Well, we will use the differential of the function f ( x , y ) = x 2 − y 2 f(x,y) = \sqrt{x^2-y^2} f ( x , y ) = x 2 − y 2 to get an estimate of the variation d f df df , then we can calculate the new value of f f f (f n f_n f n ).
∵ f ( x , y ) = x 2 − y 2 for ( 4.98 ) 2 − ( 3.03 ) 2 ∴ x = 5 , d x = − 0.02 , y = 3 , d y = 0.03 ∴ f ( 5 , 3 ) = 5 2 − 3 2 = 16 = 4 ∵ d f = ∂ f ∂ x d x + ∂ f ∂ y d y ∴ d f = x d x ( x 2 − y 2 ) 1 2 − y d y ( x 2 − y 2 ) 1 2 ∴ d f = 5 × − 0.02 − 3 × 0.03 4 = − 0.10 − 0.09 4 ∴ d f = − 0.19 4 = − 0.0475 ∵ f n = f + d f ∴ f n = 4 − 0.0475 = 3.9525 ≈ 3.95 \begin{gather*} \because f(x,y) = \sqrt{x^2 - y^2} \\ \text{for $\sqrt{(4.98)^2 - (3.03)^2 }$} \\ \therefore x = 5 \:\:,\:\: dx = -0.02 \:\:,\:\: y = 3 \:\:,\:\: dy = 0.03 \\ \therefore f(5,3) = \sqrt{5^2 - 3^2} = \sqrt{16} = \mathbf{4} \\ \because df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy\\ \therefore df = \frac{x dx}{(x^2-y^2)^{\frac{1}{2}} } - \frac{y dy}{(x^2-y^2)^{\frac{1}{2}} } \\ \therefore df = \frac{5\times -0.02 - 3\times 0.03}{4} = \frac{-0.10 - 0.09}{4} \\ \therefore df = \frac{-0.19}{4} = \mathbf{-0.0475} \\ \because f_n = f + df \\ \boxed{ \therefore f_n = 4- 0.0475 = 3.9525 \approx \mathbf{3.95} } \end{gather*} ∵ f ( x , y ) = x 2 − y 2 for ( 4.98 ) 2 − ( 3.03 ) 2 ∴ x = 5 , d x = − 0.02 , y = 3 , d y = 0.03 ∴ f ( 5 , 3 ) = 5 2 − 3 2 = 16 = 4 ∵ df = ∂ x ∂ f d x + ∂ y ∂ f d y ∴ df = ( x 2 − y 2 ) 2 1 x d x − ( x 2 − y 2 ) 2 1 y d y ∴ df = 4 5 × − 0.02 − 3 × 0.03 = 4 − 0.10 − 0.09 ∴ df = 4 − 0.19 = − 0.0475 ∵ f n = f + df ∴ f n = 4 − 0.0475 = 3.9525 ≈ 3.95