Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spontaneous Hall effect induced by collinear antiferromagnetic order at room temperature

Abstract

Magnetic information is usually stored in ferromagnets, where the ↑ and ↓ spin states are distinguishable due to time-reversal symmetry breaking. These states induce opposite signs of the Hall effect proportional to magnetization, which is widely used for their electrical read-out. By contrast, conventional antiferromagnets with a collinear antiparallel spin configuration cannot host such functions, because of Tt symmetry (time-reversal T followed by translation t symmetry) and lack of macroscopic magnetization. Here we report the experimental observation of a spontaneous Hall effect in the collinear antiferromagnet FeS at room temperature. In this compound, the ↑↓ and ↓↑ spin states induce opposite signs of the spontaneous Hall effect. Our analysis suggests that this does not reflect magnetization, but rather originates from a fictitious magnetic field associated with the Tt-symmetry-broken antiferromagnetic order. The present results pave the way for electrical reading and writing of the ↑↓ and ↓↑ spin states in conductive systems at room temperature, and suggest that Tt-symmetry-broken collinear antiferromagnets can serve as an information medium with vanishingly small magnetization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classification of various types of collinear magnets and spontaneous Hall effect.
Fig. 2: Spontaneous Hall effect in a collinear antiferromagnet FeS at room temperature.
Fig. 3: Presence (absence) of spontaneous Hall signal in the easy-plane (easy-axis) collinear antiferromagnetic state.
Fig. 4: Analysis of the microscopic origin of the spontaneous Hall effect in FeS.

Data availability

The data presented in the current study are available from the corresponding authors on reasonable request.

References

  1. Hall, E. On a new action of the magnet on electric currents. Am. J. Math. 2, 287–292 (1879).

    Article  Google Scholar 

  2. Hall, E. On the ‘rotational coefficient’ in nickel and cobalt. Philos. Mag. 12, 157 (1881).

    Article  Google Scholar 

  3. Nakatsuji, S. et al. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 215 (2015).

    Article  Google Scholar 

  4. Nagaosa, N. et al. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).

    Article  Google Scholar 

  5. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  CAS  Google Scholar 

  6. Jungwirth, T. et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).

    Article  CAS  Google Scholar 

  7. Šmejkal, L. et al. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, 8809 (2020).

    Article  Google Scholar 

  8. Naka, M. et al. Anomalous Hall effect in 𝜅-type organic antiferromagnets. Phys. Rev. B 102, 075112 (2020).

    Article  CAS  Google Scholar 

  9. Šmejkal, L. et al. Beyond conventional ferromagnetism and antiferromagnetism: A phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).

    Google Scholar 

  10. Bose, A. et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 5, 267–274 (2022).

    Article  CAS  Google Scholar 

  11. Karube, S. et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 129, 137201 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Nayak, A. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncollinear antiferromagnet Mn3Ge. Sci. Adv. 2, 1501870 (2016).

    Article  Google Scholar 

  13. Ghimire, N. J. et al. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nat. Commun. 9, 3280 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Takagi, H. et al. Spontaneous topological Hall effect induced by non-coplanar antiferromagnetic order in intercalated van der Waals materials. Nat. Phys. 19, 961–968 (2023).

    Article  CAS  Google Scholar 

  15. Park, P. et al. Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2. Nat. Commun. 14, 8346 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. EPL 108, 67001 (2014).

    Article  Google Scholar 

  17. Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).

    Article  CAS  Google Scholar 

  18. Gonzalez Betancourt, R. D. et al. Spontaneous anomalous Hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett. 130, 036702 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Putnis, A. et al. Electron-optical observations on the α-transformation in troilite. Science 186, 439–440 (1974).

    Article  CAS  PubMed  Google Scholar 

  20. Marshall, W. G. et al. High-pressure neutron-diffraction study of FeS. Phys. Rev. B 61, 11201–11204 (2000).

    Article  CAS  Google Scholar 

  21. Bansal, D. et al. Magnetically driven phonon instability enables the metal–insulator transition in h-FeS. Nat. Phys. 16, 669–675 (2020).

    Article  CAS  Google Scholar 

  22. Coey, J. M. D. et al. The electronic phase transitions in FeS and NiS. J. Phys. Colloq. 37, C4-1–C4-10 (1976).

    Article  Google Scholar 

  23. Horwood, J. L. et al. Magnetic susceptibility of single-crystal Fe1−xS. J. Solid State Chem. 17, 35–42 (1976).

    Article  CAS  Google Scholar 

  24. Seemann, M. et al. Symmetry-imposed shape of linear response tensors. Phys. Rev. B 92, 155138 (2015).

    Article  Google Scholar 

  25. Kleiner, W. H. Space-time symmetry of transport coefficients. Phys. Rev. 142, 318–326 (1966).

    Article  CAS  Google Scholar 

  26. Bazhan, A. N. & Bazan, C. Weak ferromagnetism in CoF2 and NiF2. Sov. Phys. -JETP 42, 898–904 (1975).

    Google Scholar 

  27. Gosselin, J. R. et al. Electric anomalies at the phase transition in FeS. Solid State Commun. 19, 799–803 (1976).

    Article  CAS  Google Scholar 

  28. Suzuki, M.-T. et al. Multipole expansion for magnetic structures: A generation scheme for a symmetry-adapted orthonormal basis set in the crystallographic point group. Phys. Rev. B 99, 174407 (2019).

    Article  CAS  Google Scholar 

  29. Shindou, R. & Nagaosa, N. Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on the distorted fcc lattice. Phys. Rev. Lett. 87, 116801 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Martin, I. & Batista, C. D. Itinerant electron-driven chiral magnetic ordering and spontaneous quantum Hall effect in triangular lattice models. Phys. Rev. Lett. 101, 156402 (2008).

    Article  PubMed  Google Scholar 

  31. Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Article  PubMed  Google Scholar 

  32. Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon. 12, 73–78 (2018).

    Article  CAS  Google Scholar 

  33. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article  CAS  Google Scholar 

  34. Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Nomoto, T. & Arita, R. Cluster multipole dynamics in noncollinear antiferromagnets. Phys. Rev. Res. 2, 012045(R) (2020).

    Article  Google Scholar 

  36. Itoh, S. et al. High resolution chopper spectrometer (HRC) at J-PARC. Nucl. Instrum. Methods Phys. Res. Sect. A 631, 90 (2011).

    Article  CAS  Google Scholar 

  37. Kawana, D. et al. YUI and HANA: control and visualization programs for HRC in J-PARC. J. Phys. Conf. Ser. 1021, 012014 (2018).

    Article  Google Scholar 

  38. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  39. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  41. Kruse, O. et al. Phase transitions and kinetics in natural FeS measured by X-ray diffraction and Mössbauer spectroscopy at elevated temperatures. Am. Mineral. 77, 391–398 (1992).

    CAS  Google Scholar 

  42. Perdew, P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Mostofi, A. A. et al. Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article  CAS  Google Scholar 

  44. Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric, and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Hayami, Y. Motome, A. Tsukazaki, N. D. Khanh and R. Yoshimi for enlightening discussions and experimental help. This work was partly supported by Grants-In-Aid for Scientific Research (grant nos 18H03685, 19H05825, 20H00349, 20K21067, 21H04440, 21H04990, 21K13876, 21K18595, 21H04437, 22H04965, 24H02235 and 24K00579) from Japan Society for the Promotion of Science (JSPS); PRESTO (grant nos JPMJPR18L5, JPMJPR20B4, JPMJPR20L7 and JPMJPR23Q3); and CREST (grant no JPMJCR23O4) from Japan Science and Technology Agency (JST). S.S. acknowledges support from the Katsu Research Encouragement Award and UTEC-UTokyo FSI Research Grant Program of the University of Tokyo, Asahi Glass Foundation. S.S. and R.T. acknowledge support from the Murata Science Foundation. S.A. acknowledges support from Hibah PUTI Q1 2024 (grant no. NKB-439/UN2.RST/HKP.05.00/2024) by Universitas Indonesia. This work is based on experiments performed at the Japan Research Reactor 3 and Materials and Life Science Experimental Facility in the Japan Proton Accelerator Research Complex (proposal nos 23520 and 2023S01). The crystal and magnetic structures are illustrated by VESTA software45.

Author information

Authors and Affiliations

Authors

Contributions

S.S. and R.T. planned the project. R.T., R.H., Y.S. and H.T. prepared the samples and performed the magnetization and electrical transport measurements. T. Nomoto, R.O. and R.A. performed the theoretical calculations. J.-i.Y. performed the X-ray scattering experiments. A.K., K.Y., H.I., S.A., H.S., S.I. and T. Nakajima performed the neutron scattering experiments. D.N.-H. performed the scanning electron microscopy with energy dispersive X-ray spectroscopy experiments. S.S. wrote the manuscript with the support by R.T. and T. Nomoto. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Rina Takagi or Shinichiro Seki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Yong Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Notes 1–12.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takagi, R., Hirakida, R., Settai, Y. et al. Spontaneous Hall effect induced by collinear antiferromagnetic order at room temperature. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-02058-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-02058-w

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing