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Abstract

FAx86: An Open-Source FPGA-Accelerated x86 Full-System Emulator

Elias El Ferezli

Master of Applied Science (M.A.Sc.)

Graduate Department of Electrical and Computer Engineering

University of Toronto

2011

This thesis presents FAx86, a hardware/software full-system emulator of commodity

computer systems using x86 processors. FAx86 is based upon the open-source IA-32

full-system simulator Bochs and is implemented over a single Virtex-5 FPGA. Our first

prototype uses an embedded PowerPC to run the software portion of Bochs and off-

loads the instruction decoding function to a low-cost hardware decoder since instruction

decode was measured to be the most time consuming part of the software-only emulation.

Instruction decoding for x86 architectures is non-trivial due to their variable length and

instruction encoding format. The decoder requires only 3% of the total LUTs and 5% of

the BRAMs of the FPGA’s resources making the design feasible to replicate for many-

core emulator implementations. FAx86 prototype boots Linux Debian version 2.6 and

runs SPEC CPU 2006 benchmarks. FAx86 improves simulation performance over the

default Bochs by 5 to 9% depending on the workload.
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Chapter 1

Introduction

1.1 Motivation

Full-system simulators allow the exploration of different architectural designs, as well as

advanced software development for such architectures. Fast, flexible, and accurate full-

system simulators are necessary for exploring the often vast design spaces and are essential

when simulation is used to aid software development for current or planned designs.

Software simulators are flexible and easy to modify, however, their speed quickly decreases

with the level of detail and accuracy of modeling or when more instrumentation features

are introduced. Software simulation speed also suffers with the number of emulated cores

since a sequential host is simulating parallel processes. This bottleneck in simulation

speed makes it hard for software simulators to scale with the current multi-core system

requirements.

At the other extreme of software-only simulation, are hardware-only simulators which

are implemented in field programmable gate array or FPGA chips. Today, FPGAs are

large and fast enough to provide a way of improving performance and hence capability

over software-only simulators but not without a price. Hardware-only simulators are

less flexible than their counterpart. While the RTL implementation can model timing

1
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behaviors accurately, modifying the source code for different designs may prove to be

a cumbersome and difficult task. Even after modifying the hardware code, the tedious

process of synthesizing the design is too slow since FPGA CAD tools are still somewhat

primitive. The impact of slow design time, and verification, increases the time-to-market.

As discussed in Chapter 2, hardware-only simulators do not scale well when simulating

large systems and large structures such as multi-megabyte caches since the resources

required to simulate such systems to simulated are often too expensive.

An alternative to hardware-only or software-only simulators is hybrid simulation, in

which only a sufficient portion of the system is emulated in hardware. Hybrid simu-

lators are especially attractive when only a subset of the total system simulation code

contributes to most of the simulation time. Moving those parts to hardware can boost

performance at a low cost while not sacrificing flexibility much. Provided that hardware

simulation acceleration units are of low cost, it also becomes possible to replicate or

multiplex them facilitating many-core system simulation. The complex parts of system

simulation and those that are rarely used can still be emulated in software. Hybrid sim-

ulation is not free of trade-offs. For example, the latency and bandwidth between the

software and the hardware portions of such simulators limits the granularity at which

the two parts can communicate and dictates the performance improvements that may be

possible.

1.2 Objective

We present the progress made in building FAx86, the open-source FPGA-Accelerated

x86 full-system functional simulator. The goal with FAx86 is to port portions of a soft-

ware simulator onto hardware, facilitating faster simulation speed and the simulation of

many-core systems based on the x86 family of processors. The vast majority of today’s

workloads runs on x86 processor-based systems. FAx86 is based on Bochs, a portable
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open-source IA-32 personal computer simulator written entirely in C++. Bochs simu-

lates modern x86 CPU architectures, runs most operating systems including MS-DOS,

Linux, and Microsoft Windows, and is compatible across various platforms ranging from

a regular desktop machine, to an embedded PowerPC processor.

FAx86’s architecture uses an embedded PowerPC to run the software portion and

implements hardware accelerators, which appear as a soft co-processor. The PowerPC

assigns tasks to the co-processor and communicates with it using a low latency, high

bandwidth interface. The infrastructure allows arbitrary parts of the simulator to be off-

loaded to hardware accelerators. Ultimately, FAx86 aims at accelerating in hardware as

much of the x86 system as possible and necessary. Complicated, rarely used functionality

is to be simulated in software. Common actions that map well on hardware, are to be

simulated in hardware. Given the complexity of the targeted systems, this work presents

the first step in migrating commonly used functions in hardware. In particular, an x86

instruction decoder is presented. Instruction decoding was measured to be the most

time consuming portion of software simulation. In addition, x86 instruction decoding

is complex due to the use of variable length encoding. The presented decoder is of low

cost and high performance. It is pipelined, and can be extended to support decoding for

multicore simulation through time multiplexing. It can also be easily replicated. The

hardware decoder can decode the regular one-byte opcodes, extended opcode groups 1 to

16, SEE types and floating point 16/32 bit x86 instructions. The decoder also supports

2-byte opcodes. Although it is possible to include 3-byte opcodes but we chose to omit

it since the benchmarks do not require such instructions.

1.3 Contributions

The contributions of this work are:

• A Low-cost and modular x86 instruction decoder
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• An x86 hybrid simulator running on a single FPGA chip

• An Evaluation of FAx86

The current prototype of FAx86 decodes over 90% of x86 instructions and boots Linux

Debian version 2.6. The decoder offers a trade-off between coverage, latency and area.

The performance is evaluated by running several of the SPEC CPU 2006 benchmarks.

FAx86 improves simulation performance over the default Bochs configuration by 5 to

9% depending on the workload. An analysis is given to discuss the reasons behind the

speedup. The simulator will be available online as an open-source code as of Febru-

ary 2011. The website will also provide documentation and guidelines on running the

simulator along with some troubleshooting tips.

1.4 Thesis Structure

The remaining of this thesis proceeds as follows: Chapter 2 overviews the x86 instruction

formats and provides a summary of Bochs simulator. The chapter also includes previous

work in simulation acceleration. Chapter 3 discusses our design and validation method-

ology. Chapter 4 goes over the Fax86’s architecture, the software/hardware interface

and the x86 hardware decoder. In chapter 5 we report the performance of FAx86 and

compare it to other hybrid simulators. Chapter 6 concludes the thesis with a summary

and discusses future work plans.



Chapter 2

Background and Related Work

This chapter serves as the basis needed in order to understand our design choices and

the relevance of our work. FAx86 uses an x86 hardware decoder in conjunction with

a PowerPC. In order to understand why an x86 instruction decoder is non-trivial, we

first introduce the reader to x86 instruction formats and reveal how complex it can be to

decode it as opposed to fixed-length RISC instructions. Then in the following section, we

discuss previous work, in the area of simulation acceleration that influenced our approach.

INSTRUCTION

PREFIXES
OPCODE MODR/M SIB DISPLACEMENT IMMEDIATE

up to 4 prefixes

(optional)

1, 2, or 3 bytes 1 byte

(if required)

1 byte

(if required)

0, 1, 2, or 4 bytes 0, 1, 2, or 4 bytes

MOD
REG/

OPCODE
RM

023567

SCALE INDEX BASE

023567

Figure 2.1: x86 Instruction Format
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2.1 X86 Instruction Format

Mihocka and Shwartsman show that instruction decoding is the most time consuming

part of the Bochs ranging from 20 to 30% of the total eecution time [1]. This is not a

surprise, as x86 is a variable length instruction set that has been evolving over the years.

This section reviews the x86 instruction formats and serves as the basis for describing

the hardware decoder implementation.

Figure 2.1 shows the basic format of x86 instructions. An instruction may use only

some of the fields shown as only the opcode field is mandatory. An instruction may

additionally include several instruction prefixes, an addressing form specifier consisting

of a ModR/M byte and optionally of a SIB (Scale-Index-Base) byte, a displacement, and

an immediate field [2].

2.1.1 Instruction Prefixes

There are four different groups of instruction prefixes. For each instruction, only up to

one prefix code from each of the groups is useful. Prefixes can be placed in any order. The

first group consists of the lock and repeat prefixes. A lock prefix ensures atomic access

to shared memory whereas the repeat prefixes cause the instruction to be repeated for a

number of times as specified by a register value. Group two consists of segment override

prefixes, which change the memory segment accessed by the instruction. Group three is

the operand size override prefix, which allows switching between 16-bit and 32-bit operand

sizes. Group four is the address size override prefix, and allows switching between 16-bit

and 32-bit addressing modes. Although it is possible to have more than a single prefix

byte belonging to the same group, or more than 4 prefix bytes, the outcome of such an

instruction causes an unpredictable behavior.



Chapter 2. Background and Related Work 7

2.1.2 Opcodes

The opcode can be one through three bytes in length. An additional 3-bit opcode field

appears in the ModR/M byte that may follow the opcode. For some opcodes, smaller

fields can be defined within the primary opcode itself. These fields can define, displace-

ment sizes, condition codes, sign extension modes. It can also specify a direction for

the operation by specifying which of the operands is source and which is a destination.

The encoding fields used by an opcode vary depending on the operation class. Two-byte

opcodes start with the escape byte 0x0F as their first byte followed by an opcode byte.

Three-byte opcode also start with 0x0F as their first byte, followed by 0x38 or 0x3A,

then an opcode byte.

2.1.3 ModR/M and SIB Bytes

Unlike a load/store architecture like SPARC or MIPS, X86 allows memory locations to

be used directly as operands. The optional ModR/M byte follows the opcode byte(s)

as an addressing form specifier. As Figure 2.1 shows, the ModR/M byte consists of

three inter-dependent fields: (1) The Mod field which combined with the R/M field

allows for 32 different addressing forms. These forms are used for direct access to the

eight registers (when Mod is 0b11) and for specifying the 24 memory addressing modes.

(2) The Reg/Opcode field either specifies a register number or three bits of opcode

information. The primary opcode determines the purpose of the Reg/Opcode field in

this case. (3) Finally, the R/M field either specifies a register as an operand, or it is

combined with the Mod field to encode an addressing mode.

Some encodings of the ModR/M byte require a second addressing byte, the Scale-

Index-Base or simply the SIB byte. This byte includes three fields. The Scale field

specifies a scale factor. The Index field identifies the register number for the index

register. The Base field identifies the register number of the base register. In order to
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Mod RM
Displacement

Size

0b00 0b100 4 Bytes

0b00 0b101 4 Bytes

0b01 0bxxx 1 Byte

0b10 0bxxx 4 Bytes

1

1. A displacement of 4 bytes is needed only if the 
Base of the SIB byte is 0b101

Mod RM
Displacement

Size

0b00 0b110 2 Bytes

0b01 0bxxx 1 Byte

0b10 0bxxx 2 Bytes

(a)

(b)

Table 2.1: Displacement Size: (a) for 16-bit mode OS and (b) for 32-bit OS

have a SIB byte, the R/M bits have to be set to 0b100 and the Mod bits have to specify

one of the following three address modes: 0b00, 0b01 or 0b10.

2.1.4 Displacement and Immediate Bytes

Following the ModR/M or the SIB bytes, some addressing forms use a displacement field.

The displacement can be one, two, or four bytes long. Table 2.1 shows the encoding of

Mod and R/M fields that determine the size of the displacement. This varies depending

on the current system mode (16- or 32-bit).

If the instruction uses an immediate operand, the immediate will follow any displace-

ment bytes. Similar to the displacement, an immediate can be one, two, or four bytes.

The opcode specifies if the immediate field is used and its corresponding size.
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Figure 2.2: Bochs CPU Loop

2.2 Bochs IA-32 Simulator

Bochs is an open source IA-32 PC simulator written entirely in C++. It runs on most

popular platforms, and is capable of booting most operating systems such as MS-DOS,

Linux, and Windows 9X/2000/XP. Bochs does not support dynamic translation or virtu-

alization technologies and uses pure interpretation of the ISA to emulate the CPU. While

this approach sacrifices speed compared to direct execution based simulators, Bochs is

fully flexible and modifiable and provides access to all architectural details. In Bochs,

the main CPU loop looks similar to that of a physical non-pipelined micro-coded CPU

like the Intel 8086 [3].

Figure 2.2 shows the different stages of the Bochs CPU loop. Every instruction

passes through seven stages: In the initial stage, “handle asynchronous events”, the

CPU checks for asynchronous events, including traps and hardware interrupts, which

occurred during the previous instruction and services them. In the “prefetch” stage,

the instruction pointer position is checked against the instruction page window size. If
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the pointer exceeds a 4KB boundary, the CPU will perform a prefetch operation to

fetch the next instruction page. Once the instruction page is ready, decoding proceeds

by reading the instruction pointer and determining the instruction’s bytes, operands,

addressing mode and execution function. A decoded Instruction Cache and a Trace

Cache have been introduced to accelerate instruction decoding [1]. If the instruction

contains memory references, the effective address is calculated using an indirect call to

an appropriate memory reference resolving function. The instruction is executed using

an indirect call to the instruction’s execution method. Instruction decode produces these

function pointers along with other information (e.g., register names) that these functions

use to execute the instruction. At instruction commit time, the internal CPU instruction

pointer and state are updated.

Figure 2.3 shows profiled data collected during a boot of Debian Linux and SPEC2006

benchmarks, using the gprof profiling tool. Approximately 2.5 billion instructions were

emulated. fetchDecode32() was the most time consuming function across all bench-

marks ranging from 25 to 37% of total program execution time. For the two bench-

marks lbm and libquantum, WritePhysicalPage was the second most time consuming

function with 25 and 18% respectively. This is expected since the two benchmarks ex-
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Execute Pointer

Resolve ModRM

MetfInfo4 MetfInfo3 MetfInfo2 MetfInfo1

SEG DEST NNN RM

Base Index Scale ModRM

Displacement

Immediate

0

4

8

12

16

20

24

28

Byte 3 Byte 2 Byte 1 Byte 0

Figure 2.4: Bochs Decoded Instruction Structure.

hibit a lot memory writes. translate linear(), cpu loop() and ReadPhysicalPage()

have approximately the same percentage varying from 3 to 7%. fetchDecode32()

is the function responsible for decoding x86 instructions. WritePhysicalPage() and

ReadPhysicalPage() are functions that respectively write and read bytes from memory.

translate linear() translates a linear address to a physical address, and cpu loop() is

the CPU main loop where instructions are processed. Accordingly, as a first step toward

accelerating Bochs with hardware, we chose to implement decoding in hardware.

2.2.1 X86 Instruction Decoding Software Interface

Figure 2.4 depicts the byte organization in memory of the data structure Bochs uses to

store the results of instruction decoding. We chose not to modify this data structure at

this stage in order to allow our hardware decoder to simply interface with the existing

Bochs software base. Future work may consider optimizing this interface for a hybrid

implementation. This data structure is used later in the execute stage. The instruction

struct size is 28 bytes and is divided into four 4-byte and twelve 1-byte fields.

Bochs executes instructions using an indirect call to the instruction execution func-

tion. The address that points to the execution function is stored, as part of the decoding
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process, in the Execute Pointer field. The Resolve Mod/Rm field contains the address

that points to the function that calculates the corresponding memory address. MetaInfo4

holds a flag bit that is set when a 2-byte opcode exists. MetaInfo3 stores the actual op-

code byte. MetaInfo2 contains the length of the instruction. The length of the instruction

is useful for a number of tasks including that of moving the fetch instruction pointer.

MetaInfo1 is used to set the flags for the operating system and the addressing modes (16

or 32-bit modes). The Mod/Rm and SIB ’s subfields depicted in Figure 2.1 are stored

each in its corresponding field in the instruction structure. Finally, the last eight bytes

are reserved for the displacement and Immediate. The displacement field is used for

resolving memory references while the immediate field is used in regular data processing

operations.

Bochs follows a simple sequential algorithm to decode x86 instructions. The algorithm

processes one byte at a time, updating each field affected by the decoded byte. There

are four main stages in the algorithm: 1) Prefix Decode, 2) ModRM/SIB/Displacement

Decode, 3) Opcode Decode, and 4) Immediate Decode.

Prefix Decode

Prefix Decode is implemented as a single switch statement over the byte in question.

There are 12 byte values that correspond to the four groups of prefixes. When the

byte matches a prefix value, the corresponding fields in the instruction struct will be

updated. The fetch instruction pointer is then incremented to decode the second byte.

The algorithm will keep on looping until it decodes all of the prefixes. The software does

not keep track of the number of prefixes from each group or the number of prefixes in

total. For instance, in the case where more than one prefix of a single group occurs, the

second byte will overwrite the first due to the sequential behavior of the program. This

is allowed to occur in real instruction but since the behavior is unpredictable, software

can detect an error in the instruction when decoding an opcode. Bochs will then exit
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with a Panic message.

ModRm/SIB/Displacement Decode

As discussed in Section 2.1.2 the opcode determines if a Mod/RM byte is needed. Simi-

larly, the Mod and RM subfields determine if a SIB byte is needed. In turn, the Mod/RM

(and SIB) byte(s) determine the displacement’s size (0, 8, 16, or 32 bits). In the order

mentioned previously, the algorithm checks the bits for any particular match and sets

the corresponding fields in the instruction structure.

Opcode Decode

The goal of opcode decode is, among other things, to decide which execute function needs

to be invoked to execute the instruction. The basic idea is to use the opcode as an index

to a flat array (or map) which returns the address of the execute function. Unfortunately,

the opcode alone is not sufficient to determine the right function index. Several other

pieces of the instruction’s format need to be considered. Accordingly, the size of a flat

map table would be in the order of several gigabytes. Instead, Bochs uses a set of decoding

arrays organized hierarchically. The first level divides opcodes into two different sets. In

the first set are the opcodes that do not use any extensions. The second set holds the

opcodes that use the ModR/M or SSE prefix field bits as opcode extensions. The second

set is divided into five opcode subgroups: Group N, Group RM, Group 3-byte, Group

SSE, and Group FP Escape. Each group uses several more bits from Mod/RM or SSE

prefix fields as index to access smaller arrays. The algorithm checks the opcode against

the first set. If there is a hit, the function index is then retrieved. If not, then the table

returns an address to the second set of arrays. The second set has about 350 arrays

shared by all the opcodes. These arrays will either generate a pointer to another one of

the 350 arrays, or the proper function index. Once the function index is determined, the

function address is looked up and stored in the Execution Pointer field.
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Immediate Decode

After the Opcode decode, an attribute is retrieved from the arrays. This attribute con-

tains a 4-bit immediate mode specifier. A switch statement, based on the immediate

specifier, takes care of fetching immediate bytes and storing them in the instruction

structure.

2.3 Related Work

Several software-based x86 simulators exist. The popular ones include Virtutech Simics,

a full-system software simulator[4]. Simics supports a range of architectures including

UltraSPARC, Alpha and x86. The simulator only models functional behavior. Users have

to develop their own timing models. Support for incorporating timing models into Simics

may not exist in future versions. Another academically popular simulator is PTLsim.

PTLsim models a modern superscalar out-of-order x86-64 processor core [5]. PTLsim

translates x86 instructions into micro-ops. PTLsim uses inline x86 assembly language,

for simulation acceleration. QEMU is an x86 emulator that also relies on direct execution

for improving speed [6]. Bochs is an open-source full-system x86 simulator where each

instruction is emulated completely in software. We chose Bochs as the basis for FAx86

since it is open-source and does not use direct execution making it portable to embedded

processors.

Several hybrid simulators exist. ProtoFlex is based on SimFlex [7] and models the

UltraSPARC architecture [8]. ProtoFlex runs most common SPARC instructions in their

entirety using a BlueSPARC core. BlueSPARC only captures the functional behavior of

the most common and simple instructions of the UltraSPARC III. Complex instructions

and devices that are too difficult to model in hardware are handled by Simics software

running on a regular desktop machine. FAx86 follows ProtoFlex’s approach to model an

x86 system where the most common operations are mapped onto hardware. FAST is a
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hybrid x86 simulator [9]. It uses QEMU for emulating x86 instructions and off-loads the

timing model onto hardware. HASIM off-loads functional and timing to hardware [10].

A number of RAMP projects have also emerged notably RAMP blue, RAMP red and

most recently RAMP GOLD [11] [12] [13]. RAMP Gold is an FPGA-based architecture

simulator that simulates a 64-core shared-memory target machine. RAMP Gold’s policy

is to separate between the functional model and the timing model similarly to FAST.

However, both models are implemented in a single FPGA. The functional model is a

64-thread feed-through pipeline with each thread simulating an independent target core.

The functional model implements the full SPARC V8 ISA in hardware, including complex

functional units such as floating point, precise exceptions, MMUs, timers and interrupt

controllers. The simulator is able to run an operating system, booting for example Linux

2.6.21 kernel. The timing model is implemented on the same FPGA chip with private

L1 instruction and data caches for each simulated core. All the cores share one L2 cache.

On the Virtex-5 LX110T FPGA, RAMP GOLD can support up to 12MB of total target

cache. RAMP Gold achieves speedup of two orders of magnitude when compared with

common software-based architecture simulators.

Where most of the previous work being done aims at modeling simpler architectures

such as SPARC, FAx86 is an attempt at modeling one of the most popular and complex

architecture available nowadays. x86 architecture is widely used. Realistic workloads and

applications are accessible and can be of great help in improving architecture exploration.

FAx86’s approach differs from ProtoFlex and FAST in the sense that the full system

is modeled in the FPGA and no communication is needed with an external Desktop

machine. RAMP Gold implements a SPARC V8 soft core for the simulation purposes.

FAx86 uses a PowerPC to model the complex implementations of an x86 architecture and

has hardware to support time-consuming sections of the software. While FAx86 is still

not mature enough for a fair performance comparison with pervious works, we present

evidence of its potentials.



Chapter 3

Methodology

3.1 Design Environment

We used the Bochs 2.3.7 release source tree obtained from the Bochs website to develop

our hybrid system. We cross-compiled Bochs for the PowerPC using the gcc/g++ com-

pilers contained in the Embedded Linux Development Kit (ELDK) version 4.2 tool-chain.

Bochs requires a disk image for booting an operating system. We created a Debian Linux

image using kernel packages that support our FPGA board. The FPGA board is a Xilinx

ML-507 board. Its features include a Virtex-5 FPGA chip, common peripherals such as

PCIe, Ethernet, USB and RS-232. The FPGA chip also contains an embedded hard

PowerPC processor.

We used the Xilinx Integrated Synthesis Environment (ISE) design suite version 10.1

for HDL development, synthesis, place-and-route, and the ISE simulator for design sim-

ulation purposes. We used the Xilinx Platform Studio (XPS) version 10.1 to generate

a system-on-chip, including a PowerPC and peripheral interfaces such as the Auxiliary

Processor Unit bus controller. The Virtex-5 bitstream is compiled by Xilinx ISE and

downloaded via JTAG. The JTAG interface also allows PowerPC debugging by read-

ing/writing to arbitrary memory, changing status registers, and halting the processor.

16
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The Xilinx Embedded Development Kit (EDK), based on the GNU tool-chain, includes

a C compiler for the PowerPC 440 that provides wrappers for custom PowerPC instruc-

tions, including the APU load/store instructions that we used in our design.

3.2 Design, Simulation and Verification

In the initial development phase we developed the software interface for the hardware

decoder. The second phase of the project involved building the x86 decoder on the FPGA.

In this stage, we proceeded to incrementally move parts of the software decoding onto

hardware. We used Bochs to study application behavior and thus to justify various design

choices. Bochs also served as our functional specification for modeling x86 behavior. Our

hardware decoder attempts to follow the Bochs design as closely as possible. The hybrid

nature of our system and its reliance on the software simulator to handle the remaining

portions of the CPU behavior, constrains our design to use a specific set of inputs and

outputs but does not affect the internal functional components.

For each decoder module, we went through a multi-step process of simulation and

verification. In the first step, we isolate the chunk of software that is going to be im-

plemented in hardware. For example, we isolated prefix decoding by defining the set of

input/outputs required and the instruction struct fields that are affected by the prefix

decode stage. Then we implemented the prefix decoder and validated it by comparing its

output with its software counterpart. We incrementally modified the design to increase

parallelism where possible. Any modification to the decoder design was first implemented

in software (as part of the Bochs decoding algorithm) and tested to ensure its integrity.

After writing the HDL code for the unit in question, we verified its functionality with

a couple of test cases (simple x86 instructions) using the ISEsim simulator. Before in-

corporating the hardware unit into our hybrid system, we performed hardware/software

co-simulation, checking that the intermediate results, as well as the final output, matched



Chapter 3. Methodology 18

for each decoded instruction. The load/store interface of the APU proved helpful in our

debugging efforts, allowing us to easily pass information between software and hardware,

serving as a clean boundary between the two. In the last step, we removed the software

portion of the code and replaced it entirely with our hardware block, examining the

Bochs output and log files to verify the correct behavior of the decoder. We performed

all of the above steps for developing each individual unit, and incrementally added it to

our system. Validation was performed by booting the Linux kernel and running several

SPEC CPU 2006 benchmarks. It is possible that errors may have gone undetected, how-

ever, given that the system correctly boots Linux and runs several SPEC benchmarks we

believe that they are unlikely.



Chapter 4

FAx86 Simulator

This section describes the architectural design of FAx86. The first subsection describes

the system infrastructure, and how the software simulator and the hardware blocks in-

terface. The next subsection describes the x86 Instruction Decode Unit.

4.1 System Overview

Figure 4.1 shows the setup of our hybrid system. FAx86 was implemented on the Xilinx

ML507 development board with a 400MHz embedded PowerPC processor. Bochs is run

on a PowerPC-based Debian Linux distribution, and emulates an IA-32 PC running

Debian Linux version 2.6. Telnet and FTP servers running on the non-emulated OS

allow us to interact with Bochs and copy files to and from the system on board. A 4GB

compact flash disk was used to store Bochs’ executable along with the library files needed

to run the simulator. The same flash disk was used to store the simulated OS disk image.

A serial port was used for kernel debugging.

The instruction decoder interfaces with the PowerPC through the Auxiliary Process-

ing Unit (APU) interface [14],[15]. The APU enables flexible, low-latency, and high-

bandwidth data transfers between the processor and custom logic, as the PowerPC pro-

cessor is tightly coupled with the APU controller. Our instruction decoder is built as a

19
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Figure 4.1: System-Level Overview of the Hybrid Simulator

Fabric Co-Processor Module (FCM) implemented on the FPGA fabric, and operates as

an extension to the Bochs simulator.

The PowerPC can also interface with custom FPGA logic using the Processor Local

Bus (PLB). We chose the APU interface primarily because it allows the transfer or larger

chunks of data (16 bytes) using a single load or store instruction and with low latency.

PLB incurs higher data transfer latencies mainly caused by the bus arbitration overhead

and by its inability to transfer larger chunks of data. The APU controller also manages

clock domain synchronization.

The next section gives a brief overview of the APU controller interface as it was used

for x86 instruction decoding.
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Figure 4.2: PowerPC and hardware decoder (FCM) interface.

4.2 The Auxiliary Processing Unit and Decoding In-

terface

4.2.1 Auxiliary Processing Unit Overview

The Auxiliary Processing Unit (APU) controller supports three classes of instructions:

PowerPC floating-point instructions, APU load and store instructions, and user-defined

instructions (UDIs). The APU controller allows high-performance load/store transfers

between the processor data cache or system memory and the FPGA fabric. A single

instruction can transfer up to 16 bytes of data - four times greater than a load or store

instruction for one of the general purpose registers in the processor itself. Therefore, the

APU provides a low-latency and high-bandwidth datapath to and from the soft FCM.

The APU is also compatible with the current embedded Linux version and it does not

require any driver to be installed. However, the kernel has to be configured to support

the APU unit and its instructions.

Figure 4.2 illustrates the APU controller and the processor, in relation to the FCM

soft coprocessor module implemented in the FPGA logic. Once an instruction reaches the
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decode stage, it is simultaneously decoded by both the CPU and APU decoder blocks. If

the instruction is intended for the FCM block, the CPU looks for a response from the APU

controller. The APU then fetches the necessary operands from the processor memory and

passes it to the FCM for processing. Depending on the type of instruction (autonomous

vs non-autonomous), the CPU will either wait, or continues with the program execution.

Because the PowerPC processor and the FCM reside in two separate clock domains,

synchronization modules of the APU controller manage the clock frequency difference.

This allows the FCM to operate at a slower frequency than the processor. In this case, the

APU controller receives the resultant data from the coprocessor and at the proper execu-

tion time sends the data back to the processor. The frequency of the APU cannot be ar-

bitrarily different than that of the processor. In order to achieve synchronization between

the two domains, the APU requires the FCM clock frequency be Processorfrequency/N

where N is an integer between 1 and 16. In this prototype of FAx86, the clock frequency

ratio is 1:2 since the PowerPC runs at 400MHz and the FCM at 200MHz.

Software programs access the FCM from within assembler or C code. Assembler

mnemonics are available for user-defined instructions and the pre-defined load/store in-

structions, enabling programmers to invoke hardware functions inside the regular pro-

gram flow.

4.2.2 APU Instructions Overview

The APU instructions can be autonomous or non-autonomous. Non-autonomous in-

structions require data to be returned to the processor, therefore incurring stalls in the

pipeline. Autonomous instructions on the other hand, are fire-and-forget type of instruc-

tions. In our design, the load/store instructions are non-autonomous, which means that

the CPU pipeline stalls while the FCM is operating on an instruction. This allows us to

implement synchronization semantics to pace the software execution with the hardware

FCM latency. Load/store instructions can use data types whose length varies between
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1 byte and 16 bytes. Since the largest x86 instruction is 15 bytes, 16-byte Load/Store

instructions were used to send instruction bytes for decoding with the APU. APU loads

and stores have to be aligned in memory and this represents a challenge when the set

of instruction bytes to be decoded does not start at a 16-byte boundary. Our hardware

decoder uses a buffer to avoid splitting misaligned loads into two loads as explained in

the next section.

The PowerPC needs to determine when an instruction is available to store and if this

instruction is valid. Load/Store instructions are not suitable for monitoring the decoder

as there are intrinsic performance overheads with processing memory operations. We

opted to allow software to poll the hardware decoder via user-defined instructions (UDI).

A UDI can read/write from/to the decoder’s status register, therefore granting software

total control over the hardware without the overheads of load/store processing. In order

to avoid any illegal instructions, both the kernel and the bitstream need to be configured

to support UDIs.

4.2.3 FCM Decoding Interface

Referring back to figure: 4.2, the APU and the FCM abide by a communication pro-

tocol that governs data transfer between the two domains. Therefore, software functions

from the APU side communicate with a finite state machine from the hardware side. Al-

gorithm 1 illustrates the software algorithm that communicates with the hardware finite

state machine. The decoder simply decodes a stream of bytes without any regards to

whether a branch instruction is executed, therefore, software has to check for branch exe-

cutions before fetching instructions for the decoder. The next step involves reading from

the status register to determine whether the decoded instruction is valid to be stored.

The status register is explained, in more details, in the next section. The hardware finite

state machine is responsible of activating and resetting the decoder and acknowledging

software commands, as well as loading/storing instructions.
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Algorithm 1 Software Interface Algorithm

if Branch is detected then

Perform LOAD

end if

READ STATUS REGISTER

if STATUS IS VALID then

STORE INSTRUCTION

else if STATUS IS GARBAGE then

goto: LOAD

else if STATUS IS PREFIX/OPCODE ERROR then

goto: SOFTWARE DECODE

end if

DECODE REMAINING BYTES

4.3 FAx86 Hardware Decoder Architecture

In this section, we present a decoder design that is able to decode most x86 instruction

formats in hardware. Figure 4.3 shows a high-level overview of the decoder. The decoder

is pipelined. It is relatively straightforward to remove pipeline stages and thus reduce

the amount of decoding that happens in hardware. While we have implemented a full-

blown decoder in hardware, the design we present does not include those stages that

we found were used sparingly. Removing those stages reduced pipeline depth, increased

the operating frequency and led to higher overall performance. Since we are bounded

by the software interface, we attempted to closely follow Bochs’ decoding scheme, while

exploiting as much parallelism as possible with the available hardware.

Decoding proceeds over five pipeline stages:

1. The first stage reads the first three bytes, generates encoded information about

them and shifts the input bytes accordingly for the next stage to use.
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Figure 4.3: FAx86 Hardware Decoder Architecture.

2. The second stage decodes the generated information from the first stage into the

form needed by the Bochs. It also determines whether the instruction has a

ModR/M byte and shifts the bytes accordingly.

3. The third stage decodes the opcode and the ModR/M and SIB fields and determines

the location of the displacement field if any.

4. The fourth stage continues the decoding of the opcode field as it is needed by some

instructions. It resolves the memory address by generating an index for software

to use.

5. The fifth stage determines the location of the immediate field if any and the size

of the instruction decoded.

The rest of this section describes the hardware/software interface and each of these

stages in more detail.

4.3.1 Inputs, Outputs and General interface

We use the predefined APU load/store instructions to transfer data to and from our

custom instruction decoder. The input to our decoder is 16 consecutive bytes of the
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instruction stream. The maximum length of an x86 instruction is 15 bytes with three

to five bytes being most common in practice. A naive implementation will use a load

instruction to load 16 bytes anew starting from the current instruction pointer before

invoking the decoder. Two load operations would be needed if the starting address is not

aligned. In order to reduce the number of loads necessary and thus improve performance,

a better decoder design would try to decode as many instructions as possible each time

a 16-byte chunk is loaded. Our hardware decoder uses an input shift register and logic

to achieve this. The operation of this shift register is described in later section in more

detail.

The output of the fetchDecode() function is a data structure called bxInstruction c

with a layout matching the output of our decoder, as shown in Figure 2.4. The data lay-

out in hardware matches the data structure’s layout, which allows the output of the

decoder to be copied directly to the Bochs instruction structure. This is to minimize

swizzling of the data structure in software after copying.

The decoder does not generate the full instruction structure. It returns the 16 bytes

which cover the Metainfo, Metadata and displacement fields. The immediate field is

decoded in hardware but the immediate bytes are never returned to software. The rea-

son behind it is that the extraction of the immediate bytes from the byte-stream adds

hardware complexity to the design which will then lead to a decrease in the maximum

operated clock frequency, and an increase in the number of pipeline stages. We found

it to be better to report to software where to get the immediate from memory. The

hardware decoder sends three concatenated indexes back to software. Those indexes are

retrieved using the fast user defined instructions. The first index is a pointer to where the

immediate bytes are. The second index determines the address of the address calculation

function, and the last index is used to retrieve the address of the execution function.

Since loading and storing introduces latency, we try to keep memory accesses as low

as possible. In order to know when to load bytes into the hardware decoder and when
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to read a decoded instruction, the software needs to probe the hardware for any change

in its state. We chose the simplicity of a status register. The status register reports

the current state of the hardware decoder and can be read directly by software using

a UDI. There are five possible states available: Idle, Garbage, Prefix Error, Opcode

Error, and Ready. The Garbage state occurs when the decoder does not have enough

bytes left to decode an instruction and hence its current output is meaningless. The

decoder design shown decodes up to three prefixes as we found that four prefixes occur

rarely. In the rare case of a fourth prefix, the hardware will transition into the prefix

error state which will then trigger the software decode function. Similarly, the opcode

error state is set when an instruction opcode is not supported. Software will then take

over decoding the unsupported opcode. The ready state informs software of an available

decoded instruction.

4.3.2 Input Shift Register

To reduce the number of loads that is needed to ensure correct instruction decoding

the hardware decoder uses the input shift register (ISR). The ISR is loaded with 16

bytes. As long as the next instruction to be decoded falls within these 16 bytes no

additional loads are needed. Once the current instruction is decoded, ISR ejects the

decoded bytes so that decoding can proceed with the next instruction. The input shift

register improves decoding performance as typically a single load results in four or more

decoded instructions. If all of the bytes in the register have been decoded or not enough

bytes are left to decode an instruction, the control unit sets the Garbage flag in the status

register to indicate for software that the following decoded instruction is incomplete.

4.3.3 Prefix Encoding and Decoding Stages

As mentioned in Section 2.1.1, an instruction can have up to four different prefix bytes,

each belonging to a distinct prefix group. However, we found out that rarely an instruc-
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tion contains four prefixes and hence chose to present the design that can decode up to

three prefixes. The prefix encoder examines the first three bytes of the instruction stream

in parallel, comparing each byte to the predefined prefix byte encodings and the two-byte

opcode escape byte value. The prefix encoder generates four encoded bit strings: Each

bit string contains a 3-bit header. The first, second and third bits correspond respectively

to the first, second and third bytes in the instruction stream. If a bit is set, then its cor-

responding byte is a prefix. Each of the encoded bit strings contains relevant information

that can be extracted from the three decoded prefixes simultaneously. The header is also

used as a select signal for a multiplexer that filters the original instruction stream and

extracts the opcode along with the next six additional bytes.

4.3.4 Opcode, ModR/M, SIB, Displacement Decoding Stage

Due to the variable-length instruction format, determining the location of the various

fields within an instruction is implemented as a serial operation in Bochs. The location

of each field depends on the meaning of the fields that come before it. In contrast, our

decoder exploits parallelism. For instance, we do not care about any dependence between

the opcode and the ModRM/SIB and therefore we simply decode them simultaneously.

The opcode decoder determines whether a ModR/M byte follows the opcode. This

information is looked up in a table indexed by the opcode. The output of the opcode

decoder is three bit vectors to be used by the second opcode decoder. The first vector is

an index to the second opcode decoder and a flag that determines if the second decoder

has to be used. The second vector is an index to the corresponding function in software.

The third vector determines if the opcode has an Immediate field. The ModR/M decoder

acts as both ModR/M and SIB decoder simultaneously. The ModR/M decoder extracts

the fields in the ModR/M and SIB bytes. The ModR/M decoder also determines whether

a SIB byte follows, based on the R/M field of the ModR/M byte. The extracted fields

are: Scale, Index, Base for the SIB byte and MODRM, RM, NNN for the ModR/M
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byte. The ModR/M decoder also generates control signals to multiplex the displacement

bytes. Based on the Mod and R/M fields of the ModR/M byte, and the Base field of

the SIB byte, the number of bytes of displacement (0, 1, 2, or 4) is determined and the

displacement field is filled with the corresponding value (0 in case of no displacement).

4.3.5 Opcode II and Resolve ModR/M Decoding Stage

The fourth stage in our pipeline takes care of completing the opcode decode and also

resolves the memory address execution function. The second opcode decoder uses the

first string generated by the first opcode decoder as index. The output of the decoder

is an index to the corresponding function for that instruction and control bits to decode

the immediate field. Based on the flag from the first string, the second and third strings

are either stored or overwritten by the output of the second decoder. At this stage, we

can determine whether the instruction can be decoded by our hardware decoder. If the

instruction is not supported, the status register unsupported flag will be set instructing

the software to do the decoding. The Resolve ModR/M unit is responsible of generating

an index. The index is later on used by software to determine the function that resolves

the memory address.

4.3.6 Immediate Resolving Stage

This stage calculates the location of the immediate field in memory and its size. The

location is returned to software so that it can access the immediate field, whereas the

size is used to shift out those bytes from the input shift register.
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FAx86 Performance Evaluation

This section evaluates the cost and performance of FAx86 and compares it to other hybrid

simulators.

5.1 FAx86 Specifications and Scalability

We implemented our hybrid system on a Xilinx ML507 development board, which con-

tains a Virtex-5 FPGA and a 400MHz PowerPC in-order processor, with a 7-stage

pipeline, and 32KB direct-mapped instruction and data caches. The board also includes

11,200 Slices with a maximum of 820Kb of distributed RAM, and a total of 148 BRAMs,

each of which can be used as one 36Kb, or two independent 18Kb SRAMs. The work-

station used to synthesize the design is a 3.4 GHz Intel Pentium 4 32-bit processor with

4GB main memory, running a Ubuntu (release version 9.04) Linux operating system.

The design was synthesized using the Xilinx ISE version 10.1. Table 5.1 summarizes

the resource utilization of the decoder. The decoder was designed to use the minimum

Number of LUTs 1347 out of 44800 (3%)

Number of BRAMs 7 out of 148 (%5)

Table 5.1: X-86 Decoder: Device Utilization Summary

30
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Number of LUTs 10021 out of 44800 (22%)

Number of Block RAM 30 out of 148 (20%)

Number of PPC440s 1 out of 1 (100%)

Table 5.2: System Device Utilization Summary

amount of resources possible. The BRAMs proved to be an essential building component.

BRAMs were used as lookup tables where an opcode, for example, is used as the address

and the output contains the opcode information bits. The dual-port capabilities were

used to allow lookups to proceed in parallel. For example, when decoding prefixes, rather

than replicating the decoder three times, each BRAM processes two bytes simultaneously,

thereby reducing resource usage and hardware complexity. The hardware decoder op-

erates at 200MHz which is comparable to the speed of high-end soft processors. The

unit is fully-pipelined and hence its peak decoding rate is 200 MIPS. Table 5.2 shows

the resource utilization of the entire hybrid system. Much of the logic is used to support

peripherals used by the PowerPC processor and for the memory controller. The resources

used by the hardware decoder account for less than 3% and 5% of the overall LUT and

BRAM resources respectively. The overall resource usage accounts for 22% of slice LUTs

and 20% of BRAMs leaving enough hardware resources for any hardware replication.

When simulating multi-core systems, PowerPC alone may not scale well with increas-

ing number of cores. The x86 hardware decoder is not limited to interface with PowerPC.

By simply modifying the external interface, the decoder can communicate with soft pro-

cessors or hardware blocks. Modern soft processors offer the capability to be coupled

to another custom processor. Soft cores can be replicated to increase scalability of the

system. Xilinx’s MicroBlaze for example is a soft core that can be coupled with a co-

processor using the Fast Simplex Link (FSL) [16]. The x86 decoder can also multiplex

several instructions coming from different emulated cores into its pipeline. Hardware

replication and decoder multiplexing makes FAx86 a scalable simulator capable of simu-
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lating multi-processors efficiently on a single FPGA.

5.2 Simulation Throughput

5.2.1 Benchmarks

The SPEC CPU 2006 benchmarks used are six integer benchmarks (gcc, libquantum,

h264ref, omnetpp, astar), two floating point benchmarks (soplex, lbm). The benchmarks

were intended to cover program behaviours ranging from common benchmarks, such as

GCC, to memory expensive operations such as lbm. We also include a system boot-up of a

Debian 2.6 disk image. The emulated system comprises an Intel P4 processor (functional

equivalent) with 32MB of memory, a CD-ROM drive and a 2GB hard disk drive. The

specifications are constrained by the size of the memory on our board (256MB) and the

size of the flash drive holding the hard drive images (4GB). Using a larger memory or

off-loading some of the emulation on a host PC could be used to emulate larger memories

and hard drives. Performance measurements were based on comparing the throughput

of FAx86 and Bochs. Throughput is measured across one billion executed instructions.

Since gprof is not accurate, we have used a hardware counter that measures the time

spent decoding individual instruction and averaged over the total number of decoded

instructions.

5.2.2 Simulation speed over the software-only Bochs

Figure 5.1 reports simulation speed in million instructions per second (MIPS). The right-

most bars represent the stand-alone bochs running on the PowerPC while the left-most

bars represent Bochs coupled with the hardware decoder. The default Bochs configura-

tion achieves an average simulation speed of 0.78 MIPS as opposed to 0.86 for FAx86.

Performance improvements with FAx86 vary from as low as 5% (lbm, h264) to as high

as 9% (soplex). FAx86 accelerates Linux boot simulation by 8%.
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Figure 5.1: FAx86 and Bochs simulation throughput in MIPS.

The performance improvements achieved by FAx86 depends on two factors. The first

factor is the amount of time spent decoding an instruction in software. For instance,

an instruction with prefixes and Mod/RM fields is slower to decode than a regular in-

struction, since the latter will have to iterate through the switch statements. The second

factor, which speedup heavily depends on, is how often the decoder can find instructions

in the instruction shift register therefore avoiding the need for an external load. Length-

ier and control flow instructions limit the number of decoded instructions per chunk of

16 instruction bytes that is loaded into the decoder. The higher the hit rate in the buffer,

the less memory latency the better the performance.

Figure 5.2 shows percentage of total time spent decoding an instruction. Figure 5.3

shows the hit and miss rate of the instruction shift register. In our case a hit signifies

that an instruction is already decoded and can simply be read. A miss indicates that the

buffer is either empty or the instruction is not valid and therefore we need to perform a

load operation. soplex has the highest performance, 9%. soplex spends 30% of the time
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Figure 5.2: Percentage of Time Spent Decoding Instructions

decoding instructions. it also possesses a significant 70% hit rate in the instruction shift

register. omnetpp has 33% of time spent in decoding but does not perform as well as

soplex (6% vs 9%). However when we look at the hit rate of omnetpp, we discover that it

is quite low (58%). Therefore omnetpp suffers from memory latencies due to performing

more loads then other benchmarks. The two lowest performing benchmarks, h264 and

lbm, have small decode time percentage (23 and 24% respectively) and hit rate just

below the average (58 and 59% respectively). Although astar has the higher hit-rate of

68%, boot-up out-performed it with 65% of hit-rate. The reason behind the performance

difference can be explained by looking at the time spent decoding instructions. boot-up

33% of time decoding as opposed to 28% for astar. The last two benchmarks left, GCC

and libquantum, similarly achieved 6% of speedup. While libquantum had the higher

hit-rate (62% as opposed to 60% for GCC), GCC had the higher time spent decoding

instructions (30% as opposed to 27% for libquantum).

Newer versions of Bochs incorporate a trace cache and instruction cache to accelerate

software. The software trace cache is a large, direct-mapped array that stores traces

of decoded instructions. When software acceleration is used, Bochs’ performance ben-

efits are as high as 20%. As stated earlier, we believe that these optimizations can be
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Figure 5.3: Decoder Hit/Miss Rate

implemented in hardware, however, this is left for future work.

5.2.3 Other Hybrid Simulator

This section compares FAx86 to SimFlex [8] and FAST [9].

FAST simulates the x86 instruction set while ProtoFlex simulates SPARC instruction

set. FAST implements the timing model on an FPGA and uses a high-performance

software functional emulator for x86 instruction execution emulation. The functional

simulation runs on a host PC. The FAST prototype’s reported simulation performance

varies between 0.2 MIPS and 3.06 MIPS [9]. FAST achieved an average of 1.2 MIPS

measured over 14 different benchmarks. FAST successfully boots unmodified x86 Linux

and runs unmodified commercial applications. FAST relies on QEMU for instruction set

emulation and implements a timing model in hardware. FAx86 focuses on instruction set

emulation and could, in principle be combined with the timing models of FAST.

ProtoFlex’s reported performance is between 25 MIPS and 65 MIPS [8]. Protoflex
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directly runs most SPARC instructions using the BlueSPARC soft core. BlueSPARC

executes the most common and simple instructions of the UltraSPARC-III. Other in-

structions are simulated in software. ProtoFlex relies on a closed-source tool, Simics, for

full-system emulation and does not emulate floating-point instructions in hardware. A

slow link is used with the Simics host. I/O operations have to be simulated and commu-

nicated over this link. BlueSPARC has an interleaved pipeline where each pipeline stage

processes an instruction coming from a different emulated processor. Like ProtoFlex,

FAx86 requires few hardware resources and can easily be ported to soft processors. There-

fore we can simply replicate the hardware when simulating multiple processors. Similar

to ProtoFlex, FAx86’s decoder is designed so that it can be interleaved among multiple

emulated processors. FAx86 follows a similar design philosophy trying to implement in

hardware the most common operations. Unlike a load/store architecture like SPARC,

the most time consuming part of x86 instruction emulation is instruction decoding. Fol-

lowing ProtoFlex’s design philosophy, the next steps in developing FAx86 are to move

part of instruction execution in hardware.



Chapter 6

Conclusion

6.1 Summary

FAx86, an open-source hybrid IA-32 full-system simulator based on the Bochs software

simulator was presented. Since Bochs spends a significant portion of runtime decoding

instructions, a hardware decoder accelerator was designed. The accelerator is designed

as a plug-in replacement for the software decoder. The bulk of the decoder however can

be used in a design that moves other parts of the simulation into hardware. The decoder

is fully-pipelined, can be multiplexed over multiple simulated cores, and operates at 200

MHz. The FAx86 simulator improved simulation over the base software implementation

by 5% to 9%. FAx86 is implemented over a single Virtex-5 FPGA and occupies only a

small fraction of the chip.

Given the low cost of the hardware decoder we believe that it can be used as a

building block for many-core simulators offering higher performance improvement over

software-only simulators. Our hope is that FAx86 will serve as the basis upon which such

simulators can be developed. To the best of our knowledge this is the first hybrid x86

simulator that is open source and that implements x86 decoding in hardware.

37
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6.2 Future work

Future work may focus on porting parts of the x86 instruction execution onto hardware,

thus creating a x86 datapath that supports the most common and simple x86 instructions.

The software will then be responsible to emulate complex instructions that are otherwise

hard to implement in FPGA fabric. Although the infrastructure will remain the same, a

Direct Memory Access (DMA) unit will be added to reduce traffic between the software

and hardware when simulating multi-core systems, resulting in a higher performance.

An alternative path to a x86 datapath, would be to re-design the hardware decoder to

produce micro-ops. However, a complete redesign of the software-simulator would be

needed. Even in this case, FAx86 would serve as a basis for comparison.

FAx86 will be made available as an open-source distribution as of February 2011 on

our website at http://www.eecg.toronto.edu/ ferzliel/FAx86
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