
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Distributed Systems

DeToks: Decentralised Social Media
using 5G NAT puncturing

Orestis Kanaris
Student Number: 4807553

Committee Members:
1) Supervisor: Dr. ir. J.A. Pouwelse

2) Dr. ir. K. Langendoen

To obtain a Master of Science in Computer Science
Software Technology Track

To be defended publicly on September 25th, 2024



DeToks: Decentralised Social Media
using 5G NAT puncturing

Orestis Kanaris
Delft University of Technology 

Delft, Netherlands

Johan Pouwelse (MSc Supervisor) 
Delft University of Technology 

Delft, Netherlands

Abstract—We present a decentralised alternative to the winner-
takes-everything dynamics of social media platforms. For 25
years there have been continuous attempts to decentralise file
sharing, music streaming, video conferencing, and social media.
None of these hundreds of projects to re-decentralise the Internet
have reached the uptake level of YouTube and TikTok. They
are rarely easy to use. We present DeToks, a fully decentralised
alternative to Youtube and Tiktok. DeToks is not dependant on
any central server or cloud. DeToks is specifically designed to be
as decentralised and attack-resilient as Bitcoin and Bittorrent.

Our core contribution is effortless 5G Network Address Trans-
lators (NATs) puncturing. Direct phone-to-phone communication
is not available on today’s smartphones. DeToks solves this prob-
lem. NATs and carrier-grade NATs block direct communication
between smartphones.

We procured 30+ SIMs card on European 4G/5G mobile
networks and measured the carrier-grade NATs behavior. We
determined the NAT types (full cone,restricted,symmetric) and
their time-out settings. By leveraging provider-aware (Voda-
fone,Orange,Telia, etc.) NAT puncturing strategies we create
direct UDP-based phone-to-phone connectivity. We utilise par-
allelism by opening at least 500 Internet datagram sockets on
two devices. By relying on provider-aware IPv4 range allocations,
provider-aware port prediction heuristics, high bandwidth prob-
ing, and the birthday paradox we can successfully bypass even
symmetric NATs. Our communication method achieves peer-to-
peer 5G connectivity at the cost of merely some initial delay and
bandwidth, without any assistance from third party servers or
clouds.

Detoks validates our 5G puncturing work. We demonstrate
the feasibility of fully decentralized social media platforms on
consumer mobile devices.

Index Terms—NAT, CGNAT, 5G, Distributed Social Media,
NAT puncture

I. INTRODUCTION

We present DeToks, meticulously designed to empower
Internet users to take full control of their social media experi-
ence. DeToks is a decentralised TikTok alternative. Our proof-
of-principle social media app does not require servers, avoids
using any cloud, bypasses the need for any legal entity, and
abstains from any centrality in general. Relentless improve-
ments in mobile hardware now enable on-device alternatives
for the cloud. DeToks offers a fully decentralised swipe-based
media experience using BitTorrent and 5G NAT puncturing.

5G NAT puncturing is a technique to communicate freely
on The Internet. Personal devices, specifically smartphones,
communicate through home Wi-Fi and mobile networks like

4/5G. Using these networks, the devices usually end up behind
a home NAT or a Carrier-Grade NAT (CGNAT). These devices
divide scarce IPv4 Internet addresses amongst active users.
However, the existence of these NATs makes it hard for the
devices to communicate with each other since they lock their
discoverability by hiding the devices behind the NAT’s private
network, forcing the “NATed“ device to initiate the connection
first. This is not a particularly impossible problem if one of
the two peers has a static IP address and is discoverable. It is
particularly bad when both peers are behind NATs (even worse
when it is the same NAT, a problem common with CGNATs
[1]), then both need to initiate the connection first, but none
of them is “visible“ to the other.

The novel contribution of this work is bypassing the carrier-
grade NAT hardware inside 4G and 5G networks. The need
for this came when the depletion of IPv4 addresses and lack
of cybersecurity “forced“ 5G network operators to violate
Internet protocols. DeToks shows that with advanced 5G NAT
puncturing it is possible to create fully decentralised social
media.

II. PROBLEM DESCRIPTION

The challenge is to overcome the restricted communica-
tion in 5G networks. These mobile networks are exclusively
designed to communicate with the cloud. Firstly, this re-
stricts user autonomy and choice, as individuals are often
confined to the services and applications approved by the
smartphone manufacturers, limiting their ability to access
alternative, potentially more innovative or privacy-respecting
options [2]. This closed nature also fosters a dependency on a
few dominant tech companies, which can lead to monopolistic
practices, reduced competition, and a lack of diversity in
the market [3]. Furthermore, the exclusive reliance on cloud
communication raises significant privacy concerns, as vast
amounts of personal data are continuously sent to and stored
in centralized servers, making it susceptible to data breaches,
surveillance, and misuse by third parties.

All the problems mentioned above are spawned from the
design choice of smartphones not being able to communicate
directly with each other due to NATs “randomizing“ the ports
and then rejecting any incoming requests as shown in figure
1 The power of citizens is slowly diminishing, and companies



Fig. 1: Two phones behind Symmetric NATs unable to start communication with each other

are gaining more power. Devices such as smartphones, elec-
tronic cars, and solar panels are controlled by the cloud of the
manufacturer1, not the citizen that ”owns” them.

The first example of a decentralised 5G overlay network
dates from 2017, to the best of our knowledge2. Figure 2
illustrates various Android devices participating in a phone-
to-phone network using user-space networking on not-rooted
devices with their original operating systems. These pure-
phone networks are initiated and bootstrapped by smartphones
with well-known IPv4 addresses.

Fig. 2: IPv8 in 2017 running on multiple Android devices

To date, the state-of-the-art way of bypassing NATs and
firewalls is still brute-force network flooding. Two studies were
conducted more than a decade ago [4], [5], to understand
how the infrastructure of cellular providers work and how this
affects the cellular network behaviour and performance; their
findings are now outdated due to newer generations of cellular
networks becoming the new de-facto.

1https://berthub.eu/articles/posts/gigantic-unregulated-power
2https://github.com/Tribler/tribler/issues/3237

Establishing a connection between devices is essential to en-
able peer-to-peer distributed social media. Key communication
parameters such as NAT type, timeouts and maximum UDP
packet size are critical for maintaining the connection and
selecting appropriate connectivity strategies. However cellular
providers do not publicly disclose these parameters.

Some improvements were proposed, i.e. birthday-paradox-
based network flooding [6]. To our knowledge, no one utilizes
insights into the LAN hardware used, specifically the ones
used by cellular providers, to maximize the connectivity
success rate.

III. ARCHITECTURE AND IMPLEMENTATION

Figure 1 shows two smartphones running our DeToks
application. We pioneered a new level of decentralisation
by crafting the first 5G phone-to-phone network. No prior
scientific work offers the same level of decentralisation as
DeToks, to the best of our knowledge.

The software used to gather the cellular-specific parame-
ters mentioned in this chapter is available on GitHub [7].
Two phones running the decentralized DeToks app using
CytaMobile-Vodafone’s 4G in Aglantzia of Nicosia, Cyprus
are shown in figure 3.

A. NAT Types
The STUN protocol (RFC3489 [8]) classifies NATs into four

types: Full-cone NAT, Restricted-cone NAT, Port-restricted
cone NAT, and Symmetric NAT. RFC4787 [1] refines this
categorization into ”easy” NATs using Endpoint-Independent
Mapping (EIM) and ”hard” NATs using Endpoint-Dependent
Mapping (EDM). EIM ensures consistent external address and
port mapping for requests from the same internal port.

According to V. Paulsamy et al. [9], the specifications for
these NAT types are:

• Full-Cone NAT: An EIM NAT that maps all requests
from a single internal IP to a corresponding public IP,
allowing any internet host to communicate wit the LAN
host by targeting this public IP.

https://berthub.eu/articles/posts/the-gigantic-unregulated-power-plants-in-the-cloud/
https://github.com/Tribler/tribler/issues/3237


Fig. 3: Two Android phones running decentralized TikTok on
cellular data after Nat puncturing

• Restricted-Cone NAT: Similar to Full-cone NAT, but
restricts communication from the internet to a LAN
machine unless initiated by the LAN machine.

• Port-restricted cone NAT: A more restrictive EIM NAT
than Restricted-cone, limiting external host communica-
tion by both IP and port.

• Symmetric NAT: An EDM NAT that maps requests from
the same internal IP:Port to different public IP:Port pairs
depending on the destination, complicating peer-to-peer
connections.

Symmetric NAT, functioning like a strict firewall, restricts
incoming packets to those from an IP pair that has already
sent an outgoing packet. Administrators may prefer Symmetric
NAT for its ability to support up to 65535 users per IP while
seemingly enhancing security by limiting exposure to selected
hosts, a response to the Internet’s lack of protection against
unsolicited data, including spam and malware [10]. While
it does not affect browsing, Symmetric NAT significantly
hinders peer-to-peer protocols like BitTorrent. J.J.D. Mol et
al. [11] noted that peers behind firewalls struggle with fair
sharing, suggesting NAT puncturing or static IPs for better
performance.

The method used to determine the NAT type of each cellular
provider is based on RFC3489 [8] where the client (in this
case, the mobile phone) sends a Binding Request —over
UDP— to a STUN server to determine the bindings allocated
by the NATs. The STUN server will respond with a message
containing the IP address and port from which the request
came. The client will then send more Binding Requests to
ports and STUN servers. With the responses to these requests,
the client can then determine the NAT type that they are behind
by analysing how the responses of the STUN servers changed.

The type of NAT used by the cellular providers tested are
shown in section IV-B. The information can be used to tailor
the connectivity technique on the peer’s carrier.

B. Determining NAT Timeouts

To get a clear idea of how the NAT mappings over UDP
work, the first outgoing also acts as a connection initiation
packet. When this first packet is sent, the NAT from which
the packet was sent starts a timer as soon as the packet leaves.
That timer waits for a response from the receiving client,
meaning that the packet was received/accepted, and regular
communication will follow. This timer will be referred to
as connection initiation timeout throughout this
section. Knowing this parameter is very useful for the case of
a fully collaborative distributed network since the connection
initiation timeout is the time that the peers have to collaborate
and connect the new joiner based on the NAT mapping that
the new joiner advertised.

The second type of timeout we will call session
timeout, signifying how long the mapping will remain
active while there are no outgoing or incoming packet flows.
Knowing how long the session can stay active while idle
is used to determine how often “connection maintenance“
packets need to be sent to keep the connection alive. Once
a connection is established, it is preferred to be maintained
since maintaining a connection is much “cheaper“ than re-
establishing one.

The two are considered separately because the connection
initiation timeout is usually different, often smaller than the
session timeout.

Starting with determining the connection initiation timeout,
initially a lower and an upper bound on the time the mapping
will remain active while waiting for a response is estimated.
This is achieved by sending a packet to the server; the
server waits a fixed amount of time before responding. After
receiving each packet, the server’s wait time increases by
a fixed amount. If no response is received, indicating that
the NAT mapping has expired, the time the server waited to
send the response represents the upper bound of the timeout.
Therefore, the wait time of the last successfully received
packet is the lower bound.

When the bounds are established, a binary search is per-
formed on those bounds to find the precise —down to the
second— timeout of the NAT.

The process for determining the session timeout is very
similar to the one for connection initiation timeout; Initially,
a lower and upper bound on the idleness time of a connection
is estimated. To achieve this, the client sends a packet to
the server, and the server responds with the port number
from which the client sent it. Then, the client waits a fixed
amount of time until it sends the next packet. The wait
time is incremented by a fixed amount for each subsequent
transmission. The client compares the port in the server’s
response, i.e., the port from which the client’s NAT sent the
message. If the port in the latest response is not the same as
in the previous one, then the mapping timed out, creating a
new one. The time the client waited to send the last request
becomes the upper bound, and the time they waited for the
penultimate request becomes the lower bound of the session



timeout.
When the bounds are determined, a binary search is run

within those bounds to determine the expiration time down to
the second precisely.

The results of multiple runs using different cellular
providers can be seen in section IV-C.

C. Maximum Transmission Unit

The maximum transmission unit (MTU) denotes the maxi-
mum size of a single data unit that can be sent in a network
layer transaction. MTU is related to the maximum frame size
at the data link layer (such as an Ethernet frame).

A larger MTU is linked with reduced overhead, allowing
more data to be transmitted in each packet. Conversely, smaller
MTU values can help decrease network delay by facilitating
quicker processing and transmission of smaller packets. Deter-
mining the appropriate MTU often hinges on the capabilities
of the underlying network. It may require manual or automatic
adjustment to ensure that outgoing packets don’t exceed these
capabilities.

A jumbo frame is an Ethernet frame with a payload greater
than the standard maximum transmission unit (MTU) of 1,500
bytes.

Determining the MTU of a cellular provider requires run-
ning multiple ICMP pings 3 with binary-search-like varying
payload sizes until the exact payload size is determined, where
one more byte will cause the packet to be slit into two. Section
IV-D presents the MTU of the different providers tested and
whether they support Jumbo frames.

D. Reverse-engineering the NATs

To understand the inner workings of the NATs, it was first
assumed that no provider uses the same NAT (in terms of con-
figuration) since it was observed from different experiments,
i.e. NAT timeouts, that even though there are some standards
on how a NAT should be configured such as RFC 2663 [12]
and RFC4787 [1] which are not necessarily followed; thus an
Android mobile client and a Kotlin server were developed [13]
to gather data on each provider that a SIM card could be easily
acquired from by visiting the country, buying SIM cards and
collecting data about their NAT’s mapping strategy on their
local network. The mobile client sends packets containing a
UUID4 to the server from random mobile ports to random
server ports. The UUID, a timestamp, and the source and
destination ports are saved in a CSV file for each packet sent.
The server, which lies behind an unrestricted network having
a static IP address, does the same; once a packet is received, it
stores the UUID (which is in the body of the packet), the port
that the mobile sent it from (NAT mapping), and the port that
the server received it from together with a timestamp on when
the packet was received. The two CSVs are then inner-joined
on the UUID column, resulting in two crucial columns: the

3https://www.cloudflare.com/learning/ddos/glossary/
internet-control-message-protocol-icmp/

4https://docs.oracle.com/javase/8/docs/api/java/util/UUID.html

port the mobile believes it sent the packet from and the port
the packet came from, i.e. the exact NAT mapping.

To figure out the algorithm behind each mapping, i.e. what
drives the decision-making on which port maps to which and
when, a manual Exploratory Data Analysis (EDA) [14] is
performed [15] to uncover the hidden inner workings of each
NAT. The questions that the EDA aims to answer are:

1) Is the first port mapping completely random?
2) Is the mapping following a pattern?
3) Does the pattern, if it exists, depend on the port choices,

sender or receiver? Is it time-based?
4) For how long is the pattern being followed, and if it

changes at some point, why?
To answer these, different tests are performed while trying
to make sense by visualizing the data or analysing time
or population-based windows. The results of this EDA are
explained in section IV-A.

IV. NAT ANALYSIS

A. Inner workings of NATs

This chapter explores the internal mechanisms of cellular
data NATs used by various European carriers, focusing on the
five leading Dutch providers: KPN, Vodafone, LycaMobile,
Lebara, and Odido (formerly T-Mobile Netherlands). Through
reverse engineering, it reveals the distinct mapping algorithms,
timeouts, and MTUs each provider employs. Understanding
these behaviours enables the establishment of successful peer-
to-peer connections on 5G networks without intermediary
assistance. The methodologies for analyzing NAT mappings
are documented and available on GitHub [15] and summarized
in Table I.

The chapter consists of a discussion of NAT types, timeout
settings and MTUs for all tested carriers, followed by an
analysis of the mapping algorithms of the primary Dutch
providers.

The Nat mapping algorithms of all carriers tested are shown
in table I. The results of this study align with the findings of
Z. Wang et al. [4] while also showing that the NAT algorithms
evolved in many cases since the publication of that study.

B. Nat Types

Knowing the NAT type of the carrier one is using, and
the one of the peer they want to connect to allows one to
adapt their connectivity strategy to increase the chance of
connecting. Different strategies should be adopted based on
the types, i.e. a Symmetric NAT requires a Birthday Attack to
connect. In contrast, one can easily connect with a peer behind
a Full-Cone NAT using a STUN server or some peer acting as
a middleman relaying information to the rest of the network.
The types of the NATs of various carriers are presented in the
sixth column of table I.

C. Timeout of NATs

Analyzing the NAT timeouts showed two crucial things.
First, roaming highly influences the timeout, as seen from
the results of the Norwegian cellular carriers and Belgium’s

https://www.cloudflare.com/learning/ddos/glossary/internet-control-message-protocol-icmp/
https://www.cloudflare.com/learning/ddos/glossary/internet-control-message-protocol-icmp/
https://docs.oracle.com/javase/8/docs/api/java/util/UUID.html


Country Name Algorithm Infrastructure
Owner

ID
Required

NAT
Type MTU

Allows
Jumbo
Frames

NL KPN

Let Bi represent a block of 256 port numbers
[Bi = {256× i, 256× i+ 1, . . . , 256× i+ 255}]∀i ∈ [0, 255]

The user is assigned to a block Bi,
Users consume ports with numbers incrementing linearly

When Bi has no available ports, user is assigned to Bj , etc.

✓ ✓ Symmetric 1445 ×

NL Lebara

Let Bi represent a block of 256 port numbers
[Bi = {256× i, 256× i+ 1, . . . , 256× i+ 255}]∀i ∈ [0, 255]

The user is assigned to a block Bi,
Users consume ports with numbers incrementing linearly

When Bi has no available ports, user is assigned to Bj , etc.

KPN × Restrict 65507 ✓

NL Lyca Random Sampling from the block [2048, 65535] KPN × Full Cone 1473 ×

NL Vodafone Beta Distribution:
Y ∼ B(α, β, loc, scale) = B(2.242, 5.008, 4630, 13937)

✓ × Restrict 1437 ×

NL Odido Semi-Random Sampling from the block [2048, 65535]
Sampling strategy is analysed in \ref{sec:odido} ✓ × Symmetric 3972 ✓

FR Orange Random Sampling from the block [1, 65500] ✓ ✓ - - -
FR SFR Random Sampling from the block [1025, 65535] ✓ ✓ - - -

BG Orange

Let Bi represent a block of 256 port numbers
[Bi = {256× i, 256× i+ 1, . . . , 256× i+ 255}]∀i ∈ [0, 255]

The user is assigned to a block Bi,
Users consume ports in the block randomly

User will stay assigned to Bi for an extended period
and reuse the same ports

✓ ✓ Symmetric 1472 ×

BG LycaMobile Random Sampling from [2048, 65535] TeleNet ✓ Restrict 42987 ✓

NO Telia

Let Bi represent a block of 256 port numbers
[Bi = {256× i, 256× i+ 1, . . . , 256× i+ 255}]∀i ∈ [0, 255]

The user is assigned to a block Bi,
Users consume ports in the block randomly

User will stay assigned to Bi for an extended period
and reuse the same ports

✓ ✓ Restrict 65507 ✓

NO MyCall

Let Bi represent a block of 256 port numbers
[Bi = {256× i, 256× i+ 1, . . . , 256× i+ 255}]∀i ∈ [0, 255]

The user is assigned to a block Bi,
Users consume ports in the block randomly

User will stay assigned to Bi for an extended period
and reuse the same ports

Telia ✓ Full Cone 65507 ✓

CY Epic

Let Bi represent a block of 256 port numbers
[Bi = {256× i, 256× i+ 1, . . . , 256× i+ 255}]∀i ∈ [0, 255]

The user is assigned to a block Bi,
Users consume ports with numbers incrementing linearly

When Bi has no available ports, user is assigned to Bj , etc.

✓ × Symmetric 4433 ✓

CY Cyta Random Sampling from the block [5000, 65535] ✓ × Restrict 1472 ×
CY Primetel Random Sampling from the block [1024, 15500] Cyta × Symmetric 4433 ✓

CY Cablenet

Let Bi represent a block of 256 port numbers
[Bi = {256× i, 256× i+ 1, . . . , 256× i+ 255}]∀i ∈ [0, 255]

The user is assigned to a block Bi,
Users consume ports in the block randomly

User will stay assigned to Bi for an extended period
and reuse the same ports

✓ × Restrict 65507 ✓

IT TIM

Let Bi represent a block of 256 port numbers
[Bi = {256× i, 256× i+ 1, . . . , 256× i+ 255}]∀i ∈ [0, 255]

The user is assigned to a block Bi,
Users consume ports in the block randomly

User will stay assigned to Bi for an extended period
and reuse the same ports

✓ ✓ Full Cone 65507 ✓

IT WindTre

Let Bi represent a block of 256 port numbers
[Bi = {256× i, 256× i+ 1, . . . , 256× i+ 255}]∀i ∈ [0, 255]

The user is assigned to a block Bi,
Users consume ports with numbers incrementing linearly

When Bi has no available ports, user is assigned to Bj , etc.

✓ ✓ Symmetric 8873 ✓

TABLE I: The algorithm each carrier’s NAT uses, their configurations, and the ease of obtaining a SIM card.



LycaMobile. Second, the timeouts are multiples of a minute,
a behaviour that is to be expected. Still, it also shows that
designers did not optimize the timeouts to the full extent since
it is highly unlikely that the optimal timeout is nicely rounded
to the minute.

Table II can be interpreted as LB being a lower bound
and UB being an upper bound. Bounds are used since, due
to network delays, it is hard to know which of the two
is the actual timeout. On the left side is the timeout for
how long the mapping will remain active when the recipient
does not receive an initial response. On the right side is
the communication timeout, i.e., communication is established
(initial response is received) but is currently idle. The timeouts
of each cellular provider don’t differ significantly except for
the two extremes, which are Lyca of Belgium being unable
to establish a connection while roaming and CytaMobile of
Cyprus having an enormous session timeout of half an hour.

D. Maximum Transmission Unit

Understanding a carrier network’s Maximum Transmission
Unit (MTU) provides several benefits. It allows for optimizing
network performance by identifying the largest packet size that
can be transmitted without fragmentation, thereby minimizing
overhead and latency. Additionally, knowing the MTU facil-
itates efficient bandwidth utilization, as smaller packets can
increase overhead and reduce throughput.

Jumbo frames improve network efficiency by accommodat-
ing larger packet sizes than the standard MTU, reducing trans-
mission overhead. However, compatibility with all devices and
networks must be ensured to fully utilise jumbo frames.

The MTU values for various carriers and their support
for jumbo frames are presented in the last two columns of
Table I. Overall, there is no consistent MTU standard across
cellular providers, especially regarding jumbo frame support,
with variations near the 1500-byte threshold for those not
supporting jumbo frames.

E. Analysis of Dutch Carriers

1) Lebara Netherlands: Analysis of Lebara’s NAT be-
haviour showed that sender ports often followed a sequential
pattern, starting with a random port and incrementing to
adjacent ones until a new random port was selected. These
initial random ports were frequently reused within the same
session, making them significant, though inconsistent across
runs.

As shown in figure 4a, which shows the port mappings
of an ≈ 2 hour run, port mappings often began around the
3625 region, cycled through sequential increments, moved to
other random blocks, and returned to the original region at
consistent intervals. During low traffic periods, initial ports
were typically multiples of 256, followed by 255 consecutive
ports, as illustrated in figure 4b. This is consistent with
prior findings [4], with the added insight that Lebara’s NAT
behaviour is both usage-based and time-based. Users stay in
a port block until it times out or all ports are used.

It appears that ports are organized in blocks of 256 and
assigned to users based on availability. Assignment strategies
may depend on active users or available ports, as indicated
by different behaviours observed during low and high traffic
periods. Clarifying these allocation strategies requires further
study, as proposed in section VII-A.

After concluding the analysis, it was noticed that the Lebara
SIM card used was deprovisioned without notice, and subse-
quent attempts to reconnect or reactivate it were unsuccessful,
indicating a potential carrier response to the testing activities.

2) KPN: KPN, like Lebara, groups ports into blocks of
256 consecutive numbers. The main difference is that KPN,
with more infrastructure as a primary network operator, allows
more extensive consumption of these port blocks compared to
Lebara, as shown in Figure 5. This difference likely results
from fewer users per IP address on KPN.

During testing, the phone completely consumed a block
of 256 ports 32.3% of the time. Additionally, 36.9% of the
time, the phone was assigned to a group starting with a port
number divisible by 256. This pattern suggests that targeting
ports divisible by 256 potentially increases the likelihood
of successful connections, as all mappings remain active
concurrently if attempted without interruption.

3) LycaMobile Netherlands: LycaMobile, using the KPN
network, adopts a random address mapping strategy. Analysis
of approximately 288,000 mappings revealed port usage within
the range of 2048 to 65535, resulting in around 51,000 unique
mappings. Port reuse lacked a consistent pattern, with intervals
varying from 85 to 5980 seconds, suggesting a First Come,
First Serve allocation approach.

The observed port reuse after 85 seconds, shorter than
the typical timeout, implies that ports may timeout earlier
due to high demand or excess usage. LycaMobile appears to
use a shared port pool for the [2048, 65535] range, with no
evidence of systematic sorting, as consecutive port usage was
infrequent.

4) Vodafone Netherlands: Over 900,000 mappings were
analyzed for Vodafone, revealing that it does not follow the
KPN and Lebara model of dividing ports into 256 blocks, nor
does it use LycaMobile’s random port assignment strategy.
Initial observations suggested a normal distribution in the
frequency of port mappings; however, a Shapiro-Wilk test [16]
disproved this, indicating that a beta distribution provides a
better fit, as shown in Figure 6.

The beta distribution, a continuous probability distribution
defined on [0, 1], is characterized by shape parameters α and
β, influencing the distribution towards higher or lower values,
respectively [17]. The location and scale parameters were
also relevant, shifting and spreading the distribution along
the x-axis. The empirical beta distribution for Vodafone is:
Y ∼ B(α, β, loc, scale) = B(2.242, 5.008, 4630, 13937)

5) Odido: Odido’s NAT randomly selects ports, with anal-
ysis showing that only 9,920 unique ports were used out of
493,982 mappings scattered across the port space rather than
using consecutive ports like Vodafone. Figure 7 illustrates the
distribution of Odido’s mappings.



Connection Initiation Timeout Session Timeout
Provider LB(s) UB(s) Server Port Roaming LB(s) UB(s) Server Port Roaming

Lebara NL 120 121 2000 - 240 241 2000 -
Lyca NL 120 121 2000 - 120 121 2000 -

Odido NL 120 121 2000 - 119 120 2000 -
Vodaphone NL 302 303 2000 - 299 300 2000 -

KPN NL 120 121 2000 - 239 240 2000 -
Orange BG 58 59 2000 Odido 60 61 2000 Odido
Orange BG 59 60 2000 Lyca NL 57 58 2000 Lyca NL

Lyca BG F F 2000 Lyca NL F F 2000 Lyca NL
Telia NO 120 121 2000 - - - - -
Telia NO 5 6 2000 Lyca NL 300 301 2000 Lyca NL

MyCall NO 120 121 2001 - - - - -
MyCall NO 19 20 2001 Lyca NL 299 300 2001 Lyca NL

CytaMobile CY 59 60 2000 - 1800 1801 2000 -
Epic CY 239 240 2001 - 240 241 2001 -

PrimeTel CY 200 201 2000 - 240 241 2000 -
CableNet CY 20 21 2001 - 30 31 2001 -

TIM IT 299 300 2000 - 420 421 2000 -
WindTre IT 30 31 2001 - 30 31 2001 -

TABLE II: Timeouts of various carriers in seconds. On the left are timeouts for waiting for communication to be established,
and on the right is a timeout of the idle communication channel.

(a) 128 minutes Lebara of Lebara port mappings (b) Frequency of consecutive port numbers used by Lebara

Fig. 4: Lebara analysis

To optimize NAT penetration for Odido, a proposed algo-
rithm merges consecutive bins with frequencies above 30 to
avoid over-specifying, accommodating time-dependent results.
An exploitation-exploration strategy is then applied, with
40% of port selections based on established frequency ranges
and 60% from random ports within [2048, 65535]5. Selecting
bins based on frequency showed inferior performance due to
increased delays and potential overfitting, leading to random
bin selection.

Various European carriers were analysed during this project.
Their in-depth analysis is presented in appendices A-H.

V. NAT PUNCTURING

A. Simple Birthday Attack

The rule for communicating in a NATed network is that the
person behind the NAT must initiate communication first. The
assumption is that the Internet works mainly in a Client-Server
fashion where the Server is discoverable (has a Public Static
IP address). This assumption breaks in the case of peer-to-peer
communication between two clients behind a NAT since none
are discoverable, and no one can initiate the communication.

A solution to this is, as explained in [6], [18], both peers
should send packets to random ports until a “match“ is
achieved. A match is when peer A sends a packet from port
X to peer B’s port Y, and peer B sends a packet from port

5Details of the bins and algorithm implementation are available in section
V-B



Attempt := At most 243587 packets sent
H0 = Prandom ≤ PCellularProviderAware

H1 = Prandom < PCellularProviderAware

α = 5%

NETHERLANDS Odido Lebara LycaMobile VodaFone KPN

Odido
Penetrations: 0

10
⇒ 4

10
p = 0.0433

H1 is accepted
- - - -

Lebara
Penetrations: 0

10
⇒ 6

10
p = 0.0054

H1 is accepted

Penetrations: 1
10

⇒ 1
10

p = 0.7632
H1 is rejected

- - -

LycaMobile
Penetrations: 1

10
⇒ 1

10
p = 0.7632

H1 is rejected

Penetrations: 0
10

⇒ 0
10

p = 1.0
H1 is rejected

Penetrations: 0
10

⇒ 0
10

p = 1.0
H1 is rejected

- -

VodaFone
Penetrations: 2

10
⇒ 0

10
p = 1.0

H1 is rejected

Penetrations: 1
10

⇒ 6
10

p = 0.0286
H1 is accepted

Penetrations: 1
10

⇒ 2
10

p = 0.5
H1 is rejected

Penetrations: 4
10

⇒ 3
10

p = 0.8251
H1 is rejected

-

KPN
Penetrations: 0

10
⇒ 0

10
p = 1.0

H1 is rejected

Penetrations: 0
10

⇒ 0
10

p = 1.0
H1 is rejected

Penetrations: 0
10

⇒ 0
10

p = 1.0
H1 is rejected

Penetrations: 0
10

⇒ 4
10

p=0.0433
H1 is accepted

Penetrations: 0
10

⇒ 0
10

p = 1.0
H1 is rejected

CYPRUS Cyta Epic PrimeTel CableNet -

Cyta
Penetrations: 1

10
⇒ 9

10
p = 0.0005

H1 is accepted
- - - -

Epic
Penetrations: 0

10
⇒ 2

10
p = 0.2619

H1 is rejected

Penetrations: 0
10

⇒ 0
10

p = 1.0
H1 is rejected

- - -

PrimeTel
Penetrations: 0

10
⇒ 0

10
p = 1.0

H1 is rejected

Penetrations: 0
10

⇒ 0
10

p = 1.0
H1 is rejected

Penetrations: 0
10

⇒ 0
10

p = 1.0
H1 is rejected

- -

CableNet
Penetrations: 0

10
⇒ 3

10
p = 0.1053

H1 is rejected

Penetrations: 0
10

⇒ 2
10

p = 0.2368
H1 is rejected

Penetrations: 0
10

⇒ 0
10

p = 1.0
H1 is rejected

Penetrations: 0
10

⇒ 0
10

p = 1.0
H1 is rejected

-

TABLE III: Results of the hypothesis testing on Random Birthday Attack versus Cellular Provider Aware NAT Puncturing for
ten attempts on each carrier combination and technique.

Fig. 5: Frequency of consecutive port numbers used by KPN

Y to peer A’s port X in a timeframe smaller than their NAT’s
timeout. One can understand that the probability of this match
is 1

655352 without factoring in the timeframe that this should
occur, which is almost impossible to achieve given restrictions
imposed by the providers and NATs having limited memory,
let alone it will take a lot of time.

Fig. 6: Beta Distribution fitting on Vodafone’s mappings

This can be improved using a Birthday Attack, which is an
attack built on the Birthday Paradox [19], a counterintuitive
probability theory concept that states that in a group of just 23
people, there’s a better than 50% chance that two people share
the same birthday. This might seem surprising, as intuition
might lead one to think that with 365 days in a year, it would



Fig. 7: Thousand bins histogram of the output of Odido’s
mapping strategy

Algorithm 1 Simple Birthday Attack

Require: On packet received, send an ACK
Require: On packet received, ackRcvd← True
Require: On packet received, store senders port
ackRcvd← False
msgsSent← 0
packet← createPacket(UUID)
while msgsSent < 243587 and no ackRcvd do

port← getRandomPort()
sendPacket(port, packet)

end while
if ackRcvd then

return port
else

Birthday Attack was unsuccessful
end if

require many more people to have such a high probability of
a shared birthday. The paradox arises because we’re not just
looking for a specific birthday match but any pair of people
with matching birthdays. The probability of two people not
sharing a birthday decreases as more people are added to the
group, and the likelihood of at least one pair sharing a birthday
increases significantly.

The birthday paradox can be used to reduce the number
of combinations of sender port, receiver port while main-
taining a satisfactory match probability. From the Birthday
Paradox calculator [20] and assuming NAT devices with
enough memory to keep all mappings active, one can get a
50% success rate of a match after sending 77162 packets.
For a 99.9% success rate, 243587 packets are needed. Due
to the nature of NATs (timeouts and a limited number of
mapping maintained), these probabilities are unlikely to occur.
Still, it gives a good idea of how the solution becomes more
accessible.

Using the numbers above, an Android application [7] was

developed to attempt to connect two mobile peers using 4/5G
(which is by default using a NAT) using algorithm 1.

The evaluation results of 10 runs per provider in the
Netherlands and Cyprus are shown in table III, where the
first row of each cell (on the left side of the arrow) shows
the success rate of penetrations using a randomized birthday
attack. The evaluation of the simple birthday attack did not
show encouraging results. The first conclusion that can be
derived is that whether the attack will lead to a connection
is very dependent on the cellular provider pair.

These aside, a small part of the trials resulted in at least one
successful connection, although many provider combinations
never succeeded. Even though some carrier combinations
eventually connected, it is not satisfactory since a few suc-
cessful attempts make this technique costly in terms of cellular
data used and time inefficient since coordinating two users to
start attacking at the same time is already challenging and
error-prone on its own, doing it multiple times to achieve a
single connection will deem the application hard to use for the
general public.

B. Cellular Provider Aware NAT Puncturing

After multiple hypotheses on how to improve the connectiv-
ity based on time of connection, area, etc., the most prominent
idea that we came up with is to understand the inner workings
of each NAT, i.e., discover how the mapping works, whether
there are any consistent patterns followed, etc. and then use
that to predict what the following ports that each NAT will map
the requests to. So instead of trying to connect to random ports
of the peer, make a prediction —partially based on the NAT’s
inner workings, partially random, to enable exploration and
exploitation— of what port the peer’s NAT will open. The peer
will do the same, thus potentially increasing the probability of
connecting. Attempts will be based on the Birthday Paradox
99.9% likelihood of success, i.e. an attempt is defined as at
most 243587 packets.

Using the findings of the EDA proposed in section III-D, a
new connectivity library was developed [21]. The implementa-
tion is very similar to algorithm 1 used for the simple birthday
attack, with two significant differences. Instead of choosing a
random port to send to, it selects the port based on the peer’s
port-choosing algorithm shown in table I. The algorithm for
NAT puncturing applies exploration and exploitation, meaning
that sometimes it chooses the port based on the NAT’s inner
workings and sometimes picks a random port. The specific
percentages can be seen in the PortChooser file of the
connectivity library6. This means that the peer’s provider needs
to be known to have a higher probability of connecting. The
second difference is that the phone opens five hundred random
ports and listens to them simultaneously, potentially increasing
the likelihood of choosing an open port.

This library can connect to multiple peers simultane-
ously by sending CONNECTION-INIT packets from var-

6https://github.com/OrestisKan/kotlin-birthday-connect/blob/master/src/
main/kotlin/PortChooser.kt

https://github.com/OrestisKan/kotlin-birthday-connect/blob/master/src/main/kotlin/PortChooser.kt
https://github.com/OrestisKan/kotlin-birthday-connect/blob/master/src/main/kotlin/PortChooser.kt


ious open ports and awaiting responses. Connectivity at-
tempts are made asynchronously, allowing the main app to
remain responsive during connection establishment attempts.
The peer’s ID, IP address, and port are returned asyn-
chronously upon successful connection. The library also sends
CONNECTION-MAINTENANCE packets periodically to keep
connections active based on the peer’s timeout settings. A
demo app7 was developed to evaluate the library’s success
rate against a simple random birthday attack.

Evaluation results, shown in Table III, indicate that provider-
aware NAT puncturing led to successful connections in four
additional combinations compared to the random method
in the Netherlands: Odido-Odido, Odido-Lebara, Lebara-
Lebara, and VodaFone-KPN. For Cyprus Cyta-Cyta, Cyta-
Epic, CableNet-Epic and CableNet-Cyta showed improve-
ments with the carrier-aware connectivity method but not
statistically significant except for Cyta-Cyta, which had the
highest connectivity rate out of all (9 out of 10 attempts were
successful). Notably, Cypriot carriers had almost no success-
ful connection with the random birthday attack, while there
were many more with the carrier-aware attack. Also, Odido-
Vodafone showed no successful connections, and VodaFone-
VodaFone had one less success than the random attack. Despite
these mixed results, hypothesis testing was conducted for each
provider combination to assess the statistical significance of
the observed improvements.

Hypothesis testing was conducted using Fisher’s exact test
due to the limited sample size of connectivity attempts (an at-
tempt is defined as at most 243587 packets sent) [22]. The null
hypothesis (H0) holds that the proportion of successful NAT
punctures using cellular-aware NAT puncturing is not greater
than with the random birthday attack: H0 = Prandom ≤
PCellularProviderAware. The alternative hypothesis (H1) sug-
gests that cellular-aware NAT puncturing has a higher success
rate: H1 = Prandom < PCellularProviderAware. A significance
level of 0.05 was used. If the p-value from Fisher’s test is
below this threshold, H0 is rejected. Table III presents the p-
value results, with green-highlighted cells indicating where H1

is accepted, demonstrating that cellular-aware NAT puncturing
performed statistically better than the random birthday attack
method.

The results of cellular provider-aware NAT puncturing,
although a few times showed that it improved the connectivity
rate statistically significantly, did not make it worse. Since the
inverse, Fisher’s exact test (H1 being that random birthday
attack has a higher proportion of successful results) would not
be accepted in any provider combination of the ones tested.

C. Roaming

Roaming is significantly hindering the success of a connec-
tion attempt between two peers. No definite reason is derived
on why roaming hinders connectivity since many parameters
of the NATs change when roaming. Some observations of
behavioural and parameter changes are:

7https://github.com/OrestisKan/bday-demo-app

1) Telia and MyCall Norway: Telia and MyCall of
Norway both had a 120-second timeout for connec-
tion initiation —measured in the Oslo airport. When
measured in Delft, Netherlands (both tunnelling through
LycaMobile), the timeout fell to 5 seconds and 19
seconds, respectively, showing that roaming changes the
timeout configuration.

2) LycaMobile Belgium: LycaMobile Belgium’s connec-
tion initiation timeout could not be measured in Delft,
Netherlands, as no response reached the phone after
multiple attempts. This suggests that the timeout is
extremely short, making it highly susceptible to even
minimal network delays. Such a brief timeout would
likely result in a poor user experience, indicating this
may not be standard behaviour. The findings suggest
that they also alter their timeout settings when roaming.

3) Vodaphone Netherlands: A birthday attack conducted
between two phones on the Vodafone NL network
resulted in a 40% success rate (success defined as at
least one packet received out of 243587 sent). In con-
trast, when re-measured from Cyprus (with both phones
roaming via CytaMobile-Vodafone), using identical con-
ditions and during low traffic hours, there were no
successful connections over approximately 4 hours of of
sending packets. This significant decrease in success rate
indicates that roaming introduces underlying differences
despite the appearance of similar network conditions.
Notably, the timeout and NAT types remained consistent
during roaming tests.

The initial goal of creating a matrix to show connection
times across European cellular providers was aborted due to
a near-zero success rate for birthday attacks when roaming.
Despite using validated software and various roaming config-
urations, no successful connections were made when at least
one phone was roaming.

Experiments conducted over a week showed that roaming
features significantly hinder connectivity. Although it remains
unclear if cross-provider connections are impossible, they are
unachievable within a reasonable timeframe using the current
approach. Thus, the creation of the connection time matrix is
postponed.

1) Roaming makes birthday attack-based connectivity al-
most impossible: This section compares the connection time
required between two roaming peers versus two peers on the
local Telia network in Norway. For the roaming scenario, we
assume a best-case situation where the roaming user is the sole
user of the roaming tower, with both peers in Cyprus using a
Samsung Galaxy A53 5G (SM-A536B/DS).

Three key variables are considered:

• p ≈ 2.98 ms: processing time
• l ≈ 79.20 ms: average latency from Limassol to Oslo

[23]
• P = 64511: available ports

In this scenario, each phone’s NAT (NAT A and NAT B)
creates mappings, XA and XB , with a 5-second connection

https://github.com/OrestisKan/bday-demo-app


initiation timeout. The algorithm aims to cause a collision
while these mappings are active by sending packets to ran-
dom ports. The probability of a collision is approximately
0.00000000024. The window of puncturing opportunity is
the time-to-live of a port that has yet to receive a response
to its connection requests; in this case, the time-to-live is 5
seconds minus latency. Each phone can send a packet every
p milliseconds. Hence, it can attempt about 1678 ports per
window, resulting in a collision probability of 0.0000004032
per window. In the worst case, about 2480159 windows are
needed. Since a new window is created every l milliseconds,
it equates to approximately 54.6 hours.

For the local Telia Norway network, the parameters change
to:

• p ≈ 2.98 ms: processing time
• l ≈ 23 ms: average local latency [24]
• P = 64511: available ports
With a time-to-live of around 120 seconds, each phone can

attempt about 40269 ports per window, resulting in a collision
probability of 0.00000967616. Thus, approximately 103347
windows are needed, equating to about 39.6 minutes.

These calculations demonstrate that establishing a connec-
tion while roaming takes at least 82 times longer than on the
local network.

VI. ACKNOWLEDGEMENTS

The 5G puncturing knowledge presented here shows the
feasibility of a generic provider-aware NAT solution in the
future 8. Our ideas are inspired by the IPv8 networking
technology pioneered by Dr. Stokkink9. The IPv8 networking
stack uses UDP puncturing of LAN devices as the exclusive
mechanism for network discovery. This 2018 work inspired us
to attempt 5G puncturing. The basic open-source skeleton of
DeToks was provided by user InvictusTMC on GitHub.

VII. DISCUSSION AND FUTURE WORK

This exploratory study on the inner behaviour of NATs
showed various exciting properties. First of all, no NAT
implementation is the same. Birthday attacks are inherently
unpredictable; even with complete knowledge of a carrier’s
NAT mapping function, randomness and outside influences
affect the attack’s success. For example, attempting a birthday
attack during peak network usage hours will probably lead
to a lower success rate than during peak hours. This is due
to the carriers experiencing congestion on their network and
employing some fairness protocols to allow all users to be
connected, thus limiting a user that requires high network
usage (one that performs a birthday attack, which constantly
opens up sockets in a “robotic“ way).

Another limiting factor is roaming. As explained in section
V-C, roaming significantly hindered this research since the
connectivity through birthday attacks while roaming is almost
impossible for reasons that have not yet been fully identified.

8This project was partly funded by NWO grant BLOCK.2019.004
9https://datatracker.ietf.org/doc/html/draft-pouwelse-trustchain-01

The main takeaway from this research is that connectiv-
ity through birthday attacks in a fully distributed setting is
possible in principle. Still, it is hard to accurately quantify the
success rate and its reliability. So many factors may jeopardize
it, such as NAT type of carrier, combination of carriers, time
of the day, congestion of the network and roaming.

A. Future Work
This study marks a significant step towards understanding

and enhancing connectivity in distributed artificial intelligence
(AI) deployments over 5G networks. However, several areas
for further research and development can build on the findings
presented.

1) Optimization of NAT Puncturing Techniques: Although
the provider-aware NAT puncturing strategy showed promis-
ing results, there is room for optimization. Future work
could explore more advanced algorithms that adaptively adjust
puncturing strategies based on real-time network conditions
or leverage machine learning to predict the most effective
puncturing patterns based on historical data. Additionally,
integrating these techniques into existing networking protocols
could streamline implementation and improve scalability.

2) Addressing Roaming and Mobility Challenges: The re-
search highlighted significant challenges in maintaining con-
nectivity during roaming, which remains an open problem.
Future research could focus on developing robust mechanisms
to overcome roaming’s limitations.

3) Development of Decentralized AI Applications:
The proof-of-concept decentralized social media application
demonstrated the feasibility of the proposed architecture.
Future work could expand this by developing and testing
more complex decentralized AI applications across different
domains, such as search engines or any area where there is a
monopoly or oligopoly by some companies.

4) Security and Privacy Considerations: As decentralized
AI systems gain traction, security and privacy concerns be-
come increasingly important. Future research should explore
the security implications of decentralized networks, focusing
on potential vulnerabilities introduced by NAT puncturing and
strategies to mitigate these risks.

5) Evaluation of Long-Term Performance and Scalability::
The study provided an initial assessment of the system’s
performance, but further long-term evaluations are necessary.
Future research could investigate the system’s scalability, espe-
cially under heavy network traffic or during peak usage times,
and assess its robustness in real-world deployment scenarios.
This could involve stress-testing the system in large-scale
simulations or live environments to understand its limitations
and potential failure points.

By addressing these areas, we can continue to enhance the
viability and resilience of distributed systems on 5G networks,
paving the way for broader adoption and innovation in this
field.

VIII. CONCLUSION

This thesis investigated the complex NAT configurations
employed by various European cellular providers to sup-

https://datatracker.ietf.org/doc/html/draft-pouwelse-trustchain-01


port decentralized social media applications over 5G net-
works. Through reverse engineering, it was revealed that each
provider utilizes distinct strategies for port management, rang-
ing from random allocation to the use of structured port blocks.
This configuration diversity poses challenges for true peer-to-
peer connectivity, which requires navigating these varied NAT
behaviours without relying on centralized servers.

The introduction of a provider-aware NAT puncturing strat-
egy marked a significant advancement over traditional random
methods. Empirical results demonstrated improved connection
success rates, and hypothesis testing via Fisher’s exact test
confirmed statistically significant enhancements in specific
cases, as highlighted in the results table. These outcomes af-
firm that tailoring NAT penetration techniques to the particular
configurations of different carriers can substantially enhance
connectivity performance in distributed 5G applications.

These findings highlighted the critical role of understanding
and adapting to NAT behaviour in achieving robust and reliable
decentralized communication. The feasibility of true decen-
tralized mobile applications is demonstrated by integrating
the decentralized connectivity library with DeToks, the Tribler
lab’s decentralized TikTok.

REFERENCES

[1] C. F. Jennings and F. Audet, “Network Address Translation (NAT)
Behavioral Requirements for Unicast UDP,” RFC 4787, Jan. 2007.
[Online]. Available: https://www.rfc-editor.org/info/rfc4787

[2] “Lane v. facebook, inc.” Court of Appeals, 9th Circuit, USA, p. 811,
2012, no. 10-16380.

[3] “Apple inc. v. pepper,” Supreme Court, USA, p. 1514, 2019, no. 17-204.
[4] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, “An untold story of

middleboxes in cellular networks,” Proceedings of the ACM SIGCOMM
2011 conference, Aug 2011.

[5] A. Nikravesh, D. R. Choffnes, E. Katz-Bassett, Z. M. Mao, and
M. Welsh, “Mobile network performance from user devices: A longitu-
dinal, multidimensional analysis,” in Passive and Active Measurement:
15th International Conference, PAM 2014, Los Angeles, CA, USA,
March 10-11, 2014, Proceedings 15. Springer, 2014, pp. 12–22.

[6] D. Anderson, “How nat traversal works - nat notes for nerds,”
Apr 2022. [Online]. Available: https://blog.apnic.net/2022/04/26/
how-nat-traversal-works-nat-notes-for-nerds/

[7] O. Kanaris, “NAT measurements gathering with Naive Birthday Attack
for connecting smartphones,” Dec. 2023.

[8] J. Rosenberg, C. Huitema, R. Mahy, and J. Weinberger, “STUN
- Simple Traversal of User Datagram Protocol (UDP) Through
Network Address Translators (NATs),” RFC 3489, Mar. 2003. [Online].
Available: https://www.rfc-editor.org/info/rfc3489

[9] V. Paulsamy and S. Chatterjee, “Network convergence and the
nat/firewall problems,” 2003.

[10] M. Zolotykh, “Comprehensive classification of internet background
noise,” 2020.

[11] J. Mol, J. Pouwelse, D. Epema, and H. Sips, “Free-riding, fairness, and
firewalls in p2p file-sharing,” 2008.

[12] M. Holdrege and P. Srisuresh, “IP Network Address Translator (NAT)
Terminology and Considerations,” RFC 2663, Aug. 1999. [Online].
Available: https://www.rfc-editor.org/info/rfc2663

[13] O. Kanaris, “NAT Mapping data Gathering and analysing tool,” Feb.
2023.

[14] IBM, Oct 2021. [Online]. Available: https://www.ibm.com/topics/
exploratory-data-analysis

[15] O. Kanaris, “Cellular Network NAT Reverse Engineering and
Exploration,” Apr. 2024. [Online]. Available: https://https://github.com/
OrestisKan/telecom-analysis

[16] [Online]. Available: https://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.shapiro.html

[17] J. B. McDonald and Y. J. Xu, “A generalization of the beta
distribution with applications,” Journal of Econometrics, vol. 66, no. 1,
pp. 133–152, 1995. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0304407694016124

[18] O. Kanaris and J. Pouwelse, “Mass adoption of nats: Survey and
experiments on carrier-grade nats,” 2023.

[19] K. Suzuki, D. Tonien, K. Kurosawa, and K. Toyota, “Birthday paradox
for multi-collisions,” in Information Security and Cryptology – ICISC
2006, M. S. Rhee and B. Lee, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 29–40.

[20] Fast-Reflexes, “Fast-reflexes/birthdayproblem-python: Implementation
of a solver of the generalized birthday problem in python.” [Online].
Available: https://github.com/fast-reflexes/BirthdayProblem-Python

[21] O. Kanaris, “Birthday-Attack-based smartphone connectivity kotlin li-
brary,” May 2023.

[22] A. Edwards, “Chapter 67 - r.a. fischer, statistical methods for
research workers, first edition (1925),” in Landmark Writings in
Western Mathematics 1640-1940, I. Grattan-Guinness, R. Cooke,
L. Corry, P. Crépel, and N. Guicciardini, Eds. Amsterdam:
Elsevier Science, 2005, pp. 856–870. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780444508713501480

[23] Jun 2024. [Online]. Available: https://wondernetwork.com/pings/
Limassol

[24] S. Ltd., “Telia norge as speed test,” Jun 2024. [Online]. Avail-
able: https://www.broadbandspeedchecker.co.uk/isp-directory/Norway/
telia-norge-as.html

APPENDIX

A. Orange Belgium
Analysis of 264479 mappings from North Brussels revealed

that Orange Belgium uses only 767 unique ports across three
blocks: [5632, 5887], [9984, 10239], and [25088, 25343], with
no linear selection or frequent pairs. Ports are grouped into
256-port blocks, assigned based on availability, and used non-
linearly. An exploration-exploitation strategy, similar to Dutch
Lebara and KPN, is recommended for NAT penetration.

B. LycaMobile Belgium
Analysis of 316151 mappings from North Brussels shows

that LycaMobile Belgium, like its Dutch counterpart, exhibits
no linear port increment, specific regional preferences, or
consistent port reuse, utilizing almost the entire port space.
Thus, LycaMobile’s NAT likely maps each port to a randomly
available one.

C. Orange France
Orange France uses a wide range of ports, from 1 to

65500, with 65407 unique ports mapped to and minimal reuse,
suggesting random NAT mapping. Unlike other providers,
Orange France mapped to reserved ports (1-1023).

D. SFR France
SFR France shows minimal port reuse and no linear incre-

ments, covering ports from 1025 to 65535, with 64509 unique
ports used. The dataset of 257,913 entries indicates random
NAT mapping.

E. Telia & MyCall Norway
Telia used 256 unique ports, while MyCall used 812, with

Telia selecting ports from [14592, 14847] and MyCall from
[7048, 7419] and [42188, 42623]. Ports are grouped into 256-
port blocks and used non-linearly. An exploration-exploitation
strategy similar to that used for Dutch Lebara, KPN, and
Belgian Orange is recommended.

https://www.rfc-editor.org/info/rfc4787
https://blog.apnic.net/2022/04/26/how-nat-traversal-works-nat-notes-for-nerds/
https://blog.apnic.net/2022/04/26/how-nat-traversal-works-nat-notes-for-nerds/
https://www.rfc-editor.org/info/rfc3489
https://www.rfc-editor.org/info/rfc2663
https://www.ibm.com/topics/exploratory-data-analysis
https://www.ibm.com/topics/exploratory-data-analysis
https://https://github.com/OrestisKan/telecom-analysis
https://https://github.com/OrestisKan/telecom-analysis
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html
https://www.sciencedirect.com/science/article/pii/0304407694016124
https://www.sciencedirect.com/science/article/pii/0304407694016124
https://github.com/fast-reflexes/BirthdayProblem-Python
https://www.sciencedirect.com/science/article/pii/B9780444508713501480
https://www.sciencedirect.com/science/article/pii/B9780444508713501480
https://wondernetwork.com/pings/Limassol
https://wondernetwork.com/pings/Limassol
https://www.broadbandspeedchecker.co.uk/isp-directory/Norway/telia-norge-as.html
https://www.broadbandspeedchecker.co.uk/isp-directory/Norway/telia-norge-as.html


F. Cyta & PrimeTel Cyprus

Analysis of 824220 mappings for Cyta and 655849 map-
pings for PrimeTel from Aglantzia, Nicosia, showed no linear
port increment, regional preference, or consistent port reuse.
This indicates that both NATs randomly map each port to an
available one across the entire port space.

G. Epic & CableNet Cyprus

Analysis of 681274 mappings for Epic and 608419 mapping
for CableNet from Aglantzia, Nicosia, indicates that both
group ports into 256-port blocks, with users assigned based
on availability. Ports are allocated sequentially until the block
is exhausted in the case of Epic and randomly in the case
of CableNet; then, the user is assigned to a new block. The
NAT penetration strategy is similar to Dutch Lebara, KPN,
Belgium’s Orange, and Norway’s Telia and MyCall.

H. TIM & WindTre Italy

TIM used 1008 unique ports, while WindTre used 17000;
both ports were grouped into 256-port blocks. WindTre allo-
cated ports in the groups linearly, while TIM allocated them
randomly. TI only used five consecutive groups of ports and
used them whole, while WindTre allocated users in random
groups scattered in the whole port space, and users were
allocated in a group for significantly less time in each group
of ports using WindTre compared to TIM


	Introduction
	Problem Description
	Architecture and Implementation
	NAT Types
	Determining NAT Timeouts
	Maximum Transmission Unit
	Reverse-engineering the NATs

	NAT Analysis
	Inner workings of NATs
	Nat Types
	Timeout of NATs
	Maximum Transmission Unit
	Analysis of Dutch Carriers
	Lebara Netherlands
	KPN
	LycaMobile Netherlands
	Vodafone Netherlands
	Odido


	NAT puncturing
	Simple Birthday Attack
	Cellular Provider Aware NAT Puncturing
	Roaming
	Roaming makes birthday attack-based connectivity almost impossible


	Acknowledgements
	Discussion and Future Work
	Future Work
	Optimization of NAT Puncturing Techniques
	Addressing Roaming and Mobility Challenges
	Development of Decentralized AI Applications
	Security and Privacy Considerations
	Evaluation of Long-Term Performance and Scalability:


	Conclusion
	References
	Appendix
	Orange Belgium
	LycaMobile Belgium
	Orange France
	SFR France
	Telia & MyCall Norway
	Cyta & PrimeTel Cyprus
	Epic & CableNet Cyprus
	TIM & WindTre Italy


