|            |           |        |           | •••••                |       | <br>  |
|------------|-----------|--------|-----------|----------------------|-------|-------|
|            |           |        |           | /ISOR TO<br>SING LAB |       |       |
|            |           |        |           |                      |       |       |
| ···        |           |        |           | ]                    |       |       |
| ito vour s | <br>.tdon | t numb | ar in the | hoves.               | ahaya | Lotto |

## Specialist Mathematics Examination 2

## **Question and Answer Book**

VCE Examination – Wednesday 13 November 2024

• Reading time is 15 minutes: 11.45 am to 12 noon

• Writing time is **2 hours**: 12 noon to 2.00 pm

#### **Approved materials**

- Protractors, set squares and aids for curve sketching
- · One bound reference
- · One approved CAS calculator or CAS software, and one scientific calculator

#### **Materials supplied**

- · Question and Answer Book of 24 pages
- Formula Sheet
- Multiple-Choice Answer Sheet

#### Instructions

- · Follow the instructions on your Multiple-Choice Answer Sheet.
- At the end of the examination, place your Multiple-Choice Answer Sheet inside the front cover of this book.

Students are **not** permitted to bring mobile phones and/or any unauthorised electronic devices into the examination room.

| Contents                           | pages |
|------------------------------------|-------|
| Section A (20 questions, 20 marks) | 2–8   |
| Section B (6 questions, 60 marks)  | 10–23 |





#### **Section A** – Multiple-choice questions

#### Instructions

- Answer all questions in pencil on your Multiple-Choice Answer Sheet.
- Choose the response that is **correct** for the question.
- A correct answer scores 1; an incorrect answer scores 0.
- Marks will **not** be deducted for incorrect answers.
- No marks will be given if more than one answer is completed for any question.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- Take the acceleration due to gravity to have magnitude  $g \text{ m s}^{-2}$ , where g = 9.8

#### **Section B**

#### Instructions

- Answer all questions in the spaces provided.
- · Write your responses in English.
- Unless otherwise specified, an **exact** answer is required to a question.
- In questions where more than one mark is available, appropriate working **must** be shown.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.
- Take the acceleration due to gravity to have magnitude  $g \text{ m s}^{-2}$ , where g = 9.8



# Specialist Mathematics Examination 2

2024 Formula Sheet

You may keep this Formula Sheet.





### Mensuration

| area of a circle segment | $\frac{r^2}{2} (\theta - \sin(\theta))$ | volume<br>of a sphere | $\frac{4}{3}\pi r^3$                                        |
|--------------------------|-----------------------------------------|-----------------------|-------------------------------------------------------------|
| volume of a cylinder     | $\pi r^2 h$                             | area of<br>a triangle | $\frac{1}{2}bc\sin(A)$                                      |
| volume of a cone         | $\frac{1}{3}\pi r^2 h$                  | sine rule             | $\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$ |
| volume<br>of a pyramid   | $\frac{1}{3}Ah$                         | cosine rule           | $c^2 = a^2 + b^2 - 2ab\cos(C)$                              |

## Algebra, number and structure (complex numbers)

| $z = x + iy = r(\cos(\theta) + i\sin(\theta)) = r\operatorname{cis}(\theta)$ | $ z  = \sqrt{x^2 + y^2} = r$                                              |                                           |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------|
| $-\pi < \operatorname{Arg}(z) \le \pi$                                       | $z_1 z_2 = r_1 r_2 \operatorname{cis} \left( \theta_1 + \theta_2 \right)$ |                                           |
| $\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$  | de Moivre's theorem                                                       | $z^n = r^n \operatorname{cis}(n  \theta)$ |

## Data analysis, probability and statistics

| for independent random                    | $E(aX_{1} + b) = a E(X_{1}) + b$ $E(a_{1}X_{1} + a_{2}X_{2} + + a_{n}X_{n})$ $= a_{1}E(X_{1}) + a_{2}E(X_{2}) + + a_{n}E(X_{n})$ |                                                    |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|
| variables $X_1, X_2,, X_n$                | $Var(aX_1 + b) = a^2 Var(X_1)$ $Var(a_1X_1 + a_2X_2 + + a_nX_n)$ $= a_1^2 Var(X_1) + a_2^2 Var(X_2) + + a_n^2 Var(X_n)$          |                                                    |  |
| for independent identically               | $E(X_1 + X_2 + \ldots + X_n) = n\mu$                                                                                             |                                                    |  |
| distributed variables $X_1, X_2,, X_n$    | $\operatorname{Var}(X_1 + X_2 + \ldots + X_n) = n\sigma^2$                                                                       |                                                    |  |
| approximate confidence interval for $\mu$ | $\left(\overline{x} - z \frac{s}{\sqrt{n}},  \overline{x} + z \frac{s}{\sqrt{n}}\right)$                                         |                                                    |  |
| distribution of                           | mean                                                                                                                             | $E(\overline{X}) = \mu$                            |  |
| sample mean $\overline{X}$                | variance                                                                                                                         | $\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$ |  |

## Calculus

| $\frac{d}{dx}(x^n) = n x^{n-1}$                                       | $\int x^n dx = \frac{1}{n+1} x^{n+1} + c, \ n \neq -1$                                    |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| $\frac{d}{dx}(e^{ax}) = a e^{ax}$                                     | $\int e^{ax} dx = \frac{1}{a} e^{ax} + c$                                                 |
| $\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$                               | $\int \frac{1}{x} dx = \log_e  x  + c$                                                    |
| $\frac{d}{dx}(\sin(ax)) = a\cos(ax)$                                  | $\int \sin(ax)  dx = -\frac{1}{a} \cos(ax) + c$                                           |
| $\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$                                 | $\int \cos(ax)  dx = \frac{1}{a} \sin(ax) + c$                                            |
| $\frac{d}{dx}(\tan(ax)) = a\sec^2(ax)$                                | $\int \sec^2(ax)  dx = \frac{1}{a} \tan(ax) + c$                                          |
| $\frac{d}{dx}(\cot(ax)) = -a\csc^2(ax)$                               | $\int \csc^2(ax)dx = -\frac{1}{a}\cot(ax) + c$                                            |
| $\frac{d}{dx}(\sec(ax)) = a\sec(ax)\tan(ax)$                          | $\int \sec(ax)\tan(ax)dx = \frac{1}{a}\sec(ax) + c$                                       |
| $\frac{d}{dx}(\csc(ax)) = -a\csc(ax)\cot(ax)$                         | $\int \csc(ax)\cot(ax) dx = -\frac{1}{a}\csc(ax) + c$                                     |
| $\frac{d}{dx}\left(\sin^{-1}(ax)\right) = \frac{a}{\sqrt{1-(ax)^2}}$  | $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c, \ a > 0$    |
| $\frac{d}{dx}\left(\cos^{-1}(ax)\right) = \frac{-a}{\sqrt{1-(ax)^2}}$ | $\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1} \left( \frac{x}{a} \right) + c, \ a > 0$ |
| $\frac{d}{dx}\left(\tan^{-1}(ax)\right) = \frac{a}{1+(ax)^2}$         | $\int \frac{a}{a^2 + x^2} dx = \tan^{-1} \left(\frac{x}{a}\right) + c$                    |
|                                                                       | $\int (ax+b)^n dx = \frac{1}{a(n+1)} (ax+b)^{n+1} + c,  n \neq -1$                        |
|                                                                       | $\int \frac{1}{ax+b} dx = \frac{1}{a} \log_e  ax+b  + c$                                  |

## Calculus - continued

| product rule                                 | $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$                                                                               |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| quotient rule                                | $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$                                               |
| chain rule                                   | $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$                                                                               |
| integration by parts                         | $\int u \frac{dv}{dx} dx = u v - \int v \frac{du}{dx} dx$                                                                          |
| Euler's method                               | If $\frac{dy}{dx} = f(x, y)$ , $x_0 = a$ and $y_0 = b$ ,<br>then $x_{n+1} = x_n + h$ and<br>$y_{n+1} = y_n + h \times f(x_n, y_n)$ |
| arc length parametric                        | $\int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$                                           |
| surface area Cartesian about <i>x</i> -axis  | $\int_{x_1}^{x_2} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2}  dx$                                                              |
| surface area Cartesian about y-axis          | $\int_{y_1}^{y_2} 2\pi x \sqrt{1 + \left(\frac{dx}{dy}\right)^2}  dy$                                                              |
| surface area parametric about <i>x</i> -axis | $\int_{t_1}^{t_2} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$                                    |
| surface area parametric about <i>y</i> -axis | $\int_{t_1}^{t_2} 2\pi x \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$                                    |

### **Kinematics**

| acceleration             | $a = \frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$ |                            |
|--------------------------|----------------------------------------------------------------------------------------------------|----------------------------|
| constant                 | v = u + at                                                                                         | $s = ut + \frac{1}{2}at^2$ |
| acceleration<br>formulas | $v^2 = u^2 + 2as$                                                                                  | $s = \frac{1}{2}(u+v)t$    |

### **Vectors in two and three dimensions**

| $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$                                                                             | $ \underline{r}(t)  = \sqrt{x(t)^2 + y(t)^2 + z(t)^2}$                                                                                                                                                                                                                   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                | $\dot{\underline{r}}(t) = \frac{d\underline{r}}{dt} = \frac{dx}{dt}\dot{\underline{i}} + \frac{dy}{dt}\dot{\underline{j}} + \frac{dz}{dt}\dot{\underline{k}}$                                                                                                            |  |
|                                                                                                                                                | vector scalar product $ \underline{\mathbf{r}}_{1} \cdot \underline{\mathbf{r}}_{2} = \left  \underline{\mathbf{r}}_{1} \right  \left  \underline{\mathbf{r}}_{2} \right  \cos(\theta) = x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2} $                                          |  |
| for $\mathbf{r}_1 = x_1 \mathbf{i} + y_1 \mathbf{j} + z_1 \mathbf{k}$<br>and $\mathbf{r}_2 = x_2 \mathbf{i} + y_2 \mathbf{j} + z_2 \mathbf{k}$ | vector cross product $ \begin{vmatrix} \dot{\mathbf{r}} & \dot{\mathbf{j}} & \dot{\mathbf{k}} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = (y_1 z_2 - y_2 z_1) \dot{\mathbf{j}} + (x_2 z_1 - x_1 z_2) \dot{\mathbf{j}} + (x_1 y_2 - x_2 y_1) \dot{\mathbf{k}} $ |  |
| vector equation of a line                                                                                                                      | $\mathbf{r}(t) = \mathbf{r}_1 + t\mathbf{r}_2 = (x_1 + x_2 t)\mathbf{i} + (y_1 + y_2 t)\mathbf{j} + (z_1 + z_2 t)\mathbf{k}$                                                                                                                                             |  |
| parametric equation of a line                                                                                                                  | $x(t) = x_1 + x_2t$ $y(t) = y_1 + y_2t$ $z(t) = z_1 + z_2t$                                                                                                                                                                                                              |  |
| vector equation of a plane                                                                                                                     | $ \tilde{\mathbf{r}}(s,t) = \tilde{\mathbf{r}}_0 + s \tilde{\mathbf{r}}_1 + t \tilde{\mathbf{r}}_2  = (x_0 + x_1 s + x_2 t) \tilde{\mathbf{i}} + (y_0 + y_1 s + y_2 t) \tilde{\mathbf{j}} + (z_0 + z_1 s + z_2 t) \tilde{\mathbf{k}} $                                   |  |
| parametric equation of a plane                                                                                                                 | $x(s, t) = x_0 + x_1 s + x_2 t, \ y(s, t) = y_0 + y_1 s + y_2 t, \ z(s, t) = z_0 + z_1 s + z_2 t$                                                                                                                                                                        |  |
| Cartesian equation of a plane                                                                                                                  | ax + by + cz = d                                                                                                                                                                                                                                                         |  |

## **Circular functions**

| $\cos^2(x) + \sin^2(x) = 1$                                          |                                                            |
|----------------------------------------------------------------------|------------------------------------------------------------|
| $1 + \tan^2(x) = \sec^2(x)$                                          | $\cot^2(x) + 1 = \csc^2(x)$                                |
| $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$                        | $\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$            |
| $\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$                        | $\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$            |
| $\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$           | $\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$ |
| $\sin(2x) = 2\sin(x)\cos(x)$                                         |                                                            |
| $\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$ | $\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$                |
| $\sin^2(ax) = \frac{1}{2} \left( 1 - \cos(2ax) \right)$              | $\cos^2(ax) = \frac{1}{2} \left( 1 + \cos(2ax) \right)$    |



## Specialist Mathematics Examination 2

#### Student name

If your name and number are correct sign below. If they are incorrect tell the supervisor.

Signature



Use a pencil for all entries

All answers must be completed like this example:

- If you make a mistake, **erase** the incorrect answer **do not** cross it out.
- Marks will **not** be deducted for incorrect answers.
- No mark will be given if more than one answer is completed for any question.

#### For each question, **shade** the box that indicates your answer. Α В C В 2 A C D 16 3 Α В 10 Α В Α В 17 4 11 18 5 Α В 12 Α В 19 Α В 6 13 20 7 Α В D В 14 Α

#### Supervisor only

Shade the **box** below if the student was absent from the examination.

Absent

Supervisor's initials

OFFICE USE ONLY



