
2000/02/02

デプロイを任されたので、
教わった通りにデプロイしたら障害になった件
〜俺のやらかしを越えてゆけ〜
izumitomo

2024/10/25

1⽇⽬も終盤！
⻑丁場ですので

アイスブレイクから

©Techouse All Rights Reserved P4

有明といえば
ビッグサイトですよね！

©Techouse All Rights Reserved P5

ビッグサイトの思い出

● 営業イベントにSalesとして参加
○ 出展者がブースでサービスを宣伝し、

来場者は興味のあるブースで話を聞く

● 弊社サービス『クラウドハウス』
も出展
○ ⽣⾝の相⼿に対し、⾃分の⾔葉で

⾃社プロダクトを売ることに挑戦

来場者でごった返す会場

弊社ブースの様⼦

ブースの前を通りかかった⼈を
何とかブースに連れ込もうとしている⾃分

🤨🤨

🙂🙂 🙂

©Techouse All Rights Reserved P7

ビッグサイトの思い出

● あの会社はああやってサービスを訴求しているのか…

● 企業の担当者はそういう課題感を持ってるのか…

● 俺が作ったあの超⼤作機能、相⼿に全然刺さらねえ…

��

��

��

©Techouse All Rights Reserved P8

ビッグサイトの思い出

● あの会社はああやってサービスを訴求しているのか…

● 企業の担当者はそういう課題感を持ってるのか…

● 俺が作ったあの超⼤作機能、相⼿に全然刺さらねえ…

⇒これがプロダクト作りに⽋かせないinsightってやつか…！

��

��

��

©Techouse All Rights Reserved P9

ビッグサイトの思い出 〜郷に⼊っては郷に従え〜

● エンジニアも顧客の前に⽴ってみてはいかが？
○ ただし、⾝なりには気をつけよう！

○ 我々エンジニアは時にあり得ない判断を平然と

やってのける

実際にあった怖い話

©Techouse All Rights Reserved P10

ビッグサイトの思い出 〜郷に⼊っては郷に従え〜 

実際にあった怖い話

● エンジニアも顧客の前に⽴ってみてはいかが？
○ ただし、⾝なりには気をつけよう！

○ 我々エンジニアは時にあり得ない判断を平然と

やってのける

©Techouse All Rights Reserved P11

上野 友輔@izumitomo

● 株式会社Techouse

○ 去年ブースでガラポンやってた会社

● Rails歴 2年

○ 普段はRails x GraphQL で開発

● Kaigi on Rails初登壇🙌

⾃⼰紹介

https://jp.techouse.com/posts/blog/4/79

2000/02/02

デプロイしてますか？✋

2000/02/02

そのデプロイの仕組み、
説明できますか？✋

©Techouse All Rights Reserved P14

デプロイとは

● デプロイとは開発したアプリケーションを本番環境に移⾏し、

実際にユーザが利⽤できる状態にする⼀連のプロセス
○ CI/CDプロセスが整備されると⾃然と⽬が向かなくなる

○ 特に初学者はブラックボックスになりがち

○ そしてなにかとやらかす

󰷻
😑
🤯

©Techouse All Rights Reserved P15

今⽇話すこと‧持ち帰ってもらえるもの

今⽇話すこと

● デプロイで実際にやらかした失敗とその対応

持ち帰ってもらえるもの

● Railsのダウンタイムのないデプロイにおける注意点
● 初学者がデプロイに⽬を向けることのメリット

ある⽇

©Techouse All Rights Reserved P17

上野くん、デプロイ任せていい？

退職間近の先輩社員

©Techouse All Rights Reserved P18

任せてください！

©Techouse All Rights Reserved P19

あの緑のボタン押すだけですよね！

©Techouse All Rights Reserved P20

（新卒1年⽬）

©Techouse All Rights Reserved P21

……

©Techouse All Rights Reserved P22

……

©Techouse All Rights Reserved P23

そうだよ

©Techouse All Rights Reserved P24

● あっさりデプロイを託されるも、流⽯に不安だったので
どのようにデプロイされているかを軽く整理
○ RailsアプリケーションをAmazon ECS on Fargateで管理
○ GitHub Actionでスクリプトを実⾏してデプロイ
○ ゼロダウンタイムデプロイでサービスは閉塞しない

©Techouse All Rights Reserved P25

デプロイの流れ

Docker Build
ECR push migration実⾏ コンテナの更新mainにMerge

©Techouse All Rights Reserved P26

デプロイの流れ

migrationが実⾏されてからECSコンテナの更新が完了するまでの間は、
DBの変更だけ反映され、アプリケーションコードは古いままとなる
⇒テーブルやカラムのDELETEやRENAMEなどは要注意

Docker Build
ECR push migration実⾏ コンテナの更新mainにMerge

 DBの変更のみ反映

©Techouse All Rights Reserved P27

DBとアプリケーション間の不整合に
注意すればいいってことか🤔

©Techouse All Rights Reserved P28

● さっそくデプロイの機会が訪れる
○ ある機能開発でDBの変更のみを先に本番に反映しておくことに

■ テーブルにカラムを追加するだけの変更で追加したカラムに

依存するアプリケーションコードは存在しない

©Techouse All Rights Reserved P29

 

 

👆

©Techouse All Rights Reserved P30

 

 

👆無事にデプロイ完了🙌

©Techouse All Rights Reserved P31

 

 

👆無事にデプロイ完了🙌 

©Techouse All Rights Reserved P32

デプロイ直後、サービスの例外通知⽤のslackチャンネル
に1件の例外が通知された

©Techouse All Rights Reserved P33

デプロイ直後、サービスの例外通知⽤のslackチャンネル
に1件の例外が通知された

なにこれ？🤔

©Techouse All Rights Reserved P34

ん？🤔

©Techouse All Rights Reserved P35

ん？🤔 

©Techouse All Rights Reserved P36

ん？🤔 

死ぬほど焦る
😱😱😱

©Techouse All Rights Reserved P37

退職間近の先輩社員

焦るな！！
まずは落ち着いて状況整理から！

©Techouse All Rights Reserved P38

原因調査をしたくなるのもわかるが
まずは関係部署に連絡と顧客影響を調査！

©Techouse All Rights Reserved P39

了解です…申し訳ないです…

©Techouse All Rights Reserved P40

影響範囲の調査

● 例外は全てSidekiqの⾮同期処理の中で発⽣していた
○ ジョブのリトライが実⾏され、リトライ処理で成功していた
○ 結果として幸いにもユーザ影響はなかった

©Techouse All Rights Reserved P41

誰にでも失敗はあるから気にするな！
いい経験だから後で原因調査するといいよ！

ためになるアドバイスを残し、先輩は退職

©Techouse All Rights Reserved P42

頼りになる先輩  

誰にでも失敗はあるから気にするな！  
いい経験だから後で原因調査するといいよ！  

ためになるアドバイスを残し、先輩は退職

数⽇後

©Techouse All Rights Reserved P43

原因解明へ

この前デプロイで起こったあの問題
ちゃんと調べてみるか🤔

©Techouse All Rights Reserved P44

発⽣した例外クラス：ActiveRecord::PreparedStatementCacheExpired

メッセージ：ERROR: cached plan must not change result type

…PreparedStatementって何？

©Techouse All Rights Reserved P45

PreparedStatementを理解するにあたって以下の⽤語を
軽くおさらい

● プレースホルダ
● バインド

©Techouse All Rights Reserved P46

周辺知識の整理

Railsコンソールで User.find(1)を実⾏すると以下のログが出る

$1,$2という特殊な記号を⽤いて動的に値を割り当てているが、
この記号をプレースホルダと呼び、値の割り当てをバインドと呼ぶ

©Techouse All Rights Reserved P47

周辺知識の整理

● バインドのタイミングに関して2つの⼿法がある
○ 静的プレースホルダ

■ データベース側でバインドする

○ 動的プレースホルダ
■ アプリケーション側でバインドする

©Techouse All Rights Reserved P48

周辺知識の整理

● バインドのタイミングに関して2つの⼿法がある
○ 静的プレースホルダ

■ データベース側でバインドする
■ PreparedStatementに関係があるのはこっち

○ 動的プレースホルダ
■ アプリケーション側でバインドする

©Techouse All Rights Reserved P49

静的プレースホルダのバインドの流れ

1. アプリケーション側は以下の2つを送る
a. プレースホルダが⼊ったSQL⽂

b. 実際のパラメータの値

2. データベース側はバインドを⾏い、SQL⽂を実⾏する

SELECT * from users where id = $1 AND LIMIT $2  

$1 = 1, $2 = 1

SELECT * from users where id = 1 AND LIMIT $2 1  1 

©Techouse All Rights Reserved P50

1. アプリケーション側は以下の2つを送る
a. プレースホルダが⼊ったSQL⽂

SQL⽂の構造が確定しているのでSQL実⾏前に構⽂解析ができる

⇒構⽂解析済みのSQL⽂をPreparedStatementとして、コネクションが 
切れるまで保持する

b. 実際のパラメータの値

2. データベース側はバインドを⾏い、SQL⽂を実⾏する

SELECT * from users where id = $1 AND LIMIT $2  

静的プレースホルダのバインドの流れ

©Techouse All Rights Reserved P51

PreparedStatementについて

● PREPARE⽂で作成し、EXECUTE⽂で実⾏できる

 EXECUTE⽂の実⾏結果 
（SELECT name FROM users where id = 1 LIMIT 1 が実⾏される） 

PREPARE⽂の実⾏結果
（返り値はPREPARE）

©Techouse All Rights Reserved P52

 

 

検証環境でPreparedStatementの
中⾝を確認してみるか

©Techouse All Rights Reserved P53

● 『クラウドハウス』シリーズはDBにPostgreSQLを採⽤
○ PostgreSQLにはPrepatedStatementを確認できる

pg_prepared_statementsというシステムビューがある

● 検証環境のコンテナの中に⼊ってRailsコンソールから確認
してみる

©Techouse All Rights Reserved P54

Railsコンソールからpg_prepared_statementsを覗いてみた結果

©Techouse All Rights Reserved P55

⾒覚えのある単語

発⽣した例外クラス：ActiveRecord::PreparedStatementCacheExpired
メッセージ：ERROR: cached plan must not change result type

©Techouse All Rights Reserved P56

result_typeはstatementをEXECUTEした時の結果の型が⼊る

websitesテーブルのスキーマ（自動生成）

©Techouse All Rights Reserved P57

 

 

なるほど…そういうことか😮

©Techouse All Rights Reserved P58

1. アプリケーション側は以下の2つを送る
a. プレースホルダが⼊ったSQL⽂

⇒構⽂解析済みのSQL⽂をPreparedStatementとして、コネクションが 
切れるまで保持する

b. 実際のパラメータの値

2. データベース側はバインドを⾏い、SQL⽂を実⾏する

SELECT * from users where id = $1 AND LIMIT $2  

再掲：静的プレースホルダのバインドの流れ

©Techouse All Rights Reserved P59

再掲：整理したデプロイの流れ

migrationの実⾏からコンテナの更新で古いコンテナが停⽌するまでの間、
不整合が⽣まれる

Docker Build
ECR push migration実⾏ コンテナの更新mainにMerge

 DBの変更のみ反映

©Techouse All Rights Reserved P60

再掲：整理したデプロイの流れ

migrationの実⾏からコンテナの更新で古いコンテナが停⽌するまでの間、
不整合が⽣まれる

⇒古いコンテナのDBコネクションには、migration実⾏前に作られた
 古いPreparedStatementが残っている

Docker Build
ECR push migration実⾏ コンテナの更新mainにMerge

 DBの変更のみ反映

©Techouse All Rights Reserved P61

古いPreparedStatement

テーブルにカラムが追加され、PreparedStatementが古くなると

● 構⽂解析時に確定したresult_types
● 実際にstatementを実⾏して返ってきた結果の型

が異なる状態に陥ってしまう

©Techouse All Rights Reserved P62

古いPreparedStatement

テーブルにカラムが追加され、PreparedStatementが古くなると

● 構⽂解析時に確定したresult_types
● 実際にstatementを実⾏して返ってきた結果の型

が異なる状態に陥ってしまう

発⽣した例外クラス：ActiveRecord::PreparedStatementCacheExpired

メッセージ：ERROR: cached plan must not change result type

©Techouse All Rights Reserved P63

 

 

ざっくり何が起こったか検討が付いたし
ソースコードを読みに⾏くか🧐

©Techouse All Rights Reserved P64

Railsの中を読む

● 発⽣した例外を元に調べるとすぐに該当のコードが⾒つかった

● トランザクションの中のみraiseするようになっている
○ トランザクション外だとstatementを削除してリトライする
○ トランザクション内ではPostgresql仕様上、リトライで解消できない

activerecord/lib/active_record/connection_adapters/postgresql_adapter.rb（7.2-stable） 

https://github.com/rails/rails/blob/7-2-stable/activerecord/lib/active_record/connection_adapters/postgresql_adapter.rb#L902-L933

©Techouse All Rights Reserved P65

ローカルで再現

● ソースコードをもとに、ローカルで簡単に例外を再現できた
○ 2つのターミナルを準備してそれぞれ別々に動かす

■ RailsコンソールからSQLを実⾏するターミナル
■ カラム追加のmigrationを実⾏するターミナル

©Techouse All Rights Reserved P66

対応策

Rails7以降、この状況を回避するために
config.active_record.enumerate_columns_in_select_statements

というオプションが追加されている

©Techouse All Rights Reserved P67

これをTRUEにすると、ワイルドカードクエリを回避する

config.active_record.enumerate_columns_in_select_statements = FALSE

config.active_record.enumerate_columns_in_select_statements = TRUE

カラム追加を⾏ってもresult_typesの不⼀致が発⽣しない

対応策

©Techouse All Rights Reserved P68

今回の事象について理解できたが、
スキーマを変更するデプロイは今までも⾏われていたはず

⇒このやらかしは初めて起こったのか？

©Techouse All Rights Reserved P69

今回の事象について理解できたが、  

スキーマを変更するデプロイは今までも行われていたはず  

 

⇒このやらかしはこれが本当に初めてだったのか？  

 

調べた結果

©Techouse All Rights Reserved P70

過去に起きてたけど
無視されてた…

©Techouse All Rights Reserved P71

©Techouse All Rights Reserved P72

先輩の優しさに気付く

ためになるタスクを残してくれた
先輩の優しさに感謝🥰

©Techouse All Rights Reserved P73

余談：MySQLについて

● RailsのPreparedStatementのデフォルトの利⽤設定について、

MySQLは利⽤しない設定になっている

● MySQLでもRails7.2以降からデフォルトで利⽤する動きがあった
○ しかしバグ報告により現在もデフォルトは利⽤しない設定となっている

https://github.com/rails/rails/issues/43005

©Techouse All Rights Reserved P74

そして気付く  

以前から起こってたのでは ……？ 

時は流れて

©Techouse All Rights Reserved P75

 

 

デプロイ慣れた😘

©Techouse All Rights Reserved P76

若かりし頃 

⼀つ⼀つ丁寧にデプロイしていたあの頃も今は昔

● DBとアプリケーション間の不整合は起きるか？
● 仮に起きる場合、どのような問題が発⽣する？
● その場合の対処は何が考えられる？
● …

©Techouse All Rights Reserved P77

流れるようにMergeボタンを押していく⽇々

現在

👆 🫰

🫰

🤟

🤟👆

©Techouse All Rights Reserved P78

現在 

流れるようにMergeボタンを押していく日々  

 

  �� ��

���� ��

��ある⽇

©Techouse All Rights Reserved P79

「エクスポートが実⾏中のまま終わらない」
と先ほど顧客から連絡が来ました…

©Techouse All Rights Reserved P80

再度エクスポートを⾏うと
今度は成功したとのことです

©Techouse All Rights Reserved P81

原因わかりますか？

©Techouse All Rights Reserved P82

 

 

うーん…ちょっと調べてみますね

©Techouse All Rights Reserved P83

 

 

（エクスポート機能は初期に突貫で作られた
らしいので、多分バグがありそう…🤔）

©Techouse All Rights Reserved P84

 

 

（やれやれ…先⼈のバグを直してやるか😘）

©Techouse All Rights Reserved P85

現状把握

● エクスポートは⾮同期処理で⾏われる
○ ⾮同期処理はSidekiqで⾏っている
○ エクスポートのジョブの状態や開始‧完了時刻はDBに保存

©Techouse All Rights Reserved P86

現状把握

● 調べてみると確かに顧客のエクスポートのジョブのステータス
が「実⾏中」のまま数時間が経過していた
○ 本来であればエクスポートは⻑くても数分で終わる
○ 既にそのジョブはSidekiqのWorker内に存在しない

■ ジョブの実⾏状況を監視するSidekiq Web UIというツールがある

https://github.com/sidekiq/sidekiq/wiki/Monitoring

©Techouse All Rights Reserved P87

現状把握 

● ログをもとにエクスポート処理のコードを読みながら
原因を探っていく
○ しかし原因がわからない…

■ ローカルで⾊々動かしてみても特に何も得られず
■ 異常終了しているのに例外を検知できていないのが謎

©Techouse All Rights Reserved P88

ふと、異常終了したジョブを眺めていると
ある事実に気づいた

©Techouse All Rights Reserved P89

 

 

そういや、このジョブの開始直後に
俺デプロイしたな…😶

©Techouse All Rights Reserved P90

 

 

もしかしてこれ…
デプロイした俺のせい？🫣

©Techouse All Rights Reserved P91

 

 

検証環境で試してみるか

©Techouse All Rights Reserved P92

検証環境でエクスポートの⾮同期処理の実⾏中にデプロイを
⾛らせてみる…

©Techouse All Rights Reserved P93

検証環境でエクスポートの⾮同期処理の実⾏中にデプロイを
⾛らせてみる…

⇒「実⾏中」のまま⽌まった
状況の再現に成功（嬉しいけど嬉しくはない）

©Techouse All Rights Reserved P94

検証環境でエクスポートの⾮同期処理の実⾏中にデプロイを
⾛らせてみる…

⇒「実⾏中」のまま⽌まった
状況の再現に成功（嬉しいけど嬉しくはない）

この瞬間、エンジニアとしての直感が働いた

©Techouse All Rights Reserved P95

 

 

⼀応…他の⾮同期処理も⾒とくか🤔

©Techouse All Rights Reserved P96

インポートの処理中にデプロイしてみる

©Techouse All Rights Reserved P97

インポートの処理中にデプロイしてみる

⇒「実⾏中」のまま⽌まる

©Techouse All Rights Reserved P98

インポートの処理中にデプロイしてみる

⇒「実⾏中」のまま⽌まる

メール送信の処理中にデプロイしてみる

©Techouse All Rights Reserved P99

インポートの処理中にデプロイしてみる

⇒「実⾏中」のまま⽌まる

メール送信の処理中にデプロイしてみる

⇒「実⾏中」のまま⽌まる

©Techouse All Rights Reserved P100

インポートの処理中にデプロイしてみる

⇒「実⾏中」のまま⽌まる

メール送信の処理中にデプロイしてみる

⇒「実⾏中」のまま⽌まる

SMS送信の処理中にデプロイしてみる

©Techouse All Rights Reserved P101

インポートの処理中にデプロイしてみる

⇒「実⾏中」のまま⽌まる

メール送信の処理中にデプロイしてみる

⇒「実⾏中」のまま⽌まる

SMS送信の処理中にデプロイしてみる

⇒「実⾏中」のまま⽌まる

©Techouse All Rights Reserved P102

気付いた

 

 

デプロイのたびに
ジョブ消し⾶んでる🚀🚀

©Techouse All Rights Reserved P103

気付いた 

 

 

デプロイのたびに  
ジョブ消し飛んでる🚀 😱⼤障害😱

©Techouse All Rights Reserved P104

調査開始

● Sidekiqのドキュメントとソースコードを読み、実⾏中のジョ
ブがあるときにどのようにSidekiqが停⽌するかを理解
○ SIGTERMシグナルが重要な役割を果たしている

©Techouse All Rights Reserved P105

ここで⼀旦、シグナルのおさらい

©Techouse All Rights Reserved P106

おさらい：シグナル

● シグナルとはソフトウェア割り込みの⼀種
○ 特定のイベント発⽣時にプロセスに通知するための仕組み
○ Ctrl-CやCtrl-Zで常⽇頃お世話になっているアレ

● SIGTERMシグナルはプロセスの安全な終了のために使われる
○ SIGTERM受信時の動作はプログラムに委ねられている

■ 例えばプロセスの強制終了を伝えるSIGKILLを受信した場合、
制御はOSに委ねられるためプログラムは関与できない

©Techouse All Rights Reserved P107

おさらい：シグナル

sleep中のプロセスにSIGTERMを送ってみる

©Techouse All Rights Reserved P108

おさらい：シグナル

sleepしているプロセスのID（PID）をpstreeで特定してみる

PID25988のプロセスがsleepを実⾏しているので、このプロセス
に対してSIGTERMを送ればよい

©Techouse All Rights Reserved P109

おさらい：シグナル

別のターミナルから
kill -SIGTERM 25988 
を実⾏してSIGTERMを送ると、sleepは以下のように終了する

©Techouse All Rights Reserved P110

● SidekiqはSIGTERMを受け取ると、現在実⾏中のジョブの
終了を待つquietという状態に移⾏する
○ quietの時、新しいジョブの実⾏は受け付けない
○ 実⾏中のジョブの終了を待つ猶予時間は調整可能

Sidekiqの仕様

©Techouse All Rights Reserved P111
quiet

ジョブ実⾏中

キュー

SIGTERM

キュー

もうすぐ⾃分停⽌するんで
新規ジョブは受け付けません

©Techouse All Rights Reserved P112

Sidekiqの仕様

● 猶予時間が経っても実⾏中のジョブが存在する場合、その
ジョブをキューに押し戻す
○ 新たにSidekiqコンテナが⽴ち上がると、キューに戻されたそ

のジョブを再び実⾏する

©Techouse All Rights Reserved P113

少し待ってみても
ジョブが終わらん…

キュー

キューに戻して
未来の⾃分に処理を任せよう

quiet

キュー

プロセス終了

©Techouse All Rights Reserved P114

 

 

現状、明らかに仕様と
異なる挙動をしている…

©Techouse All Rights Reserved P115

 

 

まずはローカル環境で
ジョブの消失を観察するか🧐

©Techouse All Rights Reserved P116

Docker環境でSidekiqコンテナにSIGTERMを送ってみる…

©Techouse All Rights Reserved P117

Docker環境でSidekiqコンテナにSIGTERMを送ってみる…

⇒ジョブがキューに押し戻された

状況の再現に失敗（嬉しくないけど嬉しい）

©Techouse All Rights Reserved P118

Docker環境でSidekiqコンテナにSIGTERMを送ってみる…

⇒ジョブがキューに押し戻された

状況の再現に失敗（嬉しくないけど嬉しい）

ローカルで発⽣しないということは……？

©Techouse All Rights Reserved P119

 

 

ECS周りの設定が怪しい…！🤩

©Techouse All Rights Reserved P120

 

 

（ECS全然わからん😆）

©Techouse All Rights Reserved P121

● ECSのドキュメントを読んでコンテナライフサイクルを把握
○ 停⽌時にコンテナのエントリプロセスはSIGTERMを受け取る
○ SIGTERM受信から⼀定の猶予時間の後にSIGKILLが⾶んでくる

■ この猶予時間は調整可能

○

©Techouse All Rights Reserved P122

● つまりアプリケーションはSIGTERMを受け取ってからSIGKILL
が来るまでに処理を正常に終了させるように必要がある
○ SidekiqではSIGTERMを受け取るとquietに移⾏して所定の時間

だけ処理が完了するのを待つ

©Techouse All Rights Reserved P123

● つまりアプリケーションはSIGTERMを受け取ってからSIGKILL
が来るまでに処理を正常に終了させるように必要がある
○ SidekiqではSIGTERMを受け取るとquietに移⾏して所定の時間

だけ処理が完了するのを待つ
○ この待っている間にSIGKILLが⾶んできたらジョブが消える！

■ SidekiqとECSの設定を⾒直す

©Techouse All Rights Reserved P124

● しかし設定は正しかった

○ Sidekiqは25秒待つ（デフォルト）

○ ECSの⽅は120秒待つ

©Techouse All Rights Reserved P125

あてが外れたので、次はローカルと検証環境のSidekiq
Web UIをじっくり⾒⽐べていくことに

©Techouse All Rights Reserved P126

Sidekiq Web UIの画⾯

©Techouse All Rights Reserved P127

ローカル

以下の稼働中のSidekiqコンテナに対し、SIGTERMを送ってみる

稼働中のSidekiqプロセス

©Techouse All Rights Reserved P128

ローカル

SIGTERMを送るとquietに移⾏した

初期状態

SIGTERMを送った後

©Techouse All Rights Reserved P129

ローカル

そして猶予時間が経過すると停⽌した

初期状態 SIGTERMを送った後 時間経過後

©Techouse All Rights Reserved P130

検証環境

検証環境で同様にコンテナを停⽌させてみる

初期状態

©Techouse All Rights Reserved P131

検証環境

SidekiqコンテナがSIGTERMを受け取るはずの状態になっても
なぜかquietにならない…

初期状態

SIGTERMを受け取るはずの状態

©Techouse All Rights Reserved P132

検証環境

そしてそのまま消えた

初期状態 SIGTERMを受け取るはずの状態 ECSタスクが停⽌

©Techouse All Rights Reserved P133

 

 

SidekiqにSIGTERM到達してない🫣

©Techouse All Rights Reserved P134

● SIGTERMを受け取るエントリプロセスがどこに
なっているのかを調べる
○ ECSのタスク定義に記載されているcommandフィールド

がエントリプロセスだと判明
■ DockerfileとECSタスク定義の書き⽅次第で変わる

©Techouse All Rights Reserved P135

  
commandフィールド startup_sidekiq.shの中⾝

©Techouse All Rights Reserved P136

  
commandフィールド startup_sidekiq.shの中⾝

ぱっと⾒、正しそうだが…🤔

©Techouse All Rights Reserved P137

● プロセスツリーを書き出してみる（PIDは適当）

©Techouse All Rights Reserved P138

● プロセスツリーを書き出してみる（PIDは適当）

● PID14がエントリプロセスとなる

©Techouse All Rights Reserved P139

● プロセスツリーを書き出してみる（PIDは適当）

bashにSIGTERM送ってるな🫣

©Techouse All Rights Reserved P140

対応

● Sidekiqをエントリプロセスとして扱えばよいのでexecを使う

©Techouse All Rights Reserved P141

● execは今のシェルプロセスを指定したプログラムに置き換える
○ 詳細は割愛するが、以下のように置き換わる

©Techouse All Rights Reserved P142

execを付けた状態で⾮同期処理の実⾏中にデプロイしてみる…

©Techouse All Rights Reserved P143

execを付けた状態で⾮同期処理の実⾏中にデプロイしてみる…

⇒ジョブがキューに押し戻された！

©Techouse All Rights Reserved P144

execを付けた状態で⾮同期処理の実⾏中にデプロイしてみる…

⇒ジョブがキューに押し戻された！

無事解決できたが、再びエンジニアの直感が働く

©Techouse All Rights Reserved P145

 

 

インフラ周りの設定って
使い回されがちだよな…🤔

©Techouse All Rights Reserved P146

 

 

他のECSタスクも⼀応
確認しておくか

©Techouse All Rights Reserved P147

 

 

他のECSタスクも一応  
確認しておくか  その結果

©Techouse All Rights Reserved P148

● 全部同じミスしてた…
○ SidekiqだけでなくPumaやgRPCなど、プロダクト内の全

ECSコンテナが同じやらかしをしていた

● というわけであわせて⼀気に修正

©Techouse All Rights Reserved P149

● 今度こそ⼀件落着だが、三度エンジニアの直感が働く
○ というか途中で流⽯に気づいたけど、⾒ないふりしてた

©Techouse All Rights Reserved P150

 

 

インフラ周りの設定って
使い回されがちだよな（2回⽬）

©Techouse All Rights Reserved P151

 

 

他の事業部…⼤丈夫だよな？

©Techouse All Rights Reserved P152

 

 

他の事業部…大丈夫だよな？  その結果

©Techouse All Rights Reserved P153

驚愕の事実

全社で同じミスしてると気付く
（bashにシグナル送ってた）

©Techouse All Rights Reserved P154

驚愕の事実

全社で同じミスしてると気付く
（bashにシグナル送ってた）
その結果

©Techouse All Rights Reserved P155

「もしかして…俺が浅いだけか？」

と急に不安になる新卒1年⽬

©Techouse All Rights Reserved P156

「もしかして…俺が浅いだけか？」

と急に不安になる新卒1年⽬
その結果

©Techouse All Rights Reserved P157

bashにシグナルを送る

深遠な意味を考え始める

©Techouse All Rights Reserved P158

他の事業部のDevに聞いてみることに

©Techouse All Rights Reserved P159

 

 

あの…デプロイ時にSidekiqの実⾏中の
ジョブ、消えてたりしませんか…？

他事業部のDev

©Techouse All Rights Reserved P160

 

 

いや、特に問題ないよ？

他事業部のDev

©Techouse All Rights Reserved P161

 

 

あれっ…そうですか
（やっぱ俺がなんか⾒落としてるのか…）

©Techouse All Rights Reserved P162

 

 
だって実⾏中のジョブがないか、

毎回チェックしてデプロイしてるからね

©Techouse All Rights Reserved P163

 

  🤯🤯🤯 

©Techouse All Rights Reserved P164

● 運⽤でたまたま回避できていた
○ Sidekiq Web UIを使えばプロセスをquietにできるので

可能ではある

● 全事業部で修正を進めていくことになった

©Techouse All Rights Reserved P165

余談：技術責任者に報告

● ECSのタスク定義というインフラ周りの設定に⼿を⼊れたこと
もあり、今回の件を技術責任者のYさんに伝えておくことに

○ Yさんは社内の全プロダクトをインフラ⾯から⼿厚くサポート

○ 過去にYさんがECSタスクのオートスケールイン‧スケールアウト
でGraceful Shutdownを導⼊しようとしていた
■ もしかしたら今回の件が役に⽴つかもしれない

©Techouse All Rights Reserved P166

 

 

以前ECSでGraceful Shutdownを導⼊
しようとしてたと思うんですけど…

Yさん

©Techouse All Rights Reserved P167

 

 

Yさん

そうなんだけどね、
上⼿く設定がハマってないんだよ…！

©Techouse All Rights Reserved P168

 

 

あの…それもしかしたら

©Techouse All Rights Reserved P169

 

  現状、原因としてはいくつか考えられて、
まずECSのstopTimeoutが短すぎるという可能性、

そしてそもそものシグナルハンドラにバグがある厄介な
パターン、別の可能性として間に挟まっているCDNのタ

イムアウトが考慮できてないのもありえて…
……だから………かもしれないし……

©Techouse All Rights Reserved P170

 

  現状、原因としてはいくつか考えられて、
まずECSのstopTimeoutが短すぎるという可能性、

そしてそもそものシグナルハンドラにバグがある厄介な
パターン、別の可能性として間に挟まっているCDNのタ

イムアウトが考慮できてないのもありえて…
……だから………かもしれないし……

そもそもSIGTERM届いてないかもです…

©Techouse All Rights Reserved P171

 

 

……

©Techouse All Rights Reserved P172

 

 

……

©Techouse All Rights Reserved P173

 

 

…まじで？

©Techouse All Rights Reserved P174

 

 

…まじで？

誰にでも⾒落としはあるので、臆せず意⾒することは⼤事

©Techouse All Rights Reserved P175

まとめ（初学者向け）

● デプロイ業務とやらかしを通じて多くの学びを得た
○ 普段の開発業務では関⼼すら持てていなかった技術領域に

デプロイという⾃然な切り⼝から⾶び込むことができた
○ 当時まだ駆け出しだった⾃分にとって⼤きな財産になった

● 今⼀度デプロイに⽬を向けてみてはいかが？

©Techouse All Rights Reserved P176

まとめ（初学者をフォローするミドル層向け）

● 若⼿の成⻑を促すために、時には⾝の丈以上の責任ある仕事を
託す勇気と、⼼置きなくチャレンジできる環境づくりが⼤切
○ 全⼒のチャレンジにはやらかしがつきもの

■ でもそのやらかしは必ず彼らの糧になる

○ 転ばぬ先の杖というより、転んだ先の杖を⽤意しておく
■ 当時の⾃分にデプロイを託すというチームの決断の意味と、

その環境を整えてくれていたことを後になって気付いた

©Techouse All Rights Reserved P177

謝辞

● デプロイを託してくれた先輩含む開発チーム

● 何度も技術的アドバイスをくれたYさん
● 全社のやらかしを晒す暴挙を許してくれた会社

皆様に感謝🥰

©Techouse All Rights Reserved P178

ご清聴ありがとうございました

デプロイを任されたので、
教わった通りにデプロイしたら障害になった件

〜俺 俺たちのやらかしを越えてゆけ〜

Fin.

＝

