MAN\NCTA_
A4 A VAW

Optical Storage
Technology Association

Universal Disk
Format™

Specification

Revision 1.01

November 3, 1995
a Copyright 1994, 1995 Optical Storage Technology
Association
ALL RIGHTS RESERVED

Revision History:
1.00 October 24, 1995 Original Release
1.01 November 3, 1995 DVD appendix added

Optical Storage Technology Association
311 East Carrillo Street
Santa Barbara, CA 93101
(805) 963-3853 Voice
(805) 962-1541 Fax
osta@aol.com

This document along with the sample source code is available in electronic format from OSTA.

I mportant Notices

This document is a specification adopted by Optical Storage Technology Association (OSTA). This document may be revised by OSTA. It
is intended solely as a guide for companies interested in developing products which can be compatible with other products developed using
this document. OSTA makes no representation or warranty regarding this document, and any company using this document shall do so at
its sole risk, including specifically the risks that a product developed will not be compatible with any other product or that any particular
performance will not be achieved. OSTA shall not be liable for any exemplary, incidental, proximate or consequential damages or expenses
arising from the use of this document. This document defines only one approach to compatibility, and other approaches may be available in
the industry.

This document is an authorized and approved publication of OSTA. The underlying information and materials contained herein are the
exclusive property of OSTA but may be referred to and utilized by the general public for any legitimate purpose, particularly in the design and
development of writable optical systems and subsystems. This document may be copied in whole or in part provided that no revisions,
alterations, or changes of any kind are made to the materials contained herein. Only OSTA has the right and authority to revise or change
the material contained in this document, and any revisions by any party other than OSTA are totally unauthorized and specifically prohibited.

Compliance with this document may require use of one or more features covered by proprietary rights (such as features which are the
subject of a patent, patent application, copyright, mask work right or trade secret right). By publication of this document, no position is taken
by OSTA with respect to the validity or infringement of any patent or other proprietary right, whether owned by a Member or Associate of
OSTA or otherwise. OSTA hereby expressly disclaims any liability for infringement of intellectual property rights of others by virtue of the
use of this document. OSTA has not and does not investigate any notices or allegations of infringement prompted by publication of any
OSTA document, nor does OSTA undertake a duty to advise users or potential users of OSTA documents of such notices or allegations.
OSTA hereby expressly advises all users or potential users of this document to investigate and analyze any potential infringement situation,
seek the advice of intellectual property counsel, and, if indicated, obtain a license under any applicable intellectual property right or take the
necessary steps to avoid infringement of any intellectual property right. OSTA expressly disclaims any intent to promote infringement of any
intellectual property right by virtue of the evolution, adoption, or publication of this OSTA document.

Universal Disk Format™ and UDF™ are trademarks of the Optical Storage Technology Association.

CONTENTS

1. INTRODUCGCTION .ot et e e e e eans eaaeete e e e eneaanns 1
1.1 DOCUMENT L AYOUL ...ttt ettt ettt ettt e sttt e e e sbe e e e e s abe e e e s aase e e e e nnseeeeanneeeaaambeeeesnneeeeanneeeean 2
B 0101 T o] 1 T= 1o o TR USSP 3
2. BASIC RESTRICTIONS & REQUIREMENTS ... e, 4
A e g A A CT= 1= | TP PP P PR UPTRPPON 6
2.0 0 CRAICLEN SELSeeteeteeteeie et ettt ettt ettt et e bt e e s be e s b e e b e e b e e b e e b e e bt e beesbeesbeenbeenneennean 6
2.1.2 OSTA CS0 CRaSPEC ..ccuveeteetieieeteeiteeie e st sttt e st e st e ste e st e st e sbeesbeesseesbeesseesbeeaneeneesbeesneenneas 7
A IR B 41 =10 1o PPV 7
A N 011 VA o L= = PPV UURO 8
2.2Part 3 - VOIUME SETUCTUI ..ttt n e n e saeennees 13
A D L= o] o] (o g I o [E PSSR 13
2.2.2 Primary V OlUME DESCIIPLONeiiieietie ettt ettt sttt e st et e e e ene e neeenaeeenaeas 13
2.2.3 Anchor Volume DeSCHPLOr POINTE...........oiiiieaiee ittt see e esnes 15
2.2.4 1L.0giCal VOIUME DESCIIPION ...ttt ettt ettt ettt ettt e et e et e e s be e e be e e nneeeneeenneeesnees 16
2.2.5 Unallocated SPate DESCIIPLONcueieueeeiieeeeeeeetee e eiie e st e steesteeebeeesee e e beesabeeesseeesneeesneeesanes 18
2.2.6 Logical Volume INtegrity DESCIIPLONoiiiiiiiei ittt s 18
2.2.7 Implemention Use VolUmME DESCIIPLON........cueiiiei ittt 20
2.3 PArt 4 - File SYSIOM ...ttt ettt e st e be e e bbe e st e e e beeenea s 22
ARG D T= o] o] (o g = o [E USRS 22
A I IR s A D L= o g o] (o U 22
2.3.3 Partition HEader DESCIIPLONeeiteeeeeeeiieeeseee ettt ettt ettt et sb s et e e be e sbe e s beesnaeeeneeenneeesaees 25
2.3 4 File 1dentifier DESCIIPLONcciteietie ettt ettt ettt sttt st e e st e s be e e neeebeeenneeeenees 26
G ol 1 01 = T 1o EE PRSP RPPRPPTO 27
ARG G 11 = 011 Y USRS 29
2.3.7UNallocated SPaCte ENMIYcooueiiiiee ettt ettt s ae e a e e 30
2.3.8 SPACe BitMa DESCIIPLONceiteieiie ettt ettt ettt ettt se e st e st e e e st e e st e e e beesneeebeeeneeeenees 31
2.3.9 Partition INLEQIITY ENLIYoiiiiiie ettt sttt sttt e e e be e e neeeenees 31
2.3.10 AlIOCELTION DESCIIPLOIS ... ettt etee ettt ettt et s e e e st e e st e e sab e e sabeeebeeeseeaseeenneeenees 31
2.3.11 AllOCatiON EXIENt DESCIIPLONcveieeieeieeeeeeeetee ettt ettt be e et e b e e sbe e e sae e e saeeesneeesnns 32
2.3.12 PAENNGME. ... bt ettt e n e n e 33
24 Part 5- RECON SEEUCLUN €.ttt ettt ettt b e e b e e bt e neen e e nneesneas 33
3. SYSTEM DEPENDENT REQUIREMENTS ...t v, 34
O L A A CT= o[| TP PP OPP PRSP 34
00 00 A I 01 =T 4T o SO SUR U ST 34
3.2Part 3 - VOIUME SEFUCTUI ...ttt bbb n e n e naees 35
3.2.1 Logical Volume Header DESCILOL.......cc.uiiiieeeieeeeee et ea ettt e e enes 35

OSTA Universal Disk Format i Revision 1.01

B3 PAIT 4 - File SYSIOIM ...ttt ettt e et e e be e e nbe e s be e e beeenea s 36

3.3 L File 1dentifier DESCIIPLONeeitee ettt ettt ettt ettt sttt e et e e s be e s neeebeeeaeeeenees 36

I 12 101 = T I o TSR P YU PRUSRRPUOPRURN 37
e TR I e 1 1 = 011 YRR 39
3.3 4 EXtended AIHIDULESooeee e 44
4. USER INTERFACE REQUIREMENTS ..t v 54
4.1 PaArt 3 - VOIUME SEEUCLUI €.ttt ae e ne e s 54
A 1 A A e L= Y = o PSSR 54
N R L O T o USROS UTUPROR 54
4.2.2 File 1dentifier DESCIIPLONoo ittt ee ettt et be et e e et e e sbe e e eneeesneeesneeeenees 55
5. INFORMATIVE .o e ae e 62
5.1 DESCIIPLOr LENGENS ...ttt ettt e et e et e e bt e e nbe e e beeenneeeneaan 62
5.2UsiNg IMplementation USE ATEAScouii i eee ettt ettt esee e saee e saeeesnseesnneeennee s 62
o = 0111 VA Ko L= 0 L T €TSSV 62
A O 4 0] =g o ot PSSR 62
el = Lol B 1wt AT o] (o] SRR 63
5.4 TECNNICAl CONTACESeitiiiieiieie ettt b e b e bt e bt e esneesbeenneennean 63
6. APPENDICES .. oo et e 64
6.1 UDF Entity ldentifier DefiNitioNS........ocei ittt 64
6.2 UDF ENtity [dentifier ValUEBS........oo ittt 64
6.3 0perating System [AeNTIFIErS........ii e 65
6.4 OSTA Compressed Unicode AlgOrithim ... 66
6.5 CRC CAlCUIALIONcetiitieiiet ettt bbbttt b e b e b e e e s be e sneesbeenneenneen 69
6.6 Algorithm for Strategy TYPE A6cooeeiiiiiiieieeieee ettt nneas 72
6.7 Identifier Translation AlQOrithmMS.. ... e 73
O N B L@ IS AN Lo o] 11 1o F PSR 73
6.7.2 OS/2 , Macintosh and UNIX ATGOrtRMc.ooiiiiii e e 78
6.8 Extended Attribute Checksum Algorithm ... 83
6.9 Requirementsfor Digital Video DiSC (DVD).....ccouiiiiiiiieeiie e 84
6.9.1 Constraints imposed BY UDF fOr DV Dcooiiiiiie et 84
6.9.2 HOW t0 r€a @ UDF diSC......eitiiiiiiiiie ettt 86
6.10 Developer RegiStration FOr M. ...ttt sb e ae e ae e s e e e snneesanee s 89

OSTA Universal Disk Format ii Revision 1.01

1. Introduction

The OSTA Universal Disk Format (UDF™) specification defines a subset of the
standard ISO/IEC 13346 . The primary goal of the OSTA UDF is to maximize
data interchange and minimize the cost and complexity of implementing
ISO/IEC 13346.

To accomplish this task this document defines a Domain. A domain defines
rules and restrictions on the use of ISO/IEC 13346. The domain defined in this
specification is known as the “OSTA UDF Compliant” domain.

This document attempts to answer the following questions for the structures of
ISO/IEC 13346 on a per operating system basis:

Given some ISO/IEC 13346 structure X, for each field in structure X
answer the following questions for a given operating system:

1) When reading this field: If the operating system supports the
data in this field then what should it map to in the operating
system?

2) When reading this field: If the operating system supports the
data in this field with certain limitations then how should the field be
interpreted under this operating system?

3) When reading this field: If the operating system does NOT
support the data in this field then how should the field be
interpreted under this operating system?

4) When writing this field: If the operating system supports the data
for this field then what should it map from in the operating system?

5) When writing this field: If the operating system does NOT
support the data for this field then to what value should the field be
set?

For some structures of ISO/IEC 13346 the answers to the above questions were
self explanatory and therefore those structures are not included in this
document.

In some cases additional information is provided for each structure to help clarify
the standard.

This document should help make the task of implementing the ISO/IEC 13346
standard easier.

OSTA Universal Disk Format 1 Revision 1.01

To be informed of changes to this document please fill out and return the OSTA
UDF Developers Registration Form located in appendix 6.10.

1.1 Document Layout

This document presents information on the treatment of structures defined
under standard ISO/IEC 13346. The following areas are covered

This document is separated into the following 4 basic sections:

Basic Restrictions and Requirements - defines the restrictions and
requirements which are operating system independent.

System Dependent Requirements - defines the restrictions and
requirements which are operating system dependent.

User Interface Requirements - defines the restrictions and
requirements which are related to the user interface.

Informative Annex - Additional useful information.

This document presents information on the treatment of structures defined
under standard ISO/IEC 13346. The following areas are covered :

&” Interpretation of a structure/field upon reading from media.

25 Contents of a structure/field upon writing to media. Unless specified
otherwise writing refers only to creating a new structure on the media.
When it applies to updating an existing structure on the media it will be
specifically noted as such.

The fields of each structure are listed first, followed by a description of each field
with respect to the categories listed above. In certain cases, one or more fields
of a structure are not described if the semantics associated with the field are
obvious.

A word on terminology: in common with ISO/IEC 13346, this document will use
shall to indicate a mandatory action or requirement, may to indicate an optional
action or requirement, and should to indicate a preferred but still optional, action
or requirement.

The standard ISO/IEC 13346 is commonly referred to as the NSR standard
where NSR stands for “Non-Sequential Recording”. In this document we
sometimes use the term NSR to refer to ISO/IEC 13346.

Also, special comments associated with fields and/or structures are prefaced by
the notification: "NOTE:"

OSTA Universal Disk Format 2 Revision 1.01

1.2 Compliance

This document requires conformance to parts 1, 3 and 4 of ISO/IEC 13346.
Compliance to part 2 of ISO/IEC 13346 is optional. Compliance

to part 5 of ISO/IEC 13346 is not supported by this document. Part 5 may be
supported in a later revision of this document.

For an implementation to claim compliance to this document the implementation
shall meet all the requirements (indicated by the word shall) specified in this
document.

The following are a few points of clarification in regards to compliance:

Multi-Volume support is optional. An implementation can claim
compliance and only support single volumes.

Multi-Partition support is optional. An implementation can claim
compliance without supporting the special multi-partition case on a
single volume defined in this specification.

Media support. An implementation can claim compliance and support
Rewritable and Overwritable media only, or WORM media only, or
both. All implementations should be able to support Read-Only
media.

File Name Translation - Any time an implementation has the need to
transform a filename to meet operating system restrictions it shall use
the algorithms specified in this document.

Extended Attributes - All compliant implementations shall preserve
existing extended attributes encountered on the media.
Implementations shall create and support the extended attributes for
the operating system they are currently running under. For example,
a Macintosh implementation shall preserve any OS/2 extended
attributes encountered on the media. It shall also create and support
all Macintosh extended attributes specified in this document.

The full definition of compliance to this document is defined in a separate OSTA
document.

OSTA Universal Disk Format 3 Revision 1.01

2. Basic Restrictions & Requirements

The following table summarizes several of the basic restrictions and
requirements defined in this specification. These restrictions & requirements as
well as additional ones are described in detail in the following sections of this

specification.

Item

Restrictions & Requirements

Logical Sector Size

The Logical Sector Size for a specific volume shall be
the same as the physical sector size of the specific
volume.

Logical Block Size

The Logical Block Size for a Logical Volume shall be
set to the logical sector size of the volume or volume
set on which the specific logical volume resides.

Volume Sets

All media within the same Volume Set shall have the
same physical sector size. Rewritable /Overwritable
media and WORM media shall not be mixed in/ be
present in the same volume set.

First 32K of Volume Space

The first 32768 bytes of the Volume space shall not be
used for the recording of NSR structures. This area
shall not be referenced by the Unallocated Space
Descriptor or any other NSR descriptor. This is
intended for the free use of the native operating
system.

Volume Recognition Sequence

The Volume Recognition Sequence as described in
part 2 of ISO/IEC 13346 shall be recorded.

Timestamp

All timestamps shall be recorded in local time. Time
zones shall be recorded on operating systems that
support the concept of a time zone.

Entity Identifiers

Entity Identifiers shall be recorded in accordance with
this document. Unless otherwise specified in this
specification the Entity Identifiers shall contain a value
that uniquely identifies the implementation.

Descriptor CRCs

CRCs shall be supported and calculated for all
Descriptors, except for the Space Bitmap Descriptor.

File Name Length

Maximum of 255 bytes

Maximum Pathsize

Maximum of 1023 bytes

Primary Volume Descriptor

There shall be exactly one prevailing Primary Volume
Descriptor recorded per volume.

Anchor Volume Descriptor Pointer

Shall only be recorded at 2 of the following 3 locations:
256, N-256, or N. Where N is the last addressable
sector of a volume.

Partition Descriptor

A Partition Access Type of Read-Only, Rewritable,
Overwritable and WORM shall be supported.

There shall be exactly one prevailing Partition
Descriptor recorded per volume, with one exception.
For Volume Sets that consist of single volume, the
volume may contain 2 Partitions with 2 prevailing
Partition Descriptors only if one has an access type of
read only and the other has an access type of
Rewritable or Overwritable. The Logical Volume for
this volume would consist of the contents of both

OSTA Universal Disk Format

4 Revision 1.01

partitions.

Logical Volume Descriptor

There shall be exactly one prevailing Logical Volume
Descriptor recorded per Volume Set. The Partition
Maps field shall contain only Type 1 Partition Maps.

Logical Volume Integrity Descriptor

Shall be recorded.

Unallocated Space Descriptor

A single prevailing Unallocated Space Descriptor shall
be recorded per volume.

File Set Descriptor

There shall be exactly one File Set Descriptor
recorded per Logical Volume on
Rewritable/Overwritable media. For WORM media
multiple File Set Descriptors may be recorded based
upon certain restrictions defined in this document.

ICB Tag

Only strategy types 4 or 4096 shall be recorded.

File Identifier Descriptor

The total length of a File Identifier Descriptor shall not
exceed the size of one Logical Block.

File Entry

The total length of a File Entry shall not exceed the
size of one Logical Block.

Allocation Descriptors

Only Short and Long Allocation Descriptors shall be
recorded.

Allocation Extents

The length of any single Allocation Extent shall not
exceed the Logical Block Size.

Unallocated Space Entry

The total length of an Unallocated Space Entry shall
not exceed the size of one Logical Block.

Space Bitmap Descriptor

CRC not required.

Partition Integrity Entry

Shall not be recorded.

Volume Descriptor Sequence Extent

Both the main and reserve volume descriptor
sequence extents shall each have a minimum length
of 16 logical sectors.

Record Structure

Record structure files, as defined in part 5 of ISO/IEC
13346, shall not be created.

OSTA Universal Disk Format

5 Revision 1.01

2.1 Part 1 - General

2.1.1 Character Sets

The character set used by UDF for the structures defined in this
document is the CS0O character set. The OSTA CSO0 character set is
defined as follows:

OSTA CSO shall consist of the d-characters specified in the Unicode 1.1
standard (excluding #FEFF and FFFE) stored inthe OSTA Compressed
Unicode format which is defined as follows:

OSTA Compressed Unicode format

RBP | Length Name Contents
0 1 Compression ID Uint8
1 ?? Compressed Bit Stream byte

The CompressionID shall identify the compression algorithm used to
compress the CompressedBitStream field. The following algorithms are
currently supported:

Compression Algorithm

Value Description

0-7 Reserved

8 Value indicates there are 8 bits per

character in the CompressedBitStream.
9-15 Reserved

16 Value indicates there are 16 bits per
character in the CompressedBitStream.
17-255 | Reserved

For a CompressionID of 8 or 16, the value of the CompressionID shall
specify the number of BitsPerCharacter for the d-characters defined in
the CharacterBitStream field. Each sequence of CompressionID bits in
the CharacterBitStream field shall represent an OSTA Compressed
Unicode d-character. The bits of the character being encoded shall be
added to the CharacterBitStream from most- to least-significant-bit. The
bits shall be added to the CharacterBitStream starting from the most-
significant-bit of the current byte being encoded into.

The value of the OSTA Compressed Unicode d-character interpreted as

a Uintl16 defines the value of the corresponding d-character in the

Unicode 1.1 standard. Refer to appendix on OSTA Compressed Unicode
for sample C source code to convert between OSTA Compressed
Unicode and standard Unicode 1.1.

OSTA Universal Disk Format 6 Revision 1.01

The Unicode byte-order marks, #FEFF and #FFFE, shall not be used.

2.1.2 OSTA CSO Charspec

struct Charspec {
Uint8 CharacterSetType ;
byte CharacterSetinfo[63];

}

The CharacterSetType field shall have the value of O to indicate the CSO
coded character set.

The CharacterSetinfo field shall contain the following byte values with the
remainder of the field set to a value of O.

H#AF, #53, #54, #41, #20, #43, #6F, #6D, #70, #72, #65, #73, #73,
#65, #64, #20, #55, #6E, #69, #63, #6F, #64, #65

The above byte values represent the following ASCII string:
“OSTA Compressed Unicode ”

2.1.3 Timestamp
struct timestamp { /*1SO 13346 1/7.3 */

Uintl6 TypeAndTimezone;
Uint16 Year,

Uint8 Month;

uint8 Day;

Uint8 Hour;

Uint8 Minute;

Uint8 Second;

Uint8 Centiseconds;

Uint8 HundredsofMicroseconds;
Uint8 Microseconds;

OSTA Universal Disk Format 7 Revision 1.01

2.1.3.1 Uintl6 TypeAndTimezone,
For the following descriptions Type refers to the most significant 4 bits of
this field, and TimeZone refers to the least significant 12 bits of this field.

&~ The time within the structure shall be interpreted as Local Time
since Type shall be equal to ONE for OSTA UDF compliant media.

& Type shall be set to ONE to indicate Local Time.

&~ Shall be interpreted as the specifying the time zone for the
location when this field was last modified. If this field contains
-2047 then the time zone has not been specified.

& For operating systems that support the concept of a time zone, the
offset of the time zone (in 1 minute increments), from Coordinated
Universal Time, shall be inserted in this field. Otherwise the time
zone portion of this field shall be set to -2047.

2.1.4 Entity Identifier
struct EntitylD { [*1SO 13346 1/7.4 */

Uint8 Flags;
char Identifier[23] ;
char IdentifierSuffix[8] ;

}

UDF classifies Entity Identifiers into 3 separate types as follows:

Domain Entity Identifiers
UDF Entity Identifiers
Implementation Entity Identifiers

The following sections describes the format and use of Entity Identifiers
based upon the different types mentioned above.

2.1.4.1 Uint8 Flags
&~ Self explanatory.

& Shall be set to ZERO.

OSTA Universal Disk Format 8 Revision 1.01

2.1.4.2 char Identifier
Unless stated otherwise in this document this field shall be set to an
identifier that uniquely identifies the implementation. This methodology
will allow for identification of the implementation responsible for creating
structures recorded on media interchanged between different
implementations.

If an implementation updates existing structures on the media written by
other implementations the current implementation shall set the Identifier
field to a value that uniquely identifies the current implementation.

The following table summarizes the Entity Identifier fields defined in the
NSR standard and shows the values they shall be set to.

Entity Identifiers

Descriptor Field ID Value Suffix Type
Primary Volume Implementation ID | “*Developer ID” Implementation
Descriptor Identifier Suffix
Implementation Implementation ID | “*Developer ID” Implementation
Use Volume Identifier Suffix
Descriptor
Implementation Implementation ID | “*UDF LV Info” UDF Identifier Suffix
Use Volume
Descriptor

Partition Descriptor

Implementation ID

“*Developer ID”

Implementation
Identifier Suffix

Logical Volume

Implementation ID

“*Developer ID”

Implementation

Descriptor Identifier Suffix

Logical Volume Domain ID "*OSTA UDF DOMAIN ldentifier

Descriptor Compliant” Suffix

File Set Descriptor | Domain ID "*OSTA UDF DOMAIN lIdentifier
Compliant” Suffix

File Identifier Implementation ID | “*Developer ID” Implementation

Descriptor Identifier Suffix

(optional)
File Entry Implementation ID | “*Developer ID” Implementation

Identifier Suffix

UDF Extended
Attribute

Implementation ID

See Appendix

UDF ldentifier Suffix

Non-UDF Extended
Attribute

Implementation ID

“*Developer ID”

Implementation
Identifier Suffix

Device
Specification
Extended Attribute

Implementation ID

“*Developer ID”

Implementation
Identifier Suffix

Logical Volume
Integrity Descriptor

Implementation ID

“*Developer ID”

Implementation
Identifier Suffix

Partition Integrity
Entry

Implementation ID

N/A

N/A

OSTA Universal Disk Format

Revision 1.01

NOTE: The value of the Entity Identifier field is interpreted as a
sequence of bytes, and not as a dstring specified in CS0 . For
ease of use the values used by UDF for this field are specified in
terms of ASCII character strings. The actual sequence of bytes
used for the Entity Identifiers defined by UDF are specified in the
appendix.

In the ID Value column in the above table “*Developer ID” refers to a Entity
Identifier that uniquely identifies the current implementation. The value specified
should be used when a new descriptor is created. Also the value specified
should be used for an existing descriptor when anything within the scope of the
specified EntityID field is modified.

The Suffix Type column in the above table defines the format of the suffix to be
used with the corresponding Entity Identifier. These different suffix types are
defined in the following paragraphs.

NOTE: All Identifiers defined in this document (appendix 6.1) shall be
registered by OSTA as UDF Identifiers.

2.1.4.3 IdentifierSuffix
The format of the IdentifierSuffix field is dependent on the type of the
Identifier.

In regards to OSTA Domain Entity Identifiers specified in this document
(appendix 6.1) the IdentifierSuffix field shall be constructed as follows:

Domain IdentifierSuffix field format

RBP | Length Name Contents
0 2 UDF Revision Uint16 (= #0100)
2 1 Domain Flags Uint8
3 5 Reserved bytes (= #00)

The UDFRevision field shall contain #0100 to indicate revision 1.00 of
this document. This field will allow an implementation to detect changes
made in newer revisions of this document. The OSTA Domain ldentifiers
are only used in the Logical Volume Descriptor and the File Set
Descriptor. The DomainFlags field defines the following bit flags:

OSTA Universal Disk Format 10 Revision 1.01

Domain Flags

Bit Description
0 Hard Write-Protect
1 Soft Write-Protect

2-7 Reserved

The SoftWriteProtect flag is a user setable flag that indicates that the
volume or file system structures within the scope of the descriptor in
which it resides are write protected. A SoftWriteProtect flag value of ONE
shall indicate user write protected This flag may be set/reset by the user.
The HardWriteProtect flag is an implementation setable flag that indicates
that the scope of the descriptor in which it resides is permanently write
protected. A HardWriteProtect flag value of ONE shall indicate
permanently write protected. Once set this flag shall not be reset. The
HardWriteProtect flag overrides the SoftWriteProtect flag. These flags
are only used in the Logical Volume Descriptor and the File Set
Descriptor. The flags in the Logical Volume descriptor have precedence
over the flags in the File Set Descriptors.

For implementation use Entity Identifiers defined by UDF (appendix 6.1)
the IdentifierSuffix field shall be constructed as follows:

UDF IdentifierSuffix

RBP | Length Name Contents
0 2 UDF Revision Uint16 (= #0100)
2 1 OS Class uint8
3 1 OS ldentifier Uint8
4 4 Reserved bytes (= #00)

The contents of the OS Class and OS Identifier fields are described in the
Appendix on Operating System ldentifiers.

For implementation use Entity Identifiers not defined by UDF the
IdentifierSuffix field shall be constructed as follows:

Implementation IdentifierSuffix

RBP | Length Name Contents
0 1 OS Class uint8
1 1 OS lIdentifier uint8
2 6 Implementation Use Area bytes

NOTE: Itis important to understand the intended use and importance of the OS
Class and OS Identifier fields. The main purpose of these fields is to aid in
debugging when problems are found on a UDF volume. The fields also provide
useful information which could be provided to the end user. When set correctly

OSTA Universal Disk Format 11 Revision 1.01

these two fields provide an implementation with information such as the
following:
Identify under which operating system a particular structure was last
modified.
Identify under which operating system a specific file or directory was
last modified.
If a developer supports multiple operating systems with their
implementation, it helps to determine under which operating system a
problem may have occurred.

OSTA Universal Disk Format 12 Revision 1.01

2.2 Part 3 - Volume Structure

2.2.1 Descriptor Tag

struct tag { [*1SO 13346 3/7.2 */
Uintl6 Tagldentifier;
Uintl6 DescriptorVersion;
uint8 TagChecksum;
byte Reserved;
Uintl6 TagSerialNumber ;
Uintl6 DescriptorCRC,;
Uintl6 DescriptorCRCLength ;
Uint32 TagLocation;

}

2.2.1.1 Uintl6 TagSerialNumber
&~ Ignored. Intended for disaster recovery.

& Reset to a (possibly non-unique) value at volume initialization.

The TagSerialNumber shall be set to a value that differs from ones
previously recorded, upon volume re-initialization. It is suggested that
the value in the prevailing Primary Volume Descriptor + 1 be used.

2.2.1.2 Uint16 DescriptorCRCLength
CRCs shall be supported and calculated for each descriptor. The value
of this field shall be set to the size of the Descriptor - Length of Descriptor
Tag. When reading a descriptor the CRC should be validated.

2.2.2 Primary Volume Descriptor
struct PrimaryVolumeDescriptor { /* 1ISO 13346 3/10.1 */

struct tag
Uint32

Uint32

dstring

Uint16

Uint16

Uint16

Uint16

Uint32

Uint32

dstring

struct charspec
struct charspec
struct extent_a d
struct extent_ad

OSTA Universal Disk Format

DescriptorTag;
VolumeDescriptorSequenceNumber;
PrimaryVolumeDescriptorNumber;
Volumeldentifier[32];
VolumeSequenceNumber;
MaximumVolumeSequenceNumber;
InterchangelLevel ;
MaximumInterchangeLevel ;
CharacterSetList;
MaximumCharacterSetList ;
VolumeSetldentifier[128];
DescriptorCharacterSet ;
ExplanatoryCharacterSet ;
VolumeAbstract;
VolumeCopyrightNotice;

13 Revision 1.01

}

struct EntitylD Applicationldentifier;
struct timestamp RecordingDateandTime;

struct EntitylD Implementationldentifier ;

byte ImplementationUse[64];

Uint32 PredecessorVolumeDescriptorSequencelLocation;
Uintl6 Flags;

byte Reserved[22];

2.2.2.1 Uintl6 Interchangelevel

&

Interpreted as specifying the current interchange level (as
specified in ISO/IEC 13346 3/11), of the contents of the associated
volume and the restrictions implied by the specified level.

If this volume is part of a multi-volume Volume Set then the level
shall be set to 3, otherwise the level shall be set to 2.

ISO 13346 requires an implementation to enforce the restrictions
associated with the specified current Interchange Level. The
implementation may change the value of this field as long as it does not
exceed the value of the Maximum Interchange Level field.

2.2.2.2 Uintlé6 MaximuminterchangelLevel

&

Interpreted as specifying the maximum interchange level (as
specified in ISO/IEC 13346 3/11), of the contents of the associated
volume.

This field shall be set to level 3 (No Restrictions Apply), unless
specifically given a different value by the user.

NOTE: This field is used to determine the intent of the originator of the
volume. If this field has been set to 2 then the originator does not wish
the volume to be included in a multi-volume set (interchange level 3).
The receiver may override this field and set it to a 3 but the
implementation should give the receiver a strict warning explaining the
intent of the originator of the volume.

2.2.2.3 Uint32 CharacterSetList

&

&

Interpreted as specifying the character set(s) in use by any of the
structures defined in Part 3 of ISO/IEC 13346 (3/10.1.9).

Shall be set to indicate support for CSO only as defined in 2.1.2.

OSTA Universal Disk Format 14 Revision 1.01

2.2.2.4 Uint32 MaximumCharacterSetList
¢~ Interpreted as specifying the maximum supported character sets
(as specified in ISO/IEC 13346) which may be specified in the
CharacterSetList field.

& Shall be set to indicate support for CSO only as defined in 2.1.2.

2.2.2.5 dstring VolumeSetldentifier
&~ Interpreted as specifying the identifier for the volume set .

& The first 16 characters of this field shall be set to a unique value.
The remainder of the field may be set to any allowed value.
NOTE: The intended purpose of this is to guarantee Volume Sets
with unique identifiers. The first 8 characters of the unique part
should come from a CSO hexadecimal representation of a 32-bit
time value. The remaining 8 characters are free for
implementation use.

2.2.2.6 struct charspec DescriptorCharacterSet
&~ Interpreted as specifying the character sets allowed in the Volume
Identifier and Volume Set Identifier fields.

& Shall be set to indicate support for CSO as defined in 2.1.2.

2.2.2.7 struct charspec ExplanatoryCharacterSet
¢~ Interpreted as specifying the character sets used to interpret the
contents of the VolumeAbstract and VolumeCopyrightNotice
extents.

& Shall be set to indicate support for CSO as defined in 2.1.2.

2.2.2.8 struct EntitylD Implementationldentifier ;
For more information on the proper handling of this field see the section
on Entity Identifier.

2.2.3 Anchor Volume Descriptor Pointer
struct AnchorVolumeDescriptorPointer { /*1SO 13346 3/10.2 */
struct tag DescriptorTag;
struct extent_ad MainVolumeDescriptorSequenceExtent ;
struct extent_ad
ReserveVolumeDescriptorSequenceExtent ;
byte Reserved[480];

OSTA Universal Disk Format 15 Revision 1.01

}

NOTE: An AnchorVolumeDescriptorPointer structure shall only be
recorded at 2 of the following 3 locations on the media :

Logical Sector 256.
Logical Sector (N - 256).
N

2.2.3.1 struct MainVolumeDescriptorSequenceExtent
The main VolumeDescriptorSequenceExtent shall have a minimum
length of 16 logical sectors.

2.2.3.2 struct ReserveVolumeDescriptorSequenceExtent

The reserve VolumeDescriptorSequenceExtent shall have a minimum
length of 16 logical sectors.

2.2.4 Logical Volume Descriptor

struct LogicalVolumeDescriptor { [*1SO 13346 3/10.6 */
struct tag DescriptorTag;
Uint32 VolumeDescriptorSequenceNumber;
struct charspec DescriptorCharacterSet ;
dstring LogicalVolumeldentifier[128];
Uint32 LogicalBlockSize ,
struct EntitylD Domainldentifier ;
byte LogicalVolumeContentsUse[16];
Uint32 MapTableLength;
Uint32 NumberofPartitionMaps;
struct EntitylD Implementationldentifier ;
byte ImplementationUse[128];
extent_ad IntegritySequenceExtent ,
byte PartitionMaps[??] ;

}

2.2.4.1 struct charspec DescriptorCharacterSet
&~ Interpreted as specifying the character set allowed in the
LogicalVolumeldentifier field.

& Shall be set to indicate support for CS0 as defined in 2.1.2

OSTA Universal Disk Format 16 Revision 1.01

2.2.4.2 Uint32 LogicalBlockSize
&~ Interpreted as specifying the Logical Block Size for the logical
volume identified by this LogicalVolumeDescriptor.

& This field shall be set to the largest logical sector size encountered
amongst all the partitions on media that constitute the logical
volume identified by this LogicalVolumeDescriptor. Since UDF
requires that all Volumes within a VolumeSet have the same
logical sector size, the Logical Block Size will be the same as the
logical sector size of the Volume.

2.2.4.3 struct EntityID Domainldentifier
&~ Interpreted as specifying a domain specifying rules on the use of,
and restrictions on, certain fields in the descriptors. If this field is
all zero then it is ignored, otherwise the Entity Identifier rules are
followed. NOTE: If the field does not contain “*OSTA UDF
Compliant” then an implementation may deny the user access to
the logical volume.

& This field shall indicate that the contents of this logical volume
conforms to the domain defined in this document, therefore the
Domainldentifier shall be set to:

"*OSTA UDF Compliant "

As described in the section on Entity Identifier the IdentifierSuffix
field of this EntitylD shall contain the revision of this document for
which the contents of the Logical Volume is compatible. For more
information on the proper handling of this field see the section on
Entity Identifier.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags. Refer to 2.1.4.3.

2.2.4.4 struct EntitylD Implementationldentifier ;
For more information on the proper handling of this field see the
section on Entity Identifier.

2.2.4.5 struct extent_ad IntegritySequenceExtent
A value in this field is required for the Logical Volume Integrity Descriptor
For Rewriteable or Overwriteable media this shall be set to a minimum of
8K bytes.

WARNING: For WORM media this field should be set to an extent of
some substantial length. Once the WORM volume on which the Logical
Volume Integrity Descriptor resides is full a new volume must be added to

OSTA Universal Disk Format 17 Revision 1.01

the volume set since the Logical Volume Integrity Descriptor must reside
on the same volume as the prevailing Logical Volume Descriptor

2.2.4.6 byte PartitionMaps

For the purpose of interchange partition maps shall be limited to Partition

Map type 1.

2.2.5 Unallocated Space Descriptor

struct UnallocatedSpaceDesc { [*1SO 13346 3/10.8 */
struct tag DescriptorTag;
Uint32 VolumeDescriptorSequenceNumber
uint32 NumberofAllocationDescriptors;

extent_ad AllocationDescriptors[?7?];

}

This descriptor shall be recorded, even if there is no free volume space.
2.2.6 Logical Volume Integrity Descriptor
struct LogicalVolumelntegrityDesc { /*1SO 13346 3/10.10 */

struct tag
Timestamp
Uint32
struct extend_ad
byte
Uint32
Uint32
Uint32
Uint32
byte

}

DescriptorTag,
RecordingDateAndTime,
IntegrityType,

NextintegrityExtent,
LogicalVolumeContentsUse [32],
NumberOfPartitions,
LengthOfimplementationUse,
FreeSpaceTable [?7],

SizeTable [?7],
ImplementationUse [?7]

The Logical Volume Integrity Descriptor is a structure that shall be written
anytime the contents of the associated Logical Volume is modified.
Through the contents of the Logical Volume Integrity Descriptor an
implementation can easily answer the following useful questions:

1) Are the contents of the Logical Volume in a consistent state?

2) When was the last date and time that anything within the Logical
Volume was modified?

3) What is the total Logical Volume free space in logical blocks?

4) What is the total size of the Logical Volume in logical blocks?

OSTA Universal Disk Format

18 Revision 1.01

5) What is the next available UniquelD for use within the Logical
Volume?

6) Has some other implementation modified the contents of the
logical volume since the last time that the original implementation
which created the logical volume accessed it.

2.2.6.1 byte LogicalVolumeContentsUse
See the section on Logical Volume Header Descriptor for information on
the contents of this field.

2.2.6.2 Uint32 FreeSpaceTable
Since most operating systems require that an implementation provide the
true free space of a Logical Volume at mount time it is important that
these values be maintained. The optional value of #FFFFFFFF which
indicates that the amount of available free space is not known shall not
be used.

NOTE: Only with a closed Logical Volume Integrity Descriptor are you
guaranteed to have a correct FreeSpaceTable.

2.2.6.3 Uint32 SizeTable
Since most operating systems require that an implementation provide the
total size of a Logical Volume at mount time it is important that these
values be maintained. The optional value of #FFFFFFFF which indicates
that the partition size is not known shall not be used.

2.2.6.4 byte ImplementationUse
The ImplementationUse area for the Logical Volume Integrity Descriptor
shall be structured as follows:

ImplementationUse format

RBP | Length Name Contents
0 32 ImplementationID EntitylD
32 4 Number of Files Uint32
36 4 Number of Directories Uint32
40 2? Implementation Use byte

Implementation ID - The implementation identifier EntitylD of the
implementation which last modified anything within the scope of
this EntitylD. The scope of this EntityID is the Logical Volume
Descriptor, and the contents of the associated Logical Volume.
This field allows an implementation to identify which
implementation last modified the contents of a Logical Volume.

OSTA Universal Disk Format 19 Revision 1.01

Number of Files - The current number of files in the associated
Logical Volume. This information is needed by the Macintosh OS.
All implementations shall maintain this information. NOTE: This
value does not include Extended Attributes as part of the file count.

Number of Directories - The current number of directories in the
associated Logical Volume. This information is needed by the
Macintosh OS. All implementations shall maintain this information.

Implementation Use - Contains implementation specific information
unigue to the implementation identified by the Implementation ID.

2.2.7 Implemention Use Volume Descriptor
struct ImpUseVolumeDescriptor {

struct tag DescriptorTag;

Uint32 VolumeDescriptorSequenceNumber;
struct EntitylD Implementationldentifier ;

byte ImplementationUse[460] ;

}

This section defines an UDF Implementation Use Volume Descriptor.
This descriptor shall be recorded on every Volume of a Volume Set. The
Volume may also contain additional Implementation Use Volume
Descriptors which are implementation specific. The intended purpose of
this descriptor is to aid in the identification of a Volume within a Volume
Set that belongs to a specific Logical Volume.

NOTE: An implementation may still record an additional Implementation
Use Volume Descriptor in its own format on the media. The UDF
Implementation Use Volume Descriptor does not preclude an additional
descriptor.

2.2.7.1 EntitylD Implementation Identifier
This field shall specify “*UDF LV Info”.

OSTA Universal Disk Format 20 Revision 1.01

2.2.7.2 bytes Implementation Use
The implementation use area shall contain the following structure:

struct LVInformation {

struct charspec LVICharset,

dstring LogicalVolumeldentifier[128],
dstring LVInfo1[36],

dstring LVInfo2[36],

dstring LVInfo3[36],

struct EntitylD ImplementionID ,

bytes ImplementationUse[128];

}

2.2.7.2.1 charspec LVICharset
&~ Interpreted as specifying the character sets allowed in the
LogicalVolumeldentifier and LVInfo fields.

& Shall be set to indicate support for CS0 only as defined in
2.1.2.

2.2.7.2.2 dstring LogicalVolumeldentifier
Identifies the Logical Volume referenced by this descriptor.

2.2.7.2.3 dstring LVInfol

The fields LVInfol, LVInfo2 and LVInfo3 should contain additional
information to aid in the identification of the media. For example the
LVInfo fields could contain information such as Owner Name,
Organization Name, and Contact Information.

2.2.7.2.4 struct EntityID ImplementionID
Refer to the section on Entity Identifier.

2.2.7.2.5 bytes ImplementationUse[128]

This area may be used by the implementation to store any additional
implementation specific information.

OSTA Universal Disk Format 21 Revision 1.01

2.3 Part 4 - File System
2.3.1 Descriptor Tag

struct tag { [*1SO 13346 4/7.2 */
Uintl6 Tagldentifier;
Uintl6 DescriptorVersion;
uint8 TagChecksum;
byte Reserved;
Uintl6 TagSerialNumber;
Uintl6 DescriptorCRC,;
Uintl6 DescriptorCRCLength ;
Uint32 TagLocation;

}

2.3.1.1 Uintl6 TagSerialNumber

&~ Ignored.

& Reset to a non-unique value at volume initialization.

The TagSerialNumber shall be set to a value that differs from ones
previously recorded, upon volume re-initialization. The intended use of
this field is for disaster recovery. The TagSerialNumber for all descriptors
in Part 4 should be the same as the serial number used in the associated

File Set Descriptor

2.3.1.2 Uint16 DescriptorCRCLength
CRCs shall be supported and calculated for each descriptor, unless
otherwise noted. The value of this field shall be set to the size of the
Descriptor - Length of Descriptor Tag . When reading a descriptor the

CRC should be validated.

2.3.2 File Set Descriptor
struct FileSetDescriptor {
struct tag
struct timestamp
Uintl6
Uintl6
Uint32
Uint32
Uint32
Uint32
struct charspec
dstring
struct charspec

OSTA Universal Disk Format

/*1SO 13346 4/14.1 */
DescriptorTag;
RecordingDateandTime;
InterchangelLevel ;
MaximumInterchangeLevel ;
CharacterSetList ;
MaximumCharacterSetList ;
FileSetNumber;
FileSetDescriptorNumber;
LogicalVolumeldentifierCharacterSet ;
LogicalVolumeldentifier[128];
FileSetCharacterSet ;

22 Revision 1.01

dstring FileSetldentifer[32];

dstring CopyrightFileldentifier[32];
dstring AbstractFileldentifier[32];
struct long_ad RootDirectoryICB;

struct EntitylD Domainldentifier ;
struct long_ad NextExtent;

byte Reserved[48];

}

On rewritable/overwritable media, only one FileSet descriptor shall be
recorded. On WORM media, multiple FileSet descriptors may be
recorded.

The UDF provision for multiple File Sets is as follows:

Multiple FileSets are only allowed on WORM media.

The default FileSet shall be the one with the highest
FileSetNumber.

Only the default FileSet may be flagged as writable. All other

FileSets in the sequence shall be flagged HardWriteProtect
(see EntityID definition).

No writable FileSet shall reference any metadata structures

which are referenced (directly or indirectly) by any other

FileSet. Writable FileSets may, however, reference the actual

file data extents.

Within a FileSet on WORM, if all files and directories have been recorded
with ICB strategy type 4, then the DomainID of the corresponding FileSet
Descriptor shall be marked as HardWriteProtected.

The intended purpose of multiple FileSets on WORM is to support the
ability to have multiple archive images on the media. For example one
FileSet could represent a backup of a certain set of information made at a
specific point in time. The next FileSet could represent another backup of
the same set of information made at a later point in time.

2.3.2.1 Uintl16 Interchangelevel
¢~ Interpreted as specifying the current interchange level (as
specified in ISO/IEC 13346 4/15), of the contents of the associated
file set and the restrictions implied by the specified level.

= Shall be set to a level of 3.

An implementation shall enforce the restrictions associated with the
specified current Interchange Level.

OSTA Universal Disk Format 23 Revision 1.01

2.3.2.2 Uintl6 MaximuminterchangeLevel
&~ Interpreted as specifying the maximum interc hange level of the
contents of the associated file set. This value restricts to what the
current Interchange Level field may be set.

1 Shall be set to level 3.

2.3.2.3 Uint32 CharacterSetList
&~ Interpreted as specifying the character set(s) specified by any
field, whose contents are specified to be a charspec, of any
descriptor specified in Part 4 of ISO/IEC 13346 and recorded in the
file set described by this descriptor.

& Shall be set to indicate support for CS0 only as defined in 2.1.2 .

2.3.2.4 Uint32 MaximumCharacterSetList
¢~ Interpreted as specifying the maximum supported character set in
the associated file set and the restrictions implied by the specified
level.

& Shall be set to indicate support for CSO only as defined in 2.1.2

2.3.2.5 struct charspec LogicalVolumeldentifierCharacterSet
&~ Interpreted as specifying the d-characters allowed in t he Logical
Volume Identifier field.

& Shall be set to indicate support for CS0 as defined in 2.1.2

2.3.2.6 struct charspec FileSetCharacterSet
¢~ Interpreted as specifying the d-characters allowed in dstring fields
defined in Part 4 of ISO 13346 that are within the scope of the
FileSetDescriptor.

& Shall be set to indicate support for CS0 as defined in 2.1.2

2.3.2.7 struct EntityID Domainldentifier
¢~ Interpreted as specifying a domain specifying rules on the use of,
and restrictions on, certain fields in the descriptors. If this field is
NULL then it is ignored, otherwise the Entity ldentifier rules are
followed.

OSTA Universal Disk Format 24 Revision 1.01

& This field shall indicate that the scope of this File Set Descriptor
conforms to the domain defined in this document, therefore the
Implementationldentifier shall be set to:

"*OSTA UDF Compliant "

As described in the section on Entity Identifier the IdentifierSuffix
field of this EntitylD shall contain the revision of this document for
which the contents of the Logical Volume is compatible. For more
information on the proper handling of this field see the section on
Entity Identifier.

NOTE: The IdentifierSuffix field of this EntityID contains
SoftWriteProtect and HardWriteProtect flags.

2.3.3 Partition Header Descriptor

struct PartitionHeaderDescriptor { [*1SO 13346 4/14.3 */
struct short_ad UnallocatedSpaceTable;
struct short_ad UnallocatedSpaceBitmap;
struct short_ad PartitionintegrityTable;
struct short_ad FreedSpaceTable;
struct short_ad FreedSpaceBitmap;
byte Reserved[88];
}

As a point of clarification the logical blocks represented as Unallocated
are blocks that are ready to be written without any preprocessing. In the
case of Rewritable media this would be a write without an erase pass.
The logical blocks represented as Freed are blocks that are not ready to
be written, and require some form of preprocessing. In the case of
Rewritable media this would be a write with an erase pass.

NOTE: The use of Space Tables or Space Bitmaps shall be consistent

across a Logical Volume. Space Tables and Space Bitmaps shall not
both be used at the same time within a Logical Volume.

2.3.3.1 struct short_ad PartitionIintegrityTable
Shall be set to all 0’s since PartitionintegrityEntrys are not used.

OSTA Universal Disk Format 25 Revision 1.01

2.3.4 File Identifier Descriptor

struct FileldentifierDescriptor { [*1SO 13346 4/14.4 */
struct tag DescriptorTag;
Uintl6 FileVersionNumber ;
uint8 FileCharacteristics;
uint8 LengthofFileldentifier;
struct long_ad ICB ;
Uintl6 LengthofImplementationUse ;
byte ImplementationUse [?7];
char Fileldentifier[?7];
byte Padding[?7?];
}
The File Identifier Descriptor shall be restricted to the length of one
Logical Block.

2.3.4.1 Uintl6 FileVersionNumber
&~ There shall be only one version of a file as specified below with the
value being set to 1.

& Shall be setto 1.

2.3.4.2 Uintl6 Lengthof ImplementationUse
&~ Shall specifiy the length of the ImplementationUse field.

& Shall specifiy the length of the ImplementationUse field. This field
may be ZERO, indicating that the ImplementationUse field has not
been used.

2.3.4.3 byte ImplementationUse
&~ If the LengthofImplementationUse field is non ZERO then the first
32 bytes of this field shall be interpreted as specifying the
implementation identifier EntitylD of the implementation which last
modified the File Identifier Descriptor.

& If the LengthofimplementationUse field is non ZERO then the first
32 bytes of this field shall be set to the implementation identifier
EntitylD of the current implementation.

NOTE: For additional information on the proper handling of this field
refer to the section on Entity Identifier.

This field allows an implementation to identify which implementation last
created and/or modified a specific File ldentifier Descriptor .

OSTA Universal Disk Format 26 Revision 1.01

2.3.5 ICB Tag

struct icbtag {
Uint32
Uint16
byte
Uint16
byte
Uint8
Lb_addr
Uint16

[*1S0O 13346 4/14.6 */
PriorRecordedNumberofDirectEntries;
StrategyType;

StrategyParameter [2];
NumberofEntries;

Reserved;

FileType;

ParentICBLocation;

Flags;

2.3.5.1 Uintl6 StrategyType
&~ The contents of this field specifies the ICB strategy type used. For
the purposes of read access an implementation shall support
strategy types 4 and 4096.

& Shall be set to 4 or 4096.

NOTE: Strategy type 4096, which is defined in the appendix, is intended
for primary use on WORM media, but may also be used on rewritable and

overwritable media.

2.3.5.2 Uint8 FileType

As a point of clarification a value of 5 shall be used for a standard byte
addressable file, not 0.

2.3.5.3 Uintl16 Flags

Bits 0-2: These bits specify the type of allocation descriptors used. Refer
to the section on Allocation Descriptors for the guidelines on choosing
which type of allocation descriptor to use.

Bit 3 (Sorted):

&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that
directories may be unsorted.

& Shall be set to ZERO.

Bit 4 (Non-relocatable):
&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that
the file is relocatable.

& Shall be set to ZERO.

OSTA Universal Disk Format

27 Revision 1.01

Bit 9 (Contiguous):

&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that
the file may be non-contiguous.

& Shall be set to ZERO.

Bit 11 (Transformed):
&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that
no transformation has taken place.

& Shall be set to ZERO.

The methods used for data compression and other forms of data
transformation shall be addressed in a future OSTA document.

Bit 12 (Multi-versions):
&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that
multi-versioned files are not present.

& Shall be set to ZERO.

OSTA Universal Disk Format 28 Revision 1.01

2.3.6 File Entry
struct FileEntry {

}

struct tag

struct icbtag
Uint32

Uint32

Uint32

Uintl6

uint8

uint8

Uint32

Uint64

Uint64

struct timestamp
struct timestamp
struct timestamp
Uint32

struct long_ad
struct EntitylD
uint64

Uint32

Uint32

byte

byte

[*1SO 13346 4/14.9 */

DescriptorTag;
ICBTag;

Uid;

Gid;
Permissions;
FileLinkCount;
RecordFormat;

RecordDisplayAttributes ;

RecordLength ;

InformationLength;
LogicalBlocksRecorded,;

AccessTime;
ModificationTime;
AttributeTime;
Checkpoint;

ExtendedAttributelCB;
Implementationldentifier ;

UniquelD,

LengthofExtendedAttributes;
LengthofAllocationDescriptors;
ExtendedAttributes[??];
AllocationDescriptors [?7?];

NOTE: The total length of a FileEntry shall not exceed the size of one
logical block.

2.3.6.1 Uint8 RecordFormat;
For OSTA UDF compliant media this bit shall indicate (ZERO) that
the structure of the information recorded in the file is not specified

&

-t

by this field.

Shall be set to ZERO.

2.3.6.2 Uint8 RecordDisplayAttributes;
For OSTA UDF compliant media this bit shall indicate (ZERO) that
the structure of the information recorded in the file is not specified

&

by this field.

Shall be set to ZERO.

OSTA Universal Disk Format

29

Revision 1.01

2.3.6.3 Uint8 RecordLength;
&~ For OSTA UDF compliant media this bit shall indicate (ZERO) that
the structure of the information recorded in the file is not specified
by this field.

& Shall be set to ZERO.

2.3.6.4 struct EntityID Implementationldentifier ;
Refer to the section on Entity Identifier.

2.3.6.5 Uint64 UniquelD
For the root directory of a file set this value shall be set to ZERO.

It is required that this value be maintained and unique for every file and
directory in the LogicalVolume. This includes FileEntry descriptors
defined for Extended Attribute spaces. The FileEntry for the Extended
Attribute space shall also have its own UniquelD.

NOTE: The UniquelD values 1-15 shall be reserved for the use of
Macintosh implementations.

2.3.7 Unallocated Space Entry
struct UnallocatedSpaceEntry { [*1SO 13346 4/14.11 */
struct tag DescriptorTag;
struct icbtag ICBTag;

Uint32 LengthofAllocationDescriptors;

byte AllocationDescriptors [?7?];
}
NOTE: The maximum length of an UnallocatedSpaceEntry shall be one
Logical Block.

2.3.7.1 byte AllocationDescriptors
Only Short Allocation Descriptors shall be used.

NOTE: The upper 2 bits of the extent length field in allocation descriptors
specify an extent type (ISO 13346 4/14.14.1.1). For the allocation
descriptors specified for the UnallocatedSpaceEntry the type shall be set
to a value of 1 to indicate extent allocated but not recorded, or shall be
set to a value of 3 to indicate the extent is the next extent of allocation
descriptors. This next extent of allocation descriptors shall be limited to
the length of one Logical Block.

OSTA Universal Disk Format 30 Revision 1.01

2.3.8 Space Bitmap Descriptor

struct SpaceBitmap { [*1SO 13346 4/14.11 */
struct Tag DescriptorTag ;
Uint32 NumberOfBits;
Uint32 NumberOfBytes;
byte Bitmap[?7?];
}

2.3.8.1 struct Tag DescriptorTag
The calculation and maintenance of the DescriptorCRC field of the
Descriptor Tag for the SpaceBitmap descriptor is optional. If the CRC is
not maintained then both the DescriptorCRC and DescriptorCRCLength
fields shall be ZERO.

2.3.9 Partition Integrity Entry

struct PartitionintegrityEntry { [*1SO 13346 4/14.13 */
struct tag DescriptorTag;
struct icbtag ICBTag;
struct timestamp RecordingTime;
uint8 Integrity Type;
byte Reserved[175];
struct EntitylD Implementationldentifier ;
byte ImplementationUse[256];
}

With the functionality of the Logical Volume Integrity Descriptor this
descriptor is not needed, therefore this descriptor shall not be recorded.

2.3.10 Allocation Descriptors

When constructing the data area of a file an implementation has several types of
allocation descriptors from which to choose. The following guidelines shall be
followed in choosing the proper allocation descriptor to be used:

Short Allocation Descriptor - For a Logical Volume that resides on a
single Volume with no intent to expand the Logical Volume beyond the
single volume Short Allocation Descriptors should be used. For example
a Logical Volume created for a stand alone drive.

NOTE: Refer to section 2.2.2.2 on the MaximumInterchangelLevel.
Long Allocation Descriptor - For a Logical Volume that resides on a single

Logical Volume with intent to later expand the Logical Volume beyond the
single volume, or a Logical Volume that resides on multiple Volumes

OSTA Universal Disk Format 31 Revision 1.01

Long Allocation Descriptors should be used. For example a Logical
Volume created for a jukebox.

NOTE: There is a benefit of using Long Allocation Descriptors even on a
single volume, which is the support of tracking erased extents on
rewritable media. See section 2.3.10.1 for additional information.

2.3.10.1 Long Allocation Descriptor

struct long_ad { [*1SO 13346 4/14.14.2 */
Uint32 ExtentLength;
Lb_addr ExtentLocation;
byte ImplementationUse [6];

}

To allow use of the ImplementationUse field by UDF and also by
implementations the following structure shall be recorded within the 6
byte Implementation Use field.

struct ADImpUse

{
uintl6 flags;

byte impUse[4];
}
/*
* ADImpUse Flags (NOTE: bits 1-15 reserved for future use by UDF)
*/
#define EXTENTErased (0Ox01)

In the interests of efficiency on Rewritable media that benefits from
preprocessing, the EXTENTErased flag shall be set to ONE to indicate
an erased extent. This applies only to extents of type not recorded but
allocated.

2.3.11 Allocation Extent Descriptor
struct AllocationExtentDescriptor { /* 1ISO 13346 4/14.5 */
struct tag DescriptorTag;
Uint32 PreviousAllocationExtentLocation;
Uint32 LengthOfAllocationDescriptors;

}

NOTE:. AllocationDescriptor extents shall be a maximum of one logical
block in length.

OSTA Universal Disk Format 32 Revision 1.01

2.3.12 Pathname
2.3.12.1 Path Component

struct PathComponent { [*1SO 13346 4/14.16.1 */
uint8 ComponentType;
uint8 LengthofComponentldentifier;
Uint16 ComponentFileVersionNumber ;
char Componentldentifier] |;

}

2.3.12.1.1 Uintl6 ComponentFileVersionNumber
&~ There shall be only one version of a file as specified below with the
value being set to 1.

& Shall be set to 1.

2.4 Part 5 - Record Structure

With respect to this document record structure files shall not be created. If they
are encountered on the media and they are not supported by the implementation
they shall be treated as an uninterpreted stream of bytes.

OSTA Universal Disk Format 33 Revision 1.01

3. System Dependent Requirements

3.1 Part 1 - General

3.1.1 Timestamp
struct timestamp { /*1SO 13346 1/7.3 */

Uint16
Uint1l6
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8
Uint8

3.1.1.1 Uint8
oy

3.1.1.2 Uint8
oy

3.1.1.3 Uint8
oy

OSTA Universal Disk Format

TypeAndTimezone,;

Year;

Month;

Day;

Hour;

Minute;

Second,;

Centiseconds ;
HundredsofMicroseconds ;
Microseconds ;

Centiseconds;
For operating systems that do not support the concept of
centiseconds the implementation shall ignore this field.

For operating systems that do not support the concept of
centiseconds the implementation shall set this field to
ZERO.

HundredsofMicroseconds;

For operating systems that do not support the concept of
hundreds of Microseconds the implementation shall ignore
this field.

For operating systems that do not support the concept of a
hundreds of Microseconds the implementation shall set this
field to ZERO.

Microseconds;
For operating systems that do not support the concept of
microseconds the implementation shall ignore this field.

For operating systems that do not support the concept of

microseconds the implementation shall set this field to
ZERO.

34 Revision 1.01

3.2 Part 3 - Volume Structure
3.2.1 Logical Volume Header Descriptor

struct LogicalVolumeHeaderDesc { [*1SO 13346 4/14.15 */
uint64 UniquelD,
bytes reserved[24]

}

3.2.1.1 Uint64 UniquelD
This field contains the next UniquelD value which should be used.

NOTE: For compatibility with Macintosh systems implementations should
keep this value less than the maximum value of a Int32 (2 = - 1).

OSTA Universal Disk Format 35 Revision 1.01

3.3 Part 4 - File System
3.3.1 File Identifier Descriptor

struct FileldentifierDescriptor { [*1SO 13346 4/14.4 */
struct tag DescriptorTag;
Uintl6 FileVersionNumber;
uint8 FileCharacteristics ;
uint8 LengthofFileldentifier;
struct long_ad ICB ;
Uintl6 LengthoflmplementationUse;
byte ImplementationUse[??];
char Fileldentifier[?7];
byte Padding[?7?];

}

3.3.1.1 Uint8 FileCharacteristics
The following sections describe the usage of the FileCharacteristics
under various operating systems.

3.3.1.1.1 MS-DOS, 0S/2, Macintosh
¢~ IfBit 0 is set to ONE, the file shall be considered a "hidden" file.
If Bit 1 is set to ONE, the file shall be considered a "directory".
If Bit 2 is set to ONE, the file shall be considered "deleted".
If Bit 3 is set to ONE, the ICB field within the associated
Fileldentifier structure shall be considered as identifying the
"parent" directory of the directory that this descriptor is

recorded in

& If the file is designated as a "hidden" file, Bit O shall be set to
ONE.
If the file is designated as a "directory"”, Bit 1 shall be set to
ONE.

If the file is designated as "deleted", Bit 2 shall be set to ONE.

3.3.1.1.2 UNIX
Under UNIX these bits shall be processed the same as specified in
5.4.2.1., except for hidden files which will be processed as normal
non-hidden files.

OSTA Universal Disk Format 36 Revision 1.01

3.3.2 ICB Tag

struct icbtag { [*1SO 13346 4/14.6 */
Uint32 PriorRecordedNumberofDirectEntries;
Uintl6 StrategyType,;
byte StrategyParameter[2];
Uint16 NumberofEntries;
byte Reserved;
uint8 FileType;
Lb_addr ParentlICBLocation;
Uintl6 Flags;
}

3.3.2.1 Uintl6 Flags
3.3.2.1.1 MS-DOS, 0S/2
Bits 6 & 7 (Setuid & Setgid):
&~ Ignored.
& In the interests of maintaining security under environments which
do support these bits; bits 6 and 7 shall be set to ZERO if any one
of the following conditions are true :

A file is created.

The attributes/permissions associated with a file, are
modified .

A file is written to (the contents of the data associated with
a file are modified).

Bit 8 (Sticky):
&~ Ignored.

& Shall be set to ZERO.
Bit 10 (System):
¢~ Mapped to the MS-DOS / OS/2 system bit.

& Mapped from the MS-DOS / OS/2 system bit.

OSTA Universal Disk Format 37 Revision 1.01

3.3.2.1.2 Macintosh
Bits 6 & 7 (Setuid & Setgid):
&~ Ignored.

& In the interests of maintaining security under environments which
do support these bits; bits 6 and 7 shall be set to ZERO if any one
of the following conditions are true :

A file is created.

The attributes/permissions associated with a file, are
modified .

A file is written to (the contents of the data associated with
a file are modified).

Bit 8 (Sticky):
&~ Ignored.

& Shall be set to ZERO.

Bit 10 (System):
&~ Ignored.

& Shall be set to ZERO.

3.3.2.1.3 UNIX
Bits 6, 7 & 8 (Setuid, Setgid, Sticky):
These bits are mapped to/from the corresponding standard UNIX file
system bits.

Bit 10 (System):
&~ Ignored.

& Shall be set to ZERO upon file creation only, otherwise maintained.

OSTA Universal Disk Format 38 Revision 1.01

3.3.3 File Entry
struct FileEntry {
struct tag
struct icbtag
Uint32
Uint32
Uint32
Uintl6
uint8
uint8
Uint32
Uint64
Uint64
struct timestamp
struct timestamp
struct timestamp
Uint32
struct long_ad
struct EntitylD
Uint64
Uint32
Uint32
byte
byte
}

/*1SO 13346 4/14.9 */
DescriptorTag;

ICBTag;

uid;

Gid;

Permissions;
FileLinkCount;
RecordFormat;
RecordDisplayAttributes;
RecordLength;
InformationLength;
LogicalBlocksRecorded,;
AccessTime;
ModificationTime;
AttributeTime;

Checkpoint;
ExtendedAttributelCB;
Implementationldentifier ;
UniquelD,
LengthofExtende dAttributes;
LengthofAllocationDescriptors;
ExtendedAttributes [?7];
AllocationDescriptors[?7?];

NOTE: The total length of a FileEntry shall not exceed the size of one

logical block.

3.3.3.1 Uint32 Uid

&~ For operating systems that do not support the concept of a user
identifier the implementation shall ignore this field. For operating
systems that do support this field a value of 2 * - 1 shall indicate an
invalid UID, otherwise the field contains a valid user identifier.

& For operating systems that do not support the concept of a user
identifier the implementation shall set this field to 2 * - 1 to indicate
an invalid UID, unless otherwise specified by the user.

3.3.3.2 Uint32 Gid

&~ For operating systems that do not support the concept ofa group
identifier the implementation shall ignore this field. For operating
systems that do support this field a value of 2 * - 1 shall indicate an
invalid GID, otherwise the field contains a valid group identifier.

OSTA Universal Disk Format

39 Revision 1.01

& For operating systems that do not support the concept of a group
identifier the implementation shall set this field to 2 * -1 to indicate
an invalid GID, unless otherwise specified by the user.

3.3.3.3 Uint32 Permissions;
/* Definitions: */

/* Bit for a File for a Directory */
/* ___ */
/* Execute May execute file May search directory */
/* Wite May change file contents May create and delete files */
/* Read May examine file contents May list files in directory */
/* ChAttr May change file attributes May change dir attributes */
/* Delete My delete file May del ete directory */

#defi ne OTHER Execut e 0x00000001
#define OTHER Wite 0x00000002
#defi ne OTHER Read 0x00000004
#define OTHER ChAttr 0x00000008
#define OTHER Del ete 0x00000010

#defi ne GROUP_Execut e 0x00000020
#define GROUP_Wite 0x00000040
#def i ne GROUP_Read 0x00000080
#define GROUP_ChAttr 0x00000100
#defi ne GROUP_Del ete 0x00000200

#def i ne OANER_Execut e 0x00000400
#define ONNER Wite 0x00000800
#def i ne OANNER_Read 0x00001000
#define OANER_ChAttr 0x00002000
#defi ne OANER Del ete 0x00004000

The concept of permissions which deals with security is not completely portable
between operating systems. This document attempts to maintain consistency
among implementations in processing the permission bits by addressing the
following basic issues:

1. How should an implementation handle Owner, Group and Other
permissions when the operating system has no concept of User and
Group Ids?

2. How should an implementation process permission bits when
encountered, specifically permission bits that do not directly map to an
operating system supported permission bit?

3. What default values should be used for permission bits that do not
directly map to an operating system supported permission bit when
creating a new file?

User, Group and Other

In general, for operating systems that do not support User and Group Ids the
following algorithm should be used when processing permission bits:

OSTA Universal Disk Format 40 Revision 1.01

When reading a specific permission, the logical OR of all three (owner,
group, other) permissions should be the value checked. For example a
file would be considered writable if the logical OR of OWNER_Write,
GROUP_Write and OTHER_Write was equal to one.

When setting a specific permission the implementation should set all
three (owner, group, other) sets of permission bits. For example to mark
a file as writable the OWNER_Write, GROUP_Write and OTHER_Write
should all be set to one.

Processing Permissions

Implementation shall process the permission bits according to the following table
which describes how to process the permission bits under the operating
systems covered by this document. The table addresses the issues associated
with permission bits that do not directly map to an operating system supported
permission bit.

Permission | File/Directory Description DOS | 0S/2 Mac UNIX
0S
Read file The file may be read E E E E
Read directory The directory may be read E E E E
Write file The file’s contents may be E E E E
modified
Write directory Files or subdirectories may E E E E
be created, deleted or
renamed
Execute file The file by be executed. I I I E
Execute directory The directory may be E E E E

searched for a specific file or
subdirectory.

Attribute file The file’s permissions may E E E E
be changed.

Attribute directory The directory’s permissions E E E E
may be changed.

Delete file The file may be deleted. E E E E

Delete directory The directory may be E E E E
deleted.

E - Enforce, | - Ignore

The Execute bit for a directory, sometimes referred to as the search bit, has
special meaning. This bit enables a directory to be searched, but not have its
contents listed. For example assume a directory called PRIVATE exists which
only has the Execute permission and does not have the Read permission bit
set. The contents of the directory PRIVATE can not be listed. Assume there is
a file within the PRIVATE directory called README. The user can get access
to the README file since the PRIVATE directory is searchable.

OSTA Universal Disk Format 41 Revision 1.01

To be able to list the contents of a directory both the Read and Execute
permission bits must be set for the directory. To be able to create, delete and
rename a file or subdirectory both the Write and Execute permission bits must
be set for the directory.

To get a better understanding of the Execute bit for a directory reference any
UNIX book that covers file and directory permissions. The rules defined by the
Execute bit for a directory shall be enforced by all implementations.

NOTE: To be able to delete a file or subdirectory the Delete permission bit for
the file or subdirectory must be set, and both the Write and Execute permission
bits must be set for the directory it occupies.

Default Permission Values

For the operating systems covered by this document the following table
describes what default values should be used for permission bits that do not
directly map to an operating system supported permission bit when creating a
new file.

Permission | File/Directory Description DOS | 0S/2 Mac UNIX
0S

Read file The file may be read 1 1 1 U

Read directory The directory may be read, 1 1 1 U

only if the directory is also
marked as Execute.

Write file The file’s contents may be U U U U
modified
Write directory Files or subdirectories may U U U U

be renamed, added, or
deleted, only if the directory
is also marked as Execute.

Execute file The file by be executed. 0 0 0 U

Execute directory The directory may be 1 1 1 U
searched for a specific file or
subdirectory.

Attribute file The file’s permissions may 1 1 1 Note 1
be changed.

Attribute directory The directory’s permissions 1 1 1 Note 1
may be changed.

Delete file The file may be deleted. Nf;te Note2 | Note2 Note 2

Delete directory The directory may be Note [Note2 | Note2 Note 2
deleted. 2

U - User Specified, 1 - Set, 0 - Clear

NOTE 1: Under UNIX only the owner of a file/directory may change its
attributes.

OSTA Universal Disk Format 42 Revision 1.01

NOTE 2: The Delete permission bit should be set based upon the status of the
Write permission bit. Under DOS, OS/2 and Macintosh, if a file or directory is
marked as writable (Write permission set) then the file is considered deletable
and the Delete permission bit should be set. If a file is read only then the Delete
permission bit should not be set. This applies to file create as well as changing
attributes of a file.

3.3.3.4 Uint64 UniquelD
NOTE: For some operating systems (i.e. Macintosh) this value needs to
be less than the max value of a Int32 (2* - 1). Under the Macintosh
operating system this value is used to represent the Macintosh
directory/file ID. Therefore an implementation should attempt to keep this
value less than the max value of a Int32 (2* - 1). The values 1-15 shall be
reserved for the use of Macintosh implementations.

3.3.3.5 byte Extended Attributes
Certain extended attributes should be recorded in this field of the
FileEntry for performance reasons. Other extended attributes should be
recorded in an ICB pointed to by the field ExtendedAttributelCB. In the
section on Extended Attributes it will be specified which extended
attributes should be recorded in this field.

OSTA Universal Disk Format 43 Revision 1.01

3.3.4 Extended Attributes

In order to handle some of the longer Extended Attributes (EAs) which may vary
in length, the following rules apply to the EA space.

1. All EAs with an attribute length greater than or equal to a logical block
shall be block aligned by starting and ending on a logical block
boundary.

2. Smaller EAs shall be constrained to an attribute length which is a
multiple of 4 bytes.

3. The Extended Attribute space shall appear as a single contiguous
logical space constructed as follows:

ISO/IEC 13346 EAs

Non block aligned Implementation Use EAs
Block aligned Implementation Use EAs
Application Use EAs

3.3.4.1 Extended Attribute Header Descriptor
struct ExtendedAttributeHeaderDescriptor { /*1SO 13346 4/14.10.1 */
struct tag DescriptorTag;
Uint32 ImplementationAttributesLocation ;
Uint32 ApplicationAttributesLocation ;

}

If the attributes associated with the location fields highlighted above do
not exist, then the value of the location field shall be the end of the
extended attribute s space.

3.3.4.2 Alternate Permissions

struct AlternatePermissionsExtendedAttribute { [* ISO 13346
4/14.10.4 */

Uint32 AttributeType;

uint8 AttributeSubtype;

byte Reserved[3];

Uint32 AttributeLength;

Uint16 Ownerldentification;

Uintl6 Groupldentification;

Uint16 Permission;
}

This structure shall not be recorded.

OSTA Universal Disk Format 44 Revision 1.01

3.3.4.3 File Times Extended Attribute
struct FileTimesExtendedAttribute { [*1SO 13346 4/14.10.5 */

Uint32 AttributeType;

Uint8 AttributeSubtype;
byte Reserved[3];

Uint32 AttributeLength;
Uint32 DatalLength;

Uint32 FileTimeExistence ;
byte FileTimes;

}

3.3.4.3.1 Uint32 FileTimeExistance
3.3.4.3.1.1 Macintosh OS

This field shall be set to indicate that only the file creation time has
been recorded.

3.3.4.3.1.2 Other OS
This structure need not be recorded.

3.3.4.3.2 byte FileTimes
3.3.4.3.2.1 Macintosh OS

&~ Shall be interpreted as the creation time of the associated
file.

= Shall be set to creation time of the associated file.

If the File Times Extended Attribute does not exist then a
Macintosh implementation shall use the ModificationTime field of
the File Entry to represent the file creation time.

3.3.4.3.2.2 Other OS
This structure need not be recorded.

3.3.4.4 Device Specification Extended Attribute
struct DeviceSpecificationExtendedAttribute { /* ISO 13346 4/14.10.7 */

Uint32 AttributeType;

Uint8 AttributeSubtype;

byte Reserved[3];

Uint32 AttributeLength;

Uint32 ImplementationUselLength;
Uint32 MajorDeviceldentification ;
Uint32 MinorDeviceldentification;
byte ImplementationUse[2];

}

OSTA Universal Disk Format 45 Revision 1.01

The following paradigm shall be followed by an implementation that
creates a Device Specification Extended Attribute associated with a file :

If and only if a file has a DeviceSpecificationExtendedAttribute
associated with it, the contents of the FileType field in the icbtag
structure be set to 6 (indicating a block special device file), OR 7
(indicating a character special device file).

If the contents of the FileType field in the icbtag structure do not
equal 6 or 7, the DeviceSpecificationExtendedAttribute associated
with a file shall be ignored.

In the event that the contents of the FileType field in the icbtag
structure equal 6 or 7, and the file does not have a

DeviceSpecificationExtendedAttribute associated with it, access to
the file shall be denied.

For operating system environments that do not provide for the
semantics associated with a block special device file, requests to
open/read/write/close a file that has the
DeviceSpecificationExtendedAttribute associated with it, shall be
denied.

3.3.4.5 Implementation Use Extended Attribute
struct ImplementationUseExtendedAttribute { /* ISO 13346 4/14.10.8 */

}

Uint32 AttributeType;

uint8 AttributeSubtype;

byte Reserved[3];

Uint32 AttributeLength;

Uint32 ImplementationUseLength ; /*(=IU_L) */
struct EntityID Implementationidentifier ;

byte ImplementationUse [IU_L];

The AttributeLength field specifies the length of the entire extended

attribute. For variable length extended attributes defined using the

Implementation Use Extended Attribute the Attribute Length field should
be large enough to leave padding space between the end of the

Implementation Use field and the end of the Implementation Use
Extended Attribute.

The following sections describe how the Implementation Use Extended
Attribute is used under various operating systems to store operating
system specific extended attribute s.

OSTA Universal Disk Format 46 Revision 1.01

The structures defined in the following sections contain a header
checksum field. This field represents a 16-bit checksum of the
Implementation Use Extended Attribute header. The fields AttributeType
through Implementationidentifier inclusively represent the data covered
by the checksum. The header checksum field is used to aid in disaster
recovery of the extended attribute space. C source code for the header
checksum may be found in the appendix.

NOTE: All compliant implementations shall preserve existing extended
attributes encountered on the media. Implementations shall create and
support the extended attributes for the operating system they are
currently running under. For example, a Macintosh implementation shall
preserve any OS/2 extended attributes encountered on the media. It
shall also create and support all Macintosh extended attributes specified
in this document.

3.3.4.5.1 All Operating Systems
This extended attribute shall be used to indicate unused space
within the extended attribute space. This extended attributes shall
be stored as an Implementation Use Extended Attribute whose
Implementationldentifier shall be set to:
"*UDF FreeEASpace "

The ImplementationUse area for this extended attribute shall be
structured as follows:

FreeEASpace format

RBP | Length Name Contents
0 2 Header Checksum Uintl6
2 U L-1 Free EA Space bytes

This extended attribute allows an implementation to shrink/grow
the total size of other extended attributes without rewriting the
complete extended attribute space. The FreeEASpace extended
attribute may be overwritten and the space re-used by any
implementation who sees a need to overwrite it.

3.3.4.5.2 MS-DOS
&~ Ignored.

& Not supported. Extended attributes for existing files on the media
shall be preserved.

OSTA Universal Disk Format 47 Revision 1.01

3.3.45.3 0S/2
0OS/2 supports an unlimited number of extended attribute s which shall be
supported through the use of the following two Implementation Use
Extended Attributes.

3.3.4.5.3.1 OS2EA
This extended attribute contains all OS/2 definable extended
attributes which shall be stored as an Implementation Use
Extended Attribute whose Implementationidentifier shall be set to:
"*UDF OS/2 EA"

The ImplementationUse area for this extended attribute shall be
structured as follows:

OS2EA format

RBP | Length Name Contents
0 2 Header Checksum Uint16
2 IU L-2 0S/2 Extended Attributes FEA

The OS2ExtendedAttributes field contains a table of OS/2 Full
EAs (FEA) as shown below.

FEA format
RBP | Length Name Contents
0 1 Flags Uint8
1 1 Length of Name (=L_N) Uint8
2 2 Length of Value (=L_V) Uint16
4 L N Name bytes
4+L N LV Value bytes

For a complete description of Full EAs (FEA) please reference the
following IBM document:

"Installable File System for OS/2 Version 2.0"
0OS/2 File Systems Department

PSPC Boca Raton, Florida

February 17, 1992

3.3.4.5.3.2 OS2EALength
This attribute specifies the OS/2 Extended Attribute information
length. Since this value needs to be reported back to OS/2 under
certain directory operations, for performance reasons it should be
recorded in the ExtendedAttributes field of the FileEntry. This
extended attribute shall be stored as an Implementation Use
Extended Attribute whose Implementationidentifier shall be set to:

OSTA Universal Disk Format 48 Revision 1.01

"*UDF OS/2 EALength"

The ImplementationUse area for this extended attribute shall be
structured as follows:

OS2EALength format

RBP | Length Name Contents
0 2 Header Checksum Uintl6
2 4 0S/2 Extended Attribute Length Uint32

The value recorded in the OS2ExtendedAttributeLength field shall

be equal to the ImplementationUseLength field of the OS2EA
extended attribute - 2.

3.3.4.5.4 Macintosh OS

The Macintosh OS requires the use of the following four extended
attributes.

3.3.4.5.4.1 MacVolumelnfo
This extended attribute contains Macintosh volume information
which shall be stored as an Implementation Use Extended
Attribute whose Implementationldentifier shall be set to:
"*UDF Mac Volumelnfo "

The ImplementationUse area for this extended attribute shall be
structured as follows:

MacVolumelnfo format

RBP | Length Name Contents
0 2 Header Checksum Uint16
2 12 Last Modification Date timestamp
14 12 Last Backup Date timestamp
26 32 Volume Finder Information Uint32

The MacVolumelnfo extended attribute shall be recorded as an
extended attribute of the root directory FileEntry.

3.3.4.5.4.2 MacFinderinfo
This extended attribute contains Macintosh Finder information for
the associated file or directory. Since this information is accessed
frequently, for performance reasons it should be recorded in the
ExtendedAttributes field of the FileEntry.

OSTA Universal Disk Format 49 Revision 1.01

The MacFinderinfo extended attribute shall be stored as an
Implementation Use Extended Attribute whose
Implementationldentifier shall be set to:

"*UDF Mac FinderInfo "

The ImplementationUse area for this extended attribute shall be
structured as follows:

MacFinderInfo format for a directory

RBP | Length Name Contents
0 2 Header Checksum uintl6
2 2 Reserved for padding (=0) Uint16
4 4 Parent Directory ID Uint32
8 16 Directory Information UDFDInfo
24 16 Directory Extended Information UDFDXInfo

MacFinderInfo format for a file

RBP | Length Name Contents

0 2 Header Checksum uintl6

2 2 Reserved for padding (=0) Uint16

4 4 Parent Directory ID Uint32

8 16 File Information UDFFInfo

24 16 File Extended Information UDFFEXInfo
40 4 Resource Fork Data Length Uint32

44 4 Resource Fork Allocated Length Uint32

The MacFinderinfo extended attribute shall be recorded as an
extended attribute of every file and directory within the Logical
Volume.

The following structures used within the MacFinderInfo structure
are listed below for clarity. For complete information on these
structures refer to the Macintosh books called "Inside Macintosh".
The volume and page number listed with each structure
correspond to a specific "Inside Macintosh" volume and page.

UDFPoint format (Volume |, page 139)

RBP | Length Name Contents
0 2 v Int16
2 2 h Int16

UDFRect format (Volume |, page 141)

RBP | Length Name Contents
0 2 top Int16
2 2 left Int16
4 2 bottom Int16
6 2 right Int16

OSTA Universal Disk Format 50 Revision 1.01

UDFDInfo format (Volume IV, page 105)

RBP | Length Name Contents
0 8 frRect UDFRect
8 2 frFlags Int16
10 4 frLocation UDFPoint
14 2 frView Int16
UDFDXInfo format (Volume 1V, page 106)
RBP | Length Name Contents
0 4 frScroll UDFPoint
4 4 frOpenChain Int32
8 1 frScript Uint8
9 1 frXflags Uint8
10 2 frComment Int16
12 4 frPutAway Int32
UDFFInfo format (Volume Il, page 84)
RBP | Length Name Contents
0 4 fdType Uint32
4 4 fdCreator Uint32
8 2 fdFlags Uint16
10 4 fdLocation UDFPoint
14 2 fdFIdr Int16
UDFFXInfo format (Volume IV, page 105)
RBP | Length Name Contents
0 2 fdlconIlD Int16
2 6 fdUnused bytes
8 1 fdScript Int8
9 1 fdXFlags Int8
10 2 fdComment Int16
12 4 fdPutAway Int32

NOTE: The above mentioned structures have there original
Macintosh names preceded by "UDF" to indicate that they are
actually different from the original Macintosh structures. On the
media the UDF structures are stored little endian as opposed to
the original Macintosh structures which are in big endian format.

3.3.4.5.4.3 MacUniquelDTable
This extended attribute contains a table used to look up the
FileEntry for a specified UniquelD. This table shall be stored as an

Implementation Use Extended Attribute whose
Implementationldentifier shall be set to:

OSTA Universal Disk Format

"*UDF Mac UniquelDTable "

51

Revision 1.01

The ImplementationUse area for this extended attribute shall be
structured as follows:

MacUniquelDTable format

RBP | Length Name Contents
0 2 Header Checksum Uintl6
2 2 Reserved for padding (=0) Uint16
4 4 Number of Unigue ID Maps (=N_DID) Uint32
8 N DID x 8 | Unigue ID Maps UniquelDMap

UniguelDMap format

RBP | Length Name Contents

0 8 File Entry Location small ad
small ad format

RBP | Length Name Contents
0 2 Extent Length Uint16
2 6 Extent Location Ib addr (4/7.1)

This UniquelDTable is used to look up the corresponding FileEntry
for a specified Macintosh directory/file ID (UniquelD). For
example, given some Macintosh directory/file ID
corresponding FileEntry location may be found in the (i-2)
UniqguelDMap in the UniquelDTable. The correspondence of
directory/file ID to UniquelD is (Directory/file ID -2) because
Macintosh directory/file IDs start at 2 while UniquelDs start at 0. In
the Macintosh the root directory always has a directory ID of 2,
which corresponds to the requirement of having the UniquelD of

the root FileEntry have the value of 0.

If the value of the Extent Length field of the File Entry Location is O
then the corresponding UniquelD is free.

The MacUniquelDTable extended attribute shall be recorded as an
extended attribute of the root directory.

3.3.4.5.4.4 MacResourceFork
This extended attribute contains the Macintosh resource fork data
for the associated file. The resource fork data shall be stored as
an Implementation Use Extended Attribute whose
Implementationldentifier shall be set to:
"*UDF Mac ResourceFork "
OSTA Universal Disk Format 52 Revision 1.01

The ImplementationUse area for this extended attribute shall be
structured as follows:

MacResourceFork format

RBP | Length Name Contents
1 2 HeaderChecksum Uint16
3 U L-2 Resource Fork Data bytes

The MacResourceFork extended attribute shall be recorded as an
extended attribute of all files, with > 0 bytes in the resource fork,
within the Logical Volume.

The two fields of the MacFinderIinfo extended attribute the
reference the MacResourceFork extended attributes are defined

as follows:

Resource Fork Data Length - Shall be set to the length of
the actual data considered to be part of the resource fork.
Resource Fork Allocated Length - Shall be set to the total
amount of space in bytes allocated to the resource fork .

3.3.4.5.5 UNIX

&~ Ignored.

& Not supported. Extended attributes for existing files on the
media shall be preserved.

OSTA Universal Disk Format

53

Revision 1.01

4. User Interface Requirements
4.1 Part 3 - Volume Structure

Part 3 of ISO/IEC 13346 contains various Identifiers which, depending
upon the implementation, may have to be presented to the user.
Volumeldentifier
VolumeSetldentifier
LogicalVolumelD

These identifiers, which are stored in CSO , may have to go through
some form of translation to be displayable to the user. Therefore when
an implementation must perform an OS specific translation on the above
listed identifiers the implementation shall use the algorithms described in
section 4.1.2.1.

C source code for the translation algorithms may be found in the
appendices of this document.

4.2 Part 4 - File System

4.2.1 ICB Tag

struct icbtag { [*1SO 13346 4/14.6 */
Uint32 PriorRecordedNumberofDirectEntries;
Uintl6 StrategyType,;
byte StrategyParameter[2];
Uint16 NumberofEntries;
byte Reserved; /* == #00 */
uint8 FileType;
Lb_addr ParentlICBLocation;
Uintl6 Flags;

}

4.2.1.1 FileType
Any open/close/read/write requests for file(s) that have any of the
following values in this field shall result in an Access Denied error
condition, under the MS-DOS and OS/2 operating system environments :

FileType values - 0 (Unknown), 6 (block device), 7 (character
device), 9 (FIFO), and 10 (C_ISSOCK).

OSTA Universal Disk Format 54 Revision 1.01

Any open/close/read/write requests to a file of type 12 (SymbolicLink)
shall access the file/directory to which the symbolic link is pointing.

4.2.2 File Identifier Descriptor
struct FileldentifierDescriptor { [*1SO 13346 4/14.4 */
struct tag DescriptorTag;

Uintl6
Uint8
Uint8

FileVersionNumber;
FileCharacteristics;
LengthofFileldentifier;

struct long_ad ICB ;

Uint16
byte
char
byte

}

4.2.2.1 char

LengthoflmplementationUse;
ImplementationUse[?7];
Fileldentifier [?7];
Padding[?7?];

Fileldentifier

Since most operating systems have their own specifications as to
characteristics of a legal Fileldentifier, this becomes a problem with
interchange. Therefore since all implementations must perform some
form of Fileldentifier translation it would be to the users advantage if all
implementations used the same algorithm.

The problems with Fileldentifier translations fall within one or more of the
following categories:

OSTA Universal Disk Format

Name Length -Most operating systems have some fixed
limit for the length of a file identifier.

Invalid Characters - Most operating systems have certain
characters considered as being illegal within a file identifier
name.

Displayable Characters - Since UDF supports the Unicode
character set standard characters within a file identifier may
be encountered which are not displayable on the receiving
system.

Case Insensitive - Some operating systems are case
insensitive in regards to file identifiers. For example OS/2
preserves the original case of the file identifier when the file
is created, but uses a case insensitive operations when
accessing the file identifier. In OS/2 “Abc” and “ABC” would
be the same file name.

55 Revision 1.01

Reserved Names - Some operating systems have certain
names that cannot be used for a file identifier name.

The following sections outline the Fileldentifier translation algorithm for
each specific operating system covered by this document. This algorithm
shall be used by all OSTA UDF compliant implementations. The
algorithm only applies when reading an illegal Fileldentifier. The original
Fileldentifier name on the media should not be modified. This algorithm
shall be applied by any implementation which performs some form of
Fileldentifier translation to meet operating system file identifier
restrictions.

All OSTA UDF compliant implementations shall support the UDF
translation algorithms, but may support additional algorithms. If multiple
algorithms are supported the user of the implementation shall be provided
with a method to select the UDF translation algorithms. It is
recommended that the default displayable algorithm be the UDF defined
algorithm.

The primary goal of these algorithms is to produce a unique file name that
meets the specific operating system restrictions without having to scan
the entire directory in which the file resides.

C source code for the following algorithms may be found in the
appendices of this document.

NOTE: In the definition of the following algorithms anytime a d-character
is specified in quotes, the Unicode hexadecimal value will also be
specified. In addition the following algorithms reference “CS0 Hex
representation”, which corresponds to using the Unicode values #0030 -
#0039, and #0041 - #0046 to represent a value in hex.

The following algorithms could still result in name-collisions being
reported to the user of an implementation. However, the rationale
includes the need for efficient access to the contents of a directory and
consistent name translations across logical volume mounts and file
system driver implementations, while allowing the user to obtain access
to any file within the directory (through possibly renaming a file).

Definitions:
A Fileldentifier shall be considered as being composed of two parts, a file
name and file extension.

OSTA Universal Disk Format 56 Revision 1.01

The character "." (#002E) shall be considered as the separator for the
Fileldentifier of a file; characters appearing prior to the last"." (#002E)
shall be considered as constituting the file name, characters appearing
subsequent to the last "." (#002E) shall be considered as constituting the
file extension.

NOTE: Even though OS/2, Macintosh, and UNIX do not have an
official concept of a filename extension it is common file naming
conventions to end a file with “.” followed by a 1 to 5 character
extension. Therefore the following algorithms attempt to preserve
the file extension up to a maximum of 5 characters.

4.2.2.1.1 MS-DOS
Due to the restrictions imposed by the MS DOS operating system
environments on the Fileldentifier associated with a file the following
methodology shall be employed to handle Fileldentifier(s) under the
above-mentioned operating system environments :

Restrictions: The file name component of the Fileldentifier shall not
exceed 8 characters. The file extension component of the Fileldentifier
shall not exceed 3 characters.

1. FEileldentifier Lookup: Upon request for a "lookUp" of a
Fileldentifier, a case-insensitive comparison shall be
performed.

2. Validate Fileldentifer: If the Fileldentifier is a valid MS-DOS file
identifier then do not apply the following steps.

3. Remove Spaces : All embedded spaces within the identifier
shall be removed.

4. Invalid Characters: A Fileldentifier that contains characters
considered invalid within a file name or file extension (as
defined above), or not displayable in the current environment,
shall have them translated into "_" (#005F). (the file identifier on
the media is NOT modified). Multiple sequential invalid or non-
displayable characters shall be translated into a single *_”
(#005F) character. Reference the appendix on invalid
characters for a complete list.

5. Leading Periods: In the event that there do not exist any
characters prior to the first "." (#002E) character, leading "."
(#002E) characters shall be disregarded up to the first non “.”
(#002E) character, in the application of this heuristic.

6. Multiple Periods: In the event that the Fileldentifier contains
multiple "." (#002E) characters, all characters appearing prior to
the first "." (#002E) character shall be considered as
constituting the file name and all characters appearing

OSTA Universal Disk Format 57 Revision 1.01

subsequent to the last "." (#002E) character shall be
considered as constituting the file extension. All embedded "."
(#002E) characters within the file name shall be removed.

7. Long Extension: In the event that the number of characters
constituting the file extension at this step in the process is
greater than 3, the file extension shall be regarded as having
been composed of the first 3 characters amongst the
characters constituting the file extension at this step in the
process.

8. Long Filename: In the event that the number of characters
constituting the file name at this step in the process is greater
than 8, the file name shall be truncated to 4 characters.

9. Fileldentifier CRC: Since through the above process character
information from the original Fileldentifier is lost the chance of
creating a duplicate Fileldentifier in the same directory
increases. To greatly reduce the chance of having a duplicate
Fileldentifier the file name shall be modified to contain a CRC of
the original Fileldentifier. The file name shall be composed of
the first 4 characters constituting the file name at this step in
the process, followed by the separator “#” (#0023); followed by
a 3 digit CSO Hex representation of the least significant 12 bits
of the 16-bit CRC of the original CSO Fileldentifier.

10. The new file identifier shall be translated to all upper case.

4.2.2.1.2 OS/2
Due to the restrictions imposed by the OS/2 operating system
environment, on the Fileldentifier associated with a file the following
methodology shall be employed to handle Fileldentifier(s) under the
above-mentioned operating system environment :

1. Fileldentifier Lookup: Upon request for a "lookUp" of a
Fileldentifier, a case-insensitive comparison shall be
performed.

2. Validate Fileldentifer: If the Fileldentifier is a valid OS/2 file
identifier then do not apply the following steps.

3. Invalid Characters: A Fileldentifier that contains characters
considered invalid within an OS/2 file name, or not displayable
in the current environment shall have them translated into " "
(#005F). Multiple sequential invalid or non-displayable

characters shall be translated into a single “ " (#005F)
character. Reference the appendix on invalid characters for a
complete list.

OSTA Universal Disk Format 58 Revision 1.01

4.

5.

Trailing Periods and Spaces: All trailing “.” (#002E) and * “
(#0020) shall be removed.

Fileldentifier CRC: Since through the above process character
information from the original Fileldentifier is lost the chance of
creating a duplicate Fileldentifier in the same directory
increases. To greatly reduce the chance of having a duplicate
Fileldentifier the file name shall be modified to contain a CRC of
the original Fileldentifier. The new Fileldentifier shall be
composed of up to the first (250 - (length of file extension +1) -
5) characters constituting the Fileldentifier at this step in the
process, followed by the separator “#” (#0023); followed by a 3
digit CSO Hex representation of the least significant 12 bits of
the 16-bit CRC of the original CSO Fileldentifier, followed by the
first 5 characters of the file extension including the “.”(#002E).

4.2.2.1.3 Macintosh
Due to the restrictions imposed by the Macintosh operating system
environment, on the Fileldentifier associated with a file the following
methodology shall be employed to handle Fileldentifier(s) under the
above-mentioned operating system environment :

1.

Fileldentifier Lookup: Upon request for a "lookUp" of a
Fileldentifier, a case-insensitive comparison shall be
performed.

Validate Fileldentifer: If the Fileldentifier is a valid Macintosh file
identifier then do not apply the following steps.

Invalid Characters: A Fileldentifier that contains characters
considered invalid within a Macintosh file name, or not
displayable in the current environment, shall have them
translated into " " (#005F). Multiple sequential invalid or non-
displayable characters shall be translated into a single “”
(#005F) character. Reference the appendix on invalid
characters for a complete list

Long Fileldentifier - In the event that the number of characters
constituting the Fileldentifier at this step in the process is
greater than 31 (maximum name length for the Macintosh
operating system), the new Fileldentifier will consist of the first
27 characters of the Fileldentifier at this step in the process .
Fileldentifier CRC: Since through the above process character
information from the original Fileldentifier is lost the chance of
creating a duplicate Fileldentifier in the same directory
increases. To greatly reduce the chance of having a duplicate
Fileldentifier the file name shall be modified to contain a CRC of
the original Fileldentifier. The new Fileldentifier shall be

OSTA Universal Disk Format 59 Revision 1.01

4.2.2.1.4 UNIX

composed of up to the first (27 - (length of file extension +1) -5)
characters constituting the Fileldentifier at this step in the
process, followed by the separator “#” (#0023); followed by a 3
digit CSO Hex representation of the least significant 12 bits of
the 16-bit CRC of the original CSO Fileldentifier, followed by the
first 5 characters of the file extension including the “.”(#002E).

Due to the restrictions imposed by UNIX operating system environments,
on the Fileldentifier associated with a file the following methodology shall
be employed to handle Fileldentifier(s) under the above-mentioned
operating system environment:

1.

2.

Fileldentifier Lookup: Upon request for a "lookUp" of a
Fileldentifier, a case-sensitive comparison shall be performed.
Validate Fileldentifer: If the Fileldentifier is a valid UNIX file
identifier for the current system environment then do not apply
the following steps.

Invalid Characters: A Fileldentifier that contains characters
considered invalid within a UNIX file name for the current
system environment, or not displayable in the current
environment shall have them translated into " _" (#005E).

Multiple sequential invalid or non-displayable characters shall

be translated into a single “_” (#005E) character. Reference the
appendix on invalid characters for a complete list

Long Fileldentifier - In the event that the number of characters
constituting the Fileldentifier at this step in the process is
greater than MAXNameLength (maximum name length for the
specific UNIX operating system), the new Fileldentifier will
consist of the first MAXNamelLength-4 characters of the
Fileldentifier at this step in the process .

Fileldentifier CRC: Since through the above process character
information from the original Fileldentifier is lost the chance of
creating a duplicate Fileldentifier in the same directory
increases. To greatly reduce the chance of having a duplicate
Fileldentifier the file name shall be modified to contain a
checksum of the original Fileldentifier. The new Fileldentifier
shall be composed of upto the first ((MAXNamelLength-4) -
(length of file extension +1) -5) characters constituting the
Fileldentifier at this step in the process, followed by the
separator “#” (#0023); followed by a 3 digit CSO Hex
representation of the least significant 12 bits of the 16-bit CRC
of the original CSO Fileldentifier, followed by the first 5
characters of the file extension including the “.”(#002E).

OSTA Universal Disk Format 60 Revision 1.01

OSTA Universal Disk Format 61 Revision 1.01

5. Informative
5.1 Descriptor Lengths

The following table summarizes the UDF limitations on the lengths of the
Descriptors described in ISO 13346.

Descriptor Length
Anchor Volume Descriptor Pointer 512
Volume Descriptor Pointer 512
Implementation Use Volume Descriptor 512
Partition Descriptor 512
Logical Volume Descriptor No max
Unallocated Space Descriptor Nno max
Terminating Descriptor 512
Logical Volume Integrity Descriptor No max
File Set Descriptor 512
File Identifier Descriptor Maximum of a
Logical Block
Size
Allocation Extent Descriptor 24
Indirect Entry 52
Terminal Entry 36
File Entry Maximum of a
Logical Block
Size
Unallocated Space Entry Maximum of a
Logical Block
Size
Space Bit Map Descriptor Nno max
Partition Integrity Entry N/A

5.2 Using Implementation Use Areas

5.2.1 Entity Identifiers
Refer to the section on Entity Identifiers defined earlier in this document.

5.2.2 Orphan Space
Orphan space may exist within a logical volume, but it is not
recommended since it may be reallocated by some type of logical volume
repair facility. Orphan space is defined as space that is not directly or

OSTA Universal Disk Format 62 Revision 1.01

indirectly referenced by any of the non-implementation use descriptors
defined in ISO 13346.

NOTE: Any allocated extent for which the only reference resides within
an implementation use field is considered orphan space.

5.3 Boot Descriptor

Please refer to the "OSTA Native Implementation Specification”
document for information on the Boot Descriptor.

5.4 Technical Contacts
Technical questions regarding this document may be emailed to the
OSTA Technical Committee at osta @aol.com . Also technical
guestions may be faxed to the attention of the OSTA Technical
Committee at 1-805-962-1542.

OSTA may also be contacted through the following address:

Technical Committee Chairman
OSTA

311 East Carrillo Street

Santa Barbara, CA 93101
(805) 963-3853

OSTA Universal Disk Format 63 Revision 1.01

6. Appendices

6.1

6.2

UDF Entity Identifier Definitions

Entity Identifier

Description

"*OSTA UDF Compliant”

Indicates the contents of the specified logical volume or
file set is complaint with domain defined by this document.

“*UDF LV Info”

Contains additional Logical Volume identification
information.

"*UDF FreeEASpace"

Contains free unused space within the extended attribute
space.

"*UDF OS/2 EA"

Contains OS/2 extended attribute data.

"*UDF OS/2 EALength"

Contains OS/2 extended attribute length.

"*UDF Mac Volumelnfo"

Contains Macintosh volume information.

"*UDF Mac FinderInfo"

Contains Macintosh finder information.

"*UDF Mac UniquelDTable"

Contains Macintosh UniquelD Table which is used to map
a Unigue ID to a File Entry.

"*UDF Mac ResourceFork"

Contains Macintosh resource fork information.

UDF Entity Identifier Values

Entity Identifier

Byte Value

"*OSTA UDF Compliant”

#2A, #4F, #53, #54, #41, #20, #55, #44, #46, #20, #43,
#6F, #6D, #70, #6C, #69, #61, #6E, #74

“*UDF LV Info”

#2A, #55, #44, #46, #20, #4C, #56, #20, #49, #6E, #66,
#O6F

"*UDF FreeEASpace"

#2A, #55, #44, #46, #20, #46, #72, #65, #65, #45, #41,
#53, #70, #61, #63, #65

"*UDF OS/2 EA"

#2A, #55, #44, #46, #41, #20, #45, #41

"*UDF OS/2 EALength"

#2A, #55, #44, #46, #20, #45, #41, #4C, #65, #6E, #67,
#74, #68

"*UDF Mac Volumelnfo"

#2A, #55, #44, #46, #20, #4D, #61, #63, #20, #56, #6F,
#6C, #75, #6D, #65, #49, #6E, #66, #6F

"*UDF Mac FinderInfo"

#2A, #55, #44, #46, #20, #4D, #61, #63, #20, #49, #69,
H#OE, #64, #65, #72, #49, #6E, #66, #6F

"*UDF Mac UniquelDTable"

#2A, #55, #44, #46, #20, #4D, #61, #63, #20, #55, #6E,
#69, #71, #75, #65, #49, #44, #54, #61, #62, #6C, #65

"*UDF Mac ResourceFork"

#2A, #55, #44, #46, #20, #4D, #61, #63, #20, #52, #65,
#7173, #OF, #75, #72, #63, #65, #46, #6F, #72, #6B

OSTA Universal Disk Format

64 Revision 1.01

6.3 Operating System Identifiers
The following tables define the current allowable values for the OS Class
and OS Identifier fields in the IdentifierSuffix of Entity Identifiers.

The OS Class field will identify under which class of operating system the
specified descriptor was recorded. The valid values for this field are as

follows:
Value Operating System
Class

0 Undefined
1 DOS
2 0S/2
3 Macintosh OS
4 UNIX

5-255 | Reserved

The OS Identifier field will identify under which operating system the
specified descriptor was recorded. The valid values for this field are as

follows:
(ON (ON Operating System ldentified
Class | Identifier
0 AnyValue | ndefined
1 0 DOS
2 0 0S/2
3 0 Macintosh OS
4 0 UNIX - Generic
4 1 UNIX - IBM AIX
4 2 UNIX - SUN Solaris
4 3 UNIX - HP/UX
4 4 UNIX - Silicon Graphics Irix

For the most update list of values for OS Class and OS Identifier please contact
OSTA and request a copy of the UDF Entity Identifier Directory. This directory
will also contain Implementation Identifiers of ISVs who have provided the
necessary information to OSTA.

NOTE: If you wish to add to this list please contact the OSTA Technical
Committee Chairman at the OSTA address listed in section 5.3 Technical
Contacts. Currently Windows 95 , Windows NT and NetWare are not supported
by this specification, but OSTA has started the work on these operating
systems.

OSTA Universal Disk Format 65 Revision 1.01

6.4 OSTA Compressed Unicode Algorithm

/***

* OSTA conpliant Uni code conpressi on, unconpression routines.
Copyright 1995 Mcro Design International, Inc.

Witten by Jason M R nn.

Mcro Design International gives permssion for the free use of the
fol owi ng source code.
/
#i ncl ude <stddef. h>

P I

/***

* The following two typedef's are to renove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to be
* unsigned 16-bit.
*/
t ypedef unsi gned short unicode_t;
t ypedef unsi gned char byte;

/***

* Takes an OSTA CSO conpressed uni code name, and converts

* it to Unicode.

* The Unicode output will be in the byte order

* that the local conpiler uses for 16-bit val ues.

* NOTE: This routine only perforns error checking on the conpl D
* It is up to the user to ensure that the unicode buffer is large
* enough, and that the conpressed uni code nane is correct.

*

* RETURN VALUE

*

* The nunber of uni code characters which were unconpressed.

* A-1lis returned if the conpression IDis invalid.

*/

nt Unconpr essUni code(
nt nunber O Byt es, /* (Input) nunber of bytes read frommedia. */

byt e *UDFConpressed, /* (lnput) bytes read from nedi a. */
uni code_t *uni code) [* (Qutput) unconpressed uni code characters. */
{

unsi gned int conpl D
int returnVal ue, uni codel ndex, byt el ndex;

/* Use UDFConpressed to store current byte being read. */
conpl D = UDFConpr essed[0] ;

/* First check for valid conplD. */
if (conplD!= 8 && conpl D = 16)

returnVal ue = -1;
}
el se
{

uni codel ndex = 0;
byt el ndex = 1;

/* Loop through all the bytes. */
whi | e (bytel ndex < nunber O Byt es)

if (conpl D == 16)

/*Move the first byte to the high bits of the unicode char. */

OSTA Universal Disk Format 66 Revision 1.01

uni code[uni codel ndex] = UDFConpr essed| byt el ndex++] << 8;
}
i f (bytel ndex < nunber O Byt es)

/*Then the next byte to the low bits. */
uni code[uni codel ndex] | = UDFConpr essed[byt el ndex++] ;

uni codel ndex++;
r et urnVal ue = uni codel ndex;

return(returnval ue);

/***

*

E o T R T R R R T

*

*/
i nt
i nt
i nt
uni
byt
{

DESCRI PTI O\
Takes a string of unicode wi de characters and returns an OSTA CSO
conpressed uni code string. The uni code MJST be in the byte order of
the conmpiler in order to obtain correct results. Returns an error
if the conpression IDis invalid.
NOTE: This routine assunes the inplementation al ready knows, by
the [ocal environment, how many bits are appropriate and
therefore does no checking to test if the input characters fit
into that nunber of bits or not.
RETURN VALUE
The total nunber of bytes in the conpressed OSTA CSO string,
i ncl udi ng the conpression | D
A-1lis returned if the conpression IDis invalid.
Conpr essUni code(
nunber O Char s, /* (Input) nunber of unicode characters. */
conpl D, /* (Input) conpression ID to be used. */
code_t *uni code, /* (Input) unicode characters to conpress. */
e *UDFConpressed) /* (Qutput) conpressed string, as bytes. */

i nt bytel ndex, uni codel ndex;
if (conplD!= 8 && conpl D = 16)

bytelndex = -1; /* Unsupported conpression ID! */
}
el se
{ _ _—
/* Place conpression code in first byte. */
UDFConpr essed[0] = conpl D

byt el ndex = 1;
uni codel ndex = 0;
whi I e (uni codel ndex < nunber O Chars)

if (conpl D == 16)

/* First, place the high bits of the char
* into the byte stream

*/

UDFConpr essed[byt el ndex++] =

OSTA Universal Disk Format 67 Revision 1.01

(uni code[uni codel ndex] & OxFFO0) >> 8;

/*Then place the low bits into the stream */
UDFConpr essed| byt el ndex++] = uni code[uni codel ndex] & Ox00FF;
uni codel ndex++;

}
}

ret ur n(byt el ndex) ;

OSTA Universal Disk Format 68 Revision 1.01

6.5 CRC Calculation

The following C program may be used to calculate the CRC -CCITT checksum
used in the TAG descriptors of ISO/IEC 13346.

/*
* CRC 010041
*/
static unsigned short crc_table[256] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x6006, Ox70E7
0x8108, 0x9129, OxAl4A, 0xB1l6B, 0xCl8C, OxD1lAD, OxEL1CE, OxFlEF
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, Ox72F7, 0x62D6
0x9339, 0x8318, 0xB37B, O0xA35A, 0xD3BD, 0xC39C, OxF3FF, OxE3DE
0x2462, 0x3443, 0x0420, 0x1401, Ox64E6, 0x74C7, Ox44A4, 0x5485
OxA56A, 0xB54B, 0x8528, 0x9509, OxE5EE, OxF5CF, OxC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, Ox66F6, 0x5695, 0x46B4
0xB75B, OxA77A, 0x9719, 0x8738, OxF7DF, OXE7FE, 0xD79D, O0xCr7BC,
0x48C4, Ox58E5, 0x6886, O0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
OxCOCC, OxDOED, OxE98E, OxFOAF, 0x8948, 0x9969, OxA90A, 0xB92B
Ox5AF5, 0x4AD4, Ox7AB7, Ox6A96, O0x1A71, OxO0A50, Ox3A33, O0x2A12
OxDBFD, 0OxCBDC, OxFBBF, OxEB9E, 0x9B79, 0x8B58, 0xBB3B, OxABLA,
0x6CA6, 0x7C87, Ox4CE4, 0x50C5, 0x2C22, 0x3C03, 0x0060, 0x1CA1,
OxEDAE, OxFD8F, OxCDEC, O0xDDCD, OxAD2A, 0OxBDOB, 0x8D68, 0x9D49,
Ox7E97, Ox6EB6, Ox5ED5, Ox4EF4, O0x3E13, Ox2E32, Ox1E51, O0xOE7O,
OxFF9F, OxEFBE, OxDFDD, OxCFFC, OxBF1B, OxAF3A, Ox9F59, 0x8F78,
0x9188, 0x81A9, OxB1CA, OxAlEB, 0xD10C, 0xCl2D, OxF14E, OxEl6F
0x1080, Ox00A1l, Ox30C2, Ox20E3, 0x5004, 0x4025, 0x7046, 0x6067
0x83B9, 0x9398, OxA3FB, O0xB3DA, 0xC33D, 0xD31C, OxE37F, OxF35E
0x02B1, 0x1290, Ox22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
OxB5EA, OxA5CB, O0x95A8, 0x8589, OxF56E, OxE54F, 0xD52C, 0xC50D,
O0x34E2, 0x24C3, O0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405
OxA7DB, OxB7FA, 0x8799, 0x97B8, OxE75F, OxF77E, OxCr1D, 0xD73C,
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, O0x4615, 0x5634,
0xD94C, 0xC96D, OxF90E, OxE92F, 0x99C8, Ox89E9, 0xB98A, 0xA9AB
0x5844, 0x4865, 0x7806, 0x6827, 0x18CO, Ox08E1l, 0x3882, 0x28A3,
0xCB7D, 0xDB5C, OxEB3F, OxFBlE, 0x8BF9, 0x9BD8, OxABBB, O0xBBOA,
0x4A75, 0Ox5A54, Ox6A37, Ox7Al6, OxO0AF1l, Ox1ADO, Ox2AB3, 0x3A92
OxFD2E, OxEDOF, OxDD6C, OxCM4D, OxBDAA, OxAD8B, Ox9DES, 0x8DC9,
0x7C26, 0x6C07, Ox5064, 0x4C45, O0x3CA2, 0x2C83, Ox1CEOQ, 0x0CCL,
OxEF1F, OxFF3E, OxCF5D, OxDF7C, OxAF9B, OxBFBA, Ox8FD9, Ox9FF8
Ox6E17, Ox7E36, Ox4E55, Ox5E74, 0x2E93, Ox3EB2, OxOED1, Ox1EFO

b

unsi gned short

cksun(s, n)
regi ster unsigned char *s;
register int n;

{
regi ster unsigned short crc=0;
while (n-- > 0)

crc = crc_table[(crc>>8 N *s++) & Oxff] ”~ (crc<<8);

return crc;

}

#i f def MAI N

unsi gned char bytes[] = { 0x70, Ox6A, O0x77 };

OSTA Universal Disk Format 69 Revision 1.01

mai n()
unsi gned short x;
x = cksum(bytes, sizeof bytes);
printf("checksum cal cul at ed=%}. 4x, correct=%. 4x\en", x, 0x3299);
exit(0);

b
#endi f

OSTA Universal Disk Format 70 Revision 1.01

The CRC table in the previous listing was generated by the foll ow ng
pr ogr am

#i ncl ude <stdi 0. h>

/*

* a.out 010041 for CRC -COTT
*/

mai n(argc, argv)
int argc; char *argv[];
{

unsi gned |l ong crc, poly;
int n, i;

sscanf (argv[1l], "%o0", &poly);

i f(poly & Oxffff0000){
fprintf(stderr, "polynomal is too |arge\en");
exit(1);

printf("/*\en * CRC 0%\ en */\en", poly);
printf("static unsigned short crc_table[256] = {\en");
for(n = 0; n < 256; n++){
if(n %8 == 0)
printf(" ");
crc = n << §;
for(i =0; i <8; i++){
i f(crc & 0x8000)
crc = (crc << 1) ~ poly;
el se
crc <<= 1;
crc & OxFFFF,

}
if(n == 255)

printf("0x¥®4X ", crc);
el se

printf("0x%®4X, ", crc);
if(n %8 ==7)

printf("\en");

Lrintf("};\en");
exit(0);

All the above CRC code was devised by Don P. Mitchell of AT&T Bell
Laboratories and Ned W. Rhodes of Software Systems Group.

It has been published in "Design and Validation of Computer Protocols”,
Prentice Hall, Englewood Cliffs, NJ, 1991, Chapter 3, ISBN 0-13-539925-4.
Copyright is held by AT&T.

AT&T gives permission for the free use of the above source code.

OSTA Universal Disk Format 71 Revision 1.01

6.6 Algorithm for Strategy Type 4096

This section describes a strategy for constructing an ICB hierarchy. For
strategy type 4096 the root ICB hierarchy shall contain 1 direct entry and 1
indirect entry. To indicate that there is 1 direct entry a 1 shall be recorded as a
Uintl6 in the StrategyParameter field of the ICB Tag field. A value of 2 shall be
recorded in the MaximumNumberOfEntries field of the ICB Tag field.

The indirect entry shall specify the address of another ICB which shall also
contain 1 direct entry and 1 indirect entry, where the indirect entry specifies the
address of another ICB of the same type. See the figure below:

DE

DE

DE

NOTE: This strategy builds an ICB hierarchy that is a simple linked list of direct
entries.

OSTA Universal Disk Format 72 Revision 1.01

6.7 ldentifier Translation Algorithms
The following sample source code examples implement the file identifier
translation algorithms described in this document.

The following basic algorithms may also be used to handle OS specific
translations of the Volumeldentifier, VolumeSetldentifier, LogicalVolumelD and
FileSetID.

6.7.1 DOS Algorithm

/***

OSTA UDF conpliant file name translation routine for DCS.
Copyright 1995 Mcro Design International, Inc.
Witten by Jason M R nn.
Mcro Design International gives permssion for the free use of the
fol owi ng source code.
/

E o T

#i ncl ude <stddef. h>

#define DOS_NAME LEN 8

#define DOS EXT _LEN 3
#define | LLEGAL_CHAR NARK O0x005F
#defi ne CRC _MARK 0x0023
#defi ne TRUE 1
#def i ne FALSE 0
#def i ne PERI CD 0x002E
#def i ne SPACE 0x0020

/***

* The following two typedef's are to renmove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to
* be unsigned 16-bit.
*/
t ypedef unsi gned short uni code_t;
t ypedef unsi gned char byte;

[*** PROTOTYPES ***/
unsi gned short cksun(regi ster unsigned char *s, register int n);
int Islllegal (unicode_t current);

/* Define functions or nacros to both determne if a character

* is printable and conpute the uppercase version of a character
* under your inplementation.

*/

i nt Uni codel sPrint (unicode_t);

uni code_t Uni codeToUpper (uni code_t);

/***
* Transl ate udf Name to dosName using OSTA conpli ant.

* dosName nust be a unicode string with mn length of 12.
*

* RETURN VALUE

* Nunber of unicode characters in dosNare.

OSTA Universal Disk Format 73 Revision 1.01

*/
i nt
uni
uni
i nt
byt
i nt

{

UDFDOSNarre(
code_t *dosNane, [* (Qut put)DCS conpati bl e nare. */
code_t *udf Nane, /* (Input) Nane from UDF vol ume. */
udf Len, /[* (Input) Length of UDF Nare. */
e *fi dNarre, [* (Input) Bytes as read fromnedia */
fi dNameLen)/* (I nput) Nunber of bytes in fidNane.*/

int index, doslndex = 0, extlndex = 0, |astPeriodlndex;
int needsCRC = FALSE, hasExt = FALSE, witingExt = FALSE;
unsi gned short val ueCRC,

uni code_t ext[DOS_EXT_LEN], current;

/*Used to convert hex digits. Used ASCII for readability. */
const char hexChar[] = "0123456789ABCDEF";

for (index

{

0 ; index < udfLen ; index++)

current
current

udf Nane[i ndex] ;
Uni codeToUpper (current);

if (current == PERI QD)
if (doslndex==0 || hasExt)

/* lgnore | eadi ng periods or any other than
* used for extension.
*/
needsCRC = TRUE
}

el se
{ _ _ . _
/* First, find |last character which is NOTI a period
* or space.
*/
| ast Peri odl ndex = udflLen - 1,
whi | e(1 ast Peri odl ndex >=0 &&
(udf Nane[| ast Peri odl ndex] == PERI QD | |
udf Narre[| ast Peri odl ndex] == SPACE))

| ast Peri odl ndex--;

}

/* Now search for last remaining period. */
whi | e(l ast Peri odl ndex >= 0 &&
udf Nare[| ast Peri odl ndex] !'= PERI QD)

| ast Peri odl ndex--;

}

/* See if the period we found was the last or not. */
i f (lastPeriodlndex != index)

needsCRC = TRUE;, /* |If not, name needs translation.

}

/* As long as the period was not trailing,
* the file name has an extension.

*/

if (lastPeriodl ndex >= 0)

OSTA Universal Disk Format 74

*/

Revision 1.01

hasExt = TRUE

}
}
}
el se
{

if ((!'hasExt &% doslndex == DOS_NAME LEN) ||
ext | ndex == DOS_EXT_LEN)

/* File nane or extension is too long for DOS. */
needsCRC = TRUE

}
el se
if (current == SPACE) /* lgnore spaces. */
needsCRC = TRUE
}
el se
/* Look for illegal or unprintable characters. */
if (Islllegal (current) || !UnicodelsPrint(current))
{
needsCRC = TRUE
current = | LLEGAL CHAR NARK;
/* Skip Illegal characters(even spaces),
* but not peri ods.
*/
whi | e(i ndex+1 < udfLen
&% (Islllegal (udf Name[i ndex+1])
|| !Unicodel sPrint(udf Name[i ndex+1]))
&& udf Name[i ndex+1] != PERI CD)
{
i ndex++;
}
}
/* Add current char to either file name or ext. */
if (witingBxt)
{
ext[extlndex++] = current;
}
el se
dosNane[dosl ndex++] = current;
}
}
}

/* See if we are done with file nane, either because we reached
* the end of the file nane length, or the final period.
*/
if ('witingExt & hasBExt && (doslndex == DOS _NAME LEN |
i ndex == | ast Peri odl ndex))
{

/* 1f so, and the name has an extension, start reading it. */
witingExt = TRUE
/* Extension starts after last period. */

OSTA Universal Disk Format 75 Revision 1.01

i ndex = | ast Peri odl ndex;

}
}
/*Now handl e CRC if needed. */
i f (needsCRC
{
/* Add CRCto end of file name or at position 4. */
i f (doslndex >4)
dosl ndex = 4;
}
dosNane[dosl ndex++] = CRC_MNARK;
val ueCRC = cksun(fi dNane, fi dNaneLen);
/* Convert lower 12-bits of CRC to hex characters. */
dosNane[dosl ndex++] = hexChar[(val ueCRC & 0x0f 00) >> 8];
dosNane[dosl ndex++] = hexChar[(val ueCRC & 0x00f 0) >> 4];
dosNane[dosl ndex++] = hexChar[(val ueCRC & 0x000f)];
}

/* Add extension, if any. */
if (extlndex !'= 0)

{
dosNane[dosl ndex++] = PER OO
for (index = 0; index < extlndex; index++)
dosNane[dosl ndex++] = ext[index];
}
}

r et ur n(dosl ndex) ;

}

/***

* Decides if a Unicode character matches one of a |ist

* of ASClI| characters.

* Used by DCS version of Islllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASC 1 subset of Unicode.
* Wrks very simlarly to the standard C function strchr().

*

* RETURN VALUE

*

* Non-zero if the Unicode character is in the given ASCI string.
*/

i nt Uni codel nStri ng(

unsi gned char *string, /* (Input) String to search through. */

uni code_t ch) /* (Input) Unicode char to search for. */

int found = FALSE
while (*string '="\0" && found == FALSE)
{

/* These types shoul d conpare, since both are unsigned nunbers. */
if (*string == ch)

found = TRUE
}

string++;

}

OSTA Universal Disk Format 76 Revision 1.01

ret urn(found);

/***
* Deci des whether character passed is an illegal character for a
* DCS file nane.
*
* RETURN VALUE
*
* Non-zero if file character is illegal
*/

nt 1slllegal(
unicode_t ch) /* (Input) character to test. */

{ /* CGenuine illegal char's for DOS. */
if (ch < 0x20 || Unicodel nString("\\/:*?2\"<>|", ch))
return(l);
el se
return(0);
}

OSTA Universal Disk Format 77 Revision 1.01

6.7.2 OS/2 , Macintosh and UNIX Algorithm

/***

* OSTA UDF conpliant file nanme translation routine for Q8 2,

* Maci ntosh and UN X

* Copyright 1995 Mcro Design International, Inc.

* Witten by Jason M R nn.

* Mcro Design International gives permssion for the free use of the
* fol | owi ng source code.

*/

/***

* To use these routines with different operating systens.

*

* 05/ 2

* Defi ne 082

* Defi ne MAXLEN = 254

*

* Maci nt osh:

* Defi ne MAC.

* Def i ne MAXLEN = 31.

*

* UN X

* Define UN X

* Defi ne MAXLEN as specified by unix version.

*/
#define | LLEGAL_CHAR NARK O0x005F
#defi ne CRC MARK 0x0023
#define EXT_SI ZE 5
#defi ne TRUE 1
#def i ne FALSE 0
#def i ne PERI CD 0x002E
#def i ne SPACE 0x0020

/***

* The following two typedef's are to renove conpil er dependanci es.
* byte needs to be unsigned 8-bit, and unicode_t needs to
* be unsigned 16-bit.
*/
t ypedef unsigned int unicode_t;
t ypedef unsi gned char byte;

[*** PROTOTYPES ***/
int Islllegal (unicode_t ch);
unsi gned short cksun{unsi gned char *s, int n);

/* Define a function or nmacro which determnes if a Unicode character is
* printable under your inplenentation.
*/

i nt Uni codel sPrint (unicode_t);

/***

* Translates a long file nane to one using a MAXLEN and an ill egal
char set in accord with the OSTA requirenments. Assumes the name has
al ready been transl ated to Uni code.

RETURN VALUE

b I

OSTA Universal Disk Format 78 Revision 1.01

* Nunber of unicode characters in translated nane.

*/

i nt UDFTr ansName(

uni code_t *newNane, / *(Qut put) Transl at ed nane. Must be of |ength MAXLEN+/
uni code_t *udf Narme, /* (lnput) Name from UDF vol une. */

i nt udf Len, /* (Input) Length of UDF Narme. */

byte *fi dNane, /* (Input) Bytes as read fromnedia. */
int fidNanelLen) /* (Input) MNunber of bytes in fidNane. */
{

int index, new ndex = 0, needsCRC = FALSE

int extlndex, newextlndex = 0, hasExt = FALSE
#i fdef OS2

int traillndex = 0;
#endi f

unsi gned short val ueCRC

uni code_t current;

const char hexChar[] = "0123456789ABCDEF";

for (index = 0; index < udflLen; index++)

{
current = udf Nane[i ndex];
if (Islllegal (current) || !UnicodelsPrint(current))
needsCRC = TRUE
/* Replace Illegal and non-displ ayabl e chars with underscore. */
current = | LLEGAL . VARK;
[* Skip any other illegal or non-displayabl e characters. */
whi | e(i ndex+1 < udflLen &% (Isl!]egal (udf Nanme[i ndex+1])
|| !Unicodel sPrint(udf Nane[index+1])))
i ndex++;
}
/* Record position of extension, if one is found. */
if (current == PERICD && (udfLen - index -1) <= EXT_SI ZE)
if (udfLen == index + 1)
/* Atrailing period is NOT an extension. */
hasExt = FALSE
}
el se
hasExt = TRUE
ext I ndex = index;
newext | ndex = new ndex;
}
}
#i fdef CB2
/* Record position of last char which is NOT period or space. */
else if (current != PERI (D && current = SPACE)
traill ndex = new ndex;
#endi f

i f (newl ndex < NAXLEN)

OSTA Universal Disk Format 79 Revision 1.01

newNane[newl ndex++] = current;

}
el se
needsCRC = TRUE
}
}
#i fdef C82
[* For OB82, truncate any trailing periods and\or spaces. */
if (traillndex !'= newl ndex - 1)
{
newl ndex = traillndex + 1,
needsCRC = TRUE
hasExt = FALSE, /* Trailing period does not make an extension. */
}
#endi f
i f (needsCRC
{

uni code_t ext[EXT_SI ZF] ;
int |ocal Extlndex = 0;
i f (hasExt)

int maxFi | enanelLen;
/* Transl ate extension, and store it in ext. */
for(index = 0; index<EXT_SIZE && extlndex + index +1 < udfLen;

i ndex++)
{
current = udf Nane[extlndex + index + 1];
if (Islllegal (current) || !'isprint(current))
needsCRC = 1,
/* Replace Illegal and non-displ ayabl e chars
* Wi th underscore.
*/
current = | LLEGAL CHAR NARK;
[* Skip any other illegal or non-displayable
* characters.
*/
while(index + 1 < EXT_SIZE
&% (Islllegal (udf Name[extl ndex + index + 2])
[| 'isprint(udf Name[extlndex + index + 2])))
{
i ndex++;
}
ext[| ocal Ext | ndex++] = current;
}

/* Truncate filenane to | eave roomfor extension and CRC. */
maxFi | enaneLen = ((MAXLEN - 4) - |ocal Extlndex - 1);
if (newl ndex > maxFil enanelLen)

new ndex = naxFi | enanmelLen

}

el se

{

OSTA Universal Disk Format 80 Revision 1.01

new ndex = newkxt | ndex;

| }
else if (new ndex > MAXLEN - 4)

/*1f no extension, nake sure to | eave roomfor CRC. */
newl ndex = MAXLEN - 4;

}
newNare[newl ndex++] = CRC MARK; /* Add nark for CRC. */

/*Calculate CRC fromoriginal filename fromFileldentifier. */
val ueCRC = cksun(fi dNane, fi dNaneLen);

/* Convert lower 12-bits of CRC to hex characters. */

newNarre[newl ndex++] hexChar [(val ueCRC & 0x0f 00) >> 8];
newNarre[newl ndex++] hexChar [(val ueCRC & 0x00f0) >> 4];
newNarre[newl ndex++] hexChar [(val ueCRC & 0x000f)];

/* Place a transl ated extension at end, if found. */
i f (hasExt)

newNane[newl ndex++] = PER OD;
for (index = 0;index < |ocal Extlndex ;index++)

newNarre[newl ndex++] = ext[index];
}
}
ret ur n(newl ndex) ;
}
#i fdef C82

/***

* Decides if a Unicode character matches one of a |ist

* of ASCl| characters.

* Used by C82 version of Islllegal for readability, since all of the
* illegal characters above 0x0020 are in the ASC 1 subset of Unicode.
* Wrks very simlarly to the standard C function strchr().

*

* RETURN VALUE

*

* Non-zero if the Unicode character is in the given ASCIl string.
*/

i nt Uni codel nStri ng(

unsi gned char *string, /* (Input) String to search through. */

uni code_t ch) /* (Input) Unicode char to search for. */

int found = FALSE
while (*string '="\0" && found == FALSE)
{
/* These types shoul d conpare, since both are unsigned nunbers. */
if (*string == ch)
found = TRUE
}
string++;
ret urn(found);

}
#endi f /* C82 */

OSTA Universal Disk Format 81 Revision 1.01

/***

* Deci des whether the given character is illegal for a given C5

*

* RETURN VALUE

*

* Non-zero if char is illegal
*/
int Islllegal (unicode_t ch)
{
#i fdef MAC
/[* Only illegal character on the MACis the colon. */
if (ch == 0x003A)
return(l);
el se
return(0);

#elif defined UN X
/* 1llegal UNIX characters are NULL and sl ash. */
if (ch == 0x0000 || ch == 0x002F)
return(l);
el se
return(0);
#elif defined 082

/* 1llegal char's for O5/2 according to WARP tool kit. */
if (ch < 0x0020 || UnicodelnString("\\/:*?\"<>|", ch))

return(l);
el se
return(0);
#enéif
}

OSTA Universal Disk Format 82

Revision 1.01

6.8 Extended Attribute Checksum Algorithm

/
Cal cul ates a 16-bit checksumof the Inplenentati on Use
Extended Attribute header. The fields AttributeType
through I nplementationldentifier inclusively represent the
data covered by the checksum (48 bytes).

* % 3k X X X

~

U ntl16 Conput eEAChecksun(byte *dat a)

{
Unti6 checksum = 0;
U nt count ;
for(count = 0; count < 48; count ++)
{
checksum += *dat a++;
}
ret urn(checksum);
}

OSTA Universal Disk Format 83 Revision 1.01

6.9 Requirements for Digital Video Disc (DVD)

This appendix defines the requirements and restrictions for UDF formatted
media for dedicated Digital Video Disc (DVD) content players. DVD is an
application of the 2nd generation (high capacity) CD-ROM, CD Recordable and
CD Erasable media for the home consumer market.

All DVD discs shall be mastered to contain all required data as specified by 1SO
13346 and UDF. This will allow playing of DVD in computer systems.
Examples of such data include the time, date, permission bits, and a free space
map (indicating no free space if ROM media). While DVD player
implementations may ignore these fields, a UDF computer system
implementation will not.

This appendix also shows the basics for extracting the necessary information
needed by a DVD player from a UDF formatted disc. While the UDF format has
many features and can be complicated, much of the information can be ignored
in a read only, dedicated DVD player environment. Both entertainment-based
(DVD) and computer-based content can reside on the same disc.

In an attempt to reduce code size and improve performance, all division
described is integer arithmetic; all denominators shall be 2”n, such that all
divisions may be carried out via logical shift operations.

6.9.1 Constraints imposed by UDF for DVD

This section describes the restrictions and requirements for UDF formatted DVD
discs. Due to limited computing resources within a DVD consumer player these
restrictions and requirements were created so that a DVD consumer player
would not have to support every feature of the UDF specification.

The DVD files should be stored in a subdirectory directly under the root
directory. This directory name should be standardized in the DVD
Application Specification.

The remainder of this document will use an example directory name of the
five characters "DVD_2"

NOTE: The DVD Application Specification is a document, which will be
developed by the DVD manufacturers, that describes the names of the DVD
files and directories which will be stored on the media, and additionally
describes the contents of the DVD files

A control or index file should be written in the aforementioned subdirectory.
This file name should be standardized in the DVD Application Specification.

OSTA Universal Disk Format 84 Revision 1.01

The remainder of this document will use an example file name of the seven
characters "CONTROL"

All other file names should be specified within the CONTROL file.

All references to blocks of data shall be of the form of a filename and a
relative byte offset into that file.

A DVD player shall not be required to follow symbolic links to any files.

File names shall consist of 8 bit Unicode characters. When the DVD is
recorded with 16 bit Unicode characters, the DVD file names shall consist of
the first 256 characters of Unicode. i.e. all but the lower 8 bits of a character
are set to zero.

It is recommended that DVD file names consist of the d-character set defined
in ISO 646. This consists of the characters 'A'-'Z" (upper case), '0'-'9' (digits),
' ' (underscore), and "." (full stop). Itis further recommended that not more
than one '." be used.

Maximum compatibility will be ensured if the DVD file names consist of no
more than eight characters, optionally followed by a ., optionally followed by
no more than three characters.

File name comparisons shall be performed in a case sensitive manner. A
simple byte for byte comparison may be used. If a matching file identifier is
not found, a case insensitive comparison will then be used. This comparison
can be performed by "upcasing" both strings before performing a byte by
byte comparison.

There shall be no identifiers that differ from identifiers specified in this
appendix only by case. i.e. there shall not be a dvd_2 directory in the root.
There shall not be any files in the DVD _ 2 directory that differ only by case.
i.e. 'Movie' and 'movie' cannot coexist.

Originating systems shall constrain individual files to be less than 2*31 (2G)

in length. (maximum size 2"31 - 1). This constraint allows use of 32 bit
signed pointers.

Note: If the last sector of a file must contain all valid bytes, the maximum file
size shall be 2731 - blocksize).

Other applications should define appropriate directory names, i.e. AUDIO.2,
GAME.MODEL_X, BOOK, etc. in their respective standards.

All the above constraints apply only to the directory and files to which the DVD
player needs to access. There may be other files and directories on the media
which are not intended for the DVD player and do not meet the above listed

OSTA Universal Disk Format 85 Revision 1.01

constraints. These other files and directories are ignored by the DVD player.
This is what enables the ability to have both entertainment-based (DVD) and
computer-based content on the same disc.

6.9.2 How to read a UDF disc

The following section describes the basic steps that a DVD player would go
through to read a UDF formatted DVD disc.

6.9.2.1 Find Anchor Point
The anchor point must be found. Duplicate anchor points shall be recorded
at logical sector 256 and logical sector n, where n is the highest numbered
logical sector on the disc. The anchor point is the root pointer to everything
on the disc.
A DVD player only needs to look at logical sector 256; the copy at n is
redundant and only needed for defect tolerance. The Anchor Volume
Descriptor Pointer contains three things of interest:
1. Static structures that may be used to identify and verify integrity of the
disc.
2. Location of the Main Volume Descriptor Sequence (absolute logical
sector number)
3. Length of the Main Volume Descriptor Sequence (bytes)

The data in locations 0-3 and 5 may be used for format verification if
desired. Verifying the checksum in byte 4 and CRC in bytes 8-11 are good
additional verifications to perform. MVDS_Location and MVDS_Length are
read from this structure.

6.9.2.2 Find the Logical Volume Descriptor
Read logical sectors:

MVDS_ Location through MVDS_ Location + (MVDS_Length - 1) / sectorSize

The logical sector size will depend on the implementation; it will not have an
arbitrary size on a per disc basis. As currently specified, all logical sector
sizes shall be 2048 bytes for DVD media. The Logical Volume Descriptor
shall be the first logical sector that contains a descriptor with a tag identifier
of 6.

FSD_Partition, FSD_Location, and FSD_Length are obtained from this
structure.

6.9.2.3 Find the Partition Descriptors
Read logical sectors <pre>

MVDS_ Location through MVDS_ Location + (MVDS_Length - 1) / blocksize

OSTA Universal Disk Format 86 Revision 1.01

The Partition Descriptors shall have a descriptor with a tag identifier of 5.
The partition number and partition location shall be recorded for the first two
partitions found. If not found, this disc is no good.

Partition_Location and Partition_Length are returned. Note that the location
is absolute and the length is in logical blocks.

6.9.2.4 Read File Set Descriptor
All logical block numbers within a file set are relative. The base for
computing absolute logical block numbers is the Partition_Location. Add
Partition_Location to all relative values to get the absolute logical block
number.

The File Set Descriptor is located at absolute addresses

Partition_Location + FSD_Location through
Partition_Location + FSD_Location + (FSD_Length - 1) / blocksize

The entire extent should be read. As each File Set Descriptor is found, it
shall be made the current descriptor.

After the last File Set Descriptor in the extent is found, also search the
extent starting at NextExt_Location and NextExt_Length in size. The
NextExt_partition variable should be examined to see that it matches the
current partition value. Repeat this process until the NextExt_Location is O
or the NextExt_Location points to a blank area.

The repetitive read is to allow for updating of write once media.

RootDir_Partition, RootDir_Location and RootDir_Length shall be read from
the File Set Descriptor.

6.9.2.5 Read Root Directory ICB
RootDir_Location and RootDir_Length define the location of an ICB extent.
This ICB extent contains a File Entry and possibly an Indirect Entry to
another ICB extent. The chain of indirect entries shall be followed to its end.
The File Entry describes the data space and permissions of the root
directory. The Indirect Entries allow for updating files on write-once, limited
overwrite, and mixed ROM/RAM media.

A list of extents containing the Root Directory is returned.

6.9.2.6 Find Subdirectory Entry
Parse the data in the root directory extents to find the movie subdirectory.

OSTA Universal Disk Format 87 Revision 1.01

Find the DVD _2 File Identifier Descriptor. The name shall be in 8, 16 or 32
bit compressed UDF format (essentially uncompressed). Verify that DVD_2
is a directory.

6.9.2.7 Find Subdirectory
The ICB found in the step above contains another File Entry. This File Entry
shall be a directory, and its extents contain the list of files in the DVD _2
subdirectory. The location of this File Entry should be retained for finding
arbitrary video files later.

6.9.2.8 Find the Control File Descriptor
The extents found in the step above contain sets of File Identifier
Descriptors. In this pass, verify that the entry points to a file and is named
CONTROL.

Further files can be found in the same manner as the CONTROL file when
needed. Other file names shall be specified only in the CONTROL file. The
names shall be pre-compressed in the CONTROL file which maximizes
computer compatibility without requiring the player to understand any
compression algorithms.

NOTE: Initially DVD discs should be mastered with both the UDF and 1SO
9660 file systems. This UDF Bridge disc will allow playing DVD media in
computers immediately which may only support ISO 9660. As UDF computer
implementations are provided, the need for ISO 9660 will disappear, and future
discs should contain only UDF. The DVD consumer players shall only support
UDF and not ISO 9660.

If you intend to do any DVD development with UDF please make sure that you

fill out the OSTA UDF Developer Registration Form located in appendix 6.10.
For planned operating system check the Other box and write in DVD.

OSTA Universal Disk Format 88 Revision 1.01

6.10 Developer Registration Form

Any developer that plans on implementing ISO/IEC 13346 according to this
document should complete the developer registration form on the following
page. By becoming a registered OSTA developer you receive the following
benefits:

You will receive a list of the current OSTA registered developers and
their associated Implementation ldentifiers. The developers on this
list are willing to interchange media with you to verify data interchange
between your implementation and their implementation.

Notification of OSTA Technical Committee meetings. You may attend
a limited number of this meetings without becoming an official OSTA
member.

You can be added to the OSTA Technical Committee email reflector.
This reflector provides you the opportunity to post technical questions
on the OSTA Universal Disk Format Specification.

You will receive an invitation to participate in the development of the
next revision of this document.

OSTA Universal Disk Format 89 Revision 1.01

AACTA OSTA Universal Disk Format Specification
NI AL N Developer Registration Form

Optical Storage
Technology Association

Name:

Company:
Address:

City:

State/Province:
Zip/Postal Code:

Country:
Phone: FAX:

Email:

Planned Operating Systems Support
Please indicate on which operating systems you plan to support ISO/IEC 13346:

CDOS C0S/2 C Macintosh
C UNIX/POSIX C Windows NT C Windows 95
C Other

Implementation Identifier
Please indicate what value you plan to use in the Implementation Identifier field
of the Entity Identifier descriptor to identify your implementation:

Miscellaneous
(; Please add my email address to the OSTA Technical Committee email reflector.
(; Please send an OSTA Membership kit .

FAX Completed form to OSTA at 1-805-962-1541, or mail to:
OSTA, 311 E. Carrillo Street, Santa Barbara, CA 93101

OSTA Universal Disk Format 90 Revision 1.01

—A—

Allocation Descriptor, 5, 27, 31, 32
Allocation Extent Descriptor, 32
Anchor Volume Descriptor Pointer, 4, 15

—C—

Charspec, 7

Checksum, 47, 48, 49, 50, 52, 82

CRC, 13, 22, 31, 68, 70

CS0, 6, 7, 10, 14, 15, 16, 21, 24, 54, 56, 58, 59, 60

— D—

Descriptor Tag, 13, 22, 31
Domain, 1, 8, 9, 10, 11
DOS, 36, 37, 47, 54, 57
DVD, 2, 83, 84, 85, 86, 87

—E—

Entity Identifier, 4, 8, 9, 13, 14, 15, 16, 17, 19, 20,
23, 24, 25, 26, 29, 30, 31, 39, 46, 63

Extended Attributes, 3, 20, 43, 44, 46, 47, 48, 49, 50,
51, 52, 53, 63

— F—

File Entry, 5, 9, 29, 39, 45, 52, 63
File Identifier Descriptor, 9, 26, 36, 55
File Set Descriptor, 5, 9, 22, 24

—H—
HardWriteProtect, 11, 17, 23, 25

ICB, 5, 26, 27, 36, 37, 43, 54, 55

ICB Tag, 5, 27, 37, 54

Implementationldentifier, 14, 15, 16, 17, 20, 24, 29,
30, 31, 39, 46, 47, 48, 49, 51, 52

ISO/IEC 13346, 1

—L—

Logical Block Size, 4, 5, 17

Logica Sector Size, 4

Logica Volume Descriptor, 5, 9, 16, 18, 19
Logica Volume Header Descriptor, 19, 35
Logica Volume Integrity Descriptor, 9, 17, 18, 31

91

OSTA Universal Disk Format

—M—
Macintosh, 30, 35, 36, 38, 43, 45, 49, 50, 51, 52, 59,
63
—N—
NetWare, 64

—0O—

Orphan Space, 61
0S/2, 36, 37, 48, 49, 54, 55, 58, 63
Overwritable, 3, 4

—p—

Partition Header Descriptor, 25
Partition Integrity Entry, 5, 9, 31
Pathname, 33

Primary Volume Descriptor, 4, 9, 13

—R—

Read-Only, 3, 4

Records, 5, 33

Rewritable, 3, 4, 25, 32
—S—

SoftWriteProtect, 11, 17, 25
strategy, 5, 23, 27
SymbolicLink, 54

—T—
Timestamp, 4, 7, 18, 34

—U—

Unallocated Space Descriptor, 5, 18
Unicode, 6, 7, 55, 56, 65

Uniquel D, 18, 29, 30, 35, 39, 43, 51, 52, 63
UNIX, 36, 38, 53, 59, 60

—W—

Windows, 36, 37, 47, 54, 57
Windows 95, 64

Windows NT, 64

WORM, 3, 4, 17, 23

Revision 1.01

	CONTENTS
	1. Introduction
	1.1 Document Layout
	1.2 Compliance

	2. Basic Restrictions & Requirements
	2.1 Part 1 - General
	2.1.1 Character Sets
	2.1.2 OSTA CS0 Charspec
	2.1.3 Timestamp
	2.1.4 Entity Identifier

	2.2 Part 3 - Volume Structure
	2.2.1 Descriptor Tag
	2.2.2 Primary Volume Descriptor
	2.2.3 Anchor Volume Descriptor Pointer
	2.2.4 Logical Volume Descriptor
	2.2.5 Unallocated Space Descriptor
	2.2.6 Logical Volume Integrity Descriptor
	2.2.7 Implemention Use Volume Descriptor

	2.3 Part 4 - File System
	2.3.1 Descriptor Tag
	2.3.2 File Set Descriptor
	2.3.3 Partition Header Descriptor
	2.3.4 File Identifier Descriptor
	2.3.5 ICB Tag
	2.3.6 File Entry
	2.3.7 Unallocated Space Entry
	2.3.8 Space Bitmap Descriptor
	2.3.9 Partition Integrity Entry
	2.3.10 Allocation Descriptors
	2.3.11 Allocation Extent Descriptor
	2.3.12 Pathname

	2.4 Part 5 - Record Structure

	3. System Dependent Requirements
	3.1 Part 1 - General
	3.1.1 Timestamp

	3.2 Part 3 - Volume Structure
	3.2.1 Logical Volume Header Descriptor

	3.3 Part 4 - File System
	3.3.1 File Identifier Descriptor
	3.3.2 ICB Tag
	3.3.3 File Entry
	3.3.4 Extended Attributes

	4. User Interface Requirements
	4.1 Part 3 - Volume Structure
	4.2 Part 4 - File System
	4.2.1 ICB Tag
	4.2.2 File Identifier Descriptor

	5. Informative
	5.1 Descriptor Lengths
	5.2 Using Implementation Use Areas
	5.2.1 Entity Identifiers
	5.2.2 Orphan Space

	5.3 Boot Descriptor
	5.4 Technical Contacts

	6. Appendices
	6.1 UDF Entity Identifier Definitions
	6.2 UDF Entity Identifier Values
	6.3 Operating System Identifiers
	6.4 OSTA Compressed Unicode Algorithm
	6.5 CRC Calculation
	6.6 Algorithm for Strategy Type 4096
	6.7 Identifier Translation Algorithms
	6.7.1 DOS Algorithm
	6.7.2 OS/2 , Macintosh and UNIX Algorithm

	6.8 Extended Attribute Checksum Algorithm
	6.9 Requirements for Digital Video Disc (DVD)
	6.9.1 Constraints imposed by UDF for DVD
	6.9.2 How to read a UDF disc

	6.10 Developer Registration Form

	INDEX

