{
4Tc′AΩ̂2

}Dk
Ak

. (2.4:5)

b) Aber: das so definierte Blatt ist ein Drehpendel, d.h. es kann um den mittleren Konuswinkel
herum schwingen, sodaß κ = κ̄+ ∆κ(t); die zeitlichen Ableitungen sind κ̇ = ∆κ̇ und κ̈ = ∆κ̈.

Infolge dieser Schlagbewegung ∆κ(t) ergibt sich nun eine Änderung der Auftriebskraft:

wie aus der Skizze abzulesen verändert sich der Anstellwinkel ᾱ um
den aus der Aufwärtsbewegung ∆κ̇r̃ resultierenden ”schlaginduzierten
Abwindwinkel” δS = arctan(∆κ̇r̃)/(Ωr̃) ,

sodaß (in Kleinwinkelnäherung) α = ᾱ−∆κ̇/Ω ,

und das Schlagmoment wird jetzt M̃S

J = Ω2
[
(Λ

8Dk(ᾱ− ∆κ̇
Ω )− (κ̄+ ∆κ)

]
.

Wegen Gl.(2.4:4) wird daraus: M̃S

J = −Λ
8DkΩ∆κ̇− Ω2∆κ . (2.4:6)

Wir setzen dies in die Grundform der Schwingungsgleichung ∆κ̈ = M̃S

J ein und erhalten deren

dimensionsbehaftete Form ∆κ̈+ Λ
8DkΩ∆κ̇+ Ω2∆κ = 0 .

Diese Gleichung ist homogen; das hat zur Folge, daß außer ∆κ = f(ψ) auch ∆κ = 0 eine Lösung
ist; wie oben schon gesagt: das Blatt kann schwingen, muß es aber nicht.

Bemerkungen dazu:

1. Der Faktor von ∆κ ist das Quadrat der Eigenfrequenz der ungedämpften Schwingung; sie ist also

gleich der Umlauffrequenz des Rotors.

2. Der Faktor von ∆κ̇ ist das Doppelte des sog. Dämpfungskoeffizienten; aus der Pendeltheorie folgt da-

mit als Frequenz der gedämpften Schwingung Ω0 = Ω
√

1− [ Λ
16
Dk]2. Die Wurzel ist hier stets reell und

ihr Betrag typischerweise knapp unter eins, sodaß Einschwingvorgänge rasch abklingen: einmal angesto-

ßen würde das mit Ω umlaufende Blatt mit Ω0 < Ω auf und ab schwingen, d.h. der Maximalausschlag

würde mit fallender Amplitude langsam entgegen der ψ-Richtung wandern.

Es ist sinnvoll, von der physikalischen Zeit t auf den Azimutwinkel des Rotorblattes ψ = Ω t als
Unabhängige überzugehen (die Hochkommata bedeuten Differentiation nach ψ);
wegen ∆κ′ = Ω∆κ̇ und ∆κ′′ = Ω2∆κ̈ folgt nach Division mit Ω2 die

normierte Schwingungsgleichung: ∆κ′′ + Λ
8Dk∆κ′ + ∆κ = 0 ; ∆κ, = δS . (2.4:7)

2.4.2 Das angesteuerte Einzelblatt im Vertikalflug

Um ein gewünschtes Steuermoment zu produzieren, das Blatt anzusteuern, prägen wir dem eben
beschriebenen schwingungsfähigen Gebilde ein zyklisches Zwangsmoment auf, indem wir die Tau-
melscheibe um einen gewissen Winkel δz in eine gewisse Richtung ψz kippen, sodaß

α = ᾱ+ ∆α mit ∆α = δz cos(ψ − ψz). (2.4:8)

Mit dieser Maßnahme erzeugen wir einen Zusatzauftrieb dL̃zz bzw. ein Zusatzmoment

4Blätter mit einem Schlaggelenk abseits der Achse oder elastische Blätter verhalten sich weitgehend gleichartig.
5Der Zahlenwert von Λ liegt zwischen 2 (für sehr schwere Blätter) und 10.
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dM̃z(r̃) = dL̃zz r̃ = %
2 T̃ c̃

,
AΩ2r̃3

(
1 + δ2

R

)
δz cos(ψ − ψz)dr̃,

das das bisher nur schwingungsfähige Blatt zu Schwingungen zwingt : integriert und mit J Ω2

dividiert folgt: M̃z

JΩ2 = Λ
8 (1 + δ2

R)δz cos(ψ − ψz); die Schwingungsgleichung lautet also:

∆κ
′′

+ Λ
8 ∆κ′ + ∆κ = Λ

8 (1 + δ2
R)δz cos(ψ − ψz) . (2.4:9)

Wegen des oben erwähnten raschen Abklingens von Einschwingvorgängen ist nur eine spezielle
Lösung dieser inhomogenen Gleichung von Interesse; für diese machen wir den Ansatz

∆κ = C(1 + δ2
R) sin(ψ − ψC) ; zweimalige Differentiation liefert

∆κ′ = C(1 + δ2
R) cos(ψ − ψC) und ∆κ′′ = −C(1 + δ2

R) sin(ψ − ψC) = −∆κ.

Setzt man diese Terme in die Schwingungsgleichung ein, so sieht man sofort, daß diese in zwei
unabhängige Gleichungen zerfällt: 1. C cos(ψ − ψC) = δz cos(ψ − ψz) (2.4:10)

und 2. ∆κ′ = (1 + δ2
R)δz cos(ψ − ψz). (2.4:11)

1. Aus (2.3:10) folgt unmittelbar C = δz und ψC = ψz und damit ist die gesuchte Lösung

∆κ = δz(1 + δ2
R) sin(ψ − ψz) .

2. Noch wichtiger ist aber folgende Erkenntnis aus (2.5:11): da die linke Seite, ∆κ′ = ∆κ̇
Ω = δS ,

die Schlagbewegung darstellt und die rechte, (1 + δ2
R)δz cos(ψ − ψz), via Gl.(2.3:7) die Auftriebs-

schwankung repräsentiert, gilt

Auftriebsschwankungen werden von der Schlagbewegung kompensiert !

Diese Feststellung hat zwei Folgen:
a) der in die Auftriebsformel (2.1:6) eingehende Winkel ist einfach: α = ᾱ = const

b) entsprechend ∆κ = δz(1 + δ2
R) sin(ψ−ψz) pendelt der Konuswinkel mit der gleichen Amplitude

δz um den Gleichgewichts-Konuswinkel wie der Steuerwinkel, aber um π/2
phasenverschoben; das heißt:
aa) der Öffnungswinkel des Rotorkonus’, π − 2κ, bleibt gleich, aber
bb) seine Achse ist nicht mehr senkrecht (identisch mit der mechanischen

Rotationsachse), sondern neigt sich um den Winkel δz in die Richtung
ψh = ψz + π/2.a

cc) Daraus resultiert eine Horizontalkomponente des Auftriebs: L̃ψh = L̃ δz ;
sie verursacht (mit H =Abstand der Rotornabe vom Schwerpunkt)

ein Rollmoment L̃ψhH und, als Querkraft, eine horizontale Beschleunigung
des Hubschraubers, beides in Richtung ψh .

amit in der Literatur (z.B.[7]) gelegentlich verwendeten Begriffen: die ”NoFeathering-
Plane” und die ”TipPathPlane” fallen zusammen.

d) Der Drehmomentvektor, der ja (je nach Drehsinn) parallel oder antiparallel zum Luftkraft-
vektor ist, hat ebenfalls eine Horizontalkomponente. Wir berücksichtigen sie erst im Kap.3.

Die folgende Skizze macht den geschilderten Ansteuervorgang anschaulich; schematisch dargestellt
ist der azimutabhängige Verlauf von δR, δS und Π: 1. Der (aus der Strahltheorie stam-

mende) Winkel δR ist konstant;
2. der Pitchwinkel Π(ψ) ist durch die
Steuerung (per Knüppel und Taumel-
scheibe) vorgegeben, und
3. der schlaginduzierte Abwindwinkel
δS = ∆κ̇/Ω folgt ihm qua Theorie, so-
daß die Differenz Π− δR (= ᾱ !) kon-
stant bleibt.

2.4.3 Das Einzelblatt im Schrägflug

Wir gehen genauso vor wie im Abschn.2.4.1, nur daß in den Formeln jetzt auch die von U und ψ
abhängigen Terme Av und Dv stehen, also L̃z(ψ) = %

6 T̃ c̃
′
AΩ2R3

{
Ak +Av

}
α (2.3:7)

Mit der Gleichgewichtsbedingung ¯̃Lz = G
cos ν ! und Umkehr folgt (normiert)

ᾱ = 6
/{

cos νTc′AΩ̂2Ak
}

(2.4:12) [entspr. (2.4:3)]

Ebenso finden wir M̃ψ(ψ) = %
8 T̃ c̃

′
AΩ2R4

{
Dk +Dv

}
α

und damit folgt durch Hinzunahme des Moments der Zentrifugalkraft, Einführung der Lock -Zahl
und Division mit J das Schlagmoment
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M̃S

J (ψ) = Ω2
{

Λ
8

(
Dk +Dv

)
α− κ

}
. (2.4:13) [entspr. (2.4:6)]

Für den Mittelwert über eine Umdrehung folgt somit Λ
8Dkᾱ = κ̄.

Wir schreiben jetzt (2.4:13) mit den schon im Abschn.2.4.1 eingeführten Aufspaltungen, multipli-
zieren aus und erhalten nach Beachtung von (2.4:12) und Umstellung

M̃S

J (ψ) = −Λ
8

(
Dk +Dv

)
Ω∆κ̇− Ω2∆κ+ Ω2 3Λ

4 cos νTc′AΩ̂2

Dv
Ak

(2.4:14)

Die Schwingungsgleichung ”Schlagwinkelbeschleunigung=Schlagmoment” wird also nach Übergang
auf ψ anstelle von t als Variable:

∆κ′′ + Λ
8

(
8
3 sinψ − ω′2 cos 2ψ

))
∆κ′ + ∆κ = 3Λ

4 cos νTc′AΩ̂2
Dv
Ak

(2.4:15).

Während im Fall des Vertikalflugs die Schwingungsgleichung homogen ist, das Blatt also Schwin-
gungen ausführen kann, aber nicht muß, ist sie jetzt, für U bzw.ω′ 6= 0, inhomogen: die rechte
Seite stellt ein periodisches Zwangsmoment dar, das genau wie das Zusatzmomrnt des angesteu-
erten Blatts im Abschn.2.4.2 ein Schwingen erzwingt, wobei das Zwangsmoment im wesentlichen
durch die Grundschwingung im Term Dv, also

[
2c′δ2

R cosψ +
(

8
3 + 2s′δ2

R

)
sinψ

]
ω′ bestimmt ist.

Der Unterschied zum starren Blatt (Abschn.2.2) besteht darin, daß die instationären Anteile des

Luftkraftvektors ~L und des Schlagmoments ~MS – ebenso wie im Abschn.2.4.2 beschrieben – vom
schwingenden Blatt ”aufgefangen” und vollständig kompensiert werden; der Preis dafür ist ein
Abwandern der Achse des Rotorkreiskegels und damit der Richtung von ~L von der mechanischen
Drehachse mit der Folge des Auftretens einer Horizontalkomponente.

Für die Flugpraxis bedeutet das Ganze:

das Zwangsmoment muß durch ein entgegengerichtetes Steuermoment ausgesteuert werden!

Diesen Vorgang der Aussteuerung im Unterschied zur Ansteuerung (Abschn.2.3.2) macht die fol-
gende Skizze noch einmal anschaulich:

1. der von der (aus der Strahltheorie
stammenden) Anströmgeschwindigkeit
bestimmte Winkel δR schwankt infolge
der Horizontalkomponente U .
2. Die Schlagbewegung kompensiert die
dadurch bedingten Auftriebsschwan-
kungen, d.h. δS bleibt konstant.

Das Zwangsmoment ist durch die rechte Seite von (2.4:15) gegeben:

das Diagramm zeigt (für T = 0.07, c′A = 0.05/π, Ω̂ = 25,Λ = 8) den Verlauf der Amplituden von

Grund- und Oberschwingung über ψ für zwei Werte von U bei
W = 0.
Die Abhängigkeit von W (hier nicht dargestellt) liegt fast in-
nerhalb der Zeichengenauigkeit.
Auffällig ist die Kleinheit der Oberschwingung (punktiert, und
10fach überhöht gezeichnet): ihre Amplitude liegt nur bei etwa
5% der Amplitude der Grundschwingung.

Wesentlich aussagekräftiger als dieses Diagramm ist, wie im Abschn.2.4.2, die polare Darstellung.
Hier beschranken wir uns auf die Glieder bis zur O(ω′) und damit auf die Grundschwingung 6 und
gehen auf die Darstellung als Fourier-Sinus-Reihe über (s. Anh.A1), sodaß das Zwangsmoment die
Form

3Λ
4 cos νTc′AΩ̂2(1 + δ2

R)

√
( 8

3 + 2s′δ2
R)2 + (2c′δ2

R)2 cos
(
ψ − arctan

4/3 + s′δ2
R

c′δ2
R

)
erhält;

daraus kann man die Amplitude und den Winkel gegen die (−x′)−Achse der Grundschwingung
direkt ablesen.

6denn nur diese kann die Taumelscheibe (als lineares Element i.S. der Getriebe-Mechanik) aussteuern.
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Das Diagramm zeigt Größe und Richtung des Zwangsmoments bzw.
die seiner Komponenten Roll- und Nickmoment; das zur Aussteue-
rung erforderliche Steuermoment (d.h. für die Praxis: der Knüppel-
Ausschlag) liegt folglich zentralsymmetrisch entgegengesetzt.

Im Flugschuljargon[9] heißt es daher für den Übergang vom Schwebe-
in den Vorwärtsfluges einfach:

”Ersten Gang einlegen!”

denn: der erste Gang liegt beim Auto üblicherweise links vorn. N.B.: Diese Anweisung gilt aber nur
für einen im mathematisch positiven Sinn, also im Gegenzeiger drehenden Rotor; exakt muß sie heißen:
”Drücken, und Querruder zur Seite des rücklaufenden Blattes geben”.!

2.5 Mehrblattrotoren

2.5.1 Unabhängig angelenkte Einzelblätter

Wir setzen voraus, daß sich im Rahmen der Blattelementtheorie die n Einzelblätter in keiner Weise ge-
genseitig beeinflussen. Dann gelten für jedes Blatt die gleichen Überlegungen und Berechnungen wie oben,
insbesondere auch die Folgerungen Ziff.1.und 2. im Abschn. 2.4 (einzige Ausnahme: die erforderliche Luft-
kraft pro Blatt sinkt auf 1/n). Jedes Blatt läuft also auf seinem eigenen gekippten Rotorkonus um und
bildet seinen eigenen Luftkraftvektor; da aber α und ψz nicht von ψ abhängen, sind alle individuellen
Rotorkonen und Vektoren identisch und summieren sich zu dem oben für das Einzelblatt berechneten,
sodaß auch die oben dargestellten Folgerungen unverändert gelten.
Das gilt selbstverständlich auch für Schlaggelenkabstände > 0 - s. Fußnote 6.

2.5.2 Der Wipprotor (”seesaw-”, ”teetering”-, ”gimballed”-rotor)

Hier sind zwei Blätter starr miteinander verbunden und die gemeinsame Schlagachse liegt auf der Rotor-
achse. Die Situation ist also die gleiche wie beim starren Zweiblatt-Propeller im Abschn.2.3, nur daß
jetzt gemäß der Feststellung im Abschn.2.4.2 die Auftriebsschwankungen während des Umlaufs von der
gemeinsamen Schlagbewegung kompensiert werden; der Wipprotor verhält sich also wie ein Zweiblatt-Rotor
mit Schlagelenkabstand Null.

3 Systeme mit mehreren Rotoren

3.1 Katalog der Steuerungsarten, individuelle Formeln

Die einzelnen Hubschrauber-Typen werden unterschiedlich gesteuert. Die folgende Tabelle zeigt
eine Zusammenstellung für die drei Steuerungsarten:

Seitenruder (Giersteuerung), Querruder (Rollsteuerung) und Höhenruder (Nicksteuerung)

und zwar jeweils für den Normal-H.(”EinRot”), den Koaxial-H., den Tandem-H., und drei unter-
schiedlich gesteuerte Flettner-Typen (Bauart Wieland[14], Fa.Kaman, Original-Flettner 1945):

EinRot Koaxial Tandem E/KMAX OKMAX Fl282

Seitenruder HR-koll diff-koll diff-zykl diff-koll+diff-zykl diff-koll+diff-zykl diff-koll

Querruder zykl sim-zykl sim-zykl sim-zykl sing-zykl sim-zykl

Höhenruder zykl sim-zykl diff-koll sim-zykl sim-zykl sim-zykl

Die gleich- bzw. gegensinnige Verstellung zweier Rotoren ist mit ”sim” bzw. ”diff” charakterisiert,
”sing” bedeutet Verstellung nur eines Rotors;

die Abkürzungen ”koll” bzw. ”zykl” zeigen die kollektive bzw. zyklische Verstellung der Blätter
eines Rotors an.

Für jede Zelle der obigen Tabelle sind nun die individuellen Formeln für die Kräfte und Momente
zu ermitteln.

Wir erklären das Vorgehen zunächst ausführlich am Beispiel des einrotorigen Normalhubschrau-
bers; er ist zwar wegen der unterschiedlichen, windschiefen Achsorientierungen von Haupt- und
Heckrotor umständlicher zu behandeln, aber infolge der Trennung der Aufgaben (Hauptrotor:
Auftrieb, Heckrotor: Gegendrehmoment) übersichtlicher als die anderen Systeme.
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3.1.1 Der Normal-Hubschrauber

Zur anschaulichen Darstellung der Kräfte und Momente dienen die folgenden Analyse-Skizzen:

Analyse-Skizzen für: Gleichgewichtszustand, Gieren, Rollen, Nicken

Schweben (Gleichgewichtszustand)
Die Teilskizze a) zeigt die physikalische Konfiguration mit den Kräften G,Lz, LyH und den Mo-
menten Mz,My

H , die vom Haupt- und Heckrotor auf das Gerät ausgeübt werden. Verschiebt man
– Teilskizze b) – alle Kräfte und Momente in den Schwerpunkt, so tritt zusätzlich ein Moment
Mx
H = −fLH0 HH auf (s. Abschn.1.1).

Die Berechnung gestaltet sich wie folgt:

1.Schritt: im Gleichgewichtszustand muß Lz = G ! sein, d.h.
a) nach Vorgabe von W sind die induzierte Geschwindigkeit wi(W ) und der Anströmwinkel

δR(W ) zu berechnen, sodaß
b) durch Iteration von Lz=fL0 = G ! der Anstellwinkel α0 berechnet werden kann.

Damit sind jetzt Lz=fL0 und Mz=fM0 bekannt.

2.Schritt: Zur Kompensation des Hauptrotor-Drehmoments dient das vom Heckrotor über den
Abstand Haupt-/Heckrotor ausgeübte Moment; es muß also fM0 = LyH0 Z ! sein.
a) Zur Berechnung von αH0 modifizieren wir die Strahltheorie: die (hier: horizontale!) An-

strömung aus dem Unendlichen ist null, daher ist (s. Abschn.1.2) die induzierte Geschwin-
digkeit gleich der auf den Heckrotor bezogenen Gerätekonstante, wobei an die Stelle der Ge-
wichtskraft der Heckrotorschub tritt; es folgt (wegen LyH = fLH0,) wiH 0 =

√
LyH0/(2%FH),

und daraus folgt der Heckrotor-Anströmwinkel δRH .
b) Nun kann αH0 durch Iteration von fM0/Z = fLH0 ! berechnet werden.

Damit sind jetzt auch LyH (= fLH0) und My
H (= fMH0) bekannt.

3.Ergebnis: Wir haben also im Gleichgewichtszustand (Pitchhebel und Knüppel in Nullstellung!)
noch eine Kraft und zwei Kopplungsmomente, die folglich als inhärent (also auch ohne jeden
Steuereingriff vorhanden) zu bezeichnen sind:

eine inhärente Querkraft Lyi = LyH = fLH(αH0)
ein daraus folgendes inhärentes Rollmoment MiR = −Lyi HH

ein inhärentes Nickmoment MiN = My
H = fMH(αH0) .

Seitenruder (Gieren)
Hier wird im zweiten Schritt das Gegendrehmoment des Hauptrotors nicht kompensiert sondern
(für Linksgieren mit δz > 0:) erhöht, sodaß jetzt LyH = fLH+ (statt fLH0); infolgedessen wird das
gesamte Giermoment Mz

ges = fLH+Z.
Nach Abzug von Mz

0 bleibt als gesteuertes (Nutz-)Giermoment MGier = (fLH+−fLH0)Z; darin
steckt auch eine gesteuerte (unerwünschte) Querkrafterhöhung: Ly = fLH+ − fLH0.
Die gesteuerten Anteile der beiden (unerwünschten) Kopplungsmomente sind also

MRoll = −fLH+HH −MiR und MNick = fMH+ −MiN .
(Für Rechtsgieren tritt entsprechend wegen δz < 0 fL(H−) auf.)
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Quer- und Höhenruder (Rollen/Nicken)
Wie aus den Analyse-Skizzen c) bzw. d) abzulesen ist, werden Luftkraft- und Momentenvektor
~L, ~M um den Steuerwinkel δz nach rechts bzw. vorn gekippt, es folgt:

1.Schritt Lz = fL0 cos δz = G ! ergibt durch Iteration α0;
Bemerkung: α0 wird dadurch α0(δz), also, mit α00 := α0(0), α0 = α00 + ∆α0.
∆α0 ist Funktion von W , aber vernachlässigbar klein.

2.Schritt: LyH Z = fM0 cos δz ergibt durch Iteration αH0.

Durch die Schrägstellung von ~L und ~M treten Horizontalkomponenten Ly bzw. Lx und My bzw.
Mx auf, sowie, als Folge von Ly bzw. Lx, weitere Momente: Mx = LyHS bzw. My = LxHS .

3.1.2 Hubschrauber mit Rotorpaaren

Die Vorgehensweise verdeutlichen wir ausfürlich am Beispiel der

Querrudersteuerung des Fl 282;
sie erfolgt simultan-zyklisch, ψ0 = π/2 und ist dadurch, daß die gesamte Vektorgeometrie in eine
durch die Rotorachsen gehende Ebene fällt, mit einer ebenen und damit übersichtlichen Analyse-
Skizze anschaulich zu machen; wir blicken von hinten in Richtung der x-Achse.

Wegen δk = 0 sind die beiden Luftkraft- und Momentenvektoren jeweils gleich lang, erzeugen aber

infolge der unterschiedlichen Winkel gegen die z-Achse
(rechts β + δz ≡ β+, links β − δz ≡ β−) unterschiedlich
lange Projektionen auf die y- und z-Achse. Aus der Skizze
liest man ab:
Ly1 = −fL0 sinβ+ , My

1 = −fM0 sinβ+

Lz1 = fL0 cosβ+ , Mz
1 = fM0 cosβ+

Ly2 = fL0 sinβ− , My
2 = −fM0 sinβ−

Lz2 = fL0 cosβ− , Mz
2 = −fM0 cosβ−

(Komponenten in x-Richtung treten nicht auf)

Die Berechnung verläuft grundsätzlich wie oben:

1.Schritt Als erstes müssen wir α0 bestimmen, und zwar so, daß die erste Gleichgewichtsbedingung
erfüllt ist; dazu ist α in fL(α) auf α0 zu iterieren, so daß Lz1 + Lz2 = G !

2.Schritt Mit den nun bekannten fL0 und fM0 können Ly1,2, My
1,2 und My

1,2 berechnet werden.

3.Als letzten Schritt kombinieren wir (unter Benützung der Additionstheoreme der Winkelfunk-
tionen) diese Werte zu den gesuchten Steuermomenten:
a) Mz

1 und Mz
2 summieren sich zu einem Giermoment: MGier = . . . = −2fM0 sinβ sin δz

b) Lz1 und Lz2 produzieren mit den Hebelarmen Z/2 ein Rollmoment:
MRoll1 = −(Lz1 − Lz2)Z2 = . . . = 2fL0 sinβ sin δz

Z
2

c) Die Querkraftsumme Ly = Ly1 − L
y
2 = . . . = 2fL0 cosβ sin δz ist in den um die Strecke HS

unter dem Rotorkopf gelegenen Schwerpunkt zu verschieben. Daraus folgt (s. Abschn.1.1)
ein zusätzliches Moment; hier ist es ein Rollmoment LyHS , sodaß das gesamte Rollmoment
MRoll = MRoll1 + LyHS = . . . = 2fL0(sinβ Z2 + cosβHS) sin δz beträgt.

d) My
1 und My

2 summieren sich zum Brutto-Nickmoment: MNick = . . . = −2fM0 sinβ cos δz

Das bereits in Abschn.1 erwähnte, schon ohne jeden Steuereingriff vorhandene inhärente Nickmo-
ment folgt mit δz = 0 sofort als MiN = −2fM0 sinβ, sodaß der gesteuerte Anteil

MNick −MiN = 2fM0 sinβ(1− cos δz) .

Der ”Rest”
Die drei Steuerfälle des Koaxial-Hubschraubers sind nach dem oben ausführlich dargestellten Prin-
zip derart einfach zu behandeln, daß wir sie nicht zu zeigen brauchen.

Die restlichen 4×3 = 12 Fälle (Tandem und Flettner) lassen sich dagegen nur mithilfe perspektivi-
scher Analyse-Skizzen anschaulich machen und erfordern triviale, aber umfangreiche Kleinarbeit;
die Darstellung würde den Rahmen der Arbeit sprengen. Als Hinweis ist eine Sammlung von
Analyse-Skizzen im Anhang A3 zu finden.

Die Zusammenstellung aller resultierenden Formeln dagegen ist in der folgenden Tabelle gegeben,
gefolgt von graphischen Darstellungen.
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3.1.3 Zusammenstellung der Kräfte und Momente

Führt man die beschriebene Prozedur mutatis mutandis für sämtliche Fälle durch, so erhält man
für die gesteuerten Größen (ev. vorhandene inhärente Nickmomente sind in der jeweiligen Kopfzeile
vermerkt) die folgende Tabelle. Die mittlere Spalte enthält die Kraftkomponenten; die letzte die
gesteuerten Gier-, Roll- und Nick-Momente.

EinRot Ly
i = fLH0 MiR = −fLH0HH , MiN = fMH0

Seitenruder; Heckrotor Ly = fLH+ − Ly
i MGier = −(fLH+ − fLH0)Z

MRoll = −(fLH+ − fLH0)HH

MNick = fMH+ − fMH0

Querruder; zykl (ψ0 = π/2) Ly = −fL0 sin δz MRoll = fL0 sin δzHS − fLH0HH

MNick = −fM0 sin δz
Höhenruder; zykl (ψ0 = π) Lx = fL0 sin δz MRoll = fM0 sin δz

MNick = fL0 sin δzHS

Koax

Seitenruder; diff-koll MGier = ∆M

Querruder; sim-zykl (ψ0 = π/2) Ly = −2fL0 sin δz MRoll = 2fL0 sin δzHS

Höhenruder; sim-zykl (ψ0 = π) Lx = 2fL0 sin δz MNick = 2fL0 sin δzHS

CH47

Seitenruder; diff-zykl (ψ0 = 3π/2) MGier = fL0 sin δzZ
MRoll = fL0 sin δz(HS2 −HS1)
MNick = 2fM0 sin δz

Querruder; sim-zykl(ψ0 = π/2) Ly = −2fL0 sin δz MRoll = fL0 sin δz(HS2 +HS1)

Höhenruder; diff-koll MGier = −∆M
MNick = ∆LZ

2

E/KMAX MiN = −2fM0 sinβ

Seitenruder; diff-koll + diff-zykl MGier = ΣL sin δz
Z
2

+ ∆M cosβ cos δz
(ψ0 = π, δz = δk) Ly = −∆L sinβ cos δk MRoll = ∆L cos δz(sinβHS − cosβ Z

2
)

+ΣM sin δz
Lx = ∆L sin δk MNick = ∆L sin δzHS − ΣM sinβ cos δz

Querruder; sim-zykl (ψ0 = π/2) MGier = −2fM0 sinβ sin δz
Ly = −2fL0 cosβ sin δz MRoll = 2fL0(cosβHS + sinβ Z

2
) sin δz

MNick = −2fM0 sinβ cos δz
Höhenruder; sim-zykl (ψ0 = π) Lx = 2fL0 sin δz MNick = 2fL0 sin δzHS − 2fM0 sinβ cos δz
OKMAX MiN = −2fM0 sinβ

Seitenruder; diff-koll + diff-zykl MGier = ∆M cos δz cosβ + ΣL sin δz
Z
2

(ψ0 = π, δz = δk) Ly = −∆L sinβ cos δk MRoll = ∆L cos δz(sinβHS − cosβ Z
2

)
+ΣM sin δz

Lx = ∆L sin δk MNick = ∆L sin δzHS − ΣM sinβ cos δz
Querruder; sing-zykl (ψ0 = π/2) MGier = fM0(cosβ+ − cosβ)

(kurveninnerer Rotor) Ly = −fL0(sinβ+ − sinβ) MRoll = fL0((sinβ+ − sinβ)HS

−(cosβ+ − cosβ)Z
2

)
MNick = −fM0(sinβ+ + sinβ)

Höhenruder; sim-zykl (ψ0 = π) Lx = 2fL0 sin δz MNick = 2fL0 sin δzHS − 2fM0 sinβ cos δz
Fl 282 MiN = −2fM0 sinβ

Seitenruder; diff-koll MGier = ∆M cosβ
Ly = −∆L sinβ MRoll = ∆L(sinβHS − cosβ Z

2
)

MNick == −ΣM sinβ

Querruder; sim-zykl (ψ0 = π/2) MGier = −2fM0 sinβ sin δz
Ly = −2fL0 cosβ sin δz MRoll = 2fL0(sinβ Z

2
+ cosβHS) sin δz

MNick = −2fM0 sinβ cos δz
Höhenruder; sim-zykl (ψ0 = π) Lx = 2fL0 sin δz MNick = 2fL0 sin δzHS − 2fM0 sinβ cos δz

Die Formeln dieer Tabelle gelten für den allgemeinen Schrägflug, also beliebige Werte von U , W .

In den Abschn.3.2 und 3.3 beschränken wir uns aber auf den reinen Vertikalflug mit U = 0 bzw.
ω′ = 0, sodaß in (2.1:4) und (2.1:5) Ak, Dk = 1 + δ2

R und Av, Dv = 0.
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3.2 Graphische Darstellung

Eine vollständige, umfassende Darstellung der Steuerungsmomente der drei Typen mit bis zu drei
Momenten für jede der drei Steuerungsarten in Abhängigkeit von je zwei Steuerwinkeln verbietet
sich aus Platzgründen; wir beschränken uns daher auf eine Auswahl.

Die Zahlenwerte der berechneten Momente variieren sehr stark entsprechend den Unterschieden in
Gewicht, Abmessungen und Bauart. Es liegt daher nahe, nach einer passenden Normierungsgröße
(mit der Dimension Kraft×Länge) zu suchen, um die Ergebnisse auf eine gemeinsame Basis zu
reduzieren:
Wir benutzen als ”Normalmoment” das Produkt M0 = mFR n

2 10−3; damit sind nicht nur
Gewicht G = mg, Rotorhalbmesser R und Drehzahl n berücksichtigt, sondern auch noch der bei
einigen Typen vorhandene Achsabstand Z.

Die folgenden Abbildungen zeigen die Umsetzung der Formeln in Diagramme M../M0 = f(δ) für
die spezifizierten Typen, und zwar für Steuerwinkel δk, δz von 0 bis 3o.

Die Darstellung hat Matrix-Form:
die Hauptdiagonale enthält die mit dem jeweiligen Ruderaussschlag gewünschten Nutzmomente,
in den Nebendiagonalen stehen die Nebenwirkungs- (oder Kopplungs-)Momente.

Der Normalhubschrauber hat in allen drei Steuerungsarten Nebenwirkungen: maximal ca.10% des
Nutzmoments beim Seitenruder und ca.25% bei Quer- und Höhenruder; ihre Stärke hängt von der
Vertikalgeschwindigkeit ab.

Das Querruder-Rollmoment hängt geringfügig von W ab.

Die schon in den Abschn.1.1 angesprochenen inhärenten Kräfte und Momente sind in dem kleinen
Diagramm rechts oben neben dem Hauptdiagramm angegeben; sie sind allesamt null im realen
Autorotationszustand, da dort das Rückwirkungsdrehmoment verschwindet – s. die Formeln im
Abschn.3.1.4.
Das darunter stehende kleine Diagramm stellt einige Winkel dar:
den Heckrotor-Anstellwinkel α0H , die Änderung des Hauptrotor-Anstellwinkels ∆α0 und den Zustromwin-
kel δR des Heckrotors.
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Der koaxiale Rotor
zeichnet sich durch eine
vollkommene Nebenwir-
kungsfreiheit aus;
die Giersteuerung unter-
liegt der Steuerumkehr
(s. Abschn.3.3.1).

Die Tandem-Anordnung
weist zwei von der
Vertikalgeschwindigkeit
abhängige Nebenwir-
kungsmomente auf;
das Nickmoment bei
Seitenruderausschlag
erreicht max. 25% des
Nutzmoments, das
Giermoment bei Höhen-
ruderausschlag max.
10%.
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Die Flettner-Typen zeigen die meisten, stärksten und variabelsten Nebenwirkungen.
Das Bild wird vor allem durch das inhärente Nickmoment kompliziert; es ist weit stärker als die Nutz-
momente. Da es nicht von den Steuerwinkeln δk,z abhängt, kennzeichnen wir seine Größe nur auf der
MN -Achse mit kleinen Quadraten, von denen dann das gesamte (”Brutto-”) Nickmoment MNick(δk,z)
ausgeht.
Der reine gesteuerte Anteil ist in einer rechts neben dem eigentlichen Diagramm wiederholten 4.Spalte im
jeweils passenden größeren Maßstab dargestellt.

Besonderheiten der Typen OKMAX und EMAX sind erstens die zusätzliche differentiell-zyklische Seiten-
ruderansteuerung bei der Giersteuerung und zweitens die sing-zykl Rollsteuerung beim OKMAX.
Das Ausmaß des Zusammenwirkens zweier voneinander unabhängiger Steuerwinkel ist aus den abgeleiteten
Formeln nicht abzuschätzen und ihre Darstellung in Diagrammen würde hier durch das Auftreten von
Kurvenscharen anstelle einzelner Kurven unübersichtlich. Wir haben deshalb im obigen Diagramm nur
den speziellen Fall δz = δk berücksichtig und gehen erst im Abschn.3.4.2 näher auf das Grundsätzliche ein.

3.3 Besonderheiten

3.3.1 Einfluß der Vertikalgeschwindigkeit, Steuerumkehr

Wie schon oben bemerkt, zeigen einige Einzeldiagramme M...(δ...) eine starke Abhängigkeit von der Ver-
tikalgeschwindigkeit W , andere dagegen nicht.
Das hat sowohl eine Ursache als auch Folgen.
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Ein Vergleich mit den Formeln in der Tabelle zeigt, daß nur die Momente mit M -Anteilen diese Abhängig-
keit zeigen. Dies ist folgendermaßen zu erklären:
1. Wie oben beschrieben, ist der erste Schritt bei der Bestimmung der Kräfte und Momente die

Erfüllung der Gleichgewichtsbedingung; dadurch werden die Luftkraftkomponenten Lz auf
das Tragen des Gewichts G fixiert, sodaß auch Lx, Ly unabhängig von W bleiben.

2. Die aus der Umfangskomponente Lu herrührenden Momente dagegen sind stark von W abhängig:
wie in Abschn. 2 hergeleitet ist M = const(cA sin δR + cD cos δR); mit cD � cA und sin δR ≈ δR
folgt M ≈ const δR, und da δR stark von W abhängt, ist damit das Phänomen erklärt.

Die fast ausnahmslos auftretende Folge dieser W -Abhängigkeit der M−basierten Momente ist der
Nulldurchgang des betreffenden Moments, s. z.B. das Teildiagramm EMAX/Seitenruder/Gieren:

Ausgehend vom Schwebefall (W = 0, blaugrüne Kurve) wird mit zunehmender Sinkgeschwindigkeit die
Wirkung des Seitenruderausschlags pro Grad immer geringer und (und zwar im Zustand der idealen Auto-
rotation) schließlich null. Bei noch höherer Sinkgeschwindigkeit geht sie dann zunehmend ins Negative: die
Reaktion des Geräts auf einen Steuerausschlag erfolgt in der ”falschen” Richtung, d.h. die Steuerwirkung
kehrt sich um – ein Umstand, der sich in der bei schnellem Sinken sowieso meist stressbelasteten Situation
verhängnisvoll auswirken kann.
Das L-basierte (Nebenwirkungs-)Rollmoment dagegen bleibt unbeeinflußt.

3.3.2 Der Flettner-Rollfaktor

Zusätzlich zu den schon erwähnten zeigt die Seitenruder-Steuerung der Flettner-Typen noch eine im Flug-
betrieb aufällige Besonderheiten, die aus der differentiell-kollektiven Ansteuerung stammt:
Wie aus der Tabelle ersichtlich entstehen hier (und zwar infolge der unterschiedlichen Luftkräfte: ~L1 6=
~L2) außer dem gewünschten Giermoment MGier = ∆M cosβ und dem inhärenten Nickmoment noch
zwei Nebenwirkungs-Rollmomente, die von den unterschiedlichen Komponenten Ly und Lz herrühren:
MRoll2,y = ∆L sinβHS und MRoll1,z = −∆L cosβ Z

2
,

sodaß insgesamt MRoll = ∆L(sinβHS − cosβ Z
2

) = ∆L cosβHS(tanβ − Z/2
HS

) .

Der in Klammern stehende ”Flettner-Rollfaktor” ist durch die Konstruktion fest-
gelegt und kann theoretisch Werte über oder unter Null annehmen.
Wie man aus der Skizze abliest, ist er null, wenn sich die Rotorachsen auf der
Symmetrieebene genau im Schwerpunkt (bzw.auf Schwerpunkthöhe) schneiden,

denn dann ist tanβ = Z/2
HS

.

Liegt dieser Schnittpunkt höher als der Schwerpunkt, so ist der Rollfaktor (und
damit MRoll) negativ: das Gerät krängt a zum Kurveninnern,
liegt er tiefer, so hängt wegen MRoll > 0 das Gerät (gefühlt ”falsch”) nach außen.

aDer Ausdruck ”krängen” stammt aus dem Schiffsbau.

Setzt man die entsprechenden Konstruktionsdaten (s. Abschn.4) ein, so erhält man
EMAX KMAX Fl282 OKMAX

Rollfaktor -0.084 -0.093 -0.188 -0.211

Das Nebenwirkungs-Rollverhalten der hier untersuchten Typen ist also sehr unterschiedlich, aber stets
physiologisch richtig nach innen.

3.3.3 Das inhärente Nickmoment

In Überleitung zum nächsten Abschnitt stellt das Diagramm das
inhärente Nickmoment MiN = −2fMo sinβ in Abhängigkeit von
Horizontal- und Vertikalgeschwindigkeit dar, bezogen auf das Nickmo-
ment im Schwebeflug.

Es zeigt klar, daß ein Austarieren (z.B. durch eine Schwer-
punktverlagerung) auf den durch den dicken Punkt markierten Schwe-
befall U=W =0 bei weitem nicht ausreicht:

sowohl im Steig-/Sinkflug, U ≈ 0, als auch beim Übergang zum Hori-
zontalflug mit W ≈0 treten Abweichungen in der Größenordnung Eins
auf – extrem kritisch ist das Verhalten im Schräg-Sinkflug!

Auf jeden Fall ist also ein Aussteuern des Nickmoments zwingend erforderlich; auf einige der verschiedenen
Möglichkeiten hierfür gehen wir im nächsten Abschnitt anhand eines Einzelfalls (EMAX) ein.
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3.4 Schrägflug

3.4.1 Allgemeines

Die Berücksichtigung der Horizontalkomponente U und damit der vollen Formen von (2.1:6) und (2.1:7)
scheint zunächst die Berechnung erheblich zu komplizieren. Da jedoch, wie im Abschn.2.4.2 nachgewiesen,
die Auftriebsschwankungen vom Schlagen der Blätter kompensiert werden, genügt es weiterhin, mit den
Mittelwerten (den 0.Gliedern der Fourier-Reihen) zu rechnen, also Av = Dv = 0 zu setzen. Damit lassen
sich jetzt alle Rechenprogramme aus dem Abschn.3.1.4 entsprechend modifizieren, insbesondere tritt an
die Stelle der Gln.(1.2:6)...(1.2:8) die Glauertsche Lösung nach G.(1.3:5).

Aus der Schwierigkeit, nun mit U eine weitere Variable darstellen zu müssen, hilft die folgende Beobachtung:
die Diagramme für den Vertikalflug – s. Abschn.3.2 – zeigen, daß fast alle Nutz- und Störmomente linear von
den Steuerwinkeln δk und δz abhängen; mit anderen Worten: die Steuerempfindlichkeiten dMG,R,N/dδk,z
sind in guter Näherung konstant; wir setzen (Kleinwinkelnäherung!) einfach dM/dδ ≈ M(1 grd). Anstelle
von δkbzw.δz ist jetzt also U die Abszisse und die Steuerempfindlichkeiten sind die Ordinaten; W fungiert
weiterhin als Parameter.

Als erstes Beispiel steht hier der Tandem CH47 – sein Steuerungsverhalten ist wenig eindrucksvoll:

wie schon das
Vertikalflug-
Diagramm
nahelegt, sind
die meisten
Momente fast
oder ganz
unabhängig
von UundW ;
die zwei Aus-
nahmen sind
größenord-
nungsmäßig
(2%) im Ver-
gleich mit den
zugehörigen
Nutzmomen-
ten vernach-
lässigbar.

Ganz anders verhält sich der Flettner-Typ:

den wir deshalb im Folgenden genauer untersuchen wollen.

27



3.4.2 Spezielle Eigenschaften der Flettner-Typen

Wie schon das entsprechende Diagramm für den Vertikalflug im Abschn.3.2 zeigt, werden die Gier- und
Nickmomente stark durch die Vertikalkomponente W beeinflußt; dies wirkt sich, wie Wieland[14] ausführ-
lich dokumentiert, vor allem im Autorotationsbereich stark auf das Flugverhalten aus.

Als erstes vergleichen wir im folgenden Diagramm die rein differentiell-kollektive Giersteuerung (z.B. Fl 282)
mit der differentiell-zyklischen (z.B. im Kaman KMax zusätzlich verwendet).
Das folgende Diagramm stellt in der unteren Reihe den erstgenannten Fall dar, in der oberen den differentiell-
kollektiven Gegenpart. Bei den Nickmomenten sind nur die gesteuerten Anteile enthalten; die inhärenten,
die für alle Flettner-Typen die gleichen sind, sind weggelassen.

Das Gier-Nutzmoment
der differentiell-zyklischen
Steuerung ist also im Ver-
gleich mit der differentiell-
kollektiven um den Faktor
fünf bis zehn kleiner, dafür
aber konstant, sein Stör-
Rollmoment ist praktisch
null.
Die Stör-Nickmomente
beider Typen sind gleich
und fallen daher bei der
differentiell-kollektiven
Steuerungsart weniger
ins Gewicht als bei der
differentiell-zylischen.

Von besonderem praktischen Interesse sind die Gier-Steuerempfindlichkeiten im Landeanflug, also im
Schräg-Sinkflug innerhalb oder nahe des Autorotationsbereichs.
Der Schräg-Sinkflug ist gekennzeichnet durch die Bahnneigung ε gegen die Horizontale zusammen mit der
Bahngeschwindigkeit VB als Parameter; diese ist im folgenden Diagramm fein unterteilt (s. die Legende).
Wir stellen vier verschiedene Kombinationen von δk : δz vor (v.l.n.r.):
◦ die ”gutmütigste”, am leichtesten zu fliegende Variante,
◦ die dem Original Kaman K-Max im normalen Flug entsprechende,
◦ dieselbe in einem Übergangsgebiet zur Autorotation, und
◦ die im Fl 282 ”Kolibri” eingesetzte.

Bemerkungen:

1.Zeile: Der dominierende
Anteil der Nutz-Steueremp-
findlichkeit ist δk.
Im Bereich der Autorotation
tritt die flettner-typische
abrupte Änderung der Seiten-
ruder-Steuerempfindlichkeit
bei kleinen Neigungswinkel-
änderungen in Erscheinung –
in außerhalb liegenden Berei-
chen ist das Verhalten weitaus
gutmütiger.

2.Zeile: Das Stör-Rollmoment
ist nahezu konstant, sodaß wir
es nur mit einem Zahlenwert
angeben.

3.Zeile: Das Stör-Nickmoment
steigt nahezu linear mit δk.

Die Folgerungen für die Flugpraxis, insbesondere für das zu empfehlende Verhalten im Landeanflug, sind
in [14] ausführlich beschrieben.
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4 Zahlenwerte

• Erdbeschleunigung g = 9.81m/s2, Luftdichte % = 1.275kg/m3

• Konstruktionsdaten
(alle Rotoren sind zweiflüglig)

EinRot Koax CH47 EMAX KMAX Fl282 OKMAX

Gewicht G N 53.96 78.5 24500 56.9 93.2 9810 26683
bezw. Masse m kg 5.5 8 2500 5.8 9.5 1000 2384
Rotorradius R m 0.76 0.76 9.15 0.71 0.76 6.0 7.37

RH m 0.14 - - - - - -
Blatttiefe T m 0.06 0.06 0.8 0.05 0.06 0.29 0.45

TH m 0.03 - - - - - -
spezif.Blattmasse %B kg/m 0.339 0.339 - 0.339 0.339 6.67 14.6

%BH kg/m 0.07 - - - - - -

Achsabstand Z m 0.921) 0 12 1.54 0.165 0.589 1.600
Achsspreizung 2 ∗ β o - 0 0 12 12 12 12.5

Drehzahl Hauptrotor rpsM s−1 30 25 2.5 25 25 2.97 2.97
′′ Heckrotor rpsH s−1 150 - - - - - -

Schwerpunktabstand HS m 0.2 0.28 2.83/5.892) 0.26 0.27 0.75 1.85
Schwerpunktvorlage xS m 0 0 0 0.024 0.029 0.078 0.194

Rotorfläche FRot m2 1.767 1.815 424.2 1.708 2.003 118.4 188.3

Flächenbelastung G/F N/m2 30.5 43.2 57.8 32.6 46.5 82.9 141.7
ind.Geschw. bei W=0 wi0 m/s 3.46 4.12 4.76 3.57 4.27 5.70 7.46
Schwebe-Anst.winkel α0,0

o 1.41 1.42 1.91 1.52 1.69 5.32 5.03
Lock-Zahl Λ 3.650 2.762 2.009 2.762 2.612 4.978

Blattspitzengechwindigkeit ΩR = 2πnMR m/s 143.26 119.38 143.73 115.53 119.38 111.97 137.53
′′ normiert Ω̂ = ΩR/w̃i0 41.4 29.0 30.2 31.2 28.0 19.6 18.5

Blattiefe normiert T̃ /R 0.079 0.079 0.087 0.070 0.079 0.048 0.061
1)=Achsabstand Hauptrotor-Heckrotor 2)=Schwerpunktabstand Bugrotor-Heckrotor

In den Beispielrechnungen verwendete generische Werte: Ω̂ = 25, w̃i0 = 5ms−1, T = 0.1,Λ = 8 .

Erläuterungen:

• EinRot und Koax sind generische Typen.

• CH47 simuliert den US-Transporthubschrauber Chinook. Die Daten sind z.T. unsicher.

• EMAX und KMAX sind von E.Wieland gebaute und geflogene Modellhubschrauber.

• OKMAX ist der Typ Kaman-Aerospace K1200. Der Schwerpunktabstand ist unsicher.

• Fl282 (”Kolibri”) wurde von A.Flettner 1940-45 in Serie gebaut. Der Schwerpunktabstand ist unsi-
cher.

• Profileigenschaften (mit α in grd) für NACA0012 (”realitätsnah” lt. [8]):

Auftriebsbeiwert cA = 0.1 α , Widerstandsbeiwert cD = (1 + 0.0058α2) 10−2 .

A Anhänge

A.1 Zur Fourier-Darstellung

Es ist gelegentlich vorteilhaft, von der Fourier-Reihe 1.Art: F =
∑

(an cosnψ + bn sinnψ)

auf die weniger bekannten Formen 2.Art: Fc =
∑

c1n cos(nψ − ψS1n) ”cos-Reihe”
oder Fs =

∑
(c2n sin(nψ − ψS2n) ”sin-Reihe”

überzugehen. Die Transformationformeln sind leicht herzuleiten:

• für Fc gilt
c1n cos(nψ − ψS1n) ≡ c1n[cosnψ cosψS1n + sinnψ sinψS1n] = an cosnψ + bn sinnψ .

Diese Gleichung zerfällt sie in zwei unabhängige Teilgleichungen:
c1n cosψS1n = an und c1n sinψS1n = bn ,

sodaß c1n =
√
a2
n + b2n und tanψS1n = bn/an .

• für Fs gilt
c2n sin(nψ − ψS2n) ≡ c2n[sinnψ cosψS2n − cosnψ sinψS2n] = an cosnψ + bn sinnψ .

Zerfall: c2n cosψS2n = bn und c2n sinψS2n = −an ,
sodaß c2n =

√
a2
n + b2n und tanψS2n = −an/bn .

Es ist also
∑

(an cosnψ + bn sinnψ) =
∑√

a2
n + b2n cos (nψ − arctan(bn/an))

oder =
∑√

a2
n + b2n sin (nψ + arctan(an/bn)).
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A.2 Näherungslösung für χ′

Drees verwendet für das Scheibenmodell folgende Formel [10]p.160: kx = 4
3
(1 − cosχ − 1.8ω′2)/ sinχ ;

darin ist χ = arctan ((U + wi sin ν)/(W + wi cos ν)) .

Wie das linke Diagramm zeigt, ist 1.2 kx eine im unteren Horizontalgeschwindigkeitsbereich akzeptable
Näherung für den von uns eingeführten, auf die Rotorebene bezogenen Knickwinkel χ′ = arctan (U ′/(W ′ + wi));
eine grobe Näherung für U < 1 ist χ′ = 1.6ω′, womit die Verwendung von c′ (Abschn.1.4.2, 1.Anmerkung)
gerechtfertigt ist..

Das rechte Diagramm
zeigt (mit arctanU ge-
staucht) den Gesamtbe-
reich 0 ≤ U <∞:

der Gültigkeitsbereich
von χ′Drees ist also auf
U≤ 4 beschränkt.

A.3 Analyse-Skizzen

Wie im Abschn.3.1.2 angedeutet, sind die meisten Analyse-Figuren, aus denen die Formeln für die einzelnen
Kraft- und Moment-Komponenten abzulesen sind, räumlicher Art, also auf Papier nur als Schrägbilder
darstellbar; sie erfordern vom Betrachter ein gewisses Maß an perspektivischem Sehvermögen.

Höhenruder (Drücken):

Querruder (rechts):
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Seitenruder (links):

Ein Vergleich von Flettner vs. KMax spiegelt das experimentell beobachtete komplizierte Flugverhalten
der differentiell-kollektiven + differentiell-zyklischen Giersteuerung wider - s. Abschn.3.4.2 und[14].
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