[1]
Scott Aaronson. 2013. Why philosophers should care about computational complexity. Computab.: Turing, Gödel, Church Bey. (2013), 261–328.
[2]
Samson Abramsky and Jonathan Zvesper. 2012. From Lawvere to Brandenburger-Keisler: Interactive forms of diagonalization and self-reference. In Coalgebraic Methods in Computer Science (Lecture Notes in Computer Science), Dirk Pattinson and Lutz Schröder (Eds.). Springer, Berlin, 1–19. DOI:
[3]
Manuel Alfonseca, Manuel Cebrian, Antonio Fernandez Anta, Lorenzo Coviello, Andres Abeliuk, and Iyad Rahwan. 2021. Superintelligence cannot be contained: Lessons from computability theory. J. Artif. Intell. Res. 70 (Jan. 2021), 65–76. DOI:
[4]
David Alvarez-Melis and Tommi S. Jaakkola. 2018. Towards robust interpretability with self-explaining neural networks. In Proceedings of the 32nd International Conference on Neural Information Processing Systems (NIPS’18). Curran Associates Inc., Red Hook, NY, 7786–7795.
[6]
Gustaf Arrhenius. 2011. The impossibility of a satisfactory population ethics. In Descriptive and Normative Approaches to Human Behavior. (Advanced Series on Mathematical Psychology, Vol. 3). World Scientific, 1–26. DOI:
[7]
Kenneth J. Arrow. 1950. A difficulty in the concept of social welfare. J. Polit. Econ. 58, 4 (Aug. 1950), 328–346. DOI:
[8]
Ross W. Ashby. 1961. Introduction to Cybernetics.1961 Edition. Chapman & Hall.
[9]
Anne Auger and Olivier Teytaud. 2010. Continuous lunches are free plus the design of optimal optimization algorithms. Algorithmica 57, 1 (May 2010), 121–146. DOI:
[11]
Shai Ben-David, Pavel Hrubeš, Shay Moran, Amir Shpilka, and Amir Yehudayoff. 2019. Learnability can be undecidable. Nat. Mach. Intell. 1, 1 (Jan. 2019), 44–48. DOI:
[13]
Adam Brandenburger and H. Jerome Keisler. 2006. An impossibility theorem on beliefs in games.
Studia Logica: Int. J. Symbol. Logic 84, 2 (2006), 211–240. Retrieved from
https://www.jstor.org/stable/20016831.
[14]
Miles Brundage. 2014. Limitations and risks of machine ethics. J. Exper. Theoret. Artif. Intell. 26, 3 (July 2014), 355–372. DOI:
[15]
Cristian S. Calude, Shahrokh Heidari, Joseph Sifakis, What perceptron neural networks are (not) good for? Information Sciences 621 (2023), 844–857. DOI:
[16]
Cristian S. Calude and Helmut Jürgensen. 2005. Is complexity a source of incompleteness? Adv. Appl. Math. 35, 1 (July 2005), 1–15. DOI:
[17]
Donald T. Campbell. 1979. Assessing the impact of planned social change. Eval. Progr. Plan. 2, 1 (Jan. 1979), 67–90. DOI:
[18]
Ryan Carey. 2018. Incorrigibility in the CIRL framework. arXiv:1709.06275 [cs] (June 2018).
[19]
Rudolf Carnap and Yehoshua Bar-Hillel. 1952. An outline of a theory of semantic information. Retrieved from
https://dspace.mit.edu/handle/1721.1/4821.
Research Laboratory of Electronics, Massachusetts Institute of Technology.
[20]
Gregory J. Chaitin. 1987. Information, Randomness and Incompleteness: Papers on Algorithmic Information Theory. World Scientific Publishing Company, Singapore.
[21]
Arthur Charlesworth. 2006. Comprehending software correctness implies comprehending an intelligence-related limitation. ACM Trans. Computat. Logic 7, 3 (July 2006), 590–612. DOI:
[22]
Alonzo Church. 1936. An unsolvable problem of elementary number theory. Amer. J. Math. 58, 2 (1936), 345–363. DOI:
[23]
Roger C. Canant and W. Ross Ashby. 1970. Every good regulator of a system must be a model of that system. Int. J. Syst. Sci. 1, 2 (Oct. 1970), 89–97. DOI:
[24]
David Deutsch and Chiara Marletto. 2015. Constructor theory of information. Proc. Roy. Societ. A: Math., Phys. Eng. Sci. 471, 2174 (Feb. 2015), 20140540. DOI:
[25]
Abigail Devereaux, Roger Koppl, Stuart Kauffman, and Andrea Roli. 2021. Constraints on Modeling Systems from within Systems: The Principle of Frame Relativity. Social Science Research Network, Rochester, NY. DOI:
[26]
Pedro Domingos. 2015. The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World (1st ed.). Basic Books, New York.
[27]
Filip Karlo Dosilovic, Mario Brcic, and Nikica Hlupic. 2018. Explainable artificial intelligence: A survey. In Proceedings of the 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). MIPRO Association, 0210–0215. DOI:
[28]
Peter Eckersley. 2019. Impossibility and uncertainty theorems in AI value alignment (or why your AGI should not have a utility function). arXiv:1901.00064 [cs] (Mar. 2019).
[30]
Owain Evans, Owen Cotton-Barratt, Lukas Finnveden, Adam Bales, Avital Balwit, Peter Wills, Luca Righetti, and William Saunders. 2021. Truthful AI: Developing and governing AI that does not lie. arXiv:2110.06674 [cs] (Oct. 2021).
[31]
Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hutter, and Shane Legg. 2017. Reinforcement learning with a corrupted reward channel. arXiv:1705.08417 [cs, stat] (Aug. 2017).
[32]
Tom Everitt, Gary Lea, and Marcus Hutter. 2018. AGI safety literature review. arXiv:1805.01109 [cs] (May 2018).
[33]
Luciano Floridi. 1999. Philosophy and Computing: An Introduction (1st edition ed.). Routledge, London; New York.
[34]
Dean Foster and H. Peyton Young. 2001.
On the Impossibility of Predicting the Behavior of Rational Agents. Technical Report 423. The Johns Hopkins University, Department of Economics. Retrieved from
https://ideas.repec.org/p/jhu/papers/423.html.
[35]
Christian Geist and Ulle Endriss. 2011. Automated search for impossibility theorems in social choice theory: Ranking sets of objects. J. Artif. Intell. Res. 40, 1 (Jan. 2011), 143–174.
[37]
Charles A. E. Goodhart. 1984. Problems of monetary management: The UK experience. In Monetary Theory and Practice: The UK Experience, Charles A. E. Goodhart (Ed.). Macmillan Education UK, London, 91–121. DOI:
[38]
Nelson Goodman. 1946. A query on confirmation. J. Philos. 43, 14 (1946), 383–385. DOI:
[39]
Andreia P. Guerreiro, Carlos M. Fonseca, and Luís Paquete. 2021. The hypervolume indicator: Computational problems and algorithms. Comput. Surv. 54, 6 (July 2021), 119:1–119:42. DOI:
[40]
Kurt Gödel. 1931. Über formal unentscheidbare sätze der principia mathematica und verwandter systeme I. Monatshefte für Mathematik und Physik 38, 1 (Dec. 1931), 173–198. DOI:
[41]
Dylan Hadfield-Menell, Anca Dragan, Pieter Abbeel, and Stuart Russell. 2017. The off-switch game. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI'17). 220–227. DOI:
[42]
Robin Hanson. 2016. The Age of Em: Work, Love, and Life when Robots Rule the Earth. Oxford University Press, Oxford, New York.
[43]
Jose Hernandez-Orallo. 1998. A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In Proceedings of the International Symposium of Engineering of Intelligent Systems (EIS’98). ICSC Press, 146–163.
[44]
Jaakko Hintikka. 1970. Information, deduction, and the a priori. Noûs 4, 2 (1970), 135–152. DOI:
[45]
William Howe and Roman V. Yampolskiy. 2021. Impossibility of unambiguous communication as a source of failure in AI systems. In
Proceedings of the Workshop on Artificial Intelligence Safety 2021 co-located with the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI'21), Virtual, August, 2021. CEUR Workshop Proceedings 2916. Retrieved from
https://ceur-ws.org/Vol-2916/paper_14.pdf.
[47]
Aapo Hyvärinen and Petteri Pajunen. 1999. Nonlinear independent component analysis: Existence and uniqueness results. Neural Netw. 12, 3 (Apr. 1999), 429–439. DOI:
[48]
Geoffrey Irving, Paul Christiano, and Dario Amodei. 2018. AI safety via debate. arXiv:1805.00899 [cs, stat] (Oct. 2018).
[49]
Sarah Isufi, Kristijan Poje, Igor Vukobratovic, and Mario Brcic. 2022. Prismal view of ethics. Philosophies 7, 6 (2022), 134. DOI:
[50]
Mislav Juric, Agneza Sandic, and Mario Brcic. 2020. AI safety: State of the field through quantitative lens. In Proceedings of the 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). MIPRO Association, 1254–1259. DOI:
[51]
Richard M. Karp. 1972. Reducibility among combinatorial problems. In Complexity of Computer Computations. Springer, 85–103.
[52]
Jerzy Klamka. 1972. Uncontrollability and unobservability of multivariable systems. IEEE Trans. Automat. Contr 17, 5 (Oct. 1972), 725–726. DOI:
[54]
Jon Kleinberg. 2002. An impossibility theorem for clustering. In Proceedings of the 15th International Conference on Neural Information Processing Systems (NIPS’02). MIT Press, Cambridge, MA, 463–470.
[55]
Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. 2016. Inherent trade-offs in the Fair Determination of Risk Scores. arXiv:1609.05807 [cs, stat] (Nov. 2016).
[56]
Roger Koppl and J. Barkley Rosser Jr. 2002. All that I have to say has already crossed your mind. Metroeconomica 53, 4 (2002), 339–360. DOI:
[57]
Tor Lattimore and Marcus Hutter. 2013. No free lunch versus Occam’s razor in supervised learning. In Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence: Papers from the Ray Solomonoff 85th Memorial Conference, Melbourne, VIC, Australia, November 30–December 2, 2011, David L. Dowe (Ed.). Springer, Berlin, 223–235. DOI:
[59]
F. William Lawvere. 1969. Diagonal arguments and cartesian closed categories. In Category Theory, Homology Theory and Their Applications II (Lecture Notes in Mathematics), Barry Mitchell, Jan-Erik Roos, Friedrich Ulmer, Hans-Berndt Brinkmann, Stephen U. Chase, Paul Dedecker, R. R. Douglas, P. J. Hilton, F. Sigrist, Charles Ehresmann, K. W. Gruenberg, Max A. Knus, F. William Lawvere, and Saunders Mac Lane (Eds.). Springer, Berlin, 134–145. DOI:
[61]
Henry W. Lin, Max Tegmark, and David Rolnick. 2017. Why does deep and cheap learning work so well? J. Statist. Phys. 168, 6 (Sept. 2017), 1223–1247. DOI:
[62]
Seth Lloyd. 2000. Ultimate physical limits to computation. Nature 406, 6799 (Aug. 2000), 1047–1054. DOI:
[63]
Francesco Locatello, Stefan Bauer, Mario Lučić, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, and Olivier Frederic Bachem. 2019. Challenging common assumptions in the unsupervised learning of disentangled representations. In
Proceedings of the International Conference on Machine Learning. Retrieved from
http://proceedings.mlr.press/v97/locatello19a.html.
[64]
M. H. Löb. 1955. Solution of a problem of Leon Henkin. J. Symbol. Logic 20, 2 (1955), 115–118. DOI:
[65]
John McDowell. 1979. Virtue and reason. Monist 62, 3 (July 1979), 331–350. DOI:
[67]
El Mahdi El Mhamdi, Rachid Guerraoui, Hadrien Hendrikx, and Alexandre Maurer. 2017. Dynamic safe interruptibility for decentralized multi-agent reinforcement learning. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17). Curran Associates Inc., Red Hook, NY, 129–139.
[68]
Richard E. Nisbett and Timothy DeCamp Wilson. 1977. Telling more than we can know: Verbal reports on mental processes. Psychol. Rev. 84, 3 (1977), 231–259. DOI:
[70]
Laurent Orseau and Stuart Armstrong. 2016. Safely interruptible agents. In Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI’16). AUAI Press, Arlington, Virginia, 557–566.
[71]
Derek Parfit. 1986. Reasons and Persons. Oxford University Press, Oxford, UK. DOI:
[72]
David Parmenter. 2019. Key Performance Indicators: Developing, Implementing, and Using Winning KPIs (4th edition ed.). Wiley, Hoboken, NJ.
[73]
Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. 2017. Elements of Causal Inference: Foundations and Learning Algorithms. MIT Press, Cambridge, MA.
[74]
Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya Sutskever. 2022. Formal mathematics statement curriculum learning. arXiv:2202.01344 [cs] (Feb. 2022).
[76]
Lev Reyzin. 2019. Unprovability comes to machine learning. Nature 565, 7738 (Jan. 2019), 166–167. DOI:
[77]
Henry Gordon Rice. 1953. Classes of recursively enumerable sets and their decision problems. Trans. Amer. Math. Soc. 74, 2 (1953), 358–366. DOI:
[78]
Kailash Karthik Saravanakumar. 2021. The impossibility theorem of machine fairness—A causal perspective. arXiv:2007.06024 [cs, stat] (Jan. 2021).
[79]
Gerhard Schurz. 2008. The meta-inductivist’s winning strategy in the prediction game: A new approach to Hume’s problem. Philos. Sci. 75, 3 (July 2008), 278–305. DOI:
[80]
Gerhard Schurz. 2017. No free lunch theorem, inductive skepticism, and the optimality of meta-induction. Philos. Sci. 84, 5 (Dec. 2017), 825–839. DOI:
[81]
Sonia Sehra, David Flores, and George D. Montañez. 2021. Undecidability of underfitting in learning algorithms. In 2nd International Conference on Computing and Data Science (CDS'21). Stanford, CA, USA, 591–594. DOI:
[82]
Kunal Sharma, M. Cerezo, Zoë Holmes, Lukasz Cincio, Andrew Sornborger, and Patrick J. Coles. 2022. Reformulation of the no-free-lunch theorem for entangled datasets. Phys. Rev. Lett. 128, 7 (Feb. 2022), 070501. DOI:
[83]
Kenneth O. Stanley and Joel Lehman. 2015. Why Greatness Cannot Be Planned: The Myth of the Objective. Springer, Cham, Switzerland.
[84]
Marilyn Strathern. 1997. “Improving Ratings”: Audit in the British university system. Eur. Rev. 5, 3 (July 1997), 305–321. DOI:
[85]
Pingzhong Tang and Fangzhen Lin. 2009. Computer-aided proofs of Arrow’s and other impossibility theorems. Artif. Intell. 173, 11 (July 2009), 1041–1053. DOI:
[86]
Alfred Tarski. 1936. The concept of truth in formalized languages. In Logic, Semantics, Metamathematics, Alfred Tarski (Ed.). Oxford University Press, 152–278.
[87]
Jessica Taylor. 2016. Quantilizers: A safer alternative to maximizers for limited optimization. In Proceedings of the AAAI Workshop: AI, Ethics, and Society.
[88]
Hugo Touchette and Seth Lloyd. 2004. Information-theoretic approach to the study of control systems. Phys. A: Statist. Mech. Applic. 331, 1 (Jan. 2004), 140–172. DOI:
[89]
Peter Shiu-Hwa Tsu. 2017. Can virtue be codified?: An inquiry on the basis of four conceptions of virtue. In Virtue’s Reasons. Routledge.
[90]
Alan Turing. 1937. On computable numbers, with an application to the entscheidungsproblem. Proc. London Math. Societ. s2-42, 1 (1937), 230–265. DOI:
[91]
Leslie Gabriel Valiant. 1984. A theory of the learnable. Commun. ACM 27, 11 (Nov. 1984), 1134–1142. DOI:
[92]
Peter Vamplew, Richard Dazeley, Cameron Foale, Sally Firmin, and Jane Mummery. 2018. Human-aligned artificial intelligence is a multiobjective problem. Ethics Inf. Technol. 20, 1 (Mar. 2018), 27–40. DOI:
[93]
Jan van Leeuwen and Jiri Wiedermann. 2021.
Impossibility Results for the Online Verification of Ethical and Legal Behaviour of Robots. Technical Report UU-PCS-2021-02. Utrecht University, Utrecht. Retrieved from
http://www.cs.uu.nl/groups/AD/UU-PCS-2021-02.pdf.
[95]
Tyler Volkoff, Zoë Holmes, and Andrew Sornborger. 2021. Universal compiling and (no-)free-lunch theorems for continuous-variable quantum learning. PRX Quant. 2, 4 (Nov. 2021), 040327. DOI:
[97]
David H. Wolpert. 1996. The existence of a priori distinctions between learning algorithms. Neural Computat. 8, 7 (Oct. 1996), 1391–1420. DOI:
[98]
David H. Wolpert. 2001. Computational capabilities of physical systems. Phys. Rev. E 65, 1 (Dec. 2001), 016128. DOI:
[99]
David H. Wolpert. 2008. Physical limits of inference. Phys. D: Nonlin. Phenom. 237, 9 (July 2008), 1257–1281. DOI:
[100]
David H. Wolpert. 2018. Constraints on physical reality arising from a formalization of knowledge. arXiv:1711.03499 [physics] (June 2018).
[101]
David H. Wolpert. 2020. What is important about the no free lunch theorems? arXiv:2007.10928 [cs, stat] (July 2020).
[102]
David H. Wolpert and William Macready. 1997. No free lunch theorems for optimization. IEEE Trans. Evolut. Computat. 1, 1 (Apr. 1997), 67–82. DOI:
[103]
David H. Wolpert and William Macready. 2005. Coevolutionary free lunches. IEEE Trans. Evolut. Computat. 9, 6 (Dec. 2005), 721–735. DOI:
[104]
Tobias Wängberg, Mikael Böörs, Elliot Catt, Tom Everitt, and Marcus Hutter. 2017. A game-theoretic analysis of the off-switch game. In Artificial General Intelligence (Lecture Notes in Computer Science), Tom Everitt, Ben Goertzel, and Alexey Potapov (Eds.). Springer International Publishing, Cham, 167–177. DOI:
[105]
Roman V. Yampolskiy. 2017. What are the ultimate limits to computational techniques: Verifier theory and unverifiability. Phys. Script. 92, 9 (July 2017), 093001. DOI:
[106]
Roman V. Yampolskiy. 2019. Personal universes: A solution to the multi-agent value alignment problem. arXiv:1901.01851 [cs] (Jan. 2019).
[107]
Roman V. Yampolskiy. 2020. Unexplainability and incomprehensibility of AI. J. Artif. Intell. Conscious. 07, 02 (Sept. 2020), 277–291. DOI:
[108]
Roman V. Yampolskiy. 2020. Unpredictability of AI: On the impossibility of accurately predicting all actions of a smarter agent. J. Artif. Intell. Conscious. 07, 01 (Mar. 2020), 109–118. DOI:
[109]
Roman V. Yampolskiy. 2022. On the controllability of artificial intelligence: An analysis of limitations. Journal of Cyber Security and Mobility 11, 3 (2022), 321–404. DOI:
[110]
Noson S. Yanofsky. 2003. A universal approach to self-referential paradoxes, incompleteness and fixed points. Bull. Symbol. Logic 9, 3 (Sept. 2003), 362–386. DOI:
[111]
Simon Zhuang and Dylan Hadfield-Menell. 2021. Consequences of misaligned AI. arXiv:2102.03896 [cs] (Feb. 2021).