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Incorporating Residential Smart Electric Vehicle
Charging in Home Energy Management Systems

Michael Blonsky, Prateek Munankarmi, Sivasathya Balamurugan
National Renewable Energy Laboratory

Golden, Colorado 80401
Email: michael.blonsky@nrel.gov

Abstract—Electric vehicles (EVs) are expected to drastically
increase residential electricity consumption and could provide
a significant source of flexible demand. Aggregating smart EV
charge controllers with other smart home devices through a home
energy management system can lead to more optimal outcomes
that benefit homeowners, utilities, and grid operators. Control
strategies should consider occupant convenience by accounting
for the need for fully charged EVs near the EV departure
time. In this paper, we develop an EV charging framework that
accounts for occupant convenience using OCHRE, a residential
energy model, and foresee, a home energy management system.
We simulate a community with high EV penetration and show
that integrated, smart EV charging reduces peak demand and
smooths night-time energy consumption. Simulation results show
that the proposed control strategy nearly eliminates peak period
EV charging and reduces the daily peak demand from EVs by
23%.

I. INTRODUCTION

Demand for electric vehicle (EV) charging is an increasingly
important factor when considering the design of the future
electric grid. Globally from 2020 to 2030, the EV market share
of new car sales is projected to increase from 2.7% to 28%,
and total EVs on the road are projected to increase from 8.5 to
116 million vehicles [1]. By 2040, passenger EVs are projected
to consume 1,290 TWh globally [1]. The U.S. Department of
Energy indicates that 80% of EV charging is done at home
due to the convenience and low cost of residential charging
[2], which could cause a substantial increase in residential
electricity demand.

There are many benefits of vehicle electrification, including
reduced emissions, lower operating costs, and less dependence
on fossil fuel resources. However, a rapid increase in elec-
tricity demand may cause issues in the design and operation
of residential distribution networks. Increased demand from
electrification lowers distribution voltages and may increase
peak demand, both of which could lead to additional system
upgrades [3]. Increasing peak demand is a particularly signifi-
cant concern given the timing of EV charging (typically in the
evening) when there is no coordination of EV charging and
when faster (i.e., Level 2) charging is considered [4].

The coordination and control of flexible devices using
home energy management systems (HEMS) can help alleviate
these issues by shifting when electricity is used. Studies with
HEMS consistently show cost savings to the occupant [5],
[6], and peak power reductions [7]–[9]. The most common
control technique used for HEMS is model predictive control

(MPC) for thermostatically control loads including heating,
ventilation, and air conditioning (HVAC) and water heating
equipment [10].

Many studies have shown the benefits of residential EV
charging control coupled with other controllable devices.
Some papers use a coordinated approach for an aggregation
of EVs within a region to reduce peak demand or provide
ancillary services to the grid [11], [12]. Others include sim-
ilar control strategies for commercial charging stations with
multiple EV chargers [13]–[15]. Studies that focus on a single
household tend to use mixed-integer linear program (MILP)
optimization to dispatch flexible devices and a hard constraint
for the EV state of charge (SOC) at the departure time [16]–
[18]. Mirakhorli and Dong [19] use MILP for a HEMS that
considers energy costs as well as soft constraints for indoor
air temperature, hot water temperature, and EV SOC. To the
knowledge of the authors, there are no studies of HEMS with
residential EV charging that include costs in the objective
associated with the convenience of having a fully-charged EV
at or near the EV departure time.

In this paper, we integrate a novel EV charging control
with an existing residential energy model, OCHRE [20], and
an existing HEMS, foreseeTM [5]. The HEMS uses quadratic
programming to control an EV, HVAC system, water heater,
photovoltaic (PV) system, and battery. It incorporates occupant
behavior for the EV control by incurring a cost when the EV
is not fully charged at or near the departure time. We simulate
a community with a variety of building properties, equipment
types, and vehicle charging levels and show the benefits of the
HEMS control on occupant costs with a time-of-use rate and
a demand charge. Specifically, our key contributions include:

• A detailed residential EV charging model that handles
delayed charge control signals and that integrates with a
comprehensive building model

• The integration of a demand charge and a cost term
for user discomfort due to low EV SOC into a HEMS
framework

• Simulation results showing an improvement in energy
consumption profiles due to smart EV charging with the
HEMS

We outline the energy modeling framework in Section II
and the HEMS control architecture in Section III. Section IV
shows the simulation results including a validation of the EV
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model. We conclude with additional considerations and areas
for future work.

II. RESIDENTIAL ENERGY MODEL

In this section, we describe the methods used for residential
energy modeling and the electric vehicle modeling. We use the
OCHRE model and provide more details on the EV model and
its controllability.

A. Building Model

The Object-Oriented, Controllable, High-Resolution Res-
idential Energy (OCHRE) Model [20] is a physics-based
residential energy model that integrates with home energy
management systems. It includes controllable device models
for HVAC equipment, water heaters, EVs, PV, and batteries.
Below, we outline the key features of the model used in this
paper; for more information, we refer the reader to [20].

OCHRE creates a white-box multi-node linear thermal
model for the building envelope for each house. Parameters are
derived from the thermal properties of the building materials.
The building envelopes for each house simulated in this paper
include a main indoor zone and an attic. The houses vary in
insulation levels, number of occupants, building orientation,
and type and size of equipment, all of which impact the
dynamics of the zone temperatures.

The houses in the simulated community include many
HVAC equipment types, including electric and gas furnaces,
gas boilers, electric baseboards, and air source heat pumps.
Air source heat pumps and all other cooling equipment use
a biquadratic equation from [21] to dynamically calculate
capacity and efficiency. The other HVAC equipment types
are modeled with a constant heating capacity and heating
efficiency. All HVAC equipment include a thermostat control
with a deadband and are sized using Manual J [22]. Each house
also includes either a gas or electric water heater. Some homes
have a tank water heater with a thermostat control, and others
have tankless water heaters that are modeled as ideal devices
that instantly heat the hot water to the setpoint temperature.

The PV model is based on the System Advisor Model
(SAM) [23], which uses multiple weather inputs to determine
the PV generation profile. For the houses in this paper, PV
system tilt angles are equal to the house’s roof pitch, and
orientations are randomly chosen to face east, southeast, south,
southwest, or west. The battery model accounts for the battery
state of charge and separate efficiency values for charging and
discharging.

B. EV Charging Model

The EV model combines a standard battery model with
a random parking event generator using residential parking
survey data. The data set is taken from the Electric Vehicle
Infrastructure Projection (EVI-Pro) [24] based on a vehicle
travel study in California [25]. A parking event is characterized
by three parameters: the arrival time k0, departure time kend,
and arrival state of charge SOC0. Events are sampled by
day, with at least one event occurring on each day. EVI-Pro

assumes that the EV is fully charged at the beginning of each
day (i.e., the first departure time of the day). The set of events
used for the random sampling varies by day according to the
following parameters [24]:

• EV Type: Plug-in hybrid (PHEV) or Battery (BEV)
options. PHEVs tend to deplete a larger percentage of
their battery than BEVs, leading to lower values for
SOC0.

• EV Battery Capacity: EVs with larger batteries can drive
further, but tend to use less energy relative to the battery
capacity, leading to higher values for SOC0. PHEVs are
split into small and large sizes based on a threshold of 35
mile range (or 11.4 kWh capacity). BEVs are split based
on a threshold of 175 mile range (or 56.9 kWh).

• Charging Level: Level 1 (1.4 kW) or Level 2 (3.6 kW
for PHEV, 9.0 kW for BEV) options. EVs with Level
1 chargers tend to charge more often, leading to more
parking events per day compared to the same EV with a
Level 2 charger.

• Average Daily Temperature: EVs tend to use more en-
ergy on days with very high temperatures (due to air
conditioning use) and days with very low temperatures
(due to lower battery efficiency), leading to lower values
for SOC0. The data are split into 5◦C increments from
-20◦C to 40◦C.

• Day of Week: Weekday and weekend options. EV parking
times follow different patterns for weekdays and week-
ends. Weekdays tend to have fewer parking events.

Fig. 1 and Fig. 2 show the distribution of weekday parking
events in the EVI-Pro data set for a large PHEV and a
small BEV, respectively. Both vehicles have about 34,000 days
of parking events in the data set. The majority of parking
events are overnight events with an arrival time between
4:00 PM and 8:00 PM and a departure time between 6:00 AM
and 10:00 AM the next day. The arrival SOC is typically
greater than 70% for BEVs; for PHEVs, the arrival SOC is
significantly more variable, and 9% of events have an arrival
SOC of 0%.

The EV model tracks the EV battery SOC using:

SOC(k + 1) = SOC(k) +
tsηev
κev

Pev(k)

SOC(k0) = SOC0

(1)

where ts is the time resolution, ηev is the efficiency of
charging, κev is the battery capacity, and Pev is the AC power
input to the EV charger. When charging without any external
control, the EV begins charging at k0 at its maximum power,
accounting for the power limits and SOC limits. The EV input
power is calculated as:

Pev(k) =

{
min( κev

tsηev
(1− SOC(k)), Pmax) k0 ≤ k < kend

0 otherwise
(2)

where Pmax is the maximum EV charging power. Note that
the maximum SOC is assumed to be 100%.
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Fig. 1. Heatmap of parking events used for a PHEV with a large battery
capacity and Level 1 charging on weekdays. Shows the distribution of arrival
time of day with (a) departure time of day (events in the bottom right half
correspond to overnight events) and (b) arrival SOC.

Fig. 2. Heatmap of parking events used for a BEV with a small battery
capacity and Level 2 charging on weekdays. Shows the distribution of arrival
time of day with (a) departure time of day (events in the bottom right half
correspond to overnight events) and (b) arrival SOC.

The EV model can be controlled by directly setting Pev
or by updating k0 in (2), which leads to a delay in the EV
charging start time. Level 1 charge controllers are set to update
k0, and Level 2 chargers can update k0 or directly set Pev .

Each day of parking events is considered to be independent

of the events before and after it. However, in some instances
the departure time of one parking event is very close to, and
may overlap with, the arrival time of the next event. The model
checks for these overlaps and, when necessary, will move the
departure time of a parking event earlier to ensure at least a
1-hour gap between each parking event.

The arrival SOC of the EV is also impacted by the pre-
vious charging event if a control signal impacts the SOC on
departure. When the departure SOC is less that the maximum
departure SOC, the arrival SOC is reduced by the same
amount, if possible:

SOCemax = min(SOCe0 +
tsηev
κev

(keend − ke0)Pmax, 1)

SOCe+1
0 = max(SOC ′

e+1
0 − (SOCemax − SOC

e
end, 0)

(3)
where e is the event index, SOCemax is the maximum possible
departure SOC from the previous event, SOCeend is the actual
departure SOC from the previous event, and SOCe+1

0 is the
updated arrival SOC for the next event.

The full procedure for the EV model is outlined in Fig. 3.

III. CONTROL ARCHITECTURE

This section outlines the architecture for controlling flexible
loads in the OCHRE model. We give an overview of foresee,
a HEMS, and then describe the EV control methodology in
detail.

A. Home Energy Management System

foresee is a HEMS capable of coordinating various behind-
the-meter (BTM) resources in residential homes including PV,
batteries, HVAC equipment, and water heaters in response to
a time-varying tariff or utility signal. foresee is formulated as
a multi-objective MPC problem and determines the optimal
schedule for all the BTM resources simultaneously. The details
regarding the formulation of foresee can be found in [5] and
[26].

Without EVs, the objective of foresee includes minimization
of the total energy cost, user discomfort associated with
indoor air temperature and hot water temperature, and battery
degradation. Mathematically, the objective is represented as:

min

k+nk∑
t=k+1

J(t) (4)

where k is the current time, nk is the horizon length, and:

J(t) =bmλ(t)Phouse(t)

+bair
(
(Tair(t)− Tmaxair )2 + (Tminair − Tair(t))2

)
+bwh

(
(Twh(t)− Tmaxwh )2 + (Tminwh − Twh(t))2

)
+bbatt

(
Pch(t) + Pdis(t)

) (5)

where J(t) is the cost function at future time t, λ(t) is the
time-varying utility rate, Phouse(t) is the net power of the
building, Tair(t) and Twh(t) are the indoor air temperature and
water heater tank temperature, Pch(t) and Pdis(t) are the bat-
tery charging and discharging power, and {bm, bair, bwh, bbatt}
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Fig. 3. Flow chart for EV model initialization and simulation.

are the weighting factors for multiple objective functions. The
comfort bands for indoor air temperature and hot water temper-
ature are represented by (Tminair , Tmaxair ) and (Tminwh , Tmaxwh ) re-
spectively. The optimization problem is subject to house power
constraints and constraints for each equipment. Constraints are
described in detail in [5] and [26].

B. EV Charge Control

With EVs, the objective of foresee is modified to include
minimization of the user inconvenience associated with a low
EV SOC near the EV departure time. Mathematically, it can

be represented as:

min

k+nk∑
t=k+1

J(t) + Jev(t) (6)

with:

Jev(t) =

{
bev(1− SOC(t)) t−k

kend−k k0 ≤ t < kend

0 otherwise
(7)

where bev represents the weighting factor for the inconve-
nience of low EV SOC. The penalty term Jev increases
linearly as t approaches the departure time kend, and also
increases as the current time k approaches kend. It is always
non-negative because t > k as shown in (6).

EV constraints include:
• EV model constraint: The EV model in (1) describes the

relationship between SOC and EV charging power Pev .
• EV charging power constraint:{

0 ≤ Pev(t) ≤ Pmax k0 ≤ t < kend

Pev(t) = 0 otherwise
(8)

This limits the charging power Pev(t) between 0 and the
maximum charging power Pmax when the EV is available
for charging in the home. When the EV is not available
for charging, the EV charging power is set to 0.

• EV SOC constraint:

SOCmin ≤ SOC(t) ≤ SOCmax (9)

This maintains the EV SOC between minimum
(SOCmin) and maximum (SOCmax) EV SOC limits.

For the EV control, foresee receives the current EV SOC
and the arrival and departure times from the OCHRE model.
It then computes the optimal charging setpoint Pev(k+1) and
sends the setpoint to OCHRE to be implemented at the next
time step.

C. Demand Charge Control

We add an additional term to the objective to reduce
the peak demand of the home. This term is beneficial for
incorporating the costs of a demand charge on the customer
utility bill or for reducing peak demand for more efficient dis-
tribution system operations. The objective function is modified
as below:

min

k+nk∑
t=k+1

J(t) + Jdemand (10)

with:

Jdemand = bmmax( max
t∈[k+1,k+nk]

(Phouse(t))− Ppeak(k), 0)
(11)

Ppeak(k) = max(Ppeak(k − 1), Phouse(k)) (12)

where Ppeak(k) is the maximum house demand for the de-
mand charge period up to and including time k. Note that (11)
uses forecasted values for Phouse, whereas (12) uses actual
house power to update the peak power at each time step.
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Fig. 4. Daily load profile comparison for a 50-mile PHEV with a Level 1
charger.

IV. RESULTS

This section presents results using the proposed model and
controller. We first show validation results comparing the EV
model with EVI-Pro. We then show simulation results with
multiple control strategies to show their impacts on peak load
reduction with a focus on EV peak demand.

A. EV Model Validation

We validate the OCHRE EV model to ensure that the
daily load profile is similar to the profile from EVI-Pro.
Profiles are generated for each vehicle type and size, charging
level, ambient temperature bin, and day of week option (see
Section II-B for details). OCHRE was run for 1000 days at
1-minute resolution. The weekday and ambient temperature
were held constant for validation purposes.

Fig. 4 and Fig. 5 show the daily load profiles for a 50-
mile PHEV with a Level 1 charger and a 100-mile BEV
with a Level 2 charger during weekdays at 15◦C, respectively.
OCHRE estimates a slightly larger peak for both profiles,
which is likely due to the effects of random sampling. The
root-mean-square error is about 0.02 kW for the PHEV and
0.05 kW for the BEV.

B. Simulation Inputs

We simulate a community with high EV penetration under
multiple control strategies to reduce peak demand from EVs.
The simulations were run using Hierarchical Engine for Large-
scale Infrastructure Co-Simulation (HELICS) [27], an agent-
based co-simulation framework. House models and HEMS
were each simulated as separate agents and the house status
and HEMS controls were communicated using the HELICS
message bus.

Simulations were run for one week at a 1-minute time
resolution. The HEMS operated at a 15-minute time resolution.
Using the National Renewable Energy Laboratory’s high-
performance computing system [28], the baseline and the
basic control scenarios took approximately 2 minutes and

Fig. 5. Daily load profile comparison for a 100-mile BEV with a Level 2
charger.

the HEMS-based scenarios took approximately 9 minutes to
complete.

The simulated community consists of 50 residential homes,
each with a different level of insulation and a different
set of equipment. The house models were generated using
ResStockTM [29], which contains probability distributions of
residential building characteristics across the entire U.S. We
use the distributions for an area near Washington D.C. to come
up with a series of typical building models to represent the
community. Each day of the simulation had an average daily
temperature between 25 and 30 ◦C.

We assume the 50-home community includes 13 PHEV with
Level 1 chargers and 12 BEV with Level 2 chargers. PHEV
size ranges from 20 to 50 miles, and BEV size ranges from
100 to 250 miles. For the control scenarios with foresee, the
Level 1 chargers were turned off when Pev <

Pmax

2 and on
when Pev ≥ Pmax

2 . The Level 2 chargers followed the control
signal exactly.

PV and battery sizes were designed to simulate a community
with high levels of DERs and minimal community-level grid
export. The community includes a total of 162 kW of PV,
split among 30 of the 50 homes. Batteries are included in 20
homes; 10 homes have a 3kW/6kWh battery and 10 homes
have a 6kW/12kWh battery.

C. Baseline Results

A baseline scenario was run to show the community power
with no controls. Fig. 6 shows the total community power by
end use for three simulation days, two weekdays followed by
one weekend day. Air conditioning accounts for most of the
load, and PV generation significantly reduces daytime load,
but not enough to cause net export of the community.

Fig. 7 shows the total community power with a basic
delayed EV charge control. The EV charging was delayed by
up to 5 hours to reduce load during the peak period from
2 P.M. to 7 P.M. The EV power shifted from the afternoon to
the evening to reduce the peak load. The on-peak maximum
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Fig. 6. Stacked plot of total community power by end use for the baseline
scenario without controls. Net power combines all loads, PV, and battery
power.

Fig. 7. Stacked plot of total community power by end use for the basic EV
delay scenario. Net power combines all loads, PV, and battery power.

demand (averaged across all days of the simulation) reduced
from 178 kW to 156 kW. However, the average daily EV
peak demand increased from 43 kW to 45 kW (see Fig. 9),
indicating that this control scheme may lead to a spike in
demand in the evening.

D. HEMS Control

We next run a scenario with the same community, using
foresee as the control system. The HEMS uses (6) with a
time-of-use (TOU) rate from the local area with a peak period
from 2 P.M. to 7 P.M on weekdays and a peak-to-off-peak price
ratio of 4.875 [30]. Regarding the user-preferences in foresee,
cost-saving had highest preference (bm = 0.35) followed
by EV discomfort (bev = 0.27), air temperature discomfort
(bair = 0.19), hot water discomfort (bwh = 0.13), and battery
degradation (bbatt = 0.06).

Fig. 8 shows the results of this scenario for the same three
days. The HVAC and battery profiles change considerably, and
the EV profile shifts to later in the evening. The EV tends to

Fig. 8. Stacked plot of total community power by end use for the scenario
with foresee controls and a TOU rate. Net power combines all loads, PV, and
battery power.

charge when the HVAC and other load powers are low to
reduce any demand spikes. The peak demand increases due to
HVAC load before the peak period, but the on-peak maximum
demand decreases considerably, from 178 kW in the baseline
case to 120 kW in the HEMS case.

A comparison of the EV profiles from all scenarios is shown
in Fig. 9. The baseline scenario has a considerable EV usage
during the peak period, and all control scenarios are able to
shift that consumption to later in the day. The HEMS scenarios
(TOU and Demand) shift the consumption later than the basic
delay control, and are able to reduce the daily average on-peak
maximum demand from 12 kW (in the basic control case) to
1.2 kW.

The HEMS scenarios also reduce the average daily peak
demand due to EVs (at 15-minute resolution) from 45 kW
to 34 kW, a 23% reduction. This reduction is critical when
considering an increase in residential EV adoption. As EV
charging becomes a significant portion of residential energy
consumption, smoother EV charging profiles will reduce peak
demand and allow for more efficient grid operations.

E. Demand Charge Control

We run a fourth scenario with foresee controls using an
additional demand charge term as described in (10). We use the
same TOU rate and a demand charge of $10 per kW. As shown
in Fig. 9, the EV profile is very similar to the profile from the
HEMS scenario without a demand charge. There were some
differences in the results at the beginning of the simulation,
but fewer differences near the end of the simulation.

The demand charge does not have a significant effect on the
EV controls because EV consumption does not often coincide
with the peak demand. Residential peak demand tends to occur
in the afternoon in the summer when air conditioning loads
are high, and EV charging tends to occur later in the evening.
Once the peak demand Ppeak is set at a high level, the demand
charge term Jdemand does not significantly impact the control
strategy. It is likely that this control would have a larger effect
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Fig. 9. Total EV power in the community for all scenarios.

on EV charging when EV loads contribute more to the peak
demand, for example during times and locations with less
HVAC demand.

V. CONCLUSION

In this paper, we develop a framework for modeling and
controlling residential smart EV chargers. The EV charging
model accounts for vehicle and charging parameters, ambi-
ent conditions, and dependencies between adjacent charging
events. The EV control architecture integrates with foresee
and accounts for the inconvenience cost of having a low
state of charge close to the departure time. Simulation results
show that the proposed controller reduces peak period energy
consumption and lowers the peak demand associated with EV
charging.

We note that EV charging, as well as other residential load
controllers, depends significantly on occupant behavior and
other stochastic variables that are difficult to estimate in real-
world applications. We recommend field testing and validation
to better understand the control performance when some
variables, for example EV arrival SOC and departure time,
are less certain. Additional improvements to the modeling and
control framework include accounting for uncertainty in these
variables, incorporating real device constraints, and testing the
framework under different occupancy and climate conditions.
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