
 

Geekbench 6
Benchmark Internals

Introduction 4
Platform Support 5
Architecture Support 5
Compiler Support 6
CPU Benchmark 7
Runtime 7
Multi-Threading 7
Instruction Sets 8

x86 Instruction Sets 8
ARM Instruction Sets 9

Scores 10
Productivity Workloads 11

File Compression 12
Navigation 13
HTML5 Browser 14
PDF Render 15
Photo Library 16

Developer workloads 17
Clang 18
Text Processing 19
Asset Compression 20

Machine Learning Workloads 21
Object Detection 22
Background Blur 23

Image Editing 24
Object Remover 25
Horizon Detection 26
Photo Filter 27
HDR 28

Image Synthesis 29
Ray Tracer 30
Structure from Motion 31

May 2024 2

CPU Benchmark Characteristics 32
Instructions Per Cycle 33
Branch Prediction Miss Rate 34
Working Set Size 35
Cache Misses 36

Single-Core Workload Cache Miss Rates 37
Multi-Core Workload Cache Miss Rates 38

GPU Benchmark 39
API Support 39
Runtime 39
Scores 40
Machine Learning Workloads 41

Background Blur 42
Face Detection 43

Image Editing Workloads 44
Horizon Detection 45
Edge Detection 46
Gaussian Blur 46

Image Synthesis Workloads 47
Feature Matching 48
Stereo Matching 49

Simulation 50
Particle Physics 51

May 2024 3

Introduction
This document outlines the workloads included in the Geekbench 6 CPU Benchmark and GPU
Benchmark suites.

CPU Benchmark scores are used to evaluate and optimize CPU and memory performance
using workloads that include data compression, image processing, and machine learning.
Performance on these workloads is important for a wide variety of applications including web
browsers, image editors, and developer tools.

GPU Benchmark scores are used to evaluate and optimize GPU Compute performance using
workloads that include image processing, computational photography, computer vision, and
machine learning. Performance in these workloads is important for a wide variety of
applications including cameras, image editors, and real-time renderers.

May 2024 4

Platform Support

Architecture Support

Platform Minimum Version Comment

Android Android 10

iOS iOS 15

Linux Ubuntu 18.04 LTS CentOS, RHEL support TBD

macOS macOS 11

Windows Windows 10

Platform Architectures Comment

Android AArch64, x64

iOS AArch64

Linux AArch64, x64

macOS AArch64, x64

Windows x64

May 2024 5

Compiler Support
Geekbench 6.0 is built using the following compilers:

Geekbench 6.1 is built using the following compilers:

Platform Compiler Comment

Android Clang 14 Clang provided by NDK r25c

iOS Clang 15

Linux Clang 15

macOS Clang 15

Windows Clang 15

Platform Compiler Comment

Android Clang 16

iOS Clang 16

Linux Clang 16

macOS Clang 16

Windows Clang 16

May 2024 6

CPU Benchmark

Runtime

Geekbench 6 groups CPU workloads into two sections:

1. Single-Core Workloads
2. Multi-Core Workloads

Each single-core workload has a multi-core counterpart, and vice versa. Each section is
grouped into two subsections:

1. Integer Workloads
2. Floating-Point Workloads

Geekbench inserts a pause (or gap) between each workload to minimize the effect thermal
issues have on workload performance. Without this gap, workloads that appear later in the
benchmark would have lower scores than workloads that appear earlier in the benchmark.

The default gap in Geekbench 6.0 is 2 seconds.

The default gap in Geekbench 6.1 and later is 5 seconds.

Multi-Threading

Geekbench 6 uses a “shared task” model for multi-threading, rather than the “separate task”
model used in earlier versions of Geekbench. The “shared task” approach better models how
most applications use multiple cores.

The "separate task" approach used in Geekbench 5 parallelizes workloads by treating each
thread as separate. Each thread processes a separate independent task. This approach scales
well as there is very little thread-to-thread communication, and the available work scales with
the number of threads. For example, a four-core system will have four copies, while a 64-core
system will have 64 copies.

The "shared task" approach parallelizes workloads by having each thread processes part of a
larger shared task. Given the increased inter-thread communication required to coordinate the
work between threads, this approach may not scale as well as the "separate task" approach.

May 2024 7

Instruction Sets

Each Geekbench 6 build targets a base instruction set. The base instruction set informs the
compiler which instructions it can safely use when generating code.

Some platforms may include multiple builds that target different base instruction sets. In this
case, Geekbench 6 selects the build with the most advanced base instruction set supported on
the system to measure performance. For x86 processors, Geekbench 6 uses SSE2 and AVX2
as the base instruction sets. For ARM processors, Geekbench 6 uses ARMv8 as the base
instruction set.

Geekbench 6 workloads may also use functions that target instruction sets extensions above
and beyond those supported by the base instruction set. These functions are written using
intrinsics and are guarded by runtime checks to ensure they only run on supported processors.

x86 Instruction Sets

Geekbench 6 workloads may use functions written using the following instruction set extensions
on x86 processors:

Instruction Set Description

AES-NI Accelerates AES encryption and decryption functions

VAES Accelerates AES encryption and decryption functions

SHA-NI Accelerates SHA1 cryptographic hash functions

AVX Generic floating-point 256-bit SIMD instruction set

AVX2 Generic 256-bit SIMD instruction set

AVX-512 Generic 512-bit SIMD instruction set

AVX-VNNI Accelerates quantized machine learning workloads

AVX512-VNNI Accelerates quantized machine learning workloads

AMX Accelerates quantized machine learning workloads

May 2024 8

ARM Instruction Sets

Geekbench 6 workloads may use functions written using the following instruction set extensions
on ARM processors:

Instruction Set Description

ARMv8 AES Accelerates AES encryption and decryption functions

ARMv8 SHA1 Accelerates SHA1 cryptographic hash functions

NEON Generic 128-bit SIMD instruction set

NEON FP16 Generic 128-bit SIMD instruction set with support for 16-bit floats

DOTPROD Accelerates image processing and machine learning workloads

I8MM Accelerates quantized machine learning workloads

SME Accelerates machine learning workloads

May 2024 9

Scores

Geekbench 6 scores are calibrated against a baseline score of 2,500 (which is the score of a
Dell Precision 3460 with a Core i7-12700 processor). Higher scores are better, with double the
score indicating double the performance.

Geekbench 6 provides two composite scores: single-core and multi-core. These scores are
computed using a weighted arithmetic mean of the subsection scores. The subsection scores
are computed using the geometric mean of the scores of the workloads contained in that
subsection.

Subsection Weight

Integer 65%

Floating Point 35%

May 2024 10

Productivity Workloads

Productivity workloads measure how well your CPU handles common operations critical to
everyday tasks, including data compression, image compression, web browsing, and 2D
graphics.

May 2024 11

File Compression

The File Compression workload compresses and decompresses a file using different
compression formats. It models use cases where users and software apps compress files to
reduce data and bandwidth (such as compressing photos and files when sending emails).

This workload compresses and decompresses the Ruby 3.1.2 source archive (a 75 MB archive
with 9,841 files) using the LZ4 and ZSTD compression codecs with high and low compression
ratios. It also verifies the compressed and decompressed output files using the SHA1 hash
function.

The files are stored using an in-memory encrypted file system.

File Compression uses instructions that accelerate AES encryption and decryption (AES-NI and
VAES on x86 processors, ARMv8 AES on ARM processors) and that accelerate SHA1
cryptographic hash functions (SHA-NI on x86 processors, ARMv8 SHA on ARM processors).

May 2024 12

Navigation

The Navigation workload generates directions between a sequence of locations. It models the
use case of users asking for directions from a navigation app (such as Google Maps in offline
mode).

This workload uses Dijkstra's algorithm to calculate 24 different routes on two OpenStreetMap
maps — one for a small city (Waterloo, Ontario) and one for a large city (Toronto, Ontario).

Example of a route generated by the Navigation workload

May 2024 13

HTML5 Browser

The HTML5 Browser workload opens various web pages using a web browser. It models the
use case of a user browsing the web with a browser (such as Chrome and Safari).

This workload uses a headless browser and opens, parses, lays out, and renders text and
images for web pages based on popular websites (such as Ars Technica, Instagram, and
Wikipedia).

The HTML5 Browser workload uses the following libraries:
• Google Gumbo as the HTML parser
• litehtml as the CSS parser, layout, and rendering engine
• FreeType as the font engine
• Anti-Grain Geometry (AGG) as the 2D rendering graphics library
• libjpeg-turbo and libpng as the image codecs

HTML5 Browser renders 8 pages in single-core mode and 32 pages in multi-core mode. 

May 2024 14

https://github.com/google/gumbo-parser
https://github.com/primatelabs/litehtml
https://freetype.org/
https://en.wikipedia.org/wiki/Anti-Grain_Geometry
https://libjpeg-turbo.org/
http://www.libpng.org/pub/png/libpng.html

PDF Render

The PDF Render workload opens complex PDF (Portable Document Format) documents using
PDFium, Google Chrome’s PDF renderer. It models the use case of a user opening PDFs in a
browser.

This workload renders PDFs of park maps from the American National Park Service (sizes from
897 KB to 1.5 MB) that contain large vector images, lines and text.

The maps from the American National Park Service include:
• Crater Lake Park Map (Size: 897 KB)
• Golden Gate Area Map (Size: 1.5 MB)
• Lewis and Clark Park Map (Size: 288 KB)
• Mount Rainier Park Map (Size 949 KB)

PDF Render renders 4 PDFs in single-core mode and 16 PDFs in multi-core mode.  

Crater Lake Park Map

May 2024 15

https://www.nps.gov/

Photo Library

The Photo Library workload categorizes and tags photos based on the objects that they contain.
This lets users search their photos by keyword in image organizer apps (such as Adobe
Lightroom, Apple Photos, and Google Photos).

The workload uses MobileNet 1.0 to classify photos and a SQLite database to store the photo
metadata (including their tags).

This workload performs the following steps for each photo:
1. Decompress the photo from a compressed JPEG file.
2. Store photo metadata (e.g., file name, photo resolution, etc) into a SQLite database. The

database is pre-populated with metadata for over 70,000 photos.
3. Generate a preview thumbnail (using bilinear scaling) and encode it as a JPEG file.
4. Generate an inference thumbnail (using centre crop and bilinear scaling).
5. Run an image classification model on the inference thumbnail. The model is based on

MobileNet 1.0 and the model weights are quantized.
6. Store image classification tags in the SQLite database.

The Photo Library workload operates on 16 photos in single-core mode and 64 photos in multi-
core mode.

Photo Library uses instructions that accelerate quantized machine learning workloads (AVX-
VNNI,AVX512-VNNI, and AMX on x86 processors, DOTPROD, I8MM, and SME on ARM
processors). 

May 2024 16

Developer workloads

Developer workloads measure how well your CPU handles typical developer tasks such as
processing text files, compiling code, and compressing assets.

May 2024 17

Clang

The Clang workload uses the Clang compiler to compile the Lua interpreter, a popular open-
source language interpreter. It models the use case of developers building their code and the
just-in-time compiling that general users can encounter on their systems (such as JIT
compilation for scripting Java and compilation for shading languages in GPU drivers).

This workload uses the musl libc as the C standard library for the compiled files.

The Clang workload compiles 8 files in single-core mode and 96 files in multi-core mode. 

May 2024 18

Text Processing

The Text Processing workload loads numerous files, parses the contents using regular
expressions, stores metadata in a SQLite database, and finally exports the content to a different
format. It models typical text processing tasks that manipulate, analyze, and transform data to
reformat it for publication and to gain insights.

The input and output files are stored using an in-memory encrypted file system.

The workload is implemented using a mix of Python and C++. The workload uses the Python
3.9.0 interpreter and processes 190 Markdown files as its input.

Text Processing uses instructions that accelerate AES encryption and decryption (AES-NI and
VAES on x86 processors, ARMv8 AES on ARM processors). 

May 2024 19

Asset Compression

The Asset Compression workload compresses 3D textural and geometric assets using a variety
of popular compression codecs (ASTC, BC7, DXT5). It models standard content compression
pipelines, such as those used by game developers.

This workload prepares 16 texture images and geometry files for distribution using the following
codecs and encounters: ASTC, BC7, DXTC, and Draco.

The workload uses bc7enc for its BC7 and DXTC implementations and Arm ASTC Encoder for
its ASTC implementation.

May 2024 20

Machine Learning Workloads

Machine Learning workloads measure how well your CPU handles recognizing objects in
images and scenes.

May 2024 21

Object Detection

The Object Detection workload uses machine learning to detect and classify objects in photos
and then highlight them in the photo.

The workload uses the convolutional neural network (CNN) MobileNet v1 SSD to detect and
classify objects in photos. The photos are pre-sized to meet the model input dimensions (300 X
300 px).

This workload performs the following steps:
1. Loads the photo.
2. Extract objects from the photo using MobileNet v1 SSD.
3. Generates a confidence or detection score that represents the accuracy of the detection.
4. Draws a bounding box around the objects and outputs the confidence score.

Object Detection uses instructions that accelerate quantized machine learning workloads (e.g.
AVX-VNNI, AVX512-VNNI, and AMX on x86 processors, DOTPROD, I8MM, and SME on ARM
processors).

Object Detection processes 16 photos in single-core mode and 64 photos in multi-core mode. 

Input Output with bounding box, confidence score

May 2024 22

Background Blur

The Background Blur workload separates the background from the foreground in a video stream
and blurs the background. It models background blurring features in video conferencing apps
(such as Zoom, Slack Huddles, and Microsoft Teams).

This workload uses DeepLabV3+ as its network and blurs 10 frames from a 1080p video
stream.

Background Blur uses SIMD and machine learning instruction sets (AVX, AVX2, and AVX-512
on x86 processors, NEON and SME on ARM processors) to accelerate machine learning
functions. Since the Background Blur machine learning model uses 32-bit floating point weights
(i.e., is not quantized) so the Background Blur workload cannot use quantized machine learning
instructions or 16-bit floating point instructions to accelerate its machine learning functions.

Background Blur also uses generic SIMD instruction sets (AVX2 on x86 processors, NEON and
NEON FP16 on ARM processors) to accelerate image processing functions.

Input Output

May 2024 23

Image Editing

Image editing workloads measure how well your CPU handles making simple and complex
image edits.

May 2024 24

Object Remover

The Object Remover workload removes an object from a photo and automatically fills in the gap
left behind. It models content-aware fill and magic eraser features in photo editing apps (such as
Adobe Photoshop and Google Photos).

Given a 3 MP image with an undesirable region (indicated via a mask image), this workload
removes the region and uses an inpainting scheme to reconstruct the gap left behind.
 
Object Remover uses the iterative PatchMatch Inpainting approach discussed in Barnes et al.’s
(2009) “PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing”.

Input Mask Output

May 2024 25

https://dl.acm.org/doi/10.1145/1531326.1531330

Horizon Detection

The Horizon Detection workload detects and straightens uneven or crooked horizon lines in
photos to make the photos look more realistic. It models horizon line correctors in photo editing
apps (such as Adobe Lightroom, Google Gallery, and Apple Photos).

This workload reduces the detail in the photo using the Canny edge detector and applies the
Hough transform to detect the horizon line. It then rotates the image so that the horizon line is
level in the photo.

This workload uses a 48 MP photo as its input.

Input Output

May 2024 26

Photo Filter

The Photo Filter workload applies filters to photos to enhance their appearance. It models
common filters available in social media and photo editing apps (such as Instagram and Adobe
Lightroom).

This workload applies the following effects to 10 photos: colour and blur filters, level
adjustments, cropping and scaling, and image compositing. The photos range in size from 3 MP
to 15 MP.

 
Photo Filter uses generic SIMD instruction sets (AVX2 on x86 processors, NEON and NEON
FP16 on ARM processors) to image processing functions.

Example Input Example Output

May 2024 27

HDR

The HDR workload blends 6 SDR (Standard Dynamic Range) photos to create a single HDR
(High Dynamic Range) photo that is more colourful and vibrant than any of the individual SDR
photos. It models HDR features that are standard in modern smartphone camera apps (such as
Google Camera and Apple Camera).

This workload creates a 16 MP HDR image from six 16 MP SDR photos.

HDR uses a recovery process and radiance map construction that is based on the methodology
described by Debevec and Malik (1997) “Recovering High Dynamic Range Radiance Maps from
Photographs”. It also uses a tone mapping algorithm that is based on Reinhard and Devlin’s
(2005) “Dynamic Range Reduction inspired by Photoreceptor Physiology.”

Input (Short Exposure) Input (Long Exposure) Output

May 2024 28

https://dl.acm.org/doi/10.1145/258734.258884
https://dl.acm.org/doi/10.1145/258734.258884
https://ieeexplore.ieee.org/document/1359728

Image Synthesis

Image synthesis workloads measure how well your CPU handles creating artificial images.

May 2024 29

Ray Tracer

Ray tracing is a rendering technique used to generate photorealistic images by modelling how
light rays interact with objects in a virtual scene. It models the rendering processes employed in
3D rendering software (such as Blender, Maxon Cinema 4D, and Chaos Corona).  
 
This workload renders the Blender BMW scene using a custom ray tracer built with the Intel
Embree ray tracing library.

May 2024 30

Structure from Motion

Structure from Motion is a technique that generates 3D geometry from multiple 2D images.
Augmented Reality (AR) systems use techniques like Structure from Motion to understand real-
world scenes and integrate computer-generated graphics into these scenes.  
 
The Structure from Motion workload takes nine 2D images of the same scene and constructs an
estimate of the 3D coordinates of the points that are visible in both images.

Structure from Motion uses generic SIMD instruction sets (AVX2 on x86 processors, NEON and
NEON FP16 on ARM processors) to image processing functions.

May 2024 31

CPU Benchmark Characteristics
Geekbench 6 CPU workload performance depends on a wide range of processor and memory
subsystems. These dependencies are characterized by the following characteristics.

The data was collected from a Dell Precision 3460 workstation with an Intel Core i5-12500
processor running Ubuntu 22.04 LTS.

May 2024 32

Instructions Per Cycle

Instructions per Cycle, or IPC, is a measure of the effective instruction throughput of a
processor, which correlates with higher performance. It is measured as the number of
instructions executed for a workload divided by the number of cycles used for that workload.

  

Workload Single-Core IPC Multi-Core IPC

File Compression 2.0 0.8

Navigation 1.1 0.7

HTML5 Browser 2.7 1.5

PDF Renderer 3.5 2.2

Photo Library 3.0 1.9

Clang 1.9 1.2

Text Processing 3.9 3.6

Asset Compression 2.7 1.8

Object Detection 3.7 1.3

Background Blur 2.9 1.3

Horizon Detection 2.1 1.3

Object Remover 2.2 1.3

HDR 3.0 1.5

Photo Filter 2.5 1.0

Ray Tracer 2.4 1.7

Structure from Motion 2.9 1.5

May 2024 33

Branch Prediction Miss Rate

Branch prediction miss rate is a measure of how frequently a system incorrectly predicts a code
branch, which results in lower performance. It is measured as a percentage of total branches.
Whenever a code path branches into multiple cases, a system executing that code attempts to
predict which case will be true in order to pre-fetch data or pre-execute instructions. When
operating on well-ordered data, systems can correctly predict (or “hit”) branches more
frequently, improving performance.

Workload Single-Core Branch Miss Rate Multi-Core Branch Miss Rate

File Compression 3.4 3.3

Navigation 5.6 5.9

HTML5 Browser 0.5 0.5

PDF Renderer 1.1 1.2

Photo Library 1.3 1.6

Clang 3.0 3.6

Text Processing 0.4 0.4

Asset Compression 2.0 2.0

Object Detection 0.2 0.2

Background Blur 0.2 0.3

Horizon Detection 2.8 2.8

Object Remover 0.1 0.2

HDR 0.4 0.4

Photo Filter 0.4 0.5

Ray Tracer 1.0 1.0

Structure from Motion 0.7 0.7

May 2024 34

Working Set Size

Working Set size is a measure of the amount of memory that a program uses, either by reading
from it or writing to it. It is expressed in bytes, but operates by measuring memory used at the
granularity of pages. Programs with a large working-set size run on systems with small caches
can encounter more cache misses, where the program cannot find the data it needs in a cache
and must query a larger cache or main memory. Cache misses negatively impact performance.

Workload Single-Core Multi-Core

File Compression 105.5 MB 418.2 MB

Navigation 190.6 MB 190.8 MB

HTML5 Browser 299.4 MB 1195.8 MB

PDF Renderer 433.7 MB 1609.3 MB

Photo Library 225.9 MB 922.7 MB

Clang 25.8 MB 112.7 MB

Text Processing 54.7 MB 81.8 MB

Asset Compression 63.8 MB 108.0 MB

Object Detection 342.4 MB 1287.4 MB

Background Blur 269.5 MB 304.9 MB

Horizon Detection 803.5 MB 816.2 MB

Object Remover 207.5 MB 208.6 MB

HDR 747.4 MB 846.6 MB

Photo Filter 1039.2 MB 1169.3 MB

Ray Tracer 120.7 MB 112.9 MB

Structure from Motion 168.5 MB 871.9 MB

May 2024 35

Cache Misses
Cache miss rates measure how frequently a program fails to find data in a processor's cache
when attempting to read from or write to memory.

Cache miss rates are measured as a percentage of total accesses to that cache. For example, if
the requested data is not in the L1D cache or the L2 cache but is in the L3 cache, then this is
recorded as both an L1D cache miss and an L2 cache miss. 

May 2024 36

Single-Core Workload Cache Miss Rates

Workload L1I Miss L1D Miss L2 Miss L3 Miss

File Compression 0.0 2.1 16.1 6.7

Navigation 0.0 5.1 19.3 23.9

HTML5 Browser 0.9 2.5 6.8 31.6

PDF Renderer 1.0 1.4 9.7 52.3

Photo Library 0.2 2.9 5.8 44.9

Clang 7.0 2.4 5.5 2.0

Text Processing 0.5 0.9 6.8 4.7

Asset Compression 0.1 1.6 0.6 12.8

Object Detection 0.1 5.7 9.0 22.2

Background Blur 0.0 13.6 0.5 25.6

Horizon Detection 0.0 5.3 3.8 78.6

Object Remover 0.0 13.3 47.1 8.3

HDR 0.0 2.9 19.1 70.5

Photo Filter 0.1 7.5 1.8 78.3

Ray Tracer 0.2 0.3 17.9 73.6

Structure from Motion 0.1 2.4 20.4 40.7

May 2024 37

Multi-Core Workload Cache Miss Rates

Workload L1I Miss L1D Miss L2 Miss L3 Miss

File Compression 0.1 3.4 25.9 46.3

Navigation 0.0 5.7 26.2 38.9

HTML5 Browser 1.5 3.1 8.6 60.9

PDF Renderer 0.9 1.6 8.5 69.9

Photo Library 0.1 3.3 4.8 60.0

Clang 9.3 3.6 7.7 13.3

Text Processing 0.8 0.6 11.1 8.0

Asset Compression 0.2 1.6 1.3 9.0

Object Detection 0.3 5.5 10.3 58.1

Background Blur 0.3 13.5 4.6 2.9

Horizon Detection 0.1 5.6 4.9 63.2

Object Remover 0.2 15.7 44.0 8.2

HDR 0.1 1.7 34.9 89.6

Photo Filter 0.2 8.9 4.5 84.7

Ray Tracer 0.2 0.3 16.7 74.3

Structure from Motion 0.1 3.3 18.5 55.3

May 2024 38

GPU Benchmark

API Support

Geekbench 6 adds a new API abstraction layer, called Thorium, that sits above all supported
Compute APIs. Thorium provides an interface that can express everything necessary when
writing Compute workloads. By using Thorium, the host code for a workload only needs to be
implemented once.

Thorium is designed and built with performance in mind. The interface is lightweight, with most
of the code being simple wrappers around the Compute APIs.

Thorium is also designed so that no compute framework is at a disadvantage. For example,
high-performance Vulkan code uses command buffers recorded into a queue, whereas OpenCL
has no recording mechanism. The Vulkan implementation of thorium::Queue uses command
buffers for maximum performance, and the OpenCL implementation uses asynchronous
dispatches and events. The behaviour is the same from the host perspective while still being
performant on both frameworks.

Runtime

Geekbench inserts a pause (or gap) between each workload to minimize the effect thermal
issues have on workload performance. Without this gap, workloads that appear later in the
benchmark would have lower scores than workloads that appear earlier in the benchmark.

The default gap in Geekbench 6.0 is 2 seconds.

The default gap in Geekbench 6.1 and later is 5 seconds.

API Minimum Version Comments

Metal 3.0

OpenCL 1.2

Vulkan 1.2

May 2024 39

Scores

Geekbench 6 scores are calibrated against a baseline score of 2,500 (which is the score of a
Dell Precision 3460 with a Core i7-12700 processor). Higher scores are better, with double the
score indicating double the performance.

Geekbench GPU provides one composite score that is computed using the geometric mean of
the scores of all the workloads. 

May 2024 40

Machine Learning Workloads

Machine Learning workloads measure how well your GPU uses machine learning algorithms to
perform object recognition tasks such as identifying objects and blurring backgrounds in
photos.

May 2024 41

Background Blur

Background blur separates the background from the foreground in a video stream and blurs the
background. It models background blurring features in video conferencing apps (such as Zoom,
Slack Huddles, and Microsoft Teams).

This workload uses DeepLabV3+ as its network and blurs a frame from a 1080p video stream.

Input Output

May 2024 42

Face Detection

Face detection is used to locate faces in images. Face detection is used in applications such as
photography or video conferencing for autofocusing.

The Face Detection workload uses a machine learning model. It returns the coordinates, along
with a confidence score, for each face in an image. The workload uses RetinaFace as its
network.

May 2024 43

Image Editing Workloads

Image editing workloads measure how well your GPU handles making simple and complex
image edits.

May 2024 44

Horizon Detection

Horizon detection locates the horizon line in an image. It is used in image editing and photo
retouching applications to automatically level photos.

The Horizon Detection workload uses the Hough transform to identify straight lines in a 24 MP
image and decide which of these lines is the horizon line. It then rotates the image, so that the
horizon line is horizontal.

Input Output

May 2024 45

Edge Detection

Edge detection is used in image processing and computer vision applications to identify edges
in an image. Edge detection produces a sketch-like representation of the image. It is often used
as the first stage of more complicated computer vision applications, including feature detection
and pattern recognition.

The Edge Detection workload applies the Canny edge detector operator to a 24 MP photo. 

Gaussian Blur

Gaussian blur is an image filter used to soften and blur images. It is used in image editing
programs to improve the appearance of photos, and to remove fine details before applying other
imaging processes and techniques. It is also used in modern user interfaces (for example, to
blur background windows to focus user attention).

This workload applies a Gaussian Blur filter that uses a filter diameter of 25 px by 25 px to a 24
MP photo.

May 2024 46

Image Synthesis Workloads

Image synthesis workloads measure how well your GPU handles content creation tasks,
including image rendering and image processing.

May 2024 47

Feature Matching

Feature matching takes two photos and identifies points that are the same in both. It is often
used as part of other processes to identify objects in photos and to make 3D reconstructions.
For example, Structure From Motion uses Feature Matching to find the initial points to
reconstruct into a 3D scene.

The Feature Matching workload uses the Oriented FAST and Rotated BRIEF (ORB) algorithm
to match features (or keypoints) between two 6MP images.

May 2024 48

Stereo Matching

Stereo matching is used to generate 3D depth maps from two 2D images of the same scene.
Camera applications on multi-sensor smartphones use stereo matching to produce depth maps,
which in turn are used to power photo filters, to create 3D images, and to improve the quality of
augmented reality (AR) applications.

The Stereo Matching workload uses a block-matching algorithm to compute the difference in
position of each pixel and to create a depth map. This algorithm compares small groups of
pixels in one image to the closest match in the other image, using the Sum of Absolute
Differences (SAD) as a measure of similarity.

May 2024 49

Simulation

Simulation workloads measure how well your GPU Handles physics simulation tasks. 

May 2024 50

Particle Physics

Particle Physics is a technique commonly used in games to simulate fluids and smoke.

The Particle Physics workload implements a simulation where particles interact with one
another and their environment via elastic collisions. Other particle-particle forces are ignored.
The Particle Physics workload uses 4,096 particles in its simulation.

May 2024 51

	Geekbench 6
	Benchmark Internals
	Introduction
	Platform Support
	Architecture Support
	Compiler Support
	CPU Benchmark
	Runtime
	Multi-Threading
	Instruction Sets
	Scores
	Productivity Workloads
	Developer workloads
	Machine Learning Workloads
	Image Editing
	Image Synthesis
	CPU Benchmark Characteristics
	Instructions Per Cycle
	Branch Prediction Miss Rate
	Working Set Size
	Cache Misses
	GPU Benchmark
	API Support
	Runtime
	Scores
	Machine Learning Workloads
	Image Editing Workloads
	Image Synthesis Workloads
	Simulation

