
EJB 3.0 Expert Group

Specification Lead:

Linda DeMichiel, Sun Microsystems

Michael Keith, Oracle Corporation

Please send comments to: ejb3-spec-feedback@sun.com

Final R
elease

Sun Microsystems

JSR 220: Enterprise JavaBeansTM,Version 3.0

EJB 3.0 Simplified API

microsystems

May 2, 2006
Version 3.0, Final Release

Enterprise JavaBeans 3.0, Final Release Sun Microsystems, Inc.

nsfer-
tual

ternal
pec-

ifica-
the
h ex-

non-
t to
patent
tation
and
, or in-
censor
imple-
f the
the
anted

to the
, or
d here-
f Sun Mi-

ph or
ur In-
nt Im-
ious
under
con-

ve that
con-
ing it
rights
Specification: JSR-000220 Enterprise JavaBeans v.3.0 ("Specification")
Version: 3.0
Status: Final Release
Release: 8 May 2006

Copyright 2006 SUN MICROSYSTEMS, INC.
4150 Network Circle, Santa Clara, California 95054, U.S.A

All rights reserved.

LIMITED LICENSE GRANTS

1. _License for Evaluation Purposes_. Sun hereby grants you a fully-paid, non-exclusive, non-tra
able, worldwide, limited license (without the right to sublicense), under Sun’s applicable intellec
property rights to view, download, use and reproduce the Specification only for the purpose of in
evaluation. This includes (i) developing applications intended to run on an implementation of the S
ification, provided that such applications do not themselves implement any portion(s) of the Spec
tion, and (ii) discussing the Specification with any third party; and (iii) excerpting brief portions of
Specification in oral or written communications which discuss the Specification provided that suc
cerpts do not in the aggregate constitute a significant portion of the Specification.

2. _License for the Distribution of Compliant Implementations_. Sun also grants you a perpetual,
exclusive, non-transferable, worldwide, fully paid-up, royalty free, limited license (without the righ
sublicense) under any applicable copyrights or, subject to the provisions of subsection 4 below,
rights it may have covering the Specification to create and/or distribute an Independent Implemen
of the Specification that: (a) fully implements the Specification including all its required interfaces
functionality; (b) does not modify, subset, superset or otherwise extend the Licensor Name Space
clude any public or protected packages, classes, Java interfaces, fields or methods within the Li
Name Space other than those required/authorized by the Specification or Specifications being
mented; and (c) passes the Technology Compatibility Kit (including satisfying the requirements o
applicable TCK Users Guide) for such Specification ("Compliant Implementation"). In addition,
foregoing license is expressly conditioned on your not acting outside its scope. No license is gr
hereunder for any other purpose (including, for example, modifying the Specification, other than
extent of your fair use rights, or distributing the Specification to third parties). Also, no right, title
interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is grante
under. Java, and Java-related logos, marks and names are trademarks or registered trademarks o
crosystems, Inc. in the U.S. and other countries.

3. _Pass-through Conditions_. You need not include limitations (a)-(c) from the previous paragra
any other particular "pass through" requirements in any license You grant concerning the use of yo
dependent Implementation or products derived from it. However, except with respect to Independe
plementations (and products derived from them) that satisfy limitations (a)-(c) from the prev
paragraph, You may neither: (a) grant or otherwise pass through to your licensees any licenses
Sun’s applicable intellectual property rights; nor (b) authorize your licensees to make any claims
cerning their implementation’s compliance with the Specification in question.

4. _Reciprocity Concerning Patent Licenses_.

a. With respect to any patent claims covered by the license granted under subparagraph 2 abo
would be infringed by all technically feasible implementations of the Specification, such license is
ditioned upon your offering on fair, reasonable and non-discriminatory terms, to any party seek
from You, a perpetual, non-exclusive, non-transferable, worldwide license under Your patent
2 5/2/06

Enterprise JavaBeans 3.0, Final Release Sun Microsystems, Inc.

de-

ragraph
nting
ainst
y oth-

r sub-
man-

if You
ing a

n im-
e ma-
e code
ations
con-

replace-
nd
t was

n that
gainst

r act

-

r im-
tech-

-

lting
d/or
ed to
which are or would be infringed by all technically feasible implementations of the Specification to
velop, distribute and use a Compliant Implementation.

b With respect to any patent claims owned by Sun and covered by the license granted under subpa
2, whether or not their infringement can be avoided in a technically feasible manner when impleme
the Specification, such license shall terminate with respect to such claims if You initiate a claim ag
Sun that it has, in the course of performing its responsibilities as the Specification Lead, induced an
er entity to infringe Your patent rights.

c Also with respect to any patent claims owned by Sun and covered by the license granted unde
paragraph 2 above, where the infringement of such claims can be avoided in a technically feasible
ner when implementing the Specification such license, with respect to such claims, shall terminate
initiate a claim against Sun that its making, having made, using, offering to sell, selling or import
Compliant Implementation infringes Your patent rights.

5. _Definitions_. For the purposes of this Agreement: "Independent Implementation" shall mean a
plementation of the Specification that neither derives from any of Sun’s source code or binary cod
terials nor, except with an appropriate and separate license from Sun, includes any of Sun’s sourc
or binary code materials; "Licensor Name Space" shall mean the public class or interface declar
whose names begin with "java", "javax", "com.sun" or their equivalents in any subsequent naming
vention adopted by Sun through the Java Community Process, or any recognized successors or
ments thereof; and "Technology Compatibility Kit" or "TCK" shall mean the test suite a
accompanying TCK User’s Guide provided by Sun which corresponds to the Specification and tha
available either (i) from Sun 120 days before the first release of Your Independent Implementatio
allows its use for commercial purposes, or (ii) more recently than 120 days from such release but a
which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Sun if you breach the Agreement o
outside the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WAR
RANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRAN-
TIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTA-
TION OF THE SPECIFICATION), OR THAT THE CONTENTS OF THE SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE. This document does not represent any commitment to release o
plement any portion of the Specification in any product. In addition, the Specification could include
nical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS
BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE,
PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PU
NITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILI-
TY, ARISING OUT OF OR RELATED IN ANY WAY TO YOUR HAVING, IMPLEMENTING OR
OTHERWISE USING THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resu
from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet an
implementation; and/or (iii) any claims that later versions or releases of any Specification furnish
you are incompatible with the Specification provided to you under this license.
3 5/2/06

Enterprise JavaBeans 3.0, Final Release Sun Microsystems, Inc.

by a
in the
rdance
with

), you
and (ii)
sub-
n the

law.
ction

gula-
d ac-
ay be

rior or
rranties
com-
mod-
ative
RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or
U.S. Government prime contractor or subcontractor (at any tier), then the Government’s rights
Software and accompanying documentation shall be only as set forth in this license; this is in acco
with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and
48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun with any comments or suggestions concerning the Specification ("Feedback"
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis,
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to
license through multiple levels of sublicensees, to incorporate, disclose, and use without limitatio
Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal
The U.N. Convention for the International Sale of Goods and the choice of law rules of any jurisdi
will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import re
tions in other countries. Licensee agrees to comply strictly with all such laws and regulations an
knowledges that it has the responsibility to obtain such licenses to export, re-export or import as m
required after delivery to Licensee.

This Agreement is the parties’ entire agreement relating to its subject matter. It supersedes all p
contemporaneous oral or written communications, proposals, conditions, representations and wa
and prevails over any conflicting or additional terms of any quote, order, acknowledgment, or other
munication between the parties relating to its subject matter during the term of this Agreement. No
ification to this Agreement will be binding, unless in writing and signed by an authorized represent
of each party.

Rev. April, 2006

Sun/Final/Full
4 5/2/06

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

 and

5

Table of Contents

Chapter 1 Introduction.. 9

1.1 Overview ... 9

1.2 Goals of this Release ... 9

1.3 EJB 3.0 Expert Group.. 10

1.4 Organization of the Specification Documents ... 10

1.5 Document Conventions ... 11

Chapter 2 Overview of the EJB 3.0 Simplified API... 13

2.1 Metadata Annotations and Deployment Descriptors....................................... 14

2.1.1 Deployment Descriptors.. 14
2.2 Interoperability and Migration Between EJB 3.0 and EJB 2.1 and Earlier Clients

Beans14

Chapter 3 Enterprise Bean Class and Business Interface ... 1

3.1 Enterprise Bean Class.. 15

3.1.1 Requirements for the Enterprise Bean Class..................................... 16
3.2 Business Interfaces .. 16

3.3 Exceptions ... 17

3.4 Interceptors .. 18

3.4.1 Lifecycle Callback Interceptor Methods... 19
3.4.2 Business Method Interceptor Methods ... 19
3.4.3 InvocationContext ... 20
3.4.4 Exceptions... 21

3.5 Home Interfaces... 21

Chapter 4 Stateless Session Beans.. 23

4.1 Requirements for Stateless Session Beans .. 23

4.1.1 Business Interface ... 23
4.1.2 Home Interface.. 23
4.1.3 Bean Class... 24
4.1.4 Lifecycle Callbacks for Stateless Session Beans 24
4.1.5 Dependency Injection.. 24
4.1.6 Interceptors for Stateless Session Beans... 24

4.1.6.1 Example .. 25
4.2 Client View.. 26

4.3 Other Requirements... 26

Chapter 5 Stateful Session Beans ... 27

5.1 Requirements for Stateful Session Beans.. 27

5.1.1 Business Interface ... 27
5 5/2/06

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.

ion

7

5.1.2 Home Interface.. 27
5.1.3 Bean Class ... 27
5.1.4 Lifecycle Callbacks for Stateful Session Beans................................ 28

5.1.4.1 Semantics of the Life Cycle Callback Methods for Stateful Sess
Beans28

5.1.5 Dependency Injection.. 28
5.1.6 Interceptors for Stateful Session Beans... 29
5.1.7 Example... 29
5.1.8 Client View.. 30
5.1.9 Stateful Session Bean Removal... 30

5.1.9.1 Example .. 30
5.2 Other Requirements ... 31

Chapter 6 Message-Driven Beans... 33

6.1 Requirements for Message-Driven Beans ... 33

6.1.1 Business Interface.. 33
6.1.2 Bean Class ... 33
6.1.3 Lifecycle Callbacks for Message-Driven Beans 34
6.1.4 Dependency Injection.. 34
6.1.5 Interceptors for Message-Driven Beans. ... 34

6.2 Other Requirements ... 34

Chapter 7 Persistence.. 35

Chapter 8 Enterprise Bean Context and Environment .. 3

8.1 Annotation of Context Dependencies.. 37

8.1.1 Annotation of Instance Variables .. 38
8.1.2 Setter Injection .. 39
8.1.3 Injection and Lookup .. 39
8.1.4 EJBContext.. 40

Chapter 9 Compatibility and Migration.. 41

9.1 Support for Existing Applications ... 41

9.2 Interoperability of EJB 3.0 and Earlier Components....................................... 41

9.2.1 Clients written to the EJB 2.x APIs... 41
9.2.2 Clients written to the new EJB 3.0 API.. 42
9.2.3 Combined use of EJB 2.x and EJB 3.0 persistence APIs.................. 42
9.2.4 Other Combinations of EJB 3.0 and Earlier APIs............................. 42

9.3 Adapting EJB 3.0 Session Beans to Earlier Client Views 42

9.3.1 Stateless Session Beans... 43
9.3.2 Stateful Session Beans .. 43

9.4 Combined Use of EJB 3.0 and EJB 2.1 APIs in a Bean Class 44
 5/2/06 6

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.
Chapter 10 Metadata Annotations .. 45

10.1 Annotations to Specify Bean Type .. 45

10.1.1 Stateless Session Beans... 45
10.1.2 Stateful Session Beans .. 46

10.1.2.1 Init Annotation for Stateful Session Beans......................... 46
10.1.2.2 Remove Annotation for Stateful Session Beans 47

10.1.3 Message-driven Beans... 47
10.2 Annotations to Specify Local or Remote Interfaces.. 47

10.3 Annotations to Support EJB 2.1 and Earlier Client View 48

10.4 TransactionManagement ... 48

10.5 Transaction Attributes ... 49

10.6 Interceptors and LifeCycle Callbacks ... 49

10.7 Timeout.. 51

10.8 Exceptions ... 51

10.9 Security and Method Permissions ... 51

10.9.1 Security Role References .. 51
10.9.2 MethodPermissions... 51
10.9.3 PermitAll ... 52
10.9.4 DenyAll ... 52
10.9.5 RunAs.. 52

10.10 EJB References.. 52

10.11 Resource References ... 53

Chapter 11 Related Documents .. 55

Appendix A Revision History .. 57

A.1 Early Draft 1 .. 57

A.2 Early Draft 2 .. 57

A.3 Public Draft ... 58

A.4 Proposed Final Draft.. 58

A.5 Final Release ... 59
7 5/2/06

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems, Inc.
 5/2/06 8

Enterprise JavaBeans 3.0, Final Release

Sun Microsystems Inc
Chapter 1 Introduction
or the
tion of
avail-
in con-

from

appli-
educ-
t, and

the
iner. A

nota-

uired
bject,

ight
1.1 Overview

The EJB 3.0 release of the Enterprise JavaBeans architecture provides a new, simplified API f
enterprise application developer. This API is targeted at ease of development and is a simplifica
the APIs defined by earlier versions of the EJB specification. The existing EJB 2.1 APIs remain
able for use in applications that require them and components written to those APIs may be used
junction with components written to the new EJB 3.0 APIs.

This document provides an overview of the EJB 3.0 simplified API.

1.2 Goals of this Release

The purpose of the EJB 3.0 release is to improve the EJB architecture by reducing its complexity
the enterprise application developer’s point of view.

EJB 3.0 is focused on the following goals:

• Definition of the Java language metadata annotations that can be used to annotate EJB
cations. These metadata annotations are targeted at simplifying the developer’s task, at r
ing the number of program classes and interfaces the developer is required to implemen
at eliminating the need for the developer to provide an EJB deployment descriptor.

• Specification of programmatic defaults, including for metadata, to reduce the need for
developer to specify common, expected behaviors and requirements on the EJB conta
“configuration by exception” approach is taken whenever possible.

• Encapsulation of environmental dependencies and JNDI access through the use of an
tions, dependency injection mechanisms, and simple lookup mechanisms.

• Simplification of the enterprise bean types.

• Elimination of the requirement for EJB component interfaces for session beans. The req
business interface for a session bean can be a plain Java interface rather than an EJBO
EJBLocalObject, or java.rmi.Remote interface.

• Elimination of the requirement for home interfaces for session beans.

• Simplification of entity persistence through the Java Persistence API. Support for light-we
domain modeling, including inheritance and polymorphism.
9 May 2, 2006 1:57 pm

Introduction Enterprise JavaBeans 3.0, Final Release EJB 3.0 Expert Group

Sun Microsystems Inc.

ele-

jec-
and

y Pro-
B 3.0
ftware
any:
son,
arc
le:
mit
Sun
rshi;
eh-
ns;

prise
• Elimination of all required interfaces for persistent entities [2].

• Specification of Java language metadata annotations and XML deployment descriptor
ments for the object/relational mapping of persistent entities [2].

• A query language for Java Persistence that is an extension to EJB QL, with addition of pro
tion, explicit inner and outer join operations, bulk update and delete, subqueries,
group-by. Addition of a dynamic query capability and support for native SQL queries.

• An interceptor facility for session beans and message-driven beans.

• Reduction of the requirements for usage of checked exceptions.

• Elimination of the requirement for the implementation of callback interfaces.

1.3 EJB 3.0 Expert Group

The EJB 3.0 specification work is being conducted as part of JSR-220 under the Java Communit
cess Program. This specification is the result of the collaborative work of the members of the EJ
Expert Group. These include the following present and former expert group members: Apache So
Foundation: Jeremy Boynes; BEA: Seth White; Borland: Jishnu Mitra, Rafay Khawaja; E.piph
Karthik Kothandaraman; Fujitsu-Siemens: Anton Vorsamer; Google: Cedric Beust; IBM: Jim Knut
Randy Schnier; IONA: Conrad O’Dea; Ironflare: Hani Suleiman; JBoss: Gavin King, Bill Burke, M
Fleury; Macromedia: Hemant Khandelwal; Nokia: Vic Zaroukian; Novell: YongMin Chen; Orac
Michael Keith, Debu Panda, Olivier Caudron; Pramati: Deepak Anupalli; SAP: Steve Winkler, U
Yalcinalp; SAS Institute: Rob Saccoccio; SeeBeyond: Ugo Corda; SolarMetric: Patrick Linskey;
Microsystems: Linda DeMichiel, Mark Reinhold; Sybase: Evan Ireland; Tibco: Shivajee Samda
Tmax Soft: Woo Jin Kim; Versant: David Tinker; Xcalia: Eric Samson, Matthew Adams; Reza B
forooz; Emmanuel Bernard; Wes Biggs; David Blevins; Scott Crawford; Geoff Hendrey; Oliver Ih
Oliver Kamps; Richard Monson-Haefel; Dirk Reinshagen; Carl Rosenberger; Suneet Shah.

1.4 Organization of the Specification Documents

This specification is organized into the following three documents:

• EJB 3.0 Simplified API

• EJB Core Contracts and Requirements

• Java Persistence API

The current document provides an overview of the simplified API that is introduced by the Enter
JavaBeans 3.0 release.
 5/2/06 10

Document Conventions Enterprise JavaBeans 3.0, Final Release Introduction

Sun Microsystems Inc

is-
B QL).
rprise
r use in

e
fined in

scrib-
The document “Java Persistence API” is the specification of the new API for the management of pers
tence together with the full specification of the Java Persistence query language (a superset of EJ
It provides the definition of the persistence API that is required to be supported under the Ente
JavaBeans 3.0 release as well as the definition of how the Java Persistence API is supported fo
Java SE environments.

The document “EJB Core Contracts and Requirements” defines the contracts and requirements for th
use and implementation of Enterprise JavaBeans. These contracts include, by reference, those de
the “Java Persistence API” document.

1.5 Document Conventions

The regular Times font is used for information that is prescriptive by the EJB specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes de
ing typical use, or notes clarifying the text with prescriptive specification.

The Courier font is used for code examples.
11 May 2, 2006 1:57 pm

Introduction Enterprise JavaBeans 3.0, Final Release Document Conventions

Sun Microsystems Inc.
 5/2/06 12

Document Conventions Enterprise JavaBeans 3.0, Final Release Overview of the EJB 3.0 Simplified API

Sun Microsystems Inc

m the

of
ram-

ainer:

ction

escrip-

ap-
Chapter 2 Overview of the EJB 3.0 Simplified API

The EJB 3.0 release is focused on a simplification of the Enterprise JavaBeans architecture fro
developer’s point of view.

This simplification has several main aspects:

• Simplification of the interface definition requirements for enterprise beans: elimination
requirements for the specification of home and component interfaces in the EJB 3.0 prog
ming model.

• Simplification of the contractual requirements between the bean provider and the cont
elimination of the requirements for enterprise beans to implement thejavax.ejb.Enter-
priseBean interfaces.

• Simplification of APIs for access to a bean's environment: definition of a dependency inje
facility and simpler look-up APIs.

• Introduction of Java metadata annotations to be used as an alternative to deployment d
tors.

• Simplification of object persistence by the definition of a light-weight object/relational m
ping facility based on the direct use of Java classes rather than persistent components.
13 May 2, 2006 1:57 pm

Overview of the EJB 3.0 Simplified API Enterprise JavaBeans 3.0, Final Release Metadata Annotations and Deployment

Sun Microsystems Inc.

fined
ming

plica-
ntainer
ings.

ired by

that
yment
B 3.0
f this

s or as
miza-
ent or
ptors

com-
When

hanism

arlier
APIs

Beans
ions
f the
earlier
2.1 Metadata Annotations and Deployment Descriptors

One of the key enabling technologies introduced by J2SE 5.0 is the program annotation facility de
by JSR-175 [10]. This facility allows developers to annotate program elements in Java program
language source files to control the behavior and deployment of an application.

Metadata annotations are a key element in the simplification of the development of EJB 3.0 ap
tions. Metadata annotations are used by the developer to specify expected requirements on co
behavior, to request the injection of services and resources, and to specify object/relational mapp

Metadata annotations may be used as an alternative to the deployment descriptors that were requ
earlier versions of the Enterprise JavaBeans specification.

While this document is written in terms of the usage of metadata annotations, it is not required
metadata annotations be used in an EJB 3.0 application. Developers who prefer the use of a deplo
descriptor as an alternative to metadata annotations may define one for this purpose. The EJ
deployment descriptor is defined in the document “EJB Core Contracts and Requirements” [1] o
specification.

2.1.1 Deployment Descriptors
Deployment descriptors are defined by this specification as an alternative to metadata annotation
a mechanism for the overriding of metadata annotations—for example to permit the further custo
tion of an application for a particular development environment at a later stage of the developm
assembly work flow. Deployment descriptors may be “sparse”, unlike the full deployment descri
required by the EJB 2.1 specification. See“EJB Core Contracts and Requirements” [1].

Although it is not anticipated as a typical use case, it is possible for the application developer to
bine the use of metadata annotations and deployment descriptors in the design of an application.
such a combination is used, the rules for the use of deployment descriptors as an overriding mec
apply.

2.2 Interoperability and Migration Between EJB 3.0 and EJB
2.1 and Earlier Clients and Beans

A bean written to the EJB 3.0 APIs may be a client of components written to the EJB 2.1 and e
APIs, and vice versa. Chapter 9 “Compatibility and Migration” describes the mechanisms and
that enable this.

Such combinations of clients and components written to different versions of the Enterprise Java
specification programming models may be useful in facilitating the migration of existing applicat
incrementally to EJB 3.0, for adding new functionality to applications written to earlier versions o
Enterprise JavaBeans specification, and for reuse of components and applications written to the
EJB APIs.
 5/2/06 14

Enterprise Bean Class Enterprise JavaBeans 3.0, Final Release Enterprise Bean Class and Business Interface

Sun Microsystems Inc

ion bean

he pri-

annota-
plied
ner ser-
con-
Chapter 3 Enterprise Bean Class and Business
Interface

This chapter describes aspects of the EJB 3.0 programming model that are common across sess
and message-driven bean component types.[1]

3.1 Enterprise Bean Class

In programming with the EJB 3.0 API, the developer typically uses the enterprise bean class as t
mary programming artifact.

The bean developer defines the enterprise bean class and annotates it using the Java metadata
tions defined by this and related specifications [7], [8], [9], [11]. Metadata annotations may be ap
to the bean class to specify semantics and requirements to the EJB container, to request contai
vices, and/or to provide structural and configuration information to the application deployer or the
tainer runtime. (See Chapter 10 “Metadata Annotations”).

[1] The persistent entities defined in the document “Java Persistence API” [2] of this specification—unlike EJB 2.1 entity beans—are
not enterprise bean components. The contracts described in this specification document therefore do not apply to them.
15 May 2, 2006 1:57 pm

Enterprise Bean Class and Business Interface Enterprise JavaBeans 3.0, Final Release Business Interfaces

Sun Microsystems Inc.

fied by
.

not an

of a mes-

entity

i-

inter-
esig-
r

an one
must

e than

of the

ter

on the
specified
3.1.1 Requirements for the Enterprise Bean Class

The bean type of the enterprise bean class must be specified. The bean type is typically speci
means of metadata annotations. Deployment descriptor elements may be used as an alternative

Example

@Stateful public class CartBean implements ShoppingCart {
 private float total;
 private Vector productCodes;
 public int someShoppingMethod(){...};
 ...
}

3.2 Business Interfaces

Under the EJB 3.0 API, the business interface of an enterprise bean is a plain Java interface,
EJBObject or EJBLocalObject interface.[2]

Session beans and message-driven beans require a business interface. The business interface
sage-driven bean is typically defined by the messaging type used (e.g.,javax.jms.MessageLis-
tener in the case of JMS). Business interfaces in the sense of this chapter are not defined for
beans.

The bean class may implement its business interface(s).[3] A bean class may have more than one bus
ness interface. The following rules apply:

• If bean class implements a single interface, that interface is assumed to be the business
face of the bean. This business interface will be a local interface unless the interface is d
nated as a remote business interface by use of theRemote annotation on the bean class o
interface or by means of the deployment descriptor.

• A bean class is permitted to have more than one interface. If a bean class has more th
interface—excluding the interfaces listed below—any business interface of the bean class
be explicitly designated as a business interface of the bean by means of theLocal or Remote
annotation on the bean class or interface or by means of the deployment descriptor.

The following interfaces are excluded when determining whether the bean class has mor
one interface:java.io.Serializable ; java.io.Externalizable ; any of the
interfaces defined by thejavax.ejb package.

• The same business interface cannot be both a local and a remote business interface
bean.[4]

[2] Usage of the earlier EJBObject and EJBLocalObject interface types continues to be supported under EJB 3.0. See Chap
9 “Compatibility and Migration” .

[3] While it is expected that the bean class will typically implement its business interface(s), if the bean class uses annotations
bean class or the deployment descriptor to designate its business interface(s), it is not required that the bean class also be
as implementing the interface(s). See the document “EJB Core Contracts and Requirements” [1].
 5/2/06 16

Exceptions Enterprise JavaBeans 3.0, Final Release Enterprise Bean Class and Business Interface

Sun Microsystems Inc

eb
a

meth-

ep-
xcep-

lues
• A business interface must not extendjavax.ejb.EJBObject or javax.ejb.EJBLo-
calObject .

The metadata annotations to specify that a bean implements a web service and how the w
service is exposed to clients are defined by JSR-181, “Web Services Metadata for the Jav
Platform.”[9]

Example

@Stateless @Remote
public class CalculatorBean implements Calculator {

 public float add (int a, int b) {
 return a + b;
 }

 public float subtract (int a, int b) {
 return a - b;
 }
}

public interface Calculator {
 public float add (int a, int b);
 public float subtract (int a, int b);
 }

Example

// Shopping Cart is the local business interface of the bean

@Stateful public class ShoppingCartBean implements ShoppingCart {
...

}

3.3 Exceptions

The methods of the business interface may declare arbitrary application exceptions. However, the
ods of the business interface should not throw thejava.rmi.RemoteException , even if the inter-
face is a remote business interface, the bean class is annotatedWebService , or the method is
annotated asWebMethod (see [9]). If problems are encountered at the protocol level, an EJBExc
tion which wraps the underlying RemoteException is thrown by the container. See the chapter “E
tion Handing” in theEJB Core Contracts and Requirements document of this specification [1].

[4] It is also an error if@Local and/or@Remote is specified both on the bean class and on the referenced interface and the va
differ.
17 May 2, 2006 1:57 pm

Enterprise Bean Class and Business Interface Enterprise JavaBeans 3.0, Final Release Interceptors

Sun Microsystems Inc.

event.
ith the
ked in
may be
may be

h
rs that
s of the

fined,
“

nstance
eated,

eptor

the

secu-

ptions
eptor

r. See
e

ors as
3.4 Interceptors

An interceptor is a method that intercepts a business method invocation or a lifecycle callback
An interceptor method may be defined on the bean class or on an interceptor class associated w
bean. An interceptor class is a class (distinct from the bean class itself) whose methods are invo
response to business method invocations and/or lifecycle events on the bean class. Interceptors
defined for session beans and message-driven beans. Business method interceptor methods
defined to apply to all business methods of the bean class or to specific business methods only.

Interceptor classes are denoted using theInterceptors annotation on the bean class with whic
they are associated or by means of the deployment descriptor. Default interceptors—intercepto
apply to all session beans and message driven beans in the ejb-jar file—may be defined by mean
deployment descriptor.

Any number of interceptor classes may be defined for a bean class. If multiple interceptors are de
the order in which they are invoked is determined by the order in which they are specified. (SeeEJB
Core Contracts and Requirements”.)

An interceptor class must have a public no-arg constructor.

Interceptors are stateless. The lifecycle of an interceptor instance is the same as that of the bean i
with which it is associated. Dependency injection is performed when the interceptor instance is cr
using the naming context of the associated enterprise bean.

It is possible to carry state across multiple interceptor method invocations for a single interc
method invocation on a bean in the context data of theInvocationContext object.

Interceptors are statically configured by annotations or in the deployment descriptor.

The following rules apply to interceptors. The full set of requirements for interceptors is defined in
document “EJB Core Contracts and Requirements” of this specification.

• Business method interceptor method invocations occur within the same transaction and
rity context as the business method for which they are invoked.

• Business method interceptor methods may throw runtime exceptions or application exce
that are allowed in the throws clause of the business method. Lifecycle callback interc
methods may throw runtime exceptions.

• Interceptors can invoke JNDI, JDBC, JMS, other enterprise beans, and the EntityManage
“EJB Core Contracts and Requirements” [1], Tables 1, 2, 3. Interceptor methods share th
JNDI name space of the bean for which they are invoked.

• Dependency injection is supported for interceptor classes.

• Programming restrictions that apply to enterprise bean components to apply to intercept
well. See “EJB Core Contracts and Requirements”, Section 20.1.2 [1].]
 5/2/06 18

Interceptors Enterprise JavaBeans 3.0, Final Release Enterprise Bean Class and Business Interface

Sun Microsystems Inc

f life
ds are

.

d for a

ess. A

rceptor
on, thus

on an
 class.

ument

the mes-
noted by
e
s. An
3.4.1 Lifecycle Callback Interceptor Methods
A method may be designated as a lifecycle callback interceptor method to receive notification o
cycle events for a session bean or message-driven bean. Lifecycle callback interceptor metho
annotated with thePostConstruct , PreDestroy , PostActivate , or PrePassivate anno-
tations or may be designated by means of the deployment descriptor.

Example

@Stateful public class ShoppingCartBean implements ShoppingCart {
private float total;
private Vector productCodes;
public int someShoppingMethod(){...};
...
@PreDestroy void endShoppingCart() {...};

 }

An interceptor class may be used instead of callback methods defined directly on the bean class

Lifecycle callback methods on the bean class or on the interceptor class are statically configure
bean class by use of metadata annotations or the deployment descriptor.

Lifecycle callback methods defined on a bean class have the following signature:

void <METHOD>()

Lifecycle callback methods defined on an interceptor class have the following signature:

void <METHOD>(InvocationContext)

Lifecycle callback interceptor methods can have public, private, protected, or package level acc
lifecycle callback interceptor method must not be declared asfinal or static .

The annotations used for lifecycle callback interceptor methods on the bean class and on the inte
class are the same. The same method may be annotated with more than one callback annotati
serving for more than one callback.

Any subset or combination of lifecycle callback annotations may be specified on the bean class or
associated interceptor class. The same callback may not be specified more than once on a given

The requirements for lifecycle callback methods and interceptors are described further in the doc
“EJB Core Contracts and Requirements” of this specification [1].

3.4.2 Business Method Interceptor Methods
Business method interceptor methods may be defined for session bean business methods and
sage listener methods of message-driven beans. Business method interceptor methods are de
the AroundInvoke annotation oraround-invoke deployment descriptor element. Only on
AroundInvoke method may be present on the bean class or on any given interceptor clas
AroundInvoke method must not be a business method.
19 May 2, 2006 1:57 pm

Enterprise Bean Class and Business Interface Enterprise JavaBeans 3.0, Final Release Interceptors

Sun Microsystems Inc.

d

d

ness
t data
s a
business
ation

. For
nter-
f

s
rmina-
e types

hen

bean
The business method invocation is intercepted by theAroundInvoke methods of the bean class an
interceptor classes.AroundInvoke methods must always callInvocationContext.pro-
ceed() or neither the business method will be invoked nor any subsequent interceptorAroundIn-
voke methods.

AroundInvoke methods have the following signature:

public Object <METHOD>(InvocationContext) throws Exception

3.4.3 InvocationContext

The javax.interceptor.InvocationContext object provides the metadata that is require
for interceptor methods:

public interface InvocationContext {
public Object getTarget();
public Method getMethod();
public Object[] getParameters();
public void setParameters(Object[] params);
public java.util.Map<String, Object> getContextData();
public Object proceed() throws Exception;

}

The sameInvocationContext instance is passed to each interceptor method for a given busi
method interception or lifecycle event. This allows an interceptor to save information in the contex
property of theInvocationContext that can be subsequently retrieved in other interceptors a
means to pass contextual data between interceptors. The contextual data is not shareable across
method invocations or lifecycle event callbacks. If interceptors are invoked as a result of the invoc
on a web service endpoint, the map returned bygetContextData will be the JAX-WS MessageCon-
text [13]. The lifecycle of theInvocationContext instance is otherwise unspecified.

The getTarget method returns the bean instance that is the target of the invocation. Theget-
Method method returns the method of the bean class for which the interceptor was invoked
AroundInvoke methods, this is the business method on the bean class; for lifecycle callback i
ceptor methods,getMethod returns null. ThegetParameters method returns the parameters o
the business method invocation. IfsetParameters has been called,getParameters returns the
values to which the parameters have been set. ThesetParameters method modifies the parameter
used for the business method invocation. Modifying the parameter values does not affect the dete
tion of the business method that is invoked on the bean class. The parameter types must match th
for the business method, or the IllegalArgumentException is thrown.

The proceed method causes the invocation of the next interceptor method in the chain, or, w
called from the lastAroundInvoke interceptor method, the business method. Theproceed method
returns the result of that method invocation. If the business method returnsvoid , proceed returns
null . For lifecycle callback interceptor methods, if there is no callback method defined on the
class, the invocation ofproceed in the last interceptor method in the chain is a no-op, andnull is
returned.
 5/2/06 20

Home Interfaces Enterprise JavaBeans 3.0, Final Release Enterprise Bean Class and Business Interface

Sun Microsystems Inc

od
ption.

siness
t

these

r by

o a ses-

means
3.4.4 Exceptions
AroundInvoke methods run in the same Java call stack as the bean business method.Invoca-
tionContext.proceed() will throw the same exception as any thrown in the business meth
unless an interceptor further down the Java call stack has caught it and thrown a different exce
AroundInvoke developers should use try/catch/finally blocks around theproceed() method to
handle any initialization and/or cleanup operations they want to invoke.

AroundInvoke methods are allowed to catch and suppress business method exceptions.Around-
Invoke methods are allowed to throw runtime exceptions or any checked exceptions that the bu
method allows within its throws clause. If anAroundInvoke method throws an exception before i
calls theproceed() method, no otherAroundInvoke methods will be called. Since previous
AroundInvoke methods are invoked in the same Java call stack, those methods may handle
exceptions in catch/finally blocks around theproceed() method call.

AroundInvoke methods can mark the transaction for rollback by throwing a runtime exception o
calling the EJBContextsetRollbackOnly() method. AroundInvoke methods may cause this
rollback before or afterInvocationContext.proceed() is called.

3.5 Home Interfaces

The requirement for Home interfaces has been eliminated.

Session beans are no longer required to have home interfaces. A client may acquire a reference t
sion bean through one of the mechanisms described in Chapter 8.

EJB 3.0 entities do not have home interfaces. A client may create an instance of an entity type by
of the new operation. The entity instance may be persisted by means of theEntityManager APIs
defined in the “Java Persistence API” document [2].
21 May 2, 2006 1:57 pm

Enterprise Bean Class and Business Interface Enterprise JavaBeans 3.0, Final Release Home Interfaces

Sun Microsystems Inc.
 5/2/06 22

Requirements for Stateless Session Beans Enterprise JavaBeans 3.0, Final Release Stateless Session Beans

Sun Microsystems Inc

not an

ed to be
rvice

stateless
Chapter 4 Stateless Session Beans

This chapter describes requirements that are specific to stateless session beans.

4.1 Requirements for Stateless Session Beans

4.1.1 Business Interface

The business interface of a session bean written to the EJB 3.0 API is a plain Java interface,
EJBObject or EJBLocalObject interface.

In the case of a session bean that implements a web service, a web service interface is not requir
defined. TheWebMethod annotations are used to identify the methods that are exposed as web se
operations. The session bean that serves as a web service endpoint is annotated with theWebService
annotation. These annotations for web services are defined by JSR-181 [9].

4.1.2 Home Interface
Stateless session beans do not need home interfaces. The client may acquire a reference to a
session bean by means of one of the mechanisms described in Chapter 8.
23 May 2, 2006 1:57 pm

Stateless Session Beans Enterprise JavaBeans 3.0, Final Release Requirements for Stateless Session Beans

Sun Microsystems Inc.

-

tainer

t.

nces to
rences
tance.

These
invoca-
4.1.3 Bean Class
A stateless session bean must be annotated with theStateless annotation or denoted in the deploy
ment descriptor as a stateless session bean. The bean class need not implement thejavax.ejb.Ses-
sionBean interface.

4.1.4 Lifecycle Callbacks for Stateless Session Beans
The following lifecycle event callbacks are supported for stateless session beans[5]:

• PostConstruct

• PreDestroy

PostConstruct callbacks occur after any dependency injection has been performed by the con
and before the first business method invocation on the bean.

PostConstruct methods are invoked in an unspecified transaction context and security contex

PreDestroy callbacks occur at the time the bean instance is destroyed.

PreDestroy methods execute in an unspecified transaction and security context.

4.1.5 Dependency Injection
If a stateless session bean uses dependency injection mechanisms for the acquisition of refere
resources or other objects in its environment (see Chapter 8), the container injects these refe
before any business methods or lifecycle callback interceptor methods are invoked on the bean ins

4.1.6 Inter ceptors for Stateless Session Beans
TheAroundInvoke methods are supported for stateless session business method invocations.
interceptor methods may be defined on the bean class or on a interceptor class and apply to the
tion of the business methods of the bean. See Section 3.4 “Interceptors” .

[5] PostActivate and PrePassivate callbacks, if specified, are ignored for stateless session beans.
 5/2/06 24

Requirements for Stateless Session Beans Enterprise JavaBeans 3.0, Final Release Stateless Session Beans

Sun Microsystems Inc
4.1.6.1 Example
@Stateless
@Interceptors({

com.acme.AccountAudit.class,
com.acme.Metrics.class,
com.acme.CustomSecurity.class

})
public class AccountManagementBean implements AccountManagement {
 public void createAccount(int accountNumber, AccountDetails
details) { ... }
 public void deleteAccount(int accountNumber) { ... }
 public void activateAccount(int accountNumber) { ... }
 public void deactivateAccount(int accountNumber) { ... }
 ...
}

public class Metrics {
 @AroundInvoke
 public Object profile(InvocationContext inv) throws Exception {
 long time = System.currentTimeMillis();
 try {
 return inv.proceed();
 } finally {
 long endTime = time - System.currentTimeMillis();
 System.out.println(inv.getMethod() + " took " + endTime + "
milliseconds.");
 }
 }
}

public class AccountAudit {
 @AroundInvoke
 public Object auditAccountOperation(InvocationContext inv) throws
Exception {
 try {

Object result = inv.proceed();
Auditor.audit(inv.getMethod().getName(), inv.getParame-

ters()[0]);
return result;

 } catch (Exception ex) {
 Auditor.auditFailure(ex);
 throw ex;
 }
 }
}

public class CustomSecurity {
@Resource EJBContext ctx;
@AroundInvoke

 public Object customSecurity(InvocationContext inv) throws Excep-
tion {
 doCustomSecurityCheck(ctx.getCallerPrincipal());
 return inv.proceed();
 }
 private void doCustomSecurityCheck(Principal caller) throws
SecurityException {...}
}

25 May 2, 2006 1:57 pm

Stateless Session Beans Enterprise JavaBeans 3.0, Final Release Client View

Sun Microsystems Inc.

nterface
4.2 Client View

The local or remote client of a session bean acquires a reference to a session bean business i
through one of the dependency injection or lookup mechanisms described in Chapter 8.

4.3 Other Requirements

The full set of requirements that apply to stateless session beans are specified in“EJB Core Contracts
and Requirements” [1].
 5/2/06 26

Requirements for Stateful Session Beans Enterprise JavaBeans 3.0, Final Release Stateful Session Beans

Sun Microsystems Inc

not an

less ses-

t

Chapter 5 Stateful Session Beans

This chapter covers requirements that are specific to stateful session beans.

5.1 Requirements for Stateful Session Beans

5.1.1 Business Interface

The business interface of a session bean written to the EJB 3.0 API is a plain Java interface,
EJBObject or EJBLocalObject interface.

5.1.2 Home Interface
Stateful session beans do not need home interfaces. The client may acquire a reference to a state
sion bean by means of one of the mechanisms described in Chapter 8.

5.1.3 Bean Class
A stateful session bean must be annotated with theStateful annotation or denoted in the deploymen
descriptor as a stateful session bean. The bean class need not implement thejavax.ejb.Session-
27 May 2, 2006 1:57 pm

Stateful Session Beans Enterprise JavaBeans 3.0, Final Release Requirements for Stateful Session Beans

Sun Microsystems Inc.

ction,

ceptor

injec-
 bean.

ces to
rences
tance.

 Seri

to be use
Bean interface or thejava.io.Serializable interface.[6]

A stateful session bean may implement theSessionSynchronization interface, as described in
“EJB Core Contracts and Requirements”, Chapter 4 [1].

5.1.4 Lifecycle Callbacks for Stateful Session Beans
Stateful session beans support callbacks for the following lifecycle events: construction, destru
activation, and passivation.

The lifecycle event callbacks are the following. They may be defined on the bean class or an inter
class for the bean.[7]

• PostConstruct

• PreDestroy

• PostActivate

• PrePassivate

5.1.4.1 Semantics of the Life Cycle Callback Methods for Stateful Session Beans
PostConstruct methods are invoked on the newly constructed instance, after any dependency
tion has been performed by the container and before the first business method is invoked on the

PostConstruct methods are invoked in an unspecified transaction and security context.

PreDestroy methods execute after any method annotated with theRemove annotation has com-
pleted.

PreDestroy methods are invoked in an unspecified transaction and security context.

The semantics ofPrePassivate andPostActivate are the same as the EJB 2.1ejbActivate
andejbPassivate callback methods. See Chapter 4 of the “EJB Core Contracts and Requirements”
document of this specification [1].

5.1.5 Dependency Injection
If a stateful session bean uses dependency injection mechanisms for the acquisition of referen
resources or other objects in its environment (see Chapter 8), the container injects these refe
before any business methods or lifecycle callback interceptor methods are invoked on the bean ins

[6] The container must be able to handle the passivation of the bean instance even if the bean class does not implement thealiz-
able interface. See the document “EJB Core Contracts and Requirements” [1], Chapter 4.

[7] The callbacks PreConstruct, PostDestroy, PreActivate, and PostPassivate were not introduced because there did not seem
cases that justified their introduction.
 5/2/06 28

Requirements for Stateful Session Beans Enterprise JavaBeans 3.0, Final Release Stateful Session Beans

Sun Microsystems Inc

inter-
ation of
5.1.6 Inter ceptors for Stateful Session Beans
AroundInvoke methods are supported for stateful session business method invocations. These
ceptor methods may be defined on the bean class or on a interceptor class and apply to the invoc
the business methods of the bean.

For stateful session beans that implement theSessionSynchronization interface,afterBe-
gin occurs before anyAroundInvoke method invocation, andbeforeCompletion after all
AroundInvoke invocations are finished.

5.1.7 Example
@Stateful
public class AccountManagementBean implements AccountManagement {
 @Resource SessionContext sessionContext;
 Socket cs;

 @PostConstruct
 @PostActivate
 public void initRemoteConnectionToAccountSystem() {
 try {
 cs = new Socket(DEST_HOST, DEST_PORT);
 } catch (Exception ex) {
 throw new EJBException("Could not allocate socket", ex);
 }
 }

 @PreDestroy
 @PrePassivate
 public void closeRemoteConnectionToAccountSystem() {
 try {
 cs.close();
 } catch (IOException ioEx) { // Ignore }
 cs = null;
 }

 public OpResult createAccount(int accountNumber, AccountDetails
details) { ... }
 public OpResult deleteAccount(int accountNumber) { ... }
 public OpResult activateAccount(int accountNumber) { ... }
 public OpResult deactivateAccount(int accountNumber) { ... }

 @Remove
 public void logOff() { ... }

 @AroundInvoke
 public Object auditAccountOperation(InvocationContext inv) throws
Exception {
 try {

Object result = inv.proceed();
if ((OpResult)result == OpResult.SUCCESS) {

 if (inv.getParameters()[0].length > 0) {
Auditor.audit(inv.getMethod().getName(),

inv.getParameters()[0], ..userInfo.. etc.);
 }

}
return result;
29 May 2, 2006 1:57 pm

Stateful Session Beans Enterprise JavaBeans 3.0, Final Release Requirements for Stateful Session Beans

Sun Microsystems Inc.

interface

okup
the Java
am-

r cre-
egated.
t call

by the

of this
pletion
 } catch (Exception ex) {
Auditor.auditFailure(inv.getMethod(), inv.getParameters(),

ex);
 throw ex;
 }
 }
}

5.1.8 Client View
The local or remote client of a session bean acquires a reference to the session bean business
through one of the dependency injection or lookup mechanisms described in Chapter 8.

When a stateful session bean is looked up or otherwise obtained through the explicit JNDI lo
mechanisms, the container must provide a new stateful session bean instance, as required by
Platform, Enterprise Edition specification (Section “Java Naming and Directory Interface (JNDI) N
ing Context” [7]).

When stateful session bean is injected into a client context or is obtained by lookup, the containe
ates a new stateful session bean instance to which method invocations from the client are del
This instance, however, is uninitialized from the client’s point of view, since as the client does no
an explicit “create” method to obtain and initialize the bean.

The client typically initializes a stateful session bean through business methods defined as part of
bean’s interface. The bean may provide one or more initialization methods for this purpose.

5.1.9 Stateful Session Bean Removal
TheRemove annotation may be used to annotate a stateful session bean business method. Use
annotation will cause the container to remove the stateful session bean instance after the com
(normal or abnormal) of the annotated method.

5.1.9.1 Example
@Stateful public class ShoppingCartBean implements ShoppingCart {

...
private String customer;

public void startToShop(String customer) {
this.customer = customer;

...
}

public void addToCart(Item item) {
...

}

@Remove public void finishShopping() {
...

}
}

 5/2/06 30

Other Requirements Enterprise JavaBeans 3.0, Final Release Stateful Session Beans

Sun Microsystems Inc
5.2 Other Requirements

The full set of requirements that apply to stateful session beans are specified in “EJB Core Contracts
and Requirements” [1] .
31 May 2, 2006 1:57 pm

Stateful Session Beans Enterprise JavaBeans 3.0, Final Release Other Requirements

Sun Microsystems Inc.
 5/2/06 32

Requirements for Message-Driven Beans Enterprise JavaBeans 3.0, Final Release Message-Driven Beans

Sun Microsystems Inc

ined by

ssaging
sing the

nt the
Chapter 6 Message-Driven Beans

This chapter describes requirements that are specific to message-driven beans.

6.1 Requirements for Message-Driven Beans

6.1.1 Business Interface
The business interface of a message-driven bean is the message-listener interface that is determ
the messaging type in use for the bean. For example, in the case of JMS, this is thejavax.jms.Mes-
sageListener interface.

The message-driven bean must implement the appropriate message listener interface for the me
type that the message-driven bean supports or must designate its message listener interface u
MessageDriven annotation or the deployment descriptor.

6.1.2 Bean Class
A message driven bean must be annotated with theMessageDriven annotation or denoted in the
deployment descriptor as a message-driven bean. The bean class need not impleme
javax.ejb.MessageDrivenBean interface.
33 May 2, 2006 1:57 pm

Message-Driven Beans Enterprise JavaBeans 3.0, Final Release Other Requirements

Sun Microsystems Inc.

ean.

nces to
rences
tance.

thods
’s mes-
6.1.3 Lifecycle Callbacks for Message-Driven Beans
The following lifecycle event callbacks are supported for message-driven beans[8]:

• PostConstruct

• PreDestroy

PostConstruct callbacks occur before the first message listener method invocation on the b
This is at a point after which any dependency injection has been performed by the container.

PostConstruct callback methods execute in an unspecified transaction and security context.

PreDestroy callbacks occur at the time the bean is removed from the pool or destroyed.

PreDestroy callback methods execute in an unspecified transaction and security context.

6.1.4 Dependency Injection

If a message-driven bean uses dependency injection mechanisms for the acquisition of refere
resources or other objects in its environment (see Chapter 8), the container injects these refe
before any business methods or lifecycle callback interceptor methods are invoked on the bean ins

6.1.5 Inter ceptors for Message-Driven Beans.

The AroundInvoke methods are supported for message-driven beans. These interceptor me
may be defined on the bean class or on a interceptor class and apply to the handling of the bean
sage listener method invocation.

6.2 Other Requirements

The full set of requirements that apply to message-driven beans are specified in “EJB Core Contracts
and Requirements” [1] .

[8] PostActivate and PrePassivate callbacks, if specified, are ignored for message-driven beans.
 5/2/06 34

Other Requirements Enterprise JavaBeans 3.0, Final Release Persistence

Sun Microsystems Inc

nced in

he doc-
ce
Chapter 7 Persistence

The model for persistence and object/relational mapping has been considerably revised and enha
the Enterprise JavaBeans 3.0 release.

An EJB 3.0 entity is a lightweight persistent domain object.

The contracts and requirements for entities defined by Enterprise JavaBeans 3.0 are specified in t
ument “Java Persistence API” [2], which also contains the full specification of the Java Persisten
query language and the metadata for object/relational mapping.
35 May 2, 2006 1:57 pm

Persistence Enterprise JavaBeans 3.0, Final Release Other Requirements

Sun Microsystems Inc.
 5/2/06 36

Annotation of Context Dependencies Enterprise JavaBeans 3.0, Final Release Enterprise Bean Context and Environment

Sun Microsystems Inc

t

context.

by hav-
ethods

h these

ugh a

ent, its
Chapter 8 Enterprise Bean Context and Environmen

The enterprise bean's context comprises its container context and its resource and environment

The bean may gain access to references to resources and other environment entries in its context
ing the container supply it with those references. In this case, bean instance variables or setter m
are annotated as target for dependency injection.

Alternatively, thelookup method added to thejavax.ejb.EJBContext interface or the JNDI
APIs may be used to look up resources in the bean’s environment. (See Section 8.1.4.)

The same set of metadata annotations are used to express context dependencies for bot
approaches.

8.1 Annotation of Context Dependencies

A bean declares a dependency upon a resource or other entry in its environment context thro
dependency annotation.

A dependency annotation specifies the type of object or resource on which the bean is depend
characteristics, and the name through which it is to be accessed.
37 May 2, 2006 1:57 pm

Enterprise Bean Context and Environment Enterprise JavaBeans 3.0, Final Release Annotation of Context Dependencies

Sun Microsystems Inc.

ds.

pon its
rprise

dencies
these

zation
e bean’s

he type
e same
The following are examples of dependency annotations:

@EJB(name="mySessionBean", beanInterface=MySessionIF.class)

@Resource(name="myDB", type=javax.sql.DataSource.class)

Dependency annotations may be attached to the bean class or to its instance variables or metho

The amount of information that needs to be specified for a dependency annotation depends u
usage context and how much information can be inferred from that context. See the chapter “Ente
Bean Environment” in theEJB Core Contracts and Requirementsdocument of this specification [1].

The following sections discuss and illustrate the various approaches.

8.1.1 Annotation of Instance Variables

The developer may annotate instance variables of the enterprise bean class to indicate depen
upon resources or other objects in the bean’s environment. The container automatically initializes
annotated variables with the external references to the specified environment objects. This initiali
occurs before any business methods are invoked on the bean instance and after the time the th
EJBContext is set.

Example:

@Stateless public class MySessionBean implements MySession {

@Resource(name="myDB") //type is inferred from variable
public DataSource customerDB;

@EJB //reference name and type inferred from variable
public AddressHome addressHome;

 public void myMethod1(String myString)
 {
 try
 {
 Connection conn = customerDB.getConnection();
 ...
 }
 catch (Exception ex)
 {
 ...
 }
 }

 public void myMethod2(String myString)
 {
 Address a = addressHome.create(myString);
 }
}

When the resource type can be determined by the variable type, the annotation need not contain t
of the object to be accessed. If the name for the resource reference in the bean’s environment is th
 5/2/06 38

Annotation of Context Dependencies Enterprise JavaBeans 3.0, Final Release Enterprise Bean Context and Environment

Sun Microsystems Inc

n Envi-

e.

he bean

cify the
e corre-

y
tainer
 is set.

e space

encing
as the variable name, it does not need to be explicitly specified. See the chapter “Enterprise Bea
ronment” in theEJB Core Contracts and Requirementsdocument of this specification [1].

Examples

@EJB public ShoppingCart myShoppingCart;

@Resource public DataSource myDB;

@Resource public UserTransaction utx;

@Resource SessionContext ctx;

8.1.2 Setter Injection
Setter injection provides an alternative to the container’s initialization of variables described abov

When setter injection is to be used, the dependency annotations are applied to setter methods of t
class defined for that purpose.

Examples

@Resource(name=”customerDB”)
public void setDataSource(DataSource myDB) {

this.ds = myDB;
}

@Resource // reference name is inferred from the property name
public void setCustomerDB(DataSource myDB) {

this.customerDB = myDB;
}

@Resource
public void setSessionContext(SessionContext ctx) {

this.ctx = ctx;
}

When the resource type can be determined by the parameter type, the annotation need not spe
type of the object to be accessed. If the name of the resource is the same as the property nam
sponding to the setter method, it does not need to be explicitly specified.

A setter method that is annotated with theResource or other dependency annotation will be used b
the container for dependency injection. Such setter injection methods will be called by the con
before any business methods are invoked on the bean instance and after the bean’s EJBContext

8.1.3 Injection and Lookup
Resources, references to components, and other objects that may be looked up in the JNDI nam
may be injected by means of the injection mechanisms listed above.

References to injected objects are looked up name. These lookups are performed in the refer
39 May 2, 2006 1:57 pm

Enterprise Bean Context and Environment Enterprise JavaBeans 3.0, Final Release Annotation of Context Dependencies

Sun Microsystems Inc.

the

bean’s

8.1.2
bean'sjava:comp/env namespace as specified in the chapter “Enterprise Bean Environment” in
EJB Core Contracts and Requirementsdocument of this specification [1].

8.1.4 EJBContext
The methodObject lookup(String name) is added to thejavax.ejb.EJBContext inter-
face. This method can be used to lookup resources and other environment entries bound in the
JNDI environment naming context.

Injection of the bean’s EJBContext object may be obtained as described in sections 8.1.1 and
above.
 5/2/06 40

Support for Existing Applications Enterprise JavaBeans 3.0, Final Release Compatibility and Migration

Sun Microsystems Inc

onents

iners.
rs for

server

nents
Chapter 9 Compatibility and Migration

This chapter addresses issues of compatibility and migration between EJB 3.0 and earlier comp
and clients.

9.1 Support for Existing Applications

Existing EJB 2.1 and earlier applications must be supported to run unchanged in EJB 3.0 conta
All EJB 3.0 implementations must support EJB 1.1, EJB 2.0, and EJB 2.1 deployment descripto
applications written to earlier versions of the Enterprise JavaBeans specification.

9.2 Interoperability of EJB 3.0 and Earlier Components

This release of Enterprise JavaBeans supports migration and interoperability among client and
components written to different versions of the EJB APIs as described below.

9.2.1 Clients written to the EJB 2.x APIs
An enterprise bean that is written to the EJB 2.1 or earlier API release may be a client of compo
written to EJB 3.0 API using the earlier EJB APIs when deployed in an EJB 3.0 container.
41 May 2, 2006 1:57 pm

Compatibility and Migration Enterprise JavaBeans 3.0, Final ReleaseAdapting EJB 3.0 Session Beans to Earlier Cli-

Sun Microsystems Inc.

ient of

earlier

n to the
tion.

PI.

earlier

e and

at are

beans

e
sage

mpo-

inter-

ation:
Such an EJB 2.1 or earlier client component does not need to be rewritten or recompiled to be a cl
a component written to the EJB 3.0 API.

Such clients may access components written to the EJB 3.0 APIs and components written to the
EJB APIs within the same transaction.

See Section 9.3 for a discussion of the mechanisms that are used to enable components writte
EJB 3.0 API to be accessed and utilized by clients written to earlier versions of the EJB specifica

9.2.2 Clients written to the new EJB 3.0 API
A client written to the EJB 3.0 API may be a client of a component written to the EJB 2.1 or earlier A

Such clients may access components written to the EJB 3.0 APIs and components written to the
EJB APIs within the same transaction.

Such clients access components written to the earlier EJB APIs using the EJB 2.1 client view hom
component interfaces. TheEJB annotation (or theejb-ref and ejb-local-ref deployment
descriptor elements) may be used to specify the injection of home interfaces into components th
clients of beans written to the earlier EJB client view. See Section 10.10.

9.2.3 Combined use of EJB 2.x and EJB 3.0 persistence APIs
EJB clients may access EJB 3.0 entities and/or the EntityManager together with EJB 2.x entity
together within the same transaction as well as within separate transactions.[9]

9.2.4 Other Combinations of EJB 3.0 and Earlier APIs
The “EJB Core Contracts and Requirements” document [1] specifies how the new EJB 3.0 APIs may b
used together with the existing EJB APIs defined in [3] within a single component class. Such u
may be helpful in facilitating incremental migration of existing applications to EJB 3.0.

9.3 Adapting EJB 3.0 Session Beans to Earlier Client Views

Clients written to the EJB 2.1 and earlier client view depend upon the existence of a home and co
nent interface.

A session bean written to the EJB 3.0 API may be adapted to such earlier preexisting client view
faces.

The session bean designates the interfaces to be adapted by using theRemoteHome and/orLocal-
Home metadata annotations (or equivalent deployment descriptor elements).

[9] In general, the same database data should not be accessed by both EJB 3.0 and EJB 2.x entities within the same applic
behavior is unspecified if data aliasing occurs.
 5/2/06 42

Adapting EJB 3.0 Session Beans to Earlier Client ViewsEnterprise JavaBeans 3.0, Final Release Compatibility and Migration

Sun Microsystems Inc

inter-
ion of

ompo-

po-
ding on
tances

n of a
e

an
ved, the

lass.

ca-

these

n

lass.

create

efer-
When the client is deployed, the container classes that implement the EJB 2.1 home and remote
faces (or local home and local interfaces) referenced by the client must provide the implementat
the javax.ejb.EJBHome and javax.ejb.EJBObject interfaces (or the
javax.ejb.EJBLocalHome andjavax.ejb.EJBLocalObject interfaces) respectively.

In addition, the container implementation classes must implement the methods of the home and c
nent interfaces to apply to the EJB 3.0 component being referenced as described below.

9.3.1 Stateless Session Beans

The invocation of the homecreate() method must return the corresponding local or remote com
nent interface of the bean. This may or may not cause the creation of the bean instance, depen
the container's implementation strategy. For example, the container may preallocate bean ins
(e.g., in a pooling strategy) or may defer the creation of the bean instance until the first invocatio
business method on the bean class. When the bean instance is created, the container invokes thset-
SessionContext method (if any), performs any other dependency injection, and invokes thePost-
Construct lifecycle callback method(s) (if any), as specified in “EJB Core Contracts and
Requirements” [1].

It is likewise implementation-dependent as to whether the invocation of the EJBHomeremove(Han-
dle) or EJBObject or EJBLocalObjectremove() method causes the immediate removal of the be
instance, depending on the container's implementation strategy. When the bean instance is remo
PreDestroy callback method (if any) is invoked, as specified in Section 4.1.4.

The invocations of the business methods of the component interface are delegated to the bean c

9.3.2 Stateful Session Beans

The invocation of acreate<METHOD>() method causes construction of the bean instance, invo
tion of the PostConstruct callback (if any), and invocation of the matchingInit method, and
returns the corresponding local or remote component interface of the bean. The invocation of
methods occurs in the same transaction and security context as the client's call to thecreate method.

The invocation of the EJBHomeremove(Handle) or EJBObject or EJBLocalObjectremove()
method causes the invocation of the thePreDestroy callback method (if any) and removal of bea
instance, as described in “EJB Core Contracts and Requirements” [1].

The invocations of the business methods of the component interface are delegated to the bean c

The Init annotation is used to specify the correspondence of a method on the bean class with a
method of the adapted EJBHome and/or EJBLocalHome interface. The result type of such anInit
method is required to bevoid , and its parameter types must be exactly the same as those of the r
encedcreate<METHOD>() method.
43 May 2, 2006 1:57 pm

Compatibility and Migration Enterprise JavaBeans 3.0, Final Release Combined Use of EJB 3.0 and EJB 2.1 APIs in

Sun Microsystems Inc.

d call-
tion of
li-

Home,
e EJB
e bean

rprise
9.4 Combined Use of EJB 3.0 and EJB 2.1 APIs in a Bean Class

This document describes the typical usage of annotations to specify the enterprise bean type an
back methods. It is permitted to combine the use of such annotations with the bean’s implementa
one of thejavax.ejb.EnterpriseBean interfaces as such combination may be useful in faci
tating migration to the EJB 3.0 simplified programming model.

In addition to the business interface described in Section 3.2, a session bean may define EJB
EJBLocalHome, EJBObject, and/or EJBLocalObject interfaces in accordance with the rules of th
2.1 specification. A deployment descriptor or metadata annotations may be used to associate th
class with these interfaces.

Requirements for the combined usage of EJB 3.0 and EJB 2.1 and earlier APIs within an ente
bean class are defined in the specification document “EJB Core Contracts and Requirements.”
 5/2/06 44

Annotations to Specify Bean Type Enterprise JavaBeans 3.0, Final Release Metadata Annotations

Sun Microsystems Inc
Chapter 10 Metadata Annotations

This chapter defines the metadata annotations introduced by this specification.

These annotations are in thejavax.ejb package except where otherwise indicated.

Annotations related to persistence are defined in the document “Java Persistence API” [2] of this speci-
fication.

Annotations related to resource injection and security are defined in the “Common Annotations for the
Java Platform” specification [8], and are summarized here for reference.

10.1 Annotations to Specify Bean Type

10.1.1 Stateless Session Beans

TheStateless annotation specifies that the enterprise bean is a stateless session bean. TheState-
less annotation is applied to the bean class.

@Target(TYPE) @Retention(RUNTIME)
public @interface Stateless {
45 May 2, 2006 1:57 pm

Metadata Annotations Enterprise JavaBeans 3.0, Final Release Annotations to Specify Bean Type

Sun Microsystems Inc.

hether

ed to.

hether

ed to.

The
e

ed
String name() default "";
String mappedName() default "";
String description() default "";

}

Thename annotation element defaults to the unqualified name of the bean class. The name—w
explicitly specified or defaulted—must be unique within the ejb-jar.

The mappedNameelement is a product-specific name that the session bean should be mapp
Applications that use mapped names may not be portable.

10.1.2 Stateful Session Beans

TheStateful annotation specifies that the enterprise bean is a stateful session bean. TheStateful
annotation is applied to the bean class.

@Target(TYPE) @Retention(RUNTIME)
public @interface Stateful {

String name() default "";
String mappedName() default "";
String description() default "";

}

Thename annotation element defaults to the unqualified name of the bean class. The name—w
explicitly specified or defaulted—must be unique within the ejb-jar.

The mappedNameelement is a product-specific name that the session bean should be mapp
Applications that use mapped names may not be portable.

10.1.2.1 Init Annotation for Stateful Session Beans

The Init annotation is used to specify the correspondence of a method on the bean class with acre-
ate<METHOD>method for an adapted EJB 2.1 EJBHome and/or EJBLocalHome client view.
result type of such anInit method is required to bevoid , and its parameter types must be exactly th
same as those of the referencedcreate<METHOD> method(s).

@Target(METHOD) @Retention(RUNTIME)
public @interface Init{

String value() default "";
}

Thevalue element must be specified when theInit annotation is used in association with an adapt
home interface of a stateful session bean that has more than onecreate<METHOD> method. It speci-
fies the name of the correspondingcreate<METHOD> method of the adapted home.

The Init method is only required to be specified for stateful session beans that provide aRemote-
Homeor LocalHome interface. The name of the adaptedcreate<METHOD> method of the Home or
LocalHome interface must be specified if there is any ambiguity.
 5/2/06 46

Annotations to Specify Local or Remote InterfacesEnterprise JavaBeans 3.0, Final Release Metadata Annotations

Sun Microsystems Inc

tion of

e

. This

hether

n. It
ments

apped

nate a
10.1.2.2 Remove Annotation for Stateful Session Beans

TheRemove annotation is used to denote a remove method of a stateful session bean. Comple
this method causes the container to destroy the stateful session bean, first invoking the bean’sPreDes-
troy method, if any. TheretainIfException element allows the removal to be prevented if th
method terminates abnormally with an application exception.

@Target(METHOD) @Retention(RUNTIME)
public @interface Remove{

boolean retainIfException() default false;
}

10.1.3 Message-driven Beans

The MessageDriven annotation specifies that the enterprise bean is a message-driven bean
annotation is applied to the bean class.

Thename annotation element defaults to the unqualified name of the bean class. The name—w
explicitly specified or defaulted—must be unique within the ejb-jar.

ThemessageListenerInterface element specifies the message listener interface of the bea
must be specified if the bean class does not implement its message listener interface or imple
more than one interface other thanjava.io.Serializable , java.io.Externalizable , or
any of the interfaces defined by thejavax.ejb package.

ThemappedNameelement is a product-specific name that the message-driven bean should be m
to. Applications that use mapped names may not be portable.

@Target(TYPE) @Retention(RUNTIME)
public @interface MessageDriven {

String name() default "";
Class messageListenerInterface() default Object.class;
ActivationConfigProperty[] activationConfig() default {};
String mappedName() default "";
String description() default "";

}

@Target({}) @Retention(RUNTIME)
public @interface ActivationConfigProperty {
 String propertyName();
 String propertyValue();
}

10.2 Annotations to Specify Local or Remote Interfaces

TheRemote andLocal annotations apply only to session beans and their interfaces.

TheRemote annotation is applied to the session bean class or remote business interface to desig
remote interface of the bean.
47 May 2, 2006 1:57 pm

Metadata Annotations Enterprise JavaBeans 3.0, Final Release Annotations to Support EJB 2.1 and Earlier

Sun Microsystems Inc.

nate a

ingle

only
uding
y

JB 2.1

type

transac-
The Local annotation is applied to the session bean class or local business interface to desig
local interface of the bean.

Use of theLocal annotation is only required when the bean class does not implement only a s
interface other than any of the following:java.io.Serializable ; java.io.Externaliz-
able ; any of the interfaces defined injavax.ejb .

The value element is specified only when the annotation is applied to the bean class. It is
required to be specified if the bean class implements more than one interface (excl
java.io.Serializable , java.io.Externalizable , and any of the interfaces defined b
the javax.ejb package).

@Target(TYPE) @Retention(RUNTIME)
public @interface Remote {

Class[] value() default {}; // list of remote business interfaces
}

@Target(TYPE) @Retention(RUNTIME)
public @interface Local {

Class[] value() default {}; // list of local business interfaces
}

10.3 Annotations to Support EJB 2.1 and Earlier Client View

TheRemoteHome andLocalHome annotations may be applied to session beans only.

These annotations are intended for use with EJB 3.0 session beans that provide an adapted E
component view. They may also be used with beans that have been written to the EJB 2.1 APIs.

@Target(TYPE) @Retention(RUNTIME)
public @interface RemoteHome {
 Class value(); // home interface
}
@Target(TYPE) @Retention(RUNTIME)
public @interface LocalHome {
 Class value(); // local home interface
}

10.4 TransactionManagement

TheTransactionManagement annotation specifies the transaction management demarcation
of a session bean or message-driven bean. If theTransactionManagement annotation is not spec-
ified for a session bean or message-driven bean, the bean is assumed to have container managed
tion demarcation.

@Target(TYPE) @Retention(RUNTIME)
public @interface TransactionManagement {

TransactionManagementType value()
default TransactionManagementType.CONTAINER;
 5/2/06 48

Transaction Attributes Enterprise JavaBeans 3.0, Final Release Metadata Annotations

Sun Microsystems Inc

or

ess
hapter

tion
ified on

meth-
tation

ged

p-
}

The enumTransactionManagementType is used to specify whether container-managed
bean-managed transaction management is used.

public enum TransactionManagementType {
 CONTAINER,
 BEAN
}

10.5 Transaction Attributes

The TransactionAttribute annotation specifies whether the container is to invoke a busin
method within a transaction context. The semantics of transaction attributes are defined in the c
“Support for Transactions” of the “EJB Core Contracts and Requirements” document of this specifica-
tion [1].

The TransactionAttribute annotation can only be specified if container managed transac
demarcation is used. The annotation can be specified on the bean class and/or it can be spec
methods of the class that are methods of the business interface. Specifying theTransactionAt-
tribute annotation on the bean class means that it applies to all applicable business interface
ods of the class. Specifying the annotation on a method applies it to that method only. If the anno
is applied at both the class and the method level, the method value overrides if the two disagree.

The values of theTransactionAttribute annotation are defined by the enumTransaction-
AttributeType .

If a TransactionAttribute annotation is not specified, and the bean uses container mana
transaction demarcation, the semantics of theREQUIRED transaction attribute are assumed.

public enum TransactionAttributeType {
 MANDATORY,
 REQUIRED,
 REQUIRES_NEW,
 SUPPORTS,
 NOT_SUPPORTED,
 NEVER
}

@Target({METHOD, TYPE}) @Retention(RUNTIME)
public @interface TransactionAttribute {
 TransactionAttributeType value()

default TransactionAttributeType.REQUIRED;
}

10.6 Interceptors and LifeCycle Callbacks

The javax.interceptor.Interceptors annotation is used to designate one or more interce
49 May 2, 2006 1:57 pm

Metadata Annotations Enterprise JavaBeans 3.0, Final Release Interceptors and LifeCycle Callbacks

Sun Microsystems Inc.

a

od.

When
tor classes associated with a bean. TheInterceptors annotation is applied to the bean class or to
business method of the bean.

package javax.interceptor;
@Target({TYPE, METHOD}) @Retention(RUNTIME)
public @interface Interceptors {

Class[] value();
}

Thejavax.interceptor.AroundInvoke annotation is used to designate an interceptor meth

package javax.interceptor;
@Target({METHOD}) @Retention(RUNTIME)
public @interface AroundInvoke {}

The javax.interceptor.ExcludeDefaultInterceptors annotation, when applied to a
bean class, excludes the invocation of default interceptors for all business methods of the bean.
applied to a business method, it excludes the invocation of default interceptors for that method.

package javax.interceptor;
@Target({TYPE, METHOD}) @Retention(RUNTIME)
public @interface ExcludeDefaultInterceptors {}

The javax.interceptor.ExcludeClassInterceptors annotation excludes the invocation
of class-level interceptors (but not default interceptors) for the given method.

package javax.interceptor;
@Target({METHOD}) @Retention(RUNTIME)
public @interface ExcludeClassInterceptors {}

The javax.annotation.PostConstruct , javax.annotation.PreDestroy , and the
javax.ejb.PostActivate and javax.ejb.PrePassivate annotations designate lifecy-
cle callback methods.

package javax.annotation;
@Target({METHOD}) @Retention(RUNTIME)
public @interface PostConstruct {}

package javax.annotation;
@Target({METHOD}) @Retention(RUNTIME)
public @interface PreDestroy {}

package javax.ejb;
@Target({METHOD}) @Retention(RUNTIME)
public @interface PostActivate {}

package javax.ejb;
@Target({METHOD}) @Retention(RUNTIME)
public @interface PrePassivate {}
 5/2/06 50

Timeout Enterprise JavaBeans 3.0, Final Release Metadata Annotations

Sun Microsystems Inc

ca-

excep-

prise

s of

ass that
s

on a
level,
10.7 Timeout

TheTimeout annotation is used to denote the timeout method of an enterprise bean.

@Target({METHOD}) @Retention(RUNTIME)
public @interface Timeout {}

10.8 Exceptions

TheApplicationException annotation is applied to an exception to denote that it is an appli
tion exception and should be reported to the client directly (i.e., unwrapped). TheApplicationEx-
ception annotation may be applied to both checked and unchecked exceptions. Therollback
element is used to indicate whether the container must cause the transaction to rollback when the
tion is thrown.

@Target(TYPE) @Retention(RUNTIME)
public @interface ApplicationException {

boolean rollback() default false;
}

10.9 Security and Method Permissions

The following security-related annotations are in the packagejavax.annotation.security .
They are defined by [8], and are presented here for reference.

10.9.1 Security Role References
The DeclareRoles annotation is used to declare the references to security roles in the enter
bean code.

package javax.annotation.security;
@Target({TYPE}) @Retention(RUNTIME)
public @interface DeclareRoles {

String[] value();
}

10.9.2 MethodPermissions

TheRolesAllowed annotation specifies the security roles that are allowed to invoke the method
the bean. The value of theRolesAllowed annotation is a list of security role names.

This annotation can be specified on the bean class and/or it can be specified on methods of the cl
are methods of the business interface. Specifying theRolesAllowed annotation on the bean clas
means that it applies to all applicable interface methods of the class. Specifying the annotation
method applies it to that method only. If the annotation is applied at both the class and the method
51 May 2, 2006 1:57 pm

Metadata Annotations Enterprise JavaBeans 3.0, Final Release EJB References

Sun Microsystems Inc.

ified
on the

. Speci-
r the

od—

o the
the method value overrides if the two disagree. If thePermitAll annotation is applied to the bean
class, andRolesAllowed is specified on an individual method, the value of theRolesAllowed
annotation overrides for the given method.

package javax.annotation.security;
@Target({TYPE, METHOD}) @Retention(RUNTIME)
public @interface RolesAllowed {
 String[] value();
 }

10.9.3 PermitAll

The PermitAll annotation specifies that all security roles are allowed to invoke the spec
method(s)—i.e., that the specified method(s) are “unchecked”. This annotation can be specified
bean class and/or it can be specified on the business methods of the class. Specifying thePermitAll
annotation on the bean class means that it applies to all applicable business methods of the class
fying the annotation on a method applies it to that method only, overriding any class-level setting fo
particular method.

package javax.annotation.security;
@Target ({TYPE, METHOD}) @Retention(RUNTIME)
public @interface PermitAll {}

10.9.4 DenyAll

TheDenyAll annotation specifies that no security roles are allowed to invoke the specified meth
i.e. that the specified method is to be excluded from execution.

package javax.annotation.security;
@Target (METHOD) @Retention(RUNTIME)
public @interface DenyAll {}

10.9.5 RunAs

The RunAs annotation is used to specify the bean’s run-as property. This annotation is applied t
bean class. Its value is the name of a security role.

package javax.annotation.security;
@Target(TYPE) @Retention(RUNTIME)
public @interface RunAs {
 String value();
 }

10.10 EJB References

TheEJB annotation denotes a reference to an EJB business interface or home interface.
 5/2/06 52

Resource References Enterprise JavaBeans 3.0, Final Release Metadata Annotations

Sun Microsystems Inc

t. The
ome

s
-
-jar file
ontain-
the path
e tar-

ed to.

s envi-
ron-

le.
Thename element refers to the name by which the resource is to be looked up in the environmen
beanInterface element is the referenced interface type—either the business interface or h
interface.

ThebeanName element references the value of thename element of theStateful or Stateless
annotation, whether defaulted or explicit, (orejb-name element, if the deployment descriptor wa
used to define the name of the bean). ThebeanName element allows disambiguation if multiple ses
sion beans in the ejb-jar implement the same interface. In order to reference a bean in another ejb
in the same application, the beanName may be composed of a path name specifying the ejb-jar c
ing the referenced bean with the bean name of the target bean appended and separated from
name by#. The path name is relative to the jar file containing the component that is referencing th
get bean.

The mappedNameelement is a product-specific name that the bean reference should be mapp
Applications that use mapped names may not be portable.

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface EJB {

String name() default "";
Class beanInterface() default Object.class;
String beanName() default "";
String mappedName() default "";
String description() default "";

}

@Target(TYPE) @Retention(RUNTIME)
public @interface EJBs {
 EJB[] value();
}

10.11 Resource References

The Resource andResources annotations are in the packagejavax.annotation . They are
defined by [8], and are presented here for reference.

TheResource annotation is used to express a dependency on an external resource in the bean’
ronment. Thename property refers to the name by which the resource is to be known in the envi
ment; the type is the resource manager connection factory type. TheauthenticationType element
specifies whether the container or bean is to perform authentication. Theshareable element refers to
the sharability of resource manager connections. ThemappedNameelement is a product-specific name
that the resource should be mapped to. Applications that use mapped names may not be portab

package javax.annotation;
@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface Resource {

public enum AuthenticationType {
CONTAINER,
APPLICATION

}
String name() default "";
Class type() default Object.class;
53 May 2, 2006 1:57 pm

Metadata Annotations Enterprise JavaBeans 3.0, Final Release Resource References

Sun Microsystems Inc.
AuthenticationType authenticationType()
default AuthenticationType.CONTAINER;

boolean shareable() default true;
String mappedName() default "";
String description() default "";

}

package javax.annotation;
@Target(TYPE) @Retention(RUNTIME)
public @interface Resources {
 Resource[] value();
}

 5/2/06 54

Resource References Enterprise JavaBeans 3.0, Final Release Related Documents

Sun Microsystems Inc
Chapter 11 Related Documents

[1] Enterprise JavaBeans, v 3.0. EJB Core Contracts and Requirements.

[2] Enterprise JavaBeans, v 3.0. Java Persistence API.http://java.sun.com/products/ejb.

[3] Enterprise JavaBeans, v 2.1.http://java.sun.com/products/ejb.

[4] Java Naming and Directory Interface (JNDI).http://java.sun.com/products/jndi.

[5] Java Remote Method Invocation (RMI).http://java.sun.com/products/rmi.

[6] Java Transaction API (JTA).http://java.sun.com/products/jta.

[7] Java Platform, Enterprise Edition (Java EE), v 5.http://java.sun.com/javaee.

[8] JSR-250: Common Annotations for the Java Platform.http://jcp.org/en/jsr/detail?id=250.

[9] JSR-181: Web Services Metadata for the Java Platform.http//jcp.org/en/jsr/detail?id=181.

[10] JSR-175: A Metadata Facility for the Java Programming Language.
http://jcp.org/en/jsr/detail?id=175.

[11] Web Services for Java EE, v 1.2.

[12] Java Message Service (JMS), v 1.1.http://java.sun.com/products/jms.

[13] Java API for XML Web Services (JAX-WS 2.0).http://jcp.org/en/jsr/detail?id=224.
55 May 2, 2006 1:57 pm

Related Documents Enterprise JavaBeans 3.0, Final Release Resource References

Sun Microsystems Inc.
 5/2/06 56

Early Draft 1 Enterprise JavaBeans 3.0, Final Release Revision History

Sun Microsystems Inc

JB 3.0

s with
Appendix A Revision History

This appendix lists the significant changes that have been made during the development of the E
specification.

A.1 Early Draft 1

Created document.

A.2 Early Draft 2

Split Early Draft 1 document into two documents, this document and “Persistence API” [2].

Added Overview chapter.

Moved discussion of items related to combined use of EJB 3.0 annotations and other new feature
EJB 2.1 style components to separate chapter.

Added support for annotated callbacks and callback listener classes.

Added support for interceptors for session beans and message-driven beans.
57 May 2, 2006 1:57 pm

Revision History Enterprise JavaBeans 3.0, Final Release Public Draft

Sun Microsystems Inc.

iffer-

riptor.

tions as

ported
Removed UniversalContext.

Added annotations for interceptors and callbacks.

Added chapter specifying the required support for the interoperability of components written to d
ent versions of the EJB specification.

Added clarifications about relationships between metadata annotations and the deployment desc

Separated out TransactionManagementType from Stateless, Stateful, and MessageDriven annota
a separate annotation.

Renamed REQUIRESNEW as REQUIRES_NEW, NOTSUPPORTED as NOT_SUPPORTED.

Added Related Documents section.

Updated numerous examples.

A.3 Public Draft

Added ApplicationException annotation.

Clarified meaning of interceptor proceed() method.

Removed requirements for support of generated interfaces. Generation of interfaces may be sup
by tools.

Added annotations for specification of local and remote interfaces.

Clarified that stateful session beans are not required to implement Serializable.

Updates to security and resource annotations.

Added support for dependency injection for interceptor classes.

Miscellaneous updates to reflect “EJB Core Contracts and Requirements” document.

A.4 Proposed Final Draft

Removed Interceptor annotation, since only Interceptors is needed.

Added support for method-level interceptors and default interceptors.

Merged lifecycle callbacks with interceptors.

Updated to reflect changes in JSR 250.
 5/2/06 58

Final Release Enterprise JavaBeans 3.0, Final Release Revision History

Sun Microsystems Inc

of the

plicitly

, and
thod as
e end-
A.5 Final Release

Fixed bug in Interceptors annotation (METHOD should have been included in Target list).

Fixed bug in signature of InvocationContext.setParameters method.

Added clarification that the same business interface cannot be both a remote and a local interface
bean.

Clarified the semantics of the InvocationContext methods setParameters and getParameters.

Corrected inconsistent default value in Init annotation.

Fixed typo in MessageDriven annotation.

Added missing @Target({}) @Retention(RUNTIME) to ActivationConfigProperty definition.

Allowed # syntax to be used with beanName in EJB annotation.

Clarified that name element of Stateless, Stateful, and MessageDriven annotation (whether ex
specified or defaulted) must be unique within the ejb-jar

Moved InvocationContext interface and Interceptors, AroundInvoke, ExcludeDefaultInterceptors
ExcludeClassInterceptors to javax.interceptor package. Renamed InvocationContext.getBean me
Invocation.getTarget When interceptors are invoked as a result of an invocation on a web servic
point, the InvocationContext.getContextData returns the JAX-WS MessageContext.

Query language references updated to refer to Java Persistence query language.
59 May 2, 2006 1:57 pm

	Chapter 1 Introduction
	1.1 Overview
	1.2 Goals of this Release
	1.3 EJB 3.0 Expert Group
	1.4 Organization of the Specification Documents
	1.5 Document Conventions

	Chapter 2 Overview of the EJB 3.0 Simplified API
	2.1 Metadata Annotations and Deployment Descriptors
	2.1.1 Deployment Descriptors

	2.2 Interoperability and Migration Between EJB 3.0 and EJB 2.1 and Earlier Clients and Beans

	Chapter 3 Enterprise Bean Class and Business Interface
	3.1 Enterprise Bean Class
	3.1.1 Requirements for the Enterprise Bean Class

	3.2 Business Interfaces
	3.3 Exceptions
	3.4 Interceptors
	3.4.1 Lifecycle Callback Interceptor Methods
	3.4.2 Business Method Interceptor Methods
	3.4.3 InvocationContext
	3.4.4 Exceptions

	3.5 Home Interfaces

	Chapter 4 Stateless Session Beans
	4.1 Requirements for Stateless Session Beans
	4.1.1 Business Interface
	4.1.2 Home Interface
	4.1.3 Bean Class
	4.1.4 Lifecycle Callbacks for Stateless Session Beans
	4.1.5 Dependency Injection
	4.1.6 Interceptors for Stateless Session Beans
	4.1.6.1 Example

	4.2 Client View
	4.3 Other Requirements

	Chapter 5 Stateful Session Beans
	5.1 Requirements for Stateful Session Beans
	5.1.1 Business Interface
	5.1.2 Home Interface
	5.1.3 Bean Class
	5.1.4 Lifecycle Callbacks for Stateful Session Beans
	5.1.4.1 Semantics of the Life Cycle Callback Methods for Stateful Session Beans

	5.1.5 Dependency Injection
	5.1.6 Interceptors for Stateful Session Beans
	5.1.7 Example
	5.1.8 Client View
	5.1.9 Stateful Session Bean Removal
	5.1.9.1 Example

	5.2 Other Requirements

	Chapter 6 Message-Driven Beans
	6.1 Requirements for Message-Driven Beans
	6.1.1 Business Interface
	6.1.2 Bean Class
	6.1.3 Lifecycle Callbacks for Message-Driven Beans
	6.1.4 Dependency Injection
	6.1.5 Interceptors for Message-Driven Beans.

	6.2 Other Requirements

	Chapter 7 Persistence
	Chapter 8 Enterprise Bean Context and Environment
	8.1 Annotation of Context Dependencies
	8.1.1 Annotation of Instance Variables
	8.1.2 Setter Injection
	8.1.3 Injection and Lookup
	8.1.4 EJBContext

	Chapter 9 Compatibility and Migration
	9.1 Support for Existing Applications
	9.2 Interoperability of EJB 3.0 and Earlier Components
	9.2.1 Clients written to the EJB 2.x APIs
	9.2.2 Clients written to the new EJB 3.0 API
	9.2.3 Combined use of EJB 2.x and EJB 3.0 persistence APIs
	9.2.4 Other Combinations of EJB 3.0 and Earlier APIs

	9.3 Adapting EJB 3.0 Session Beans to Earlier Client Views
	9.3.1 Stateless Session Beans
	9.3.2 Stateful Session Beans

	9.4 Combined Use of EJB 3.0 and EJB 2.1 APIs in a Bean Class

	Chapter 10 Metadata Annotations
	10.1 Annotations to Specify Bean Type
	10.1.1 Stateless Session Beans
	10.1.2 Stateful Session Beans
	10.1.2.1 Init Annotation for Stateful Session Beans
	10.1.2.2 Remove Annotation for Stateful Session Beans

	10.1.3 Message-driven Beans

	10.2 Annotations to Specify Local or Remote Interfaces
	10.3 Annotations to Support EJB 2.1 and Earlier Client View
	10.4 TransactionManagement
	10.5 Transaction Attributes
	10.6 Interceptors and LifeCycle Callbacks
	10.7 Timeout
	10.8 Exceptions
	10.9 Security and Method Permissions
	10.9.1 Security Role References
	10.9.2 MethodPermissions
	10.9.3 PermitAll
	10.9.4 DenyAll
	10.9.5 RunAs

	10.10 EJB References
	10.11 Resource References

	Chapter 11 Related Documents
	Appendix A Revision History
	A.1 Early Draft 1
	A.2 Early Draft 2
	A.3 Public Draft
	A.4 Proposed Final Draft
	A.5 Final Release

