Solution

Verified
Answered 3 years ago
Step 1
1 of 2

Well, we will use the differential of the function f(x,y)=x2y2f(x,y) = \sqrt{x^2-y^2} to get an estimate of the variation dfdf, then we can calculate the new value of ff (fnf_n).

f(x,y)=x2y2for (4.98)2(3.03)2x=5,dx=0.02,y=3,dy=0.03f(5,3)=5232=16=4df=fxdx+fydydf=xdx(x2y2)12ydy(x2y2)12df=5×0.023×0.034=0.100.094df=0.194=0.0475fn=f+dffn=40.0475=3.95253.95\begin{gather*} \because f(x,y) = \sqrt{x^2 - y^2} \\ \text{for $\sqrt{(4.98)^2 - (3.03)^2 }$} \\ \therefore x = 5 \:\:,\:\: dx = -0.02 \:\:,\:\: y = 3 \:\:,\:\: dy = 0.03 \\ \therefore f(5,3) = \sqrt{5^2 - 3^2} = \sqrt{16} = \mathbf{4} \\ \because df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy\\ \therefore df = \frac{x dx}{(x^2-y^2)^{\frac{1}{2}} } - \frac{y dy}{(x^2-y^2)^{\frac{1}{2}} } \\ \therefore df = \frac{5\times -0.02 - 3\times 0.03}{4} = \frac{-0.10 - 0.09}{4} \\ \therefore df = \frac{-0.19}{4} = \mathbf{-0.0475} \\ \because f_n = f + df \\ \boxed{ \therefore f_n = 4- 0.0475 = 3.9525 \approx \mathbf{3.95} } \end{gather*}

Create a free account to view solutions for this book

By signing up, you accept Quizlet's Terms of Service and Privacy Policy