Solution

Verified
Step 1
1 of 5

From the given data estimate the slope of the regression line by the least squares method in order to compute coefficient of determination.

The least squares estimate of the slope\textbf{slope} is

b1=β^1=(xix)(yiy)(xix)2=SxySxx\begin{align*} b_1 = \hat{\beta}_1 = \dfrac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum \left(x_i - \overline{x}\right)^2} = \frac{S_{xy}}{S_{xx}} \end{align*}

where SxyS_{xy} can be computed using formula

Sxy=xiyi1n(xi)(yi),\begin{align*} S_{xy} = \sum x_i y_i - \frac{1}{n} \left( \sum x_i \right) \left( \sum y_i \right), \end{align*}

and SxxS_{xx} can be computed using formula

Sxx=xi21n(xi)2.\begin{align*} S_{xx} = \sum x_i^2 - \frac{1}{n} \left( \sum x_i \right)^2. \end{align*}

The least squares estimate of the intercept\textbf{intercept} is

b0=β^0=yiβ^1xin=yβ^1x.\begin{align*} b_0 = \hat{\beta}_0 = \dfrac{\sum y_i - \hat{\beta}_1 \sum x_i}{n} = \overline{y} - \hat{\beta}_1 \overline{x}. \end{align*}

Create a free account to view solutions for this book

By signing up, you accept Quizlet's Terms of Service and Privacy Policy