Solution

Verified
Step 1
1 of 7

(a)\textbf{(a)} Consider the following graph, the plumb line is not in the same direction as the outward radial from the Earth, so we will define two coordinates system, the primed and the unprimed, as shown. The angle between them is called the angular deviation. The small parameters which govern the approximations that need to be made to find the southerly deflection of a falling particle are:

δhRαRω2g0δα=hω2g0\begin{align} \delta \equiv \frac{h}{R} \qquad \alpha \equiv \frac{R \omega^{2}}{g_{0}} \qquad \delta \alpha=\frac{h \omega^{2} }{ g_{0}}\end{align}

where hh is the height of fall, RR is the radius of Earth, Rω2R \omega^{2} is the centrifugal force, and g0g_{0} purely gravitational force. The angular deviation is given by (from previous problem):

εRω2gsin(λ)cos(λ)g=g0Rω2cos2(λ)\begin{align} \varepsilon \equiv \frac{R \omega^{2}}{g} \sin (\lambda) \cos (\lambda) \qquad g=g_{0}-R \omega^{2} \cos ^{2}(\lambda)\end{align}

the unprimed coordinates can be described in terms of the primed coordinates as:

x=xcos(ε)+zsin(ε)y=yz=xsin(ε)+zcos(ε)\begin{align} x&=x^{\prime} \cos (\varepsilon)+z^{\prime} \sin (\varepsilon) \\ y&=y^{\prime}\\ z&=-x^{\prime} \sin (\varepsilon)+z^{\prime} \cos (\varepsilon) \end{align}

The Coriolis force is given by:

FX=2mω×v\mathbf{F}_{X}=-2 m \boldsymbol{\omega} \times \mathbf{v}^{\prime}

thus, the acceleration due to this force is:

aX=2ω×v\mathbf{a}_{X}=-2 \boldsymbol{\omega} \times \mathbf{v}^{\prime}

but,

v=x˙i+y˙j+z˙kω=ωcos(λ)i+ωsin(λ)kr=xi+yj+(R+z)kmaf=mg0k\begin{align*} \mathbf{v}^{\prime}&=\dot{x}^{\prime}\mathbf{i} +\dot{y}^{\prime} \mathbf{j} +\dot{z}^{\prime} \mathbf{k}\\ \boldsymbol{\omega}&=-\omega \cos (\lambda) \mathbf{i}+ \omega \sin (\lambda)\mathbf{k}\\ \mathbf{r}^{\prime}&=x^{\prime}\mathbf{i}+y^{\prime}\mathbf{j}+(R+z^{\prime})\mathbf{k}\\ m \mathbf{a}_{f}&=-m g_{0} \mathbf{k} \end{align*}

Create a free account to view solutions for this book

By signing up, you accept Quizlet's Terms of Service and Privacy Policy