CS 4400 Exam 2

Practice

ANSWER KEY

Completely fill in the box corresponding to your answer choice for each question.

1.	[A]	[B]	[C]	
2.		[B]	[C]	[D]
3.	[A]	[B]	[C]	
4.	[A]	[B]	[C]	
5.	[A]	[B]	[C]	
6.	[A]		[C]	[D]
7.		[B]	[C]	[D]
8.	[A]		[C]	[D]
9.	[A]		[C]	[D]
10.		[B]	[C]	[D]
11.	[A]		[C]	[D]
12.	[A]		[C]	[D]
13.	[A]		[C]	[D]
14.		[B]	[C]	[D]
15.	[A]	[B]	[C]	
16.	[A]		[C]	[D]
17.		[B]	[C]	[D]
18.	[A]		[C]	[D]
19.	[A]		[C]	[D]
20.		[B]	[C]	[D]
21.	[A]	[B]		[D]
22.	[A]		[C]	[D]
23.	[A]		[C]	[D]
24.	[A]		[C]	[D]
25.	[A]	[B]		[D]

Number missed: _____ Final Score: ____

Pubs Database Schema

 $author(\underline{author_id}, first_name, last_name)$

 $author_pub(\underline{author_id},pub_id,author_position)$

 $book(\underline{book_id}, book_title, month, year, editor)$

 $pub(pub_id, title, book_id)$

- author_id in author_pub is a foreign key referencing author
- $\bullet \ pub_id$ in $author_pub$ is a foreign key referencing pub
- $\bullet \ book_id$ in pub is a foreign key referencing book
- ullet editor in book is a foreign key referencing $author(author_id)$
- Primary keys are underlined

Pubs Database State

r(author)

author_id	$first_name$	$last_name$
1	John	McCarthy
2	Dennis	Ritchie
3	Ken	Thompson
4	Claude	Shannon
5	Alan	Turing
6	Alonzo	Church
7	Perry	White
8	Moshe	Vardi
9	Roy	Batty

 $r(author_pub)$

author_id	pub_id	author_position
1	1	1
2	2	1
3	2	2
4	3	1
5	4	1
5	5	1
6	6	1

r(book) r(pub)

book_id	book_title	month	year	editor	pub_id	title	book_id
1	CACM	April	1960	8	1	LISP	1
2	CACM	July	1974	8	2	Unix	2
3	BST	July	1948	2	3	Info Theory	3
4	LMS	November	1936	7	4	Turing Machines	4
5	Mind	October	1950	NULL	5	Turing Test	5
6	AMS	Month	1941	NULL	6	Lambda Calculus	6
7	AAAI	July	2012	9			
8	NIPS	July	2012	9			

Figure 1: Relational Database Schema

Name:	_ GTAccount:	Section:
	_	

Scratch page

	Name:	GTAccount:	Section:
[4]	A. A domain for an attriB. Several attributes in c	nts is true with regard to the relational data not but is a set of atomic values. One relation schema may have the same domai consists of one value from each attribute domains.	n.
[4]	2. Which of the following is the matrix A . $r(R) \subseteq dom(A_1) \times dom(A_1) \cap d$	$n(A_2) \cap \cap dom(A_n)$	egree n ?
[4]	3. Which of the following are propA. Attribute values in tuB. Facts not asserted expC. Relations are sets.D. All of the above.		
[4]	C. Every minimal superk	e. is always a minimal superkey.	
[4]	5. In a relation schema with 3 att there? A. 1 B. 3 C. 6 D. 7	ributes, each of which is a candidate key, how	w many superkeys ar
[4]	 6. In a relation schema with 3 attr for the primary key? A. 1 B. 3 C. 6 D. 7 	ibutes, each of which is a candidate key, how r	many choices are there
[4]	7. May a tuple in a relation have aA. YesB. No	NULL value for a foreign key attribute?	
[4]	8. May a tuple in a relation have a A. Yes B. No	a NULL value for a primary key attribute?	
[4]	 9. Which kind of constraint canno A. referential integrity co B. semantic constraint C. entity integrity constr 	s, a.k.a., business rules	
[4]	10. Meow!		

		Name:	GTAccount:	Section:
		Refer to	database schema in Figure 1 for the remaining questions.	
[4]] 11.	What is	the degree of the <i>author</i> relation?	
			. 2	
			. 3	
ГиТ	1 40		. 9	
[4]] 12.		hor_pub relation has how many superkeys? . 1	
			. 1 . 2	
			. 3	
[4]] 13.		tuple <6, 'Teen', 'Candles'> be inserted into the author relation without violation?	causing an
		A	. Yes	
		\mathbf{B}	. No	
[4]] 14.		tuple <10, NULL, 'Pointers'> be inserted into the $author$ relation without violation?	causing an
			. Yes	
		В	. No	
[4]] 15.		etion of the second tuple in the <i>author</i> relation (<2, 'Dennis', 'Ritchie'> violation for which relations?) causes an
			. author_pub	
			. book	
			pub . A and B above.	
[4]] 16.	If cascad	ling deletes is in effect for all relations and the tuple <2, 'Dennis', 'Ritchie': ny other tuples will be deleted from the database?	is deleted,
		A	. 0	
		\mathbf{B}	. 2	
		С	. 3	
[4]] 17.	How ma	ny tuples will be returned by the following relational algebra query?	
			$\pi_{book_title}(book)$	
			. 7	
			. 5	
			. 2	
		D	. 1	

		Name:	GTAccount: Section:
[4]	18.	What qu	estion does the following expression answer?
			$ \pi_{author_id}(author) - \pi_{editor}(book) $
		A.	How many authors are book editors.
		В.	How many authors are not book editors.
		С.	What are the names of the authors who are book editors.
		D.	What are the names of the authors who are not book editors.
[4]	19.	Which or editors?	f the following relational algebra expressions returns the names of all authors who are book
		A.	$\pi_{first_name,last_name}((\pi_{author_id}(author) - \pi_{editor}(book)) * author)$
		В.	$\pi_{first_name,last_name}(author \bowtie_{author_id=editor} book)$
		С.	$\pi_{first_name,last_name}(author*author_pub)$
[4]	20.	Which o book edi	f the following relational algebra expressions returns the names of all authors who are not tors?
		Α.	$\pi_{first_name,last_name}((\pi_{author_id}(author) - \pi_{editor}(book)) * author)$
		В.	$\pi_{first_name,last_name}(author \bowtie_{author_id=editor} book)$
		С.	$\pi_{first_name,last_name}(author*author_pub)$
[4]	21.		f the following relational algebra expressions returns the names of all authors who have at a publication in the database?
		A.	$\pi_{first_name,last_name}((\pi_{author_id}(author) - \pi_{editor}(book)) * author)$
		В.	$\pi_{first_name,last_name}(author \bowtie_{author_id=editor} book)$
		$\mathbf{C}.$	$\pi_{first_name,last_name}(author*author_pub)$
[4]	22.	Which or or after 2	f the following relational algebra expressions returns books that were published before 1960 2000?
		A.	$\sigma_{year<1960}(book) \wedge \sigma_{year>2000}(book)$
		В.	$\sigma_{year<1960}(book) \cup \sigma_{year>2000}(book)$
			$\sigma_{year<1960 \land year>2000}(book)$
[4]	23.	How man	ny tuples are returned by the following relational algebra expression?
			$author \bowtie_{author_id=editor} book$
		A.	8
		В.	11
		С.	13
[4]	24.	What qu	estion does the following relational algebra expression answer?
		A	$author*(author_pub*(\sigma_{month='July'}(book)*pub))$
			Which authors were born in July?
			Which authors authored a pub that was published in July? Which authors edited books that were published in July?
[43	۵.		
[4]	25.		ny tuples does the previous relational algebra expression return?
		A.	
		$\mathbf{C}.$	3

D. 4