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Control-moment gyroscopes (CMGs) have been used for attitude control on spacecraft 
that require large torques. We propose them for use in multibody robotic systems where 
high agility (or dexterity) and low power are important design goals. The architecture we 
propose offers singularity-free, reactionless slewing of a multi-joint robotic arm. It promises 
one to two orders of magnitude reduction in electromechanical power over otherwise 
identical systems with traditional joint drives or reactionless rotors. In broad terms, this 
improvement is possible because the CMGs transfer momentum with only small changes in 
kinetic energy. The large torques with which CMGs are associated are, in fact, constraint 
torques if the bodies are rigidly connected. They do no work, and they therefore require no 
input power per se. We describe the implementation of this concept on a small, free-flying 
spaceraft-maintenance robot (proposed by Princeton Satellite Systems), where 2 rad/sec 
rate, 2 rad/sec acceleration, and 2 rad/sec jerk are achieved for less than 1 kW peak power. 

Nomenclature 
Ps = shaft power 
τi = torque applied by the ith CMG or scissored pair of CMGs 
ω = pressure coefficient 
φi = gimbal angle of the ith CMG 
hri = rotor angular momentum vector for the ith CMG 
hi = angular momentum of 
ai = joint axis (unit vector) of the ith body the ith CMG or scissored pair of CMGs 

i/Nω  = the ith body’s angular-velocity vector in an inertial frame N 
i/jω  = the angular velocity of a frame fixed in the ith body relative to a frame fixed in the jth body 
iĝ  = ith CMG’s gimbal axis 

θ i = gimbal angle of the ith CMG or scissored pair of CMGs 
Cv  = 3×1 matrix of measure numbers of the vector v along basis vectors fixed in frame C 
v×  = 3×3 matrix equivalent of the cross product operation using the vector v 
i
v  = vector derivative of the vector v in frame i 
ir̂  = ith CMG rotor’s spin axis 

riΩ  = magnitude of the ith CMG rotor’s angular velocity in a gimbal-fixed frame (its spin rate) 
Ejoints = kinetic energy of the joints 
EACS = kinetic energy in the attitude-control system reaction-wheel array 
 

I. Introduction 
ONTROL-MOMENT gyroscopes (CMGs) have been used for attitude control on spacecraft that require large 
torques. A CMG consists of a spinning rotor and one or more motorized gimbals that tilt the rotor’s angular 

momentum. As the rotor tilts, the changing angular momentum causes a gyroscopic torque that rotates the 
spacecraft. Figure 1 is a picture of the Honeywell M50 CMG, which produces 50 ft-lb with 50 ft-lb-sec rotor on a 1 
rad/sec gimbal. Achieving this peak torque requires an astonishingly low 120W.1 
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Figure 1. Honeywell M50 CMG 
 
CMGs have been used for decades in large spacecraft, including Skylab and the International Space Station. These 
large spacecraft have implemented dual-gimbal CMGs, which do not offer the power, torque, and robustness 
benefits of the single-gimbal CMGs envisioned for the maintenance bot. In the years to come single-gimbal CMGs 
will provide attitude control for several commercial earth-imaging satellites, such as Lockheed-Martin’s Ikonos and 
Ball Aerospace’s WorldView spacecraft. We propose to base the design of the CMGs for the maintenance bot on the 
technology of Honeywell Defense and Space Electronics Systems, whose high-reliability and high technology-
readiness CMGs boast an unrivaled history of mission success.  

A CMG is far more power efficient than the conceptually simpler and more commonly used reaction wheel 
(RWA). An RWA applies torque simply by changing its rotor spin speed ω, but in doing so imparts shaft power Ps:  

 ωτ ⋅=sP , (1) 

a result that assumes an entirely mechanical, lossless system. The scalar Ps is the projection of the vector motor 
torque τ onto the rotor angular-velocity vector ω. In contrast, a CMG’s gimbal motor is roughly orthogonal to the 
rotor spin axis, and the resulting shaft power is virtually zero if the gimbal inertia and the motor losses are 
negligible. For a few hundred Watts and about 100 kg of mass, large CMGs have produced thousands of Nm of 
torque, enough to flip over an SUV2. A reaction wheel of similar capability would require megawatts of power to 
produce torque at speed, simply because the torque is aligned with the spin axis. 

II. Robotic System Architecture 
Operating either a CMG or an RWA produces a torque that reacts onto the spacecraft body, influencing the 

spacecraft angular momentum. The difference is that the CMG’s own angular momentum changes in direction (but 
not in magnitude), while the RWA’s angular momentum changes in magnitude (but not in direction). If the CMG’s 
gimbal is rigid, the gyroscopic torque for which a CMG is responsible is purely a constraint torque. As such, it does 
no work. At the heart of this surprising result is the counterintuitive fact that one can alter the distribution of 
momentum among bodies in a dynamical system in a way that is independent of energy. That is, changing the 
angular momentum of various links in the maintenance bot system can be done in a way that requires no energy 
except what is lost through electromechanical inefficiencies. Using CMGs is a natural way to realize such an 
architecture.  

Momentum-storage devices (to date, exclusively reaction wheels) have been used to provide “reactionless” 
motion of high-agility gimbals and entire spacecraft payloads. Although other forms of reactionless steering have 
been proposed3, this one depends on internal gyricity.  The principle of operation is simple: rather than using a 
motor that reacts the drive torque of a moving component back onto the spacecraft bus, where it must be dealt with 
as an attitude disturbance, a reactionless drive absorbs the momentum internally. For example, a gimbal may be 
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actuated by an RWA (realized, perhaps, as a circumferential ring) aligned with the gimbal axis. When the RWA 
spins up in one direction, the gimbal spins up in the other. The concept is shown in Figure 2.  

 

 
 

Figure 2. Schematic of a Reactionless Jointed System 
 

One can generalize this single-axis principle to multiple degrees of freedom associated with a spacecraft 
payload: a collection of RWAs manages the entire payload’s angular-momentum state in three degrees of freedom, 
so that the payload may undergo attitude motions that are largely imperceptible to the rest of the spacecraft. Such an 
architecture simplifies design and integration because payload components may be developed independently, 
without the risk of unwanted interactions after the system is built. It also simplifies operations. Many tasks can be 
undertaken simultaneously with virtually no coupling between physical behaviors or tasking. In the case of the 
maintenance bot, these tasks may include simultaneously manipulating many different components of a spacecraft 
under repair.  

Reactionless benefits come with the territory for the CMG-driven maintenance bot. Here, incorporating CMGs 
throughout the kinematic chain of links provides not only high-torque actuation but also inherent reactionless 
dynamics. When a joint is actuated, the torque comes not from a direct-drive motor that interacts with its 
neighboring body but from manipulating the distribution of momentum among the CMGs and the body to which 
they are mounted. Perhaps the most important impact of reactionless CMG-based control is that it requires only 1%-
10% the electrical power for a comparable RWA-based or joint-driven robotic system, as we explain in this section. 
This feature enables high agility (or dexterity) for modest power or typical agility for considerable power savings 
over existing robotic concepts. Low power improves the robustness and safety of the maintenance-bot system, and 
the resulting cost and mass savings likely roll up to the system level.  

Although many CMG arrangements are possible, our baseline concept includes a scissored pair of CMGs for 
each rotational joint in the maintenance bot. A scissored pair is an array of two CMGs with parallel gimbal axes and 
opposite angular velocities. Equivalently, a scissored pair may be said to consist of two CMGs with antiparallel 
gimbal axes and equal angular velocities. Figure 3 is a sketch of the concept. The scissored-pair arrangement ensures 
that the sum of the CMGs’ angular momentum aligns with a single axis, like that of a reaction wheel, which 
drastically simplifies the control algorithms. As Figure 3 indicates, the CMG gimbal angles φ1 and φ2 are kept 
constant, either through mechanical means such as gears or through closed-loop control. Although the individual 
CMGs’ angular-momentum vectors hr1 and hr2 tilt away from the rotational joint’s axis a, their sum remains aligned 
with a. Thus, the momentum exchange from the CMG to the jointed body accelerates the body about its joint axis 
only, without coupling into the rest of the base body A.  
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Figure 3. Scissored Pair of CMGs and Implementation on a Single-DOF Jointed Body 

 
The robotic arm(s) of the maintenance bot may consist of many such jointed bodies. A schematic is shown in Figure 
4, where the end effector is represented as a black cone (perhaps suggesting the sun shield for the lens of an 
inspection camera).  
 

 
Figure 4. Three-body Robotic Arm, Each Joint Actuated by a Scissored Pair of CMGs 
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Figure 5. Two-Link Example with Two Scissored Pairs of CMGs 
 
If necessary, the base body can be driven by suite of four identical CMGs. This choice allows a single mathematical 
degree of freedom for singularity avoidance, providing a singularity-free region of operation within a 2hr sphere, 
where hr is the momentum of an individual CMG’s rotor in the base body. The details of the singularity-avoidance 
method are not presented here. 

The low-power benefits of CMGs are most effectively realized in a system where the CMG base’s angular-
velocity vector does not cause gyroscopic torques along the CMG gimbal axes, which would introduce large 
holding-torque requirements on the gimbal motors. Conversely, reactionless control of outboard joints virtually 
eliminates control power required on inboard joints (and the base body). For example, consider a situation in which 
a joint rotates about an inertial axis that is perpendicular to the CMG momentum vector and to the CMG gimbal 
axis. In the case of the single body in Figure 3, one such axis is the joint axis when the CMG has rotated about its 
gimbal roughly 90o from the orientation shown. Such rotation applies torque back onto the CMG gimbal motor, 
which the motor then must react. Unless the motor has some mechanical anti-backlash device (like a ratchet), the 
motor must apply this torque through electrical power in its windings with all the related losses and impacts to 
harness design. 

III. Fault Robustness 

A. Impact Memory 
If the robotic system described here interacts with other bodies, it retains a record of these interactions. One 

might call it an impact memory. Specifically, the moments applied by the robotic system during contact alter the 
system angular momentum. In a space system, where environmental torques may be negligibly small, these 
moments may accurately represent a record of unwanted contact, in which case operators can evaluate the history of 
the impacts by looking at the angular momentum embedded in the CMGs and the links. If the contact is planned—
for example, as part of an in-orbit construction procedure—looking at the embedded momentum has other benefits. 
Among them, the altered angular-momentum state can be used to verify that appropriate manipulations were carried 
out. Perhaps even more interesting, manipulating another object and recording the kinematic time history along with 
the robotic system’s momentum may be used to identify the object’s mass properties4.  

B. CMG Failures 
The maintenance bot architecture can accommodate a variety of approaches to subsystem fault tolerance. With 

regard to CMG failures or underperformance, we propose a concept in which the base body attitude control is 
coupled to the joint attitude control to minimize power (or keep power within constraints for degraded agility). 
Again, the power-optimal design is one that includes reactionless control of the joints. However, in a multibody 
system without reactionless control, it is possible to describe constraints on the motion such that a steering algorithm 
can minimize power. A detailed explanation follows.  
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We consider the case of n jointed bodies, each of which is driven by a single CMG. The scissored-pair 

configuration is subject to the same constraints, but the example is clearer for single CMGs, and therefore we 
proceed with the simpler case. Let  represent the ith body’s angular-velocity vector in an inertial frame N. Let 

 represent the ith CMG’s gimbal axis, and let  represent the ith CMG’s angular-momentum vector. The angle φi 
is the ith CMG’s gimbal axis, taken to be zero when || , the ith body’s joint axis. We define a frame B that rotates 
with the base body (the central body of the maintenance bot). The total angular velocity of the ith body is then the 
sum of the joint rates along the kinematic chain back to the base body, whose inertial angular velocity is : 

i/Nω
iĝ rih

ih iâ

B/Nω

 . (2) B/N1/B2/12-1/i-i1-i/ii/N ... ωωωωωω +++++=

We assume that the CMG gimbal axes are perpendicular to the joint axes (i.e. ii ag ˆˆ ⊥ . Expressed algebraically, the 
requirement for minimum power is then 

 ( ) 0ˆi/N =⋅× iri ghω , (3) 

i.e., the projection of the gyroscopic torque due to the inertial rate of the joint onto the CMG gimbal axis is zero. 
Writing these constraints for all of the joints in the system results in n equations in the n joint angular rates .  θ
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This expression is written without explicit basis vectors. Implementation would likely include a coordinate system 
based on Denavit-Hartenberg parameters or some other convenient rubric for parameterizing the forward 
kinematics. We also note here that if the rotor angular-momentum is the same from one CMG to the next, its 
magnitude can be factored out of this equation, resulting in a purely kinematical expression. 

Solving these equations for   involves inverting an n×n matrix because these constraints specify each joint 
rate. However, it is clear that this matrix can be singular for certain joint alignments. As a demonstration, we 
represent them in the form of an (n-1)×(n-1) system of equations and a single scalar equation:  
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Consider the case of sinφ1=0. Here, the inboardmost joint rate  is undefined unless 1θ ( )B/N
11ˆ ωhg ×⊥ r  or 

, in which case 1  is merely unconstrained and can therefore take on any value. This principle can be 
extended for all of the joint angles, although simple expressions are not available (they involve the singular values of 
the matrix). 

B/N
1 ||ωhr θ

The fifth equation constrains the central-body rate such that the inboardmost joint requires zero power. The 
presence of this constraint forces the attitude-control systems engineer to consider an important question: given 
multiple kinematic chains (robotic arms), each of which may be attached to the central body, what is the best 
strategy for accommodating the minimum-power requirements of all of them simultaneously?  One approach is to 
constrain either the joint rate θ1 or the gimbal angle φ1 of each arm so that the fifth equation is satisfied. However, 
doing so essentially prevents the innermost joint from moving to place the end effector in a desired trajectory; it also 

 
American Institute of Aeronautics and Astronautics 

 

6

D
ow

nl
oa

de
d 

by
 C

O
R

N
E

L
L

 U
N

IV
E

R
SI

T
Y

 o
n 

Fe
br

ua
ry

 6
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
00

5-
62

43
 



introduces a constraint that cascades throughout the rest of the bodies, constraining their motion as well. The 
solution must weigh the power-minimization needs of all joints and the central body simultaneously with the 
combined attitude-control and joint-control commands to be executed. Absent the nth constraint, the system has a 
single-degree-of-freedom null space within which maneuvers can take place with minimum energy. Since far more 
degrees of freedom are necessary for useful tasks, the control-design problem is to find the path that minimizes 
energy subject to a weighted combination of these constraints without necessarily satisfying them all exactly.  

An alternative view of these constraints is that they provide a way to specify the central-body angular velocity 
 so that it minimizes the power for arbitrary joint velocities. This angular-velocity vector is regulated by the 

attitude-control system for the maintenance bot, and the operations concept may allow the use of the central body for 
energy-minimization. We emphasize, however, that this approach is efficient only if the power required to steer the 
central body in this fashion is less than what such steering saves in the joints.  

B/Nω

To develop this law we represent the vectors’ measure numbers such that the projection of some arbitrary vector 
v onto each of a set of basis vectors C is written as the 3×1 matrix Cv, i.e.,  

 [ ]T
1 2 3

Cv = ⋅ ⋅ ⋅c v c v c v  (6) 

For example, these basis vectors may conveniently describe the orientation of the central body relative to an object 
in the workspace to be manipulated. In any case, the central-body angular velocity in C coordinates  can be 
specified in terms of arbitrary joint angular rates in a way that minimizes power as follows: 
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⎥  (7) 

where the superscript × indicates the skew-symmetric matrix equivalent of the cross-product operation, and the 
superscript + denotes the Moore-Penrose pseudoinverse. The angular-velocity vector’s representation in C includes 
only three parameters; therefore, a robot with more than three links cannot experience minimum-energy dynamics. 
Instead, the pseudoinverse used in this expression provides a least-squares best  given the possibly conflicting 
constraints. Again, the controls architecture may instead choose to weight this constraint for energy minimization 
relative to some other objective in defining the steering commands.  

B/NCω

We emphasize that the singularity in this matrix is not directly related to the kinematic singularities associated 
with robotic systems, whereby certain joints align in a way that would demand unrealizable actuator forces. Instead, 
when the power mapping discussed here becomes singular, certain joints simply cannot be used to minimize power. 
The question of kinematic singularities is an interesting and relevant one, but it is the same for the maintenance bot 
as for any other robotic system. The same design principles of redundant joint degrees of freedom and singularity-
avoidance apply here. The benefit of the maintenance bot’s architecture is the use of CMGs as a ready means of 
limiting power but producing very high agility. 

IV. Power 
Here we provide a simple example that compares the low-power, high-agility features of the maintenance bot to 

other approaches. In this example, the maintenance bot consists of a central body and a three-link arm. For 
simplicity, each link’s mass center is on its joint axis. Furthermore, the mass center of any system of outboard joints 
lies on the axis of the inboard joint, with the result that forces and mass-center motions are irrelevant. This principle 
is a worthy design goal, albeit difficult to achieve in practice (particularly for times when the manipulator is carrying 
a payload). Nevertheless, we argue that this simplification helps make the power comparison clearer for the sake of 
illustrating the concept’s capabilities and is therefore justified in the context of this paper. For the same reason, 
products of inertia are taken to be zero. Other parameters in the example are listed in Table 1. The design on which 
these parameters are based is somewhat arbitrary; but it corresponds roughly to a system of about 1m in 
characteristic link length (about a 2 m radius workspace) and no more than 100 kg overall mass.  
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Table 1. Parameters for the Three-Link Example 

Parameter Value 
Central Body Inertia 50 kg⋅m2 in all axes 
Link 1 inertia 10 kg⋅m2 in all axes 
Link 2 inertia 10 kg⋅m2 in all axes 
Link 3 inertia 10 kg⋅m2 in all axes 
CMG rotor momentum 50 Nms (Honeywell M50 CMG) 
Link 1 CMG gimbal axes [0 1 0] in Link 1 coordinates 
Link 2 CMG gimbal axes [0 0 1] in Link 2 coordinates 
Link 3 CMG gimbal axes [1 0 0] in Link 2 coordinates 
RWA rotor inertia 0.08 kg⋅m2 in all axes 
CMG rotor inertia 0.04 kg⋅m2 in all axes 
CMG gimbal inertia 0.02 kg⋅m2 in all axes 
CMG rotor rate (constant) 6000 RPM 
Reference Configuration  
Link 1 joint axis [1 0 0] in central-body coordinates 
Link 2 joint axis [0 1 0] in central-body coordinates 
Link 3 joint axis [0 0 1] in central-body coordinates 
Initial CMG pair 1 gimbal angle 0 (momentum aligned with Link 1 joint axis) 
Initial CMG pair 2 gimbal angle 0 (momentum aligned with Link 2 joint axis) 
Initial CMG pair 3 gimbal angle 0 (momentum aligned with Link 3 joint axis) 

 
In this example we consider three architectures. To allow a fair comparison, we require that the bus remain 

inertially fixed in each case: i.e., any reaction torques from the robotic arms must be taken out by the base-body 
attitude control system (ACS). 

1. The first case is what we have described as the baseline maintenance bot architecture: reactionless, CMG-driven 
joints. Each joint includes a scissored pair of 25 Nms CMGs (for a total capacity of 50 Nms). It turns out that the 
base body does not move (regardless of the motion of the arm), so the base-body ACS design is irrelevant here. 

2. The second case is identical except that each scissored pair of CMGs is replaced by a 50 Nms reaction wheel 
(RWA). Once again, the base-body ACS is irrelevant. 

3. The third case includes traditional direct- or geared-drive motors that actuate the joints. Reaction torques applied 
the base body are significant, and they are compensated by a high-bandwidth reaction-wheel based ACS. The 
ACS uses four RWAs that are identical to those on the joints and whose spin axes are [ ]2

2
2
1

2
1 ±±  in base-

body coordinates. 
 

The joints’ kinematics are varied numerically across a wide range in an effort to capture the worst-case power 
and nominal statistics. This variation forms a Monte Carlo analysis, where the joint angles, angular rate, angular 
acceleration, and angular jerk are given values within the limits shown in Table 2. We take these agility 
requirements to specify the joint kinematics, not the inertial kinematics. For example, the angular-rate limits apply to 
the joint, not the angular velocity magnitude of the link in an inertial frame. Thus, the end-effector agility is greater 
than that of a single link, up to twice the level shown in the table (e.g. 229 deg/sec), making the maintenance bot an 
extremely capable system. Another important point is that the CMG gimbal-motor control-loop bandwidth is taken 
to be much higher than the characteristic frequencies in the kinematics (e.g. the 2 rad/sec3 jerk), which is a 
reasonable assumption. This point allows us to make the approximation that the CMGs achieve the prescribed 
kinematics instantaneously. 

Table 2. Agility Requirements for the Maintenance Bot Monte Carlo Example 

Parameter Minimum Value Maximum Value 
Joint angle (3 independent values)  -π π 
Joint rate (3 independent values) -2 rad/sec 2 rad/sec 
Joint acceleration (3 independent values) -2 rad/sec2 2 rad/sec2 
Joint jerk (3 independent values) -2 rad/sec3 2 rad/sec3 

 
American Institute of Aeronautics and Astronautics 

 

8

D
ow

nl
oa

de
d 

by
 C

O
R

N
E

L
L

 U
N

IV
E

R
SI

T
Y

 o
n 

Fe
br

ua
ry

 6
, 2

01
8 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
00

5-
62

43
 



 
In this analysis the joint angles are always given uniform distributions. However, for rate, acceleration, and jerk 

two types of distributions are considered: a uniform distribution, meant to represent something like a “day in the 
life” of the maintenance bot, a statistically representative selection of maneuvers; and a simple maximum or 
minimum, used to identify the worst-case power across all joint configurations. In all cases, we report only the 
power required if the electromechanical systems involved were lossless. In fact, some additional multiplier (say 
50%) should be added to account for various I2R losses in harness and friction losses in bearings. This scale may not 
be quite the same for all systems but, it turns out, the savings are so great for the baseline architecture that the 
difference could not change the outcome of a trade study. 

One rarely encounters a specification of jerk in this context. For the maintenance bot, there are several 
important reasons for such a requirement. Among them, jerk is a direct measure of the changing acceleration, and 
thus the frequency content of the loading on both the maintenance bot and its payload. Minimizing jerk reduces the 
systems-engineering effort in managing structural stiffnesses in the design and considering frequency-dependent 
coupled loads. However, requiring low jerk limits the bandwidth of the joint control. Jerk also limits the range of 
simultaneous rate and acceleration that can be achieved. For example, the maximum positive joint rate and the 
maximum positive joint acceleration cannot be applied simultaneously if there is a jerk limit because the 
acceleration must change over a finite time; and the rate limit would be exceeded during the period of negative jerk. 
Finally, the jerk is also directly related to the CMG gimbal acceleration. So, we have selected a jerk limit that seems 
to balance the demands of structural dynamics with the desire for high-speed joint kinematics. We emphasize that it 
is the methodology that is of greatest interest here; the specific values will be refined when maintenance-bot 
parameters are allocated from higher-level performance requirements.  

In all cases we assume that there is no regenerative power transfer; that is, the power bus must be designed to 
handle a current load equivalent to the absolute value of the mechanical kinetic-energy change (and losses). One 
might develop a cross-strapped set of actuators, in which power required by one is extracted from another. However, 
one of the goals of the maintenance bot is to use comparatively high-TRL solutions. And because CMGs and 
reaction wheels have flown very successfully for decades, we propose no significant modifications to the Honeywell 
designs.  

In case 1, the scissored-pair kinematics (φ and its derivatives) are found from momentum conservation for the 
kinematic chain, using the randomly selected kinematics from the Monte Carlo simulation:  

  (8) 

1
N/N//

21
N/1

1
N/1/11

1

32
N/2

2
N/2/22

2

3
N/3

3
N/3/33

3

τωIωωI

ττωIωωI

ττωIωωI

τωIωωI

−=⋅×+⋅

−=⋅×+⋅

−=⋅×+⋅

=⋅×+⋅

B
B

BNBB

B

N

N

N

where B indicates parameters for the base body. However, with a non-moving base body (per our assumptions), we 
have  

  (9) 
1

2
N/1

1
N/1/11

1

0 τ
τωIωωI

−=
−=⋅×+⋅

N

The jerk for a given body indicates how this torque changes in time ( ); e.g. for the third link, 3

N
τ

 ( ) 3

N
N/3

3
N/3N/3N/3

3
N/33N/33

3
N/3/333

3 2 τωIωωωIωωIωωI =⋅××+⋅×+⋅×+⋅ N . (10) 

The momentum in the ith scissored pair is  
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 iirri h ah ˆsin2 φ= . (11) 

Solving for momentum along the ai axis yields 
r

ri
i h

h
2

sin 1−=φ . The torque it applies along the ai axis leads to  

 
ir

ri
iiirri h

hhh
φ

φφφ
cos2

          cos2 =→= , (12) 

and the time-varying torque (due to jerk) provides 

 ( ) ii
ir

ri
iiiiirri h

hhh φφ
φ

φφφφφ tan
cos2

         sincos2 +=→−= . (1) 

From these parameters, the power required by the ith CMG is  

  (13) 
( ) ( )

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−+⋅⋅+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×+−×−+⋅⋅++=

N/N/N/

N/N/N/

ˆˆˆ       

ˆˆˆˆˆˆˆ

i
ii

ii
iig

i
ii

i
iiiriiir

ii
iir

i
iiiri ΩΩΩP

ωgωgIωg

ωgrgrωgIωgr

φφφ

φφφφ

where  is the CMG rotor rate,  is the rotor spin axis,  is the gimbal rate,  is the ith link’s angular velocity 

in an inertial frame N,  is the rotor inertia dyadic,  is the gimbal acceleration,  is the angular acceleration of 

the ith link in an i-fixed frame, and  is the gimbal inertia dyadic.  

rΩ ir̂ iφ N/iω

rI iφ N/ii
ω

gI
 

The power is considerably simpler in the case of the reactionless RWA architecture. Beginning with the angular 
momentum for each link, we simply compute  

 . (14) N/ˆ i
iirih ωIa ⋅⋅=

Similarly, the RWA torque is simply 

 . (15) 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅×+⋅⋅= N/N/N/ˆ i

i
iii

iiri ωIωωIaτ

The power for each RWA is then 

 
r

ri
rii I

hP τ= , (16) 

where we have taken advantage of the fact that the rotor inertia is the same for all axes (by the assumptions 
explained above). 
 

In the third case, we compute the time rate of change in the three-link system’s kinetic energy Ejoints and take 
that power to be required of the joint motors, whatever they may be. Then, the net momentum of the outboard joints 
must be absorbed by the ACS RWAs (assuming no external torques on the maintenance bot), as must the torque of 
the three-link system transmitted via the inboard joint:   
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  (17) 
ACS

i

ii

i
i

ACSsjo EEEP +⋅⋅=+= ∑
=

3

1

N/N/
int ωIω

The power due to ACS activity is then simply the shaft power for each of the four RWAs. Given the matrix A of 
spin axes (as defined in Table 1), 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−
−−

=

2
2

2
2

2
2

2
2

5.05.05.05.0
5.05.05.05.0

A , (18) 

the four RWAs’ angular momenta  may be found from the base-body angular momentum  via  iacsh , baseh

 , (19) ( ) base

acs

acs

acs

acs

hAAA

h
h
h
h

1TT

4,

3,

2,

1,

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

The same result applies to reaction-wheel torques iacs,τ . Some straightforward calculations provide an estimate 
of the wheel power for the array. Here, the absolute values (not the vector norms) are taken for each RWA spin rate 
because of our requirement that there is no flywheel-style energy storage, and that all power must come from the 
base body power bus or be shunted into a resistor. 

V. Conclusions 
The results of the Monte Carlo analysis for day-in-the-life statistics are shown in Figure 6. The first case, the 

baseline maintenance bot, requires about 151 W for typical operations, despite its extraordinarily high agility. In 
contrast, the reactionless RWA case requires about 3300 W, and the traditional joint-drive architecture requires 
about 7200W.  

 
Input Power, W 

 
Figure 6. Day in the Life Probability Density for Electromechanical Power: Three Cases, Both Linear and 

Logarithmic Scales Shown. 
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The worst-case analysis (maximum rate, acceleration, and jerk, for all values of joint angle) reveals a similar trend. 
The bar graph in Figure 7 shows that the CMG-based reactionless architecture requires between 200 W and 1500 W 
for worst-case kinematics over the range of joint angles, while the RWA-based architecture requires up to 70kW. 
The traditional joint-drive architecture demands an astounding 118 kW.  

  
Figure 7. Range of Minimum and Maximum Power Required (Kinematic Limits, All Joint Angles) for All 

Three Cases 
 

The key conclusion is that the CMG-based maintenance-bot architecture can radically outperform other systems 
in power for high-agility maneuvers. Furthermore, this architecture opens up a large trade space for power vs. 
agility, allowing highly effective maintenance bots to be incorporated for relatively low power-specific mass. Or, for 
a given mass, the maintenance bot can withstand more demanding operations for longer than competing 
architectures.  
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