
GPU architecture part 2:
SIMT control flow management

Caroline Collange
Inria Rennes – Bretagne Atlantique

caroline.collange@inria.fr
https://team.inria.fr/pacap/members/collange/

Master 2 SIF
ADA - 2019

https://team.inria.fr/pacap/members/collange/

2

Outline

Running SPMD software on SIMD hardware

Context: software and hardware

The control flow divergence problem

Stack-based control flow tracking

Stacks

Counters

Path-based control flow tracking

The idea: use PCs

Implementation: path list

Applications

Software approaches

Use cases and principle

Scalarization

Research directions

 3

Analogy: Out-of-order microarchitecture

Software

Hardware

Architecture: sequential programming model

void scale(float a, float * X, int n)
{

for(int i = 0; i != n; ++i)
X[i] = a * X[i];

}

scale:
test esi, esi
je .L4
sub esi, 1
xor eax, eax
lea rdx, [4+rsi*4]

.L3:
movss xmm1, DWORD PTR [rdi+rax]
mulss xmm1, xmm0
movss DWORD PTR [rdi+rax], xmm1
add rax, 4
cmp rax, rdx
jne .L3

.L4:
rep
ret

 4

Analogy: Out-of-order microarchitecture

Software

Hardware

Architecture: sequential programming model

Hardware datapaths: dataflow execution model

void scale(float a, float * X, int n)
{

for(int i = 0; i != n; ++i)
X[i] = a * X[i];

}

scale:
test esi, esi
je .L4
sub esi, 1
xor eax, eax
lea rdx, [4+rsi*4]

.L3:
movss xmm1, DWORD PTR [rdi+rax]
mulss xmm1, xmm0
movss DWORD PTR [rdi+rax], xmm1
add rax, 4
cmp rax, rdx
jne .L3

.L4:
rep
ret

 5

Analogy: Out-of-order microarchitecture

Software

Hardware

Architecture: sequential programming model

Hardware datapaths: dataflow execution model

void scale(float a, float * X, int n)
{

for(int i = 0; i != n; ++i)
X[i] = a * X[i];

}

scale:
test esi, esi
je .L4
sub esi, 1
xor eax, eax
lea rdx, [4+rsi*4]

.L3:
movss xmm1, DWORD PTR [rdi+rax]
mulss xmm1, xmm0
movss DWORD PTR [rdi+rax], xmm1
add rax, 4
cmp rax, rdx
jne .L3

.L4:
rep
ret

Dark magic!

 6

Analogy: Out-of-order microarchitecture

Software

Hardware

Architecture: sequential programming model

Out-of-order superscalar
microarchitecture

Hardware datapaths: dataflow execution model

void scale(float a, float * X, int n)
{

for(int i = 0; i != n; ++i)
X[i] = a * X[i];

}

scale:
test esi, esi
je .L4
sub esi, 1
xor eax, eax
lea rdx, [4+rsi*4]

.L3:
movss xmm1, DWORD PTR [rdi+rax]
mulss xmm1, xmm0
movss DWORD PTR [rdi+rax], xmm1
add rax, 4
cmp rax, rdx
jne .L3

.L4:
rep
ret

Dark magic!

 7

Dark magic!

GPU microarchitecture: where it fits

Software

Hardware

Architecture: multi-thread programming model

SIMT microarchitecture

Hardware datapaths: SIMD execution units

__global__ void scale(float a, float * X)
{

unsigned int tid;
tid = blockIdx.x * blockDim.x
 + threadIdx.x;
X[tid] = a * X[tid];

}

 8

Programmer's view

Programming model

SPMD: Single program, multiple data

One kernel code, many threads

Unspecified execution order between explicit
synchronization barriers

Languages

Graphics shaders : HLSL, Cg, GLSL

GPGPU : C for CUDA, OpenCL

Threads

For n threads:
X[tid] a * X[tid]←

Kernel

Barrier

9

Types of control flow

Structured control flow:
single-entry, single exit
properly nested

Conditionals: if-then-else

Single-entry, single-exit loops: while, do-while, for…

Function call-return…

Unstructured control flow
break, continue

&& || short-circuit evaluation

Exceptions

Coroutines

goto, comefrom

Code that is hard to indent!

10

Warps

Threads are grouped into
warps of fixed size

T0 T1 T2 T3

Warp 0

T4 T5 T6 T7

Warp 1

A
n

 e
ar

ly
 S

IM
T

 a
rc

h
it

ec
tu

re
.

M
us

ée
 G

al
lo

-
R

om
ai

n
de

 S
t -R

om
ai

n-
en

-G
al

,
V

ie
nn

e

 11

Control flow: uniform or divergent

Control is uniform
when all threads in the warp
follow the same path

Control is divergent
when different threads follow
different paths

x = 0;

if(a[x] > 17) {

x = 1;

}

if(tid < 2) {

x = 2;

}

// Uniform condition

// Divergent condition

T0 T1 T2 T3

Warp

1 1 1 1

Outcome per thread:

1 1 0 0

12

Computer architect view

SIMD execution inside a warp

One SIMD lane per thread

All SIMD lanes see the same
instruction

Control-flow differentiation using
execution mask

All instructions controlled with 1 bit
per lane
1→perform instruction
0→do nothing

 16

Running independent threads in SIMD

How to keep threads synchronized?

Challenge: divergent control flow

Rules of the game

One thread per SIMD lane

Same instruction on all lanes

Lanes can be individually disabled
with execution mask

Which instruction?

How to compute execution mask?

Lane 1 Lane 21 instruction Lane 0 Lane 3

Thread 0 Thread 1 Thread 2 Thread 3

x = 0;

if(tid > 17) {

x = 1;

}

if(tid < 2) {

if(tid == 0) {

x = 2;

}

else {

x = 3;

}

}

// Uniform condition

// Divergent conditions

 17

Example: if

x = 0;

if(a[x] > 17) {

x = 1;

}

if(tid < 2) {

x = 2;

}

// Uniform condition

// Divergent condition

T0 T1 T2 T3

Warp

1 1 1 1

1 1 0 0

a[x] > 17?

tid < 2?

1 1 1 1

1 1 0 0

Execution mask inside if statement = if condition

Execution mask:

Execution mask:

if condition:

if condition:

 18

State of the art in 1804

The Jacquard loom is a GPU

Multiple warp threads with per-thread conditional execution

Execution mask given by punched cards

Supports 600 to 800 parallel threads

Shaders
Framebuffer

 19

Conditionals that no thread executes

Do not waste energy fetching instructions not executed

Skip instructions when execution mask is all-zeroes

x = 0;

if(a[x] > 17) {

x = 1;

}

else {

x = 0;

}

if(tid < 2) {

x = 2;

}

// Uniform condition

// Divergent condition

T0 T1 T2 T3

Warp

1 1 1 1

1 1 0 0

a[x] > 17?

tid < 2?

1 1 1 1

1 1 0 0

Execution mask:

Execution mask:

if condition:

if condition:

0 0 0 0Execution mask:

Jump to end-if

Uniform branches are just usual scalar branches

20

What about loops?

Keep looping until all threads exit

Mask out threads that have exited the loop

i = 0;
while(i < tid) {

i++;
}
print(i);

T0 T1 T2 T3

Warp

0 1 1 1

i =?

i < tid?

0 0 1 1i < tid?

0 0 0 1i < tid?

0 0 0 0i < tid?

No active thread left → restore mask and exit loop

0 0 0 0

i =? 0 1 1 1i++;

i = 0;

Execution trace:

T
im

e

i =? 0 1 2 2i++;

i =? 0 1 2 3i++;

i =? 0 1 2 3print(i);

21

What about nested control flow?

We need a generic solution!

x = 0;

if(tid > 17) {

x = 1;

}

if(tid < 2) {

if(tid == 0) {

x = 2;

}

else {

x = 3;

}

}

// Uniform condition

// Divergent conditions

22

Outline

Running SPMD software on SIMD hardware

Context: software and hardware

The control flow divergence problem

Stack-based control flow tracking

Stacks

Counters

Path-based control flow tracking

The idea: use PCs

Implementation: path list

Applications

Software approaches

Use cases and principle

Scalarization

Research directions

23

Quizz

What do Star Wars and GPUs have in common?

24

Answer: Pixar!

In the early 1980's, the Computer Division of Lucasfilm was
designing custom hardware for computer graphics

Acquired by Steve Jobs in 1986 and became Pixar

Their core product: the Pixar Image Computer

This early GPU handles nested divergent control flow!

25

Pixar Image Computer: architecture overview

ALU 0 ALU 1 ALU 2 ALU 3

Control unit

Mask stack

push/
pop

Instruction

Execution
mask

 26

The mask stack of the Pixar Image Computer

x = 0;

if(tid > 17) {

x = 1;

}

if(tid < 2) {

if(tid == 0) {

x = 2;

}

else {

x = 3;

}

}

Code

push

push

pop

push

pop

pop

1111

1111 1100

1111 1100 1000

1111 1100

1111 1100 0100

1111 1100

1111

Mask Stack
1 activity bit / thread

tid=0

tid=1

tid=2

tid=3

1111

skip

// Uniform condition

// Divergent conditions

A. Levinthal and T. Porter. Chap - a SIMD graphics processor. SIGGRAPH’84, 1984.

 27

Observation: stack content is a histogram

On structured control flow: columns of 1s

A thread active at level n is active at all levels i<n

Conversely: no “zombie” thread gets revived at level i>n if inactive at n

1111
1100

1111
1100
1000

1111
1100

1111
1100
0100

1111
1100

1111

 28

Observation: stack content is a histogram

On structured control flow: columns of 1s

A thread active at level n is active at all levels i<n

Conversely: no “zombie” thread gets revived at level i>n if inactive at n

The height of each column of 1s is enough

Alternative implementation: maintain an activity counter for each thread

1111
1100

1111
1100
1000

1111
1100

1111
1100
0100

1111
1100

1111

R. Keryell and N. Paris. Activity counter : New optimization for the dynamic scheduling of
SIMD control flow. ICPP ’93, 1993.

 29

With activity counters

x = 0;

if(tid > 17) {

x = 1;

}

if(tid < 2) {

if(tid == 0) {

x = 2;

}

else {

x = 3;

}

}

Code

inc

inc

dec

inc

dec

dec

0 0 0 0

Counters
1 (in)activity counter / thread

tid=0

tid=1

tid=2

tid=3

skip

// Uniform condition

// Divergent conditions

0 0 1 1

0 1 2 2

0 0 1 1

1 0 2 2

0 0 1 1

0 0 0 0

 30

In an SIMD prototype from École des Mines de Paris in 1993

Activity counters in use

C
redits: R

onan K
eryell

In Intel integrated graphics since 2004

31

Outline

Running SPMD software on SIMD hardware

Context: software and hardware

The control flow divergence problem

Stack-based control flow tracking

Stacks, counters

A compiler perspective

Path-based control flow tracking

The idea: use PCs

Implementation: path list

Applications

Software approaches

Use cases and principle

Scalarization

Research directions

 32

Back to ancient history

20092004 20072002

7.x 8.0 9.08.1 9.0ca 9.0b 10.0 10.1 11

2000 2001 2003 2005 2006 2008

Microsoft DirectX

NVIDIA

NV10 NV20 NV30 NV40 G70 G80-G90 GT200

ATI/AMD

R100 R200 R300 R400 R500 R600 R700

Programmable
shaders

FP 16 FP 32

FP 24 FP 64

SIMT

CTM CAL

CUDA

GPGPU traction

Dynamic
control flow

2010

GF100

Evergreen

Unified shaders

33

Early days of programmable shaders

It is 21st century!

Graphics cards now look and sound like hair dryers

Graphics shaders are programmed in assembly-like language

Direct3D shader assembly, OpenGL ARB Vertex/Fragment Program...

Control-flow: if, else, endif, while, break… are assembly instructions

Graphics driver performs a straightforward translation
to GPU-specific machine language

The infamous GeForce FX 5800 Ultra

 34

Goto considered harmful?

j
jal
jr
syscall

MIPS

jmpi
if
iff
else
endif
do
while
break
cont
halt
msave
mrest
push
pop

Intel GMA
Gen4
(2006)

jmpi
if
else
endif
case
while
break
cont
halt
call
return
fork

Intel GMA
SB
(2011)

push
push_else
pop
push_wqm
pop_wqm
else_wqm
jump_any
reactivate
reactivate_wqm
loop_start
loop_start_no_al
loop_start_dx10
loop_end
loop_continue
loop_break
jump
else
call
call_fs
return
return_fs
alu
alu_push_before
alu_pop_after
alu_pop2_after
alu_continue
alu_break
alu_else_after

AMD Cayman
(2011)

push
push_else
pop
loop_start
loop_start_no_al
loop_start_dx10
loop_end
loop_continue
loop_break
jump
else
call
call_fs
return
return_fs
alu
alu_push_before
alu_pop_after
alu_pop2_after
alu_continue
alu_break
alu_else_after

AMD
R600
(2007)

jump
loop
endloop
rep
endrep
breakloop
breakrep
continue

AMD
R500
(2005)

bar
bra
brk
brkpt
cal
cont
kil
pbk
pret
ret
ssy
trap
.s

NVIDIA
Tesla
(2007)

bar
bpt
bra
brk
brx
cal
cont
exit
jcal
jmx
kil
pbk
pret
ret
ssy
.s

NVIDIA
Fermi
(2010)

Control instructions in some CPU
and GPU instruction sets

GPUs: instruction set expresses control flow structure

Where should we stop?

 35

Next: compilers for GPU code

High-level shader languages

C-like: HLSL, GLSL, Cg

Then visual languages (UDK)

General-purpose languages

CUDA, OpenCL

Then directive-based:
OpenACC, OpenMP 4

Python (Numba)…

Incorporate function calls, switch-case, && and ||…

Demands a compiler infrastructure

A Just-In-Time compiler in graphics drivers

 36

A typical GPU compiler

First: turns all structured control flow into gotos,
generates intermediate representation (IR)

e.g. Nvidia PTX, Khronos SPIR, llvm IR

Then: performs various compiler optimizations on IR

Finally: reconstructs structured control flow
back from gotos to emit machine code

Not necessarily the same as the original source!

 37

Issues of stack-based implementations

If GPU threads are actual threads, they can synchronize?

e.g. using semaphores, mutexes, condition variables…

Problem: SIMT-induced livelock

Stack-based SIMT divergence control can cause starvation!

while(!acquire(lock)) {}
…
release(lock)

Example: critical section
Thread 0 acquires the lock,
keeps looping with other threads of the warp waiting for the lock.
Infinite loop, lock never released.

 38

Issues of stack-based implementations

Are all control flow optimizations valid in SIMT?

What about context switches?

e.g. migrate one single thread of a warp

Challenging to do with a stack

Truly general-purpose computing demands more flexible
techniques

f(); if(c)
 f();
else
 f();

Valid?

39

Outline

Running SPMD software on SIMD hardware

Context: software and hardware

The control flow divergence problem

Stack-based control flow tracking

Stacks, counters

A compiler perspective

Path-based control flow tracking

The idea: use PCs

Implementation: path list

Applications

Software approaches

Use cases and principle

Scalarization

Research directions

 40

With 1 PC / thread

Master PC

Code Program Counters (PCs)
tid= 0 1 2 3x = 0;

if(tid > 17) {

x = 1;

}

if(tid < 2) {

if(tid == 0) {

x = 2;

}

else {

x = 3;

}

}

1 0 0 0

PC
0

PC
1

PC
2

PC
3

Match
→ active

No match
→ inactive

 41

Mask stacks vs. per-thread PCs

Before: stack, counters

O(n), O(log n) memory
n = nesting depth

1 R/W port to memory

Exceptions: stack overflow,
underflow

Vector semantics

Structured control flow only

Specific instruction sets

After: multiple PCs

O(1) memory

No shared state

Allows thread suspension, restart,
migration

Multi-thread semantics

Traditional languages, compilers

Traditional instruction sets

Can be mixed with MIMD

Straightforward
implementation is more
expensive

 42

Path-based control flow tracking

A path is characterized by a PC and execution mask

The mask encodes the set of threads that have this PC

17 0 1 0 1 1 0 0 1

PC Execution mask

T
0
T

1
T

7…

{ T
1
, T

3
, T

4
, T

7
} have PC 17

 43

A list of paths represents a vector of PCs

Worst case: 1 path per thread

Path list size is bounded

PC vector and path list are equivalent

You can switch freely between MIMD thinking and SIMD thinking!

17

PC
0

12 17 3 17 17 3 3 17

0 1 0 1 1 0 0 1

3 0 0 1 0 0 1 1 0

12 1 0 0 0 0 0 0 0PC
1

CPC
1

CPC
2

CPC
3Per-thread PCs

List of paths

PC
7

PC
2

PC
3
PC

4
PC

5
PC

6

T
0
T

1
T

7

 44

Pipeline overview

Select an active path

17 0 1 0 1 1 0 0 1

3 0 0 1 0 0 1 1 0

12 1 0 0 0 0 0 0 0

List of paths

T
0
T

1
T

7
Active

 45

Pipeline overview

Select an active path

Fetch instruction
at PC of active path

17 0 1 0 1 1 0 0 1

3 0 0 1 0 0 1 1 0

12 1 0 0 0 0 0 0 0

List of paths

T
0
T

1
T

7

IFetch

PC

Active

 46

Pipeline overview

Select an active path

Fetch instruction
at PC of active path

Execute with execution mask
of active path

17 0 1 0 1 1 0 0 1

3 0 0 1 0 0 1 1 0

12 1 0 0 0 0 0 0 0

List of paths

T
0
T

1
T

7

IFetch

Execute

PC

Execution mask

Active

 47

Pipeline overview

Select an active path

Fetch instruction
at PC of active path

Execute with execution mask
of active path

For uniform instruction:
update PC of active path

17 0 1 0 1 1 0 0 1

3 4 0 0 1 0 0 1 1 0

12 1 0 0 0 0 0 0 0

List of paths

T
0
T

1
T

7

IFetch

Execute

Commit

PC

Execution mask

Active

 48

Divergent branch is path insertion

A divergent branch splits the active
path into two paths (or more)

Insert the paths in path list
17 0 1 0 1 1 0 0 1

3 0 0 1 0 0 1 1 0

12 1 0 0 0 0 0 0 0

List of paths

T
0
T

1
T

7

IFetch

Execute
branch

PC

Execution mask

3: brc 17

0 0 1 0 0 1 1 0

0 0 0 0 0 1 0 0
Branch taken pathBranch not-taken path

0 0 1 0 0 0 1 04
PC mask

17
PC mask

split

17 0 1 0 1 1 0 0 1

4 0 0 1 0 0 0 1 0

12 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 017

New
path
table

 49

Convergence is path fusion

When two paths have the same PC, we can merge them

New set of threads is the union of former sets

New execution mask is bitwise OR of former masks

17 0 1 0 1 1 0 0 1

4 0 0 1 0 0 0 1 0

12 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 017
17 0 1 0 1 1 0 11 17 0 1 0 1 1 1 0 1

4 0 0 1 0 0 0 1 0

12 1 0 0 0 0 0 0 0

 50

Path scheduling is graph traversal

Degrees of freedom

Which path is the active path?

At which place are new paths inserted?

When and where do we check for
convergence?

Different answers yield different policies

17 0 1 0 1 1 0 0 1

4 0 0 1 0 0 0 1 0

12 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 017

Active

Insert

Compare

 51

Depth-first graph traversal

Remember graph algorithm theory

Depth-first graph traversal
using a stack worklist

Path list as a stack
= depth-first traversal of the
control-flow graph

Most deeply nested levels first

Question: is this the same as Pixar-style mask stack? Why?

x = 0;

if(tid > 17) {

x = 1;

}

if(tid < 2) {

if(tid == 0) {

x = 2;

}

else {

x = 3;

}

}

// Uniform condition

// Divergent conditions

17 0 1 0 1 1 1 0 1

4 0 0 1 0 0 0 1 0

12 1 0 0 0 0 0 0 0

Outer level

Inner level

Push-Pop

 52

Breadth-first graph traversal

Goal: guarantee forward progress to avoid SIMT-induced livelocks

Path list as a queue: follow paths in round-robin

Drawback: may delay convergence

 while(!acquire(lock)) {
1:
 }
2:…
 release(lock)
3:

1 0 1 1

2 1 0 0 0 0 0 0 0

1 1 1 1 1 Threads waiting for lock

Thread that has the lock

1 0 1 1

2 1 0 0 0 0 0 0 0

1 1 1 1 1 1 0 1 1

3 1 0 0 0 0 0 0 0

1 1 1 1

00 0 0 01 0 02

0 Waiting for lock

Has the lock

Released the lock

A. ElTantawy and T. Aamodt. MIMD Synchronization on SIMT Architectures. Micro 2016

 55

Limitations of static scheduling orders

Stack works well for structured control flow

Convergence happens in reverse order of divergence

But not so much for unstructured control flow

Divergence and convergence order do not match

 56

Priority-based graph traversal

Sort the path list based on its contents

Ordering paths by priority enables a scheduling policy

17 0 1 0 1 1 0 0 1

3 0 0 1 0 0 1 1 0

12 1 0 0 0 0 0 0 0

17 0 1 0 1 1 0 0 1

3 0 0 1 0 0 1 1 0

12 1 0 0 0 0 0 0 0

 57

Scheduling policy: min(SP:PC)
Which PC to choose as master PC ?

Conditionals, loops

Order of code addresses

min(PC)

Functions

Favor max nesting depth

min(SP)

if(…)
{
}
else
{
}

…
p? br else
…
br endif
else:
…
endif:

Source Assembly Order

1

2

3

while(…)
{
} 1 2 3

start:
…
p? br start
…

4

…
f();

void f()
{
 …
}

…
call f
…
f:
…
ret

2

3

1

With compiler support

Unstructured control flow too

No code duplication

Full backward and forward compatibility

 58

Convergence with min(PC)-based policies

Sorting by PC groups paths of equal PC together

Priority order: active path is top entry

Convergence detection:
only needed between top entry and following entries

No need for associative lookup

17 0 1 0 1 1 0 0 1

4 0 0 1 0 0 0 1 0

12 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 017

 59

Example: Nvidia Volta (2017)

Supports independent thread
scheduling inside a warp

Threads can synchronize with each
other inside a warp

Diverged threads can run barriers
(as long as all threads eventually
reach a barrier)

 60

Advertisement: Simty, a SIMT CPU

Proof of concept for priority-based SIMT

Written in synthesizable VHDL

Runs the RISC-V instruction set (RV32I)

Fully parametrizable warp size, warp count

10-stage pipeline

https://team.inria.fr/pacap/simty/

61

Outline

Running SPMD software on SIMD hardware

Context: software and hardware

The control flow divergence problem

Stack-based control flow tracking

Stacks, counters

A compiler perspective

Path-based control flow tracking

The idea: use PCs

Implementation: path list

Applications

Software approaches

Use cases and principle

Scalarization

Research directions

 63

SIMT vs. multi-core + explicit SIMD

SIMT

All parallelism expressed using
threads

Warp size implementation-
defined

Dynamic vectorization

Multi-core + explicit SIMD

Combination of threads, vectors

Vector length fixed at compile-
time

Static vectorization

Are these models equivalent?

Warp

Threads

Vector

Threads

Example: Nvidia GPUs Example: most CPUs, Intel Xeon Phi,
AMD GCN GPUs

 64

Bridging the gap between SPMD and SIMD

Software: OpenMP, graphics shaders, OpenCL, CUDA...

Hardware:
SIMD CPU, GPU, Xeon Phi...

kernel void scale(float a, float * X) {
X[tid] = a * X[tid];

}

1 kernel Many threads

RF
ALU

RF
ALU

RF
ALU

RF
ALU

Hardware

Software

 65

SPMD to SIMD: hardware or software ?

Software: OpenMP, OpenCL, CUDA, Gfx shaders, Renderscript...

Hardware:
SIMD CPU, GPU, Xeon Phi...

SIMT microarchitecture

kernel void scale(float a, float * X) {
X[tid] = a * X[tid];

}

1 kernel Many threads

RF
ALU

RF
ALU

RF
ALU

RF
ALU

SIMD Compiler
NVIDIA Intel, AMD

Hardware

Software

→Which is best? : open question
→Combine both approaches?

Scalar ISA

Vector ISA

Threads

Vectors

 66

Tracking control flow in software

Use cases

Compiling shaders and OpenCL for AMD GCN GPUs

Compiling OpenCL for Xeon Phi

ispc: Intel SPMD Program Compiler, targets various SIMD instruction sets

Compiler generates code to compute execution masks and
branch directions

Same techniques as hardware-based SIMT

But different set of possible optimization

 67

Compiling SPMD to predicated SIMD

x = 0;

if(tid > 17) {

x = 1;

}

if(tid < 2) {

if(tid == 0) {

x = 2;

}

else {

x = 3;

}

}

// Uniform condition

// Divergent conditions

 68

Compiling SPMD to predicated SIMD

x = 0;

if(tid > 17) {

x = 1;

}

if(tid < 2) {

if(tid == 0) {

x = 2;

}

else {

x = 3;

}

}

// Uniform condition

// Divergent conditions

(m0) mov x 0← // m0 is current mask
(m0) cmp c tid>17← // vector comparison
 and m1 m0&c ← // compute if mask
 jcc(m1=0) endif1 // skip if null
(m1) mov x 1←
endif1:
(m0) cmp c tid<2←
 and m2 m0&c←
 jcc(m2=0) endif2
(m2) cmp c tid==0←
 and m3 m2&c←
 jcc(m3=0) else
(m3) mov x 2←
else:
 and m4 m2&~c←
 jcc(m4=0) endif2
(m4) mov x 3←
endif2:

 69

Benefits and shortcomings of s/w SIMT

Benefits

No stack structure to maintain

Use mask registers directly

Register allocation takes care of
reuse and spills to memory

Compiler knowing precise
execution order enables more
optimizations

Turn masking into “zeroing”:
critical for out-of-order
architectures

Scalarization: demoting uniform
vectors into scalars

Shortcomings

Every branch is divergent
unless proven otherwise

Need to allocate mask register
either way

Restricts freedom of
microarchitecture
for runtime optimization

 70

Scalars in SPMD code

Some values and operations
are inherently scalar

Loop counters, addresses of
consecutive accesses…

Same value values for all
threads of a warp
Uniform vector

Or sequence of evenly-spaced
values
Affine vector

mov i tid←
loop:

load t X[i]←
mul t a×t←
store X[i] t←
add i i+tnum←
branch i<n? loop

SPMD code

t
1717171717 17
0 1 2 3 4 15
5151515151 51

a
i
n

mul
store
add
branch

load

Thread
0 10 2 3 …

 71

Uniform and affine vectors

Uniform vector

In a warp, v[i] = c

Value does not depend on lane ID
5 5 5 5 5 5 5 5

8 9 101112131415

warp
(granularity)

thread

3 3 3 3 3 3 3 3

Affine vector

In a warp, v[i] = b + i s

Base b, stride s

Affine relation between value and lane ID

Generic vector : anything else

0 2 4 6 8 101214

b=8

s=1

b=0

s=2

c=5 c=3

2 8 0 -4 4 4 5 8 2 3 7 1 0 3 3 4

 72

Shocking truth: most vectors are scalars in disguise

In GPGPU kernels, most integer arithmetic is affine (or uniform)

i.e. not floating point, not graphics shaders

 73

What is inside a GPU register file?

50% - 92% of GPU RF contains affine variables

More than register reads: non-affine variables are short-lived

Very high potential for register pressure reduction in GPGPU apps

MatrixMul: 3 non-affine / 14 Needleman-Wunsch:
2 non-affine / 24

Non-affine registers alive in inner loop:

Convolution: 4 non-affine in
hotspot / 14

 74

Scalarization

Explicit SIMD architectures have scalar units

Intel Xeon Phi: has good old x86

AMD GCN GPUs: have scalar units and registers

Scalarization optimization
demotes uniform and affine vectors into scalars

Vector instructions → scalar instructions

Vector registers → scalar registers

SIMT branches → uniform (scalar) branches

Gather-scatter load-store → vector load-store or broadcast

Divergence analysis guides scalarization

Compiler magic not explained here

 75

After scalarization

Obvious benefits

Scalar registers instead of vector

Scalar instructions instead of vector

Less obvious benefits

Contiguous vector load, store

Scalar branches, no masking

Affine vector → single scalar:
stride has been constant-
propagated!

No dependency between
scalar and vector code except
through loads and stores:
enables decoupling

Instructions

mov i 0←
loop:

vload T X[i]←
vmul T a×T←
vstore X[i] T←
add i i+16←
branch i<n? loop

T
17a
0i

vectorscalar
51n

vload
vmul
vstore
add
branch SIMDscalar

SIMD+scalar code

 77

Scalarization across function calls

Which parameters are uniform – affine?

Depends on call site

Not visible to compiler before link-time,
or requires interprocedural optimization (expensive)

Different call sites may have different set of uniform/affine parameters

kernel void scale(float a, float * X)
{

// Called for each thread tid
X[tid] = mul(a, X[tid]);

}

float mul(float u, float v)
{

return u * v;
}

kernel void scale2(float a, float * X)
{

// Called for each thread tid
mul_ptr(&a, &X[tid]);

}

void mul_ptr(float* u, float *v)
{

*v = (*u) * (*v);
}

 78

Typing-based approach

Used in Intel Cilk+

Programmer qualifies parameters explicitly

Different variations are C++ function overloads

By default, everything is a generic vector

No automatic solution!

__declspec (vector uniform(u)) float mul(float u, float v)
{

return u * v;
}

__declspec (vector uniform(u) linear(v)) void mul_ptr(float* u, float *v)
{

*v = (*u) * (*v);
}

 79

Scalarization with hardware-based SIMT?

Your thoughts?

80

Outline

Running SPMD software on SIMD hardware

Context: software and hardware

The control flow divergence problem

Stack-based control flow tracking

Stacks, counters

A compiler perspective

Path-based control flow tracking

The idea: use PCs

Implementation: path list

Applications

Software approaches

Use cases and principle

Scalarization

Research directions

 81

Challenge: out of order SIMT

Has long considered unfeasible for low-power cores

Empirical evidence show that it is feasible

Most low-power ARM application processors are out-of-order
ARM Cortex A9, A12, A15, A57, Qualcomm Krait
<5W power envelope

Next Intel Xeon Phi (Knights Landing) is OoO
70+ OoO cores with 512-bit SIMD units on a chip

Overhead of OoO amortized by wide SIMD units

Cost of control does not depend on vector length

Need to adapt OoO to SIMT execution

Main challenges: branch prediction and register renaming

 82

Challenge: improved static vectorization?

Software equivalent to path traversal is still unknown

Can we use compiler techniques to achieve SIMT flexibility
on existing explicit SIMD architectures?

e.g. Merge scalar threads into a SIMD thread at barriers,
split SIMD thread into scalar threads when control flow may diverge

Then add scalarization to the mix

Merge

Split

Scalar
threads

SIMD
thread

SIMD+
scalar
threads

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

