Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

The Evolution of Digital Audio Technology

  • Chapter
Communication Acoustics

Summary

Digital audio technology is allowing music and speech to be easily and readily accessible to most people, since these signals are treated as digital media and, hence, are significant components of the information-age revolution. From its commercial introduction via the audio Compact Disc, CD, approximately 20 years ago, this technology had a meteoric evolution which have seen the introduction of numerous methods, techniques, systems and formats and has allowed the users to benefit from reductions in the size of digital audio equipment and its cost. An overview of these developments is presented here with a critical assessment of their significance, along with a reference to many important publications and events. It is shown that this technology is mainly rooted on three constituent evolutionary components, namely, (a) digital electronics and computer technology, (b) DSP theory and techniques, (c) auditory modelling. Based on the analysis of these components, some conclusions are drawn, which allow the prediction of future trends concerning the evolution of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aarts R, Dekkers R (1999) A real-time speech-music discriminator. J Audio Engr Soc 47:720–725

    Google Scholar 

  2. Adams R (1986) Design and implementation of an audio 18-bit ADC using oversampling techniques. J Audio Engr Soc 34:153–156

    Google Scholar 

  3. Allen J B (1977) Short term spectral analysis, synthesis and modification by Discrete Fourier Transform. IEEE Trans Audio Speech Sig Processg, ASSP 25:235–238

    Article  MATH  Google Scholar 

  4. Allen J B, Berkley D (1979) Image method for efficiently simulating small-room acoustics. J Acoust Soc Amer 66:943–950

    Article  Google Scholar 

  5. Atlas L, Duhamel P (1999) Recent developments in the core of digital signal processing. IEEE Sig Processg Mag 16:16–31

    Article  Google Scholar 

  6. Beerends J, Stemerdink J (1992) A perceptual audio quality measure based on a psychoacoustic sound representation. J Audio Engr Soc 40:963–978

    Google Scholar 

  7. Begault D (1991) Challenges to the successful implementation of 3-D sound. J Audio Engr Soc 39:864–870

    Google Scholar 

  8. Berkhout A J (1988) A holographic approach to acoustic control. J Audio Engr Soc 36:977–995

    Google Scholar 

  9. Berman J, Fincham L (1977) The application of digital techniques to the measurement of loudspeakers. J Audio Engr Soc 26:370–384

    Google Scholar 

  10. Blauert J (1968) A contribution to the persistence of directional hearing in the horizontal plane (in German). Acustica 20:200–206

    Google Scholar 

  11. Blauert J (1999) Binaural auditory models. Proc 18th Danavox Symp, Scanticon, Kolding

    Google Scholar 

  12. Blauert J (1997) Spatial hearing: the psychophysics of human sound localization. MIT Press, Cambridge MA

    Google Scholar 

  13. Blauert J (2005) Analysis and synthesis of auditory scenes, Chap 1 this vol

    Google Scholar 

  14. Blesser B, Lee F (1971) An audio delay system using digital technology. J Audio Engr Soc 19:393–397

    Google Scholar 

  15. Blesser B, et al. (1975) A real-time digital computer for simulating audio systems. J Audio Engr Soc 23:698–707

    Google Scholar 

  16. Blesser B, Pilkington D (2000) Global paradigm shifts in the audio industry. J Audio Engr Soc 48:861–872

    Google Scholar 

  17. Blesser B (1978) Digitization of audio: a comprehensive examination of theory, implementation and current practice. J Audio Engr Soc 26:739–771

    Google Scholar 

  18. Bloom P J (1985) High-quality digital audio in the entertainment industry: an overview of achievements and challenges. IEEE Audio Speech Sig Processg Mag, ASSP 2:2–25

    Google Scholar 

  19. Brandenburg K (1988) High quality sound coding at 2.5 bits/sample. 84th Audio Engr Soc Conv preprint 2582, Paris

    Google Scholar 

  20. Brandenburg K, Bossi M (1997) Overview of MPEG audio: current and future standards for low-bit-rate audio coding. J Audio Engr Soc 45:4–21

    Google Scholar 

  21. Carasso M G, Peek J, Sinjou J (1982) The Compact Disc digital audio system. Philips Techn Rev 40:149–180

    Google Scholar 

  22. Chowning J (1973) The synthesis of complex audio spectra by means of frequency modulation. J Audio Engr Soc 21:526–534

    Google Scholar 

  23. Clarkson P M, Mourjopoulos J N, Hammond J K (1985) Spectral, phase and transient equalization of audio systems. J Audio Engr Soc 33:127–132

    Google Scholar 

  24. Cooley J (1992) How the FFT gained acceptance. IEEE Sig Processg Mag 9:10–13

    Article  Google Scholar 

  25. Cooley J, Tukey J (1965) An algorithm for the machine calculation of complex Fourier series. Math of Comp 19:297–301

    Article  MathSciNet  MATH  Google Scholar 

  26. Cooper D, Bauck J (1989) Prospects for transaural recording. J Audio Engr Soc 37:3–19

    Google Scholar 

  27. Cox R (2002) The ghost of ICASSP past. IEEE Sig Proc Mag 19:7–9

    Article  MATH  Google Scholar 

  28. Crochiere R, Rabiner L (1985) multi-rate digital signal processing. Prentice-Hall, Englewood Cliffs NJ

    Google Scholar 

  29. Dietz M, Popp H, Brandenburg K, Friedrich R (1996) Audio compression for network transmission. J Audio Engr Soc 44:58–72

    Google Scholar 

  30. Eldering C, Sylla M, Eisenach J (1999) Is there a Moore's law for bandwidth? IEEE Comm Mag 37:117–121

    Article  Google Scholar 

  31. Elliot S, Nelson P (1989) Multi-point equalization in a room using adaptive digital filters. J Audio Engr Soc 37:899–907

    Google Scholar 

  32. Eyre J, Bier J (1999) DSPs court the consumer. IEEE Spectrum 36:47–53

    Article  Google Scholar 

  33. Flanagan J L, Lummis R (1970) Signal processing to reduce multi-path distortion in small rooms. J Acoust Soc Amer 47:1475–1481

    Article  Google Scholar 

  34. Flanagan J L (1980) Direct digital-to-analog conversion of acoustic signals. Bell Syst Techn J 59:1693–1719

    Google Scholar 

  35. Floros A, Koutroubas M, Tatlas N A, Mourjopoulos J N (2002) A study of wireless compressed digital-audio transmission. 112th Audio Engr Soc Conv, preprint 5516, Munich

    Google Scholar 

  36. Fuchigami N, et al. (2000) DVD-Audio specifications. J Audio Engr Soc 48:1228–1240

    Google Scholar 

  37. Godsill S, Rayner P (1998) Digital audio restoration: a statistical model based approach. Springer, Berlin Heidelberg New York

    Google Scholar 

  38. Goldberg J M, Sandler M B (1991) Noise shaping and PWM for all-digital power amplifier. J Audio Engr Soc 39:449–460

    Google Scholar 

  39. Gough P, Eves D (2000) Wearable electronics. Philips Res Password 3:5–9

    Google Scholar 

  40. Griffiths M, Bloom PJ (1982) A flexible digital sound-editing program for minicomputer system. J Audio Engr Soc 30:127–134

    Google Scholar 

  41. Hawksford M (2001) Smart directional and diffuse digital loudspeaker arrays. 110th Audio Engr Soc Conv, preprint 5362, Amsterdam

    Google Scholar 

  42. Hayashi R (1969) Stereo recorder. NHK Tech Rep 12:12–17

    Google Scholar 

  43. Heute U (2003) Speech and audio coding: aiming at high quality and low data rates. Chap 14, this vol

    Google Scholar 

  44. Heyser R (1971) Determination of loudspeaker arrival times, part I. J Audio Engr Soc 19:734–743

    Google Scholar 

  45. http://www.BDTI.com (2001) Berkley design technologies benchmark results 2000. Accessed February 2002

    Google Scholar 

  46. http://europa.eu.int/comm/eurostat/ (2002) Statistics on audiovisual services. Accessed Febr. 2002

    Google Scholar 

  47. Huang Y, Busbridge S C, Fryer P A (2000) Interactions in a multiple-voice-coil digital loudspeaker. J Audio Engr Soc 48(6):542–552

    Google Scholar 

  48. Hunt V (1954) Electroacoustics. Amer Inst Physics, Acoust Soc of Amer Publications, Sewickley PA

    Google Scholar 

  49. Ingebretsen R, Stockham TG (1984) Random-access editing of digital audio. J Audio Engr Soc 32:114–122

    Google Scholar 

  50. Iwamura H, et al (1973) Pulse-code-modulation recording system. J Audio Engr Soc 21(9):535–541

    Google Scholar 

  51. Johnston J (1988) Transform coding of audio signals using perceptual criteria. IEEE J Selected Areas Comm 6:314–323

    Article  Google Scholar 

  52. Kahrs M (1997) The past, present and future of audio signal processing. IEEE Sig Processg Mag 14:30–57

    Article  Google Scholar 

  53. Kahrs M, Brandenburg K (ed) (1998) Applications of digital signal processing to audio and acoustics. Chap 5, Kluwer, Norwell, MA

    Google Scholar 

  54. Kates J (1977) Digital analysis of loudspeaker performance. Proc IEEE 65:377–380

    Google Scholar 

  55. Kleiner M, Dalenbäck B I, Svensson P (1993) Auralization — an overview. J Audio Engr Soc 41:861–875

    Google Scholar 

  56. Klippel W (1992) The mirror filter — a new basis for reducing nonlinear distortion and equalizing response in woofer systems. J Audio Engr Soc 40:675–691

    Google Scholar 

  57. Kyriakakis C, Tsakalides P, Holman T (1999) Surrounded by sound. IEEE Sig Processg Mag 16:55–66

    Article  Google Scholar 

  58. Laine U, Karjalainen M, Altosaar T (1994) Warped linear prediction (WLP) in speech and audio processing. Proc IEEE Int Conf Audio Speech Sig Processg, ICASSP 94:349–352

    Google Scholar 

  59. Lindsay A, Herre J (2001) MPEG-7 and MPEG-7 Audio — an overview. J Audio Engr Soc 49:589–594

    Google Scholar 

  60. Lipoff S (2002) Consumer electronics technology megatrends. IEEE Consumer Electron Soc Newsletter Feb 2002:11–14.

    Google Scholar 

  61. Lipshitz S (1998) Dawn of the digital age. J Audio Engr Soc 46:37–42

    Google Scholar 

  62. Lipshitz S, Scott T, Vanderkooy J (1985) Increasing the audio measurement capability of FFT analyzers by microcomputer postprocessing. J Audio Engr Soc 33:626–648

    Google Scholar 

  63. Magar S, Caudel E, Leigh A (1982) A microcomputer with digital signal processing capability. Proc IEEE Solid-State Circ Conf, 32–35

    Google Scholar 

  64. Maher R (1990) Evaluation of a method for separating digitized duet signals. J Audio Engr Soc 38:956–979

    Google Scholar 

  65. Makhoul J (1975) Linear prediction: a tutorial review. Proc IEEE 63:561–580.

    Google Scholar 

  66. Marro C, Mahieux Y, Simner K (1998) Analysis of noise reduction and dereverberation techniques based on microphone arrays and postfiltering. IEEE Trans Speech Audio Processg, SAP 6:240–259

    Article  Google Scholar 

  67. Moorer J A (1982) The audio signal processor: the next step in digital audio. Digital audio. Collected papers AES Premiere Conf, Rye NY, 205–215

    Google Scholar 

  68. Moorer J A (2000) Audio in the new millennium. J Audio Engr Soc 48:490–498

    Google Scholar 

  69. Myers J, Feinburg A (1972) High-quality professional recording using new digital techniques J Audio Engr Soc 20:622–628

    Google Scholar 

  70. Neely S, Allen J B (1979) Invertibility of a room impulse response. J Acoust Soc Amer 66:165–169

    Article  Google Scholar 

  71. Nelson P, Hammond J K, Elliott S (1990) Active control of stationary random sound fields. J Acoust Soc Amer 87:963–975

    Article  Google Scholar 

  72. Nishio A, et al. (1996) Direct stream digital audio system. Audio Engr Soc 100th Conv, preprint 4163, Copenhagen

    Google Scholar 

  73. Noll P (1997) MPEG digital audio coding. IEEE Sig Processg Mag 14:59–81

    Article  MathSciNet  Google Scholar 

  74. Oppenheim A V, Schafer R (1968) Nonlinear filtering of multiplied and convolved signals. Proc IEEE 56:1264–1291

    Google Scholar 

  75. Ouellette J (2000) Echoes. J Acoust Soc Amer Newsletter 10:2–3

    Google Scholar 

  76. Papoulis A (1962) The Fourier integral and its applications. McGraw Hill, New York NY

    MATH  Google Scholar 

  77. Peled A, Liu B (1974) A new hardware realization of digital filters. IEEE Trans Acoust Speech Sig Processg, ASSP 22:456–462

    Article  Google Scholar 

  78. Perry T (2001) Service takes over in the networked world. IEEE Spectrum 38:102–104

    Article  Google Scholar 

  79. Pohlmann K (1995) Principles of digital audio. Mc-Graw Hill, New York NY

    Google Scholar 

  80. Pompei J F (1999) The use of airborne ultrasonics for generating audible sound beams. J Audio Engr Soc 47:726–731

    Google Scholar 

  81. Preis D (1976) Linear distortion. J Audio Engr Soc 24:346–367

    Google Scholar 

  82. Reed M, Hawksford M (1996) Practical modeling of nonlinear audio systems using the Volterra series. 100th Audio Engr Soc Conv, preprint 4264, Copenhagen

    Google Scholar 

  83. Reeves A (1938) Electrical signal system. French patent 852,183. British patent 535,860. US patent 272,070

    Google Scholar 

  84. Rice S (1944) Mathematical analysis of random noise. Bell Syst Techn J 23:383–332

    MathSciNet  Google Scholar 

  85. Roads C (1996) The computer music tutorial. MIT Press, Cambridge, MA

    Google Scholar 

  86. Sakamoto N, Yamaguchi S, Kurahashi A, Kogure (1981) Digital equalization and mixing circuit design. Audio Engr Soc 70th Conv. preprint 1809, New York

    Google Scholar 

  87. Sato N (1973) PCM recorder. J Audio Engr Soc 21:542–558

    Google Scholar 

  88. Schouhamer Immink K A (1998) The compact disc story. J Audio Engr Soc 46:458–465

    Google Scholar 

  89. Schroeder M R (1961) Improved quasi-stereophony and “colorless” artificial reverberation. J Acoust Soc Amer 33:1061–1064

    Article  Google Scholar 

  90. Schroeder M R (1981) Modulation transfer functions: definition and measurement. Acustica 49:179–182

    MathSciNet  Google Scholar 

  91. Schroeder M R, Atal B S (1963) Computer simulation of sound transmission in rooms. IEEE Int Conv Report Part 7:150–153

    Google Scholar 

  92. Schroeder M R, Logan B F (1961) Colorless artificial reverberation. J Audio Engr Soc 9:192–197

    Google Scholar 

  93. Sekiguchi K, Ishizaka K, Matsudaira T, Nakajima N (1983) A new approach to high-speed digital signal processing based on microprogramming. J Audio Engr Soc 31:517–522

    Google Scholar 

  94. Sessler G (1993) New acoustic sensors. 94th Audio Engr Soc Conv, preprint 3525, Berlin

    Google Scholar 

  95. Shannon C E (1948) A mathematical theory of communications. Bell Sys Techn J 27: 379–423, 623–656

    MathSciNet  Google Scholar 

  96. Silverman H, Pearson A (1973) On deconvolution using the DFT. IEEE Trans Audio Electr, AU 2:112–118

    Article  MathSciNet  Google Scholar 

  97. Stockham T, Cannon T, Ingebretsen R (1975) Blind deconvolution through digital signal processing. Proc IEEE 63:678–692

    Article  Google Scholar 

  98. Vanderkooy J, Lipshitz S (1987) Dither in digital Audio. J Audio Engr Soc 35:966–975

    Google Scholar 

  99. various (2002) DSP technology in industry. IEEE Sig Processg Mag 19:10–78

    Google Scholar 

  100. Vercoe B, Gardner W, Scheirer E (1998) Structured audio: creation, transmission and rendering of parametric sound representations. Proc IEEE 86:922–936

    Article  Google Scholar 

  101. Wallich P (2002) Digital hubbub. IEEE Spectrum 39:26–33

    Article  Google Scholar 

  102. Widrow B, Stearns S (1985) Adaptive signal processing. Prentice-Hall, Englewood Cliffs NJ

    MATH  Google Scholar 

  103. Wijngaarden S, Agterhuis E, Steeneken H (2000) Development of the wireless communication ear plug. J Audio Engr Soc 48:553–558

    Google Scholar 

  104. Wilson R, Adams G, Scott J (1989) Application of digital filters to loudspeaker crossover networks. J Audio Engr Soc 37(6):346–367

    Google Scholar 

  105. Wyber R (1974) The application of digital processing to acoustic testing. IEEE Trans Acoust Speech Sig Processg, ASSP 33:66–72

    Article  Google Scholar 

  106. Xu A, Woszczyk W, Settel Z, Pennycool B, Rowe R, Galanter P, Bary J, Martin G, Corey J, Cooperstock J (2000) Real-time streaming of multi-channel audio data over the Internet. J Audio Engr Soc 48:627–641

    Google Scholar 

  107. Zwicker E, Zwicker U (1991) Audio engineering and psychoacoustics: matching signals to the final receiver. J Audio Engr Soc 39:115–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mourjopoulos, J.N. (2005). The Evolution of Digital Audio Technology. In: Blauert, J. (eds) Communication Acoustics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27437-5_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-27437-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22162-3

  • Online ISBN: 978-3-540-27437-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics