1
B. E. Kim, T. Nevitt, D. J. Thiele, Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol. 4, 176–185 (2008).
2
E. J. Ge, A. I. Bush, A. Casini, P. A. Cobine, J. R. Cross, G. M. DeNicola, Q. P. Dou, K. J. Franz, V. M. Gohil, S. Gupta, S. G. Kaler, S. Lutsenko, V. Mittal, M. J. Petris, R. Polishchuk, M. Ralle, M. L. Schilsky, N. K. Tonks, L. T. Vahdat, L. Van Aelst, D. Xi, P. Yuan, D. C. Brady, C. J. Chang, Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat. Rev. Cancer 22, 102–113 (2022).
3
S. Lutsenko, Human copper homeostasis: A network of interconnected pathways. Curr. Opin. Chem. Biol. 14, 211–217 (2010).
4
T. D. Rae, P. J. Schmidt, R. A. Pufahl, V. C. Culotta, T. V. O’Halloran, Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science 284, 805–808 (1999).
5
P. Tsvetkov, A. Detappe, K. Cai, H. R. Keys, Z. Brune, W. Ying, P. Thiru, M. Reidy, G. Kugener, J. Rossen, M. Kocak, N. Kory, A. Tsherniak, S. Santagata, L. Whitesell, I. M. Ghobrial, J. L. Markley, S. Lindquist, T. R. Golub, Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat. Chem. Biol. 15, 681–689 (2019).
6
B. B. Hasinoff, A. A. Yadav, D. Patel, X. Wu, The cytotoxicity of the anticancer drug elesclomol is due to oxidative stress indirectly mediated through its complex with Cu(II). J. Inorg. Biochem. 137, 22–30 (2014).
7
S. Tardito, I. Bassanetti, C. Bignardi, L. Elviri, M. Tegoni, C. Mucchino, O. Bussolati, R. Franchi-Gazzola, L. Marchiò, Copper binding agents acting as copper ionophores lead to caspase inhibition and paraptotic cell death in human cancer cells. J. Am. Chem. Soc. 133, 6235–6242 (2011).
8
E. W. Hunsaker, K. J. Franz, Emerging opportunities to manipulate metal trafficking for therapeutic benefit. Inorg. Chem. 58, 13528–13545 (2019).
9
V. Oliveri, Biomedical applications of copper ionophores. Coord. Chem. Rev. 422, 213474 (2020).
10
S. M. Corsello, R. T. Nagari, R. D. Spangler, J. Rossen, M. Kocak, J. G. Bryan, R. Humeidi, D. Peck, X. Wu, A. A. Tang, V. M. Wang, S. A. Bender, E. Lemire, R. Narayan, P. Montgomery, U. Ben-David, C. W. Garvie, Y. Chen, M. G. Rees, N. J. Lyons, J. M. McFarland, B. T. Wong, L. Wang, N. Dumont, P. J. O’Hearn, E. Stefan, J. G. Doench, C. N. Harrington, H. Greulich, M. Meyerson, F. Vazquez, A. Subramanian, J. A. Roth, J. A. Bittker, J. S. Boehm, C. C. Mader, A. Tsherniak, T. R. Golub, Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer 1, 235–248 (2020).
11
D. Cen, D. Brayton, B. Shahandeh, F. L. Meyskens Jr., P. J. Farmer, Disulfiram facilitates intracellular Cu uptake and induces apoptosis in human melanoma cells. J. Med. Chem. 47, 6914–6920 (2004).
12
J. R. Kirshner, S. He, V. Balasubramanyam, J. Kepros, C.-Y. Yang, M. Zhang, Z. Du, J. Barsoum, J. Bertin, Elesclomol induces cancer cell apoptosis through oxidative stress. Mol. Cancer Ther. 7, 2319–2327 (2008).
13
S. Tardito, A. Barilli, I. Bassanetti, M. Tegoni, O. Bussolati, R. Franchi-Gazzola, C. Mucchino, L. Marchiò, Copper-dependent cytotoxicity of 8-hydroxyquinoline derivatives correlates with their hydrophobicity and does not require caspase activation. J. Med. Chem. 55, 10448–10459 (2012).
14
M. Nagai, N. H. Vo, L. Shin Ogawa, D. Chimmanamada, T. Inoue, J. Chu, B. C. Beaudette-Zlatanova, R. Lu, R. K. Blackman, J. Barsoum, K. Koya, Y. Wada, The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic. Biol. Med. 52, 2142–2150 (2012).
15
K. Shimada, E. Reznik, M. E. Stokes, L. Krishnamoorthy, P. H. Bos, Y. Song, C. E. Quartararo, N. C. Pagano, D. R. Carpizo, A. C. deCarvalho, D. C. Lo, B. R. Stockwell, Copper-binding small molecule induces oxidative stress and cell-cycle arrest in glioblastoma-patient-derived cells. Cell Chem. Biol. 25, 585–594.e7 (2018).
16
N. C. Yip, I. S. Fombon, P. Liu, S. Brown, V. Kannappan, A. L. Armesilla, B. Xu, J. Cassidy, J. L. Darling, W. Wang, Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br. J. Cancer 104, 1564–1574 (2011).
17
D. Chen, Q. C. Cui, H. Yang, Q. P. Dou, Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res. 66, 10425–10433 (2006).
18
N. Liu, H. Huang, Q. P. Dou, J. Liu, Inhibition of 19S proteasome-associated deubiquitinases by metal-containing compounds. Oncoscience 2, 457–466 (2015).
19
Z. Skrott, M. Mistrik, K. K. Andersen, S. Friis, D. Majera, J. Gursky, T. Ozdian, J. Bartkova, Z. Turi, P. Moudry, M. Kraus, M. Michalova, J. Vaclavkova, P. Dzubak, I. Vrobel, P. Pouckova, J. Sedlacek, A. Miklovicova, A. Kutt, J. Li, J. Mattova, C. Driessen, Q. P. Dou, J. Olsen, M. Hajduch, B. Cvek, R. J. Deshaies, J. Bartek, Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature 552, 194–199 (2017).
20
D. Tang, R. Kang, T. V. Berghe, P. Vandenabeele, G. Kroemer, The molecular machinery of regulated cell death. Cell Res. 29, 347–364 (2019).
21
B. A. Carneiro, W. S. El-Deiry, Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 17, 395–417 (2020).
22
R. Weinlich, A. Oberst, H. M. Beere, D. R. Green, Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 18, 127–136 (2017).
23
T. Bergsbaken, S. L. Fink, B. T. Cookson, Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol. 7, 99–109 (2009).
24
S. J. Dixon, K. M. Lemberg, M. R. Lamprecht, R. Skouta, E. M. Zaitsev, C. E. Gleason, D. N. Patel, A. J. Bauer, A. M. Cantley, W. S. Yang, B. Morrison III, B. R. Stockwell, Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).
25
S. Elmore, Apoptosis: A review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007).
26
A. Solmonson, R. J. DeBerardinis, Lipoic acid metabolism and mitochondrial redox regulation. J. Biol. Chem. 293, 7522–7530 (2018).
27
K. Birsoy, T. Wang, W. W. Chen, E. Freinkman, M. Abu-Remaileh, D. M. Sabatini, An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162, 540–551 (2015).
28
N. L. Reeder, J. Kaplan, J. Xu, R. S. Youngquist, J. Wallace, P. Hu, K. D. Juhlin, J. R. Schwartz, R. A. Grant, A. Fieno, S. Nemeth, T. Reichling, J. P. Tiesman, T. Mills, M. Steinke, S. L. Wang, C. W. Saunders, Zinc pyrithione inhibits yeast growth through copper influx and inactivation of iron-sulfur proteins. Antimicrob. Agents Chemother. 55, 5753–5760 (2011).
29
A. A. Yadav, D. Patel, X. Wu, B. B. Hasinoff, Molecular mechanisms of the biological activity of the anticancer drug elesclomol and its complexes with Cu(II), Ni(II) and Pt(II). J. Inorg. Biochem. 126, 1–6 (2013).
30
E. A. Rowland, C. K. Snowden, I. M. Cristea, Protein lipoylation: An evolutionarily conserved metabolic regulator of health and disease. Curr. Opin. Chem. Biol. 42, 76–85 (2018).
31
M. Ni, A. Solmonson, C. Pan, C. Yang, D. Li, A. Notzon, L. Cai, G. Guevara, L. G. Zacharias, B. Faubert, H. S. Vu, L. Jiang, B. Ko, N. M. Morales, J. Pei, G. Vale, D. Rakheja, N. V. Grishin, J. G. McDonald, G. K. Gotway, M. C. McNutt, J. M. Pascual, R. J. DeBerardinis, Functional assessment of lipoyltransferase-1 deficiency in cells, mice, and humans. Cell Rep. 27, 1376–1386.e6 (2019).
32
J. Smirnova, E. Kabin, I. Järving, O. Bragina, V. Tõugu, T. Plitz, P. Palumaa, Copper(I)-binding properties of de-coppering drugs for the treatment of Wilson disease. α-Lipoic acid as a potential anti-copper agent. Sci. Rep. 8, 1463 (2018).
33
D. Brancaccio, A. Gallo, M. Piccioli, E. Novellino, S. Ciofi-Baffoni, L. Banci, [4Fe-4S] cluster assembly in mitochondria and its impairment by copper. J. Am. Chem. Soc. 139, 719–730 (2017).
34
S. Chillappagari, A. Seubert, H. Trip, O. P. Kuipers, M. A. Marahiel, M. Miethke, Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis. J. Bacteriol. 192, 2512–2524 (2010).
35
L. Macomber, J. A. Imlay, The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc. Natl. Acad. Sci. U.S.A. 106, 8344–8349 (2009).
36
T. Nevitt, H. Ohrvik, D. J. Thiele, Charting the travels of copper in eukaryotes from yeast to mammals. Biochim. Biophys. Acta 1823, 1580–1593 (2012).
37
S. Lutsenko, Atp7b–/– mice as a model for studies of Wilson’s disease. Biochem. Soc. Trans. 36, 1233–1238 (2008).
38
A. Muchenditsi, C. C. Talbot Jr., A. Gottlieb, H. Yang, B. Kang, T. Boronina, R. Cole, L. Wang, S. Dev, J. P. Hamilton, S. Lutsenko, Systemic deletion of Atp7b modifies the hepatocytes’ response to copper overload in the mouse models of Wilson disease. Sci. Rep. 11, 5659 (2021).
39
O. Bandmann, K. H. Weiss, S. G. Kaler, Wilson’s disease and other neurological copper disorders. Lancet Neurol. 14, 103–113 (2015).
40
E. Gaggelli, H. Kozlowski, D. Valensin, G. Valensin, Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem. Rev. 106, 1995–2044 (2006).
41
S. O’Day, R. Gonzalez, D. Lawson, R. Weber, L. Hutchins, C. Anderson, J. Haddad, S. Kong, A. Williams, E. Jacobson, Phase II, randomized, controlled, double-blinded trial of weekly elesclomol plus paclitaxel versus paclitaxel alone for stage IV metastatic melanoma. J. Clin. Oncol. 27, 5452–5458 (2009).
42
S. J. O’Day, A. M. M. Eggermont, V. Chiarion-Sileni, R. Kefford, J. J. Grob, L. Mortier, C. Robert, J. Schachter, A. Testori, J. Mackiewicz, P. Friedlander, C. Garbe, S. Ugurel, F. Collichio, W. Guo, J. Lufkin, S. Bahcall, V. Vukovic, A. Hauschild, Final results of phase III SYMMETRY study: Randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma. J. Clin. Oncol. 31, 1211–1218 (2013).
43
L. Cui, A. M. Gouw, E. L. LaGory, S. Guo, N. Attarwala, Y. Tang, J. Qi, Y.-S. Chen, Z. Gao, K. M. Casey, A. A. Bazhin, M. Chen, L. Hu, J. Xie, M. Fang, C. Zhang, Q. Zhu, Z. Wang, A. J. Giaccia, S. S. Gambhir, W. Zhu, D. W. Felsher, M. D. Pegram, E. A. Goun, A. Le, J. Rao, Mitochondrial copper depletion suppresses triple-negative breast cancer in mice. Nat. Biotechnol. 39, 357–367 (2021).
44
T. Tsang, J. M. Posimo, A. A. Gudiel, M. Cicchini, D. M. Feldser, D. C. Brady, Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat. Cell Biol. 22, 412–424 (2020).
45
C. I. Davis, X. Gu, R. M. Kiefer, M. Ralle, T. P. Gade, D. C. Brady, Altered copper homeostasis underlies sensitivity of hepatocellular carcinoma to copper chelation. Metallomics 12, 1995–2008 (2020).
46
D. C. Brady, M. S. Crowe, D. N. Greenberg, C. M. Counter, Copper chelation inhibits BRAFV600E-driven melanomagenesis and counters resistance to BRAFV600E and MEK1/2 inhibitors. Cancer Res. 77, 6240–6252 (2017).
47
J. A. Mayr, R. G. Feichtinger, F. Tort, A. Ribes, W. Sperl, Lipoic acid biosynthesis defects. J. Inherit. Metab. Dis. 37, 553–563 (2014).
48
J. B. Patteson, A. T. Putz, L. Tao, W. C. Simke, L. H. Bryant III, R. D. Britt, B. Li, Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa. Science 374, 1005–1009 (2021).
49
N. Raffa, T. H. Won, A. Sukowaty, K. Candor, C. Cui, S. Halder, M. Dai, J. A. Landero-Figueroa, F. C. Schroeder, N. P. Keller, Dual-purpose isocyanides produced by Aspergillus fumigatus contribute to cellular copper sufficiency and exhibit antimicrobial activity. Proc. Natl. Acad. Sci. U.S.A. 118, e2015224118 (2021).
50
A. Aggarwal, M. Bhatt, Advances in treatment of Wilson disease. Tremor Other Hyperkinet. Mov. (N. Y.) 8, 525 (2018).
51
D. R. Amici, J. M. Jackson, M. I. Truica, R. S. Smith, S. A. Abdulkadir, M. L. Mendillo, FIREWORKS: A bottom-up approach to integrative coessentiality network analysis. Life Sci. Alliance 4, e202000882 (2020).
52
K. Shimada, R. Skouta, A. Kaplan, W. S. Yang, M. Hayano, S. J. Dixon, L. M. Brown, C. A. Valenzuela, A. J. Wolpaw, B. R. Stockwell, Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 12, 497–503 (2016).
53
Z. Du, J.-R. Lin, R. Rashid, Z. Maliga, S. Wang, J. C. Aster, B. Izar, P. K. Sorger, S. Santagata, Qualifying antibodies for image-based immune profiling and multiplexed tissue imaging. Nat. Protoc. 14, 2900–2930 (2019).
54
S. Berg, D. Kutra, T. Kroeger, C. N. Straehle, B. X. Kausler, C. Haubold, M. Schiegg, J. Ales, T. Beier, M. Rudy, K. Eren, J. I. Cervantes, B. Xu, F. Beuttenmueller, A. Wolny, C. Zhang, U. Koethe, F. A. Hamprecht, A. Kreshuk, ilastik: Interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
55
T. Wang, E. S. Lander, D. M. Sabatini, Viral packaging and cell culture for CRISPR-based screens. Cold Spring Harb. Protoc. 2016, prot090811 (2016).
56
W. Li, H. Xu, T. Xiao, L. Cong, M. I. Love, F. Zhang, R. A. Irizarry, J. S. Liu, M. Brown, X. S. Liu, MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).
57
C. H. Adelmann, T. Wang, D. M. Sabatini, E. S. Lander, Genome-wide CRISPR/Cas9 screening for identification of cancer genes in cell lines. Methods Mol. Biol. 1907, 125–136 (2019).
58
J. Li, Z. Cai, R. D. Bomgarden, I. Pike, K. Kuhn, J. C. Rogers, T. M. Roberts, S. P. Gygi, J. A. Paulo, TMTpro-18plex: The expanded and complete set of TMTpro reagents for sample multiplexing. J. Proteome Res. 20, 2964–2972 (2021).
59
J. Navarrete-Perea, Q. Yu, S. P. Gygi, J. A. Paulo, Streamlined tandem mass tag (SL-TMT) protocol: An efficient strategy for quantitative (phospho)proteome profiling using tandem mass tag-synchronous precursor selection-MS3. J. Proteome Res. 17, 2226–2236 (2018).
60
D. K. Schweppe, S. Prasad, M. W. Belford, J. Navarrete-Perea, D. J. Bailey, R. Huguet, M. P. Jedrychowski, R. Rad, G. McAlister, S. E. Abbatiello, E. R. Woulters, V. Zabrouskov, J.-J. Dunyach, J. A. Paulo, S. P. Gygi, Characterization and optimization of multiplexed quantitative analyses using high-field asymmetric-waveform ion mobility mass spectrometry. Anal. Chem. 91, 4010–4016 (2019).
61
D. K. Schweppe, J. K. Eng, Q. Yu, D. Bailey, R. Rad, J. Navarrete-Perea, E. L. Huttlin, B. K. Erickson, J. A. Paulo, S. P. Gygi, Full-featured, real-time database searching platform enables fast and accurate multiplexed quantitative proteomics. J. Proteome Res. 19, 2026–2034 (2020).
62
R. Rad, J. Li, J. Mintseris, J. O’Connell, S. P. Gygi, D. K. Schweppe, Improved monoisotopic mass estimation for deeper proteome coverage. J. Proteome Res. 20, 591–598 (2021).
63
C. von Mering, L. J. Jensen, B. Snel, S. D. Hooper, M. Krupp, M. Foglierini, N. Jouffre, M. A. Huynen, P. Bork, STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 33, D433–D437 (2005).
Cuproptosis: A new potential therapeutic target of glioma
Many thanks to Tsvetkov et al. for creatively proposing the concept of cuproptosis in the article “Copper induces cell death by targeting lipoylated TCA cycle proteins”[1] It is a completely new way of cell death, independent of the common apoptosis, necroptosis, ferroptosis, oxidative stress, which causes cell death by influencing the TCA cycle. Before this, copper was loaded with nanoparticles to produce ROS to kill glioma cells[2][3][4][5] or to interact with TMZ to kill glioma[6]. We believe the view in this article is clear, however, some prospects and issues still need to be discussed.
Firstly, FDX1 is mentioned as a necessary factor for cuproptosis, which encodes a reductase known to reduce Cu2+ to its more toxic form, Cu1+. We noticed that FDX1 in the TCGA database is highly expressed in many cancers, especially glioblastoma multiforme. It can be a potential new target fight against glioblastoma
Whatsmore, the strong connection between copper-mediated cell death and both FDX1 expression and protein lipoylation was lost at high concentrations of elesclomol suggesting another mechanism more than protein lipoylation.
All in all, we admire the author's relevant findings on cuproptosis, by targeting lipoylated TCA cycle proteins. There is no doubt that there are still some hidden mechanisms that have not been mined. But it still broadens our horizon for our understanding of copper-mediated glioma treatment.
Reference:
[1] P. Tsvetkov et al., “Copper induces cell death by targeting lipoylated TCA cycle proteins,” Science (80-. )., vol. 375, no. 6586, pp. 1254–1261, 2022, doi: 10.1126/science.abf0529.
[2] C. Rae, M. Tesson, J. W. Babich, M. Boyd, A. Sorensen, and R. J. Mairs, “The role of copper in disulfiram-induced toxicity and radiosensitization of cancer cells,” J. Nucl. Med., vol. 54, no. 6, pp. 953–960, Jun. 2013, doi: 10.2967/JNUMED.112.113324.
[3] K. Shimada et al., “Copper-Binding Small Molecule Induces Oxidative Stress and Cell-Cycle Arrest in Glioblastoma-Patient-Derived Cells,” Cell Chem. Biol., vol. 25, no. 5, pp. 585-594.e7, May 2018, doi: 10.1016/J.CHEMBIOL.2018.02.010.
[4] Q. H. Lan et al., “Disulfiram-loaded copper sulfide nanoparticles for potential anti-glioma therapy,” Int. J. Pharm., vol. 607, Sep. 2021, doi: 10.1016/J.IJPHARM.2021.120978.
[5] M. Buccarelli et al., “Elesclomol-induced increase of mitochondrial reactive oxygen species impairs glioblastoma stem-like cell survival and tumor growth,” J. Exp. Clin. Cancer Res., vol. 40, no. 1, pp. 1–17, 2021, doi: 10.1186/s13046-021-02031-4.
[6] X. Li, F. Shao, J. Sun, K. Du, Y. Sun, and F. Feng, “Enhanced Copper-Temozolomide Interactions by Protein for Chemotherapy against Glioblastoma Multiforme,” ACS Appl. Mater. Interfaces, 2019, doi: 10.1021/acsami.9b14849.
Some Opinions and Prospects about Cuproptosis
In their excellent article “Copper induces cell death by targeting lipoylated TCA cycle proteins”, Tsvetkov et al. [1] challenged traditional cell death dogma and proposed that excessive copper sedimentation caused cell death by impairing mitochondrial metabolism, namely cuproptosis. Interestingly, we also found copper overload disturbed the mitochondria metabolism in nontumoral, mitochondria-rich renal tubular epithelial cells (RTECs). We believe the view in this article are clear, however, there are some issues need to be discussed.
Firstly, cuproptosis in this article was induced by pulse treatment with Cu2+ ionophore elesclomol, causing 15- to 60-fold increase of intracellular copper and then triggering cell death [1]. However, Cu1+, not Cu2+, are transported into cells by high-affinity copper uptake protein (CTR1) under physiological conditions [2]. We proved that CTR1 was highly expressed in RTECs under pathophysiological situations[3], and the mitochondrial cooper levels were increased about 1.5- to 2-fold. Pretreatment of the cell with tetrathiomolybdate (TM), a copper chelation agent, markedly restored the deformation of mitochondria and the reduction in mitochondrial membrane potential(MMP) induced by pathogenic TGF-β1 or CuSO4 treatment. Our results suggest that mild accumulation of copper ions was able to trigger cell damage.
Furthermore, the authors revealed excess copper promoted lipoylated protein aggregation and iron-sulfur cluster protein loss in tricarboxylic acid cycle, not directly affected mitochondrial respiratory chain [1]. But in our observations the result showed that copper overload directly disrupted the activity of respiratory chain complex IV, which is the only complex that activated by combining with copper in respiratory chain. Our results suggest that mild copper accumulation in RTECs is enough to impair the complex IV activity and induce mitochondria dysfunction.
In summary, we admired the fundamental discovery of the paper that revealed a novel cell death mode, the cuproptosis. Affecting lipoylated components of the tricarboxylic acid cycle was implicated in cuproptosis with no doubt, but still there were other issues in cuproptosis remained to be clarified. Impairing the activity of complex IV might be another node for initiating cuproptosis.
Reference: