
Understanding Assembly Language

Dennis Yurichev

i

Understanding Assembly Language
(Reverse Engineering for Beginners)

Why two titles? Read here: on page xvi.

Dennis Yurichev
my emails

cba

©2013-2022, Dennis Yurichev.
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0
International (CC BY-SA 4.0) license. To view a copy of this license, visit

https://creativecommons.org/licenses/by-sa/4.0/.
Text version (October 23, 2023).

The latest version (and Russian edition) of this text is accessible at
https://beginners.re/.

Call for translators!

Youmay want to help me with translating this work into languages other than English
and Russian. Just send me any piece of translated text (no matter how short) and
I’ll put it into my LaTeX source code.
Do not ask, if you should translate. Just do something. I stopped responding “what
should I do” emails.
Also, read here.
The language statistics is available right here: https://beginners.re/.
Speed isn’t important, because this is an open-source project, after all. Your name
will be mentioned as a project contributor. Korean, Chinese, and Persian languages
are reserved by publishers. English and Russian versions I do by myself, but my
English is still that horrible, so I’m very grateful for any notes about grammar, etc.
Even my Russian is flawed, so I’m grateful for notes about Russian text as well!
So do not hesitate to contact me: my emails.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://creativecommons.org/licenses/by-sa/4.0/
https://beginners.re/
https://beginners.re/paywall/RE4B-source/current-tree//Translation.md
https://beginners.re/
https://yurichev.com/contact.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

Abridged contents

1 Code Patterns 1

2 Important fundamentals 564

3 Slightly more advanced examples 577

4 Java 836

5 Finding important/interesting stuff in the code 888

6 OS-specific 932

7 Tools 1005

8 Case studies 1010

9 Examples of reversing proprietary file formats 1170

10 Dynamic binary instrumentation 1244

11 Other things 1255

12 Books/blogs worth reading 1281

13 Communities 1284

ii

Afterword 1286

Appendix 1288

Acronyms Used 1325

Glossary 1332

Index 1335

Contents

1 Code Patterns 1
1.1 The method . 1
1.2 Some basics . 2

1.2.1 A short introduction to the CPU . 2
1.2.2 Numeral Systems . 4
1.2.3 Converting From One Radix To Another 4

1.3 An Empty Function . 7
1.3.1 x86 . 8
1.3.2 ARM . 8
1.3.3 MIPS . 8
1.3.4 Empty Functions in Practice . 9

1.4 Returning Values . 10
1.4.1 x86 . 10
1.4.2 ARM . 10
1.4.3 MIPS . 11

1.5 Hello, world! . 11
1.5.1 x86 . 12
1.5.2 x86-64 . 19
1.5.3 ARM . 24
1.5.4 MIPS . 33
1.5.5 Conclusion . 39
1.5.6 Exercises . 39

1.6 Function prologue and epilogue . 39
1.6.1 Recursion . 40

1.7 An Empty Function: redux . 40
1.8 Returning Values: redux . 40
1.9 Stack . 40

iii

iv
1.9.1 Why does the stack grow backwards? 41
1.9.2 What is the stack used for? . 42
1.9.3 A typical stack layout . 50
1.9.4 Noise in stack . 50
1.9.5 Exercises . 55

1.10 Almost empty function . 55
1.11 printf() with several arguments . 56

1.11.1 x86 . 56
1.11.2 ARM . 70
1.11.3 MIPS . 77
1.11.4 Conclusion . 85
1.11.5 By the way . 87

1.12 scanf() . 87
1.12.1 Simple example . 87
1.12.2 The classic mistake . 99
1.12.3 Global variables . 100
1.12.4 scanf() . 111
1.12.5 Exercise . 124

1.13 Worth noting: global vs. local variables . 125
1.14 Accessing passed arguments . 125

1.14.1 x86 . 125
1.14.2 x64 . 128
1.14.3 ARM . 132
1.14.4 MIPS . 136

1.15 More about results returning . 137
1.15.1 Attempt to use the result of a function returning void 137
1.15.2 What if we do not use the function result? 139
1.15.3 Returning a structure . 139

1.16 Pointers . 141
1.16.1 Returning values . 141
1.16.2 Swap input values . 151

1.17 GOTO operator . 152
1.17.1 Dead code . 155
1.17.2 Exercise . 156

1.18 Conditional jumps . 156
1.18.1 Simple example . 156
1.18.2 Calculating absolute value . 177
1.18.3 Ternary conditional operator . 180
1.18.4 Getting minimal and maximal values 184
1.18.5 Conclusion . 190
1.18.6 Exercise . 192

1.19 Software cracking . 192
1.20 Impossible shutdown practical joke (Windows 7) 194
1.21 switch()/case/default . 195

1.21.1 Small number of cases . 195
1.21.2 A lot of cases . 210
1.21.3 When there are several case statements in one block 224
1.21.4 Fall-through . 229
1.21.5 Exercises . 231

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

v
1.22 Loops . 231

1.22.1 Simple example . 231
1.22.2 Memory blocks copying routine . 246
1.22.3 Condition check . 249
1.22.4 Conclusion . 250
1.22.5 Exercises . 252

1.23 More about strings . 253
1.23.1 strlen() . 253
1.23.2 Boundaries of strings . 266

1.24 Replacing arithmetic instructions to other ones 267
1.24.1 Multiplication . 267
1.24.2 Division . 274
1.24.3 Exercise . 275

1.25 Floating-point unit . 275
1.25.1 IEEE 754 . 275
1.25.2 x86 . 275
1.25.3 ARM, MIPS, x86/x64 SIMD . 276
1.25.4 C/C++ . 276
1.25.5 Simple example . 276
1.25.6 Passing floating point numbers via arguments 288
1.25.7 Comparison example . 291
1.25.8 Some constants . 329
1.25.9 Copying . 330
1.25.10 Stack, calculators and reverse Polish notation 330
1.25.11 80 bits? . 330
1.25.12 x64 . 330
1.25.13 Exercises . 330

1.26 Arrays . 330
1.26.1 Simple example . 331
1.26.2 Buffer overflow . 340
1.26.3 Buffer overflow protection methods 348
1.26.4 One more word about arrays . 353
1.26.5 Array of pointers to strings . 354
1.26.6 Multidimensional arrays . 363
1.26.7 Pack of strings as a two-dimensional array 373
1.26.8 Conclusion . 378
1.26.9 Exercises . 378

1.27 Example: a bug in Angband . 379
1.28 Manipulating specific bit(s) . 382

1.28.1 Specific bit checking . 382
1.28.2 Setting and clearing specific bits . 387
1.28.3 Shifts . 397
1.28.4 Setting and clearing specific bits: FPU1 example 397
1.28.5 Counting bits set to 1 . 403
1.28.6 Conclusion . 421
1.28.7 Exercises . 424

1.29 Linear congruential generator . 424
1Floating-Point Unit

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

vi
1.29.1 x86 . 425
1.29.2 x64 . 426
1.29.3 32-bit ARM . 427
1.29.4 MIPS . 428
1.29.5 Thread-safe version of the example 431

1.30 Structures . 431
1.30.1 MSVC: SYSTEMTIME example . 431
1.30.2 Let’s allocate space for a structure using malloc() 435
1.30.3 UNIX: struct tm . 438
1.30.4 Fields packing in structure . 451
1.30.5 Nested structures . 460
1.30.6 Bit fields in a structure . 463
1.30.7 Exercises . 472

1.31 The classic struct bug . 472
1.32 Unions . 473

1.32.1 Pseudo-random number generator example 474
1.32.2 Calculating machine epsilon . 478
1.32.3 FSCALE instruction replacement . 480
1.32.4 Fast square root calculation . 482

1.33 Pointers to functions . 483
1.33.1 MSVC . 484
1.33.2 GCC . 491
1.33.3 Danger of pointers to functions . 496

1.34 64-bit values in 32-bit environment . 497
1.34.1 Returning of 64-bit value . 497
1.34.2 Arguments passing, addition, subtraction 498
1.34.3 Multiplication, division . 502
1.34.4 Shifting right . 507
1.34.5 Converting 32-bit value into 64-bit one 508

1.35 LARGE_INTEGER structure case . 510
1.36 SIMD . 513

1.36.1 Vectorization . 514
1.36.2 SIMD strlen() implementation . 527

1.37 64 bits . 531
1.37.1 x86-64 . 531
1.37.2 ARM . 540
1.37.3 Float point numbers . 540
1.37.4 64-bit architecture criticism . 540

1.38 Working with floating point numbers using SIMD 541
1.38.1 Simple example . 541
1.38.2 Passing floating point number via arguments 549
1.38.3 Comparison example . 550
1.38.4 Calculating machine epsilon: x64 and SIMD 553
1.38.5 Pseudo-random number generator example revisited 554
1.38.6 Summary . 554

1.39 ARM-specific details . 555
1.39.1 Number sign (#) before number . 555
1.39.2 Addressing modes . 555
1.39.3 Loading a constant into a register . 556

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

vii
1.39.4 Relocs in ARM64 . 559

1.40 MIPS-specific details . 561
1.40.1 Loading a 32-bit constant into register 561
1.40.2 Further reading about MIPS . 563

2 Important fundamentals 564
2.1 Integral datatypes . 564

2.1.1 Bit . 564
2.1.2 Nibble AKA nybble . 565
2.1.3 Byte . 566
2.1.4 Wide char . 567
2.1.5 Signed integer vs unsigned . 567
2.1.6 Word . 567
2.1.7 Address register . 569
2.1.8 Numbers . 569
2.1.9 AND/OR/XOR as MOV . 572

2.2 Endianness . 572
2.2.1 Big-endian . 572
2.2.2 Little-endian . 572
2.2.3 Example . 573
2.2.4 Bi-endian . 573
2.2.5 Converting data . 573

2.3 Memory . 574
2.4 CPU . 575

2.4.1 Branch predictors . 575
2.4.2 Data dependencies . 575

2.5 Hash functions . 575
2.5.1 How do one-way functions work? . 575

3 Slightly more advanced examples 577
3.1 Zero register . 577
3.2 Double negation . 581
3.3 const correctness . 582

3.3.1 Overlapping const strings . 584
3.4 strstr() example . 585
3.5 qsort() revisited . 586
3.6 Temperature converting . 586

3.6.1 Integer values . 587
3.6.2 Floating-point values . 589

3.7 Fibonacci numbers . 592
3.7.1 Example #1 . 592
3.7.2 Example #2 . 597
3.7.3 Summary . 600

3.8 CRC32 calculation example . 601
3.9 Network address calculation example . 605

3.9.1 calc_network_address() . 607
3.9.2 form_IP() . 607
3.9.3 print_as_IP() . 609
3.9.4 form_netmask() and set_bit() . 611

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

viii
3.9.5 Summary . 612

3.10 Loops: several iterators . 612
3.10.1 Three iterators . 613
3.10.2 Two iterators . 613
3.10.3 Intel C++ 2011 case . 616

3.11 Duff’s device . 617
3.11.1 Should one use unrolled loops? . 621

3.12 Division using multiplication . 621
3.12.1 x86 . 621
3.12.2 How it works . 623
3.12.3 ARM . 623
3.12.4 MIPS . 625
3.12.5 Exercise . 625

3.13 String to number conversion (atoi()) . 626
3.13.1 Simple example . 626
3.13.2 A slightly advanced example . 630
3.13.3 Exercise . 634

3.14 Inline functions . 634
3.14.1 Strings and memory functions . 635

3.15 C99 restrict . 645
3.16 Branchless abs() function . 648

3.16.1 Optimizing GCC 4.9.1 x64 . 649
3.16.2 Optimizing GCC 4.9 ARM64 . 649

3.17 Variadic functions . 650
3.17.1 Computing arithmetic mean . 650
3.17.2 vprintf() function case . 655
3.17.3 Pin case . 657
3.17.4 Format string exploit . 657

3.18 Strings trimming . 658
3.18.1 x64: Optimizing MSVC 2013 . 660
3.18.2 x64: Non-optimizing GCC 4.9.1 . 662
3.18.3 x64: Optimizing GCC 4.9.1 . 663
3.18.4 ARM64: Non-optimizing GCC (Linaro) 4.9 664
3.18.5 ARM64: Optimizing GCC (Linaro) 4.9 666
3.18.6 ARM: Optimizing Keil 6/2013 (ARM mode) 667
3.18.7 ARM: Optimizing Keil 6/2013 (Thumb mode) 667
3.18.8 MIPS . 668

3.19 toupper() function . 670
3.19.1 x64 . 671
3.19.2 ARM . 673
3.19.3 Using bit operations . 674
3.19.4 Summary . 676

3.20 Obfuscation . 676
3.20.1 Text strings . 676
3.20.2 Executable code . 677
3.20.3 Virtual machine / pseudo-code . 681
3.20.4 Other things to mention . 681
3.20.5 Exercise . 681

3.21 C++ . 682

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

ix
3.21.1 Classes . 682
3.21.2 ostream . 703
3.21.3 References . 705
3.21.4 STL . 706
3.21.5 Memory . 751

3.22 Negative array indices . 752
3.22.1 Addressing string from the end . 752
3.22.2 Addressing some kind of block from the end 753
3.22.3 Arrays started at 1 . 753

3.23 More about pointers . 756
3.23.1 Working with addresses instead of pointers 757
3.23.2 Passing values as pointers; tagged unions 760
3.23.3 Pointers abuse in Windows kernel . 761
3.23.4 Null pointers . 767
3.23.5 Array as function argument . 773
3.23.6 Pointer to a function . 774
3.23.7 Pointer to a function: copy protection 775
3.23.8 Pointer to a function: a common bug (or typo) 776
3.23.9 Pointer as object identificator . 776
3.23.10 Oracle RDBMS and a simple garbage collector for C/C++ 778

3.24 Loop optimizations . 779
3.24.1 Weird loop optimization . 779
3.24.2 Another loop optimization . 781

3.25 More about structures . 783
3.25.1 Sometimes a C structure can be used instead of array 783
3.25.2 Unsized array in C structure . 785
3.25.3 Version of C structure . 786
3.25.4 High-score file in “Block out” game and primitive serialization . 789

3.26 memmove() and memcpy() . 794
3.26.1 Anti-debugging trick . 796

3.27 setjmp/longjmp . 796
3.28 Other weird stack hacks . 799

3.28.1 Accessing arguments/local variables of caller 799
3.28.2 Returning string . 801

3.29 OpenMP . 803
3.29.1 MSVC . 806
3.29.2 GCC . 809

3.30 Signed division using shifts . 811
3.31 Another heisenbug . 813
3.32 The case of forgotten return . 814
3.33 Homework: more about function pointers and unions 819
3.34 Windows 16-bit . 821

3.34.1 Example#1 . 821
3.34.2 Example #2 . 822
3.34.3 Example #3 . 822
3.34.4 Example #4 . 824
3.34.5 Example #5 . 827
3.34.6 Example #6 . 831

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

x
4 Java 836
4.1 Java . 836

4.1.1 Introduction . 836
4.1.2 Returning a value . 837
4.1.3 Simple calculating functions . 843
4.1.4 JVM2 memory model . 846
4.1.5 Simple function calling . 846
4.1.6 Calling beep() . 849
4.1.7 Linear congruential PRNG3 . 849
4.1.8 Conditional jumps . 851
4.1.9 Passing arguments . 854
4.1.10 Bitfields . 855
4.1.11 Loops . 856
4.1.12 switch() . 859
4.1.13 Arrays . 860
4.1.14 Strings . 871
4.1.15 Exceptions . 874
4.1.16 Classes . 878
4.1.17 Simple patching . 881
4.1.18 Summary . 887

5 Finding important/interesting stuff in the code 888
5.1 Identification of executable files . 889

5.1.1 Microsoft Visual C++ . 889
5.1.2 GCC . 889
5.1.3 Intel Fortran . 890
5.1.4 Watcom, OpenWatcom . 890
5.1.5 Borland . 890
5.1.6 Other known DLLs . 892

5.2 Communication with outer world (function level) 892
5.3 Communication with the outer world (win32) 892

5.3.1 Often used functions in the Windows API 893
5.3.2 Extending trial period . 894
5.3.3 Removing nag dialog box . 894
5.3.4 tracer: Intercepting all functions in specific module 894

5.4 Strings . 895
5.4.1 Text strings . 895
5.4.2 Finding strings in binary . 901
5.4.3 Error/debug messages . 903
5.4.4 Suspicious magic strings . 903

5.5 Calls to assert() . 904
5.6 Constants . 905

5.6.1 Magic numbers . 906
5.6.2 Specific constants . 908
5.6.3 Searching for constants . 908

5.7 Finding the right instructions . 908
5.8 Suspicious code patterns . 910
2Java Virtual Machine
3Pseudorandom Number Generator

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

xi
5.8.1 XOR instructions . 910
5.8.2 Hand-written assembly code . 911

5.9 Using magic numbers while tracing . 912
5.10 Loops . 912

5.10.1 Some binary file patterns . 914
5.10.2 Memory “snapshots” comparing . 922

5.11 ISA4 detection . 924
5.11.1 Incorrectly disassembled code . 924
5.11.2 Correctly disassembled code . 930

5.12 Other things . 930
5.12.1 General idea . 930
5.12.2 Order of functions in binary code . 930
5.12.3 Tiny functions . 931
5.12.4 C++ . 931
5.12.5 Crash on purpose . 931

6 OS-specific 932
6.1 Arguments passing methods (calling conventions) 932

6.1.1 cdecl . 932
6.1.2 stdcall . 932
6.1.3 fastcall . 934
6.1.4 thiscall . 935
6.1.5 x86-64 . 936
6.1.6 Return values of float and double type 939
6.1.7 Modifying arguments . 939
6.1.8 Taking a pointer to function argument 941
6.1.9 Python ctypes problem (x86 assembly homework) 943
6.1.10 Cdecl example: a DLL . 943

6.2 Thread Local Storage . 944
6.2.1 Linear congruential generator revisited 944

6.3 System calls (syscall-s) . 950
6.3.1 Linux . 951
6.3.2 Windows . 951

6.4 Linux . 952
6.4.1 Position-independent code . 952
6.4.2 LD_PRELOAD hack in Linux . 955

6.5 Windows NT . 958
6.5.1 CRT (win32) . 958
6.5.2 Win32 PE . 963
6.5.3 Windows SEH . 973
6.5.4 Windows NT: Critical section .1002

7 Tools 1005
7.1 Binary analysis .1005

7.1.1 Disassemblers .1006
7.1.2 Decompilers .1006
7.1.3 Patch comparison/diffing .1006

7.2 Live analysis .1006
4Instruction Set Architecture

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

xii
7.2.1 Debuggers .1007
7.2.2 Library calls tracing .1007
7.2.3 System calls tracing .1007
7.2.4 Network sniffing .1008
7.2.5 Sysinternals .1008
7.2.6 Valgrind .1008
7.2.7 Emulators .1008

7.3 Other tools .1009
7.3.1 SMT solvers .1009
7.3.2 Calculators .1009

7.4 Do You Think Something Is Missing Here? .1009

8 Case studies 1010
8.1 Mahjong solitaire prank (Windows 7) .1011
8.2 Task manager practical joke (Windows Vista)1013

8.2.1 Using LEA to load values .1017
8.3 Color Lines game practical joke .1018
8.4 Minesweeper (Windows XP) .1021

8.4.1 Finding grid automatically .1028
8.4.2 Exercises .1029

8.5 Hacking Windows clock .1029
8.6 (Windows 7) Solitaire: practical jokes .1039

8.6.1 51 cards .1039
8.6.2 53 cards .1047

8.7 FreeCell prank (Windows 7) .1048
8.7.1 Part I .1048
8.7.2 Part II: breaking the Select Game submenu1053

8.8 Dongles .1055
8.8.1 Example #1: MacOS Classic and PowerPC1055
8.8.2 Example #2: SCO OpenServer .1065
8.8.3 Example #3: MS-DOS .1078

8.9 Encrypted database case #1 .1085
8.9.1 Base64 and entropy .1085
8.9.2 Is data compressed? .1087
8.9.3 Is data encrypted? .1088
8.9.4 CryptoPP .1089
8.9.5 Cipher Feedback mode .1092
8.9.6 Initializing Vector .1094
8.9.7 Structure of the buffer .1095
8.9.8 Noise at the end .1098
8.9.9 Conclusion .1099
8.9.10 Post Scriptum: brute-forcing IV5 .1099

8.10 Overclocking Cointerra Bitcoin miner .1100
8.11 Breaking simple executable code encryptor1106

8.11.1 Other ideas to consider .1111
8.12 SAP .1112

8.12.1 About SAP client network traffic compression1112
8.12.2 SAP 6.0 password checking functions1127

5Initialization Vector

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

xiii
8.13 Oracle RDBMS .1132

8.13.1 V$VERSION table in the Oracle RDBMS1132
8.13.2 X$KSMLRU table in Oracle RDBMS .1142
8.13.3 V$TIMER table in Oracle RDBMS .1144

8.14 Handwritten assembly code .1149
8.14.1 EICAR test file .1149

8.15 Demos .1150
8.15.1 10 PRINT CHR$(205.5+RND(1)); : GOTO 101151
8.15.2 Mandelbrot set .1155

8.16 A nasty bug in MSVCRT.DLL .1161
8.17 Other examples .1169

9 Examples of reversing proprietary file formats 1170
9.1 Primitive XOR-encryption .1170

9.1.1 Simplest ever XOR encryption .1170
9.1.2 Norton Guide: simplest possible 1-byte XOR encryption1172
9.1.3 Simplest possible 4-byte XOR encryption1175
9.1.4 Simple encryption using XOR mask .1179
9.1.5 Simple encryption using XOR mask, case II1188
9.1.6 Homework .1195

9.2 Information entropy .1195
9.2.1 Analyzing entropy in Mathematica .1196
9.2.2 Conclusion .1206
9.2.3 Tools .1206
9.2.4 A word about primitive encryption like XORing1206
9.2.5 More about entropy of executable code1206
9.2.6 PRNG .1207
9.2.7 More examples .1207
9.2.8 Entropy of various files .1207
9.2.9 Making lower level of entropy .1209

9.3 Millenium game save file .1210
9.4 fortune program indexing file .1217

9.4.1 Hacking .1223
9.4.2 The files .1224

9.5 Oracle RDBMS: .SYM-files .1224
9.6 Oracle RDBMS: .MSB-files .1237

9.6.1 Summary .1243
9.7 Exercises .1243
9.8 Further reading .1243

10 Dynamic binary instrumentation 1244
10.1 Using PIN DBI for XOR interception .1244
10.2 Cracking Minesweeper with PIN .1248

10.2.1 Intercepting all rand() calls .1248
10.2.2 Replacing rand() calls with our function1249
10.2.3 Peeking into placement of mines .1250
10.2.4 Exercise .1253

10.3 Building Intel Pin .1253
10.4 Why “instrumentation”? .1254

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

xiv
11 Other things 1255
11.1 Using IMUL over MUL .1255

11.1.1 MulDiv() function in Windows .1256
11.2 Executable files patching .1256

11.2.1 x86 code .1256
11.3 Function arguments number statistics .1257
11.4 Compiler intrinsic .1258
11.5 Compiler’s anomalies .1258

11.5.1 Oracle RDBMS 11.2 and Intel C++ 10.11258
11.5.2 MSVC 6.0 .1259
11.5.3 ftol2() in MSVC 2012 .1259
11.5.4 Summary .1261

11.6 Itanium .1261
11.7 8086 memory model .1264
11.8 Basic blocks reordering .1265

11.8.1 Profile-guided optimization .1265
11.9 My experience with Hex-Rays 2.2.0 .1267

11.9.1 Bugs .1267
11.9.2 Odd peculiarities .1269
11.9.3 Silence .1271
11.9.4 Comma .1273
11.9.5 Data types .1274
11.9.6 Long and messed expressions .1274
11.9.7 De Morgan’s laws and decompilation1275
11.9.8 My plan .1277
11.9.9 Summary .1277

11.10 Cyclomatic complexity .1277

12 Books/blogs worth reading 1281
12.1 Books and other materials .1281

12.1.1 Reverse Engineering .1281
12.1.2 Windows .1281
12.1.3 C/C++ .1282
12.1.4 x86 / x86-64 .1282
12.1.5 ARM .1282
12.1.6 Assembly language .1283
12.1.7 Java .1283
12.1.8 UNIX .1283
12.1.9 Programming in general .1283
12.1.10 Cryptography .1283
12.1.11 Something even easier .1283

13 Communities 1284

Afterword 1286
13.1 Questions? .1286

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

xv
Appendix 1288
.1 x86 .1288

.1.1 Terminology .1288

.1.2 General purpose registers .1288

.1.3 FPU registers .1293

.1.4 SIMD registers .1295

.1.5 Debugging registers .1295

.1.6 Instructions .1297

.1.7 npad .1313
.2 ARM .1315

.2.1 Terminology .1315

.2.2 Versions .1315

.2.3 32-bit ARM (AArch32) .1316

.2.4 64-bit ARM (AArch64) .1317

.2.5 Instructions .1318
.3 MIPS .1318

.3.1 Registers .1318

.3.2 Instructions .1319
.4 Some GCC library functions .1320
.5 Some MSVC library functions .1320
.6 Cheatsheets .1321

.6.1 IDA .1321

.6.2 OllyDbg .1321

.6.3 MSVC .1322

.6.4 GCC .1322

.6.5 GDB .1322

Acronyms Used 1325
Glossary 1332

Index 1335

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

xvi
Preface
What is with two titles?
The book was named “Reverse Engineering for Beginners” in 2014-2018, but I always
suspected this makes readership too narrow.
Infosec people know about “reverse engineering”, but I’ve rarely hear the “assem-
bler” word from them.
Likewise, the “reverse engineering” term is somewhat cryptic to a general audience
of programmers, but they know about “assembler”.
In July 2018, as an experiment, I’ve changed the title to “Assembly Language for
Beginners” and posted the link to Hacker News website6, and the book was received
generally well.
So let it be, the book now has two titles.
However, I’ve changed the second title to “Understanding Assembly Language”, be-
cause someone had already written “Assembly Language for Beginners” book. Also,
people say “for Beginners” sounds a bit sarcastic for a book of ~1000 pages.
The two books differ only by title, filename (UAL-XX.pdf versus RE4B-XX.pdf), URL
and a couple of the first pages.

About reverse engineering
There are several popular meanings of the term “reverse engineering”:
1) The reverse engineering of software; researching compiled programs
2) The scanning of 3D structures and the subsequent digital manipulation required
in order to duplicate them
3) Recreating DBMS7 structure
This book is about the first meaning.

Prerequisites
Basic knowledge of the C PL8. Recommended reading: 12.1.3 on page 1282.

Exercises and tasks
…can be found at: http://challenges.re.

Praise for this book
https://beginners.re/#praise.

6https://news.ycombinator.com/item?id=17549050
7Database Management Systems
8Programming Language

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://challenges.re
https://beginners.re/#praise
https://news.ycombinator.com/item?id=17549050
https://yurichev.com/contact.html
https://yurichev.com/contact.html

xvii
Universities
The book is recommended at least at these universities: https://beginners.re/
#uni.

Thanks
For patiently answering all my questions: SkullC0DEr.
For sending me notes about mistakes and inaccuracies: Alexander Lysenko, Fed-
erico Ramondino, Mark Wilson, Razikhova Meiramgul Kayratovna, Anatoly Prokofiev,
Kostya Begunets, Valentin “netch” Nechayev, Aleksandr Plakhov, ArtemMetla, Alexan-
der Yastrebov, Vlad Golovkin9, Evgeny Proshin, Alexander Myasnikov, Alexey Tre-
tiakov, Oleg Peskov, Pavel Shakhov, Zhu Ruijin, Changmin Heo, Vitor Vidal, Stijn
Crevits, Jean-Gregoire Foulon10, Ben L., Etienne Khan, Norbert Szetei11, Marc Remy,
Michael Hansen, Derk Barten, The Renaissance12, Hugo Chan, Emil Mursalimov, Tan-
ner Hoke, Tan90909090@GitHub, Ole Petter Orhagen, Sourav Punoriyar, Vitor Oliveira,
Alexis Ehret, Maxim Shlochiski, Greg Paton, Pierrick Lebourgeois, Abdullah Alomair,
Bobby Battista, Ashod Nakashian.
For helping me in other ways: Andrew Zubinski, Arnaud Patard (rtp on #debian-
arm IRC), noshadow on #gcc IRC, Aliaksandr Autayeu, Mohsen Mostafa Jokar, Peter
Sovietov, Misha “tiphareth” Verbitsky.
For translating the book into Simplified Chinese: Antiy Labs (antiy.cn), Archer.
For translating the book into Korean: Byungho Min.
For translating the book into Dutch: Cedric Sambre (AKA Midas).
For translating the book into Spanish: Diego Boy, Luis Alberto Espinosa Calvo, Fer-
nando Guida, Diogo Mussi, Patricio Galdames, Emiliano Estevarena.
For translating the book into Portuguese: Thales Stevan de A. Gois, Diogo Mussi, Luiz
Filipe, Primo David Santini.
For translating the book into Italian: Federico Ramondino13, Paolo Stivanin14, twyK,
Fabrizio Bertone, Matteo Sticco, Marco Negro15, bluepulsar.
For translating the book into French: Florent Besnard16, Marc Remy17, Baudouin
Landais, Téo Dacquet18, BlueSkeye@GitHub19.

9goto-vlad@github
10https://github.com/pixjuan
11https://github.com/73696e65
12https://github.com/TheRenaissance
13https://github.com/pinkrab
14https://github.com/paolostivanin
15https://github.com/Internaut401
16https://github.com/besnardf
17https://github.com/mremy
18https://github.com/T30rix
19https://github.com/BlueSkeye

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/#uni
https://beginners.re/#uni
http://antiy.cn
https://github.com/pixjuan
https://github.com/73696e65
https://github.com/TheRenaissance
https://github.com/pinkrab
https://github.com/paolostivanin
https://github.com/Internaut401
https://github.com/besnardf
https://github.com/mremy
https://github.com/T30rix
https://github.com/BlueSkeye
https://yurichev.com/contact.html
https://yurichev.com/contact.html

xviii
For translating the book into German: Dennis Siekmeier20, Julius Angres21, Dirk
Loser22, Clemens Tamme, Philipp Schweinzer, Tobias Deiminger.
For translating the book into Polish: Kateryna Rozanova, Aleksander Mistewicz, Wik-
toria Lewicka, Marcin Sokołowski.
For translating the book into Japanese: shmz@github23,4ryuJP@github24.
For proofreading: Vladimir Botov, Andrei Brazhuk, Mark “Logxen” Cooper, Yuan Jochen
Kang, Mal Malakov, Lewis Porter, Jarle Thorsen, Hong Xie.
Vasil Kolev25 did a great amount of work in proofreading and correcting many mis-
takes.
Thanks also to all the folks on github.com who have contributed notes and correc-
tions.
Many LATEX packages were used: I would like to thank the authors as well.

Donors

Those who supported me during the time when I wrote significant part of the book:
2 * Oleg Vygovsky (50+100 UAH), Daniel Bilar ($50), James Truscott ($4.5), Luis Rocha
($63), Joris van de Vis ($127), Richard S Shultz ($20), Jang Minchang ($20), Shade At-
las (5 AUD), Yao Xiao ($10), Pawel Szczur (40 CHF), Justin Simms ($20), Shawn the
R0ck ($27), Ki Chan Ahn ($50), Triop AB (100 SEK), Ange Albertini (e10+50), Sergey
Lukianov (300 RUR), Ludvig Gislason (200 SEK), Gérard Labadie (e40), Sergey Volchkov
(10 AUD), Vankayala Vigneswararao ($50), Philippe Teuwen ($4), Martin Haeberli
($10), Victor Cazacov (e5), Tobias Sturzenegger (10 CHF), Sonny Thai ($15), Bayna
AlZaabi ($75), Redfive B.V. (e25), Joona Oskari Heikkilä (e5), Marshall Bishop ($50),
NicolasWerner (e12), Jeremy Brown ($100), Alexandre Borges ($25), Vladimir Dikovski
(e50), Jiarui Hong (100.00 SEK), Jim Di (500 RUR), Tan Vincent ($30), Sri Harsha Kan-
drakota (10 AUD), Pillay Harish (10 SGD), Timur Valiev (230 RUR), Carlos Garcia
Prado (e10), Salikov Alexander (500 RUR), Oliver Whitehouse (30 GBP), Katy Moe
($14), Maxim Dyakonov ($3), Sebastian Aguilera (e20), Hans-Martin Münch (e15),
Jarle Thorsen (100 NOK), Vitaly Osipov ($100), Yuri Romanov (1000 RUR), Aliaksandr
Autayeu (e10), Tudor Azoitei ($40), Z0vsky (e10), Yu Dai ($10), Anonymous ($15),
Vladislav Chelnokov ($25), Nenad Noveljic ($50), Ryan Smith ($25), Andreas Schom-
mer (e5), Nikolay Gavrilov ($300), Ernesto Bonev Reynoso ($30).
Thanks a lot to every donor!

mini-FAQ
Q: Is this book simpler/easier than others?
20https://github.com/DSiekmeier
21https://github.com/JAngres
22https://github.com/PolymathMonkey
23https://github.com/shmz
24https://github.com/4ryuJP
25https://vasil.ludost.net/

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://github.com/DSiekmeier
https://github.com/JAngres
https://github.com/PolymathMonkey
https://github.com/shmz
https://github.com/4ryuJP
https://vasil.ludost.net/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

xix
A: No, it is at about the same level as other books of this subject.
Q: I’m too frightened to start reading this book, there are more than 1000 pages.
”...for Beginners” in the name sounds a bit sarcastic.
A: All sorts of listings are the bulk of the book. The book is indeed for beginners,
there is a lot missing (yet).
Q: What are the prerequisites for reading this book?
A: A basic understanding of C/C++ is desirable.
Q: Should I really learn x86/x64/ARM and MIPS at once? Isn’t it too much?
A: Starters can read about just x86/x64, while skipping or skimming the ARM and
MIPS parts.
Q: Can I buy a Russian or English hard copy/paper book?
A: Unfortunately, no. No publisher got interested in publishing a Russian or English
version so far. Meanwhile, you can ask your favorite copy shop to print and bind it.
https://yurichev.com/news/20200222_printed_RE4B/.
Q: Is there an epub or mobi version?
A: No. The book is highly dependent on TeX/LaTeX-specific hacks, so converting to
HTML (epub/mobi are a set of HTMLs) would not be easy.
Q: Why should one learn assembly language these days?
A: Unless you are an OS26 developer, you probably don’t need to code in assembly—
the latest compilers (2010s) are much better at performing optimizations than hu-
mans 27.
Also, the latest CPU28s are very complex devices, and assembly knowledge doesn’t
really help towards understanding their internals.
That being said, there are at least two areas where a good understanding of assembly
can be helpful: First and foremost, for security/malware research. It is also a good
way to gain a better understanding of your compiled code while debugging. This
book is therefore intended for those who want to understand assembly language
rather than to code in it, which is why there are many examples of compiler output
contained within.
Q: I clicked on a hyperlink inside a PDF-document, how do I go back?
A: In Adobe Acrobat Reader click Alt+LeftArrow. In Evince click “<” button.
Q: May I print this book / use it for teaching?
A: Of course! That’s why the book is licensed under the Creative Commons license
(CC BY-SA 4.0).
Q: Why is this book free? You’ve done great job. This is suspicious, as with many
other free things.
26Operating System
27A very good text on this topic: [Agner Fog, The microarchitecture of Intel, AMD and VIA CPUs, (2016)]
28Central Processing Unit

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/news/20200222_printed_RE4B/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

xx
A: Inmy own experience, authors of technical literature writemostly for self-advertisement
purposes. It’s not possible to make any decent money from such work.
Q: How does one get a job in reverse engineering?
A: There are hiring threads that appear from time to time on reddit, devoted to RE29.
Try looking there.
A somewhat related hiring thread can be found in the “netsec” subreddit.
Q: I have a question...
A: Send it to me by email (my emails).

About the Korean translation
In January 2015, the Acorn publishing company (www.acornpub.co.kr) in South Korea
did a huge amount of work in translating and publishing this book (as it was in August
2014) into Korean.
It’s available now at their website.
The translator is Byungho Min (twitter/tais9). The cover art was done by the artistic
Andy Nechaevsky, a friend of the author: facebook/andydinka. Acorn also holds the
copyright to the Korean translation.
So, if you want to have a real book on your shelf in Korean and want to support this
work, it is now available for purchase.

About the Persian/Farsi translation
In 2016 the book was translated by Mohsen Mostafa Jokar (who is also known to
Iranian community for his translation of Radare manual30). It is available on the
publisher’s website31 (Pendare Pars).
Here is a link to a 40-page excerpt: https://beginners.re/farsi.pdf.
National Library of Iran registration information: http://opac.nlai.ir/opac-prod/
bibliographic/4473995.

About the Chinese translation
In April 2017, translation to Chinese was completed by Chinese PTPress. They are
also the Chinese translation copyright holders.
The Chinese version is available for order here: http://www.epubit.com.cn/book/
details/4174. A partial review and history behind the translation can be found here:
http://www.cptoday.cn/news/detail/3155.
The principal translator is Archer, to whom the author owes very much. He was
extremely meticulous (in a good sense) and reported most of the known mistakes
29reddit.com/r/ReverseEngineering/
30http://rada.re/get/radare2book-persian.pdf
31http://goo.gl/2Tzx0H

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
http://www.acornpub.co.kr
http://www.acornpub.co.kr/book/reversing-for-beginners
https://twitter.com/tais9
https://www.facebook.com/andydinka
https://beginners.re/farsi.pdf
http://opac.nlai.ir/opac-prod/bibliographic/4473995
http://opac.nlai.ir/opac-prod/bibliographic/4473995
http://www.epubit.com.cn/book/details/4174
http://www.epubit.com.cn/book/details/4174
http://www.cptoday.cn/news/detail/3155
http://www.reddit.com/r/ReverseEngineering/
http://rada.re/get/radare2book-persian.pdf
http://goo.gl/2Tzx0H
https://yurichev.com/contact.html
https://yurichev.com/contact.html

xxi
and bugs, which is very important in literature such as this book. The author would
recommend his services to any other author!
The guys from Antiy Labs has also helped with translation. Here is preface written
by them.

Isn’t the book book outdated already?
I’ve been asked often: Why are the compilers in the RE4B book are that old? Is the
book itself outdated?
Because work on the book was started at the beginning of 2010. (This is why old
MSVC 2008 is used in some places.)
It is not outdated, because:
1) Compilers don’t evolve that fast, so the code generated by MSVC 2010 and by
the latest MSVC may not differ much.
2) What you will reverse (malware, and the software in which you will hunt for vul-
nerabilities), for sure, is not always compiled by fresh compilers.
As far as I can recall, Oracle RDBMS (when I was still worked with it) was built using
older versions of Intel C++. There is also a suspicion that the latest versions of
Windows are also not always compiled by the latest versions of MSVC.
And it is not necessary to follow all the steps in the book exactly, so it is not so
important to use the same compilers. Use the compilers that are already installed
in your OS. And also, there is always Compiler Explorer.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.antiy.net/
http://www.epubit.com.cn/book/onlinechapter/51413
https://yurichev.com/news/20200227_anniversary/
https://yurichev.com/news/20191208_msvcrt/
https://godbolt.org/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

Chapter 1

Code Patterns

1.1 The method
When the author of this book first started learning C and, later, C++, he used to
write small pieces of code, compile them, and then look at the assembly language
output. This made it very easy for him to understand what was going on in the code
that he had written. 1. He did this so many times that the relationship between the
C/C++ code and what the compiler produced was imprinted deeply in his mind. It’s
now easy for him to imagine instantly a rough outline of a C code’s appearance and
function. Perhaps this technique could be helpful for others.
By the way, there is a great website where you can do the same, with various
compilers, instead of installing them on your box. You can use it as well: https:
//godbolt.org/.

Exercises
When the author of this book studied assembly language, he also often compiled
small C functions and then rewrote them gradually to assembly, trying to make their
code as short as possible. This probably is not worth doing in real-world scenarios
today, because it’s hard to compete with the latest compilers in terms of efficiency.
It is, however, a very good way to gain a better understanding of assembly. Feel
free, therefore, to take any assembly code from this book and try to make it shorter.
However, don’t forget to test what you have written.

Optimization levels and debug information
Source code can be compiled by different compilers with various optimization levels.
A typical compiler has about three such levels, where level zero means that opti-

1In fact, he still does this when he can’t understand what a particular bit of code does. A recent example
from the year 2019: p += p+(i&1)+2; from the “SAT0W” SAT-solver by D.Knuth.

1

https://godbolt.org/
https://godbolt.org/

2
mization is completely disabled. Optimization can also be targeted towards code
size or code speed. A non-optimizing compiler is faster and produces more under-
standable (albeit verbose) code, whereas an optimizing compiler is slower and tries
to produce code that runs faster (but is not necessarily more compact). In addition
to optimization levels, a compiler can include some debug information in the result-
ing file, producing code that is easy to debug. One of the important features of the
´debug’ code is that it might contain links between each line of the source code and
its respective machine code address. Optimizing compilers, on the other hand, tend
to produce output where entire lines of source code can be optimized away and thus
not even be present in the resultingmachine code. Reverse engineers can encounter
either version, simply because some developers turn on the compiler’s optimization
flags and others do not. Because of this, we’ll try to work on examples of both debug
and release versions of the code featured in this book, wherever possible.
Sometimes some pretty ancient compilers are used in this book, in order to get the
shortest (or simplest) possible code snippet.

1.2 Some basics
1.2.1 A short introduction to the CPU
The CPU is the device that executes the machine code a program consists of.
A short glossary:
Instruction : A primitive CPU command. The simplest examples include: moving

data between registers, working with memory, primitive arithmetic operations.
As a rule, each CPU has its own instruction set architecture (ISA).

Machine code : Code that the CPU directly processes. Each instruction is usually
encoded by several bytes.

Assembly language : Mnemonic code and some extensions, like macros, that are
intended to make a programmer’s life easier.

CPU register : Each CPU has a fixed set of general purpose registers (GPR2). ≈ 8
in x86, ≈ 16 in x86-64, and also ≈ 16 in ARM. The easiest way to understand a
register is to think of it as an untyped temporary variable. Imagine if you were
working with a high-level PL and could only use eight 32-bit (or 64-bit) variables.
Yet a lot can be done using just these!

One might wonder why there needs to be a difference between machine code and
a PL. The answer lies in the fact that humans and CPUs are not alike—it is much
easier for humans to use a high-level PL like C/C++, Java, or Python, but it is easier
for a CPU to use a much lower level of abstraction. Perhaps it would be possible to
invent a CPU that can execute high-level PL code, but it would be many times more
complex than the CPUs we know of today. In a similar fashion, it is very inconvenient
for humans to write in assembly language, due to it being so low-level and difficult

2General Purpose Registers

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

3
to write in without making a huge number of annoying mistakes. The program that
converts the high-level PL code into assembly is called a compiler. 3.

A couple of words about different ISAs

The x86 ISA has always had variable-length instructions, so when the 64-bit era
came, the x64 extensions did not impact the ISA very significantly. In fact, the x86
ISA still contains a lot of instructions that first appeared in 16-bit 8086 CPU, yet are
still found in the CPUs of today. ARM is a RISC4 CPU designed with constant-length
instructions in mind, which had some advantages in the past. In the very begin-
ning, all ARM instructions were encoded in 4 bytes5. This is now referred to as “ARM
mode”. Then they realized it wasn’t as frugal as they first imagined. In fact, the most
common CPU instructions6 in real world applications can be encoded using less infor-
mation. They therefore added another ISA, called Thumb, in which each instruction
was encoded in just 2 bytes. This is now referred to as “Thumbmode”. However, not
all ARM instructions can be encoded in just 2 bytes, so the Thumb instruction set is
somewhat limited. It is worth noting that code compiled for ARM mode and Thumb
mode can coexist within one single program. The ARM creators thought Thumb could
be extended, giving rise to Thumb-2, which appeared in ARMv7. Thumb-2 still uses
2-byte instructions, but has some new instructions which have the size of 4 bytes.
There is a common misconception that Thumb-2 is a mix of ARM and Thumb. This
is incorrect. Rather, Thumb-2 was extended to fully support all processor features
so it could compete with ARM mode—a goal that was clearly achieved, as the ma-
jority of applications for iPod/iPhone/iPad are compiled for the Thumb-2 instruction
set. (Though, admittedly, this is largely due to the fact that Xcode does this by de-
fault). Later the 64-bit ARM came out. This ISA has 4-byte instructions, and lacked
the need of any additional Thumb mode. However, the 64-bit requirements affected
the ISA, resulting in us now having three ARM instruction sets: ARM mode, Thumb
mode (including Thumb-2) and ARM64. These ISAs intersect partially, but it can be
said that they are different ISAs, rather than variations of the same one. Therefore,
we will try to add fragments of code in all three ARM ISAs in this book. There are, by
the way, many other RISC ISAs with fixed length 32-bit instructions, such as MIPS,
PowerPC and Alpha AXP.

3Old-school Russian literature also uses the term “translator”.
4Reduced Instruction Set Computing
5Fixed-length instructions are handy because one can calculate the next (or previous) instruction ad-

dress without effort. This feature will be discussed in the switch() operator (1.21.2 on page 217) section.

6e.g. MOV/PUSH/CALL/Jcc

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

4
1.2.2 Numeral Systems

Nowadays octal numbers seem to be used
for exactly one purpose—file permissions on
POSIX systems—but hexadecimal numbers
are widely used to emphasize the bit pattern
of a number over its numeric value.

Alan A. A. Donovan, Brian W. Kernighan —
The Go Programming Language

Humans have become accustomed to a decimal numeral system, probably because
almost everyone has 10 fingers. Nevertheless, the number “10” has no significant
meaning in science and mathematics. The natural numeral system in digital elec-
tronics is binary: 0 is for an absence of current in the wire, and 1 for presence. 10
in binary is 2 in decimal, 100 in binary is 4 in decimal, and so on.
If the numeral system has 10 digits, it has a radix (or base) of 10. The binary numeral
system has a radix of 2.
Important things to recall:
1) A number is a number, while a digit is a term from writing systems, and is usually
one character
2) The value of a number does not change when converted to another radix; only
the writing notation for that value has changed.

1.2.3 Converting From One Radix To Another
Positional notation is used in almost every numerical system. This means that a digit
has weight relative to where it is placed inside of the larger number. If 2 is placed
at the rightmost place, it’s 2, but if it’s placed one digit before rightmost, it’s 20.
What does 1234 stand for?
103 ⋅ 1 + 102 ⋅ 2 + 101 ⋅ 3 + 1 ⋅ 4 = 1234 or 1000 ⋅ 1 + 100 ⋅ 2 + 10 ⋅ 3 + 4 = 1234

It’s the same story for binary numbers, but the base is 2 instead of 10. What does
0b101011 stand for?
25 ⋅ 1 + 24 ⋅ 0 + 23 ⋅ 1 + 22 ⋅ 0 + 21 ⋅ 1 + 20 ⋅ 1 = 43 or 32 ⋅ 1 + 16 ⋅ 0 + 8 ⋅ 1 + 4 ⋅ 0 + 2 ⋅ 1 + 1 = 43

There is such a thing as non-positional notation, such as the Roman numeral system.
7. Perhaps, humankind switched to positional notation because it’s easier to do basic
operations (addition, multiplication, etc.) on paper by hand.
Binary numbers can be added, subtracted and so on in the very same as taught in
schools, but only 2 digits are available.
Binary numbers are bulky when represented in source code and dumps, so that is
where the hexadecimal numeral system can be useful. A hexadecimal radix uses
the digits 0..9, and also 6 Latin characters: A..F. Each hexadecimal digit takes 4 bits

7About numeric system evolution, see [Donald E. Knuth, The Art of Computer Programming, Volume 2,
3rd ed., (1997), 195–213.]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

5
or 4 binary digits, so it’s very easy to convert from binary number to hexadecimal
and back, even manually, in one’s mind.

hexadecimal binary decimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

How can one tell which radix is being used in a specific instance?
Decimal numbers are usually written as is, i.e., 1234. Some assemblers allow an
identifier on decimal radix numbers, in which the number would be written with a
”d” suffix: 1234d.
Binary numbers are sometimes prepended with the ”0b” prefix: 0b100110111 (GCC8
has a non-standard language extension for this9). There is also another way: using
a ”b” suffix, for example: 100110111b. This book tries to use the ”0b” prefix consis-
tently throughout the book for binary numbers.
Hexadecimal numbers are prependedwith ”0x” prefix in C/C++ and other PLs: 0x1234ABCD.
Alternatively, they are given a ”h” suffix: 1234ABCDh. This is common way of rep-
resenting them in assemblers and debuggers. In this convention, if the number is
started with a Latin (A..F) digit, a 0 is added at the beginning: 0ABCDEFh. There was
also convention that was popular in 8-bit home computers era, using $ prefix, like
$ABCD. The book will try to stick to ”0x” prefix throughout the book for hexadecimal
numbers.
Should one learn to convert numbers mentally? A table of 1-digit hexadecimal num-
bers can easily be memorized. As for larger numbers, it’s probably not worth tor-
menting yourself.
Perhaps the most visible hexadecimal numbers are in URL10s. This is the way that
non-Latin characters are encoded. For example: https://en.wiktionary.org/
wiki/na%C3%AFvet%C3%A9 is the URL of Wiktionary article about “naïveté” word.

8GNU Compiler Collection
9https://gcc.gnu.org/onlinedocs/gcc/Binary-constants.html
10Uniform Resource Locator

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://en.wiktionary.org/wiki/na%C3%AFvet%C3%A9
https://en.wiktionary.org/wiki/na%C3%AFvet%C3%A9
https://gcc.gnu.org/onlinedocs/gcc/Binary-constants.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

6
Octal Radix

Another numeral system heavily used in the past of computer programming is octal.
In octal there are 8 digits (0..7), and each is mapped to 3 bits, so it’s easy to convert
numbers back and forth. It has been superseded by the hexadecimal system almost
everywhere, but, surprisingly, there is a *NIX utility, used often by many people,
which takes octal numbers as argument: chmod.
As many *NIX users know, chmod argument can be a number of 3 digits. The first digit
represents the rights of the owner of the file (read, write and/or execute), the second
is the rights for the group to which the file belongs, and the third is for everyone else.
Each digit that chmod takes can be represented in binary form:

decimal binary meaning
7 111 rwx
6 110 rw-
5 101 r-x
4 100 r--
3 011 -wx
2 010 -w-
1 001 --x
0 000 ---

So each bit is mapped to a flag: read/write/execute.
The importance of chmod here is that the whole number in argument can be repre-
sented as octal number. Let’s take, for example, 644. When you run chmod 644
file, you set read/write permissions for owner, read permissions for group and
again, read permissions for everyone else. If we convert the octal number 644 to
binary, it would be 110100100, or, in groups of 3 bits, 110 100 100.
Now we see that each triplet describe permissions for owner/group/others: first is
rw-, second is r-- and third is r--.
The octal numeral system was also popular on old computers like PDP-8, because
word there could be 12, 24 or 36 bits, and these numbers are all divisible by 3, so
the octal system was natural in that environment. Nowadays, all popular computers
employ word/address sizes of 16, 32 or 64 bits, and these numbers are all divisible
by 4, so the hexadecimal system is more natural there.
The octal numeral system is supported by all standard C/C++ compilers. This is
a source of confusion sometimes, because octal numbers are encoded with a zero
prepended, for example, 0377 is 255. Sometimes, you might make a typo and write
”09” instead of 9, and the compiler would report an error. GCC might report some-
thing like this:
error: invalid digit "9" in octal constant.
Also, the octal system is somewhat popular in Java. When the IDA shows Java strings
with non-printable characters, they are encoded in the octal system instead of hex-
adecimal. The JAD Java decompiler behaves the same way.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

7
Divisibility

When you see a decimal number like 120, you can quickly deduce that it’s divisible
by 10, because the last digit is zero. In the same way, 123400 is divisible by 100,
because the two last digits are zeros.
Likewise, the hexadecimal number 0x1230 is divisible by 0x10 (or 16), 0x123000 is
divisible by 0x1000 (or 4096), etc.
The binary number 0b1000101000 is divisible by 0b1000 (8), etc.
This property can often be used to quickly realize if an address or a size of some
block in memory is padded to some boundary. For example, sections in PE11 files
are almost always started at addresses ending with 3 hexadecimal zeros: 0x41000,
0x10001000, etc. The reason behind this is the fact that almost all PE sections are
padded to a boundary of 0x1000 (4096) bytes.

Multi-Precision Arithmetic and Radix

Multi-precision arithmetic can use huge numbers, and each one may be stored in
several bytes. For example, RSA keys, both public and private, span up to 4096 bits,
and maybe even more.
In [Donald E. Knuth, The Art of Computer Programming, Volume 2, 3rd ed., (1997),
265] we find the following idea: when you store a multi-precision number in several
bytes, the whole number can be represented as having a radix of 28 = 256, and each
digit goes to the corresponding byte. Likewise, if you store a multi-precision number
in several 32-bit integer values, each digit goes to each 32-bit slot, and you may
think about this number as stored in radix of 232.

How to Pronounce Non-Decimal Numbers

Numbers in a non-decimal base are usually pronounced by digit by digit: “one-zero-
zero-one-one-...”. Words like “ten” and “thousand” are usually not pronounced, to
prevent confusion with the decimal base system.

Floating point numbers

To distinguish floating point numbers from integers, they are usually written with “.0”
at the end, like 0.0, 123.0, etc.

1.3 An Empty Function
The simplest possible function is arguably one that does nothing:

Listing 1.1: C/C++ Code
void f()
{

11Portable Executable

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

8
return;

};

Let’s compile it!

1.3.1 x86
Here’s what both the GCC and MSVC compilers produce on the x86 platform:

Listing 1.2: Optimizing GCC/MSVC (assembly output)
f:

ret

There is just one instruction: RET, which returns execution to the caller.

1.3.2 ARM

Listing 1.3: Optimizing Keil 6/2013 (ARM mode) assembly output
f PROC

BX lr
ENDP

The return address is not saved on the local stack in the ARM ISA, but rather in the
link register, so the BX LR instruction causes execution to jump to that address—
effectively returning execution to the caller.

1.3.3 MIPS
There are two naming conventions used in the world of MIPS when naming registers:
by number (from $0 to $31) or by pseudo name ($V0, $A0, etc.).
The GCC assembly output below lists registers by number:

Listing 1.4: Optimizing GCC 4.4.5 (assembly output)
j $31
nop

…while IDA12 does it by pseudo name:

Listing 1.5: Optimizing GCC 4.4.5 (IDA)
j $ra
nop

The first instruction is the jump instruction (J or JR) which returns the execution flow
to the caller, jumping to the address in the $31 (or $RA) register.
12 Interactive Disassembler and Debugger developed by Hex-Rays

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://hex-rays.com/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

9
This is the register analogous to LR13 in ARM.
The second instruction is NOP14, which does nothing. We can ignore it for now.

A Note About MIPS Instructions and Register Names

Register and instruction names in the world of MIPS are traditionally written in low-
ercase. However, for the sake of consistency, this book will stick to using uppercase
letters, as it is the convention followed by all the other ISAs featured in this book.

1.3.4 Empty Functions in Practice
Despite the fact empty functions seem useless, they are quite frequent in low-level
code.
First of all, they are quite popular in debugging functions, like this one:

Listing 1.6: C/C++ code
void dbg_print (const char *fmt, ...)
{
#ifdef _DEBUG

// open log file
// write to log file
// close log file

#endif
};

void some_function()
{

...

dbg_print ("we did something\n");

...
};

In a non-debug build (as in a “release”), _DEBUG is not defined, so the dbg_print()
function, despite still being called during execution, will be empty.
Similarly, a popular method of software protection is to make one build for legal cus-
tomers, and another demo build. A demo build can lack of some important functions,
as with this example:

Listing 1.7: C/C++ code
void save_file ()
{
#ifndef DEMO

// a real saving code
#endif
};

13Link Register
14No Operation

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

10
The save_file() function could be called when the user clicks File->Save on the
menu. The demo version might be delivered with this menu item disabled, but even
if a software cracker would enable it, only an empty function with no useful code will
be called.
IDA marks such functions with names like nullsub_00, nullsub_01, etc.

1.4 Returning Values
Another simple function is the one that simply returns a constant value:

Listing 1.8: C/C++ Code
int f()
{

return 123;
};

Let’s compile it.

1.4.1 x86
Here’s what both the GCC and MSVC compilers produce (with optimization) on the
x86 platform:

Listing 1.9: Optimizing GCC/MSVC (assembly output)
f:

mov eax, 123
ret

There are just two instructions: the first places the value 123 into the EAX register,
which is used by convention for storing the return value, and the second one is RET,
which returns execution to the caller.
The caller will take the result from the EAX register.

1.4.2 ARM
There are a few differences on the ARM platform:

Listing 1.10: Optimizing Keil 6/2013 (ARM mode) ASM Output
f PROC

MOV r0,#0x7b ; 123
BX lr
ENDP

ARM uses the register R0 for returning the results of functions, so 123 is copied into
R0.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

11
It is worth noting that MOV is a misleading name for the instruction in both the x86
and ARM ISAs.
The data is not in fact moved, but copied.

1.4.3 MIPS
The GCC assembly output below lists registers by number:

Listing 1.11: Optimizing GCC 4.4.5 (assembly output)
j $31
li $2,123 # 0x7b

…while IDA does it by their pseudo names:

Listing 1.12: Optimizing GCC 4.4.5 (IDA)
jr $ra
li $v0, 0x7B

The $2 (or $V0) register is used to store the function’s return value. LI stands for
“Load Immediate” and is the MIPS equivalent to MOV.
The other instruction is the jump instruction (J or JR) which returns the execution flow
to the caller.
You might be wondering why the positions of the load instruction (LI) and the jump
instruction (J or JR) are swapped. This is due to a RISC feature called “branch delay
slot”.
The reason this happens is a quirk in the architecture of some RISC ISAs and isn’t im-
portant for our purposes—we must simply keep in mind that in MIPS, the instruction
following a jump or branch instruction is executed before the jump/branch instruc-
tion itself.
As a consequence, branch instructions always swap places with the instruction exe-
cuted immediately preceding it.
In practice, functions which merely return 1 (true) or 0 (false) are very common.
The smallest ever of the standard UNIX utilities, /bin/true and /bin/false return 0 and 1
respectively, as an exit code. (Zero as an exit code usually means success, non-zero
means error.)

1.5 Hello, world!
Let’s use the famous example from the book [Brian W. Kernighan, Dennis M. Ritchie,
The C Programming Language, 2ed, (1988)]:

Listing 1.13: C/C++ Code
#include <stdio.h>

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

12
int main()
{

printf("hello, world\n");
return 0;

}

1.5.1 x86
MSVC

Let’s compile it in MSVC 2010:
cl 1.cpp /Fa1.asm

(The /Fa option instructs the compiler to generate an assembly listing file)

Listing 1.14: MSVC 2010
CONST SEGMENT
$SG3830 DB 'hello, world', 0AH, 00H
CONST ENDS
PUBLIC _main
EXTRN _printf:PROC
; Function compile flags: /Odtp
_TEXT SEGMENT
_main PROC

push ebp
mov ebp, esp
push OFFSET $SG3830
call _printf
add esp, 4
xor eax, eax
pop ebp
ret 0

_main ENDP
_TEXT ENDS

MSVC produces assembly listings in Intel-syntax. The differences between Intel-
syntax and AT&T-syntax will be discussed in 1.5.1 on page 15.
The compiler generated the file, 1.obj, which is to be linked into 1.exe. In our case,
the file contains two segments: CONST (for data constants) and _TEXT (for code).
The string hello, world in C/C++ has type const char[][Bjarne Stroustrup, The
C++ Programming Language, 4th Edition, (2013)p176, 7.3.2], but it does not have
its own name. The compiler needs to deal with the string somehow, so it defines the
internal name $SG3830 for it.
That is why the example may be rewritten as follows:
#include <stdio.h>

const char $SG3830[]="hello, world\n";

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

13

int main()
{

printf($SG3830);
return 0;

}

Let’s go back to the assembly listing. As we can see, the string is terminated by a
zero byte, which is standard for C/C++ strings. More about C/C++ strings: 5.4.1 on
page 895.
In the code segment, _TEXT, there is only one function so far: main(). The func-
tion main() starts with prologue code and ends with epilogue code (like almost any
function) 15.
After the function prologue we see the call to the printf() function:
CALL _printf. Before the call, a string address (or a pointer to it) containing our
greeting is placed on the stack with the help of the PUSH instruction.
When the printf() function returns the control to the main() function, the string
address (or a pointer to it) is still on the stack. Since we do not need it anymore, the
stack pointer (the ESP register) needs to be corrected.
ADD ESP, 4 means add 4 to the ESP register value.
Why 4? Since this is a 32-bit program, we need exactly 4 bytes for address pass-
ing through the stack. If it was x64 code we would need 8 bytes. ADD ESP, 4 is
effectively equivalent to POP register but without using any register16.
For the same purpose, some compilers (like the Intel C++ Compiler) may emit POP
ECX instead of ADD (e.g., such a pattern can be observed in the Oracle RDBMS code
as it is compiled with the Intel C++ compiler). This instruction has almost the same
effect but the ECX register contents will be overwritten. The Intel C++ compiler
supposedly uses POP ECX since this instruction’s opcode is shorter than ADD ESP, x
(1 byte for POP against 3 for ADD).
Here is an example of using POP instead of ADD from Oracle RDBMS:

Listing 1.15: Oracle RDBMS 10.2 Linux (app.o file)
.text:0800029A push ebx
.text:0800029B call qksfroChild
.text:080002A0 pop ecx

However, MSVC can do the same.

Listing 1.16: MineSweeper from Windows 7 32-bit
.text:0102106F push 0
.text:01021071 call ds:time
.text:01021077 pop ecx

15You can read more about it in the section about function prologues and epilogues (1.6 on page 39).
16CPU flags, however, are modified

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

14
After calling printf(), the original C/C++ code contains the statement return 0—
return 0 as the result of the main() function.
In the generated code this is implemented by the instruction XOR EAX, EAX.
XOR is in fact just “eXclusive OR”17 but the compilers often use it instead of MOV EAX,
0—again because it is a slightly shorter opcode (2 bytes for XOR against 5 for MOV).
Some compilers emit SUB EAX, EAX, which means SUBtract the value in the EAX
from the value in EAX. That in any case will results in zero.
The last instruction RET returns the control to the caller. Usually, this is C/C++ CRT18
code which in turn returns control to the OS.

GCC

Now let’s try to compile the same C/C++ code in the GCC 4.4.1 compiler in Linux:
gcc 1.c -o 1. Next, with the assistance of the IDA disassembler, let’s see how the
main() function was created. IDA, like MSVC, uses Intel-syntax19.

Listing 1.17: code in IDA
main proc near

var_10 = dword ptr -10h

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 10h
mov eax, offset aHelloWorld ; "hello, world\n"
mov [esp+10h+var_10], eax
call _printf
mov eax, 0
leave
retn

main endp

The result is almost the same. The address of the hello, world string (stored in
the data segment) is loaded in the EAX register first, and then saved onto the stack.
In addition, the function prologue has AND ESP, 0FFFFFFF0h—this instruction aligns
the ESP register value on a 16-byte boundary. This results in all values in the stack
being aligned the same way (The CPU performs better if the values it is dealing with
are located in memory at addresses aligned on a 4-byte or 16-byte boundary).
SUB ESP, 10h allocates 16 bytes on the stack. Although, as we can see hereafter,
only 4 are necessary here.
This is because the size of the allocated stack is also aligned on a 16-byte boundary.
17Wikipedia
18C Runtime library
19We could also have GCC produce assembly listings in Intel-syntax by applying the options -S

-masm=intel.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://en.wikipedia.org/wiki/Exclusive_or
https://yurichev.com/contact.html
https://yurichev.com/contact.html

15
The string address (or a pointer to the string) is then stored directly onto the stack
without using the PUSH instruction. var_10 —is a local variable and is also an argu-
ment for printf(). Read about it below.
Then the printf() function is called.
Unlike MSVC, when GCC is compiling without optimization turned on, it emits MOV
EAX, 0 instead of a shorter opcode.
The last instruction, LEAVE —is the equivalent of the MOV ESP, EBP and POP EBP
instruction pair —in other words, this instruction sets the stack pointer (ESP) back
and restores the EBP register to its initial state. This is necessary since we modified
these register values (ESP and EBP) at the beginning of the function (by executing
MOV EBP, ESP / AND ESP, …).

GCC: AT&T syntax

Let’s see how this can be represented in assembly language AT&T syntax. This
syntax is much more popular in the UNIX-world.

Listing 1.18: let’s compile in GCC 4.7.3
gcc -S 1_1.c

We get this:

Listing 1.19: GCC 4.7.3
.file "1_1.c"
.section .rodata

.LC0:
.string "hello, world\n"
.text
.globl main
.type main, @function

main:
.LFB0:

.cfi_startproc
pushl %ebp
.cfi_def_cfa_offset 8
.cfi_offset 5, -8
movl %esp, %ebp
.cfi_def_cfa_register 5
andl $-16, %esp
subl $16, %esp
movl $.LC0, (%esp)
call printf
movl $0, %eax
leave
.cfi_restore 5
.cfi_def_cfa 4, 4
ret
.cfi_endproc

.LFE0:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

16
.size main, .-main
.ident "GCC: (Ubuntu/Linaro 4.7.3-1ubuntu1) 4.7.3"
.section .note.GNU-stack,"",@progbits

The listing contains many macros (the parts that begin with a dot). These are not
interesting for us at the moment.
For now, for the sake of simplicity, we can ignore them (except the .string macro
which encodes a null-terminated character sequence just like a C-string). Then we’ll
see this 20:

Listing 1.20: GCC 4.7.3
.LC0:

.string "hello, world\n"
main:

pushl %ebp
movl %esp, %ebp
andl $-16, %esp
subl $16, %esp
movl $.LC0, (%esp)
call printf
movl $0, %eax
leave
ret

Some of the major differences between Intel and AT&T syntax are:
• Source and destination operands are written in opposite order.
In Intel-syntax: <instruction> <destination operand> <source operand>.
In AT&T syntax: <instruction> <source operand> <destination operand>.
Here is an easy way to memorize the difference: when you deal with Intel-
syntax, you can imagine that there is an equality sign (=) between operands
and when you deal with AT&T-syntax imagine there is a right arrow (→) 21.

• AT&T: Before register names, a percent sign must be written (%) and before
numbers a dollar sign ($). Parentheses are used instead of brackets.

• AT&T: A suffix is added to instructions to define the operand size:
– q — quad (64 bits)
– l — long (32 bits)
– w — word (16 bits)
– b — byte (8 bits)

20This GCC option can be used to eliminate “unnecessary” macros: -fno-asynchronous-unwind-tables
21By the way, in some C standard functions (e.g., memcpy(), strcpy()) the arguments are listed in the
same way as in Intel-syntax: first the pointer to the destination memory block, and then the pointer to
the source memory block.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

17
To go back to the compiled result: it is almost identical to what was displayed by IDA.
There is one subtle difference: 0FFFFFFF0h is presented as $-16. It’s the same thing:
16 in the decimal system is 0x10 in hexadecimal. -0x10 is equal to 0xFFFFFFF0 (for
a 32-bit data type).
One more thing: the return value is set to 0 by using the usual MOV, not XOR. MOV just
loads a value to a register. Its name is a misnomer (as the data is not moved but
rather copied). In other architectures, this instruction is named “LOAD” or “STORE”
or something similar.

String patching (Win32)

We can easily find the “hello, world” string in the executable file using Hiew:

Figure 1.1: Hiew

And we can try to translate our message into Spanish:

Figure 1.2: Hiew

The Spanish text is one byte shorter than English, so we also added the 0x0A byte
at the end (\n) with a zero byte.
It works.
What if we want to insert a longer message? There are some zero bytes after original
English text. It’s hard to say if they can be overwritten: theymay be used somewhere

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

18
in CRT code, or maybe not. Anyway, only overwrite them if you really know what
you’re doing.

String patching (Linux x64)

Let’s try to patch a Linux x64 executable using rada.re:

Listing 1.21: rada.re session
dennis@bigbox ~/tmp % gcc hw.c

dennis@bigbox ~/tmp % radare2 a.out
-- SHALL WE PLAY A GAME?
[0x00400430]> / hello
Searching 5 bytes from 0x00400000 to 0x00601040: 68 65 6c 6c 6f
Searching 5 bytes in [0x400000-0x601040]
hits: 1
0x004005c4 hit0_0 .HHhello, world;0.

[0x00400430]> s 0x004005c4

[0x004005c4]> px
- offset - 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
0x004005c4 6865 6c6c 6f2c 2077 6f72 6c64 0000 0000 hello, world....
0x004005d4 011b 033b 3000 0000 0500 0000 1cfe ffff ...;0...........
0x004005e4 7c00 0000 5cfe ffff 4c00 0000 52ff ffff |...\...L...R...
0x004005f4 a400 0000 6cff ffff c400 0000 dcff ffffl...........
0x00400604 0c01 0000 1400 0000 0000 0000 017a 5200zR.
0x00400614 0178 1001 1b0c 0708 9001 0710 1400 0000 .x..............
0x00400624 1c00 0000 08fe ffff 2a00 0000 0000 0000*.......
0x00400634 0000 0000 1400 0000 0000 0000 017a 5200zR.
0x00400644 0178 1001 1b0c 0708 9001 0000 2400 0000 .x..........$...
0x00400654 1c00 0000 98fd ffff 3000 0000 000e 10460......F
0x00400664 0e18 4a0f 0b77 0880 003f 1a3b 2a33 2422 ..J..w...?.;*3$"
0x00400674 0000 0000 1c00 0000 4400 0000 a6fe ffffD.......
0x00400684 1500 0000 0041 0e10 8602 430d 0650 0c07A....C..P..
0x00400694 0800 0000 4400 0000 6400 0000 a0fe ffffD...d.......
0x004006a4 6500 0000 0042 0e10 8f02 420e 188e 0345 e....B....B....E
0x004006b4 0e20 8d04 420e 288c 0548 0e30 8606 480e . ..B.(..H.0..H.

[0x004005c4]> oo+
File a.out reopened in read-write mode

[0x004005c4]> w hola, mundo\x00

[0x004005c4]> q

dennis@bigbox ~/tmp % ./a.out
hola, mundo

Here’s what’s going on: I searched for the “hello” string using the / command, then
I set the cursor (seek, in rada.re terms) to that address. Then I want to be sure that
this is really that place: px dumps bytes there. oo+ switches rada.re to read-write

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

19
mode. w writes an ASCII string at the current seek. Note the \00 at the end—this is
a zero byte. q quits.

This is a real story of software cracking

An image processing software, when not registered, added watermarks, like “This im-
age was processed by evaluation version of [software name]”, across a picture. We
tried at random: we found that string in the executable file and put spaces instead of
it. Watermarks disappeared. Technically speaking, they continued to appear. With
the help of Qt functions, the watermark was still added to the resulting image. But
adding spaces didn’t alter the image itself...

Software localization of MS-DOS era

This method was a common way to translate MS-DOS software to Russian language
back to 1980’s and 1990’s. This technique is available even for those who are not
aware of machine code and executable file formats. The new string shouldn’t be
bigger than the old one, because there’s a risk of overwriting another value or code
there. Russian words and sentences are usually slightly longer than its English coun-
terparts, so that is why localized software has a lot of weird acronyms and hardly
readable abbreviations.

Figure 1.3: Localized Norton Commander 5.51

Perhaps this also happened to other languages during that era, in other countries.
As for Delphi strings, the string’s size must also be corrected, if needed.

1.5.2 x86-64
MSVC: x86-64

Let’s also try 64-bit MSVC:

Listing 1.22: MSVC 2012 x64
$SG2989 DB 'hello, world', 0AH, 00H

main PROC
sub rsp, 40
lea rcx, OFFSET FLAT:$SG2989
call printf
xor eax, eax
add rsp, 40
ret 0

main ENDP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

20
In x86-64, all registers were extended to 64-bit, and now their names have an R-
prefix. In order to use the stack less often (in other words, to access external memo-
ry/cache less often), there is a popular way to pass function arguments via registers
(fastcall) 6.1.3 on page 934. I.e., a part of the function’s arguments are passed in
registers, and the rest—via the stack. In Win64, 4 function arguments are passed
in the RCX, RDX, R8, and R9 registers. That is what we see here: a pointer to the
string for printf() is now passed not in the stack, but rather in the RCX register.
The pointers are 64-bit now, so they are passed in the 64-bit registers (which have
the R- prefix). However, for backward compatibility, it is still possible to access the
32-bit parts, using the E- prefix. This is how the RAX/EAX/AX/AL register looks like in
x86-64:

Byte number:
7th 6th 5th 4th 3rd 2nd 1st 0th

RAXx64
EAX

AX
AH AL

The main() function returns an int-typed value, which in C/C++ is still 32-bit, for bet-
ter backward compatibility and portability, so that is why the EAX register is cleared
at the function end (i.e., the 32-bit part of the register) instead of with RAX. There are
also 40 bytes allocated in the local stack. This is called the “shadow space”, which
we’ll talk about later: 1.14.2 on page 129.

GCC: x86-64

Let’s also try GCC in 64-bit Linux:

Listing 1.23: GCC 4.4.6 x64
.string "hello, world\n"
main:

sub rsp, 8
mov edi, OFFSET FLAT:.LC0 ; "hello, world\n"
xor eax, eax ; number of vector registers passed
call printf
xor eax, eax
add rsp, 8
ret

Linux, *BSD and Mac OS X also use a method to pass function arguments in registers.
[Michael Matz, Jan Hubicka, Andreas Jaeger, Mark Mitchell, System V Application
Binary Interface. AMD64 Architecture Processor Supplement, (2013)] 22.
The first 6 arguments are passed in the RDI, RSI, RDX, RCX, R8, and R9 registers, and
the rest—via the stack.
So the pointer to the string is passed in EDI (the 32-bit part of the register). Why
doesn’t it use the 64-bit part, RDI?
22Also available as https://software.intel.com/sites/default/files/article/402129/

mpx-linux64-abi.pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

21
It is important to keep in mind that all MOV instructions in 64-bit mode that write
something into the lower 32-bit register part also clear the higher 32-bits (as stated
in Intel manuals: 12.1.4 on page 1282).
I.e., the MOV EAX, 011223344h writes a value into RAX correctly, since the higher
bits will be cleared.
If we open the compiled object file (.o), we can also see all the instructions’ opcodes
23:

Listing 1.24: GCC 4.4.6 x64
.text:00000000004004D0 main proc near
.text:00000000004004D0 48 83 EC 08 sub rsp, 8
.text:00000000004004D4 BF E8 05 40 00 mov edi, offset format ; "hello,

world\n"
.text:00000000004004D9 31 C0 xor eax, eax
.text:00000000004004DB E8 D8 FE FF FF call _printf
.text:00000000004004E0 31 C0 xor eax, eax
.text:00000000004004E2 48 83 C4 08 add rsp, 8
.text:00000000004004E6 C3 retn
.text:00000000004004E6 main endp

As we can see, the instruction that writes into EDI at 0x4004D4 occupies 5 bytes.
The same instruction writing a 64-bit value into RDI occupies 7 bytes. Apparently,
GCC is trying to save some space. Besides, it can be sure that the data segment
containing the string will not be allocated at the addresses higher than 4GiB.
We also see that the EAX register has been cleared before the printf() function call.
This is done because according to ABI24 standard mentioned above, the number of
used vector registers is to be passed in EAX in *NIX systems on x86-64.

Address patching (Win64)

If our example was compiled in MSVC 2013 using /MD switch (meaning a smaller
executable due to MSVCR*.DLL file linkage), the main() function comes first, and
can be easily found:
23This must be enabled in Options → Disassembly → Number of opcode bytes
24Application Binary Interface

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

22

Figure 1.4: Hiew

As an experiment, we can increment address by 1:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

23

Figure 1.5: Hiew

Hiew shows “ello, world”. And when we run the patched executable, this very string
is printed.

Pick another string from binary image (Linux x64)

The binary file I’ve got when I compile our example using GCC 5.4.0 on Linux x64 box
has many other text strings. They are mostly imported function names and library
names.
Run objdump to get the contents of all sections of the compiled file:
$ objdump -s a.out

a.out: file format elf64-x86-64

Contents of section .interp:
400238 2f6c6962 36342f6c 642d6c69 6e75782d /lib64/ld-linux-
400248 7838362d 36342e73 6f2e3200 x86-64.so.2.

Contents of section .note.ABI-tag:
400254 04000000 10000000 01000000 474e5500GNU.
400264 00000000 02000000 06000000 20000000

Contents of section .note.gnu.build-id:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

24
400274 04000000 14000000 03000000 474e5500GNU.
400284 fe461178 5bb710b4 bbf2aca8 5ec1ec10 .F.x[.......^...
400294 cf3f7ae4 .?z.

...

It’s not a problem to pass address of the text string “/lib64/ld-linux-x86-64.so.2” to
printf():
#include <stdio.h>

int main()
{

printf(0x400238);
return 0;

}

It’s hard to believe, but this code prints the aforementioned string.
If you would change the address to 0x400260, the “GNU” string would be printed.
This address is true for my specific GCC version, GNU toolset, etc. On your system,
the executable may be slightly different, and all addresses will also be different. Also,
adding/removing code to/from this source code will probably shift all addresses back
or forward.

1.5.3 ARM
For my experiments with ARM processors, several compilers were used:
• Popular in the embedded area: Keil Release 6/2013.
• Apple Xcode 4.6.3 IDE with the LLVM-GCC 4.2 compiler 25.
• GCC 4.9 (Linaro) (for ARM64), available as win32-executables at http://www.
linaro.org/projects/armv8/.

32-bit ARM code is used (including Thumb and Thumb-2 modes) in all cases in this
book, if not mentioned otherwise. When we talk about 64-bit ARM here, we call it
ARM64.

Non-optimizing Keil 6/2013 (ARM mode)

Let’s start by compiling our example in Keil:
armcc.exe --arm --c90 -O0 1.c

The armcc compiler produces assembly listings in Intel-syntax, but it has high-level
ARM-processor related macros 26, but it is more important for us to see the instruc-
tions “as is” so let’s see the compiled result in IDA.
25It is indeed so: Apple Xcode 4.6.3 uses open-source GCC as front-end compiler and LLVM code
generator
26e.g. ARM mode lacks PUSH/POP instructions

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.linaro.org/projects/armv8/
http://www.linaro.org/projects/armv8/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

25
Listing 1.25: Non-optimizing Keil 6/2013 (ARM mode) IDA

.text:00000000 main

.text:00000000 10 40 2D E9 STMFD SP!, {R4,LR}

.text:00000004 1E 0E 8F E2 ADR R0, aHelloWorld ; "hello, world"

.text:00000008 15 19 00 EB BL __2printf

.text:0000000C 00 00 A0 E3 MOV R0, #0

.text:00000010 10 80 BD E8 LDMFD SP!, {R4,PC}

.text:000001EC 68 65 6C 6C+aHelloWorld DCB "hello, world",0 ; DATA XREF:
main+4

In the example, we can easily see each instruction has a size of 4 bytes. Indeed, we
compiled our code for ARM mode, not for Thumb.
The very first instruction, STMFD SP!, {R4,LR}27, works as an x86 PUSH instruction,
writing the values of two registers (R4 and LR) into the stack.
Indeed, in the output listing from the armcc compiler, for the sake of simplification,
actually shows the PUSH {r4,lr} instruction. But that is not quite precise. The PUSH
instruction is only available in Thumbmode. So, to make things less confusing, we’re
doing this in IDA.
This instruction first decrements the SP29 so it points to the place in the stack that
is free for new entries, then it saves the values of the R4 and LR registers at the
address stored in the modified SP.
This instruction (like the PUSH instruction in Thumb mode) is able to save several
register values at once which can be very useful. By the way, this has no equivalent
in x86. It can also be noted that the STMFD instruction is a generalization of the PUSH
instruction (extending its features), since it can work with any register, not just with
SP. In other words, STMFD may be used for storing a set of registers at the specified
memory address.
The ADR R0, aHelloWorld instruction adds or subtracts the value in the PC30 reg-
ister to the offset where the hello, world string is located. How is the PC register
used here, one might ask? This is called “position-independent code”31.
Such code can be executed at a non-fixed address in memory. In other words, this
is PC-relative addressing. The ADR instruction takes into account the difference be-
tween the address of this instruction and the address where the string is located.
This difference (offset) is always to be the same, no matter at what address our
code is loaded by the OS. That’s why all we need is to add the address of the current
instruction (from PC) in order to get the absolute memory address of our C-string.
BL __2printf32 instruction calls the printf() function. Here’s how this instruction
works:
• store the address following the BL instruction (0xC) into the LR;

27STMFD28
29stack pointer. SP/ESP/RSP in x86/x64. SP in ARM.
30Program Counter. IP/EIP/RIP in x86/64. PC in ARM.
31Read more about it in relevant section (6.4.1 on page 952)
32Branch with Link

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

26
• then pass the control to printf() by writing its address into the PC register.

When printf() finishes its execution it must have information about where it needs
to return the control to. That’s why each function passes control to the address
stored in the LR register.
That is a difference between “pure” RISC-processors like ARM and CISC33-processors
like x86, where the return address is usually stored on the stack. Read more about
this in next section (1.9 on page 40).
By the way, an absolute 32-bit address or offset cannot be encoded in the 32-bit BL
instruction because it only has space for 24 bits. As we may recall, all ARM-mode
instructions have a size of 4 bytes (32 bits). Hence, they can only be located on 4-
byte boundary addresses. This implies that the last 2 bits of the instruction address
(which are always zero bits) may be omitted. In summary, we have 26 bits for offset
encoding. This is enough to encode current_PC ± ≈ 32M .
Next, the MOV R0, #034 instruction just writes 0 into the R0 register. That’s because
our C-function returns 0 and the return value is to be placed in the R0 register.
The last instruction LDMFD SP!, R4,PC35. It loads values from the stack (or any other
memory place) in order to save them into R4 and PC, and increments the stack
pointer SP. It works like POP here.
N.B. The very first instruction STMFD saved the R4 and LR registers pair on the stack,
but R4 and PC are restored during the LDMFD execution.
As we already know, the address of the place where each functionmust return control
to is usually saved in the LR register. The very first instruction saves its value in the
stack because the same register will be used by our main() function when calling
printf(). In the function’s end, this value can be written directly to the PC register,
thus passing control to where our function has been called.
Since main() is usually the primary function in C/C++, the control will be returned
to the OS loader or to a point in a CRT, or something like that.
All that allows omitting the BX LR instruction at the end of the function.
DCB is an assembly language directive defining an array of bytes or ASCII strings,
akin to the DB directive in the x86-assembly language.

Non-optimizing Keil 6/2013 (Thumb mode)

Let’s compile the same example using Keil in Thumb mode:
armcc.exe --thumb --c90 -O0 1.c

We are getting (in IDA):

Listing 1.26: Non-optimizing Keil 6/2013 (Thumb mode) + IDA
.text:00000000 main

33Complex Instruction Set Computing
34Meaning MOVe
35LDMFD36 is an inverse instruction of STMFD

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

27
.text:00000000 10 B5 PUSH {R4,LR}
.text:00000002 C0 A0 ADR R0, aHelloWorld ; "hello, world"
.text:00000004 06 F0 2E F9 BL __2printf
.text:00000008 00 20 MOVS R0, #0
.text:0000000A 10 BD POP {R4,PC}

.text:00000304 68 65 6C 6C+aHelloWorld DCB "hello, world",0 ; DATA XREF:
main+2

We can easily spot the 2-byte (16-bit) opcodes. This is, as was already noted, Thumb.
The BL instruction, however, consists of two 16-bit instructions. This is because it is
impossible to load an offset for the printf() function while using the small space
in one 16-bit opcode. Therefore, the first 16-bit instruction loads the higher 10 bits
of the offset and the second instruction loads the lower 11 bits of the offset.
As was noted, all instructions in Thumb mode have a size of 2 bytes (or 16 bits). This
implies it is impossible for a Thumb-instruction to be at an odd address whatsoever.
Given the above, the last address bit may be omitted while encoding instructions.
In summary, the BL Thumb-instruction can encode an address in current_PC ± ≈ 2M .
As for the other instructions in the function: PUSH and POP work here just like the
described STMFD/LDMFD only the SP register is not mentioned explicitly here. ADR
works just like in the previous example. MOVS writes 0 into the R0 register in order to
return zero.

Optimizing Xcode 4.6.3 (LLVM) (ARM mode)

Xcode 4.6.3 without optimization turned on produces a lot of redundant code so we’ll
study optimized output, where the instruction count is as small as possible, setting
the compiler switch -O3.

Listing 1.27: Optimizing Xcode 4.6.3 (LLVM) (ARM mode)
__text:000028C4 _hello_world
__text:000028C4 80 40 2D E9 STMFD SP!, {R7,LR}
__text:000028C8 86 06 01 E3 MOV R0, #0x1686
__text:000028CC 0D 70 A0 E1 MOV R7, SP
__text:000028D0 00 00 40 E3 MOVT R0, #0
__text:000028D4 00 00 8F E0 ADD R0, PC, R0
__text:000028D8 C3 05 00 EB BL _puts
__text:000028DC 00 00 A0 E3 MOV R0, #0
__text:000028E0 80 80 BD E8 LDMFD SP!, {R7,PC}

__cstring:00003F62 48 65 6C 6C+aHelloWorld_0 DCB "Hello world!",0

The instructions STMFD and LDMFD are already familiar to us.
The MOV instruction just writes the number 0x1686 into the R0 register. This is the
offset pointing to the “Hello world!” string.
The R7 register (as it is standardized in [iOS ABI Function Call Guide, (2010)]37) is a
37Also available as http://developer.apple.com/library/ios/documentation/Xcode/Conceptual/

iPhoneOSABIReference/iPhoneOSABIReference.pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/iPhoneOSABIReference.pdf
http://developer.apple.com/library/ios/documentation/Xcode/Conceptual/iPhoneOSABIReference/iPhoneOSABIReference.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

28
frame pointer. More on that below.
The MOVT R0, #0 (MOVe Top) instruction writes 0 into higher 16 bits of the register.
The issue here is that the generic MOV instruction in ARM mode may write only the
lower 16 bits of the register.
Keep in mind, all instruction opcodes in ARM mode are limited in size to 32 bits. Of
course, this limitation is not related to moving data between registers. That’s why
an additional instruction MOVT exists for writing into the higher bits (from 16 to 31
inclusive). Its usage here, however, is redundant because the MOV R0, #0x1686
instruction above cleared the higher part of the register. This is supposedly a short-
coming of the compiler.
The ADD R0, PC, R0 instruction adds the value in the PC to the value in the R0, to
calculate the absolute address of the “Hello world!” string. As we already know, it
is “position-independent code” so this correction is essential here.
The BL instruction calls the puts() function instead of printf().
LLVM has replaced the first printf() call with puts(). Indeed: printf() with a sole
argument is almost analogous to puts().
Almost, because the two functions are producing the same result only in case the
string does not contain printf format identifiers starting with %. In case it does, the
effect of these two functions would be different 38.
Why did the compiler replace the printf() with puts()? Presumably because
puts() is faster 39.
Because it just passes characters to stdout without comparing every one of them
with the % symbol.
Next, we see the familiar MOV R0, #0 instruction intended to set the R0 register to
0.

Optimizing Xcode 4.6.3 (LLVM) (Thumb-2 mode)

By default Xcode 4.6.3 generates code for Thumb-2 in this manner:

Listing 1.28: Optimizing Xcode 4.6.3 (LLVM) (Thumb-2 mode)
__text:00002B6C _hello_world
__text:00002B6C 80 B5 PUSH {R7,LR}
__text:00002B6E 41 F2 D8 30 MOVW R0, #0x13D8
__text:00002B72 6F 46 MOV R7, SP
__text:00002B74 C0 F2 00 00 MOVT.W R0, #0
__text:00002B78 78 44 ADD R0, PC
__text:00002B7A 01 F0 38 EA BLX _puts
__text:00002B7E 00 20 MOVS R0, #0
__text:00002B80 80 BD POP {R7,PC}

...

38It has also to be noted the puts() does not require a ‘\n’ new line symbol at the end of a string, so
we do not see it here.
39ciselant.de/projects/gcc_printf/gcc_printf.html

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.ciselant.de/projects/gcc_printf/gcc_printf.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

29

__cstring:00003E70 48 65 6C 6C 6F 20+aHelloWorld DCB "Hello world!",0xA,0

The BL and BLX instructions in Thumb mode, as we recall, are encoded as a pair of
16-bit instructions. In Thumb-2 these surrogate opcodes are extended in such a way
so that new instructions may be encoded here as 32-bit instructions.
That is obvious considering that the opcodes of the Thumb-2 instructions always
begin with 0xFx or 0xEx.
But in the IDA listing the opcode bytes are swapped because for ARM processor the
instructions are encoded as follows: last byte comes first and after that comes the
first one (for Thumb and Thumb-2 modes) or for instructions in ARM mode the fourth
byte comes first, then the third, then the second and finally the first (due to different
endianness).
So that is how bytes are located in IDA listings:
• for ARM and ARM64 modes: 4-3-2-1;
• for Thumb mode: 2-1;
• for 16-bit instructions pair in Thumb-2 mode: 2-1-4-3.

So as we can see, the MOVW, MOVT.W and BLX instructions begin with 0xFx.
One of the Thumb-2 instructions is MOVW R0, #0x13D8 —it stores a 16-bit value into
the lower part of the R0 register, clearing the higher bits.
Also, MOVT.W R0, #0 works just like MOVT from the previous example only it works
in Thumb-2.
Among the other differences, the BLX instruction is used in this case instead of the
BL.
The difference is that, besides saving the RA40 in the LR register and passing control
to the puts() function, the processor is also switching from Thumb/Thumb-2 mode
to ARM mode (or back).
This instruction is placed here since the instruction to which control is passed looks
like (it is encoded in ARM mode):
__symbolstub1:00003FEC _puts ; CODE XREF: _hello_world+E
__symbolstub1:00003FEC 44 F0 9F E5 LDR PC, =__imp__puts

This is essentially a jump to the place where the address of puts() is written in the
imports’ section.
So, the observant reader may ask: why not call puts() right at the point in the code
where it is needed?
Because it is not very space-efficient.
Almost any program uses external dynamic libraries (like DLL in Windows, .so in *NIX
or .dylib in Mac OS X). The dynamic libraries contain frequently used library functions,
including the standard C-function puts().
40Return Address

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

30
In an executable binary file (Windows PE .exe, ELF or Mach-O) an import section
is present. This is a list of symbols (functions or global variables) imported from
external modules along with the names of the modules themselves.
The OS loader loads all modules it needs and, while enumerating import symbols in
the primary module, determines the correct addresses of each symbol.
In our case, __imp__puts is a 32-bit variable used by the OS loader to store the correct
address of the function in an external library. Then the LDR instruction just reads the
32-bit value from this variable and writes it into the PC register, passing control to
it.
So, in order to reduce the time the OS loader needs for completing this procedure,
it is good idea to write the address of each symbol only once, to a dedicated place.
Besides, as we have already figured out, it is impossible to load a 32-bit value into
a register while using only one instruction without a memory access.
Therefore, the optimal solution is to allocate a separate function working in ARM
mode with the sole goal of passing control to the dynamic library and then to jump
to this short one-instruction function (the so-called thunk function) from the Thumb-
code.
By the way, in the previous example (compiled for ARM mode) the control is passed
by the BL to the same thunk function. The processor mode, however, is not being
switched (hence the absence of an “X” in the instruction mnemonic).

More about thunk-functions

Thunk-functions are hard to understand, apparently, because of a misnomer. The
simplest way to understand it as adaptors or convertors of one type of jack to an-
other. For example, an adaptor allowing the insertion of a British power plug into
an American wall socket, or vice-versa. Thunk functions are also sometimes called
wrappers.
Here are a couple more descriptions of these functions:

“A piece of coding which provides an address:”, according to P. Z.
Ingerman, who invented thunks in 1961 as a way of binding actual
parameters to their formal definitions in Algol-60 procedure calls. If a
procedure is called with an expression in the place of a formal param-
eter, the compiler generates a thunk which computes the expression
and leaves the address of the result in some standard location.
…
Microsoft and IBM have both defined, in their Intel-based systems,

a “16-bit environment” (with bletcherous segment registers and 64K
address limits) and a “32-bit environment” (with flat addressing and
semi-real memory management). The two environments can both be
running on the same computer and OS (thanks to what is called, in the
Microsoft world, WOWwhich stands for Windows OnWindows). MS and

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

31

IBM have both decided that the process of getting from 16- to 32-bit
and vice versa is called a “thunk”; for Windows 95, there is even a tool,
THUNK.EXE, called a “thunk compiler”.

(The Jargon File)
Another example we can find in LAPACK library—a “Linear Algebra PACKage” written
in FORTRAN. C/C++ developers also want to use LAPACK, but it’s insane to rewrite it
to C/C++ and then maintain several versions. So there are short C functions callable
from C/C++ environment, which are, in turn, call FORTRAN functions, and do almost
anything else:
double Blas_Dot_Prod(const LaVectorDouble &dx, const LaVectorDouble &dy)
{

assert(dx.size()==dy.size());
integer n = dx.size();
integer incx = dx.inc(), incy = dy.inc();

return F77NAME(ddot)(&n, &dx(0), &incx, &dy(0), &incy);
}

Also, functions like that are called “wrappers”.

ARM64

GCC

Let’s compile the example using GCC 4.8.1 in ARM64:

Listing 1.29: Non-optimizing GCC 4.8.1 + objdump
1 0000000000400590 <main>:
2 400590: a9bf7bfd stp x29, x30, [sp,#-16]!
3 400594: 910003fd mov x29, sp
4 400598: 90000000 adrp x0, 400000 <_init-0x3b8>
5 40059c: 91192000 add x0, x0, #0x648
6 4005a0: 97ffffa0 bl 400420 <puts@plt>
7 4005a4: 52800000 mov w0, #0x0 // #0
8 4005a8: a8c17bfd ldp x29, x30, [sp],#16
9 4005ac: d65f03c0 ret
10
11 ...
12
13 Contents of section .rodata:
14 400640 01000200 00000000 48656c6c 6f210a00Hello!..

There are no Thumb and Thumb-2 modes in ARM64, only ARM, so there are 32-bit
instructions only. The Register count is doubled: .2.4 on page 1317. 64-bit registers
have X- prefixes, while its 32-bit parts—W-.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.catb.org/jargon/html/T/thunk.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

32
The STP instruction (Store Pair) saves two registers in the stack simultaneously: X29
and X30.
Of course, this instruction is able to save this pair at an arbitrary place in memory,
but the SP register is specified here, so the pair is saved in the stack.
ARM64 registers are 64-bit ones, each has a size of 8 bytes, so one needs 16 bytes
for saving two registers.
The exclamation mark (“!”) after the operand means that 16 is to be subtracted
from SP first, and only then are values from register pair to be written into the stack.
This is also called pre-index. About the difference between post-index and pre-index
read here: 1.39.2 on page 555.
Hence, in terms of the more familiar x86, the first instruction is just an analogue
to a pair of PUSH X29 and PUSH X30. X29 is used as FP41 in ARM64, and X30 as LR,
so that’s why they are saved in the function prologue and restored in the function
epilogue.
The second instruction copies SP in X29 (or FP). This is made so to set up the function
stack frame.
ADRP and ADD instructions are used to fill the address of the string “Hello!” into the
X0 register, because the first function argument is passed in this register. There are
no instructions, whatsoever, in ARM that can store a large number into a register
(because the instruction length is limited to 4 bytes, read more about it here: 1.39.3
on page 556). So several instructions must be utilized. The first instruction (ADRP)
writes the address of the 4KiB page, where the string is located, into X0, and the
second one (ADD) just adds the remainder to the address. More about that in: 1.39.4
on page 559.
0x400000 + 0x648 = 0x400648, and we see our “Hello!” C-string in the .rodata
data segment at this address.
puts() is called afterwards using the BL instruction. This was already discussed:
1.5.3 on page 28.
MOV writes 0 into W0. W0 is the lower 32 bits of the 64-bit X0 register:

High 32-bit part low 32-bit part
X0

W0
The function result is returned via X0 and main() returns 0, so that’s how the return
result is prepared. But why use the 32-bit part?
Because the int data type in ARM64, just like in x86-64, is still 32-bit, for better
compatibility.
So if a function returns a 32-bit int, only the lower 32 bits of X0 register have to be
filled.
In order to verify this, let’s change this example slightly and recompile it. Now main()
returns a 64-bit value:
41Frame Pointer

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

33
Listing 1.30: main() returning a value of uint64_t type

#include <stdio.h>
#include <stdint.h>

uint64_t main()
{

printf ("Hello!\n");
return 0;

}

The result is the same, but that’s how MOV at that line looks like now:

Listing 1.31: Non-optimizing GCC 4.8.1 + objdump
4005a4: d2800000 mov x0, #0x0 // #0

LDP (Load Pair) then restores the X29 and X30 registers.
There is no exclamation mark after the instruction: this implies that the values are
first loaded from the stack, and only then is SP increased by 16. This is called post-
index.
A new instruction appeared in ARM64: RET. It works just as BX LR, only a special hint
bit is added, informing the CPU that this is a return from a function, not just another
jump instruction, so it can execute it more optimally.
Due to the simplicity of the function, optimizing GCC generates the very same code.

1.5.4 MIPS
A word about the “global pointer”

One important MIPS concept is the “global pointer”. As we may already know, each
MIPS instruction has a size of 32 bits, so it’s impossible to embed a 32-bit address
into one instruction: a pair has to be used for this (like GCC did in our example for the
text string address loading). It’s possible, however, to load data from the address
in the range of register − 32768...register+ 32767 using one single instruction (because
16 bits of signed offset could be encoded in a single instruction). So we can allocate
some register for this purpose and also allocate a 64KiB area of most used data.
This allocated register is called a “global pointer” and it points to the middle of the
64KiB area. This area usually contains global variables and addresses of imported
functions like printf(), because the GCC developers decided that getting the ad-
dress of some function must be as fast as a single instruction execution instead of
two. In an ELF file this 64KiB area is located partly in sections .sbss (“small BSS42”)
for uninitialized data and .sdata (“small data”) for initialized data. This implies that
the programmer may choose what data he/she wants to be accessed fast and place
it into .sdata/.sbss. Some old-school programmers may recall the MS-DOS memory
model 11.7 on page 1264 or the MS-DOS memory managers like XMS/EMS where all
memory was divided in 64KiB blocks.
This concept is not unique to MIPS. At least PowerPC uses this technique as well.
42Block Started by Symbol

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

34
Optimizing GCC

Let’s consider the following example, which illustrates the “global pointer” concept.

Listing 1.32: Optimizing GCC 4.4.5 (assembly output)
1 $LC0:
2 ; \000 is zero byte in octal base:
3 .ascii "Hello, world!\012\000"
4 main:
5 ; function prologue.
6 ; set the GP:
7 lui $28,%hi(__gnu_local_gp)
8 addiu $sp,$sp,-32
9 addiu $28,$28,%lo(__gnu_local_gp)
10 ; save the RA to the local stack:
11 sw $31,28($sp)
12 ; load the address of the puts() function from the GP to $25:
13 lw $25,%call16(puts)($28)
14 ; load the address of the text string to $4 ($a0):
15 lui $4,%hi($LC0)
16 ; jump to puts(), saving the return address in the link register:
17 jalr $25
18 addiu $4,$4,%lo($LC0) ; branch delay slot
19 ; restore the RA:
20 lw $31,28($sp)
21 ; copy 0 from $zero to $v0:
22 move $2,$0
23 ; return by jumping to the RA:
24 j $31
25 ; function epilogue:
26 addiu $sp,$sp,32 ; branch delay slot + free local stack

As we see, the $GP register is set in the function prologue to point to the middle of
this area. The RA register is also saved in the local stack. puts() is also used here
instead of printf(). The address of the puts() function is loaded into $25 using LW
the instruction (“Load Word”). Then the address of the text string is loaded to $4
using LUI (“Load Upper Immediate”) and ADDIU (“Add Immediate Unsigned Word”)
instruction pair. LUI sets the high 16 bits of the register (hence “upper” word in
instruction name) and ADDIU adds the lower 16 bits of the address.
ADDIU follows JALR (haven’t you forgot branch delay slots yet?). The register $4 is
also called $A0, which is used for passing the first function argument 43.
JALR (“Jump and Link Register”) jumps to the address stored in the $25 register
(address of puts()) while saving the address of the next instruction (LW) in RA. This
is very similar to ARM. Oh, and one important thing is that the address saved in RA
is not the address of the next instruction (because it’s in a delay slot and is executed
before the jump instruction), but the address of the instruction after the next one
(after the delay slot). Hence, PC+8 is written to RA during the execution of JALR, in
our case, this is the address of the LW instruction next to ADDIU.
43The MIPS registers table is available in appendix .3.1 on page 1318

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

35
LW (“Load Word”) at line 20 restores RA from the local stack (this instruction is actu-
ally part of the function epilogue).
MOVE at line 22 copies the value from the $0 ($ZERO) register to $2 ($V0).
MIPS has a constant register, which always holds zero. Apparently, the MIPS devel-
opers came up with the idea that zero is in fact the busiest constant in the computer
programming, so let’s just use the $0 register every time zero is needed.
Another interesting fact is that MIPS lacks an instruction that transfers data between
registers. In fact, MOVE DST, SRC is ADD DST, SRC, $ZERO (DST = SRC + 0), which
does the same. Apparently, the MIPS developers wanted to have a compact opcode
table. This does not mean an actual addition happens at each MOVE instruction. Most
likely, the CPU optimizes these pseudo instructions and the ALU44 is never used.
J at line 24 jumps to the address in RA, which is effectively performing a return from
the function. ADDIU after J is in fact executed before J (remember branch delay
slots?) and is part of the function epilogue. Here is also a listing generated by IDA.
Each register here has its own pseudo name:

Listing 1.33: Optimizing GCC 4.4.5 (IDA)
1 .text:00000000 main:
2 .text:00000000
3 .text:00000000 var_10 = -0x10
4 .text:00000000 var_4 = -4
5 .text:00000000
6 ; function prologue.
7 ; set the GP:
8 .text:00000000 lui $gp, (__gnu_local_gp >> 16)
9 .text:00000004 addiu $sp, -0x20
10 .text:00000008 la $gp, (__gnu_local_gp & 0xFFFF)
11 ; save the RA to the local stack:
12 .text:0000000C sw $ra, 0x20+var_4($sp)
13 ; save the GP to the local stack:
14 ; for some reason, this instruction is missing in the GCC assembly output:
15 .text:00000010 sw $gp, 0x20+var_10($sp)
16 ; load the address of the puts() function from the GP to $t9:
17 .text:00000014 lw $t9, (puts & 0xFFFF)($gp)
18 ; form the address of the text string in $a0:
19 .text:00000018 lui $a0, ($LC0 >> 16) # "Hello, world!"
20 ; jump to puts(), saving the return address in the link register:
21 .text:0000001C jalr $t9
22 .text:00000020 la $a0, ($LC0 & 0xFFFF) # "Hello,

world!"
23 ; restore the RA:
24 .text:00000024 lw $ra, 0x20+var_4($sp)
25 ; copy 0 from $zero to $v0:
26 .text:00000028 move $v0, $zero
27 ; return by jumping to the RA:
28 .text:0000002C jr $ra
29 ; function epilogue:
30 .text:00000030 addiu $sp, 0x20

44Arithmetic Logic Unit

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

36
The instruction at line 15 saves the GP value into the local stack, and this instruction
is missing mysteriously from the GCC output listing, maybe by a GCC error 45. The
GP value has to be saved indeed, because each function can use its own 64KiB data
window. The register containing the puts() address is called $T9, because registers
prefixed with T- are called “temporaries” and their contents may not be preserved.

Non-optimizing GCC

Non-optimizing GCC is more verbose.

Listing 1.34: Non-optimizing GCC 4.4.5 (assembly output)
1 $LC0:
2 .ascii "Hello, world!\012\000"
3 main:
4 ; function prologue.
5 ; save the RA ($31) and FP in the stack:
6 addiu $sp,$sp,-32
7 sw $31,28($sp)
8 sw $fp,24($sp)
9 ; set the FP (stack frame pointer):
10 move $fp,$sp
11 ; set the GP:
12 lui $28,%hi(__gnu_local_gp)
13 addiu $28,$28,%lo(__gnu_local_gp)
14 ; load the address of the text string:
15 lui $2,%hi($LC0)
16 addiu $4,$2,%lo($LC0)
17 ; load the address of puts() using the GP:
18 lw $2,%call16(puts)($28)
19 nop
20 ; call puts():
21 move $25,$2
22 jalr $25
23 nop ; branch delay slot
24
25 ; restore the GP from the local stack:
26 lw $28,16($fp)
27 ; set register $2 ($V0) to zero:
28 move $2,$0
29 ; function epilogue.
30 ; restore the SP:
31 move $sp,$fp
32 ; restore the RA:
33 lw $31,28($sp)
34 ; restore the FP:
35 lw $fp,24($sp)
36 addiu $sp,$sp,32
37 ; jump to the RA:
38 j $31
39 nop ; branch delay slot

45Apparently, functions generating listings are not so critical to GCC users, so some unfixed cosmetic
bugs may still exist.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

37
We see here that register FP is used as a pointer to the stack frame. We also see 3
NOPs. The second and third of which follow the branch instructions. Perhaps the GCC
compiler always adds NOPs (because of branch delay slots) after branch instructions
and then, if optimization is turned on, maybe eliminates them. So in this case they
are left here.
Here is also IDA listing:

Listing 1.35: Non-optimizing GCC 4.4.5 (IDA)
1 .text:00000000 main:
2 .text:00000000
3 .text:00000000 var_10 = -0x10
4 .text:00000000 var_8 = -8
5 .text:00000000 var_4 = -4
6 .text:00000000
7 ; function prologue.
8 ; save the RA and FP in the stack:
9 .text:00000000 addiu $sp, -0x20
10 .text:00000004 sw $ra, 0x20+var_4($sp)
11 .text:00000008 sw $fp, 0x20+var_8($sp)
12 ; set the FP (stack frame pointer):
13 .text:0000000C move $fp, $sp
14 ; set the GP:
15 .text:00000010 la $gp, __gnu_local_gp
16 .text:00000018 sw $gp, 0x20+var_10($sp)
17 ; load the address of the text string:
18 .text:0000001C lui $v0, (aHelloWorld >> 16) # "Hello,

world!"
19 .text:00000020 addiu $a0, $v0, (aHelloWorld & 0xFFFF) #

"Hello, world!"
20 ; load the address of puts() using the GP:
21 .text:00000024 lw $v0, (puts & 0xFFFF)($gp)
22 .text:00000028 or $at, $zero ; NOP
23 ; call puts():
24 .text:0000002C move $t9, $v0
25 .text:00000030 jalr $t9
26 .text:00000034 or $at, $zero ; NOP
27 ; restore the GP from local stack:
28 .text:00000038 lw $gp, 0x20+var_10($fp)
29 ; set register $2 ($V0) to zero:
30 .text:0000003C move $v0, $zero
31 ; function epilogue.
32 ; restore the SP:
33 .text:00000040 move $sp, $fp
34 ; restore the RA:
35 .text:00000044 lw $ra, 0x20+var_4($sp)
36 ; restore the FP:
37 .text:00000048 lw $fp, 0x20+var_8($sp)
38 .text:0000004C addiu $sp, 0x20
39 ; jump to the RA:
40 .text:00000050 jr $ra
41 .text:00000054 or $at, $zero ; NOP

Interestingly, IDA recognized the LUI/ADDIU instructions pair and coalesced them

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

38
into one LA (“Load Address”) pseudo instruction at line 15. We may also see that
this pseudo instruction has a size of 8 bytes! This is a pseudo instruction (or macro)
because it’s not a real MIPS instruction, but rather a handy name for an instruction
pair.
Another thing is that IDA doesn’t recognize NOP instructions, so here they are at
lines 22, 26 and 41. It is OR $AT, $ZERO. Essentially, this instruction applies the OR
operation to the contents of the $AT register with zero, which is, of course, an idle
instruction. MIPS, like many other ISAs, doesn’t have a separate NOP instruction.

Role of the stack frame in this example

The address of the text string is passed in the register. Why setup a local stack
anyway? The reason for this lies in the fact that the values of registers RA and GP
have to be saved somewhere (because printf() is called), and the local stack is
used for this purpose. If this was a leaf function, it would have been possible to get
rid of the function prologue and epilogue, for example: 1.4.3 on page 11.

Optimizing GCC: load it into GDB

Listing 1.36: sample GDB session
root@debian-mips:~# gcc hw.c -O3 -o hw

root@debian-mips:~# gdb hw
GNU gdb (GDB) 7.0.1-debian
...
Reading symbols from /root/hw...(no debugging symbols found)...done.
(gdb) b main
Breakpoint 1 at 0x400654
(gdb) run
Starting program: /root/hw

Breakpoint 1, 0x00400654 in main ()
(gdb) set step-mode on
(gdb) disas
Dump of assembler code for function main:
0x00400640 <main+0>: lui gp,0x42
0x00400644 <main+4>: addiu sp,sp,-32
0x00400648 <main+8>: addiu gp,gp,-30624
0x0040064c <main+12>: sw ra,28(sp)
0x00400650 <main+16>: sw gp,16(sp)
0x00400654 <main+20>: lw t9,-32716(gp)
0x00400658 <main+24>: lui a0,0x40
0x0040065c <main+28>: jalr t9
0x00400660 <main+32>: addiu a0,a0,2080
0x00400664 <main+36>: lw ra,28(sp)
0x00400668 <main+40>: move v0,zero
0x0040066c <main+44>: jr ra
0x00400670 <main+48>: addiu sp,sp,32
End of assembler dump.
(gdb) s

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

39
0x00400658 in main ()
(gdb) s
0x0040065c in main ()
(gdb) s
0x2ab2de60 in printf () from /lib/libc.so.6
(gdb) x/s $a0
0x400820: "hello, world"
(gdb)

1.5.5 Conclusion
The main difference between x86/ARM and x64/ARM64 code is that the pointer to
the string is now 64-bits in length. Indeed, modern CPUs are now 64-bit due to both
the reduced cost of memory and the greater demand for it by modern applications.
We can add much more memory to our computers than 32-bit pointers are able to
address. As such, all pointers are now 64-bit.

1.5.6 Exercises
• http://challenges.re/48

• http://challenges.re/49

1.6 Function prologue and epilogue
A function prologue is a sequence of instructions at the start of a function. It often
looks something like the following code fragment:

push ebp
mov ebp, esp
sub esp, X

What these instruction do: save the value of the EBP register on the stack, set the
value of the EBP register to the value of the ESP and then allocate space on the stack
for local variables.
The value in the EBP stays the same over the period of the function execution and is
to be used for local variables and arguments access. For the same purpose one can
use ESP, but since it changes over time this approach is not too convenient.
The function epilogue frees the allocated space in the stack, returns the value in the
EBP register back to its initial state and returns the control flow to the caller:

mov esp, ebp
pop ebp
ret 0

Function prologues and epilogues are usually detected in disassemblers for function
delimitation.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://challenges.re/48
http://challenges.re/49
https://yurichev.com/contact.html
https://yurichev.com/contact.html

40
1.6.1 Recursion
Epilogues and prologues can negatively affect the recursion performance.
More about recursion in this book: 3.7.3 on page 600.

1.7 An Empty Function: redux
Let’s back to the empty function example 1.3 on page 7. Now that we know about
function prologue and epilogue, this is an empty function 1.1 on page 7 compiled by
non-optimizing GCC:

Listing 1.37: Non-optimizing GCC 8.2 x64 (assembly output)
f:

push rbp
mov rbp, rsp
nop
pop rbp
ret

It’s RET, but function prologue and epilogue, probably, wasn’t optimized and left as
is. NOP it seems is another compiler artifact. Anyway, the only effective instruction
here is RET. All other instructions can be removed (or optimized).

1.8 Returning Values: redux
Again, when we know about function prologue and epilogue, let’s recompile an ex-
ample returning a value (1.4 on page 10, 1.8 on page 10) using non-optimizing GCC:

Listing 1.38: Non-optimizing GCC 8.2 x64 (assembly output)
f:

push rbp
mov rbp, rsp
mov eax, 123
pop rbp
ret

Effective instructions here are MOV and RET, others are – prologue and epilogue.

1.9 Stack
The stack is one of the most fundamental data structures in computer science 46.
AKA47 LIFO48.
46wikipedia.org/wiki/Call_stack
47 Also Known As
48Last In First Out

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://en.wikipedia.org/wiki/Call_stack
https://yurichev.com/contact.html
https://yurichev.com/contact.html

41
Technically, it is just a block of memory in process memory along with the ESP or RSP
register in x86 or x64, or the SP register in ARM, as a pointer within that block.
The most frequently used stack access instructions are PUSH and POP (in both x86
and ARM Thumb-mode). PUSH subtracts from ESP/RSP/SP 4 in 32-bit mode (or 8 in
64-bit mode) and then writes the contents of its sole operand to the memory address
pointed by ESP/RSP/SP.
POP is the reverse operation: retrieve the data from the memory location that SP
points to, load it into the instruction operand (often a register) and then add 4 (or 8)
to the stack pointer.
After stack allocation, the stack pointer points at the bottom of the stack. PUSH
decreases the stack pointer and POP increases it. The bottom of the stack is actually
at the beginning of the memory allocated for the stack block. It seems strange, but
that’s the way it is.
ARM supports both descending and ascending stacks.
For example the STMFD/LDMFD, STMED49/LDMED50 instructions are intended to deal
with a descending stack (grows downwards, starting with a high address and pro-
gressing to a lower one). The STMFA51/LDMFA52, STMEA53/LDMEA54 instructions are
intended to deal with an ascending stack (grows upwards, starting from a low ad-
dress and progressing to a higher one).

1.9.1 Why does the stack grow backwards?
Intuitively, we might think that the stack grows upwards, i.e. towards higher ad-
dresses, like any other data structure.
The reason that the stack grows backward is probably historical. When the comput-
ers were big and occupied a whole room, and memory limited to only a few thousand
bytes, it was easy to divide memory into two parts, one for the heap and one for the
stack. Of course, it was unknown how big the heap and the stack would be during
program execution, so this solution was the simplest possible.

Heap Stack

Start of heap Start of stack

In [D. M. Ritchie and K. Thompson, The UNIX Time Sharing System, (1974)]55we can
read:
49Store Multiple Empty Descending (ARM instruction)
50Load Multiple Empty Descending (ARM instruction)
51Store Multiple Full Ascending (ARM instruction)
52Load Multiple Full Ascending (ARM instruction)
53Store Multiple Empty Ascending (ARM instruction)
54Load Multiple Empty Ascending (ARM instruction)
55Also available as URL

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://dl.acm.org/citation.cfm?id=361061
https://yurichev.com/contact.html
https://yurichev.com/contact.html

42

The user-core part of an image is divided into three logical seg-
ments. The program text segment begins at location 0 in the virtual
address space. During execution, this segment is write-protected and
a single copy of it is shared among all processes executing the same
program. At the first 8K byte boundary above the program text seg-
ment in the virtual address space begins a nonshared, writable data
segment, the size of which may be extended by a system call. Starting
at the highest address in the virtual address space is a stack segment,
which automatically grows downward as the hardware’s stack pointer
fluctuates.

This reminds us how some students write two lecture notes using only one notebook:
notes for the first lecture are written as usual, and notes for the second one are writ-
ten from the end of notebook, by flipping it. Notes may meet each other somewhere
in between, in case of lack of free space.

1.9.2 What is the stack used for?
Save the function’s return address

x86

When calling another function with a CALL instruction, the address of the point ex-
actly after the CALL instruction is saved to the stack and then an unconditional jump
to the address in the CALL operand is executed.
The CALL instruction is equivalent to a
PUSH address_after_call / JMP operand instruction pair.
RET fetches a value from the stack and jumps to it —that is equivalent to a POP tmp
/ JMP tmp instruction pair.
Overflowing the stack is straightforward. Just run eternal recursion:
void f()
{

f();
};

MSVC 2008 reports the problem:
c:\tmp6>cl ss.cpp /Fass.asm
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 15.00.21022.08 for ⤦

Ç 80x86
Copyright (C) Microsoft Corporation. All rights reserved.

ss.cpp
c:\tmp6\ss.cpp(4) : warning C4717: 'f' : recursive on all control paths, ⤦

Ç function will cause runtime stack overflow

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

43
…but generates the right code anyway:
?f@@YAXXZ PROC ; f
; Line 2

push ebp
mov ebp, esp

; Line 3
call ?f@@YAXXZ ; f

; Line 4
pop ebp
ret 0

?f@@YAXXZ ENDP ; f

…Also if we turn on the compiler optimization (/Ox option) the optimized code will
not overflow the stack and will work correctly56 instead:
?f@@YAXXZ PROC ; f
; Line 2
$LL3@f:
; Line 3

jmp SHORT $LL3@f
?f@@YAXXZ ENDP ; f

GCC 4.4.1 generates similar code in both cases without, however, issuing any warn-
ing about the problem.

ARM

ARM programs also use the stack for saving return addresses, but differently. As
mentioned in “Hello, world!” (1.5.3 on page 24), the RA is saved to the LR (link
register). If one needs, however, to call another function and use the LR register one
more time, its value has to be saved. Usually it is saved in the function prologue.
Often, we see instructions like PUSH R4-R7,LR along with this instruction in epilogue
POP R4-R7,PC—thus register values to be used in the function are saved in the stack,
including LR.
Nevertheless, if a function never calls any other function, in RISC terminology it is
called a leaf function57. As a consequence, leaf functions do not save the LR register
(because they don’t modify it). If such function is small and uses a small number of
registers, it may not use the stack at all. Thus, it is possible to call leaf functions
without using the stack, which can be faster than on older x86 machines because
external RAM is not used for the stack 58. This can be also useful for situations when
memory for the stack is not yet allocated or not available.
56irony here
57infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka13785.html
58Some time ago, on PDP-11 and VAX, the CALL instruction (calling other functions) was expensive; up
to 50% of execution time might be spent on it, so it was considered that having a big number of small
functions is an anti-pattern [Eric S. Raymond, The Art of UNIX Programming, (2003)Chapter 4, Part II].

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka13785.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

44
Some examples of leaf functions: 1.14.3 on page 133, 1.14.3 on page 133, 1.282
on page 395, 1.298 on page 417, 1.28.5 on page 417, 1.192 on page 264, 1.190 on
page 261, 1.209 on page 285.

Passing function arguments

The most popular way to pass parameters in x86 is called “cdecl”:
push arg3
push arg2
push arg1
call f
add esp, 12 ; 4*3=12

Callee functions get their arguments via the stack pointer.
Therefore, this is how the argument values are located in the stack before the exe-
cution of the f() function’s very first instruction:

ESP return address
ESP+4 argument#1, marked in IDA as arg_0
ESP+8 argument#2, marked in IDA as arg_4
ESP+0xC argument#3, marked in IDA as arg_8
… …

For more information on other calling conventions see also section (6.1 on page 932).
By the way, the callee function does not have any information about how many
arguments were passed. C functions with a variable number of arguments (like
printf()) can determine their number using format string specifiers (which begin
with the % symbol).
If we write something like:
printf("%d %d %d", 1234);

printf() will print 1234, and then two random numbers59, which were lying next to
it in the stack.
That’s why it is not very important how we declare the main() function: as main(),
main(int argc, char *argv[]) or main(int argc, char *argv[], char *envp[]).
In fact, the CRT-code is calling main() roughly as:
push envp
push argv
push argc
call main
...

If you declare main() as main() without arguments, they are, nevertheless, still
present in the stack, but are not used. If you declare main() as main(int argc,
59Not random in strict sense, but rather unpredictable: 1.9.4 on page 50

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

45
char *argv[]), you will be able to use first two arguments, and the third will remain
“invisible” for your function. Even more, it is possible to declare main(int argc),
and it will work.
Another related example: 6.1.10.

Alternative ways of passing arguments

It is worth noting that nothing obliges programmers to pass arguments through the
stack. It is not a requirement. One could implement any other method without using
the stack at all.
A somewhat popular way among assembly language newbies is to pass arguments
via global variables, like:

Listing 1.39: Assembly code
...

mov X, 123
mov Y, 456
call do_something

...

X dd ?
Y dd ?

do_something proc near
; take X
; take Y
; do something
retn

do_something endp

But this method has obvious drawback: do_something() function cannot call itself
recursively (or via another function), because it has to zap its own arguments. The
same story with local variables: if you hold them in global variables, the function
couldn’t call itself. And this is also not thread-safe 60. A method to store such infor-
mation in stack makes this easier—it can hold as many function arguments and/or
values, as stack space it has.
[Donald E. Knuth, The Art of Computer Programming, Volume 1, 3rd ed., (1997), 189]
mentions even weirder schemes particularly convenient on IBM System/360.
MS-DOS had a way of passing all function arguments via registers, for example, this
is piece of code for ancient 16-bit MS-DOS prints “Hello, world!”:
mov dx, msg ; address of message
mov ah, 9 ; 9 means "print string" function
int 21h ; DOS "syscall"

60Correctly implemented, each thread would have its own stack with its own arguments/variables.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

46

mov ah, 4ch ; "terminate program" function
int 21h ; DOS "syscall"

msg db 'Hello, World!\$'

This is quite similar to 6.1.3 on page 934 method. And also it’s very similar to calling
syscalls in Linux (6.3.1 on page 951) and Windows.
If an MS-DOS function is going to return a boolean value (i.e., single bit, usually
indicating error state), the CF flag was often used.
For example:
mov ah, 3ch ; create file
lea dx, filename
mov cl, 1
int 21h
jc error
mov file_handle, ax
...
error:
...

In case of an error, the CF flag is set. Otherwise, the handle of the newly created file
is returned via AX.
This method is still used by assembly language programmers. In Windows Research
Kernel source code (which is quite similar to Windows 2003) we can find something
like this (file base/ntos/ke/i386/cpu.asm):

public Get386Stepping
Get386Stepping proc

call MultiplyTest ; Perform multiplication test
jnc short G3s00 ; if nc, muttest is ok
mov ax, 0
ret

G3s00:
call Check386B0 ; Check for B0 stepping
jnc short G3s05 ; if nc, it's B1/later
mov ax, 100h ; It is B0/earlier stepping
ret

G3s05:
call Check386D1 ; Check for D1 stepping
jc short G3s10 ; if c, it is NOT D1
mov ax, 301h ; It is D1/later stepping
ret

G3s10:
mov ax, 101h ; assume it is B1 stepping
ret

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

47
...

MultiplyTest proc

xor cx,cx ; 64K times is a nice round number
mlt00: push cx

call Multiply ; does this chip's multiply work?
pop cx
jc short mltx ; if c, No, exit
loop mlt00 ; if nc, YEs, loop to try again
clc

mltx:
ret

MultiplyTest endp

Local variable storage

A function could allocate space in the stack for its local variables just by decreasing
the stack pointer towards the stack bottom.
Hence, it’s very fast, no matter how many local variables are defined. It is also not
a requirement to store local variables in the stack. You could store local variables
wherever you like, but traditionally this is how it’s done.

x86: alloca() function

It is worth noting the alloca() function 61. This function works like malloc(), but
allocates memory directly on the stack. The allocated memory chunk does not have
to be freed via a free() function call,
since the function epilogue (1.6 on page 39) returns ESP back to its initial state and
the allocated memory is just dropped. It is worth noting how alloca() is imple-
mented. In simple terms, this function just shifts ESP downwards toward the stack
bottom by the number of bytes you need, making ESP pointing to the allocated block.
Let’s try:
#ifdef __GNUC__
#include <alloca.h> // GCC
#else
#include <malloc.h> // MSVC
#endif
#include <stdio.h>

void f()
{

char *buf=(char*)alloca (600);
#ifdef __GNUC__

snprintf (buf, 600, "hi! %d, %d, %d\n", 1, 2, 3); // GCC

61In MSVC, the function implementation can be found in alloca16.asm and chkstk.asm in
C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\crt\src\intel

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

48
#else

_snprintf (buf, 600, "hi! %d, %d, %d\n", 1, 2, 3); // MSVC
#endif

puts (buf);
};

_snprintf() function works just like printf(), but instead of dumping the result
into stdout (e.g., to terminal or console), it writes it to the buf buffer. Function puts()
copies the contents of buf to stdout. Of course, these two function calls might be
replaced by one printf() call, but we have to illustrate small buffer usage.

MSVC

Let’s compile (MSVC 2010):

Listing 1.40: MSVC 2010
...

mov eax, 600 ; 00000258H
call __alloca_probe_16
mov esi, esp

push 3
push 2
push 1
push OFFSET $SG2672
push 600 ; 00000258H
push esi
call __snprintf

push esi
call _puts
add esp, 28

...

The sole alloca() argument is passed via EAX (instead of pushing it into the stack)
62.

GCC + Intel syntax

GCC 4.4.1 does the same without calling external functions:
62It is because alloca() is rather a compiler intrinsic (11.4 on page 1258) than a normal function. One of
the reasons we need a separate function instead of just a couple of instructions in the code, is because
the MSVC63 alloca() implementation also has code which reads from the memory just allocated, in order
to let the OS map physical memory to this VM64 region. After the alloca() call, ESP points to the block
of 600 bytes and we can use it as memory for the buf array.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

49
Listing 1.41: GCC 4.7.3

.LC0:
.string "hi! %d, %d, %d\n"

f:
push ebp
mov ebp, esp
push ebx
sub esp, 660
lea ebx, [esp+39]
and ebx, -16 ; align pointer by 16-byte border
mov DWORD PTR [esp], ebx ; s
mov DWORD PTR [esp+20], 3
mov DWORD PTR [esp+16], 2
mov DWORD PTR [esp+12], 1
mov DWORD PTR [esp+8], OFFSET FLAT:.LC0 ; "hi! %d, %d, %d\n"
mov DWORD PTR [esp+4], 600 ; maxlen
call _snprintf
mov DWORD PTR [esp], ebx ; s
call puts
mov ebx, DWORD PTR [ebp-4]
leave
ret

GCC + AT&T syntax

Let’s see the same code, but in AT&T syntax:

Listing 1.42: GCC 4.7.3
.LC0:

.string "hi! %d, %d, %d\n"
f:

pushl %ebp
movl %esp, %ebp
pushl %ebx
subl $660, %esp
leal 39(%esp), %ebx
andl $-16, %ebx
movl %ebx, (%esp)
movl $3, 20(%esp)
movl $2, 16(%esp)
movl $1, 12(%esp)
movl $.LC0, 8(%esp)
movl $600, 4(%esp)
call _snprintf
movl %ebx, (%esp)
call puts
movl -4(%ebp), %ebx
leave
ret

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

50
The code is the same as in the previous listing.
By the way, movl $3, 20(%esp) corresponds to mov DWORD PTR [esp+20], 3 in
Intel-syntax. In the AT&T syntax, the register+offset format of addressing memory
looks like offset(%register).

(Windows) SEH

SEH65 records are also stored on the stack (if they are present). Read more about it:
(6.5.3 on page 973).

Buffer overflow protection

More about it here (1.26.2 on page 340).

Automatic deallocation of data in stack

Perhaps the reason for storing local variables and SEH records in the stack is that
they are freed automatically upon function exit, using just one instruction to correct
the stack pointer (it is often ADD). Function arguments, as we could say, are also
deallocated automatically at the end of function. In contrast, everything stored in
the heap must be deallocated explicitly.

1.9.3 A typical stack layout
A typical stack layout in a 32-bit environment at the start of a function, before the
first instruction execution looks like this:

… …
ESP-0xC local variable#2, marked in IDA as var_8
ESP-8 local variable#1, marked in IDA as var_4
ESP-4 saved value ofEBP
ESP Return Address
ESP+4 argument#1, marked in IDA as arg_0
ESP+8 argument#2, marked in IDA as arg_4
ESP+0xC argument#3, marked in IDA as arg_8
… …

1.9.4 Noise in stack
When one says that something seems
random, what one usually means in practice
is that one cannot see any regularities in it.

Stephen Wolfram, A New Kind of Science.

Often in this book “noise” or “garbage” values in the stack or memory are mentioned.
Where do they come from? These are what has been left there after other functions’
65Structured Exception Handling

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

51
executions. Short example:
#include <stdio.h>

void f1()
{

int a=1, b=2, c=3;
};

void f2()
{

int a, b, c;
printf ("%d, %d, %d\n", a, b, c);

};

int main()
{

f1();
f2();

};

Compiling …

Listing 1.43: Non-optimizing MSVC 2010
$SG2752 DB '%d, %d, %d', 0aH, 00H

_c$ = -12 ; size = 4
_b$ = -8 ; size = 4
_a$ = -4 ; size = 4
_f1 PROC

push ebp
mov ebp, esp
sub esp, 12
mov DWORD PTR _a$[ebp], 1
mov DWORD PTR _b$[ebp], 2
mov DWORD PTR _c$[ebp], 3
mov esp, ebp
pop ebp
ret 0

_f1 ENDP

_c$ = -12 ; size = 4
_b$ = -8 ; size = 4
_a$ = -4 ; size = 4
_f2 PROC

push ebp
mov ebp, esp
sub esp, 12
mov eax, DWORD PTR _c$[ebp]
push eax
mov ecx, DWORD PTR _b$[ebp]
push ecx
mov edx, DWORD PTR _a$[ebp]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

52
push edx
push OFFSET $SG2752 ; '%d, %d, %d'
call DWORD PTR __imp__printf
add esp, 16
mov esp, ebp
pop ebp
ret 0

_f2 ENDP

_main PROC
push ebp
mov ebp, esp
call _f1
call _f2
xor eax, eax
pop ebp
ret 0

_main ENDP

The compiler will grumble a little bit…
c:\Polygon\c>cl st.c /Fast.asm /MD
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 16.00.40219.01 for ⤦

Ç 80x86
Copyright (C) Microsoft Corporation. All rights reserved.

st.c
c:\polygon\c\st.c(11) : warning C4700: uninitialized local variable 'c' ⤦

Ç used
c:\polygon\c\st.c(11) : warning C4700: uninitialized local variable 'b' ⤦

Ç used
c:\polygon\c\st.c(11) : warning C4700: uninitialized local variable 'a' ⤦

Ç used
Microsoft (R) Incremental Linker Version 10.00.40219.01
Copyright (C) Microsoft Corporation. All rights reserved.

/out:st.exe
st.obj

But when we run the compiled program …
c:\Polygon\c>st
1, 2, 3

Oh, what a weird thing! We did not set any variables in f2(). These are “ghosts”
values, which are still in the stack.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

53
Let’s load the example into OllyDbg:

Figure 1.6: OllyDbg: f1()

When f1() assigns the variables a, b and c, their values are stored at the address
0x1FF860 and so on.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

54
And when f2() executes:

Figure 1.7: OllyDbg: f2()

... a, b and c of f2() are located at the same addresses! No one has overwritten the
values yet, so at that point they are still untouched. So, for this weird situation to
occur, several functions have to be called one after another and SP has to be the
same at each function entry (i.e., they have the same number of arguments). Then
the local variables will be located at the same positions in the stack. Summarizing,
all values in the stack (and memory cells in general) have values left there from
previous function executions. They are not random in the strict sense, but rather
have unpredictable values. Is there another option? It would probably be possible
to clear portions of the stack before each function execution, but that’s too much
extra (and unnecessary) work.

MSVC 2013

The example was compiled by MSVC 2010. But the reader of this book made attempt
to compile this example in MSVC 2013, ran it, and got all 3 numbers reversed:
c:\Polygon\c>st
3, 2, 1

Why? I also compiled this example in MSVC 2013 and saw this:

Listing 1.44: MSVC 2013
_a$ = -12 ; size = 4

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

55
_b$ = -8 ; size = 4
_c$ = -4 ; size = 4
_f2 PROC

...

_f2 ENDP

_c$ = -12 ; size = 4
_b$ = -8 ; size = 4
_a$ = -4 ; size = 4
_f1 PROC

...

_f1 ENDP

Unlike MSVC 2010, MSVC 2013 allocated a/b/c variables in function f2() in reverse
order.And this is completely correct, because C/C++ standards has no rule, in which
order local variables must be allocated in the local stack, if at all. The reason of dif-
ference is because MSVC 2010 has one way to do it, and MSVC 2013 has supposedly
something changed inside of compiler guts, so it behaves slightly different.

1.9.5 Exercises
• http://challenges.re/51

• http://challenges.re/52

1.10 Almost empty function
This is a real piece of code I found in Boolector66:
// forward declaration. the function is residing in some other module:
int boolector_main (int argc, char **argv);

// executable
int main (int argc, char **argv)
{

return boolector_main (argc, argv);
}

Why would anyone do so? It’s unclear, but we can guess that boolector_main()
may be compiled in some kind of DLL or dynamic library, and be called from a test
suite. Surely, a test suite can prepare argc/argv variables as CRT would do it.
Interestingly enough, this is how it compiles:
66https://boolector.github.io/

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://challenges.re/51
http://challenges.re/52
https://boolector.github.io/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

56
Listing 1.45: Non-optimizing GCC 8.2 x64 (assembly output)

main:
push rbp
mov rbp, rsp
sub rsp, 16
mov DWORD PTR -4[rbp], edi
mov QWORD PTR -16[rbp], rsi
mov rdx, QWORD PTR -16[rbp]
mov eax, DWORD PTR -4[rbp]
mov rsi, rdx
mov edi, eax
call boolector_main
leave
ret

We’ve got here: prologue, unnecessary (not optimized) shuffling of two arguments,
CALL, epilogue, RET. But let’s see optimizing version:

Listing 1.46: Optimizing GCC 8.2 x64 (assembly output)
main:

jmp boolector_main

As simple as that: stack/registers are untouched and boolector_main() has the
same arguments set. So all we need to do is pass execution to another address.
This is close to thunk function.
We will see something more advanced later: 1.11.2 on page 71, 1.21.1 on page 197.

1.11 printf() with several arguments
Now let’s extend the Hello, world! (1.5 on page 11) example, replacing printf() in
the main() function body with this:
#include <stdio.h>

int main()
{

printf("a=%d; b=%d; c=%d", 1, 2, 3);
return 0;

};

1.11.1 x86
x86: 3 integer arguments

MSVC

When we compile it with MSVC 2010 Express we get:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

57

$SG3830 DB 'a=%d; b=%d; c=%d', 00H

...

push 3
push 2
push 1
push OFFSET $SG3830
call _printf
add esp, 16 ; 00000010H

Almost the same, but now we can see the printf() arguments are pushed onto the
stack in reverse order. The first argument is pushed last.
By the way, variables of int type in 32-bit environment have 32-bit width, that is 4
bytes.
So, we have 4 arguments here. 4∗4 = 16—they occupy exactly 16 bytes in the stack:
a 32-bit pointer to a string and 3 numbers of type int.
When the stack pointer (ESP register) has changed back by the
ADD ESP, X instruction after a function call, often, the number of function arguments
could be deduced by simply dividing X by 4.
Of course, this is specific to the cdecl calling convention, and only for 32-bit environ-
ment.
See also the calling conventions section (6.1 on page 932).
In certain cases where several functions return right after one another, the compiler
could merge multiple “ADD ESP, X” instructions into one, after the last call:
push a1
push a2
call ...
...
push a1
call ...
...
push a1
push a2
push a3
call ...
add esp, 24

Here is a real-world example:

Listing 1.47: x86
.text:100113E7 push 3
.text:100113E9 call sub_100018B0 ; takes one argument (3)
.text:100113EE call sub_100019D0 ; takes no arguments at all
.text:100113F3 call sub_10006A90 ; takes no arguments at all
.text:100113F8 push 1
.text:100113FA call sub_100018B0 ; takes one argument (1)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

58
.text:100113FF add esp, 8 ; drops two arguments from stack at

once

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

59
MSVC and OllyDbg

Now let’s try to load this example in OllyDbg. It is one of the most popular user-land
win32 debuggers. We can compile our example in MSVC 2012 with /MD option, which
means to link with MSVCR*.DLL, so we can see the imported functions clearly in the
debugger.
Then load the executable in OllyDbg. The very first breakpoint is in ntdll.dll, press
F9 (run). The second breakpoint is in CRT-code. Now we have to find the main()
function.
Find this code by scrolling the code to the very top (MSVC allocates the main() func-
tion at the very beginning of the code section):

Figure 1.8: OllyDbg: the very start of the main() function

Click on the PUSH EBP instruction, press F2 (set breakpoint) and press F9 (run). We
have to perform these actions in order to skip CRT-code, because we aren’t really
interested in it yet.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

60
Press F8 (step over) 6 times, i.e. skip 6 instructions:

Figure 1.9: OllyDbg: before printf() execution

Now the PC points to the CALL printf instruction. OllyDbg, like other debuggers,
highlights the value of the registers which were changed. So each time you press
F8, EIP changes and its value is displayed in red. ESP changes as well, because the
arguments values are pushed into the stack.

Where are the values in the stack? Take a look at the right bottom debugger window:

Figure 1.10: OllyDbg: stack after the argument values have been pushed (The red
rectangular border was added by the author in a graphics editor)

We can see 3 columns there: address in the stack, value in the stack and some
additional OllyDbg comments. OllyDbg can detect pointers to ASCII strings in stack,
so it reports the printf()-string here.
It is possible to right-click on the format string, click on “Follow in dump”, and the
format string will appear in the debugger left-bottom window, which always displays
some part of the memory. These memory values can be edited. It is possible to
change the format string, in which case the result of our example would be different.
It is not very useful in this particular case, but it could be good as an exercise so you
start building a feel of how everything works here.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

61
Press F8 (step over).
We see the following output in the console:
a=1; b=2; c=3

Let’s see how the registers and stack state have changed:

Figure 1.11: OllyDbg after printf() execution

Register EAX now contains 0xD (13). That is correct, since printf() returns the
number of characters printed. The value of EIP has changed: indeed, now it contains
the address of the instruction coming after CALL printf. ECX and EDX values have
changed as well. Apparently, the printf() function’s hidden machinery used them
for its own needs.
A very important fact is that neither the ESP value, nor the stack state have been
changed! We clearly see that the format string and corresponding 3 values are still
there. This is indeed the cdecl calling convention behavior: callee does not return
ESP back to its previous value. The caller is responsible to do so.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

62
Press F8 again to execute ADD ESP, 10 instruction:

Figure 1.12: OllyDbg: after ADD ESP, 10 instruction execution

ESP has changed, but the values are still in the stack! Yes, of course; no one needs to
set these values to zeros or something like that. Everything above the stack pointer
(SP) is noise or garbage and has no meaning at all. It would be time consuming to
clear the unused stack entries anyway, and no one really needs to.

GCC

Now let’s compile the same program in Linux using GCC 4.4.1 and take a look at
what we have got in IDA:
main proc near

var_10 = dword ptr -10h
var_C = dword ptr -0Ch
var_8 = dword ptr -8
var_4 = dword ptr -4

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 10h
mov eax, offset aADBDCD ; "a=%d; b=%d; c=%d"
mov [esp+10h+var_4], 3
mov [esp+10h+var_8], 2
mov [esp+10h+var_C], 1
mov [esp+10h+var_10], eax
call _printf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

63
mov eax, 0
leave
retn

main endp

Its noticeable that the difference between the MSVC code and the GCC code is only
in the way the arguments are stored on the stack. Here GCC is working directly with
the stack without the use of PUSH/POP.

GCC and GDB

Let’s try this example also in GDB67 in Linux.
-g option instructs the compiler to include debug information in the executable file.
$ gcc 1.c -g -o 1

$ gdb 1
GNU gdb (GDB) 7.6.1-ubuntu
...
Reading symbols from /home/dennis/polygon/1...done.

Listing 1.48: let’s set breakpoint on printf()
(gdb) b printf
Breakpoint 1 at 0x80482f0

Run. We don’t have the printf() function source code here, so GDB can’t show it,
but may do so.
(gdb) run
Starting program: /home/dennis/polygon/1

Breakpoint 1, __printf (format=0x80484f0 "a=%d; b=%d; c=%d") at printf.c:29
29 printf.c: No such file or directory.

Print 10 stack elements. The most left column contains addresses on the stack.
(gdb) x/10w $esp
0xbffff11c: 0x0804844a 0x080484f0 0x00000001 0x00000002
0xbffff12c: 0x00000003 0x08048460 0x00000000 0x00000000
0xbffff13c: 0xb7e29905 0x00000001

The very first element is the RA (0x0804844a). We can verify this by disassembling
the memory at this address:
(gdb) x/5i 0x0804844a

0x804844a <main+45>: mov $0x0,%eax
0x804844f <main+50>: leave
0x8048450 <main+51>: ret

67GNU Debugger

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

64
0x8048451: xchg %ax,%ax
0x8048453: xchg %ax,%ax

The two XCHG instructions are idle instructions, analogous to NOPs.
The second element (0x080484f0) is the format string address:
(gdb) x/s 0x080484f0
0x80484f0: "a=%d; b=%d; c=%d"

Next 3 elements (1, 2, 3) are the printf() arguments. The rest of the elements
could be just “garbage” on the stack, but could also be values from other functions,
their local variables, etc. We can ignore them for now.
Run “finish”. The command instructs GDB to “execute all instructions until the end
of the function”. In this case: execute till the end of printf().
(gdb) finish
Run till exit from #0 __printf (format=0x80484f0 "a=%d; b=%d; c=%d") at ⤦

Ç printf.c:29
main () at 1.c:6
6 return 0;
Value returned is $2 = 13

GDB shows what printf() returned in EAX (13). This is the number of characters
printed out, just like in the OllyDbg example.
We also see “return 0;” and the information that this expression is in the 1.c file at
the line 6. Indeed, the 1.c file is located in the current directory, and GDB finds the
string there. How does GDB know which C-code line is being currently executed?
This is due to the fact that the compiler, while generating debugging information,
also saves a table of relations between source code line numbers and instruction
addresses. GDB is a source-level debugger, after all.
Let’s examine the registers. 13 in EAX:
(gdb) info registers
eax 0xd 13
ecx 0x0 0
edx 0x0 0
ebx 0xb7fc0000 -1208221696
esp 0xbffff120 0xbffff120
ebp 0xbffff138 0xbffff138
esi 0x0 0
edi 0x0 0
eip 0x804844a 0x804844a <main+45>
...

Let’s disassemble the current instructions. The arrow points to the instruction to be
executed next.
(gdb) disas
Dump of assembler code for function main:

0x0804841d <+0>: push %ebp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

65
0x0804841e <+1>: mov %esp,%ebp
0x08048420 <+3>: and $0xfffffff0,%esp
0x08048423 <+6>: sub $0x10,%esp
0x08048426 <+9>: movl $0x3,0xc(%esp)
0x0804842e <+17>: movl $0x2,0x8(%esp)
0x08048436 <+25>: movl $0x1,0x4(%esp)
0x0804843e <+33>: movl $0x80484f0,(%esp)
0x08048445 <+40>: call 0x80482f0 <printf@plt>

=> 0x0804844a <+45>: mov $0x0,%eax
0x0804844f <+50>: leave
0x08048450 <+51>: ret

End of assembler dump.

GDB uses AT&T syntax by default. But it is possible to switch to Intel syntax:
(gdb) set disassembly-flavor intel
(gdb) disas
Dump of assembler code for function main:

0x0804841d <+0>: push ebp
0x0804841e <+1>: mov ebp,esp
0x08048420 <+3>: and esp,0xfffffff0
0x08048423 <+6>: sub esp,0x10
0x08048426 <+9>: mov DWORD PTR [esp+0xc],0x3
0x0804842e <+17>: mov DWORD PTR [esp+0x8],0x2
0x08048436 <+25>: mov DWORD PTR [esp+0x4],0x1
0x0804843e <+33>: mov DWORD PTR [esp],0x80484f0
0x08048445 <+40>: call 0x80482f0 <printf@plt>

=> 0x0804844a <+45>: mov eax,0x0
0x0804844f <+50>: leave
0x08048450 <+51>: ret

End of assembler dump.

Execute next line of C/C++ code. GDB shows ending bracket, meaning, it ends the
block.
(gdb) step
7 };

Let’s examine the registers after the MOV EAX, 0 instruction execution. Indeed EAX
is zero at that point.
(gdb) info registers
eax 0x0 0
ecx 0x0 0
edx 0x0 0
ebx 0xb7fc0000 -1208221696
esp 0xbffff120 0xbffff120
ebp 0xbffff138 0xbffff138
esi 0x0 0
edi 0x0 0
eip 0x804844f 0x804844f <main+50>
...

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

66
x64: 8 integer arguments

To see how other arguments are passed via the stack, let’s change our example
again by increasing the number of arguments to 9 (printf() format string + 8 int
variables):
#include <stdio.h>

int main()
{

printf("a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n", 1, 2, 3,⤦
Ç 4, 5, 6, 7, 8);

return 0;
};

MSVC

As it was mentioned earlier, the first 4 arguments has to be passed through the RCX,
RDX, R8, R9 registers in Win64, while all the rest—via the stack. That is exactly what
we see here. However, the MOV instruction, instead of PUSH, is used for preparing
the stack, so the values are stored to the stack in a straightforward manner.

Listing 1.49: MSVC 2012 x64
$SG2923 DB 'a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d', 0aH, 00H

main PROC
sub rsp, 88

mov DWORD PTR [rsp+64], 8
mov DWORD PTR [rsp+56], 7
mov DWORD PTR [rsp+48], 6
mov DWORD PTR [rsp+40], 5
mov DWORD PTR [rsp+32], 4
mov r9d, 3
mov r8d, 2
mov edx, 1
lea rcx, OFFSET FLAT:$SG2923
call printf

; return 0
xor eax, eax

add rsp, 88
ret 0

main ENDP
_TEXT ENDS
END

The observant reader may ask why are 8 bytes allocated for int values, when 4 is
enough? Yes, one has to recall: 8 bytes are allocated for any data type shorter than
64 bits. This is established for the convenience’s sake: it makes it easy to calculate

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

67
the address of arbitrary argument. Besides, they are all located at aligned memory
addresses. It is the same in the 32-bit environments: 4 bytes are reserved for all
data types.

GCC

The picture is similar for x86-64 *NIX OS-es, except that the first 6 arguments are
passed through the RDI, RSI, RDX, RCX, R8, R9 registers. All the rest—via the stack.
GCC generates the code storing the string pointer into EDI instead of RDI—we noted
that previously: 1.5.2 on page 21.
We also noted earlier that the EAX register has been cleared before a printf() call:
1.5.2 on page 21.

Listing 1.50: Optimizing GCC 4.4.6 x64
.LC0:

.string "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n"

main:
sub rsp, 40

mov r9d, 5
mov r8d, 4
mov ecx, 3
mov edx, 2
mov esi, 1
mov edi, OFFSET FLAT:.LC0
xor eax, eax ; number of vector registers passed
mov DWORD PTR [rsp+16], 8
mov DWORD PTR [rsp+8], 7
mov DWORD PTR [rsp], 6
call printf

; return 0

xor eax, eax
add rsp, 40
ret

GCC + GDB

Let’s try this example in GDB.
$ gcc -g 2.c -o 2

$ gdb 2
GNU gdb (GDB) 7.6.1-ubuntu
...
Reading symbols from /home/dennis/polygon/2...done.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

68
Listing 1.51: let’s set the breakpoint to printf(), and run

(gdb) b printf
Breakpoint 1 at 0x400410
(gdb) run
Starting program: /home/dennis/polygon/2

Breakpoint 1, __printf (format=0x400628 "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d⤦
Ç ; g=%d; h=%d\n") at printf.c:29

29 printf.c: No such file or directory.

Registers RSI/RDX/RCX/R8/R9 have the expected values. RIP has the address of the
very first instruction of the printf() function.
(gdb) info registers
rax 0x0 0
rbx 0x0 0
rcx 0x3 3
rdx 0x2 2
rsi 0x1 1
rdi 0x400628 4195880
rbp 0x7fffffffdf60 0x7fffffffdf60
rsp 0x7fffffffdf38 0x7fffffffdf38
r8 0x4 4
r9 0x5 5
r10 0x7fffffffdce0 140737488346336
r11 0x7ffff7a65f60 140737348263776
r12 0x400440 4195392
r13 0x7fffffffe040 140737488347200
r14 0x0 0
r15 0x0 0
rip 0x7ffff7a65f60 0x7ffff7a65f60 <__printf>
...

Listing 1.52: let’s inspect the format string
(gdb) x/s $rdi
0x400628: "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n"

Let’s dump the stack with the x/g command this time—g stands for giant words, i.e.,
64-bit words.
(gdb) x/10g $rsp
0x7fffffffdf38: 0x0000000000400576 0x0000000000000006
0x7fffffffdf48: 0x0000000000000007 0x00007fff00000008
0x7fffffffdf58: 0x0000000000000000 0x0000000000000000
0x7fffffffdf68: 0x00007ffff7a33de5 0x0000000000000000
0x7fffffffdf78: 0x00007fffffffe048 0x0000000100000000

The very first stack element, just like in the previous case, is the RA. 3 values are
also passed through the stack: 6, 7, 8. We also see that 8 is passed with the high
32-bits not cleared: 0x00007fff00000008. That’s OK, because the values are of
int type, which is 32-bit. So, the high register or stack element part may contain
“random garbage”.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

69
If you take a look at where the control will return after the printf() execution, GDB
will show the entire main() function:
(gdb) set disassembly-flavor intel
(gdb) disas 0x0000000000400576
Dump of assembler code for function main:

0x000000000040052d <+0>: push rbp
0x000000000040052e <+1>: mov rbp,rsp
0x0000000000400531 <+4>: sub rsp,0x20
0x0000000000400535 <+8>: mov DWORD PTR [rsp+0x10],0x8
0x000000000040053d <+16>: mov DWORD PTR [rsp+0x8],0x7
0x0000000000400545 <+24>: mov DWORD PTR [rsp],0x6
0x000000000040054c <+31>: mov r9d,0x5
0x0000000000400552 <+37>: mov r8d,0x4
0x0000000000400558 <+43>: mov ecx,0x3
0x000000000040055d <+48>: mov edx,0x2
0x0000000000400562 <+53>: mov esi,0x1
0x0000000000400567 <+58>: mov edi,0x400628
0x000000000040056c <+63>: mov eax,0x0
0x0000000000400571 <+68>: call 0x400410 <printf@plt>
0x0000000000400576 <+73>: mov eax,0x0
0x000000000040057b <+78>: leave
0x000000000040057c <+79>: ret

End of assembler dump.

Let’s finish executing printf(), execute the instruction zeroing EAX, and note that
the EAX register has a value of exactly zero. RIP now points to the LEAVE instruction,
i.e., the penultimate one in the main() function.
(gdb) finish
Run till exit from #0 __printf (format=0x400628 "a=%d; b=%d; c=%d; d=%d; e⤦

Ç =%d; f=%d; g=%d; h=%d\n") at printf.c:29
a=1; b=2; c=3; d=4; e=5; f=6; g=7; h=8
main () at 2.c:6
6 return 0;
Value returned is $1 = 39
(gdb) next
7 };
(gdb) info registers
rax 0x0 0
rbx 0x0 0
rcx 0x26 38
rdx 0x7ffff7dd59f0 140737351866864
rsi 0x7fffffd9 2147483609
rdi 0x0 0
rbp 0x7fffffffdf60 0x7fffffffdf60
rsp 0x7fffffffdf40 0x7fffffffdf40
r8 0x7ffff7dd26a0 140737351853728
r9 0x7ffff7a60134 140737348239668
r10 0x7fffffffd5b0 140737488344496
r11 0x7ffff7a95900 140737348458752
r12 0x400440 4195392
r13 0x7fffffffe040 140737488347200
r14 0x0 0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

70
r15 0x0 0
rip 0x40057b 0x40057b <main+78>
...

1.11.2 ARM
ARM: 3 integer arguments

ARM’s traditional scheme for passing arguments (calling convention) behaves as fol-
lows: the first 4 arguments are passed through the R0-R3 registers; the remaining
arguments via the stack. This resembles the arguments passing scheme in fast-
call (6.1.3 on page 934) or win64 (6.1.5 on page 936).

32-bit ARM

Non-optimizing Keil 6/2013 (ARM mode)

Listing 1.53: Non-optimizing Keil 6/2013 (ARM mode)
.text:00000000 main
.text:00000000 10 40 2D E9 STMFD SP!, {R4,LR}
.text:00000004 03 30 A0 E3 MOV R3, #3
.text:00000008 02 20 A0 E3 MOV R2, #2
.text:0000000C 01 10 A0 E3 MOV R1, #1
.text:00000010 08 00 8F E2 ADR R0, aADBDCD ; "a=%d; b=%d; c=%d"
.text:00000014 06 00 00 EB BL __2printf
.text:00000018 00 00 A0 E3 MOV R0, #0 ; return 0
.text:0000001C 10 80 BD E8 LDMFD SP!, {R4,PC}

So, the first 4 arguments are passed via the R0-R3 registers in this order: a pointer
to the printf() format string in R0, then 1 in R1, 2 in R2 and 3 in R3. The instruction
at 0x18 writes 0 to R0—this is return 0 C-statement. There is nothing unusual so far.
Optimizing Keil 6/2013 generates the same code.

Optimizing Keil 6/2013 (Thumb mode)

Listing 1.54: Optimizing Keil 6/2013 (Thumb mode)
.text:00000000 main
.text:00000000 10 B5 PUSH {R4,LR}
.text:00000002 03 23 MOVS R3, #3
.text:00000004 02 22 MOVS R2, #2
.text:00000006 01 21 MOVS R1, #1
.text:00000008 02 A0 ADR R0, aADBDCD ; "a=%d; b=%d; c=%d"
.text:0000000A 00 F0 0D F8 BL __2printf
.text:0000000E 00 20 MOVS R0, #0
.text:00000010 10 BD POP {R4,PC}

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

71
There is no significant difference from the non-optimized code for ARM mode.

Optimizing Keil 6/2013 (ARM mode) + let’s remove return

Let’s rework example slightly by removing return 0:
#include <stdio.h>

void main()
{

printf("a=%d; b=%d; c=%d", 1, 2, 3);
};

The result is somewhat unusual:

Listing 1.55: Optimizing Keil 6/2013 (ARM mode)
.text:00000014 main
.text:00000014 03 30 A0 E3 MOV R3, #3
.text:00000018 02 20 A0 E3 MOV R2, #2
.text:0000001C 01 10 A0 E3 MOV R1, #1
.text:00000020 1E 0E 8F E2 ADR R0, aADBDCD ; "a=%d; b=%d; c=%d\n"
.text:00000024 CB 18 00 EA B __2printf

This is the optimized (-O3) version for ARM mode and this time we see B as the
last instruction instead of the familiar BL. Another difference between this optimized
version and the previous one (compiled without optimization) is the lack of function
prologue and epilogue (instructions preserving the R0 and LR registers values). The
B instruction just jumps to another address, without any manipulation of the LR regis-
ter, similar to JMP in x86. Why does it work? Because this code is, in fact, effectively
equivalent to the previous. There are two main reasons: 1) neither the stack nor
SP (the stack pointer) is modified; 2) the call to printf() is the last instruction, so
there is nothing going on afterwards. On completion, the printf() function sim-
ply returns the control to the address stored in LR. Since the LR currently stores
the address of the point from where our function has been called then the control
from printf() will be returned to that point. Therefore we do not have to save LR
because we do not have necessity to modify LR. And we do not have necessity to
modify LR because there are no other function calls except printf(). Furthermore,
after this call we do not to do anything else! That is the reason such optimization is
possible.
This optimization is often used in functions where the last statement is a call to
another function. A similar example is presented here: 1.21.1 on page 198.
A somewhat simpler case was described above: 1.10 on page 55.

ARM64

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

72
Non-optimizing GCC (Linaro) 4.9

Listing 1.56: Non-optimizing GCC (Linaro) 4.9
.LC1:

.string "a=%d; b=%d; c=%d"
f2:
; save FP and LR in stack frame:

stp x29, x30, [sp, -16]!
; set stack frame (FP=SP):

add x29, sp, 0
adrp x0, .LC1
add x0, x0, :lo12:.LC1
mov w1, 1
mov w2, 2
mov w3, 3
bl printf
mov w0, 0

; restore FP and LR
ldp x29, x30, [sp], 16
ret

The first instruction STP (Store Pair) saves FP (X29) and LR (X30) in the stack. The
second ADD X29, SP, 0 instruction forms the stack frame. It is just writing the value
of SP into X29.
Next, we see the familiar ADRP/ADD instruction pair, which forms a pointer to the
string. lo12meaning low 12 bits, i.e., linker will write low 12 bits of LC1 address into
the opcode of ADD instruction. 1, 2 and 3 are 32-bit int values, so they are loaded
into 32-bit register parts 68

Optimizing GCC (Linaro) 4.9 generates the same code.

ARM: 8 integer arguments

Let’s use again the example with 9 arguments from the previous section: 1.11.1 on
page 66.
#include <stdio.h>

int main()
{

printf("a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n", 1, 2, 3,⤦
Ç 4, 5, 6, 7, 8);

return 0;
};

68Changing 1 to 1L will make it a 64-bit value that would be loaded into 64-bit register. See more about
integer constants/literals: 1, 2.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://en.cppreference.com/w/c/language/integer_constant
https://en.cppreference.com/w/cpp/language/integer_literal
https://yurichev.com/contact.html
https://yurichev.com/contact.html

73
Optimizing Keil 6/2013: ARM mode

.text:00000028 main

.text:00000028

.text:00000028 var_18 = -0x18

.text:00000028 var_14 = -0x14

.text:00000028 var_4 = -4

.text:00000028

.text:00000028 04 E0 2D E5 STR LR, [SP,#var_4]!

.text:0000002C 14 D0 4D E2 SUB SP, SP, #0x14

.text:00000030 08 30 A0 E3 MOV R3, #8

.text:00000034 07 20 A0 E3 MOV R2, #7

.text:00000038 06 10 A0 E3 MOV R1, #6

.text:0000003C 05 00 A0 E3 MOV R0, #5

.text:00000040 04 C0 8D E2 ADD R12, SP, #0x18+var_14

.text:00000044 0F 00 8C E8 STMIA R12, {R0-R3}

.text:00000048 04 00 A0 E3 MOV R0, #4

.text:0000004C 00 00 8D E5 STR R0, [SP,#0x18+var_18]

.text:00000050 03 30 A0 E3 MOV R3, #3

.text:00000054 02 20 A0 E3 MOV R2, #2

.text:00000058 01 10 A0 E3 MOV R1, #1

.text:0000005C 6E 0F 8F E2 ADR R0, aADBDCDDDEDFDGD ; "a=%d; b=%d; c=%d;
d=%d; e=%d; f=%d; g=%"...

.text:00000060 BC 18 00 EB BL __2printf

.text:00000064 14 D0 8D E2 ADD SP, SP, #0x14

.text:00000068 04 F0 9D E4 LDR PC, [SP+4+var_4],#4

This code can be divided into several parts:
• Function prologue:
The very first STR LR, [SP,#var_4]! instruction saves LR on the stack, be-
cause we are going to use this register for the printf() call. Exclamation
mark at the end indicates pre-index.
This implies that SP is to be decreased by 4 first, and then LR will be saved at
the address stored in SP. This is similar to PUSH in x86. Read more about it at:
1.39.2 on page 555.
The second SUB SP, SP, #0x14 instruction decreases SP (the stack pointer) in
order to allocate 0x14 (20) bytes on the stack. Indeed, we have to pass 5 32-bit
values via the stack to the printf() function, and each one occupies 4 bytes,
which is exactly 5 ∗ 4 = 20. The other 4 32-bit values are to be passed through
registers.

• Passing 5, 6, 7 and 8 via the stack: they are stored in the R0, R1, R2 and R3
registers respectively.
Then, the ADD R12, SP, #0x18+var_14 instruction writes the stack address
where these 4 variables are to be stored, into the R12 register. var_14 is an
assembly macro, equal to -0x14, created by IDA to conveniently display the
code accessing the stack. The var_? macros generated by IDA reflect local
variables in the stack.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

74
So, SP+4 is to be stored into the R12 register.
The next STMIA R12, R0-R3 instruction writes registers R0-R3 contents to the
memory pointed by R12. STMIA abbreviates Store Multiple Increment After. In-
crement After implies that R12 is to be increased by 4 after each register value
is written.

• Passing 4 via the stack: 4 is stored in R0 and then this value, with the help of
the
STR R0, [SP,#0x18+var_18] instruction is saved on the stack. var_18 is -0x18,
so the offset is to be 0, thus the value from the R0 register (4) is to be written
to the address written in SP.

• Passing 1, 2 and 3 via registers: The values of the first 3 numbers (a, b, c) (1,
2, 3 respectively) are passed through the R1, R2 and R3 registers right before
the printf() call.

• printf() call.
• Function epilogue:
The ADD SP, SP, #0x14 instruction restores the SP pointer back to its former
value, thus annulling everything what has been stored on the stack. Of course,
what has been stored on the stack will stay there, but it will all be rewritten
during the execution of subsequent functions.
The LDR PC, [SP+4+var_4],#4 instruction loads the saved LR value from the
stack into the PC register, thus causing the function to exit. There is no exclama-
tion mark—indeed, PC is loaded first from the address stored in SP (4 + var_4 =
4 + (−4) = 0), so this instruction is analogous to LDR PC, [SP],#4), and then
SP is increased by 4. This is referred as post-index69. Why does IDA display
the instruction like that? Because it wants to illustrate the stack layout and
the fact that var_4 is allocated for saving the LR value in the local stack. This
instruction is somewhat similar to POP PC in x8670.

Optimizing Keil 6/2013: Thumb mode

.text:0000001C printf_main2

.text:0000001C

.text:0000001C var_18 = -0x18

.text:0000001C var_14 = -0x14

.text:0000001C var_8 = -8

.text:0000001C

.text:0000001C 00 B5 PUSH {LR}

.text:0000001E 08 23 MOVS R3, #8

.text:00000020 85 B0 SUB SP, SP, #0x14

.text:00000022 04 93 STR R3, [SP,#0x18+var_8]

.text:00000024 07 22 MOVS R2, #7

.text:00000026 06 21 MOVS R1, #6

.text:00000028 05 20 MOVS R0, #5

.text:0000002A 01 AB ADD R3, SP, #0x18+var_14

69Read more about it: 1.39.2 on page 555.
70It is impossible to set IP/EIP/RIP value using POP in x86, but anyway, you got the analogy right.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

75
.text:0000002C 07 C3 STMIA R3!, {R0-R2}
.text:0000002E 04 20 MOVS R0, #4
.text:00000030 00 90 STR R0, [SP,#0x18+var_18]
.text:00000032 03 23 MOVS R3, #3
.text:00000034 02 22 MOVS R2, #2
.text:00000036 01 21 MOVS R1, #1
.text:00000038 A0 A0 ADR R0, aADBDCDDDEDFDGD ; "a=%d; b=%d; c=%d;

d=%d; e=%d; f=%d; g=%"...
.text:0000003A 06 F0 D9 F8 BL __2printf
.text:0000003E
.text:0000003E loc_3E ; CODE XREF: example13_f+16
.text:0000003E 05 B0 ADD SP, SP, #0x14
.text:00000040 00 BD POP {PC}

The output is almost like in the previous example. However, this is Thumb code and
the values are packed into stack differently: 8 goes first, then 5, 6, 7, and 4 goes
third.

Optimizing Xcode 4.6.3 (LLVM): ARM mode

__text:0000290C _printf_main2
__text:0000290C
__text:0000290C var_1C = -0x1C
__text:0000290C var_C = -0xC
__text:0000290C
__text:0000290C 80 40 2D E9 STMFD SP!, {R7,LR}
__text:00002910 0D 70 A0 E1 MOV R7, SP
__text:00002914 14 D0 4D E2 SUB SP, SP, #0x14
__text:00002918 70 05 01 E3 MOV R0, #0x1570
__text:0000291C 07 C0 A0 E3 MOV R12, #7
__text:00002920 00 00 40 E3 MOVT R0, #0
__text:00002924 04 20 A0 E3 MOV R2, #4
__text:00002928 00 00 8F E0 ADD R0, PC, R0
__text:0000292C 06 30 A0 E3 MOV R3, #6
__text:00002930 05 10 A0 E3 MOV R1, #5
__text:00002934 00 20 8D E5 STR R2, [SP,#0x1C+var_1C]
__text:00002938 0A 10 8D E9 STMFA SP, {R1,R3,R12}
__text:0000293C 08 90 A0 E3 MOV R9, #8
__text:00002940 01 10 A0 E3 MOV R1, #1
__text:00002944 02 20 A0 E3 MOV R2, #2
__text:00002948 03 30 A0 E3 MOV R3, #3
__text:0000294C 10 90 8D E5 STR R9, [SP,#0x1C+var_C]
__text:00002950 A4 05 00 EB BL _printf
__text:00002954 07 D0 A0 E1 MOV SP, R7
__text:00002958 80 80 BD E8 LDMFD SP!, {R7,PC}

Almost the same as what we have already seen, with the exception of STMFA (Store
Multiple Full Ascending) instruction, which is a synonym of STMIB (Store Multiple
Increment Before) instruction. This instruction increases the value in the SP register
and only then writes the next register value into the memory, rather than performing
those two actions in the opposite order.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

76
Another thing that catches the eye is that the instructions are arranged seemingly
random. For example, the value in the R0 register is manipulated in three places,
at addresses 0x2918, 0x2920 and 0x2928, when it would be possible to do it in one
point.
However, the optimizing compiler may have its own reasons on how to order the
instructions so to achieve higher efficiency during the execution.
Usually, the processor attempts to simultaneously execute instructions located side-
by-side.
For example, instructions like MOVT R0, #0 and ADD R0, PC, R0 cannot be exe-
cuted simultaneously since they both modify the R0 register. On the other hand,
MOVT R0, #0 and MOV R2, #4 instructions can be executed simultaneously since
the effects of their execution are not conflicting with each other. Presumably, the
compiler tries to generate code in such a manner (wherever it is possible).

Optimizing Xcode 4.6.3 (LLVM): Thumb-2 mode

__text:00002BA0 _printf_main2
__text:00002BA0
__text:00002BA0 var_1C = -0x1C
__text:00002BA0 var_18 = -0x18
__text:00002BA0 var_C = -0xC
__text:00002BA0
__text:00002BA0 80 B5 PUSH {R7,LR}
__text:00002BA2 6F 46 MOV R7, SP
__text:00002BA4 85 B0 SUB SP, SP, #0x14
__text:00002BA6 41 F2 D8 20 MOVW R0, #0x12D8
__text:00002BAA 4F F0 07 0C MOV.W R12, #7
__text:00002BAE C0 F2 00 00 MOVT.W R0, #0
__text:00002BB2 04 22 MOVS R2, #4
__text:00002BB4 78 44 ADD R0, PC ; char *
__text:00002BB6 06 23 MOVS R3, #6
__text:00002BB8 05 21 MOVS R1, #5
__text:00002BBA 0D F1 04 0E ADD.W LR, SP, #0x1C+var_18
__text:00002BBE 00 92 STR R2, [SP,#0x1C+var_1C]
__text:00002BC0 4F F0 08 09 MOV.W R9, #8
__text:00002BC4 8E E8 0A 10 STMIA.W LR, {R1,R3,R12}
__text:00002BC8 01 21 MOVS R1, #1
__text:00002BCA 02 22 MOVS R2, #2
__text:00002BCC 03 23 MOVS R3, #3
__text:00002BCE CD F8 10 90 STR.W R9, [SP,#0x1C+var_C]
__text:00002BD2 01 F0 0A EA BLX _printf
__text:00002BD6 05 B0 ADD SP, SP, #0x14
__text:00002BD8 80 BD POP {R7,PC}

The output is almost the same as in the previous example, with the exception that
Thumb/Thumb 2-instructions are used instead.

ARM64

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

77
Non-optimizing GCC (Linaro) 4.9

Listing 1.57: Non-optimizing GCC (Linaro) 4.9
.LC2:

.string "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n"
f3:
; grab more space in stack:

sub sp, sp, #32
; save FP and LR in stack frame:

stp x29, x30, [sp,16]
; set frame pointer (FP=SP+16):

add x29, sp, 16
adrp x0, .LC2 ; "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n"
add x0, x0, :lo12:.LC2
mov w1, 8 ; 9th argument
str w1, [sp] ; store 9th argument in the stack
mov w1, 1
mov w2, 2
mov w3, 3
mov w4, 4
mov w5, 5
mov w6, 6
mov w7, 7
bl printf
sub sp, x29, #16

; restore FP and LR
ldp x29, x30, [sp,16]
add sp, sp, 32
ret

The first 8 arguments are passed in X- or W-registers: [Procedure Call Standard for
the ARM 64-bit Architecture (AArch64), (2013)]71. A string pointer requires a 64-bit
register, so it’s passed in X0. All other values have a int 32-bit type, so they are
stored in the 32-bit part of the registers (W-). The 9th argument (8) is passed via the
stack. Indeed: it’s not possible to pass large number of arguments through registers,
because the number of registers is limited.
Optimizing GCC (Linaro) 4.9 generates the same code.

1.11.3 MIPS
3 integer arguments

Optimizing GCC 4.4.5

The main difference with the “Hello, world!” example is that in this case printf()
is called instead of puts() and 3 more arguments are passed through the registers
71Also available as http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055b/IHI0055B_

aapcs64.pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055b/IHI0055B_aapcs64.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055b/IHI0055B_aapcs64.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

78
$5…$7 (or $A1…$A3). That is why these registers are prefixed with A-, which implies
they are used for function arguments passing.

Listing 1.58: Optimizing GCC 4.4.5 (assembly output)
$LC0:

.ascii "a=%d; b=%d; c=%d\000"
main:
; function prologue:

lui $28,%hi(__gnu_local_gp)
addiu $sp,$sp,-32
addiu $28,$28,%lo(__gnu_local_gp)
sw $31,28($sp)

; load address of printf():
lw $25,%call16(printf)($28)

; load address of the text string and set 1st argument of printf():
lui $4,%hi($LC0)
addiu $4,$4,%lo($LC0)

; set 2nd argument of printf():
li $5,1 # 0x1

; set 3rd argument of printf():
li $6,2 # 0x2

; call printf():
jalr $25

; set 4th argument of printf() (branch delay slot):
li $7,3 # 0x3

; function epilogue:
lw $31,28($sp)

; set return value to 0:
move $2,$0

; return
j $31
addiu $sp,$sp,32 ; branch delay slot

Listing 1.59: Optimizing GCC 4.4.5 (IDA)
.text:00000000 main:
.text:00000000
.text:00000000 var_10 = -0x10
.text:00000000 var_4 = -4
.text:00000000
; function prologue:
.text:00000000 lui $gp, (__gnu_local_gp >> 16)
.text:00000004 addiu $sp, -0x20
.text:00000008 la $gp, (__gnu_local_gp & 0xFFFF)
.text:0000000C sw $ra, 0x20+var_4($sp)
.text:00000010 sw $gp, 0x20+var_10($sp)
; load address of printf():
.text:00000014 lw $t9, (printf & 0xFFFF)($gp)
; load address of the text string and set 1st argument of printf():
.text:00000018 la $a0, $LC0 # "a=%d; b=%d; c=%d"
; set 2nd argument of printf():
.text:00000020 li $a1, 1

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

79
; set 3rd argument of printf():
.text:00000024 li $a2, 2
; call printf():
.text:00000028 jalr $t9
; set 4th argument of printf() (branch delay slot):
.text:0000002C li $a3, 3
; function epilogue:
.text:00000030 lw $ra, 0x20+var_4($sp)
; set return value to 0:
.text:00000034 move $v0, $zero
; return
.text:00000038 jr $ra
.text:0000003C addiu $sp, 0x20 ; branch delay slot

IDA has coalesced pair of LUI and ADDIU instructions into one LA pseudo instruction.
That’s why there are no instruction at address 0x1C: because LA occupies 8 bytes.

Non-optimizing GCC 4.4.5

Non-optimizing GCC is more verbose:

Listing 1.60: Non-optimizing GCC 4.4.5 (assembly output)
$LC0:

.ascii "a=%d; b=%d; c=%d\000"
main:
; function prologue:

addiu $sp,$sp,-32
sw $31,28($sp)
sw $fp,24($sp)
move $fp,$sp
lui $28,%hi(__gnu_local_gp)
addiu $28,$28,%lo(__gnu_local_gp)

; load address of the text string:
lui $2,%hi($LC0)
addiu $2,$2,%lo($LC0)

; set 1st argument of printf():
move $4,$2

; set 2nd argument of printf():
li $5,1 # 0x1

; set 3rd argument of printf():
li $6,2 # 0x2

; set 4th argument of printf():
li $7,3 # 0x3

; get address of printf():
lw $2,%call16(printf)($28)
nop

; call printf():
move $25,$2
jalr $25
nop

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

80
; function epilogue:

lw $28,16($fp)
; set return value to 0:

move $2,$0
move $sp,$fp
lw $31,28($sp)
lw $fp,24($sp)
addiu $sp,$sp,32

; return
j $31
nop

Listing 1.61: Non-optimizing GCC 4.4.5 (IDA)
.text:00000000 main:
.text:00000000
.text:00000000 var_10 = -0x10
.text:00000000 var_8 = -8
.text:00000000 var_4 = -4
.text:00000000
; function prologue:
.text:00000000 addiu $sp, -0x20
.text:00000004 sw $ra, 0x20+var_4($sp)
.text:00000008 sw $fp, 0x20+var_8($sp)
.text:0000000C move $fp, $sp
.text:00000010 la $gp, __gnu_local_gp
.text:00000018 sw $gp, 0x20+var_10($sp)
; load address of the text string:
.text:0000001C la $v0, aADBDCD # "a=%d; b=%d; c=%d"
; set 1st argument of printf():
.text:00000024 move $a0, $v0
; set 2nd argument of printf():
.text:00000028 li $a1, 1
; set 3rd argument of printf():
.text:0000002C li $a2, 2
; set 4th argument of printf():
.text:00000030 li $a3, 3
; get address of printf():
.text:00000034 lw $v0, (printf & 0xFFFF)($gp)
.text:00000038 or $at, $zero
; call printf():
.text:0000003C move $t9, $v0
.text:00000040 jalr $t9
.text:00000044 or $at, $zero ; NOP
; function epilogue:
.text:00000048 lw $gp, 0x20+var_10($fp)
; set return value to 0:
.text:0000004C move $v0, $zero
.text:00000050 move $sp, $fp
.text:00000054 lw $ra, 0x20+var_4($sp)
.text:00000058 lw $fp, 0x20+var_8($sp)
.text:0000005C addiu $sp, 0x20
; return
.text:00000060 jr $ra

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

81
.text:00000064 or $at, $zero ; NOP

8 integer arguments

Let’s use again the example with 9 arguments from the previous section: 1.11.1 on
page 66.
#include <stdio.h>

int main()
{

printf("a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\n", 1, 2, 3,⤦
Ç 4, 5, 6, 7, 8);

return 0;
};

Optimizing GCC 4.4.5

Only the first 4 arguments are passed in the $A0 …$A3 registers, the rest are passed
via the stack.
This is the O32 calling convention (which is the most common one in the MIPS world).
Other calling conventions, or manually written assembly code, may use the registers
for different purposes.
SW abbreviates “Store Word” (from register to memory). MIPS lacks instructions for
storing a value into memory, so an instruction pair has to be used instead (LI/SW).

Listing 1.62: Optimizing GCC 4.4.5 (assembly output)
$LC0:

.ascii "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\012\000"
main:
; function prologue:

lui $28,%hi(__gnu_local_gp)
addiu $sp,$sp,-56
addiu $28,$28,%lo(__gnu_local_gp)
sw $31,52($sp)

; pass 5th argument in stack:
li $2,4 # 0x4
sw $2,16($sp)

; pass 6th argument in stack:
li $2,5 # 0x5
sw $2,20($sp)

; pass 7th argument in stack:
li $2,6 # 0x6
sw $2,24($sp)

; pass 8th argument in stack:
li $2,7 # 0x7
lw $25,%call16(printf)($28)
sw $2,28($sp)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

82
; pass 1st argument in $a0:

lui $4,%hi($LC0)
; pass 9th argument in stack:

li $2,8 # 0x8
sw $2,32($sp)
addiu $4,$4,%lo($LC0)

; pass 2nd argument in $a1:
li $5,1 # 0x1

; pass 3rd argument in $a2:
li $6,2 # 0x2

; call printf():
jalr $25

; pass 4th argument in $a3 (branch delay slot):
li $7,3 # 0x3

; function epilogue:
lw $31,52($sp)

; set return value to 0:
move $2,$0

; return
j $31
addiu $sp,$sp,56 ; branch delay slot

Listing 1.63: Optimizing GCC 4.4.5 (IDA)
.text:00000000 main:
.text:00000000
.text:00000000 var_28 = -0x28
.text:00000000 var_24 = -0x24
.text:00000000 var_20 = -0x20
.text:00000000 var_1C = -0x1C
.text:00000000 var_18 = -0x18
.text:00000000 var_10 = -0x10
.text:00000000 var_4 = -4
.text:00000000
; function prologue:
.text:00000000 lui $gp, (__gnu_local_gp >> 16)
.text:00000004 addiu $sp, -0x38
.text:00000008 la $gp, (__gnu_local_gp & 0xFFFF)
.text:0000000C sw $ra, 0x38+var_4($sp)
.text:00000010 sw $gp, 0x38+var_10($sp)
; pass 5th argument in stack:
.text:00000014 li $v0, 4
.text:00000018 sw $v0, 0x38+var_28($sp)
; pass 6th argument in stack:
.text:0000001C li $v0, 5
.text:00000020 sw $v0, 0x38+var_24($sp)
; pass 7th argument in stack:
.text:00000024 li $v0, 6
.text:00000028 sw $v0, 0x38+var_20($sp)
; pass 8th argument in stack:
.text:0000002C li $v0, 7
.text:00000030 lw $t9, (printf & 0xFFFF)($gp)
.text:00000034 sw $v0, 0x38+var_1C($sp)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

83
; prepare 1st argument in $a0:
.text:00000038 lui $a0, ($LC0 >> 16) # "a=%d; b=%d;

c=%d; d=%d; e=%d; f=%d; g=%"...
; pass 9th argument in stack:
.text:0000003C li $v0, 8
.text:00000040 sw $v0, 0x38+var_18($sp)
; pass 1st argument in $a0:
.text:00000044 la $a0, ($LC0 & 0xFFFF) # "a=%d; b=%d;

c=%d; d=%d; e=%d; f=%d; g=%"...
; pass 2nd argument in $a1:
.text:00000048 li $a1, 1
; pass 3rd argument in $a2:
.text:0000004C li $a2, 2
; call printf():
.text:00000050 jalr $t9
; pass 4th argument in $a3 (branch delay slot):
.text:00000054 li $a3, 3
; function epilogue:
.text:00000058 lw $ra, 0x38+var_4($sp)
; set return value to 0:
.text:0000005C move $v0, $zero
; return
.text:00000060 jr $ra
.text:00000064 addiu $sp, 0x38 ; branch delay slot

Non-optimizing GCC 4.4.5

Non-optimizing GCC is more verbose:

Listing 1.64: Non-optimizing GCC 4.4.5 (assembly output)
$LC0:

.ascii "a=%d; b=%d; c=%d; d=%d; e=%d; f=%d; g=%d; h=%d\012\000"
main:
; function prologue:

addiu $sp,$sp,-56
sw $31,52($sp)
sw $fp,48($sp)
move $fp,$sp
lui $28,%hi(__gnu_local_gp)
addiu $28,$28,%lo(__gnu_local_gp)
lui $2,%hi($LC0)
addiu $2,$2,%lo($LC0)

; pass 5th argument in stack:
li $3,4 # 0x4
sw $3,16($sp)

; pass 6th argument in stack:
li $3,5 # 0x5
sw $3,20($sp)

; pass 7th argument in stack:
li $3,6 # 0x6
sw $3,24($sp)

; pass 8th argument in stack:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

84
li $3,7 # 0x7
sw $3,28($sp)

; pass 9th argument in stack:
li $3,8 # 0x8
sw $3,32($sp)

; pass 1st argument in $a0:
move $4,$2

; pass 2nd argument in $a1:
li $5,1 # 0x1

; pass 3rd argument in $a2:
li $6,2 # 0x2

; pass 4th argument in $a3:
li $7,3 # 0x3

; call printf():
lw $2,%call16(printf)($28)
nop
move $25,$2
jalr $25
nop

; function epilogue:
lw $28,40($fp)

; set return value to 0:
move $2,$0
move $sp,$fp
lw $31,52($sp)
lw $fp,48($sp)
addiu $sp,$sp,56

; return
j $31
nop

Listing 1.65: Non-optimizing GCC 4.4.5 (IDA)
.text:00000000 main:
.text:00000000
.text:00000000 var_28 = -0x28
.text:00000000 var_24 = -0x24
.text:00000000 var_20 = -0x20
.text:00000000 var_1C = -0x1C
.text:00000000 var_18 = -0x18
.text:00000000 var_10 = -0x10
.text:00000000 var_8 = -8
.text:00000000 var_4 = -4
.text:00000000
; function prologue:
.text:00000000 addiu $sp, -0x38
.text:00000004 sw $ra, 0x38+var_4($sp)
.text:00000008 sw $fp, 0x38+var_8($sp)
.text:0000000C move $fp, $sp
.text:00000010 la $gp, __gnu_local_gp
.text:00000018 sw $gp, 0x38+var_10($sp)
.text:0000001C la $v0, aADBDCDDDEDFDGD # "a=%d; b=%d;

c=%d; d=%d; e=%d; f=%d; g=%"...
; pass 5th argument in stack:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

85
.text:00000024 li $v1, 4
.text:00000028 sw $v1, 0x38+var_28($sp)
; pass 6th argument in stack:
.text:0000002C li $v1, 5
.text:00000030 sw $v1, 0x38+var_24($sp)
; pass 7th argument in stack:
.text:00000034 li $v1, 6
.text:00000038 sw $v1, 0x38+var_20($sp)
; pass 8th argument in stack:
.text:0000003C li $v1, 7
.text:00000040 sw $v1, 0x38+var_1C($sp)
; pass 9th argument in stack:
.text:00000044 li $v1, 8
.text:00000048 sw $v1, 0x38+var_18($sp)
; pass 1st argument in $a0:
.text:0000004C move $a0, $v0
; pass 2nd argument in $a1:
.text:00000050 li $a1, 1
; pass 3rd argument in $a2:
.text:00000054 li $a2, 2
; pass 4th argument in $a3:
.text:00000058 li $a3, 3
; call printf():
.text:0000005C lw $v0, (printf & 0xFFFF)($gp)
.text:00000060 or $at, $zero
.text:00000064 move $t9, $v0
.text:00000068 jalr $t9
.text:0000006C or $at, $zero ; NOP
; function epilogue:
.text:00000070 lw $gp, 0x38+var_10($fp)
; set return value to 0:
.text:00000074 move $v0, $zero
.text:00000078 move $sp, $fp
.text:0000007C lw $ra, 0x38+var_4($sp)
.text:00000080 lw $fp, 0x38+var_8($sp)
.text:00000084 addiu $sp, 0x38
; return
.text:00000088 jr $ra
.text:0000008C or $at, $zero ; NOP

1.11.4 Conclusion
Here is a rough skeleton of the function call:

Listing 1.66: x86
...
PUSH 3rd argument
PUSH 2nd argument
PUSH 1st argument
CALL function
; modify stack pointer (if needed)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

86
Listing 1.67: x64 (MSVC)

MOV RCX, 1st argument
MOV RDX, 2nd argument
MOV R8, 3rd argument
MOV R9, 4th argument
...
PUSH 5th, 6th argument, etc. (if needed)
CALL function
; modify stack pointer (if needed)

Listing 1.68: x64 (GCC)
MOV RDI, 1st argument
MOV RSI, 2nd argument
MOV RDX, 3rd argument
MOV RCX, 4th argument
MOV R8, 5th argument
MOV R9, 6th argument
...
PUSH 7th, 8th argument, etc. (if needed)
CALL function
; modify stack pointer (if needed)

Listing 1.69: ARM
MOV R0, 1st argument
MOV R1, 2nd argument
MOV R2, 3rd argument
MOV R3, 4th argument
; pass 5th, 6th argument, etc., in stack (if needed)
BL function
; modify stack pointer (if needed)

Listing 1.70: ARM64
MOV X0, 1st argument
MOV X1, 2nd argument
MOV X2, 3rd argument
MOV X3, 4th argument
MOV X4, 5th argument
MOV X5, 6th argument
MOV X6, 7th argument
MOV X7, 8th argument
; pass 9th, 10th argument, etc., in stack (if needed)
BL function
; modify stack pointer (if needed)

Listing 1.71: MIPS (O32 calling convention)
LI $4, 1st argument ; AKA $A0
LI $5, 2nd argument ; AKA $A1
LI $6, 3rd argument ; AKA $A2
LI $7, 4th argument ; AKA $A3

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

87
; pass 5th, 6th argument, etc., in stack (if needed)
LW temp_reg, address of function
JALR temp_reg

1.11.5 By the way
By the way, this difference between the arguments passing in x86, x64, fastcall,
ARM and MIPS is a good illustration of the fact that the CPU is oblivious to how the
arguments are passed to functions. It is also possible to create a compiler that is
able to pass arguments via a special structure without using stack at all.
MIPS $A0…$A3 registers are labeled this way only for convenience (that is in the O32
calling convention). Programmers may use any other register (well, maybe except
$ZERO) to pass data or use any other calling convention.
The CPU is not aware of calling conventions whatsoever.
We may also recall how new coming assembly language programmers passing argu-
ments into other functions: usually via registers, without any explicit order, or even
via global variables. Of course, it works fine.

1.12 scanf()
Now let’s use scanf().

1.12.1 Simple example
#include <stdio.h>

int main()
{

int x;
printf ("Enter X:\n");

scanf ("%d", &x);

printf ("You entered %d...\n", x);

return 0;
};

It’s not clever to use scanf() for user interactions nowadays. But we can, however,
illustrate passing a pointer to a variable of type int.

About pointers

Pointers are one of the fundamental concepts in computer science. Often, passing a
large array, structure or object as an argument to another function is too expensive,

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

88
while passing their address is much cheaper. For example, if you going to print a
text string to console, it’s much easier to pass its address into OS kernel.
In addition if the callee function needs to modify something in the large array or
structure received as a parameter and return back the entire structure then the
situation is close to absurd. So the simplest thing to do is to pass the address of the
array or structure to the callee function, and let it change what needs to be changed.
A pointer in C/C++ is simply an address of some memory location.
In x86, the address is represented as a 32-bit number (i.e., it occupies 4 bytes), while
in x86-64 it is a 64-bit number (occupying 8 bytes). By the way, that is the reason
behind some people’s indignation related to switching to x86-64—all pointers in the
x64-architecture require twice as much space, including cache memory, which is
“expensive” memory.
It is possible to work with untyped pointers only, given some effort; e.g. the standard
C function memcpy(), that copies a block from onememory location to another, takes
2 pointers of type void* as arguments, since it is impossible to predict the type of
the data you would like to copy. Data types are not important, only the block size
matters.
Pointers are also widely used when a function needs to return more than one value
(we are going to get back to this later (3.23 on page 756)).
scanf() function—is such a case.
Besides the fact that the function needs to indicate how many values were success-
fully read, it also needs to return all these values.
In C/C++ the pointer type is only needed for compile-time type checking.
Internally, in the compiled code there is no information about pointer types at all.

x86

MSVC

Here is what we get after compiling with MSVC 2010:
CONST SEGMENT
$SG3831 DB 'Enter X:', 0aH, 00H
$SG3832 DB '%d', 00H
$SG3833 DB 'You entered %d...', 0aH, 00H
CONST ENDS
PUBLIC _main
EXTRN _scanf:PROC
EXTRN _printf:PROC
; Function compile flags: /Odtp
_TEXT SEGMENT
_x$ = -4 ; size = 4
_main PROC

push ebp
mov ebp, esp
push ecx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

89
push OFFSET $SG3831 ; 'Enter X:'
call _printf
add esp, 4
lea eax, DWORD PTR _x$[ebp]
push eax
push OFFSET $SG3832 ; '%d'
call _scanf
add esp, 8
mov ecx, DWORD PTR _x$[ebp]
push ecx
push OFFSET $SG3833 ; 'You entered %d...'
call _printf
add esp, 8

; return 0
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP
_TEXT ENDS

x is a local variable.
According to the C/C++ standard it must be visible only in this function and not from
any other external scope. Traditionally, local variables are stored on the stack. There
are probably other ways to allocate them, but in x86 that is the way it is.
The goal of the instruction following the function prologue, PUSH ECX, is not to save
the ECX state (notice the absence of corresponding POP ECX at the function’s end).
In fact it allocates 4 bytes on the stack for storing the x variable.
x is to be accessed with the assistance of the _x$macro (it equals to -4) and the EBP
register pointing to the current frame.
Over the span of the function’s execution, EBP is pointing to the current stack frame
making it possible to access local variables and function arguments via EBP+offset.
It is also possible to use ESP for the same purpose, although that is not very conve-
nient since it changes frequently. The value of EBP could be perceived as a frozen
state of the value in ESP at the start of the function’s execution.
Here is a typical stack frame layout in 32-bit environment:

… …
EBP-8 local variable #2, marked in IDA as var_8
EBP-4 local variable #1, marked in IDA as var_4
EBP saved value of EBP
EBP+4 return address
EBP+8 argument#1, marked in IDA as arg_0
EBP+0xC argument#2, marked in IDA as arg_4
EBP+0x10 argument#3, marked in IDA as arg_8
… …

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

90
The scanf() function in our example has two arguments.
The first one is a pointer to the string containing %d and the second is the address
of the x variable.
First, the x variable’s address is loaded into the EAX register by the
lea eax, DWORD PTR _x$[ebp] instruction.
LEA stands for load effective address, and is often used for forming an address (.1.6
on page 1299).
We could say that in this case LEA simply stores the sum of the EBP register value
and the _x$ macro in the EAX register.
This is the same as lea eax, [ebp-4].
So, 4 is being subtracted from the EBP register value and the result is loaded in the
EAX register. Next the EAX register value is pushed into the stack and scanf() is
being called.
printf() is being called after that with its first argument — a pointer to the string:
You entered %d...\n.
The second argument is prepared with: mov ecx, [ebp-4]. The instruction stores
the x variable value and not its address, in the ECX register.
Next the value in the ECX is stored on the stack and the last printf() is being called.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

91
MSVC + OllyDbg

Let’s try this example in OllyDbg. Let’s load it and keep pressing F8 (step over) until
we reach our executable file instead of ntdll.dll. Scroll up until main() appears.
Click on the first instruction (PUSH EBP), press F2 (set a breakpoint), then F9 (Run).
The breakpoint will be triggered when main() begins.
Let’s trace to the point where the address of the variable x is calculated:

Figure 1.13: OllyDbg: The address of the local variable is calculated

Right-click the EAX in the registers window and then select “Follow in stack”.
This address will appear in the stack window. The red arrow has been added, point-
ing to the variable in the local stack. At that moment this location contains some
garbage (0x6E494714). Now with the help of PUSH instruction the address of this
stack element is going to be stored to the same stack on the next position. Let’s
trace with F8 until the scanf() execution completes. During the scanf() execution,
we input, for example, 123, in the console window:
Enter X:
123

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

92
scanf() completed its execution already:

Figure 1.14: OllyDbg: scanf() executed

scanf() returns 1 in EAX, which implies that it has read successfully one value. If we
look again at the stack element corresponding to the local variable it now contains
0x7B (123).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

93
Later this value is copied from the stack to the ECX register and passed to printf():

Figure 1.15: OllyDbg: preparing the value for passing to printf()

GCC

Let’s try to compile this code in GCC 4.4.1 under Linux:
main proc near

var_20 = dword ptr -20h
var_1C = dword ptr -1Ch
var_4 = dword ptr -4

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 20h
mov [esp+20h+var_20], offset aEnterX ; "Enter X:"
call _puts
mov eax, offset aD ; "%d"
lea edx, [esp+20h+var_4]
mov [esp+20h+var_1C], edx
mov [esp+20h+var_20], eax
call ___isoc99_scanf
mov edx, [esp+20h+var_4]
mov eax, offset aYouEnteredD___ ; "You entered %d...\n"
mov [esp+20h+var_1C], edx
mov [esp+20h+var_20], eax
call _printf
mov eax, 0
leave

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

94
retn

main endp

GCC has replaced the printf() call with call to puts(). The reason for this was
explained in (1.5.3 on page 28).
As in the MSVC example—the arguments are placed on the stack using the MOV in-
struction.

By the way

This simple example is a demonstration of the fact that the compiler translates a list
of expressions in C/C++-block into a sequential list of instructions. There is nothing
in between expressions in C/C++, and so in the resulting machine code, there are
nothing between, the control flow slips from one expression to the next one.

x64

The picture here is similar with the difference that the registers, rather than the
stack, are used for arguments passing.

MSVC

Listing 1.72: MSVC 2012 x64
_DATA SEGMENT
$SG1289 DB 'Enter X:', 0aH, 00H
$SG1291 DB '%d', 00H
$SG1292 DB 'You entered %d...', 0aH, 00H
_DATA ENDS

_TEXT SEGMENT
x$ = 32
main PROC
$LN3:

sub rsp, 56
lea rcx, OFFSET FLAT:$SG1289 ; 'Enter X:'
call printf
lea rdx, QWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$SG1291 ; '%d'
call scanf
mov edx, DWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$SG1292 ; 'You entered %d...'
call printf

; return 0
xor eax, eax
add rsp, 56
ret 0

main ENDP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

95
_TEXT ENDS

GCC

Listing 1.73: Optimizing GCC 4.4.6 x64
.LC0:

.string "Enter X:"
.LC1:

.string "%d"
.LC2:

.string "You entered %d...\n"

main:
sub rsp, 24
mov edi, OFFSET FLAT:.LC0 ; "Enter X:"
call puts
lea rsi, [rsp+12]
mov edi, OFFSET FLAT:.LC1 ; "%d"
xor eax, eax
call __isoc99_scanf
mov esi, DWORD PTR [rsp+12]
mov edi, OFFSET FLAT:.LC2 ; "You entered %d...\n"
xor eax, eax
call printf

; return 0
xor eax, eax
add rsp, 24
ret

ARM

Optimizing Keil 6/2013 (Thumb mode)

.text:00000042 scanf_main

.text:00000042

.text:00000042 var_8 = -8

.text:00000042

.text:00000042 08 B5 PUSH {R3,LR}

.text:00000044 A9 A0 ADR R0, aEnterX ; "Enter X:\n"

.text:00000046 06 F0 D3 F8 BL __2printf

.text:0000004A 69 46 MOV R1, SP

.text:0000004C AA A0 ADR R0, aD ; "%d"

.text:0000004E 06 F0 CD F8 BL __0scanf

.text:00000052 00 99 LDR R1, [SP,#8+var_8]

.text:00000054 A9 A0 ADR R0, aYouEnteredD___ ; "You entered
%d...\n"

.text:00000056 06 F0 CB F8 BL __2printf

.text:0000005A 00 20 MOVS R0, #0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

96
.text:0000005C 08 BD POP {R3,PC}

In order for scanf() to be able to read item it needs a parameter—pointer to an int.
int is 32-bit, so we need 4 bytes to store it somewhere in memory, and it fits exactly
in a 32-bit register. A place for the local variable x is allocated in the stack and IDA
has named it var_8. It is not necessary, however, to allocate a such since SP (stack
pointer) is already pointing to that space and it can be used directly.
So, SP’s value is copied to the R1 register and, together with the format-string,
passed to scanf().
PUSH/POP instructions behaves differently in ARM than in x86 (it’s the other way
around). They are synonyms to STM/STMDB/LDM/LDMIA instructions. And PUSH in-
struction first writes a value into the stack, and then subtracts SP by 4. POP first
adds 4 to SP, and then reads a value from the stack. Hence, after PUSH, SP points to
an unused space in stack. It is used by scanf(), and by printf() after.
LDMIA means Load Multiple Registers Increment address After each transfer. STMDB
means Store Multiple Registers Decrement address Before each transfer.
Later, with the help of the LDR instruction, this value is moved from the stack to the
R1 register in order to be passed to printf().

ARM64

Listing 1.74: Non-optimizing GCC 4.9.1 ARM64
1 .LC0:
2 .string "Enter X:"
3 .LC1:
4 .string "%d"
5 .LC2:
6 .string "You entered %d...\n"
7 scanf_main:
8 ; subtract 32 from SP, then save FP and LR in stack frame:
9 stp x29, x30, [sp, -32]!
10 ; set stack frame (FP=SP)
11 add x29, sp, 0
12 ; load pointer to the "Enter X:" string:
13 adrp x0, .LC0
14 add x0, x0, :lo12:.LC0
15 ; X0=pointer to the "Enter X:" string
16 ; print it:
17 bl puts
18 ; load pointer to the "%d" string:
19 adrp x0, .LC1
20 add x0, x0, :lo12:.LC1
21 ; find a space in stack frame for "x" variable (X1=FP+28):
22 add x1, x29, 28
23 ; X1=address of "x" variable
24 ; pass the address to scanf() and call it:
25 bl __isoc99_scanf
26 ; load 32-bit value from the variable in stack frame:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

97
27 ldr w1, [x29,28]
28 ; W1=x
29 ; load pointer to the "You entered %d...\n" string
30 ; printf() will take text string from X0 and "x" variable from X1 (or W1)
31 adrp x0, .LC2
32 add x0, x0, :lo12:.LC2
33 bl printf
34 ; return 0
35 mov w0, 0
36 ; restore FP and LR, then add 32 to SP:
37 ldp x29, x30, [sp], 32
38 ret

There is 32 bytes are allocated for stack frame, which is bigger than it needed. Per-
haps some memory aligning issue? The most interesting part is finding space for
the x variable in the stack frame (line 22). Why 28? Somehow, compiler decided
to place this variable at the end of stack frame instead of beginning. The address
is passed to scanf(), which just stores the user input value in the memory at that
address. This is 32-bit value of type int. The value is fetched at line 27 and then
passed to printf().

MIPS

A place in the local stack is allocated for the x variable, and it is to be referred as
$sp+ 24.
Its address is passed to scanf(), and the user input values is loaded using the LW
(“Load Word”) instruction and then passed to printf().

Listing 1.75: Optimizing GCC 4.4.5 (assembly output)
$LC0:

.ascii "Enter X:\000"
$LC1:

.ascii "%d\000"
$LC2:

.ascii "You entered %d...\012\000"
main:
; function prologue:

lui $28,%hi(__gnu_local_gp)
addiu $sp,$sp,-40
addiu $28,$28,%lo(__gnu_local_gp)
sw $31,36($sp)

; call puts():
lw $25,%call16(puts)($28)
lui $4,%hi($LC0)
jalr $25
addiu $4,$4,%lo($LC0) ; branch delay slot

; call scanf():
lw $28,16($sp)
lui $4,%hi($LC1)
lw $25,%call16(__isoc99_scanf)($28)

; set 2nd argument of scanf(), $a1=$sp+24:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

98
addiu $5,$sp,24
jalr $25
addiu $4,$4,%lo($LC1) ; branch delay slot

; call printf():
lw $28,16($sp)

; set 2nd argument of printf(),
; load word at address $sp+24:

lw $5,24($sp)
lw $25,%call16(printf)($28)
lui $4,%hi($LC2)
jalr $25
addiu $4,$4,%lo($LC2) ; branch delay slot

; function epilogue:
lw $31,36($sp)

; set return value to 0:
move $2,$0

; return:
j $31
addiu $sp,$sp,40 ; branch delay slot

IDA displays the stack layout as follows:

Listing 1.76: Optimizing GCC 4.4.5 (IDA)
.text:00000000 main:
.text:00000000
.text:00000000 var_18 = -0x18
.text:00000000 var_10 = -0x10
.text:00000000 var_4 = -4
.text:00000000
; function prologue:
.text:00000000 lui $gp, (__gnu_local_gp >> 16)
.text:00000004 addiu $sp, -0x28
.text:00000008 la $gp, (__gnu_local_gp & 0xFFFF)
.text:0000000C sw $ra, 0x28+var_4($sp)
.text:00000010 sw $gp, 0x28+var_18($sp)
; call puts():
.text:00000014 lw $t9, (puts & 0xFFFF)($gp)
.text:00000018 lui $a0, ($LC0 >> 16) # "Enter X:"
.text:0000001C jalr $t9
.text:00000020 la $a0, ($LC0 & 0xFFFF) # "Enter X:" ; branch

delay slot
; call scanf():
.text:00000024 lw $gp, 0x28+var_18($sp)
.text:00000028 lui $a0, ($LC1 >> 16) # "%d"
.text:0000002C lw $t9, (__isoc99_scanf & 0xFFFF)($gp)
; set 2nd argument of scanf(), $a1=$sp+24:
.text:00000030 addiu $a1, $sp, 0x28+var_10
.text:00000034 jalr $t9 ; branch delay slot
.text:00000038 la $a0, ($LC1 & 0xFFFF) # "%d"
; call printf():
.text:0000003C lw $gp, 0x28+var_18($sp)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

99
; set 2nd argument of printf(),
; load word at address $sp+24:
.text:00000040 lw $a1, 0x28+var_10($sp)
.text:00000044 lw $t9, (printf & 0xFFFF)($gp)
.text:00000048 lui $a0, ($LC2 >> 16) # "You entered %d...\n"
.text:0000004C jalr $t9
.text:00000050 la $a0, ($LC2 & 0xFFFF) # "You entered %d...\n"

; branch delay slot
; function epilogue:
.text:00000054 lw $ra, 0x28+var_4($sp)
; set return value to 0:
.text:00000058 move $v0, $zero
; return:
.text:0000005C jr $ra
.text:00000060 addiu $sp, 0x28 ; branch delay slot

1.12.2 The classic mistake
It’s a very popular mistake (and/or typo) to pass a value of x instead of pointer to x:
#include <stdio.h>

int main()
{

int x;
printf ("Enter X:\n");

scanf ("%d", x); // BUG

printf ("You entered %d...\n", x);

return 0;
};

So what happens here? x is not initialized and contains some random noise from
local stack. When scanf() called, it takes string from user, parses it into number
and tries to write it into x, treating it as an address in memory. But there is a random
noise, so scanf() will try to write at random address. Most likely, the process will
crash.
Interestingly enough, some CRT libraries in debug build, put visually distinctive pat-
terns into memory just allocated, like 0xCCCCCCCC or 0x0BADF00D and so on. In
this case, x may contain 0xCCCCCCCC, and scanf() would try to write at address
0xCCCCCCCC. And if you’ll notice that something in your process tries to write at
address 0xCCCCCCCC, you’ll know that uninitialized variable (or pointer) gets used
without prior initialization. This is better than as if newly allocated memory is just
cleared by zero bytes.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

100
1.12.3 Global variables
What if the x variable from the previous example isn’t local but a global one? Then it
would have been accessible from any point, not only from the function body. Global
variables are considered anti-pattern, but for the sake of the experiment, we could
do this.
#include <stdio.h>

// now x is global variable
int x;

int main()
{

printf ("Enter X:\n");

scanf ("%d", &x);

printf ("You entered %d...\n", x);

return 0;
};

MSVC: x86

_DATA SEGMENT
COMM _x:DWORD
$SG2456 DB 'Enter X:', 0aH, 00H
$SG2457 DB '%d', 00H
$SG2458 DB 'You entered %d...', 0aH, 00H
_DATA ENDS
PUBLIC _main
EXTRN _scanf:PROC
EXTRN _printf:PROC
; Function compile flags: /Odtp
_TEXT SEGMENT
_main PROC

push ebp
mov ebp, esp
push OFFSET $SG2456
call _printf
add esp, 4
push OFFSET _x
push OFFSET $SG2457
call _scanf
add esp, 8
mov eax, DWORD PTR _x
push eax
push OFFSET $SG2458
call _printf
add esp, 8
xor eax, eax
pop ebp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

101
ret 0

_main ENDP
_TEXT ENDS

In this case the x variable is defined in the _DATA segment and no memory is allo-
cated in the local stack. It is accessed directly, not through the stack. Uninitialized
global variables take no space in the executable file (indeed, why one needs to al-
locate space for variables initially set to zero?), but when someone accesses their
address, the OS will allocate a block of zeros there72.
Now let’s explicitly assign a value to the variable:
int x=10; // default value

We got:
_DATA SEGMENT
_x DD 0aH

...

Here we see a value 0xA of DWORD type (DD stands for DWORD = 32 bit) for this
variable.
If you open the compiled .exe in IDA, you can see the x variable placed at the begin-
ning of the _DATA segment, and after it you can see text strings.
If you open the compiled .exe from the previous example in IDA, where the value of
x hasn’t been set, you would see something like this:

Listing 1.77: IDA
.data:0040FA80 _x dd ? ; DATA XREF: _main+10
.data:0040FA80 ; _main+22
.data:0040FA84 dword_40FA84 dd ? ; DATA XREF: _memset+1E
.data:0040FA84 ; unknown_libname_1+28
.data:0040FA88 dword_40FA88 dd ? ; DATA XREF: ___sbh_find_block+5
.data:0040FA88 ; ___sbh_free_block+2BC
.data:0040FA8C ; LPVOID lpMem
.data:0040FA8C lpMem dd ? ; DATA XREF: ___sbh_find_block+B
.data:0040FA8C ; ___sbh_free_block+2CA
.data:0040FA90 dword_40FA90 dd ? ; DATA XREF: _V6_HeapAlloc+13
.data:0040FA90 ; __calloc_impl+72
.data:0040FA94 dword_40FA94 dd ? ; DATA XREF: ___sbh_free_block+2FE

_x is marked with ? with the rest of the variables that do not need to be initialized.
This implies that after loading the .exe to the memory, a space for all these vari-
ables is to be allocated and filled with zeros [ISO/IEC 9899:TC3 (C C99 standard),
(2007)6.7.8p10]. But in the .exe file these uninitialized variables do not occupy any-
thing. This is convenient for large arrays, for example.

72That is how a VM behaves

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

102
MSVC: x86 + OllyDbg

Things are even simpler here:

Figure 1.16: OllyDbg: after scanf() execution

The variable is located in the data segment. After the PUSH instruction (pushing the
address of x) gets executed, the address appears in the stack window. Right-click
on that row and select “Follow in dump”. The variable will appear in the memory
window on the left. After we have entered 123 in the console, 0x7B appears in the
memory window (see the highlighted screenshot regions).
But why is the first byte 7B? Thinking logically, 00 00 00 7B must be there. The
cause for this is referred as endianness, and x86 uses little-endian. This implies that
the lowest byte is written first, and the highest written last. Read more about it at:
2.2 on page 572. Back to the example, the 32-bit value is loaded from this memory
address into EAX and passed to printf().
The memory address of x is 0x00C53394.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

103
In OllyDbg we can review the process memory map (Alt-M) and we can see that this
address is inside the .data PE-segment of our program:

Figure 1.17: OllyDbg: process memory map

GCC: x86

The picture in Linux is near the same, with the difference that the uninitialized vari-
ables are located in the _bss segment. In ELF73 file this segment has the following
attributes:
; Segment type: Uninitialized
; Segment permissions: Read/Write

If you, however, initialize the variable with some value e.g. 10, it is to be placed in
the _data segment, which has the following attributes:
; Segment type: Pure data
; Segment permissions: Read/Write

MSVC: x64
73 Executable and Linkable Format: Executable File format widely used in *NIX systems including Linux

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

104
Listing 1.78: MSVC 2012 x64

_DATA SEGMENT
COMM x:DWORD
$SG2924 DB 'Enter X:', 0aH, 00H
$SG2925 DB '%d', 00H
$SG2926 DB 'You entered %d...', 0aH, 00H
_DATA ENDS

_TEXT SEGMENT
main PROC
$LN3:

sub rsp, 40

lea rcx, OFFSET FLAT:$SG2924 ; 'Enter X:'
call printf
lea rdx, OFFSET FLAT:x
lea rcx, OFFSET FLAT:$SG2925 ; '%d'
call scanf
mov edx, DWORD PTR x
lea rcx, OFFSET FLAT:$SG2926 ; 'You entered %d...'
call printf

; return 0
xor eax, eax

add rsp, 40
ret 0

main ENDP
_TEXT ENDS

The code is almost the same as in x86. Please note that the address of the x variable
is passed to scanf() using a LEA instruction, while the variable’s value is passed to
the second printf() using a MOV instruction. DWORD PTR—is a part of the assembly
language (no relation to the machine code), indicating that the variable data size is
32-bit and the MOV instruction has to be encoded accordingly.

ARM: Optimizing Keil 6/2013 (Thumb mode)

Listing 1.79: IDA
.text:00000000 ; Segment type: Pure code
.text:00000000 AREA .text, CODE
...
.text:00000000 main
.text:00000000 PUSH {R4,LR}
.text:00000002 ADR R0, aEnterX ; "Enter X:\n"
.text:00000004 BL __2printf
.text:00000008 LDR R1, =x
.text:0000000A ADR R0, aD ; "%d"
.text:0000000C BL __0scanf
.text:00000010 LDR R0, =x
.text:00000012 LDR R1, [R0]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

105
.text:00000014 ADR R0, aYouEnteredD___ ; "You entered %d...\n"
.text:00000016 BL __2printf
.text:0000001A MOVS R0, #0
.text:0000001C POP {R4,PC}
...
.text:00000020 aEnterX DCB "Enter X:",0xA,0 ; DATA XREF: main+2
.text:0000002A DCB 0
.text:0000002B DCB 0
.text:0000002C off_2C DCD x ; DATA XREF: main+8
.text:0000002C ; main+10
.text:00000030 aD DCB "%d",0 ; DATA XREF: main+A
.text:00000033 DCB 0
.text:00000034 aYouEnteredD___ DCB "You entered %d...",0xA,0 ; DATA XREF:

main+14
.text:00000047 DCB 0
.text:00000047 ; .text ends
.text:00000047
...
.data:00000048 ; Segment type: Pure data
.data:00000048 AREA .data, DATA
.data:00000048 ; ORG 0x48
.data:00000048 EXPORT x
.data:00000048 x DCD 0xA ; DATA XREF: main+8
.data:00000048 ; main+10
.data:00000048 ; .data ends

So, the x variable is now global and for this reason located in another segment,
namely the data segment (.data). One could ask, why are the text strings located
in the code segment (.text) and x is located right here? Because it is a variable and
by definition its value could change. Moreover it could possibly change often. While
text strings has constant type, they will not be changed, so they are located in the
.text segment.
The code segment might sometimes be located in a ROM74 chip (keep in mind, we
now deal with embedded microelectronics, and memory scarcity is common here),
and changeable variables —in RAM75.
It is not very economical to store constant variables in RAM when you have ROM.
Furthermore, constant variables in RAM must be initialized, because after powering
on, the RAM, obviously, contains random information.
Moving forward, we see a pointer to the x (off_2C) variable in the code segment,
and that all operations with the variable occur via this pointer.
That is because the x variable could be located somewhere far from this particular
code fragment, so its address must be saved somewhere in close proximity to the
code.
The LDR instruction in Thumb mode can only address variables in a range of 1020
bytes from its location,
74Read-Only Memory
75Random-Access Memory

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

106
and in ARM-mode —variables in range of ±4095 bytes.
And so the address of the x variable must be located somewhere in close proximity,
because there is no guarantee that the linker would be able to accommodate the
variable somewhere nearby the code, it may well be even in an external memory
chip!
One more thing: if a variable is declared as const, the Keil compiler allocates it in
the .constdata segment.
Perhaps thereafter, the linker could place this segment in ROM too, along with the
code segment.

ARM64

Listing 1.80: Non-optimizing GCC 4.9.1 ARM64
1 .comm x,4,4
2 .LC0:
3 .string "Enter X:"
4 .LC1:
5 .string "%d"
6 .LC2:
7 .string "You entered %d...\n"
8 f5:
9 ; save FP and LR in stack frame:
10 stp x29, x30, [sp, -16]!
11 ; set stack frame (FP=SP)
12 add x29, sp, 0
13 ; load pointer to the "Enter X:" string:
14 adrp x0, .LC0
15 add x0, x0, :lo12:.LC0
16 bl puts
17 ; load pointer to the "%d" string:
18 adrp x0, .LC1
19 add x0, x0, :lo12:.LC1
20 ; form address of x global variable:
21 adrp x1, x
22 add x1, x1, :lo12:x
23 bl __isoc99_scanf
24 ; form address of x global variable again:
25 adrp x0, x
26 add x0, x0, :lo12:x
27 ; load value from memory at this address:
28 ldr w1, [x0]
29 ; load pointer to the "You entered %d...\n" string:
30 adrp x0, .LC2
31 add x0, x0, :lo12:.LC2
32 bl printf
33 ; return 0
34 mov w0, 0
35 ; restore FP and LR:
36 ldp x29, x30, [sp], 16
37 ret

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

107
In this case the x variable is declared as global and its address is calculated using
the ADRP/ADD instruction pair (lines 21 and 25).

MIPS

Uninitialized global variable

So now the x variable is global. Let’s compile to executable file rather than object file
and load it into IDA. IDA displays the x variable in the .sbss ELF section (remember
the “Global Pointer”? 1.5.4 on page 33), since the variable is not initialized at the
start.

Listing 1.81: Optimizing GCC 4.4.5 (IDA)
.text:004006C0 main:
.text:004006C0
.text:004006C0 var_10 = -0x10
.text:004006C0 var_4 = -4
.text:004006C0
; function prologue:
.text:004006C0 lui $gp, 0x42
.text:004006C4 addiu $sp, -0x20
.text:004006C8 li $gp, 0x418940
.text:004006CC sw $ra, 0x20+var_4($sp)
.text:004006D0 sw $gp, 0x20+var_10($sp)
; call puts():
.text:004006D4 la $t9, puts
.text:004006D8 lui $a0, 0x40
.text:004006DC jalr $t9 ; puts
.text:004006E0 la $a0, aEnterX # "Enter X:" ; branch delay

slot
; call scanf():
.text:004006E4 lw $gp, 0x20+var_10($sp)
.text:004006E8 lui $a0, 0x40
.text:004006EC la $t9, __isoc99_scanf
; prepare address of x:
.text:004006F0 la $a1, x
.text:004006F4 jalr $t9 ; __isoc99_scanf
.text:004006F8 la $a0, aD # "%d" ; branch delay slot
; call printf():
.text:004006FC lw $gp, 0x20+var_10($sp)
.text:00400700 lui $a0, 0x40
; get address of x:
.text:00400704 la $v0, x
.text:00400708 la $t9, printf
; load value from "x" variable and pass it to printf() in $a1:
.text:0040070C lw $a1, (x - 0x41099C)($v0)
.text:00400710 jalr $t9 ; printf
.text:00400714 la $a0, aYouEnteredD___ # "You entered %d...\n"

; branch delay slot
; function epilogue:
.text:00400718 lw $ra, 0x20+var_4($sp)
.text:0040071C move $v0, $zero

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

108
.text:00400720 jr $ra
.text:00400724 addiu $sp, 0x20 ; branch delay slot

...

.sbss:0041099C # Segment type: Uninitialized

.sbss:0041099C .sbss

.sbss:0041099C .globl x

.sbss:0041099C x: .space 4

.sbss:0041099C

IDA reduces the amount of information, so we’ll also do a listing using objdump and
comment it:

Listing 1.82: Optimizing GCC 4.4.5 (objdump)
1 004006c0 <main>:
2 ; function prologue:
3 4006c0: 3c1c0042 lui gp,0x42
4 4006c4: 27bdffe0 addiu sp,sp,-32
5 4006c8: 279c8940 addiu gp,gp,-30400
6 4006cc: afbf001c sw ra,28(sp)
7 4006d0: afbc0010 sw gp,16(sp)
8 ; call puts():
9 4006d4: 8f998034 lw t9,-32716(gp)
10 4006d8: 3c040040 lui a0,0x40
11 4006dc: 0320f809 jalr t9
12 4006e0: 248408f0 addiu a0,a0,2288 ; branch delay slot
13 ; call scanf():
14 4006e4: 8fbc0010 lw gp,16(sp)
15 4006e8: 3c040040 lui a0,0x40
16 4006ec: 8f998038 lw t9,-32712(gp)
17 ; prepare address of x:
18 4006f0: 8f858044 lw a1,-32700(gp)
19 4006f4: 0320f809 jalr t9
20 4006f8: 248408fc addiu a0,a0,2300 ; branch delay slot
21 ; call printf():
22 4006fc: 8fbc0010 lw gp,16(sp)
23 400700: 3c040040 lui a0,0x40
24 ; get address of x:
25 400704: 8f828044 lw v0,-32700(gp)
26 400708: 8f99803c lw t9,-32708(gp)
27 ; load value from "x" variable and pass it to printf() in $a1:
28 40070c: 8c450000 lw a1,0(v0)
29 400710: 0320f809 jalr t9
30 400714: 24840900 addiu a0,a0,2304 ; branch delay slot
31 ; function epilogue:
32 400718: 8fbf001c lw ra,28(sp)
33 40071c: 00001021 move v0,zero
34 400720: 03e00008 jr ra
35 400724: 27bd0020 addiu sp,sp,32 ; branch delay slot
36 ; pack of NOPs used for aligning next function start on 16-byte boundary:
37 400728: 00200825 move at,at
38 40072c: 00200825 move at,at

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

109
Now we see the x variable address is read from a 64KiB data buffer using GP and
adding negative offset to it (line 18). More than that, the addresses of the three
external functions which are used in our example (puts(), scanf(), printf()), are
also read from the 64KiB global data buffer using GP (lines 9, 16 and 26). GP points to
the middle of the buffer, and such offset suggests that all three function’s addresses,
and also the address of the x variable, are all stored somewhere at the beginning of
that buffer. That make sense, because our example is tiny.
Another thing worthmentioning is that the function ends with two NOPs (MOVE $AT,$AT
— an idle instruction), in order to align next function’s start on 16-byte boundary.

Initialized global variable

Let’s alter our example by giving the x variable a default value:
int x=10; // default value

Now IDA shows that the x variable is residing in the .data section:

Listing 1.83: Optimizing GCC 4.4.5 (IDA)
.text:004006A0 main:
.text:004006A0
.text:004006A0 var_10 = -0x10
.text:004006A0 var_8 = -8
.text:004006A0 var_4 = -4
.text:004006A0
.text:004006A0 lui $gp, 0x42
.text:004006A4 addiu $sp, -0x20
.text:004006A8 li $gp, 0x418930
.text:004006AC sw $ra, 0x20+var_4($sp)
.text:004006B0 sw $s0, 0x20+var_8($sp)
.text:004006B4 sw $gp, 0x20+var_10($sp)
.text:004006B8 la $t9, puts
.text:004006BC lui $a0, 0x40
.text:004006C0 jalr $t9 ; puts
.text:004006C4 la $a0, aEnterX # "Enter X:"
.text:004006C8 lw $gp, 0x20+var_10($sp)
; prepare high part of x address:
.text:004006CC lui $s0, 0x41
.text:004006D0 la $t9, __isoc99_scanf
.text:004006D4 lui $a0, 0x40
; add low part of x address:
.text:004006D8 addiu $a1, $s0, (x - 0x410000)
; now address of x is in $a1.
.text:004006DC jalr $t9 ; __isoc99_scanf
.text:004006E0 la $a0, aD # "%d"
.text:004006E4 lw $gp, 0x20+var_10($sp)
; get a word from memory:
.text:004006E8 lw $a1, x
; value of x is now in $a1.
.text:004006EC la $t9, printf
.text:004006F0 lui $a0, 0x40

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

110
.text:004006F4 jalr $t9 ; printf
.text:004006F8 la $a0, aYouEnteredD___ # "You entered %d...\n"
.text:004006FC lw $ra, 0x20+var_4($sp)
.text:00400700 move $v0, $zero
.text:00400704 lw $s0, 0x20+var_8($sp)
.text:00400708 jr $ra
.text:0040070C addiu $sp, 0x20

...

.data:00410920 .globl x

.data:00410920 x: .word 0xA

Why not .sdata? Perhaps that this depends on some GCC option?
Nevertheless, now x is in .data, which is a general memory area, and we can take a
look how to work with variables there.
The variable’s address must be formed using a pair of instructions.
In our case those are LUI (“Load Upper Immediate”) and ADDIU (“Add Immediate
Unsigned Word”).
Here is also the objdump listing for close inspection:

Listing 1.84: Optimizing GCC 4.4.5 (objdump)
004006a0 <main>:

4006a0: 3c1c0042 lui gp,0x42
4006a4: 27bdffe0 addiu sp,sp,-32
4006a8: 279c8930 addiu gp,gp,-30416
4006ac: afbf001c sw ra,28(sp)
4006b0: afb00018 sw s0,24(sp)
4006b4: afbc0010 sw gp,16(sp)
4006b8: 8f998034 lw t9,-32716(gp)
4006bc: 3c040040 lui a0,0x40
4006c0: 0320f809 jalr t9
4006c4: 248408d0 addiu a0,a0,2256
4006c8: 8fbc0010 lw gp,16(sp)

; prepare high part of x address:
4006cc: 3c100041 lui s0,0x41
4006d0: 8f998038 lw t9,-32712(gp)
4006d4: 3c040040 lui a0,0x40

; add low part of x address:
4006d8: 26050920 addiu a1,s0,2336

; now address of x is in $a1.
4006dc: 0320f809 jalr t9
4006e0: 248408dc addiu a0,a0,2268
4006e4: 8fbc0010 lw gp,16(sp)

; high part of x address is still in $s0.
; add low part to it and load a word from memory:

4006e8: 8e050920 lw a1,2336(s0)
; value of x is now in $a1.

4006ec: 8f99803c lw t9,-32708(gp)
4006f0: 3c040040 lui a0,0x40

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

111
4006f4: 0320f809 jalr t9
4006f8: 248408e0 addiu a0,a0,2272
4006fc: 8fbf001c lw ra,28(sp)
400700: 00001021 move v0,zero
400704: 8fb00018 lw s0,24(sp)
400708: 03e00008 jr ra
40070c: 27bd0020 addiu sp,sp,32

We see that the address is formed using LUI and ADDIU, but the high part of address
is still in the $S0 register, and it is possible to encode the offset in a LW (“Load Word”)
instruction, so one single LW is enough to load a value from the variable and pass it
to printf().
Registers holding temporary data are prefixed with T-, but here we also see some pre-
fixed with S-, the contents of which must be preserved before use in other functions
(i.e., saved somewhere).
That is why the value of $S0 has been set at address 0x4006cc and has been used
again at address 0x4006e8, after the scanf() call. The scanf() function does not
change its value.

1.12.4 scanf()
As was noted before, it is slightly old-fashioned to use scanf() today. But if we have
to, we have to check if scanf() finishes correctly without an error.
#include <stdio.h>

int main()
{

int x;
printf ("Enter X:\n");

if (scanf ("%d", &x)==1)
printf ("You entered %d...\n", x);

else
printf ("What you entered? Huh?\n");

return 0;
};

By standard, the scanf()76 function returns the number of fields it has successfully
read.
In our case, if everything goes fine and the user enters a number scanf() returns 1,
or in case of error (or EOF77) — 0.
Let’s add some C code to check the scanf() return value and print error message
in case of an error.
This works as expected:
76scanf, wscanf: MSDN
77End of File

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/scanf-scanf-l-wscanf-wscanf-l?view=vs-2019
https://yurichev.com/contact.html
https://yurichev.com/contact.html

112

C:\...>ex3.exe
Enter X:
123
You entered 123...

C:\...>ex3.exe
Enter X:
ouch
What you entered? Huh?

MSVC: x86

Here is what we get in the assembly output (MSVC 2010):
lea eax, DWORD PTR _x$[ebp]
push eax
push OFFSET $SG3833 ; '%d', 00H
call _scanf
add esp, 8
cmp eax, 1
jne SHORT $LN2@main
mov ecx, DWORD PTR _x$[ebp]
push ecx
push OFFSET $SG3834 ; 'You entered %d...', 0aH, 00H
call _printf
add esp, 8
jmp SHORT $LN1@main

$LN2@main:
push OFFSET $SG3836 ; 'What you entered? Huh?', 0aH, 00H
call _printf
add esp, 4

$LN1@main:
xor eax, eax

The caller function (main()) needs the callee function (scanf()) result, so the callee
returns it in the EAX register.
We check it with the help of the instruction CMP EAX, 1 (CoMPare). In other words,
we compare the value in the EAX register with 1.
A JNE conditional jump follows the CMP instruction. JNE stands for Jump if Not Equal.
So, if the value in the EAX register is not equal to 1, the CPU will pass the execution
to the address mentioned in the JNE operand, in our case $LN2@main. Passing the
control to this address results in the CPU executing printf() with the argument
What you entered? Huh?. But if everything is fine, the conditional jump is not be
taken, and another printf() call is to be executed, with two arguments:
'You entered %d...' and the value of x.
Since in this case the second printf() has not to be executed, there is a JMP pre-
ceding it (unconditional jump). It passes the control to the point after the second

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

113
printf() and just before the XOR EAX, EAX instruction, which implements return
0.
So, it could be said that comparing a value with another is usually implemented by
CMP/Jcc instruction pair, where cc is condition code. CMP compares two values and
sets processor flags78. Jcc checks those flags and decides to either pass the control
to the specified address or not.
This could sound paradoxical, but the CMP instruction is in fact SUB (subtract). All
arithmetic instructions set processor flags, not just CMP. If we compare 1 and 1, 1 − 1
is 0 so the ZF flag would be set (meaning that the last result is 0). In no other
circumstances ZF can be set, except when the operands are equal. JNE checks only
the ZF flag and jumps only if it is not set. JNE is in fact a synonym for JNZ (Jump if
Not Zero). Assembler translates both JNE and JNZ instructions into the same opcode.
So, the CMP instruction can be replaced with a SUB instruction and almost everything
will be fine, with the difference that SUB alters the value of the first operand. CMP is
SUB without saving the result, but affecting flags.

MSVC: x86: IDA

It is time to run IDA and try to do something in it. By the way, for beginners it is good
idea to use /MD option in MSVC, which means that all these standard functions are
not be linked with the executable file, but are to be imported from the MSVCR*.DLL
file instead. Thus it will be easier to see which standard function are used and where.
While analyzing code in IDA, it is very helpful to leave notes for oneself (and others).
In instance, analyzing this example, we see that JNZ is to be triggered in case of an
error. So it is possible to move the cursor to the label, press “n” and rename it to
“error”. Create another label—into “exit”. Here is my result:
.text:00401000 _main proc near
.text:00401000
.text:00401000 var_4 = dword ptr -4
.text:00401000 argc = dword ptr 8
.text:00401000 argv = dword ptr 0Ch
.text:00401000 envp = dword ptr 10h
.text:00401000
.text:00401000 push ebp
.text:00401001 mov ebp, esp
.text:00401003 push ecx
.text:00401004 push offset Format ; "Enter X:\n"
.text:00401009 call ds:printf
.text:0040100F add esp, 4
.text:00401012 lea eax, [ebp+var_4]
.text:00401015 push eax
.text:00401016 push offset aD ; "%d"
.text:0040101B call ds:scanf
.text:00401021 add esp, 8
.text:00401024 cmp eax, 1
.text:00401027 jnz short error
.text:00401029 mov ecx, [ebp+var_4]

78x86 flags, see also: wikipedia.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://en.wikipedia.org/wiki/FLAGS_register_(computing)
https://yurichev.com/contact.html
https://yurichev.com/contact.html

114
.text:0040102C push ecx
.text:0040102D push offset aYou ; "You entered %d...\n"
.text:00401032 call ds:printf
.text:00401038 add esp, 8
.text:0040103B jmp short exit
.text:0040103D
.text:0040103D error: ; CODE XREF: _main+27
.text:0040103D push offset aWhat ; "What you entered? Huh?\n"
.text:00401042 call ds:printf
.text:00401048 add esp, 4
.text:0040104B
.text:0040104B exit: ; CODE XREF: _main+3B
.text:0040104B xor eax, eax
.text:0040104D mov esp, ebp
.text:0040104F pop ebp
.text:00401050 retn
.text:00401050 _main endp

Now it is slightly easier to understand the code. However, it is not a good idea to
comment on every instruction.
You could also hide(collapse) parts of a function in IDA. To do that mark the block,
then press Ctrl-“–” on the numerical pad and enter the text to be displayed instead.
Let’s hide two blocks and give them names:
.text:00401000 _text segment para public 'CODE' use32
.text:00401000 assume cs:_text
.text:00401000 ;org 401000h
.text:00401000 ; ask for X
.text:00401012 ; get X
.text:00401024 cmp eax, 1
.text:00401027 jnz short error
.text:00401029 ; print result
.text:0040103B jmp short exit
.text:0040103D
.text:0040103D error: ; CODE XREF: _main+27
.text:0040103D push offset aWhat ; "What you entered? Huh?\n"
.text:00401042 call ds:printf
.text:00401048 add esp, 4
.text:0040104B
.text:0040104B exit: ; CODE XREF: _main+3B
.text:0040104B xor eax, eax
.text:0040104D mov esp, ebp
.text:0040104F pop ebp
.text:00401050 retn
.text:00401050 _main endp

To expand previously collapsed parts of the code, use Ctrl-“+” on the numerical pad.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

115
By pressing “space”, we can see how IDA represents a function as a graph:

Figure 1.18: Graph mode in IDA

There are two arrows after each conditional jump: green and red. The green arrow
points to the block which executes if the jump is triggered, and red if otherwise.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

116
It is possible to fold nodes in this mode and give them names as well (“group nodes”).
Let’s do it for 3 blocks:

Figure 1.19: Graph mode in IDA with 3 nodes folded

That is very useful. It could be said that a very important part of the reverse engi-
neers’ job (and any other researcher as well) is to reduce the amount of information
they deal with.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

117
MSVC: x86 + OllyDbg

Let’s try to hack our program in OllyDbg, forcing it to think scanf() always works
without error. When an address of a local variable is passed into scanf(), the vari-
able initially contains some random garbage, in this case 0x6E494714:

Figure 1.20: OllyDbg: passing variable address into scanf()

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

118
While scanf() executes, in the console we enter something that is definitely not a
number, like “asdasd”. scanf() finishes with 0 in EAX, which indicates that an error
has occurred.
We can also check the local variable in the stack and note that it has not changed.
Indeed, what would scanf() write there? It simply did nothing except returning zero.
Let’s try to “hack” our program. Right-click on EAX, Among the options there is “Set
to 1”. This is what we need.
We now have 1 in EAX, so the following check is to be executed as intended, and
printf() will print the value of the variable in the stack.
When we run the program (F9) we can see the following in the console window:

Listing 1.85: console window
Enter X:
asdasd
You entered 1850296084...

Indeed, 1850296084 is a decimal representation of the number in the stack (0x6E494714)!

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

119
MSVC: x86 + Hiew

This can also be used as a simple example of executable file patching. We may try to
patch the executable so the program would always print the input, no matter what
we enter.
Assuming that the executable is compiled against external MSVCR*.DLL (i.e., with /MD
option) 79, we see the main() function at the beginning of the .text section. Let’s
open the executable in Hiew and find the beginning of the .text section (Enter, F8,
F6, Enter, Enter).
We can see this:

Figure 1.21: Hiew: main() function

Hiew finds ASCIIZ80 strings and displays them, as it does with the imported functions’
names.

79that’s what also called “dynamic linking”
80ASCII Zero (null-terminated ASCII string)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

120
Move the cursor to address .00401027 (where the JNZ instruction, we have to bypass,
is located), press F3, and then type “9090” (meaning two NOPs):

Figure 1.22: Hiew: replacing JNZ with two NOPs

Then press F9 (update). Now the executable is saved to the disk. It will behave as
we wanted.
Two NOPs are probably not the most æsthetic approach. Another way to patch this
instruction is to write just 0 to the second byte of opcode (jump offset), so that JNZ
will always jump to the next instruction.
We could also do the opposite: replace first byte with EB while not touching the sec-
ond byte (jump offset). We would get an unconditional jump that is always triggered.
In this case the error message would be printed every time, no matter the input.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

121
MSVC: x64

Since we work here with int-typed variables, which are still 32-bit in x86-64, we see
how the 32-bit part of the registers (prefixed with E-) are used here as well. While
working with pointers, however, 64-bit register parts are used, prefixed with R-.

Listing 1.86: MSVC 2012 x64
_DATA SEGMENT
$SG2924 DB 'Enter X:', 0aH, 00H
$SG2926 DB '%d', 00H
$SG2927 DB 'You entered %d...', 0aH, 00H
$SG2929 DB 'What you entered? Huh?', 0aH, 00H
_DATA ENDS

_TEXT SEGMENT
x$ = 32
main PROC
$LN5:

sub rsp, 56
lea rcx, OFFSET FLAT:$SG2924 ; 'Enter X:'
call printf
lea rdx, QWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$SG2926 ; '%d'
call scanf
cmp eax, 1
jne SHORT $LN2@main
mov edx, DWORD PTR x$[rsp]
lea rcx, OFFSET FLAT:$SG2927 ; 'You entered %d...'
call printf
jmp SHORT $LN1@main

$LN2@main:
lea rcx, OFFSET FLAT:$SG2929 ; 'What you entered? Huh?'
call printf

$LN1@main:
; return 0
xor eax, eax
add rsp, 56
ret 0

main ENDP
_TEXT ENDS
END

ARM

ARM: Optimizing Keil 6/2013 (Thumb mode)

Listing 1.87: Optimizing Keil 6/2013 (Thumb mode)
var_8 = -8

PUSH {R3,LR}
ADR R0, aEnterX ; "Enter X:\n"

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

122
BL __2printf
MOV R1, SP
ADR R0, aD ; "%d"
BL __0scanf
CMP R0, #1
BEQ loc_1E
ADR R0, aWhatYouEntered ; "What you entered? Huh?\n"
BL __2printf

loc_1A ; CODE XREF: main+26
MOVS R0, #0
POP {R3,PC}

loc_1E ; CODE XREF: main+12
LDR R1, [SP,#8+var_8]
ADR R0, aYouEnteredD___ ; "You entered %d...\n"
BL __2printf
B loc_1A

The new instructions here are CMP and BEQ81.
CMP is analogous to the x86 instruction with the same name, it subtracts one of the
arguments from the other and updates the conditional flags if needed.
BEQ jumps to another address if the operands were equal to each other, or, if the
result of the last computation has been 0, or if the Z flag is 1. It behaves as JZ in
x86.
Everything else is simple: the execution flow forks in two branches, then the branches
converge at the point where 0 is written into the R0 as a function return value, and
then the function ends.

ARM64

Listing 1.88: Non-optimizing GCC 4.9.1 ARM64
1 .LC0:
2 .string "Enter X:"
3 .LC1:
4 .string "%d"
5 .LC2:
6 .string "You entered %d...\n"
7 .LC3:
8 .string "What you entered? Huh?"
9 f6:
10 ; save FP and LR in stack frame:
11 stp x29, x30, [sp, -32]!
12 ; set stack frame (FP=SP)
13 add x29, sp, 0
14 ; load pointer to the "Enter X:" string:
15 adrp x0, .LC0

81(PowerPC, ARM) Branch if Equal

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

123
16 add x0, x0, :lo12:.LC0
17 bl puts
18 ; load pointer to the "%d" string:
19 adrp x0, .LC1
20 add x0, x0, :lo12:.LC1
21 ; calculate address of x variable in the local stack
22 add x1, x29, 28
23 bl __isoc99_scanf
24 ; scanf() returned result in W0.
25 ; check it:
26 cmp w0, 1
27 ; BNE is Branch if Not Equal
28 ; so if W0<>1, jump to L2 will be occurred
29 bne .L2
30 ; at this moment W0=1, meaning no error
31 ; load x value from the local stack
32 ldr w1, [x29,28]
33 ; load pointer to the "You entered %d...\n" string:
34 adrp x0, .LC2
35 add x0, x0, :lo12:.LC2
36 bl printf
37 ; skip the code, which print the "What you entered? Huh?" string:
38 b .L3
39 .L2:
40 ; load pointer to the "What you entered? Huh?" string:
41 adrp x0, .LC3
42 add x0, x0, :lo12:.LC3
43 bl puts
44 .L3:
45 ; return 0
46 mov w0, 0
47 ; restore FP and LR:
48 ldp x29, x30, [sp], 32
49 ret

Code flow in this case forks with the use of CMP/BNE (Branch if Not Equal) instructions
pair.

MIPS

Listing 1.89: Optimizing GCC 4.4.5 (IDA)
.text:004006A0 main:
.text:004006A0
.text:004006A0 var_18 = -0x18
.text:004006A0 var_10 = -0x10
.text:004006A0 var_4 = -4
.text:004006A0
.text:004006A0 lui $gp, 0x42
.text:004006A4 addiu $sp, -0x28
.text:004006A8 li $gp, 0x418960
.text:004006AC sw $ra, 0x28+var_4($sp)
.text:004006B0 sw $gp, 0x28+var_18($sp)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

124
.text:004006B4 la $t9, puts
.text:004006B8 lui $a0, 0x40
.text:004006BC jalr $t9 ; puts
.text:004006C0 la $a0, aEnterX # "Enter X:"
.text:004006C4 lw $gp, 0x28+var_18($sp)
.text:004006C8 lui $a0, 0x40
.text:004006CC la $t9, __isoc99_scanf
.text:004006D0 la $a0, aD # "%d"
.text:004006D4 jalr $t9 ; __isoc99_scanf
.text:004006D8 addiu $a1, $sp, 0x28+var_10 # branch delay slot
.text:004006DC li $v1, 1
.text:004006E0 lw $gp, 0x28+var_18($sp)
.text:004006E4 beq $v0, $v1, loc_40070C
.text:004006E8 or $at, $zero # branch delay slot, NOP
.text:004006EC la $t9, puts
.text:004006F0 lui $a0, 0x40
.text:004006F4 jalr $t9 ; puts
.text:004006F8 la $a0, aWhatYouEntered # "What you entered?

Huh?"
.text:004006FC lw $ra, 0x28+var_4($sp)
.text:00400700 move $v0, $zero
.text:00400704 jr $ra
.text:00400708 addiu $sp, 0x28

.text:0040070C loc_40070C:

.text:0040070C la $t9, printf

.text:00400710 lw $a1, 0x28+var_10($sp)

.text:00400714 lui $a0, 0x40

.text:00400718 jalr $t9 ; printf

.text:0040071C la $a0, aYouEnteredD___ # "You entered
%d...\n"

.text:00400720 lw $ra, 0x28+var_4($sp)

.text:00400724 move $v0, $zero

.text:00400728 jr $ra

.text:0040072C addiu $sp, 0x28

scanf() returns the result of its work in register $V0. It is checked at address
0x004006E4 by comparing the values in $V0 with $V1 (1 has been stored in $V1
earlier, at 0x004006DC). BEQ stands for “Branch Equal”. If the two values are equal
(i.e., success), the execution jumps to address 0x0040070C.

Exercise

As we can see, the JNE/JNZ instruction can be easily replaced by the JE/JZ and vice
versa (or BNE by BEQ and vice versa). But then the basic blocksmust also be swapped.
Try to do this in some of the examples.

1.12.5 Exercise
• http://challenges.re/53

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://challenges.re/53
https://yurichev.com/contact.html
https://yurichev.com/contact.html

125
1.13 Worth noting: global vs. local variables
Now that you know that global variables are filling with zeroes by OS at start (1.12.3
on page 101, [ISO/IEC 9899:TC3 (C C99 standard), (2007)6.7.8p10]), but local vari-
ables are not (1.9.4 on page 50).
Sometimes, you have a global variable that you forgot to initialize and your program
relies on the fact that it has zero at start. Then you edit a program and move the
global variable into a function to make it local. It wouldn’t be zeroed at initialization
anymore and this can result in nasty bugs.

1.14 Accessing passed arguments
Now we figured out that the caller function is passing arguments to the callee via
the stack. But how does the callee access them?

Listing 1.90: simple example
#include <stdio.h>

int f (int a, int b, int c)
{

return a*b+c;
};

int main()
{

printf ("%d\n", f(1, 2, 3));
return 0;

};

1.14.1 x86
MSVC

Here is what we get after compilation (MSVC 2010 Express):

Listing 1.91: MSVC 2010 Express
_TEXT SEGMENT
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_c$ = 16 ; size = 4
_f PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
imul eax, DWORD PTR _b$[ebp]
add eax, DWORD PTR _c$[ebp]
pop ebp
ret 0

_f ENDP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

126

_main PROC
push ebp
mov ebp, esp
push 3 ; 3rd argument
push 2 ; 2nd argument
push 1 ; 1st argument
call _f
add esp, 12
push eax
push OFFSET $SG2463 ; '%d', 0aH, 00H
call _printf
add esp, 8
; return 0
xor eax, eax
pop ebp
ret 0

_main ENDP

What we see is that the main() function pushes 3 numbers onto the stack and calls
f(int,int,int).

Argument access inside f() is organized with the help of macros like:
_a$ = 8, in the same way as local variables, but with positive offsets (addressed
with plus). So, we are addressing the outer side of the stack frame by adding the
_a$ macro to the value in the EBP register.
Then the value of a is stored into EAX. After IMUL instruction execution, the value in
EAX is a product of the value in EAX and the content of _b.
After that, ADD adds the value in _c to EAX.
The value in EAX does not need to be moved: it is already where it must be. On
returning to caller, it takes the EAX value and uses it as an argument to printf().

MSVC + OllyDbg

Let’s illustrate this in OllyDbg. When we trace to the first instruction in f() that
uses one of the arguments (first one), we see that EBP is pointing to the stack frame,
which is marked with a red rectangle.
The first element of the stack frame is the saved value of EBP, the second one is RA,
the third is the first function argument, then the second and third ones.
To access the first function argument, one needs to add exactly 8 (2 32-bit words) to
EBP.
OllyDbg is aware about this, so it has added comments to the stack elements like
“RETURN from” and “Arg1 = …”, etc.
N.B.: Function arguments are not members of the function’s stack frame, they are
rather members of the stack frame of the caller function.
Hence, OllyDbg marked “Arg” elements as members of another stack frame.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

127

Figure 1.23: OllyDbg: inside of f() function

GCC

Let’s compile the same in GCC 4.4.1 and see the results in IDA:

Listing 1.92: GCC 4.4.1
public f

f proc near

arg_0 = dword ptr 8
arg_4 = dword ptr 0Ch
arg_8 = dword ptr 10h

push ebp
mov ebp, esp
mov eax, [ebp+arg_0] ; 1st argument
imul eax, [ebp+arg_4] ; 2nd argument
add eax, [ebp+arg_8] ; 3rd argument
pop ebp
retn

f endp

public main
main proc near

var_10 = dword ptr -10h
var_C = dword ptr -0Ch
var_8 = dword ptr -8

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

128
sub esp, 10h
mov [esp+10h+var_8], 3 ; 3rd argument
mov [esp+10h+var_C], 2 ; 2nd argument
mov [esp+10h+var_10], 1 ; 1st argument
call f
mov edx, offset aD ; "%d\n"
mov [esp+10h+var_C], eax
mov [esp+10h+var_10], edx
call _printf
mov eax, 0
leave
retn

main endp

The result is almost the same with some minor differences discussed earlier.
The stack pointer is not set back after the two function calls(f and printf), because
the penultimate LEAVE (.1.6 on page 1299) instruction takes care of this at the end.

1.14.2 x64
The story is a bit different in x86-64. Function arguments (first 4 or first 6 of them)
are passed in registers i.e. the callee reads them from registers instead of reading
them from the stack.

MSVC

Optimizing MSVC:

Listing 1.93: Optimizing MSVC 2012 x64
$SG2997 DB '%d', 0aH, 00H

main PROC
sub rsp, 40
mov edx, 2
lea r8d, QWORD PTR [rdx+1] ; R8D=3
lea ecx, QWORD PTR [rdx-1] ; ECX=1
call f
lea rcx, OFFSET FLAT:$SG2997 ; '%d'
mov edx, eax
call printf
xor eax, eax
add rsp, 40
ret 0

main ENDP

f PROC
; ECX - 1st argument
; EDX - 2nd argument
; R8D - 3rd argument
imul ecx, edx
lea eax, DWORD PTR [r8+rcx]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

129
ret 0

f ENDP

As we can see, the compact function f() takes all its arguments from the registers.
The LEA instruction here is used for addition, apparently the compiler considered it
faster than ADD.
LEA is also used in the main() function to prepare the first and third f() arguments.
The compiler must have decided that this would work faster than the usual way of
loading values into a register using MOV instruction.
Let’s take a look at the non-optimizing MSVC output:

Listing 1.94: MSVC 2012 x64
f proc near

; shadow space:
arg_0 = dword ptr 8
arg_8 = dword ptr 10h
arg_10 = dword ptr 18h

; ECX - 1st argument
; EDX - 2nd argument
; R8D - 3rd argument
mov [rsp+arg_10], r8d
mov [rsp+arg_8], edx
mov [rsp+arg_0], ecx
mov eax, [rsp+arg_0]
imul eax, [rsp+arg_8]
add eax, [rsp+arg_10]
retn

f endp

main proc near
sub rsp, 28h
mov r8d, 3 ; 3rd argument
mov edx, 2 ; 2nd argument
mov ecx, 1 ; 1st argument
call f
mov edx, eax
lea rcx, $SG2931 ; "%d\n"
call printf

; return 0
xor eax, eax
add rsp, 28h
retn

main endp

It looks somewhat puzzling because all 3 arguments from the registers are saved to
the stack for some reason. This is called “shadow space” 82: every Win64 function
82MSDN

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/zthk2dkh(v=vs.80).aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

130
may (but is not required to) save all 4 register values there. This is done for two
reasons: 1) it is too lavish to allocate a whole register (or even 4 registers) for an
input argument, so it will be accessed via stack; 2) the debugger is always aware
where to find the function arguments at a break 83.
So, some large functions can save their input arguments in the “shadow space” if
they want to use them during execution, but some small functions (like ours) may
not do this.
It is a caller responsibility to allocate “shadow space” in the stack.

GCC

Optimizing GCC generates more or less understandable code:

Listing 1.95: Optimizing GCC 4.4.6 x64
f:

; EDI - 1st argument
; ESI - 2nd argument
; EDX - 3rd argument
imul esi, edi
lea eax, [rdx+rsi]
ret

main:
sub rsp, 8
mov edx, 3
mov esi, 2
mov edi, 1
call f
mov edi, OFFSET FLAT:.LC0 ; "%d\n"
mov esi, eax
xor eax, eax ; number of vector registers passed
call printf
xor eax, eax
add rsp, 8
ret

Non-optimizing GCC:

Listing 1.96: GCC 4.4.6 x64
f:

; EDI - 1st argument
; ESI - 2nd argument
; EDX - 3rd argument
push rbp
mov rbp, rsp
mov DWORD PTR [rbp-4], edi
mov DWORD PTR [rbp-8], esi
mov DWORD PTR [rbp-12], edx
mov eax, DWORD PTR [rbp-4]

83MSDN

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/ew5tede7(v=VS.90).aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

131
imul eax, DWORD PTR [rbp-8]
add eax, DWORD PTR [rbp-12]
leave
ret

main:
push rbp
mov rbp, rsp
mov edx, 3
mov esi, 2
mov edi, 1
call f
mov edx, eax
mov eax, OFFSET FLAT:.LC0 ; "%d\n"
mov esi, edx
mov rdi, rax
mov eax, 0 ; number of vector registers passed
call printf
mov eax, 0
leave
ret

There are no “shadow space” requirements in System V *NIX ([Michael Matz, Jan Hu-
bicka, Andreas Jaeger, Mark Mitchell, System V Application Binary Interface. AMD64
Architecture Processor Supplement, (2013)] 84), but the callee may want to save its
arguments somewhere in case of registers shortage.

GCC: uint64_t instead of int

Our example works with 32-bit int, that is why 32-bit register parts are used (prefixed
by E-).
It can be altered slightly in order to use 64-bit values:
#include <stdio.h>
#include <stdint.h>

uint64_t f (uint64_t a, uint64_t b, uint64_t c)
{

return a*b+c;
};

int main()
{

printf ("%lld\n", f(0x1122334455667788,
0x1111111122222222,
0x3333333344444444));

return 0;
};

84Also available as https://software.intel.com/sites/default/files/article/402129/
mpx-linux64-abi.pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

132
Listing 1.97: Optimizing GCC 4.4.6 x64

f proc near
imul rsi, rdi
lea rax, [rdx+rsi]
retn

f endp

main proc near
sub rsp, 8
mov rdx, 3333333344444444h ; 3rd argument
mov rsi, 1111111122222222h ; 2nd argument
mov rdi, 1122334455667788h ; 1st argument
call f
mov edi, offset format ; "%lld\n"
mov rsi, rax
xor eax, eax ; number of vector registers passed
call _printf
xor eax, eax
add rsp, 8
retn

main endp

The code is the same, but this time the full size registers (prefixed by R-) are used.

1.14.3 ARM
Non-optimizing Keil 6/2013 (ARM mode)

.text:000000A4 00 30 A0 E1 MOV R3, R0

.text:000000A8 93 21 20 E0 MLA R0, R3, R1, R2

.text:000000AC 1E FF 2F E1 BX LR

...

.text:000000B0 main

.text:000000B0 10 40 2D E9 STMFD SP!, {R4,LR}

.text:000000B4 03 20 A0 E3 MOV R2, #3

.text:000000B8 02 10 A0 E3 MOV R1, #2

.text:000000BC 01 00 A0 E3 MOV R0, #1

.text:000000C0 F7 FF FF EB BL f

.text:000000C4 00 40 A0 E1 MOV R4, R0

.text:000000C8 04 10 A0 E1 MOV R1, R4

.text:000000CC 5A 0F 8F E2 ADR R0, aD_0 ; "%d\n"

.text:000000D0 E3 18 00 EB BL __2printf

.text:000000D4 00 00 A0 E3 MOV R0, #0

.text:000000D8 10 80 BD E8 LDMFD SP!, {R4,PC}

The main() function simply calls two other functions, with three values passed to
the first one —(f()).
As was noted before, in ARM the first 4 values are usually passed in the first 4 regis-
ters (R0-R3).
The f() function, as it seems, uses the first 3 registers (R0-R2) as arguments.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

133
The MLA (Multiply Accumulate) instruction multiplies its first two operands (R3 and
R1), adds the third operand (R2) to the product and stores the result into the zeroth
register (R0), via which, by standard, functions return values.
Multiplication and addition at once (Fused multiply–add) is a very useful operation.
By the way, there was no such instruction in x86 before FMA-instructions appeared
in SIMD 85.
The very first MOV R3, R0, instruction is, apparently, redundant (a single MLA in-
struction could be used here instead). The compiler has not optimized it, since this
is non-optimizing compilation.
The BX instruction returns the control to the address stored in the LR register and, if
necessary, switches the processor mode from Thumb to ARM or vice versa. This can
be necessary since, as we can see, function f() is not aware from what kind of code
it may be called, ARM or Thumb. Thus, if it gets called from Thumb code, BX is not
only returns control to the calling function, but also switches the processor mode
to Thumb. Or not switch, if the function has been called from ARM code [ARM(R)
Architecture Reference Manual, ARMv7-A and ARMv7-R edition, (2012)A2.3.2].

Optimizing Keil 6/2013 (ARM mode)

.text:00000098 f

.text:00000098 91 20 20 E0 MLA R0, R1, R0, R2

.text:0000009C 1E FF 2F E1 BX LR

And here is the f() function compiled by the Keil compiler in full optimization mode
(-O3).
The MOV instruction was optimized out (or reduced) and now MLA uses all input reg-
isters and also places the result right into R0, exactly where the calling function will
read and use it.

Optimizing Keil 6/2013 (Thumb mode)

.text:0000005E 48 43 MULS R0, R1

.text:00000060 80 18 ADDS R0, R0, R2

.text:00000062 70 47 BX LR

The MLA instruction is not available in Thumb mode, so the compiler generates the
code doing these two operations (multiplication and addition) separately.
First the MULS instruction multiplies R0 by R1, leaving the result in register R0. The
second instruction (ADDS) adds the result and R2 leaving the result in register R0.

ARM64

Optimizing GCC (Linaro) 4.9

85wikipedia

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://en.wikipedia.org/wiki/FMA_instruction_set
https://yurichev.com/contact.html
https://yurichev.com/contact.html

134
Everything here is simple. MADD is just an instruction doing fused multiply/add (sim-
ilar to the MLA we already saw). All 3 arguments are passed in the 32-bit parts of
X-registers. Indeed, the argument types are 32-bit int’s. The result is returned in W0.

Listing 1.98: Optimizing GCC (Linaro) 4.9
f:

madd w0, w0, w1, w2
ret

main:
; save FP and LR to stack frame:

stp x29, x30, [sp, -16]!
mov w2, 3
mov w1, 2
add x29, sp, 0
mov w0, 1
bl f
mov w1, w0
adrp x0, .LC7
add x0, x0, :lo12:.LC7
bl printf

; return 0
mov w0, 0

; restore FP and LR
ldp x29, x30, [sp], 16
ret

.LC7:
.string "%d\n"

Let’s also extend all data types to 64-bit uint64_t and test:
#include <stdio.h>
#include <stdint.h>

uint64_t f (uint64_t a, uint64_t b, uint64_t c)
{

return a*b+c;
};

int main()
{

printf ("%lld\n", f(0x1122334455667788,
0x1111111122222222,
0x3333333344444444));

return 0;
};

f:
madd x0, x0, x1, x2
ret

main:
mov x1, 13396

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

135
adrp x0, .LC8
stp x29, x30, [sp, -16]!
movk x1, 0x27d0, lsl 16
add x0, x0, :lo12:.LC8
movk x1, 0x122, lsl 32
add x29, sp, 0
movk x1, 0x58be, lsl 48
bl printf
mov w0, 0
ldp x29, x30, [sp], 16
ret

.LC8:
.string "%lld\n"

The f() function is the same, only the whole 64-bit X-registers are now used. Long
64-bit values are loaded into the registers by parts, this is also described here: 1.39.3
on page 556.

Non-optimizing GCC (Linaro) 4.9

The non-optimizing compiler is more redundant:
f:

sub sp, sp, #16
str w0, [sp,12]
str w1, [sp,8]
str w2, [sp,4]
ldr w1, [sp,12]
ldr w0, [sp,8]
mul w1, w1, w0
ldr w0, [sp,4]
add w0, w1, w0
add sp, sp, 16
ret

The code saves its input arguments in the local stack, in case someone (or some-
thing) in this function needs using the W0...W2 registers. This prevents overwriting
the original function arguments, which may be needed again in the future.
This is called Register Save Area. [Procedure Call Standard for the ARM 64-bit Archi-
tecture (AArch64), (2013)]86. The callee, however, is not obliged to save them. This
is somewhat similar to “Shadow Space”: 1.14.2 on page 129.
Why did the optimizing GCC 4.9 drop this argument saving code? Because it did
some additional optimizing work and concluded that the function arguments will not
be needed in the future and also that the registers W0...W2 will not be used.
We also see a MUL/ADD instruction pair instead of single a MADD.
86Also available as http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055b/IHI0055B_

aapcs64.pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055b/IHI0055B_aapcs64.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055b/IHI0055B_aapcs64.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

136
1.14.4 MIPS

Listing 1.99: Optimizing GCC 4.4.5
.text:00000000 f:
; $a0=a
; $a1=b
; $a2=c
.text:00000000 mult $a1, $a0
.text:00000004 mflo $v0
.text:00000008 jr $ra
.text:0000000C addu $v0, $a2, $v0 ; branch delay slot
; result is in $v0 upon return
.text:00000010 main:
.text:00000010
.text:00000010 var_10 = -0x10
.text:00000010 var_4 = -4
.text:00000010
.text:00000010 lui $gp, (__gnu_local_gp >> 16)
.text:00000014 addiu $sp, -0x20
.text:00000018 la $gp, (__gnu_local_gp & 0xFFFF)
.text:0000001C sw $ra, 0x20+var_4($sp)
.text:00000020 sw $gp, 0x20+var_10($sp)
; set c:
.text:00000024 li $a2, 3
; set a:
.text:00000028 li $a0, 1
.text:0000002C jal f
; set b:
.text:00000030 li $a1, 2 ; branch delay slot
; result in $v0 now
.text:00000034 lw $gp, 0x20+var_10($sp)
.text:00000038 lui $a0, ($LC0 >> 16)
.text:0000003C lw $t9, (printf & 0xFFFF)($gp)
.text:00000040 la $a0, ($LC0 & 0xFFFF)
.text:00000044 jalr $t9
; take result of f() function and pass it
; as a second argument to printf():
.text:00000048 move $a1, $v0 ; branch delay slot
.text:0000004C lw $ra, 0x20+var_4($sp)
.text:00000050 move $v0, $zero
.text:00000054 jr $ra
.text:00000058 addiu $sp, 0x20 ; branch delay slot

The first four function arguments are passed in four registers prefixed by A-.
There are two special registers in MIPS: HI and LO which are filled with the 64-bit
result of the multiplication during the execution of the MULT instruction.
These registers are accessible only by using the MFLO and MFHI instructions. MFLO
here takes the low-part of the multiplication result and stores it into $V0. So the
high 32-bit part of the multiplication result is dropped (the HI register content is not
used). Indeed: we work with 32-bit int data types here.
Finally, ADDU (“Add Unsigned”) adds the value of the third argument to the result.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

137
There are two different addition instructions in MIPS: ADD and ADDU. The difference
between them is not related to signedness, but to exceptions. ADD can raise an
exception on overflow, which is sometimes useful87 and supported in Ada PL, for
instance. ADDU does not raise exceptions on overflow.
Since C/C++ does not support this, in our example we see ADDU instead of ADD.
The 32-bit result is left in $V0.
There is a new instruction for us in main(): JAL (“Jump and Link”).
The difference between JAL and JALR is that a relative offset is encoded in the first
instruction, while JALR jumps to the absolute address stored in a register (“Jump and
Link Register”).
Both f() and main() functions are located in the same object file, so the relative
address of f() is known and fixed.

1.15 More about results returning
In x86, the result of function execution is usually returned 88 in the EAX register. If it
is byte type or a character (char), then the lowest part of register EAX (AL) is used.
If a function returns a float number, the FPU register ST(0) is used instead. In ARM,
the result is usually returned in the R0 register.

1.15.1 Attempt to use the result of a function returning void
So, what if the main() function return value was declared of type void and not int?
The so-called startup-code is calling main() roughly as follows:
push envp
push argv
push argc
call main
push eax
call exit

In other words:
exit(main(argc,argv,envp));

If you declare main() as void, nothing is to be returned explicitly (using the return
statement), then something random, that has been stored in the EAX register at the
end of main() becomes the sole argument of the exit() function. Most likely, there
will be a random value, left from your function execution, so the exit code of program
is pseudorandom.
We can illustrate this fact. Please note that here the main() function has a void
return type:
87http://blog.regehr.org/archives/1154
88See also: MSDN: Return Values (C++): MSDN

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://blog.regehr.org/archives/1154
http://msdn.microsoft.com/en-us/library/7572ztz4.aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

138

#include <stdio.h>

void main()
{

printf ("Hello, world!\n");
};

Let’s compile it in Linux.
GCC 4.8.1 replaced printf() with puts() (we have seen this before: 1.5.3 on
page 28), but that’s OK, since puts() returns the number of characters printed out,
just like printf(). Please notice that EAX is not zeroed before main()’s end.
This implies that the value of EAX at the end of main() contains what puts() has
left there.

Listing 1.100: GCC 4.8.1
.LC0:

.string "Hello, world!"
main:

push ebp
mov ebp, esp
and esp, -16
sub esp, 16
mov DWORD PTR [esp], OFFSET FLAT:.LC0
call puts
leave
ret

Let’ s write a bash script that shows the exit status:

Listing 1.101: tst.sh
#!/bin/sh
./hello_world
echo $?

And run it:
$ tst.sh
Hello, world!
14

14 is the number of characters printed. The number of characters printed slips from
printf() through EAX/RAX into “exit code”.
Another example in the book: 3.32 on page 814.
By the way, when we decompile C++ in Hex-Rays, we can often encounter a function
which terminated with destructor of some class:
...

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

139
call ??1CString@@QAE@XZ ; CString:: CString(void)
mov ecx, [esp+30h+var_C]
pop edi
pop ebx
mov large fs:0, ecx
add esp, 28h
retn

By C++ standard, destructor doesn’t return anything, but when Hex-Rays don’t know
about it, and thinks that both destructor and this function returns int, we can see
something like that in output:
...

return CString::~CString(&Str);
}

1.15.2 What if we do not use the function result?
printf() returns the count of characters successfully output, but the result of this
function is rarely used in practice.
It is also possible to call a function whose essence is in returning a value, and not
use it:
int f()
{

// skip first 3 random values:
rand();
rand();
rand();
// and use 4th:
return rand();

};

The result of the rand() function is left in EAX, in all four cases.
But in the first 3 cases, the value in EAX is just not used.

1.15.3 Returning a structure
Let’s go back to the fact that the return value is left in the EAX register.
That is why old C compilers cannot create functions capable of returning something
that does not fit in one register (usually int), but if one needs it, one have to return
information via pointers passed as function’s arguments.
So, usually, if a function needs to return several values, it returns only one, and all
the rest—via pointers.
Now it has become possible to return, let’s say, an entire structure, but that is still
not very popular. If a function has to return a large structure, the caller must allocate

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

140
it and pass a pointer to it via the first argument, transparently for the programmer.
That is almost the same as to pass a pointer in the first argument manually, but the
compiler hides it.
Small example:
struct s
{

int a;
int b;
int c;

};

struct s get_some_values (int a)
{

struct s rt;

rt.a=a+1;
rt.b=a+2;
rt.c=a+3;

return rt;
};

…what we got (MSVC 2010 /Ox):
$T3853 = 8 ; size = 4
_a$ = 12 ; size = 4
?get_some_values@@YA?AUs@@H@Z PROC ; get_some_values

mov ecx, DWORD PTR _a$[esp-4]
mov eax, DWORD PTR $T3853[esp-4]
lea edx, DWORD PTR [ecx+1]
mov DWORD PTR [eax], edx
lea edx, DWORD PTR [ecx+2]
add ecx, 3
mov DWORD PTR [eax+4], edx
mov DWORD PTR [eax+8], ecx
ret 0

?get_some_values@@YA?AUs@@H@Z ENDP ; get_some_values

The macro name for internal passing of pointer to a structure here is $T3853.
This example can be rewritten using the C99 language extensions:
struct s
{

int a;
int b;
int c;

};

struct s get_some_values (int a)
{

return (struct s){.a=a+1, .b=a+2, .c=a+3};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

141
};

Listing 1.102: GCC 4.8.1
_get_some_values proc near

ptr_to_struct = dword ptr 4
a = dword ptr 8

mov edx, [esp+a]
mov eax, [esp+ptr_to_struct]
lea ecx, [edx+1]
mov [eax], ecx
lea ecx, [edx+2]
add edx, 3
mov [eax+4], ecx
mov [eax+8], edx
retn

_get_some_values endp

As we see, the function is just filling the structure’s fields allocated by the caller func-
tion, as if a pointer to the structure has been passed. So there are no performance
drawbacks.

1.16 Pointers
1.16.1 Returning values
Pointers are often used to return values from functions (recall scanf() case (1.12
on page 87)).
For example, when a function needs to return two values.

Global variables example

#include <stdio.h>

void f1 (int x, int y, int *sum, int *product)
{

*sum=x+y;
*product=x*y;

};

int sum, product;

void main()
{

f1(123, 456, &sum, &product);
printf ("sum=%d, product=%d\n", sum, product);

};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

142
This compiles to:

Listing 1.103: Optimizing MSVC 2010 (/Ob0)
COMM _product:DWORD
COMM _sum:DWORD
$SG2803 DB 'sum=%d, product=%d', 0aH, 00H

_x$ = 8 ; size = 4
_y$ = 12 ; size = 4
_sum$ = 16 ; size = 4
_product$ = 20 ; size = 4
_f1 PROC

mov ecx, DWORD PTR _y$[esp-4]
mov eax, DWORD PTR _x$[esp-4]
lea edx, DWORD PTR [eax+ecx]
imul eax, ecx
mov ecx, DWORD PTR _product$[esp-4]
push esi
mov esi, DWORD PTR _sum$[esp]
mov DWORD PTR [esi], edx
mov DWORD PTR [ecx], eax
pop esi
ret 0

_f1 ENDP

_main PROC
push OFFSET _product
push OFFSET _sum
push 456 ; 000001c8H
push 123 ; 0000007bH
call _f1
mov eax, DWORD PTR _product
mov ecx, DWORD PTR _sum
push eax
push ecx
push OFFSET $SG2803
call DWORD PTR __imp__printf
add esp, 28
xor eax, eax
ret 0

_main ENDP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

143
Let’s see this in OllyDbg:

Figure 1.24: OllyDbg: global variables addresses are passed to f1()

First, global variables’ addresses are passed to f1(). We can click “Follow in dump”
on the stack element, and we can see the place in the data segment allocated for
the two variables.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

144
These variables are zeroed, because non-initialized data (from BSS) is cleared before
the execution begins, [see ISO/IEC 9899:TC3 (C C99 standard), (2007) 6.7.8p10].
They reside in the data segment, we can verify this by pressing Alt-M and reviewing
the memory map:

Figure 1.25: OllyDbg: memory map

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

145
Let’s trace (F7) to the start of f1():

Figure 1.26: OllyDbg: f1() starts

Two values are visible in the stack: 456 (0x1C8) and 123 (0x7B), and also the ad-
dresses of the two global variables.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

146
Let’s trace until the end of f1(). In the left bottom window we see how the results
of the calculation appear in the global variables:

Figure 1.27: OllyDbg: f1() execution completed

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

147
Now the global variables’ values are loaded into registers ready for passing to printf()
(via the stack):

Figure 1.28: OllyDbg: global variables’ values are passed into printf()

Local variables example

Let’s rework our example slightly:

Listing 1.104: now the sum and product variables are local
void main()
{

int sum, product; // now variables are local in this function

f1(123, 456, &sum, &product);
printf ("sum=%d, product=%d\n", sum, product);

};

f1() code will not change. Only the code of main() will do:

Listing 1.105: Optimizing MSVC 2010 (/Ob0)
_product$ = -8 ; size = 4
_sum$ = -4 ; size = 4
_main PROC
; Line 10

sub esp, 8
; Line 13

lea eax, DWORD PTR _product$[esp+8]
push eax
lea ecx, DWORD PTR _sum$[esp+12]
push ecx
push 456 ; 000001c8H

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

148
push 123 ; 0000007bH
call _f1

; Line 14
mov edx, DWORD PTR _product$[esp+24]
mov eax, DWORD PTR _sum$[esp+24]
push edx
push eax
push OFFSET $SG2803
call DWORD PTR __imp__printf

; Line 15
xor eax, eax
add esp, 36
ret 0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

149
Let’s look again with OllyDbg. The addresses of the local variables in the stack are
0x2EF854 and 0x2EF858. We see how these are pushed into the stack:

Figure 1.29: OllyDbg: local variables’ addresses are pushed into the stack

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

150
f1() starts. So far there is only random garbage in the stack at 0x2EF854 and
0x2EF858:

Figure 1.30: OllyDbg: f1() starting

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

151
f1() completes:

Figure 1.31: OllyDbg: f1() completes execution

We now find 0xDB18 and 0x243 at addresses 0x2EF854 and 0x2EF858. These values
are the f1() results.

Conclusion

f1() could return pointers to any place in memory, located anywhere.
This is in essence the usefulness of the pointers.
By the way, C++ references work exactly the same way. Read more about them:
(3.21.3 on page 705).

1.16.2 Swap input values
This will do the job:
#include <memory.h>
#include <stdio.h>

void swap_bytes (unsigned char* first, unsigned char* second)
{

unsigned char tmp1;
unsigned char tmp2;

tmp1=*first;
tmp2=*second;

*first=tmp2;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

152
*second=tmp1;

};

int main()
{

// copy string into heap, so we will be able to modify it
char *s=strdup("string");

// swap 2nd and 3rd characters
swap_bytes (s+1, s+2);

printf ("%s\n", s);
};

As we can see, bytes are loaded into lower 8-bit parts of ECX and EBX using MOVZX
(so higher parts of these registers will be cleared) and then bytes are written back
swapped.

Listing 1.106: Optimizing GCC 5.4
swap_bytes:

push ebx
mov edx, DWORD PTR [esp+8]
mov eax, DWORD PTR [esp+12]
movzx ecx, BYTE PTR [edx]
movzx ebx, BYTE PTR [eax]
mov BYTE PTR [edx], bl
mov BYTE PTR [eax], cl
pop ebx
ret

Addresses of both bytes are taken from arguments and through execution of the
function are located in EDX and EAX.
So we use pointers: probably, there is no better way to solve this task without them.

1.17 GOTO operator
The GOTO operator is generally considered as anti-pattern, see [Edgar Dijkstra, Go To
Statement Considered Harmful (1968)89]. Nevertheless, it can be used reasonably,
see [Donald E. Knuth, Structured Programming with go to Statements (1974)90] 91.
Here is a very simple example:
#include <stdio.h>

int main()
{

printf ("begin\n");

89http://yurichev.com/mirrors/Dijkstra68.pdf
90http://yurichev.com/mirrors/KnuthStructuredProgrammingGoTo.pdf
91[Dennis Yurichev, C/C++ programming language notes] also has some examples.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://yurichev.com/mirrors/Dijkstra68.pdf
http://yurichev.com/mirrors/KnuthStructuredProgrammingGoTo.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

153
goto exit;
printf ("skip me!\n");

exit:
printf ("end\n");

};

Here is what we have got in MSVC 2012:

Listing 1.107: MSVC 2012
$SG2934 DB 'begin', 0aH, 00H
$SG2936 DB 'skip me!', 0aH, 00H
$SG2937 DB 'end', 0aH, 00H

_main PROC
push ebp
mov ebp, esp
push OFFSET $SG2934 ; 'begin'
call _printf
add esp, 4
jmp SHORT $exit$3
push OFFSET $SG2936 ; 'skip me!'
call _printf
add esp, 4

$exit$3:
push OFFSET $SG2937 ; 'end'
call _printf
add esp, 4
xor eax, eax
pop ebp
ret 0

_main ENDP

The goto statement has been simply replaced by a JMP instruction, which has the
same effect: unconditional jump to another place. The second printf() could be
executed only with human intervention, by using a debugger or by patching the
code.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

154
This could also be useful as a simple patching exercise. Let’s open the resulting
executable in Hiew:

Figure 1.32: Hiew

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

155
Place the cursor to address JMP (0x410), press F3 (edit), press zero twice, so the
opcode becomes EB 00:

Figure 1.33: Hiew

The second byte of the JMP opcode denotes the relative offset for the jump, 0 means
the point right after the current instruction.
So now JMP not skipping the second printf() call.
Press F9 (save) and exit. Now if we run the executable we will see this:

Listing 1.108: Patched executable output
C:\...>goto.exe

begin
skip me!
end

The same result could be achieved by replacing the JMP instruction with 2 NOP in-
structions.
NOP has an opcode of 0x90 and length of 1 byte, so we need 2 instructions as JMP
replacement (which is 2 bytes in size).

1.17.1 Dead code
The second printf() call is also called “dead code” in compiler terms.
This means that the code will never be executed. So when you compile this example
with optimizations, the compiler removes “dead code”, leaving no trace of it:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

156
Listing 1.109: Optimizing MSVC 2012

$SG2981 DB 'begin', 0aH, 00H
$SG2983 DB 'skip me!', 0aH, 00H
$SG2984 DB 'end', 0aH, 00H

_main PROC
push OFFSET $SG2981 ; 'begin'
call _printf
push OFFSET $SG2984 ; 'end'

$exit$4:
call _printf
add esp, 8
xor eax, eax
ret 0

_main ENDP

However, the compiler forgot to remove the “skip me!” string.

1.17.2 Exercise
Try to achieve the same result using your favorite compiler and debugger.

1.18 Conditional jumps
1.18.1 Simple example
#include <stdio.h>

void f_signed (int a, int b)
{

if (a>b)
printf ("a>b\n");

if (a==b)
printf ("a==b\n");

if (a<b)
printf ("a<b\n");

};

void f_unsigned (unsigned int a, unsigned int b)
{

if (a>b)
printf ("a>b\n");

if (a==b)
printf ("a==b\n");

if (a<b)
printf ("a<b\n");

};

int main()
{

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

157
f_signed(1, 2);
f_unsigned(1, 2);
return 0;

};

x86

x86 + MSVC

Here is how the f_signed() function looks like:

Listing 1.110: Non-optimizing MSVC 2010
_a$ = 8
_b$ = 12
_f_signed PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
cmp eax, DWORD PTR _b$[ebp]
jle SHORT $LN3@f_signed
push OFFSET $SG737 ; 'a>b'
call _printf
add esp, 4

$LN3@f_signed:
mov ecx, DWORD PTR _a$[ebp]
cmp ecx, DWORD PTR _b$[ebp]
jne SHORT $LN2@f_signed
push OFFSET $SG739 ; 'a==b'
call _printf
add esp, 4

$LN2@f_signed:
mov edx, DWORD PTR _a$[ebp]
cmp edx, DWORD PTR _b$[ebp]
jge SHORT $LN4@f_signed
push OFFSET $SG741 ; 'a<b'
call _printf
add esp, 4

$LN4@f_signed:
pop ebp
ret 0

_f_signed ENDP

The first instruction, JLE, stands for Jump if Less or Equal. In other words, if the
second operand is larger or equal to the first one, the control flow will be passed
to the address or label specified in the instruction. If this condition does not trigger
because the second operand is smaller than the first one, the control flow would not
be altered and the first printf() would be executed. The second check is JNE: Jump
if Not Equal. The control flow will not change if the operands are equal.
The third check is JGE: Jump if Greater or Equal—jump if the first operand is larger
than the second or if they are equal. So, if all three conditional jumps are triggered,

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

158
none of the printf() calls would be executed whatsoever. This is impossible with-
out special intervention. Now let’s take a look at the f_unsigned() function. The
f_unsigned() function is the same as f_signed(), with the exception that the JBE
and JAE instructions are used instead of JLE and JGE, as follows:

Listing 1.111: GCC
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_f_unsigned PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
cmp eax, DWORD PTR _b$[ebp]
jbe SHORT $LN3@f_unsigned
push OFFSET $SG2761 ; 'a>b'
call _printf
add esp, 4

$LN3@f_unsigned:
mov ecx, DWORD PTR _a$[ebp]
cmp ecx, DWORD PTR _b$[ebp]
jne SHORT $LN2@f_unsigned
push OFFSET $SG2763 ; 'a==b'
call _printf
add esp, 4

$LN2@f_unsigned:
mov edx, DWORD PTR _a$[ebp]
cmp edx, DWORD PTR _b$[ebp]
jae SHORT $LN4@f_unsigned
push OFFSET $SG2765 ; 'a<b'
call _printf
add esp, 4

$LN4@f_unsigned:
pop ebp
ret 0

_f_unsigned ENDP

As already mentioned, the branch instructions are different: JBE—Jump if Below or
Equal and JAE—Jump if Above or Equal. These instructions (JA/JAE/JB/JBE) differ
from JG/JGE/JL/JLE in the fact that they work with unsigned numbers.
That is why if we see JG/JL in use instead of JA/JB or vice-versa, we can be almost
sure that the variables are signed or unsigned, respectively. Here is also the main()
function, where there is nothing much new to us:

Listing 1.112: main()
_main PROC

push ebp
mov ebp, esp
push 2
push 1
call _f_signed
add esp, 8

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

159
push 2
push 1
call _f_unsigned
add esp, 8
xor eax, eax
pop ebp
ret 0

_main ENDP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

160
x86 + MSVC + OllyDbg

We can see how flags are set by running this example in OllyDbg. Let’s begin with
f_unsigned(), which works with unsigned numbers.
CMP is executed thrice here, but for the same arguments, so the flags are the same
each time.
Result of the first comparison:

Figure 1.34: OllyDbg: f_unsigned(): first conditional jump

So, the flags are: C=1, P=1, A=1, Z=0, S=1, T=0, D=0, O=0.
They are named with one character for brevity in OllyDbg.
OllyDbg gives a hint that the (JBE) jump is to be triggered now. Indeed, if we take a
look into Intel manuals (12.1.4 on page 1282), we can read there that JBE is trigger-
ing if CF=1 or ZF=1. The condition is true here, so the jump is triggered.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

161
The next conditional jump:

Figure 1.35: OllyDbg: f_unsigned(): second conditional jump

OllyDbg gives a hint that JNZ is to be triggered now. Indeed, JNZ triggering if ZF=0
(zero flag).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

162
The third conditional jump, JNB:

Figure 1.36: OllyDbg: f_unsigned(): third conditional jump

In Intel manuals (12.1.4 on page 1282) we can see that JNB triggers if CF=0 (carry
flag). That is not true in our case, so the third printf() will execute.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

163
Now let’s review the f_signed() function, which works with signed values, in Olly-
Dbg. Flags are set in the same way: C=1, P=1, A=1, Z=0, S=1, T=0, D=0, O=0.
The first conditional jump JLE is to be triggered:

Figure 1.37: OllyDbg: f_signed(): first conditional jump

In Intel manuals (12.1.4 on page 1282) we find that this instruction is triggered if
ZF=1 or SF≠OF. SF≠OF in our case, so the jump triggers.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

164
The second JNZ conditional jump triggering: if ZF=0 (zero flag):

Figure 1.38: OllyDbg: f_signed(): second conditional jump

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

165
The third conditional jump JGE will not trigger because it would only do so if SF=OF,
and that is not true in our case:

Figure 1.39: OllyDbg: f_signed(): third conditional jump

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

166
x86 + MSVC + Hiew

We can try to patch the executable file in a way that the f_unsigned() function
would always print “a==b”, no matter the input values. Here is how it looks in Hiew:

Figure 1.40: Hiew: f_unsigned() function

Essentially, we have to accomplish three tasks:
• force the first jump to always trigger;
• force the second jump to never trigger;
• force the third jump to always trigger.

Thus we can direct the code flow to always pass through the second printf(), and
output “a==b”.
Three instructions (or bytes) has to be patched:
• The first jump becomes JMP, but the jump offset would remain the same.
• The second jump might be triggered sometimes, but in any case it will jump to
the next instruction, because, we set the jump offset to 0.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

167
In these instructions the jump offset is added to the address for the next in-
struction. So if the offset is 0, the jump will transfer the control to the next
instruction.

• The third jump we replace with JMP just as we do with the first one, so it will
always trigger.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

168
Here is the modified code:

Figure 1.41: Hiew: let’s modify the f_unsigned() function

If we miss to change any of these jumps, then several printf() calls may execute,
while we want to execute only one.

Non-optimizing GCC

Non-optimizing GCC 4.4.1 produces almost the same code, but with puts() (1.5.3
on page 28) instead of printf().

Optimizing GCC

An observant reader may ask, why execute CMP several times, if the flags has the
same values after each execution?
Perhaps optimizing MSVC cannot do this, but optimizing GCC 4.8.1 can go deeper:

Listing 1.113: GCC 4.8.1 f_signed()
f_signed:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

169
mov eax, DWORD PTR [esp+8]
cmp DWORD PTR [esp+4], eax
jg .L6
je .L7
jge .L1
mov DWORD PTR [esp+4], OFFSET FLAT:.LC2 ; "a<b"
jmp puts

.L6:
mov DWORD PTR [esp+4], OFFSET FLAT:.LC0 ; "a>b"
jmp puts

.L1:
rep ret

.L7:
mov DWORD PTR [esp+4], OFFSET FLAT:.LC1 ; "a==b"
jmp puts

We also see JMP puts here instead of CALL puts / RETN.
This kind of trick will have explained later: 1.21.1 on page 197.
This type of x86 code is somewhat rare. MSVC 2012 as it seems, can’t generate
such code. On the other hand, assembly language programmers are fully aware of
the fact that Jcc instructions can be stacked.
So if you see such stacking somewhere, it is highly probable that the code was hand-
written.
The f_unsigned() function is not that æsthetically short:

Listing 1.114: GCC 4.8.1 f_unsigned()
f_unsigned:

push esi
push ebx
sub esp, 20
mov esi, DWORD PTR [esp+32]
mov ebx, DWORD PTR [esp+36]
cmp esi, ebx
ja .L13
cmp esi, ebx ; this instruction could be removed
je .L14

.L10:
jb .L15
add esp, 20
pop ebx
pop esi
ret

.L15:
mov DWORD PTR [esp+32], OFFSET FLAT:.LC2 ; "a<b"
add esp, 20
pop ebx
pop esi
jmp puts

.L13:
mov DWORD PTR [esp], OFFSET FLAT:.LC0 ; "a>b"

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

170
call puts
cmp esi, ebx
jne .L10

.L14:
mov DWORD PTR [esp+32], OFFSET FLAT:.LC1 ; "a==b"
add esp, 20
pop ebx
pop esi
jmp puts

Nevertheless, there are two CMP instructions instead of three.
So optimization algorithms of GCC 4.8.1 are probably not perfect yet.

ARM

32-bit ARM

Optimizing Keil 6/2013 (ARM mode)

Listing 1.115: Optimizing Keil 6/2013 (ARM mode)
.text:000000B8 EXPORT f_signed
.text:000000B8 f_signed ; CODE XREF: main+C
.text:000000B8 70 40 2D E9 STMFD SP!, {R4-R6,LR}
.text:000000BC 01 40 A0 E1 MOV R4, R1
.text:000000C0 04 00 50 E1 CMP R0, R4
.text:000000C4 00 50 A0 E1 MOV R5, R0
.text:000000C8 1A 0E 8F C2 ADRGT R0, aAB ; "a>b\n"
.text:000000CC A1 18 00 CB BLGT __2printf
.text:000000D0 04 00 55 E1 CMP R5, R4
.text:000000D4 67 0F 8F 02 ADREQ R0, aAB_0 ; "a==b\n"
.text:000000D8 9E 18 00 0B BLEQ __2printf
.text:000000DC 04 00 55 E1 CMP R5, R4
.text:000000E0 70 80 BD A8 LDMGEFD SP!, {R4-R6,PC}
.text:000000E4 70 40 BD E8 LDMFD SP!, {R4-R6,LR}
.text:000000E8 19 0E 8F E2 ADR R0, aAB_1 ; "a<b\n"
.text:000000EC 99 18 00 EA B __2printf
.text:000000EC ; End of function f_signed

Many instructions in ARM mode could be executed only when specific flags are set.
E.g. this is often used when comparing numbers.
For instance, the ADD instruction is in fact named ADDAL internally, where AL stands
for Always, i.e., execute always. The predicates are encoded in 4 high bits of the
32-bit ARM instructions (condition field). The B instruction for unconditional jumping
is in fact conditional and encoded just like any other conditional jump, but has AL in
the condition field, and it implies execute ALways, ignoring flags.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

171
The ADRGT instruction works just like ADR but executes only in case the previous CMP
instruction founds one of the numbers greater than the another, while comparing
the two (Greater Than).
The next BLGT instruction behaves exactly as BL and is triggered only if the result of
the comparison has been (Greater Than). ADRGT writes a pointer to the string a>b\n
into R0 and BLGT calls printf(). Therefore, instructions suffixed with -GT are to
execute only in case the value in R0 (which is a) is bigger than the value in R4 (which
is b).
Moving forward we see the ADREQ and BLEQ instructions. They behave just like ADR
and BL, but are to be executed only if operands were equal to each other during
the last comparison. Another CMP is located before them (because the printf()
execution may have tampered the flags).
Then we see LDMGEFD, this instruction works just like LDMFD92, but is triggered only
when one of the values is greater or equal than the other (Greater or Equal). The
LDMGEFD SP!, {R4-R6,PC} instruction acts like a function epilogue, but it will be
triggered only if a >= b, and only then the function execution will finish.
But if that condition is not satisfied, i.e., a < b, then the control flow will continue to
the next
“LDMFD SP!, {R4-R6,LR}” instruction, which is one more function epilogue. This
instruction restores not only the R4-R6 registers state, but also LR instead of PC,
thus, it does not return from the function. The last two instructions call printf()
with the string «a<b\n» as a sole argument. We already examined an unconditional
jump to the printf() function instead of function return in «printf() with several
arguments» section (1.11.2 on page 71).
f_unsigned is similar, only the ADRHI, BLHI, and LDMCSFD instructions are used there,
these predicates (HI = Unsigned higher, CS = Carry Set (greater than or equal)) are
analogous to those examined before, but for unsigned values.
There is not much new in the main() function for us:

Listing 1.116: main()
.text:00000128 EXPORT main
.text:00000128 main
.text:00000128 10 40 2D E9 STMFD SP!, {R4,LR}
.text:0000012C 02 10 A0 E3 MOV R1, #2
.text:00000130 01 00 A0 E3 MOV R0, #1
.text:00000134 DF FF FF EB BL f_signed
.text:00000138 02 10 A0 E3 MOV R1, #2
.text:0000013C 01 00 A0 E3 MOV R0, #1
.text:00000140 EA FF FF EB BL f_unsigned
.text:00000144 00 00 A0 E3 MOV R0, #0
.text:00000148 10 80 BD E8 LDMFD SP!, {R4,PC}
.text:00000148 ; End of function main

That is how you can get rid of conditional jumps in ARM mode.
Why is this so good? Read here: 2.4.1 on page 575.
92LDMFD

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

172
There is no such feature in x86, except the CMOVcc instruction, it is the same as MOV,
but triggered only when specific flags are set, usually set by CMP.

Optimizing Keil 6/2013 (Thumb mode)

Listing 1.117: Optimizing Keil 6/2013 (Thumb mode)
.text:00000072 f_signed ; CODE XREF: main+6
.text:00000072 70 B5 PUSH {R4-R6,LR}
.text:00000074 0C 00 MOVS R4, R1
.text:00000076 05 00 MOVS R5, R0
.text:00000078 A0 42 CMP R0, R4
.text:0000007A 02 DD BLE loc_82
.text:0000007C A4 A0 ADR R0, aAB ; "a>b\n"
.text:0000007E 06 F0 B7 F8 BL __2printf
.text:00000082
.text:00000082 loc_82 ; CODE XREF: f_signed+8
.text:00000082 A5 42 CMP R5, R4
.text:00000084 02 D1 BNE loc_8C
.text:00000086 A4 A0 ADR R0, aAB_0 ; "a==b\n"
.text:00000088 06 F0 B2 F8 BL __2printf
.text:0000008C
.text:0000008C loc_8C ; CODE XREF: f_signed+12
.text:0000008C A5 42 CMP R5, R4
.text:0000008E 02 DA BGE locret_96
.text:00000090 A3 A0 ADR R0, aAB_1 ; "a<b\n"
.text:00000092 06 F0 AD F8 BL __2printf
.text:00000096
.text:00000096 locret_96 ; CODE XREF: f_signed+1C
.text:00000096 70 BD POP {R4-R6,PC}
.text:00000096 ; End of function f_signed

Only B instructions in Thumb mode may be supplemented by condition codes, so the
Thumb code looks more ordinary.
BLE is a normal conditional jump Less than or Equal, BNE—Not Equal, BGE—Greater
than or Equal.
f_unsigned is similar, only other instructions are used while dealing with unsigned
values: BLS (Unsigned lower or same) and BCS (Carry Set (Greater than or equal)).

ARM64: Optimizing GCC (Linaro) 4.9

Listing 1.118: f_signed()
f_signed:
; W0=a, W1=b

cmp w0, w1
bgt .L19 ; Branch if Greater Than (a>b)
beq .L20 ; Branch if Equal (a==b)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

173
bge .L15 ; Branch if Greater than or Equal (a>=b) (impossible

here)
; a<b
adrp x0, .LC11 ; "a<b"
add x0, x0, :lo12:.LC11
b puts

.L19:
adrp x0, .LC9 ; "a>b"
add x0, x0, :lo12:.LC9
b puts

.L15: ; impossible to get here
ret

.L20:
adrp x0, .LC10 ; "a==b"
add x0, x0, :lo12:.LC10
b puts

Listing 1.119: f_unsigned()
f_unsigned:

stp x29, x30, [sp, -48]!
; W0=a, W1=b

cmp w0, w1
add x29, sp, 0
str x19, [sp,16]
mov w19, w0
bhi .L25 ; Branch if HIgher (a>b)
cmp w19, w1
beq .L26 ; Branch if Equal (a==b)

.L23:
bcc .L27 ; Branch if Carry Clear (if less than) (a<b)

; function epilogue, impossible to be here
ldr x19, [sp,16]
ldp x29, x30, [sp], 48
ret

.L27:
ldr x19, [sp,16]
adrp x0, .LC11 ; "a<b"
ldp x29, x30, [sp], 48
add x0, x0, :lo12:.LC11
b puts

.L25:
adrp x0, .LC9 ; "a>b"
str x1, [x29,40]
add x0, x0, :lo12:.LC9
bl puts
ldr x1, [x29,40]
cmp w19, w1
bne .L23 ; Branch if Not Equal

.L26:
ldr x19, [sp,16]
adrp x0, .LC10 ; "a==b"
ldp x29, x30, [sp], 48
add x0, x0, :lo12:.LC10

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

174
b puts

The comments were added by the author of this book. What is striking is that the
compiler is not aware that some conditions are not possible at all, so there is dead
code at some places, which can never be executed.

Exercise

Try to optimize these functions manually for size, removing redundant instructions,
without adding new ones.

MIPS

One distinctive MIPS feature is the absence of flags. Apparently, it was done to
simplify the analysis of data dependencies.
There are instructions similar to SETcc in x86: SLT (“Set on Less Than”: signed
version) and SLTU (unsigned version). These instructions sets destination register
value to 1 if the condition is true or to 0 if otherwise.
The destination register is then checked using BEQ (“Branch on Equal”) or BNE (“Branch
on Not Equal”) and a jump may occur. So, this instruction pair has to be used in MIPS
for comparison and branch. Let’s first start with the signed version of our function:

Listing 1.120: Non-optimizing GCC 4.4.5 (IDA)
.text:00000000 f_signed: # CODE XREF: main+18
.text:00000000
.text:00000000 var_10 = -0x10
.text:00000000 var_8 = -8
.text:00000000 var_4 = -4
.text:00000000 arg_0 = 0
.text:00000000 arg_4 = 4
.text:00000000
.text:00000000 addiu $sp, -0x20
.text:00000004 sw $ra, 0x20+var_4($sp)
.text:00000008 sw $fp, 0x20+var_8($sp)
.text:0000000C move $fp, $sp
.text:00000010 la $gp, __gnu_local_gp
.text:00000018 sw $gp, 0x20+var_10($sp)
; store input values into local stack:
.text:0000001C sw $a0, 0x20+arg_0($fp)
.text:00000020 sw $a1, 0x20+arg_4($fp)
; reload them.
.text:00000024 lw $v1, 0x20+arg_0($fp)
.text:00000028 lw $v0, 0x20+arg_4($fp)
; $v0=b
; $v1=a
.text:0000002C or $at, $zero ; NOP
; this is pseudoinstruction. in fact, "slt $v0,$v0,$v1" is there.
; so $v0 will be set to 1 if $v0<$v1 (b<a) or to 0 if otherwise:
.text:00000030 slt $v0, $v1

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

175
; jump to loc_5c, if condition is not true.
; this is pseudoinstruction. in fact, "beq $v0,$zero,loc_5c" is there:
.text:00000034 beqz $v0, loc_5C
; print "a>b" and finish
.text:00000038 or $at, $zero ; branch delay slot, NOP
.text:0000003C lui $v0, (unk_230 >> 16) # "a>b"
.text:00000040 addiu $a0, $v0, (unk_230 & 0xFFFF) # "a>b"
.text:00000044 lw $v0, (puts & 0xFFFF)($gp)
.text:00000048 or $at, $zero ; NOP
.text:0000004C move $t9, $v0
.text:00000050 jalr $t9
.text:00000054 or $at, $zero ; branch delay slot, NOP
.text:00000058 lw $gp, 0x20+var_10($fp)
.text:0000005C
.text:0000005C loc_5C: # CODE XREF: f_signed+34
.text:0000005C lw $v1, 0x20+arg_0($fp)
.text:00000060 lw $v0, 0x20+arg_4($fp)
.text:00000064 or $at, $zero ; NOP
; check if a==b, jump to loc_90 if its not true:
.text:00000068 bne $v1, $v0, loc_90
.text:0000006C or $at, $zero ; branch delay slot, NOP
; condition is true, so print "a==b" and finish:
.text:00000070 lui $v0, (aAB >> 16) # "a==b"
.text:00000074 addiu $a0, $v0, (aAB & 0xFFFF) # "a==b"
.text:00000078 lw $v0, (puts & 0xFFFF)($gp)
.text:0000007C or $at, $zero ; NOP
.text:00000080 move $t9, $v0
.text:00000084 jalr $t9
.text:00000088 or $at, $zero ; branch delay slot, NOP
.text:0000008C lw $gp, 0x20+var_10($fp)
.text:00000090
.text:00000090 loc_90: # CODE XREF: f_signed+68
.text:00000090 lw $v1, 0x20+arg_0($fp)
.text:00000094 lw $v0, 0x20+arg_4($fp)
.text:00000098 or $at, $zero ; NOP
; check if $v1<$v0 (a<b), set $v0 to 1 if condition is true:
.text:0000009C slt $v0, $v1, $v0
; if condition is not true (i.e., $v0==0), jump to loc_c8:
.text:000000A0 beqz $v0, loc_C8
.text:000000A4 or $at, $zero ; branch delay slot, NOP
; condition is true, print "a<b" and finish
.text:000000A8 lui $v0, (aAB_0 >> 16) # "a<b"
.text:000000AC addiu $a0, $v0, (aAB_0 & 0xFFFF) # "a<b"
.text:000000B0 lw $v0, (puts & 0xFFFF)($gp)
.text:000000B4 or $at, $zero ; NOP
.text:000000B8 move $t9, $v0
.text:000000BC jalr $t9
.text:000000C0 or $at, $zero ; branch delay slot, NOP
.text:000000C4 lw $gp, 0x20+var_10($fp)
.text:000000C8
; all 3 conditions were false, so just finish:
.text:000000C8 loc_C8: # CODE XREF:

f_signed+A0
.text:000000C8 move $sp, $fp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

176
.text:000000CC lw $ra, 0x20+var_4($sp)
.text:000000D0 lw $fp, 0x20+var_8($sp)
.text:000000D4 addiu $sp, 0x20
.text:000000D8 jr $ra
.text:000000DC or $at, $zero ; branch delay slot, NOP
.text:000000DC # End of function f_signed

SLT REG0, REG0, REG1 is reduced by IDA to its shorter form:
SLT REG0, REG1.
We also see there BEQZ pseudo instruction (“Branch if Equal to Zero”),
which are in fact BEQ REG, $ZERO, LABEL.
The unsigned version is just the same, but SLTU (unsigned version, hence “U” in
name) is used instead of SLT:

Listing 1.121: Non-optimizing GCC 4.4.5 (IDA)
.text:000000E0 f_unsigned: # CODE XREF: main+28
.text:000000E0
.text:000000E0 var_10 = -0x10
.text:000000E0 var_8 = -8
.text:000000E0 var_4 = -4
.text:000000E0 arg_0 = 0
.text:000000E0 arg_4 = 4
.text:000000E0
.text:000000E0 addiu $sp, -0x20
.text:000000E4 sw $ra, 0x20+var_4($sp)
.text:000000E8 sw $fp, 0x20+var_8($sp)
.text:000000EC move $fp, $sp
.text:000000F0 la $gp, __gnu_local_gp
.text:000000F8 sw $gp, 0x20+var_10($sp)
.text:000000FC sw $a0, 0x20+arg_0($fp)
.text:00000100 sw $a1, 0x20+arg_4($fp)
.text:00000104 lw $v1, 0x20+arg_0($fp)
.text:00000108 lw $v0, 0x20+arg_4($fp)
.text:0000010C or $at, $zero
.text:00000110 sltu $v0, $v1
.text:00000114 beqz $v0, loc_13C
.text:00000118 or $at, $zero
.text:0000011C lui $v0, (unk_230 >> 16)
.text:00000120 addiu $a0, $v0, (unk_230 & 0xFFFF)
.text:00000124 lw $v0, (puts & 0xFFFF)($gp)
.text:00000128 or $at, $zero
.text:0000012C move $t9, $v0
.text:00000130 jalr $t9
.text:00000134 or $at, $zero
.text:00000138 lw $gp, 0x20+var_10($fp)
.text:0000013C
.text:0000013C loc_13C: # CODE XREF: f_unsigned+34
.text:0000013C lw $v1, 0x20+arg_0($fp)
.text:00000140 lw $v0, 0x20+arg_4($fp)
.text:00000144 or $at, $zero
.text:00000148 bne $v1, $v0, loc_170

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

177
.text:0000014C or $at, $zero
.text:00000150 lui $v0, (aAB >> 16) # "a==b"
.text:00000154 addiu $a0, $v0, (aAB & 0xFFFF) # "a==b"
.text:00000158 lw $v0, (puts & 0xFFFF)($gp)
.text:0000015C or $at, $zero
.text:00000160 move $t9, $v0
.text:00000164 jalr $t9
.text:00000168 or $at, $zero
.text:0000016C lw $gp, 0x20+var_10($fp)
.text:00000170
.text:00000170 loc_170: # CODE XREF: f_unsigned+68
.text:00000170 lw $v1, 0x20+arg_0($fp)
.text:00000174 lw $v0, 0x20+arg_4($fp)
.text:00000178 or $at, $zero
.text:0000017C sltu $v0, $v1, $v0
.text:00000180 beqz $v0, loc_1A8
.text:00000184 or $at, $zero
.text:00000188 lui $v0, (aAB_0 >> 16) # "a<b"
.text:0000018C addiu $a0, $v0, (aAB_0 & 0xFFFF) # "a<b"
.text:00000190 lw $v0, (puts & 0xFFFF)($gp)
.text:00000194 or $at, $zero
.text:00000198 move $t9, $v0
.text:0000019C jalr $t9
.text:000001A0 or $at, $zero
.text:000001A4 lw $gp, 0x20+var_10($fp)
.text:000001A8
.text:000001A8 loc_1A8: # CODE XREF: f_unsigned+A0
.text:000001A8 move $sp, $fp
.text:000001AC lw $ra, 0x20+var_4($sp)
.text:000001B0 lw $fp, 0x20+var_8($sp)
.text:000001B4 addiu $sp, 0x20
.text:000001B8 jr $ra
.text:000001BC or $at, $zero
.text:000001BC # End of function f_unsigned

1.18.2 Calculating absolute value
A simple function:
int my_abs (int i)
{

if (i<0)
return -i;

else
return i;

};

Optimizing MSVC

This is how the code is usually generated:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

178
Listing 1.122: Optimizing MSVC 2012 x64

i$ = 8
my_abs PROC
; ECX = input

test ecx, ecx
; check for sign of input value
; skip NEG instruction if sign is positive

jns SHORT $LN2@my_abs
; negate value

neg ecx
$LN2@my_abs:
; prepare result in EAX:

mov eax, ecx
ret 0

my_abs ENDP

GCC 4.9 does mostly the same.

Optimizing Keil 6/2013: Thumb mode

Listing 1.123: Optimizing Keil 6/2013: Thumb mode
my_abs PROC

CMP r0,#0
; is input value equal to zero or greater than zero?
; skip RSBS instruction then

BGE |L0.6|
; subtract input value from 0:

RSBS r0,r0,#0
|L0.6|

BX lr
ENDP

ARM lacks a negate instruction, so the Keil compiler uses the “Reverse Subtract”
instruction, which just subtracts with reversed operands.

Optimizing Keil 6/2013: ARM mode

It is possible to add condition codes to some instructions in ARM mode, so that is
what the Keil compiler does:

Listing 1.124: Optimizing Keil 6/2013: ARM mode
my_abs PROC

CMP r0,#0
; execute "Reverse Subtract" instruction
; only if input value is less than 0:

RSBLT r0,r0,#0
BX lr
ENDP

Now there are no conditional jumps and this is good: 2.4.1 on page 575.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

179
Non-optimizing GCC 4.9 (ARM64)

ARM64 has instruction NEG for negating:

Listing 1.125: Optimizing GCC 4.9 (ARM64)
my_abs:

sub sp, sp, #16
str w0, [sp,12]
ldr w0, [sp,12]

; compare input value with contents of WZR register
; (which always holds zero)

cmp w0, wzr
bge .L2
ldr w0, [sp,12]
neg w0, w0
b .L3

.L2:
ldr w0, [sp,12]

.L3:
add sp, sp, 16
ret

MIPS

Listing 1.126: Optimizing GCC 4.4.5 (IDA)
my_abs:
; jump if $a0<0:

bltz $a0, locret_10
; just return input value ($a0) in $v0:

move $v0, $a0
jr $ra
or $at, $zero ; branch delay slot, NOP

locret_10:
; negate input value and store it in $v0:

jr $ra
; this is pseudoinstruction. in fact, this is "subu $v0,$zero,$a0"

($v0=0-$a0)
negu $v0, $a0

Here we see a new instruction: BLTZ (“Branch if Less Than Zero”).
There is also the NEGU pseudo instruction, which just does subtraction from zero.
The “U” suffix in both SUBU and NEGU implies that no exception to be raised in case
of integer overflow.

Branchless version?

You could have also a branchless version of this code. This we will review later: 3.16
on page 648.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

180
1.18.3 Ternary conditional operator
The ternary conditional operator in C/C++ has the following syntax:
expression ? expression : expression

Here is an example:
const char* f (int a)
{

return a==10 ? "it is ten" : "it is not ten";
};

x86

Old and non-optimizing compilers generate assembly code just as if an if/else
statement was used:

Listing 1.127: Non-optimizing MSVC 2008
$SG746 DB 'it is ten', 00H
$SG747 DB 'it is not ten', 00H

tv65 = -4 ; this will be used as a temporary variable
_a$ = 8
_f PROC

push ebp
mov ebp, esp
push ecx

; compare input value with 10
cmp DWORD PTR _a$[ebp], 10

; jump to $LN3@f if not equal
jne SHORT $LN3@f

; store pointer to the string into temporary variable:
mov DWORD PTR tv65[ebp], OFFSET $SG746 ; 'it is ten'

; jump to exit
jmp SHORT $LN4@f

$LN3@f:
; store pointer to the string into temporary variable:

mov DWORD PTR tv65[ebp], OFFSET $SG747 ; 'it is not ten'
$LN4@f:
; this is exit.
; copy pointer to the string from temporary variable to EAX.

mov eax, DWORD PTR tv65[ebp]
mov esp, ebp
pop ebp
ret 0

_f ENDP

Listing 1.128: Optimizing MSVC 2008
$SG792 DB 'it is ten', 00H
$SG793 DB 'it is not ten', 00H

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

181

_a$ = 8 ; size = 4
_f PROC
; compare input value with 10

cmp DWORD PTR _a$[esp-4], 10
mov eax, OFFSET $SG792 ; 'it is ten'

; jump to $LN4@f if equal
je SHORT $LN4@f
mov eax, OFFSET $SG793 ; 'it is not ten'

$LN4@f:
ret 0

_f ENDP

Newer compilers are more concise:

Listing 1.129: Optimizing MSVC 2012 x64
$SG1355 DB 'it is ten', 00H
$SG1356 DB 'it is not ten', 00H

a$ = 8
f PROC
; load pointers to the both strings

lea rdx, OFFSET FLAT:$SG1355 ; 'it is ten'
lea rax, OFFSET FLAT:$SG1356 ; 'it is not ten'

; compare input value with 10
cmp ecx, 10

; if equal, copy value from RDX ("it is ten")
; if not, do nothing. pointer to the string
; "it is not ten" is still in RAX as for now.

cmove rax, rdx
ret 0

f ENDP

Optimizing GCC 4.8 for x86 also uses the CMOVcc instruction, while the non-optimizing
GCC 4.8 uses conditional jumps.

ARM

Optimizing Keil for ARM mode also uses the conditional instructions ADRcc:

Listing 1.130: Optimizing Keil 6/2013 (ARM mode)
f PROC
; compare input value with 10

CMP r0,#0xa
; if comparison result is EQual, copy pointer to the "it is ten" string into

R0
ADREQ r0,|L0.16| ; "it is ten"

; if comparison result is Not Equal, copy pointer to the
; "it is not ten" string into R0

ADRNE r0,|L0.28| ; "it is not ten"
BX lr
ENDP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

182

|L0.16|
DCB "it is ten",0

|L0.28|
DCB "it is not ten",0

Without manual intervention, the two instructions ADREQ and ADRNE cannot be exe-
cuted in the same run.
Optimizing Keil for Thumb mode needs to use conditional jump instructions, since
there are no load instructions that support conditional flags:

Listing 1.131: Optimizing Keil 6/2013 (Thumb mode)
f PROC
; compare input value with 10

CMP r0,#0xa
; jump to |L0.8| if EQual

BEQ |L0.8|
ADR r0,|L0.12| ; "it is not ten"
BX lr

|L0.8|
ADR r0,|L0.28| ; "it is ten"
BX lr
ENDP

|L0.12|
DCB "it is not ten",0

|L0.28|
DCB "it is ten",0

ARM64

Optimizing GCC (Linaro) 4.9 for ARM64 also uses conditional jumps:

Listing 1.132: Optimizing GCC (Linaro) 4.9
f:

cmp x0, 10
beq .L3 ; branch if equal
adrp x0, .LC1 ; "it is ten"
add x0, x0, :lo12:.LC1
ret

.L3:
adrp x0, .LC0 ; "it is not ten"
add x0, x0, :lo12:.LC0
ret

.LC0:
.string "it is ten"

.LC1:
.string "it is not ten"

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

183
That is because ARM64 does not have a simple load instruction with conditional flags,
like ADRcc in 32-bit ARM mode or CMOVcc in x86.
It has, however, “Conditional SELect” instruction (CSEL)[ARM Architecture Reference
Manual, ARMv8, for ARMv8-A architecture profile, (2013)p390, C5.5], but GCC 4.9
does not seem to be smart enough to use it in such piece of code.

MIPS

Unfortunately, GCC 4.4.5 for MIPS is not very smart, either:

Listing 1.133: Optimizing GCC 4.4.5 (assembly output)
$LC0:

.ascii "it is not ten\000"
$LC1:

.ascii "it is ten\000"
f:

li $2,10 # 0xa
; compare $a0 and 10, jump if equal:

beq $4,$2,$L2
nop ; branch delay slot

; leave address of "it is not ten" string in $v0 and return:
lui $2,%hi($LC0)
j $31
addiu $2,$2,%lo($LC0)

$L2:
; leave address of "it is ten" string in $v0 and return:

lui $2,%hi($LC1)
j $31
addiu $2,$2,%lo($LC1)

Let’s rewrite it in an if/else way

const char* f (int a)
{

if (a==10)
return "it is ten";

else
return "it is not ten";

};

Interestingly, optimizing GCC 4.8 for x86 was also able to use CMOVcc in this case:

Listing 1.134: Optimizing GCC 4.8
.LC0:

.string "it is ten"
.LC1:

.string "it is not ten"
f:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

184
.LFB0:
; compare input value with 10

cmp DWORD PTR [esp+4], 10
mov edx, OFFSET FLAT:.LC1 ; "it is not ten"
mov eax, OFFSET FLAT:.LC0 ; "it is ten"

; if comparison result is Not Equal, copy EDX value to EAX
; if not, do nothing

cmovne eax, edx
ret

Optimizing Keil in ARM mode generates code identical to listing.1.130.
But the optimizing MSVC 2012 is not that good (yet).

Conclusion

Why optimizing compilers try to get rid of conditional jumps? Read here about it:
2.4.1 on page 575.

1.18.4 Getting minimal and maximal values
32-bit

int my_max(int a, int b)
{

if (a>b)
return a;

else
return b;

};

int my_min(int a, int b)
{

if (a<b)
return a;

else
return b;

};

Listing 1.135: Non-optimizing MSVC 2013
_a$ = 8
_b$ = 12
_my_min PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]

; compare A and B:
cmp eax, DWORD PTR _b$[ebp]

; jump, if A is greater or equal to B:
jge SHORT $LN2@my_min

; reload A to EAX if otherwise and jump to exit

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

185
mov eax, DWORD PTR _a$[ebp]
jmp SHORT $LN3@my_min
jmp SHORT $LN3@my_min ; this is redundant JMP

$LN2@my_min:
; return B

mov eax, DWORD PTR _b$[ebp]
$LN3@my_min:

pop ebp
ret 0

_my_min ENDP

_a$ = 8
_b$ = 12
_my_max PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]

; compare A and B:
cmp eax, DWORD PTR _b$[ebp]

; jump if A is less or equal to B:
jle SHORT $LN2@my_max

; reload A to EAX if otherwise and jump to exit
mov eax, DWORD PTR _a$[ebp]
jmp SHORT $LN3@my_max
jmp SHORT $LN3@my_max ; this is redundant JMP

$LN2@my_max:
; return B

mov eax, DWORD PTR _b$[ebp]
$LN3@my_max:

pop ebp
ret 0

_my_max ENDP

These two functions differ only in the conditional jump instruction: JGE (“Jump if
Greater or Equal”) is used in the first one and JLE (“Jump if Less or Equal”) in the
second.
There is one unneeded JMP instruction in each function, which MSVC presumably left
by mistake.

Branchless

ARM for Thumb mode reminds us of x86 code:

Listing 1.136: Optimizing Keil 6/2013 (Thumb mode)
my_max PROC
; R0=A
; R1=B
; compare A and B:

CMP r0,r1
; branch if A is greater then B:

BGT |L0.6|

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

186
; otherwise (A<=B) return R1 (B):

MOVS r0,r1
|L0.6|
; return

BX lr
ENDP

my_min PROC
; R0=A
; R1=B
; compare A and B:

CMP r0,r1
; branch if A is less then B:

BLT |L0.14|
; otherwise (A>=B) return R1 (B):

MOVS r0,r1
|L0.14|
; return

BX lr
ENDP

The functions differ in the branching instruction: BGT and BLT. It’s possible to use
conditional suffixes in ARM mode, so the code is shorter.
MOVcc is to be executed only if the condition is met:

Listing 1.137: Optimizing Keil 6/2013 (ARM mode)
my_max PROC
; R0=A
; R1=B
; compare A and B:

CMP r0,r1
; return B instead of A by placing B in R0
; this instruction will trigger only if A<=B (hence, LE - Less or Equal)
; if instruction is not triggered (in case of A>B),
; A is still in R0 register

MOVLE r0,r1
BX lr
ENDP

my_min PROC
; R0=A
; R1=B
; compare A and B:

CMP r0,r1
; return B instead of A by placing B in R0
; this instruction will trigger only if A>=B (hence, GE - Greater or Equal)
; if instruction is not triggered (in case of A<B),
; A value is still in R0 register

MOVGE r0,r1
BX lr
ENDP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

187
Optimizing GCC 4.8.1 and optimizing MSVC 2013 can use CMOVcc instruction, which
is analogous to MOVcc in ARM:

Listing 1.138: Optimizing MSVC 2013
my_max:

mov edx, DWORD PTR [esp+4]
mov eax, DWORD PTR [esp+8]

; EDX=A
; EAX=B
; compare A and B:

cmp edx, eax
; if A>=B, load A value into EAX
; the instruction idle if otherwise (if A<B)

cmovge eax, edx
ret

my_min:
mov edx, DWORD PTR [esp+4]
mov eax, DWORD PTR [esp+8]

; EDX=A
; EAX=B
; compare A and B:

cmp edx, eax
; if A<=B, load A value into EAX
; the instruction idle if otherwise (if A>B)

cmovle eax, edx
ret

64-bit

#include <stdint.h>

int64_t my_max(int64_t a, int64_t b)
{

if (a>b)
return a;

else
return b;

};

int64_t my_min(int64_t a, int64_t b)
{

if (a<b)
return a;

else
return b;

};

There is some unneeded value shuffling, but the code is comprehensible:

Listing 1.139: Non-optimizing GCC 4.9.1 ARM64

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

188
my_max:

sub sp, sp, #16
str x0, [sp,8]
str x1, [sp]
ldr x1, [sp,8]
ldr x0, [sp]
cmp x1, x0
ble .L2
ldr x0, [sp,8]
b .L3

.L2:
ldr x0, [sp]

.L3:
add sp, sp, 16
ret

my_min:
sub sp, sp, #16
str x0, [sp,8]
str x1, [sp]
ldr x1, [sp,8]
ldr x0, [sp]
cmp x1, x0
bge .L5
ldr x0, [sp,8]
b .L6

.L5:
ldr x0, [sp]

.L6:
add sp, sp, 16
ret

Branchless

No need to load function arguments from the stack, as they are already in the regis-
ters:

Listing 1.140: Optimizing GCC 4.9.1 x64
my_max:
; RDI=A
; RSI=B
; compare A and B:

cmp rdi, rsi
; prepare B in RAX for return:

mov rax, rsi
; if A>=B, put A (RDI) in RAX for return.
; this instruction is idle if otherwise (if A<B), and B is left in RAX

cmovge rax, rdi
ret

my_min:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

189
; RDI=A
; RSI=B
; compare A and B:

cmp rdi, rsi
; prepare B in RAX for return:

mov rax, rsi
; if A<=B, put A (RDI) in RAX for return.
; this instruction is idle if otherwise (if A>B), and B is left in RAX

cmovle rax, rdi
ret

MSVC 2013 does almost the same.
ARM64 has the CSEL instruction, which works just as MOVcc in ARM or CMOVcc in x86,
just the name is different: “Conditional SELect”.

Listing 1.141: Optimizing GCC 4.9.1 ARM64
my_max:
; X0=A
; X1=B
; compare A and B:

cmp x0, x1
; select X0 (A) to X0 if X0>=X1 or A>=B (Greater or Equal)
; select X1 (B) to X0 if A<B

csel x0, x0, x1, ge
ret

my_min:
; X0=A
; X1=B
; compare A and B:

cmp x0, x1
; select X0 (A) to X0 if X0<=X1 or A<=B (Less or Equal)
; select X1 (B) to X0 if A>B

csel x0, x0, x1, le
ret

MIPS

Unfortunately, GCC 4.4.5 for MIPS is not that good:

Listing 1.142: Optimizing GCC 4.4.5 (IDA)
my_max:
; set $v1 to 1 if $a1<$a0, or clear otherwise (if $a1>$a0):

slt $v1, $a1, $a0
; jump, if $v1 is 0 (or $a1>$a0):

beqz $v1, locret_10
; this is branch delay slot
; prepare $a1 in $v0 in case of branch triggered:

move $v0, $a1
; no branch triggered, prepare $a0 in $v0:

move $v0, $a0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

190

locret_10:
jr $ra
or $at, $zero ; branch delay slot, NOP

; the min() function is same, but input operands
; in SLT instruction are swapped:
my_min:

slt $v1, $a0, $a1
beqz $v1, locret_28
move $v0, $a1
move $v0, $a0

locret_28:
jr $ra
or $at, $zero ; branch delay slot, NOP

Do not forget about the branch delay slots: the first MOVE is executed before BEQZ,
the second MOVE is executed only if the branch hasn’t been taken.

1.18.5 Conclusion
x86

Here’s the rough skeleton of a conditional jump:

Listing 1.143: x86
CMP register, register/value
Jcc true ; cc=condition code
false:
;... some code to be executed if comparison result is false ...
JMP exit
true:
;... some code to be executed if comparison result is true ...
exit:

ARM

Listing 1.144: ARM
CMP register, register/value
Bcc true ; cc=condition code
false:
;... some code to be executed if comparison result is false ...
JMP exit
true:
;... some code to be executed if comparison result is true ...
exit:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

191
MIPS

Listing 1.145: Check for zero
BEQZ REG, label
...

Listing 1.146: Check for less than zero using pseudoinstruction
BLTZ REG, label
...

Listing 1.147: Check for equal values
BEQ REG1, REG2, label
...

Listing 1.148: Check for non-equal values
BNE REG1, REG2, label
...

Listing 1.149: Check for less than (signed)
SLT REG1, REG2, REG3
BEQ REG1, label
...

Listing 1.150: Check for less than (unsigned)
SLTU REG1, REG2, REG3
BEQ REG1, label
...

Branchless

If the body of a condition statement is very short, the conditional move instruction
can be used: MOVcc in ARM (in ARM mode), CSEL in ARM64, CMOVcc in x86.

ARM

It’s possible to use conditional suffixes in ARM mode for some instructions:

Listing 1.151: ARM (ARM mode)
CMP register, register/value
instr1_cc ; some instruction will be executed if condition code is true
instr2_cc ; some other instruction will be executed if other condition code

is true
;... etc...

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

192
Of course, there is no limit for the number of instructions with conditional code suf-
fixes, as long as the CPU flags are not modified by any of them.
Thumb mode has the IT instruction, allowing to add conditional suffixes to the next
four instructions. Read more about it: 1.25.7 on page 324.

Listing 1.152: ARM (Thumb mode)
CMP register, register/value
ITEEE EQ ; set these suffixes: if-then-else-else-else
instr1 ; instruction will be executed if condition is true
instr2 ; instruction will be executed if condition is false
instr3 ; instruction will be executed if condition is false
instr4 ; instruction will be executed if condition is false

1.18.6 Exercise
(ARM64) Try rewriting the code in listing.1.132 by removing all conditional jump in-
structions and using the CSEL instruction.

1.19 Software cracking
The vast majority of software can be cracked like that — by searching the very place
where protection is checked, a dongle (8.8 on page 1055), license key, serial number,
etc.
Often, it looks like:
...
call check_protection
jz all_OK
call message_box_protection_missing
call exit
all_OK:
; proceed
...

So if you see a patch (or “crack”), that cracks a software, and that patch replaces
0x74/0x75 (JZ/JNZ) byte(s) by 0xEB (JMP), this is it.
The process of software cracking comes down to a search of that JMP.

There are also a cases, when a software checks protection from time to time, this
can be a dongle, or a license server can be queried through the Internet. Then you
have to look for a function that checks protection. Then to patch it, to put there xor
eax, eax / retn, or mov eax, 1 / retn.
It’s important to understand that after patching of function beginning, usually, a
garbage follows these two instructions. The garbage consists of part of one instruc-
tion and the several next instructions.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

193
This is a real case. The beginning of a function which we want to replace by return
1;

Listing 1.153: Before
8BFF mov edi,edi
55 push ebp
8BEC mov ebp,esp
81EC68080000 sub esp,000000868
A110C00001 mov eax,[00100C010]
33C5 xor eax,ebp
8945FC mov [ebp][-4],eax
53 push ebx
8B5D08 mov ebx,[ebp][8]
...

Listing 1.154: After
B801000000 mov eax,1
C3 retn
EC in al,dx
68080000A1 push 0A1000008
10C0 adc al,al
0001 add [ecx],al
33C5 xor eax,ebp
8945FC mov [ebp][-4],eax
53 push ebx
8B5D08 mov ebx,[ebp][8]
...

Several incorrect instructions appears — IN, PUSH, ADC, ADD, after which, Hiew dis-
assembler (which I just used) synchronized and continued to disassemble all the
rest.
This is not important — all these instructions followed RETN will never be executed,
unless a direct jump would occur from some place, and that wouldn’t be possible in
general case.

Also, a global boolean variable can be present, having a flag, was the software reg-
istered or not.
init_etc proc
...
call check_protection_or_license_file
mov is_demo, eax
...
retn
init_etc endp

...

save_file proc
...

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

194
mov eax, is_demo
cmp eax, 1
jz all_OK1

call message_box_it_is_a_demo_no_saving_allowed
retn

:all_OK1
; continue saving file

...

save_proc endp

somewhere_else proc

mov eax, is_demo
cmp eax, 1
jz all_OK

; check if we run for 15 minutes
; exit if it is so
; or show nagging screen

:all_OK2
; continue

somewhere_else endp

A beginning of the check_protection_or_license_file() function could be patched,
so that it will always return 1, or, if this is better by some reason, all JZ/JNZ instruc-
tions can be patched as well.
More about patching: 11.2.

1.20 Impossible shutdown practical joke (Windows
7)

I don’t quite remember how I found the ExitWindowsEx() function in Windows 98’s
(it was late 1990s) user32.dll file. Probably, I just spotted its self-describing name.
And then I tried to block it by patching its beginning by 0xC3 byte (RETN).
The result was funny: Windows 98 cannot be shutted down anymore. Had to press
reset button.
These days I tried to do the same in Windows 7, that was created almost 10 years
later and based on completely different Windows NT base. Still, ExitWindowsEx()
function present in user32.dll file and serves the same purpose.
First, I turned off Windows File Protection by adding this to registry (Windows would
silently restore modified system files otherwise):

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

195

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon]
"SFCDisable"=dword:ffffff9d

Then I renamed c:\windows\system32\user32.dll to user32.dll.bak. I found
ExitWindowsEx() export entry using Hiew (IDA can help as well) and put 0xC3 byte
here. I restarted by Windows 7 and now it can’t be shutted down. ”Restart” and
”Logoff” buttons don’t work anymore.
I don’t know if it’s funny today or not, but back then, in late 1990s, my friend took
patched user32.dll file on a floppy diskette and copied it to all the computers (within
his reach, that worked under Windows 98 (almost all)) at his university. No Windows
can be shutted down after and his computer science teacher was lurid. (Hopefully
he can forgive us if he is reading this right now.)
If you do this, backup everything. The best idea is to run Windows under a virtual
machine.

1.21 switch()/case/default
1.21.1 Small number of cases
#include <stdio.h>

void f (int a)
{

switch (a)
{
case 0: printf ("zero\n"); break;
case 1: printf ("one\n"); break;
case 2: printf ("two\n"); break;
default: printf ("something unknown\n"); break;
};

};

int main()
{

f (2); // test
};

x86

Non-optimizing MSVC

Result (MSVC 2010):

Listing 1.155: MSVC 2010

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

196
tv64 = -4 ; size = 4
_a$ = 8 ; size = 4
_f PROC

push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _a$[ebp]
mov DWORD PTR tv64[ebp], eax
cmp DWORD PTR tv64[ebp], 0
je SHORT $LN4@f
cmp DWORD PTR tv64[ebp], 1
je SHORT $LN3@f
cmp DWORD PTR tv64[ebp], 2
je SHORT $LN2@f
jmp SHORT $LN1@f

$LN4@f:
push OFFSET $SG739 ; 'zero', 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN7@f

$LN3@f:
push OFFSET $SG741 ; 'one', 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN7@f

$LN2@f:
push OFFSET $SG743 ; 'two', 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN7@f

$LN1@f:
push OFFSET $SG745 ; 'something unknown', 0aH, 00H
call _printf
add esp, 4

$LN7@f:
mov esp, ebp
pop ebp
ret 0

_f ENDP

Our function with a few cases in switch() is in fact analogous to this construction:
void f (int a)
{

if (a==0)
printf ("zero\n");

else if (a==1)
printf ("one\n");

else if (a==2)
printf ("two\n");

else
printf ("something unknown\n");

};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

197
If we work with switch() with a few cases it is impossible to be sure if it was a real
switch() in the source code, or just a pack of if() statements.
This implies that switch() is like syntactic sugar for a large number of nested if()s.
There is nothing especially new to us in the generated code, with the exception of
the compiler moving input variable a to a temporary local variable tv64 93.
If we compile this in GCC 4.4.1, we’ll get almost the same result, even with maximal
optimization turned on (-O3 option).

Optimizing MSVC

Now let’s turn on optimization in MSVC (/Ox): cl 1.c /Fa1.asm /Ox

Listing 1.156: MSVC
_a$ = 8 ; size = 4
_f PROC

mov eax, DWORD PTR _a$[esp-4]
sub eax, 0
je SHORT $LN4@f
sub eax, 1
je SHORT $LN3@f
sub eax, 1
je SHORT $LN2@f
mov DWORD PTR _a$[esp-4], OFFSET $SG791 ; 'something unknown', 0aH,
00H
jmp _printf

$LN2@f:
mov DWORD PTR _a$[esp-4], OFFSET $SG789 ; 'two', 0aH, 00H
jmp _printf

$LN3@f:
mov DWORD PTR _a$[esp-4], OFFSET $SG787 ; 'one', 0aH, 00H
jmp _printf

$LN4@f:
mov DWORD PTR _a$[esp-4], OFFSET $SG785 ; 'zero', 0aH, 00H
jmp _printf

_f ENDP

Here we can see some dirty hacks.
First: the value of a is placed in EAX and 0 is subtracted from it. Sounds absurd,
but it is done to check if the value in EAX is 0. If yes, the ZF flag is to be set (e.g.
subtracting from 0 is 0) and the first conditional jump JE (Jump if Equal or synonym
JZ —Jump if Zero) is to be triggered and control flow is to be passed to the $LN4@f
label, where the 'zero' message is being printed. If the first jump doesn’t get
triggered, 1 is subtracted from the input value and if at some stage the result is 0,
the corresponding jump is to be triggered.
And if no jump gets triggered at all, the control flow passes to printf() with string
argument
93Local variables in stack are prefixed with tv—that’s how MSVC names internal variables for its needs

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

198
'something unknown'.
Second: we see something unusual for us: a string pointer is placed into the a vari-
able, and then printf() is called not via CALL, but via JMP. There is a simple expla-
nation for that: the caller pushes a value to the stack and calls our function via CALL.
CALL itself pushes the return address (RA) to the stack and does an unconditional
jump to our function address. Our function at any point of execution (since it do not
contain any instruction that moves the stack pointer) has the following stack layout:
• ESP—points to RA
• ESP+4—points to the a variable

On the other side, when we have to call printf() here we need exactly the same
stack layout, except for the first printf() argument, which needs to point to the
string. And that is what our code does.
It replaces the function’s first argument with the address of the string and jumps
to printf(), as if we didn’t call our function f(), but directly printf(). printf()
prints a string to stdout and then executes the RET instruction, which POPs RA from
the stack and control flow is returned not to f() but rather to f()’s caller, bypassing
the end of the f() function.
All this is possible because printf() is called right at the end of the f() function in
all cases. In some way, it is similar to the longjmp()94 function. And of course, it is
all done for the sake of speed.
A similar case with the ARM compiler is described in “printf() with several arguments”
section, here (1.11.2 on page 71).

94wikipedia

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://en.wikipedia.org/wiki/Setjmp.h
https://yurichev.com/contact.html
https://yurichev.com/contact.html

199
OllyDbg

Since this example is tricky, let’s trace it in OllyDbg.
OllyDbg can detect such switch() constructs, and it can add some useful comments.
EAX is 2 at the beginning, that’s the function’s input value:

Figure 1.42: OllyDbg: EAX now contain the first (and only) function argument

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

200
0 is subtracted from 2 in EAX. Of course, EAX still contains 2. But the ZF flag is now
0, indicating that the resulting value is non-zero:

Figure 1.43: OllyDbg: SUB executed

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

201
DEC is executed and EAX now contains 1. But 1 is non-zero, so the ZF flag is still 0:

Figure 1.44: OllyDbg: first DEC executed

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

202
Next DEC is executed. EAX is finally 0 and the ZF flag gets set, because the result is
zero:

Figure 1.45: OllyDbg: second DEC executed

OllyDbg shows that this jump is to be taken now.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

203
A pointer to the string “two” is to be written into the stack now:

Figure 1.46: OllyDbg: pointer to the string is to be written at the place of the first
argument

Please note: the current argument of the function is 2 and 2 is now in the stack at
the address 0x001EF850.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

204
MOV writes the pointer to the string at address 0x001EF850 (see the stack window).
Then, jump happens. This is the first instruction of the printf() function in MSVCR100.DLL
(This example was compiled with /MD switch):

Figure 1.47: OllyDbg: first instruction of printf() in MSVCR100.DLL

Now printf() treats the string at 0x00FF3010 as its only argument and prints the
string.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

205
This is the last instruction of printf():

Figure 1.48: OllyDbg: last instruction of printf() in MSVCR100.DLL

The string “two” has just been printed to the console window.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

206
Now let’s press F7 or F8 (step over) and return…not to f(), but rather to main():

Figure 1.49: OllyDbg: return to main()

Yes, the jump has been direct, from the guts of printf() to main(). Because
RA in the stack points not to some place in f(), but rather to main(). And CALL
0x00FF1000 has been the actual instruction which called f().

ARM: Optimizing Keil 6/2013 (ARM mode)
.text:0000014C f1:
.text:0000014C 00 00 50 E3 CMP R0, #0
.text:00000150 13 0E 8F 02 ADREQ R0, aZero ; "zero\n"
.text:00000154 05 00 00 0A BEQ loc_170
.text:00000158 01 00 50 E3 CMP R0, #1
.text:0000015C 4B 0F 8F 02 ADREQ R0, aOne ; "one\n"
.text:00000160 02 00 00 0A BEQ loc_170
.text:00000164 02 00 50 E3 CMP R0, #2
.text:00000168 4A 0F 8F 12 ADRNE R0, aSomethingUnkno ; "something

unknown\n"
.text:0000016C 4E 0F 8F 02 ADREQ R0, aTwo ; "two\n"
.text:00000170
.text:00000170 loc_170: ; CODE XREF: f1+8
.text:00000170 ; f1+14
.text:00000170 78 18 00 EA B __2printf

Again, by investigating this code we cannot say if it was a switch() in the original
source code, or just a pack of if() statements.
Anyway, we see here predicated instructions again (like ADREQ (Equal)) which is trig-
gered only in case R0 = 0, and then loads the address of the string «zero\n» into R0.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

207
The next instruction BEQ redirects control flow to loc_170, if R0 = 0.
An astute reader may ask, will BEQ trigger correctly since ADREQ it has already filled
the R0 register before with another value?
Yes, it will since BEQ checks the flags set by the CMP instruction, and ADREQ does not
modify any flags at all.
The rest of the instructions are already familiar to us. There is only one call to
printf(), at the end, and we have already examined this trick here (1.11.2 on
page 71). At the end, there are three paths to printf().
The last instruction, CMP R0, #2, is needed to check if a = 2.
If it is not true, then ADRNE loads a pointer to the string «something unknown \n» into
R0, since a has already been checked to be equal to 0 or 1, and we can sure that the
a variable is not equal to these numbers at this point. And if R0 = 2, a pointer to the
string «two\n» will be loaded by ADREQ into R0.

ARM: Optimizing Keil 6/2013 (Thumb mode)

.text:000000D4 f1:

.text:000000D4 10 B5 PUSH {R4,LR}

.text:000000D6 00 28 CMP R0, #0

.text:000000D8 05 D0 BEQ zero_case

.text:000000DA 01 28 CMP R0, #1

.text:000000DC 05 D0 BEQ one_case

.text:000000DE 02 28 CMP R0, #2

.text:000000E0 05 D0 BEQ two_case

.text:000000E2 91 A0 ADR R0, aSomethingUnkno ; "something
unknown\n"

.text:000000E4 04 E0 B default_case

.text:000000E6 zero_case: ; CODE XREF: f1+4

.text:000000E6 95 A0 ADR R0, aZero ; "zero\n"

.text:000000E8 02 E0 B default_case

.text:000000EA one_case: ; CODE XREF: f1+8

.text:000000EA 96 A0 ADR R0, aOne ; "one\n"

.text:000000EC 00 E0 B default_case

.text:000000EE two_case: ; CODE XREF: f1+C

.text:000000EE 97 A0 ADR R0, aTwo ; "two\n"

.text:000000F0 default_case ; CODE XREF: f1+10

.text:000000F0 ; f1+14

.text:000000F0 06 F0 7E F8 BL __2printf

.text:000000F4 10 BD POP {R4,PC}

As was already mentioned, it is not possible to add conditional predicates to most
instructions in Thumb mode, so the Thumb-code here is somewhat similar to the
easily understandable x86 CISC-style code.

ARM64: Non-optimizing GCC (Linaro) 4.9

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

208

.LC12:
.string "zero"

.LC13:
.string "one"

.LC14:
.string "two"

.LC15:
.string "something unknown"

f12:
stp x29, x30, [sp, -32]!
add x29, sp, 0
str w0, [x29,28]
ldr w0, [x29,28]
cmp w0, 1
beq .L34
cmp w0, 2
beq .L35
cmp w0, wzr
bne .L38 ; jump to default label
adrp x0, .LC12 ; "zero"
add x0, x0, :lo12:.LC12
bl puts
b .L32

.L34:
adrp x0, .LC13 ; "one"
add x0, x0, :lo12:.LC13
bl puts
b .L32

.L35:
adrp x0, .LC14 ; "two"
add x0, x0, :lo12:.LC14
bl puts
b .L32

.L38:
adrp x0, .LC15 ; "something unknown"
add x0, x0, :lo12:.LC15
bl puts
nop

.L32:
ldp x29, x30, [sp], 32
ret

The type of the input value is int, hence register W0 is used to hold it instead of the
whole X0 register.
The string pointers are passed to puts() using an ADRP/ADD instructions pair just like
it was demonstrated in the “Hello, world!” example: 1.5.3 on page 32.

ARM64: Optimizing GCC (Linaro) 4.9

f12:
cmp w0, 1

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

209
beq .L31
cmp w0, 2
beq .L32
cbz w0, .L35

; default case
adrp x0, .LC15 ; "something unknown"
add x0, x0, :lo12:.LC15
b puts

.L35:
adrp x0, .LC12 ; "zero"
add x0, x0, :lo12:.LC12
b puts

.L32:
adrp x0, .LC14 ; "two"
add x0, x0, :lo12:.LC14
b puts

.L31:
adrp x0, .LC13 ; "one"
add x0, x0, :lo12:.LC13
b puts

Better optimized piece of code. CBZ (Compare and Branch on Zero) instruction does
jump if W0 is zero. There is also a direct jump to puts() instead of calling it, like it
was explained before: 1.21.1 on page 197.

MIPS

Listing 1.157: Optimizing GCC 4.4.5 (IDA)
f:

lui $gp, (__gnu_local_gp >> 16)
; is it 1?

li $v0, 1
beq $a0, $v0, loc_60
la $gp, (__gnu_local_gp & 0xFFFF) ; branch delay slot

; is it 2?
li $v0, 2
beq $a0, $v0, loc_4C
or $at, $zero ; branch delay slot, NOP

; jump, if not equal to 0:
bnez $a0, loc_38
or $at, $zero ; branch delay slot, NOP

; zero case:
lui $a0, ($LC0 >> 16) # "zero"
lw $t9, (puts & 0xFFFF)($gp)
or $at, $zero ; load delay slot, NOP
jr $t9 ; branch delay slot, NOP
la $a0, ($LC0 & 0xFFFF) # "zero" ; branch delay slot

loc_38: # CODE XREF: f+1C
lui $a0, ($LC3 >> 16) # "something unknown"
lw $t9, (puts & 0xFFFF)($gp)
or $at, $zero ; load delay slot, NOP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

210
jr $t9
la $a0, ($LC3 & 0xFFFF) # "something unknown" ; branch

delay slot

loc_4C: # CODE XREF: f+14
lui $a0, ($LC2 >> 16) # "two"
lw $t9, (puts & 0xFFFF)($gp)
or $at, $zero ; load delay slot, NOP
jr $t9
la $a0, ($LC2 & 0xFFFF) # "two" ; branch delay slot

loc_60: # CODE XREF: f+8
lui $a0, ($LC1 >> 16) # "one"
lw $t9, (puts & 0xFFFF)($gp)
or $at, $zero ; load delay slot, NOP
jr $t9
la $a0, ($LC1 & 0xFFFF) # "one" ; branch delay slot

The function always ends with calling puts(), so here we see a jump to puts() (JR:
“Jump Register”) instead of “jump and link”. We talked about this earlier: 1.21.1 on
page 197.
We also often see NOP instructions after LW ones. This is “load delay slot”: another
delay slot in MIPS.
An instruction next to LW may execute at the moment while LW loads value from
memory.
However, the next instruction must not use the result of LW.
Modern MIPS CPUs have a feature to wait if the next instruction uses result of LW, so
this is somewhat outdated, but GCC still adds NOPs for older MIPS CPUs. In general,
it can be ignored.

Conclusion

A switch() with few cases is indistinguishable from an if/else construction, for exam-
ple: listing.1.21.1.

1.21.2 A lot of cases
If a switch() statement contains a lot of cases, it is not very convenient for the
compiler to emit too large code with a lot JE/JNE instructions.
#include <stdio.h>

void f (int a)
{

switch (a)
{
case 0: printf ("zero\n"); break;
case 1: printf ("one\n"); break;
case 2: printf ("two\n"); break;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

211
case 3: printf ("three\n"); break;
case 4: printf ("four\n"); break;
default: printf ("something unknown\n"); break;
};

};

int main()
{

f (2); // test
};

x86

Non-optimizing MSVC

We get (MSVC 2010):

Listing 1.158: MSVC 2010
tv64 = -4 ; size = 4
_a$ = 8 ; size = 4
_f PROC

push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _a$[ebp]
mov DWORD PTR tv64[ebp], eax
cmp DWORD PTR tv64[ebp], 4
ja SHORT $LN1@f
mov ecx, DWORD PTR tv64[ebp]
jmp DWORD PTR $LN11@f[ecx*4]

$LN6@f:
push OFFSET $SG739 ; 'zero', 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN9@f

$LN5@f:
push OFFSET $SG741 ; 'one', 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN9@f

$LN4@f:
push OFFSET $SG743 ; 'two', 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN9@f

$LN3@f:
push OFFSET $SG745 ; 'three', 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN9@f

$LN2@f:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

212
push OFFSET $SG747 ; 'four', 0aH, 00H
call _printf
add esp, 4
jmp SHORT $LN9@f

$LN1@f:
push OFFSET $SG749 ; 'something unknown', 0aH, 00H
call _printf
add esp, 4

$LN9@f:
mov esp, ebp
pop ebp
ret 0
npad 2 ; align next label

$LN11@f:
DD $LN6@f ; 0
DD $LN5@f ; 1
DD $LN4@f ; 2
DD $LN3@f ; 3
DD $LN2@f ; 4

_f ENDP

What we see here is a set of printf() calls with various arguments. All they have
not only addresses in the memory of the process, but also internal symbolic labels
assigned by the compiler. All these labels are also mentioned in the $LN11@f internal
table.
At the function start, if a is greater than 4, control flow is passed to label $LN1@f,
where printf() with argument 'something unknown' is called.
But if the value of a is less or equals to 4, then it gets multiplied by 4 and added with
the $LN11@f table address. That is how an address inside the table is constructed,
pointing exactly to the element we need. For example, let’s say a is equal to 2.
2 ∗ 4 = 8 (all table elements are addresses in a 32-bit process and that is why all
elements are 4 bytes wide). The address of the $LN11@f table + 8 is the table
element where the $LN4@f label is stored. JMP fetches the $LN4@f address from the
table and jumps to it.
This table is sometimes called jumptable or branch table95.
Then the corresponding printf() is called with argument 'two'.
Literally, the jmp DWORD PTR $LN11@f[ecx*4] instruction implies jump to the DWORD
that is stored at address $LN11@f + ecx * 4.
npad (.1.7 on page 1313) is an assembly language macro that align the next label so
that it will be stored at an address aligned on a 4 bytes (or 16 bytes) boundary. This
is very suitable for the processor since it is able to fetch 32-bit values from memory
through the memory bus, cache memory, etc., in a more effective way if it is aligned.

95The whole method was once called computed GOTO in early versions of Fortran: wikipedia. Not quite
relevant these days, but what a term!

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://en.wikipedia.org/wiki/Branch_table
https://yurichev.com/contact.html
https://yurichev.com/contact.html

213
OllyDbg

Let’s try this example in OllyDbg. The input value of the function (2) is loaded into
EAX:

Figure 1.50: OllyDbg: function’s input value is loaded in EAX

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

214
The input value is checked, is it bigger than 4? If not, the “default” jump is not taken:

Figure 1.51: OllyDbg: 2 is no bigger than 4: no jump is taken

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

215
Here we see a jumptable:

Figure 1.52: OllyDbg: calculating destination address using jumptable

Here we’ve clicked “Follow in Dump”→ “Address constant”, so now we see the jumpt-
able in the data window. These are 5 32-bit values96. ECX is now 2, so the third
element (can be indexed as 297) of the table is to be used. It’s also possible to click
“Follow in Dump”→ “Memory address” and OllyDbg will show the element addressed
by the JMP instruction. That’s 0x010B103A.

96They are underlined by OllyDbg because these are also FIXUPs: 6.5.2 on page 967, we are going to
come back to them later
97About indexing, see also: 3.22.3 on page 753

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

216
After the jump we are at 0x010B103A: the code printing “two” will now be executed:

Figure 1.53: OllyDbg: now we at the case: label

Non-optimizing GCC

Let’s see what GCC 4.4.1 generates:

Listing 1.159: GCC 4.4.1
public f

f proc near ; CODE XREF: main+10

var_18 = dword ptr -18h
arg_0 = dword ptr 8

push ebp
mov ebp, esp
sub esp, 18h
cmp [ebp+arg_0], 4
ja short loc_8048444
mov eax, [ebp+arg_0]
shl eax, 2
mov eax, ds:off_804855C[eax]
jmp eax

loc_80483FE: ; DATA XREF: .rodata:off_804855C
mov [esp+18h+var_18], offset aZero ; "zero"
call _puts
jmp short locret_8048450

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

217
loc_804840C: ; DATA XREF: .rodata:08048560

mov [esp+18h+var_18], offset aOne ; "one"
call _puts
jmp short locret_8048450

loc_804841A: ; DATA XREF: .rodata:08048564
mov [esp+18h+var_18], offset aTwo ; "two"
call _puts
jmp short locret_8048450

loc_8048428: ; DATA XREF: .rodata:08048568
mov [esp+18h+var_18], offset aThree ; "three"
call _puts
jmp short locret_8048450

loc_8048436: ; DATA XREF: .rodata:0804856C
mov [esp+18h+var_18], offset aFour ; "four"
call _puts
jmp short locret_8048450

loc_8048444: ; CODE XREF: f+A
mov [esp+18h+var_18], offset aSomethingUnkno ; "something unknown"
call _puts

locret_8048450: ; CODE XREF: f+26
; f+34...

leave
retn

f endp

off_804855C dd offset loc_80483FE ; DATA XREF: f+12
dd offset loc_804840C
dd offset loc_804841A
dd offset loc_8048428
dd offset loc_8048436

It is almost the same, with a little nuance: argument arg_0 is multiplied by 4 by
shifting it to left by 2 bits (it is almost the same as multiplication by 4) (1.24.2 on
page 274). Then the address of the label is taken from the off_804855C array, stored
in EAX, and then JMP EAX does the actual jump.

ARM: Optimizing Keil 6/2013 (ARM mode)

Listing 1.160: Optimizing Keil 6/2013 (ARM mode)
00000174 f2
00000174 05 00 50 E3 CMP R0, #5 ; switch 5 cases
00000178 00 F1 8F 30 ADDCC PC, PC, R0,LSL#2 ; switch jump
0000017C 0E 00 00 EA B default_case ; jumptable 00000178

default case

00000180
00000180 loc_180 ; CODE XREF: f2+4

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

218
00000180 03 00 00 EA B zero_case ; jumptable 00000178 case 0

00000184
00000184 loc_184 ; CODE XREF: f2+4
00000184 04 00 00 EA B one_case ; jumptable 00000178 case 1

00000188
00000188 loc_188 ; CODE XREF: f2+4
00000188 05 00 00 EA B two_case ; jumptable 00000178 case 2

0000018C
0000018C loc_18C ; CODE XREF: f2+4
0000018C 06 00 00 EA B three_case ; jumptable 00000178 case 3

00000190
00000190 loc_190 ; CODE XREF: f2+4
00000190 07 00 00 EA B four_case ; jumptable 00000178 case 4

00000194
00000194 zero_case ; CODE XREF: f2+4
00000194 ; f2:loc_180
00000194 EC 00 8F E2 ADR R0, aZero ; jumptable 00000178 case 0
00000198 06 00 00 EA B loc_1B8

0000019C
0000019C one_case ; CODE XREF: f2+4
0000019C ; f2:loc_184
0000019C EC 00 8F E2 ADR R0, aOne ; jumptable 00000178 case 1
000001A0 04 00 00 EA B loc_1B8

000001A4
000001A4 two_case ; CODE XREF: f2+4
000001A4 ; f2:loc_188
000001A4 01 0C 8F E2 ADR R0, aTwo ; jumptable 00000178 case 2
000001A8 02 00 00 EA B loc_1B8

000001AC
000001AC three_case ; CODE XREF: f2+4
000001AC ; f2:loc_18C
000001AC 01 0C 8F E2 ADR R0, aThree ; jumptable 00000178 case 3
000001B0 00 00 00 EA B loc_1B8

000001B4
000001B4 four_case ; CODE XREF: f2+4
000001B4 ; f2:loc_190
000001B4 01 0C 8F E2 ADR R0, aFour ; jumptable 00000178 case 4
000001B8
000001B8 loc_1B8 ; CODE XREF: f2+24
000001B8 ; f2+2C
000001B8 66 18 00 EA B __2printf

000001BC
000001BC default_case ; CODE XREF: f2+4

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

219
000001BC ; f2+8
000001BC D4 00 8F E2 ADR R0, aSomethingUnkno ; jumptable 00000178

default case
000001C0 FC FF FF EA B loc_1B8

This code makes use of the ARM mode feature in which all instructions have a fixed
size of 4 bytes.
Let’s keep in mind that the maximum value for a is 4 and any greater value will cause
«something unknown\n» string to be printed.
The first CMP R0, #5 instruction compares the input value of a with 5.
98 The next ADDCC PC, PC, R0,LSL#2 instruction is being executed only if R0 < 5
(CC=Carry clear / Less than). Consequently, if ADDCC does not trigger (it is a R0 ≥ 5
case), a jump to default_case label will occur.
But if R0 < 5 and ADDCC triggers, the following is to be happen:
The value in R0 is multiplied by 4. In fact, LSL#2 at the instruction’s suffix stands for
“shift left by 2 bits”. But as we will see later (1.24.2 on page 274) in section “Shifts”,
shift left by 2 bits is equivalent to multiplying by 4.
Then we add R0 ∗ 4 to the current value in PC, thus jumping to one of the B (Branch)
instructions located below.
At the moment of the execution of ADDCC, the value in PC is 8 bytes ahead (0x180)
than the address at which the ADDCC instruction is located (0x178), or, in other words,
2 instructions ahead.
This is how the pipeline in ARM processors works: when ADDCC is executed, the
processor at the moment is beginning to process the instruction after the next one,
so that is why PC points there. This has to be memorized.
If a = 0, then is to be added to the value in PC, and the actual value of the PC will be
written into PC (which is 8 bytes ahead) and a jump to the label loc_180 will happen,
which is 8 bytes ahead of the point where the ADDCC instruction is.
If a = 1, then PC+8+a∗4 = PC+8+1∗4 = PC+12 = 0x184 will be written to PC, which
is the address of the loc_184 label.
With every 1 added to a, the resulting PC is increased by 4.
4 is the instruction length in ARM mode and also, the length of each B instruction, of
which there are 5 in row.
Each of these five B instructions passes control further, to what was programmed in
the switch().
Pointer loading of the corresponding string occurs there, etc.

ARM: Optimizing Keil 6/2013 (Thumb mode)
98ADD—addition

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

220
Listing 1.161: Optimizing Keil 6/2013 (Thumb mode)

000000F6 EXPORT f2
000000F6 f2
000000F6 10 B5 PUSH {R4,LR}
000000F8 03 00 MOVS R3, R0
000000FA 06 F0 69 F8 BL __ARM_common_switch8_thumb ; switch 6

cases

000000FE 05 DCB 5
000000FF 04 06 08 0A 0C 10 DCB 4, 6, 8, 0xA, 0xC, 0x10 ; jump table for

switch statement
00000105 00 ALIGN 2
00000106
00000106 zero_case ; CODE XREF: f2+4
00000106 8D A0 ADR R0, aZero ; jumptable 000000FA case 0
00000108 06 E0 B loc_118

0000010A
0000010A one_case ; CODE XREF: f2+4
0000010A 8E A0 ADR R0, aOne ; jumptable 000000FA case 1
0000010C 04 E0 B loc_118

0000010E
0000010E two_case ; CODE XREF: f2+4
0000010E 8F A0 ADR R0, aTwo ; jumptable 000000FA case 2
00000110 02 E0 B loc_118

00000112
00000112 three_case ; CODE XREF: f2+4
00000112 90 A0 ADR R0, aThree ; jumptable 000000FA case 3
00000114 00 E0 B loc_118

00000116
00000116 four_case ; CODE XREF: f2+4
00000116 91 A0 ADR R0, aFour ; jumptable 000000FA case 4
00000118
00000118 loc_118 ; CODE XREF: f2+12
00000118 ; f2+16
00000118 06 F0 6A F8 BL __2printf
0000011C 10 BD POP {R4,PC}

0000011E
0000011E default_case ; CODE XREF: f2+4
0000011E 82 A0 ADR R0, aSomethingUnkno ; jumptable

000000FA default case
00000120 FA E7 B loc_118

000061D0 EXPORT __ARM_common_switch8_thumb
000061D0 __ARM_common_switch8_thumb ; CODE XREF:

example6_f2+4
000061D0 78 47 BX PC

000061D2 00 00 ALIGN 4
000061D2 ; End of function __ARM_common_switch8_thumb

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

221
000061D2
000061D4 __32__ARM_common_switch8_thumb ; CODE XREF:

__ARM_common_switch8_thumb
000061D4 01 C0 5E E5 LDRB R12, [LR,#-1]
000061D8 0C 00 53 E1 CMP R3, R12
000061DC 0C 30 DE 27 LDRCSB R3, [LR,R12]
000061E0 03 30 DE 37 LDRCCB R3, [LR,R3]
000061E4 83 C0 8E E0 ADD R12, LR, R3,LSL#1
000061E8 1C FF 2F E1 BX R12
000061E8 ; End of function __32__ARM_common_switch8_thumb

One cannot be sure that all instructions in Thumb and Thumb-2 modes has the same
size. It can even be said that in these modes the instructions have variable lengths,
just like in x86.
So there is a special table added that contains information about how much cases
are there (not including default-case), and an offset for each with a label to which
control must be passed in the corresponding case.
A special function is present here in order to deal with the table and pass control,
named __ARM_common_switch8_thumb. It starts with BX PC, whose function is to
switch the processor to ARM-mode. Then you see the function for table processing.
It is too advanced to describe it here now, so let’s omit it.
It is interesting to note that the function uses the LR register as a pointer to the table.
Indeed, after calling of this function, LR contains the address after
BL __ARM_common_switch8_thumb instruction, where the table starts.
It is also worth noting that the code is generated as a separate function in order to
reuse it, so the compiler doesn’t generate the same code for every switch() state-
ment.
IDA successfully perceived it as a service function and a table, and added comments
to the labels like
jumptable 000000FA case 0.

MIPS

Listing 1.162: Optimizing GCC 4.4.5 (IDA)
f:

lui $gp, (__gnu_local_gp >> 16)
; jump to loc_24 if input value is lesser than 5:

sltiu $v0, $a0, 5
bnez $v0, loc_24
la $gp, (__gnu_local_gp & 0xFFFF) ; branch delay slot

; input value is greater or equal to 5.
; print "something unknown" and finish:

lui $a0, ($LC5 >> 16) # "something unknown"
lw $t9, (puts & 0xFFFF)($gp)
or $at, $zero ; NOP
jr $t9

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

222
la $a0, ($LC5 & 0xFFFF) # "something unknown" ; branch

delay slot

loc_24: # CODE XREF: f+8
; load address of jumptable
; LA is pseudoinstruction, LUI and ADDIU pair are there in fact:

la $v0, off_120
; multiply input value by 4:

sll $a0, 2
; sum up multiplied value and jumptable address:

addu $a0, $v0, $a0
; load element from jumptable:

lw $v0, 0($a0)
or $at, $zero ; NOP

; jump to the address we got in jumptable:
jr $v0
or $at, $zero ; branch delay slot, NOP

sub_44: # DATA XREF: .rodata:0000012C
; print "three" and finish

lui $a0, ($LC3 >> 16) # "three"
lw $t9, (puts & 0xFFFF)($gp)
or $at, $zero ; NOP
jr $t9
la $a0, ($LC3 & 0xFFFF) # "three" ; branch delay slot

sub_58: # DATA XREF: .rodata:00000130
; print "four" and finish

lui $a0, ($LC4 >> 16) # "four"
lw $t9, (puts & 0xFFFF)($gp)
or $at, $zero ; NOP
jr $t9
la $a0, ($LC4 & 0xFFFF) # "four" ; branch delay slot

sub_6C: # DATA XREF: .rodata:off_120
; print "zero" and finish

lui $a0, ($LC0 >> 16) # "zero"
lw $t9, (puts & 0xFFFF)($gp)
or $at, $zero ; NOP
jr $t9
la $a0, ($LC0 & 0xFFFF) # "zero" ; branch delay slot

sub_80: # DATA XREF: .rodata:00000124
; print "one" and finish

lui $a0, ($LC1 >> 16) # "one"
lw $t9, (puts & 0xFFFF)($gp)
or $at, $zero ; NOP
jr $t9
la $a0, ($LC1 & 0xFFFF) # "one" ; branch delay slot

sub_94: # DATA XREF: .rodata:00000128
; print "two" and finish

lui $a0, ($LC2 >> 16) # "two"
lw $t9, (puts & 0xFFFF)($gp)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

223
or $at, $zero ; NOP
jr $t9
la $a0, ($LC2 & 0xFFFF) # "two" ; branch delay slot

; may be placed in .rodata section:
off_120: .word sub_6C

.word sub_80

.word sub_94

.word sub_44

.word sub_58

The new instruction for us is SLTIU (“Set on Less Than Immediate Unsigned”).
This is the same as SLTU (“Set on Less Than Unsigned”), but “I” stands for “immedi-
ate”, i.e., a number has to be specified in the instruction itself.
BNEZ is “Branch if Not Equal to Zero”.
Code is very close to the other ISAs. SLL (“Shift Word Left Logical”) does multiplica-
tion by 4.
MIPS is a 32-bit CPU after all, so all addresses in the jumptable are 32-bit ones.

Conclusion

Rough skeleton of switch():

Listing 1.163: x86
MOV REG, input
CMP REG, 4 ; maximal number of cases
JA default
SHL REG, 2 ; find element in table. shift for 3 bits in x64.
MOV REG, jump_table[REG]
JMP REG

case1:
; do something
JMP exit

case2:
; do something
JMP exit

case3:
; do something
JMP exit

case4:
; do something
JMP exit

case5:
; do something
JMP exit

default:

...

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

224

exit:

....

jump_table dd case1
dd case2
dd case3
dd case4
dd case5

The jump to the address in the jump table may also be implemented using this
instruction:
JMP jump_table[REG*4]. Or JMP jump_table[REG*8] in x64.
A jumptable is just array of pointers, like the one described later: 1.26.5 on page 354.

1.21.3 When there are several case statements in one block
Here is a very widespread construction: several case statements for a single block:
#include <stdio.h>

void f(int a)
{

switch (a)
{
case 1:
case 2:
case 7:
case 10:

printf ("1, 2, 7, 10\n");
break;

case 3:
case 4:
case 5:
case 6:

printf ("3, 4, 5\n");
break;

case 8:
case 9:
case 20:
case 21:

printf ("8, 9, 21\n");
break;

case 22:
printf ("22\n");
break;

default:
printf ("default\n");
break;

};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

225
};

int main()
{

f(4);
};

It’s too wasteful to generate a block for each possible case, so what is usually done
is to generate each block plus some kind of dispatcher.

MSVC

Listing 1.164: Optimizing MSVC 2010
1 $SG2798 DB '1, 2, 7, 10', 0aH, 00H
2 $SG2800 DB '3, 4, 5', 0aH, 00H
3 $SG2802 DB '8, 9, 21', 0aH, 00H
4 $SG2804 DB '22', 0aH, 00H
5 $SG2806 DB 'default', 0aH, 00H
6
7 _a$ = 8
8 _f PROC
9 mov eax, DWORD PTR _a$[esp-4]
10 dec eax
11 cmp eax, 21
12 ja SHORT $LN1@f
13 movzx eax, BYTE PTR $LN10@f[eax]
14 jmp DWORD PTR $LN11@f[eax*4]
15 $LN5@f:
16 mov DWORD PTR _a$[esp-4], OFFSET $SG2798 ; '1, 2, 7, 10'
17 jmp DWORD PTR __imp__printf
18 $LN4@f:
19 mov DWORD PTR _a$[esp-4], OFFSET $SG2800 ; '3, 4, 5'
20 jmp DWORD PTR __imp__printf
21 $LN3@f:
22 mov DWORD PTR _a$[esp-4], OFFSET $SG2802 ; '8, 9, 21'
23 jmp DWORD PTR __imp__printf
24 $LN2@f:
25 mov DWORD PTR _a$[esp-4], OFFSET $SG2804 ; '22'
26 jmp DWORD PTR __imp__printf
27 $LN1@f:
28 mov DWORD PTR _a$[esp-4], OFFSET $SG2806 ; 'default'
29 jmp DWORD PTR __imp__printf
30 npad 2 ; align $LN11@f table on 16-byte boundary
31 $LN11@f:
32 DD $LN5@f ; print '1, 2, 7, 10'
33 DD $LN4@f ; print '3, 4, 5'
34 DD $LN3@f ; print '8, 9, 21'
35 DD $LN2@f ; print '22'
36 DD $LN1@f ; print 'default'
37 $LN10@f:
38 DB 0 ; a=1
39 DB 0 ; a=2

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

226
40 DB 1 ; a=3
41 DB 1 ; a=4
42 DB 1 ; a=5
43 DB 1 ; a=6
44 DB 0 ; a=7
45 DB 2 ; a=8
46 DB 2 ; a=9
47 DB 0 ; a=10
48 DB 4 ; a=11
49 DB 4 ; a=12
50 DB 4 ; a=13
51 DB 4 ; a=14
52 DB 4 ; a=15
53 DB 4 ; a=16
54 DB 4 ; a=17
55 DB 4 ; a=18
56 DB 4 ; a=19
57 DB 2 ; a=20
58 DB 2 ; a=21
59 DB 3 ; a=22
60 _f ENDP

We see two tables here: the first table ($LN10@f) is an index table, and the second
one ($LN11@f) is an array of pointers to blocks.
First, the input value is used as an index in the index table (line 13).
Here is a short legend for the values in the table: 0 is the first case block (for values
1, 2, 7, 10), 1 is the second one (for values 3, 4, 5), 2 is the third one (for values 8,
9, 21), 3 is the fourth one (for value 22), 4 is for the default block.
There we get an index for the second table of code pointers and we jump to it (line
14).
What is also worth noting is that there is no case for input value 0.
That’s why we see the DEC instruction at line 10, and the table starts at a = 1, because
there is no need to allocate a table element for a = 0.
This is a very widespread pattern.
So why is this economical? Why isn’t it possible to make it as before (1.21.2 on
page 216), just with one table consisting of block pointers? The reason is that the
elements in index table are 8-bit, hence it’s all more compact.

GCC

GCC does the job in the way we already discussed (1.21.2 on page 216), using just
one table of pointers.

ARM64: Optimizing GCC 4.9.1

There is no code to be triggered if the input value is 0, so GCC tries to make the jump
table more compact and so it starts at 1 as an input value.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

227
GCC 4.9.1 for ARM64 uses an even cleverer trick. It’s able to encode all offsets as
8-bit bytes.
Let’s recall that all ARM64 instructions have a size of 4 bytes.
GCC is uses the fact that all offsets in my tiny example are in close proximity to each
other. So the jump table consisting of single bytes.

Listing 1.165: Optimizing GCC 4.9.1 ARM64
f14:
; input value in W0

sub w0, w0, #1
cmp w0, 21

; branch if less or equal (unsigned):
bls .L9

.L2:
; print "default":

adrp x0, .LC4
add x0, x0, :lo12:.LC4
b puts

.L9:
; load jumptable address to X1:

adrp x1, .L4
add x1, x1, :lo12:.L4

; W0=input_value-1
; load byte from the table:

ldrb w0, [x1,w0,uxtw]
; load address of the Lrtx label:

adr x1, .Lrtx4
; multiply table element by 4 (by shifting 2 bits left) and add (or subtract)

to the address of Lrtx:
add x0, x1, w0, sxtb #2

; jump to the calculated address:
br x0

; this label is pointing in code (text) segment:
.Lrtx4:

.section .rodata
; everything after ".section" statement is allocated in the read-only data

(rodata) segment:
.L4:

.byte (.L3 - .Lrtx4) / 4 ; case 1

.byte (.L3 - .Lrtx4) / 4 ; case 2

.byte (.L5 - .Lrtx4) / 4 ; case 3

.byte (.L5 - .Lrtx4) / 4 ; case 4

.byte (.L5 - .Lrtx4) / 4 ; case 5

.byte (.L5 - .Lrtx4) / 4 ; case 6

.byte (.L3 - .Lrtx4) / 4 ; case 7

.byte (.L6 - .Lrtx4) / 4 ; case 8

.byte (.L6 - .Lrtx4) / 4 ; case 9

.byte (.L3 - .Lrtx4) / 4 ; case 10

.byte (.L2 - .Lrtx4) / 4 ; case 11

.byte (.L2 - .Lrtx4) / 4 ; case 12

.byte (.L2 - .Lrtx4) / 4 ; case 13

.byte (.L2 - .Lrtx4) / 4 ; case 14

.byte (.L2 - .Lrtx4) / 4 ; case 15

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

228
.byte (.L2 - .Lrtx4) / 4 ; case 16
.byte (.L2 - .Lrtx4) / 4 ; case 17
.byte (.L2 - .Lrtx4) / 4 ; case 18
.byte (.L2 - .Lrtx4) / 4 ; case 19
.byte (.L6 - .Lrtx4) / 4 ; case 20
.byte (.L6 - .Lrtx4) / 4 ; case 21
.byte (.L7 - .Lrtx4) / 4 ; case 22
.text

; everything after ".text" statement is allocated in the code (text) segment:
.L7:
; print "22"

adrp x0, .LC3
add x0, x0, :lo12:.LC3
b puts

.L6:
; print "8, 9, 21"

adrp x0, .LC2
add x0, x0, :lo12:.LC2
b puts

.L5:
; print "3, 4, 5"

adrp x0, .LC1
add x0, x0, :lo12:.LC1
b puts

.L3:
; print "1, 2, 7, 10"

adrp x0, .LC0
add x0, x0, :lo12:.LC0
b puts

.LC0:
.string "1, 2, 7, 10"

.LC1:
.string "3, 4, 5"

.LC2:
.string "8, 9, 21"

.LC3:
.string "22"

.LC4:
.string "default"

Let’s compile this example to object file and open it in IDA. Here is the jump table:

Listing 1.166: jumptable in IDA
.rodata:0000000000000064 AREA .rodata, DATA, READONLY
.rodata:0000000000000064 ; ORG 0x64
.rodata:0000000000000064 $d DCB 9 ; case 1
.rodata:0000000000000065 DCB 9 ; case 2
.rodata:0000000000000066 DCB 6 ; case 3
.rodata:0000000000000067 DCB 6 ; case 4
.rodata:0000000000000068 DCB 6 ; case 5
.rodata:0000000000000069 DCB 6 ; case 6
.rodata:000000000000006A DCB 9 ; case 7
.rodata:000000000000006B DCB 3 ; case 8

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

229
.rodata:000000000000006C DCB 3 ; case 9
.rodata:000000000000006D DCB 9 ; case 10
.rodata:000000000000006E DCB 0xF7 ; case 11
.rodata:000000000000006F DCB 0xF7 ; case 12
.rodata:0000000000000070 DCB 0xF7 ; case 13
.rodata:0000000000000071 DCB 0xF7 ; case 14
.rodata:0000000000000072 DCB 0xF7 ; case 15
.rodata:0000000000000073 DCB 0xF7 ; case 16
.rodata:0000000000000074 DCB 0xF7 ; case 17
.rodata:0000000000000075 DCB 0xF7 ; case 18
.rodata:0000000000000076 DCB 0xF7 ; case 19
.rodata:0000000000000077 DCB 3 ; case 20
.rodata:0000000000000078 DCB 3 ; case 21
.rodata:0000000000000079 DCB 0 ; case 22
.rodata:000000000000007B ; .rodata ends

So in case of 1, 9 is to be multiplied by 4 and added to the address of Lrtx4 label.
In case of 22, 0 is to be multiplied by 4, resulting in 0.
Right after the Lrtx4 label is the L7 label, where you can find the code that prints
“22”.
There is no jump table in the code segment, it’s allocated in a separate .rodata
section (there is no special necessity to place it in the code section).
There are also negative bytes (0xF7), they are used for jumping back to the code
that prints the “default” string (at .L2).

1.21.4 Fall-through
Another popular usage of switch() operator is so-called “fallthrough”. Here is sim-
ple example99:

1 bool is_whitespace(char c) {
2 switch (c) {
3 case ' ': // fallthrough
4 case '\t': // fallthrough
5 case '\r': // fallthrough
6 case '\n':
7 return true;
8 default: // not whitespace
9 return false;
10 }
11 }

Slightly harder, from Linux kernel100:
1 char nco1, nco2;

99Copypasted from https://github.com/azonalon/prgraas/blob/master/prog1lib/lecture_
examples/is_whitespace.c
100Copypasted from https://github.com/torvalds/linux/blob/master/drivers/media/
dvb-frontends/lgdt3306a.c

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://github.com/azonalon/prgraas/blob/master/prog1lib/lecture_examples/is_whitespace.c
https://github.com/azonalon/prgraas/blob/master/prog1lib/lecture_examples/is_whitespace.c
https://github.com/torvalds/linux/blob/master/drivers/media/dvb-frontends/lgdt3306a.c
https://github.com/torvalds/linux/blob/master/drivers/media/dvb-frontends/lgdt3306a.c
https://yurichev.com/contact.html
https://yurichev.com/contact.html

230
2
3 void f(int if_freq_khz)
4 {
5
6 switch (if_freq_khz) {
7 default:
8 printf("IF=%d KHz is not supportted, 3250 assumed\n⤦

Ç ", if_freq_khz);
9 /* fallthrough */
10 case 3250: /* 3.25Mhz */
11 nco1 = 0x34;
12 nco2 = 0x00;
13 break;
14 case 3500: /* 3.50Mhz */
15 nco1 = 0x38;
16 nco2 = 0x00;
17 break;
18 case 4000: /* 4.00Mhz */
19 nco1 = 0x40;
20 nco2 = 0x00;
21 break;
22 case 5000: /* 5.00Mhz */
23 nco1 = 0x50;
24 nco2 = 0x00;
25 break;
26 case 5380: /* 5.38Mhz */
27 nco1 = 0x56;
28 nco2 = 0x14;
29 break;
30 }
31 };

Listing 1.167: Optimizing GCC 5.4.0 x86
1 .LC0:
2 .string "IF=%d KHz is not supportted, 3250 assumed\n"
3 f:
4 sub esp, 12
5 mov eax, DWORD PTR [esp+16]
6 cmp eax, 4000
7 je .L3
8 jg .L4
9 cmp eax, 3250
10 je .L5
11 cmp eax, 3500
12 jne .L2
13 mov BYTE PTR nco1, 56
14 mov BYTE PTR nco2, 0
15 add esp, 12
16 ret
17 .L4:
18 cmp eax, 5000
19 je .L7
20 cmp eax, 5380

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

231
21 jne .L2
22 mov BYTE PTR nco1, 86
23 mov BYTE PTR nco2, 20
24 add esp, 12
25 ret
26 .L2:
27 sub esp, 8
28 push eax
29 push OFFSET FLAT:.LC0
30 call printf
31 add esp, 16
32 .L5:
33 mov BYTE PTR nco1, 52
34 mov BYTE PTR nco2, 0
35 add esp, 12
36 ret
37 .L3:
38 mov BYTE PTR nco1, 64
39 mov BYTE PTR nco2, 0
40 add esp, 12
41 ret
42 .L7:
43 mov BYTE PTR nco1, 80
44 mov BYTE PTR nco2, 0
45 add esp, 12
46 ret

We can get to .L5 label if there is number 3250 at function’s input. But we can get
to this label from the other side: we see that there are no jumps between printf()
call and .L5 label.
Now we can understand why switch() statement is sometimes a source of bugs: one
forgotten break will transform your switch() statement into fallthrough one, and sev-
eral blocks will be executed instead of single one.

1.21.5 Exercises
Exercise#1

It’s possible to rework the C example in 1.21.2 on page 210 in such way that the
compiler can produce even smaller code, but will work just the same. Try to achieve
it.

1.22 Loops
1.22.1 Simple example
x86

There is a special LOOP instruction in x86 instruction set for checking the value in
register ECX and if it is not 0, to decrement ECX and pass control flow to the label

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

232
in the LOOP operand. Probably this instruction is not very convenient, and there are
no any modern compilers which emit it automatically. So, if you see this instruction
somewhere in code, it is most likely that this is a manually written piece of assembly
code.
In C/C++ loops are usually constructed using for(), while() or do/while() state-
ments.
Let’s start with for().
This statement defines loop initialization (set loop counter to initial value), loop con-
dition (is the counter bigger than a limit?), what is performed at each iteration (in-
crement/decrement) and of course loop body.
for (initialization; condition; at each iteration)
{

loop_body;
}

The generated code is consisting of four parts as well.
Let’s start with a simple example:
#include <stdio.h>

void printing_function(int i)
{

printf ("f(%d)\n", i);
};

int main()
{

int i;

for (i=2; i<10; i++)
printing_function(i);

return 0;
};

The result (MSVC 2010):

Listing 1.168: MSVC 2010
_i$ = -4
_main PROC

push ebp
mov ebp, esp
push ecx
mov DWORD PTR _i$[ebp], 2 ; loop initialization
jmp SHORT $LN3@main

$LN2@main:
mov eax, DWORD PTR _i$[ebp] ; here is what we do after each iteration:
add eax, 1 ; add 1 to (i) value
mov DWORD PTR _i$[ebp], eax

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

233
$LN3@main:

cmp DWORD PTR _i$[ebp], 10 ; this condition is checked before each
iteration
jge SHORT $LN1@main ; if (i) is biggest or equals to 10, lets
finish loop
mov ecx, DWORD PTR _i$[ebp] ; loop body: call printing_function(i)
push ecx
call _printing_function
add esp, 4
jmp SHORT $LN2@main ; jump to loop begin

$LN1@main: ; loop end
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

As we see, nothing special.
GCC 4.4.1 emits almost the same code, with one subtle difference:

Listing 1.169: GCC 4.4.1
main proc near

var_20 = dword ptr -20h
var_4 = dword ptr -4

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 20h
mov [esp+20h+var_4], 2 ; (i) initializing
jmp short loc_8048476

loc_8048465:
mov eax, [esp+20h+var_4]
mov [esp+20h+var_20], eax
call printing_function
add [esp+20h+var_4], 1 ; (i) increment

loc_8048476:
cmp [esp+20h+var_4], 9
jle short loc_8048465 ; if i<=9, continue loop
mov eax, 0
leave
retn

main endp

Now let’s see what we get with optimization turned on (/Ox):

Listing 1.170: Optimizing MSVC
_main PROC

push esi

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

234
mov esi, 2

$LL3@main:
push esi
call _printing_function
inc esi
add esp, 4
cmp esi, 10 ; 0000000aH
jl SHORT $LL3@main
xor eax, eax
pop esi
ret 0

_main ENDP

What happens here is that space for the i variable is not allocated in the local stack
anymore, but uses an individual register for it, ESI. This is possible in such small
functions where there aren’t many local variables.
One very important thing is that the f() function must not change the value in ESI.
Our compiler is sure here. And if the compiler decides to use the ESI register in f()
too, its value would have to be saved at the function’s prologue and restored at the
function’s epilogue, almost like in our listing: please note PUSH ESI/POP ESI at the
function start and end.
Let’s try GCC 4.4.1 with maximal optimization turned on (-O3 option):

Listing 1.171: Optimizing GCC 4.4.1
main proc near

var_10 = dword ptr -10h

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 10h
mov [esp+10h+var_10], 2
call printing_function
mov [esp+10h+var_10], 3
call printing_function
mov [esp+10h+var_10], 4
call printing_function
mov [esp+10h+var_10], 5
call printing_function
mov [esp+10h+var_10], 6
call printing_function
mov [esp+10h+var_10], 7
call printing_function
mov [esp+10h+var_10], 8
call printing_function
mov [esp+10h+var_10], 9
call printing_function
xor eax, eax
leave
retn

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

235
main endp

Huh, GCC just unwound our loop.
Loop unwinding has an advantage in the cases when there aren’t much iterations
and we could cut some execution time by removing all loop support instructions. On
the other side, the resulting code is obviously larger.
Big unrolled loops are not recommended in modern times, because bigger functions
may require bigger cache footprint101.
OK, let’s increase the maximum value of the i variable to 100 and try again. GCC
does:

Listing 1.172: GCC
public main

main proc near

var_20 = dword ptr -20h

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
push ebx
mov ebx, 2 ; i=2
sub esp, 1Ch

; aligning label loc_80484D0 (loop body begin) by 16-byte border:
nop

loc_80484D0:
; pass (i) as first argument to printing_function():

mov [esp+20h+var_20], ebx
add ebx, 1 ; i++
call printing_function
cmp ebx, 64h ; i==100?
jnz short loc_80484D0 ; if not, continue
add esp, 1Ch
xor eax, eax ; return 0
pop ebx
mov esp, ebp
pop ebp
retn

main endp

It is quite similar to what MSVC 2010 with optimization (/Ox) produce, with the ex-
ception that the EBX register is allocated for the i variable.
GCC is sure this register will not be modified inside of the f() function, and if it will,
it will be saved at the function prologue and restored at epilogue, just like here in
101A very good article about it: [Ulrich Drepper, What Every Programmer Should Know About Memory,
(2007)]102. Another recommendations about loop unrolling from Intel are here: [Intel® 64 and IA-32
Architectures Optimization Reference Manual, (2014)3.4.1.7].

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

236
the main() function.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

237
x86: OllyDbg

Let’s compile our example in MSVC 2010 with /Ox and /Ob0 options and load it into
OllyDbg.
It seems that OllyDbg is able to detect simple loops and show them in square brack-
ets, for convenience:

Figure 1.54: OllyDbg: main() begin

By tracing (F8 — step over) we see ESI incrementing. Here, for instance, ESI = i = 6:

Figure 1.55: OllyDbg: loop body just executed with i = 6

9 is the last loop value. That’s why JL is not triggering after the increment, and the
function will finish:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

238

Figure 1.56: OllyDbg: ESI = 10, loop end

x86: tracer

As we might see, it is not very convenient to trace manually in the debugger. That’s
a reason we will try tracer.
We open compiled example in IDA, find the address of the instruction PUSH ESI
(passing the sole argument to f()), which is 0x401026 for this case and we run
the tracer:
tracer.exe -l:loops_2.exe bpx=loops_2.exe!0x00401026

BPX just sets a breakpoint at the address and tracer will then print the state of the
registers.
In the tracer.log, this is what we see:
PID=12884|New process loops_2.exe
(0) loops_2.exe!0x401026
EAX=0x00a328c8 EBX=0x00000000 ECX=0x6f0f4714 EDX=0x00000000
ESI=0x00000002 EDI=0x00333378 EBP=0x0024fbfc ESP=0x0024fbb8
EIP=0x00331026
FLAGS=PF ZF IF
(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000 ECX=0x6f0a5617 EDX=0x000ee188
ESI=0x00000003 EDI=0x00333378 EBP=0x0024fbfc ESP=0x0024fbb8
EIP=0x00331026
FLAGS=CF PF AF SF IF
(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000 ECX=0x6f0a5617 EDX=0x000ee188
ESI=0x00000004 EDI=0x00333378 EBP=0x0024fbfc ESP=0x0024fbb8
EIP=0x00331026
FLAGS=CF PF AF SF IF
(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000 ECX=0x6f0a5617 EDX=0x000ee188
ESI=0x00000005 EDI=0x00333378 EBP=0x0024fbfc ESP=0x0024fbb8
EIP=0x00331026

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

239
FLAGS=CF AF SF IF
(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000 ECX=0x6f0a5617 EDX=0x000ee188
ESI=0x00000006 EDI=0x00333378 EBP=0x0024fbfc ESP=0x0024fbb8
EIP=0x00331026
FLAGS=CF PF AF SF IF
(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000 ECX=0x6f0a5617 EDX=0x000ee188
ESI=0x00000007 EDI=0x00333378 EBP=0x0024fbfc ESP=0x0024fbb8
EIP=0x00331026
FLAGS=CF AF SF IF
(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000 ECX=0x6f0a5617 EDX=0x000ee188
ESI=0x00000008 EDI=0x00333378 EBP=0x0024fbfc ESP=0x0024fbb8
EIP=0x00331026
FLAGS=CF AF SF IF
(0) loops_2.exe!0x401026
EAX=0x00000005 EBX=0x00000000 ECX=0x6f0a5617 EDX=0x000ee188
ESI=0x00000009 EDI=0x00333378 EBP=0x0024fbfc ESP=0x0024fbb8
EIP=0x00331026
FLAGS=CF PF AF SF IF
PID=12884|Process loops_2.exe exited. ExitCode=0 (0x0)

We see how the value of ESI register changes from 2 to 9.
Even more than that, the tracer can collect register values for all addresses within
the function. This is called trace there. Every instruction gets traced, all interesting
register values are recorded.
Then, an IDA.idc-script is generated, that adds comments. So, in the IDA we’ve
learned that the main() function address is 0x00401020 and we run:
tracer.exe -l:loops_2.exe bpf=loops_2.exe!0x00401020,trace:cc

BPF stands for set breakpoint on function.
As a result, we get the loops_2.exe.idc and loops_2.exe_clear.idc scripts.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

240
We load loops_2.exe.idc into IDA and see:

Figure 1.57: IDA with .idc-script loaded

We see that ESI can be from 2 to 9 at the start of the loop body, but from 3 to 0xA
(10) after the increment. We can also see that main() is finishing with 0 in EAX.
tracer also generates loops_2.exe.txt, that contains information about how many
times each instruction has been executed and register values:

Listing 1.173: loops_2.exe.txt
0x401020 (.text+0x20), e= 1 [PUSH ESI] ESI=1
0x401021 (.text+0x21), e= 1 [MOV ESI, 2]
0x401026 (.text+0x26), e= 8 [PUSH ESI] ESI=2..9
0x401027 (.text+0x27), e= 8 [CALL 8D1000h] tracing nested maximum ⤦

Ç level (1) reached, skipping this CALL 8D1000h=0x8d1000
0x40102c (.text+0x2c), e= 8 [INC ESI] ESI=2..9
0x40102d (.text+0x2d), e= 8 [ADD ESP, 4] ESP=0x38fcbc
0x401030 (.text+0x30), e= 8 [CMP ESI, 0Ah] ESI=3..0xa
0x401033 (.text+0x33), e= 8 [JL 8D1026h] SF=false,true OF=false
0x401035 (.text+0x35), e= 1 [XOR EAX, EAX]
0x401037 (.text+0x37), e= 1 [POP ESI]
0x401038 (.text+0x38), e= 1 [RETN] EAX=0

We can use grep here.

ARM

Non-optimizing Keil 6/2013 (ARM mode)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

241

main
STMFD SP!, {R4,LR}
MOV R4, #2
B loc_368

loc_35C ; CODE XREF: main+1C
MOV R0, R4
BL printing_function
ADD R4, R4, #1

loc_368 ; CODE XREF: main+8
CMP R4, #0xA
BLT loc_35C
MOV R0, #0
LDMFD SP!, {R4,PC}

Iteration counter i is to be stored in the R4 register. The MOV R4, #2 instruction just
initializes i. The MOV R0, R4 and BL printing_function instructions compose the
body of the loop, the first instruction preparing the argument for f() function and
the second calling the function. The ADD R4, R4, #1 instruction just adds 1 to the
i variable at each iteration. CMP R4, #0xA compares i with 0xA (10). The next
instruction BLT (Branch Less Than) jumps if i is less than 10. Otherwise, 0 is to be
written into R0 (since our function returns 0) and function execution finishes.

Optimizing Keil 6/2013 (Thumb mode)

_main
PUSH {R4,LR}
MOVS R4, #2

loc_132 ; CODE XREF: _main+E
MOVS R0, R4
BL printing_function
ADDS R4, R4, #1
CMP R4, #0xA
BLT loc_132
MOVS R0, #0
POP {R4,PC}

Practically the same.

Optimizing Xcode 4.6.3 (LLVM) (Thumb-2 mode)

_main
PUSH {R4,R7,LR}
MOVW R4, #0x1124 ; "%d\n"
MOVS R1, #2
MOVT.W R4, #0
ADD R7, SP, #4
ADD R4, PC

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

242
MOV R0, R4
BLX _printf
MOV R0, R4
MOVS R1, #3
BLX _printf
MOV R0, R4
MOVS R1, #4
BLX _printf
MOV R0, R4
MOVS R1, #5
BLX _printf
MOV R0, R4
MOVS R1, #6
BLX _printf
MOV R0, R4
MOVS R1, #7
BLX _printf
MOV R0, R4
MOVS R1, #8
BLX _printf
MOV R0, R4
MOVS R1, #9
BLX _printf
MOVS R0, #0
POP {R4,R7,PC}

In fact, this was in my f() function:
void printing_function(int i)
{

printf ("%d\n", i);
};

So, LLVM not just unrolled the loop, but also inlinedmy very simple function f(), and
inserted its body 8 times instead of calling it.
This is possible when the function is so simple (like mine) and when it is not called
too much (like here).

ARM64: Optimizing GCC 4.9.1

Listing 1.174: Optimizing GCC 4.9.1
printing_function:
; prepare second argument of printf():

mov w1, w0
; load address of the "f(%d)\n" string

adrp x0, .LC0
add x0, x0, :lo12:.LC0

; just branch here instead of branch with link and return:
b printf

main:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

243
; save FP and LR in the local stack:

stp x29, x30, [sp, -32]!
; set up stack frame:

add x29, sp, 0
; save contents of X19 register in the local stack:

str x19, [sp,16]
; we will use W19 register as counter.
; set initial value of 2 to it:

mov w19, 2
.L3:
; prepare first argument of printing_function():

mov w0, w19
; increment counter register.

add w19, w19, 1
; W0 here still holds value of counter value before increment.

bl printing_function
; is it end?

cmp w19, 10
; no, jump to the loop body begin:

bne .L3
; return 0

mov w0, 0
; restore contents of X19 register:

ldr x19, [sp,16]
; restore FP and LR values:

ldp x29, x30, [sp], 32
ret

.LC0:
.string "f(%d)\n"

ARM64: Non-optimizing GCC 4.9.1

Listing 1.175: Non-optimizing GCC 4.9.1 -fno-inline
.LC0:

.string "f(%d)\n"
printing_function:
; save FP and LR in the local stack:

stp x29, x30, [sp, -32]!
; set up stack frame:

add x29, sp, 0
; save contents of W0 register:

str w0, [x29,28]
; load address of the "f(%d)\n" string

adrp x0, .LC0
add x0, x0, :lo12:.LC0

; reload input value from the local stack to W1 register:
ldr w1, [x29,28]

; call printf()
bl printf

; restore FP and LR values:
ldp x29, x30, [sp], 32

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

244
ret

main:
; save FP and LR in the local stack:

stp x29, x30, [sp, -32]!
; set up stack frame:

add x29, sp, 0
; initialize counter

mov w0, 2
; store it to the place allocated for it in the local stack:

str w0, [x29,28]
; skip loop body and jump to the loop condition check instructions:

b .L3
.L4:
; load counter value to W0.
; it will be the first argument of printing_function():

ldr w0, [x29,28]
; call printing_function():

bl printing_function
; increment counter value:

ldr w0, [x29,28]
add w0, w0, 1
str w0, [x29,28]

.L3:
; loop condition check.
; load counter value:

ldr w0, [x29,28]
; is it 9?

cmp w0, 9
; less or equal? then jump to loop body begin:
; do nothing otherwise.

ble .L4
; return 0

mov w0, 0
; restore FP and LR values:

ldp x29, x30, [sp], 32
ret

MIPS

Listing 1.176: Non-optimizing GCC 4.4.5 (IDA)
main:

; IDA is not aware of variable names in local stack
; We gave them names manually:
i = -0x10
saved_FP = -8
saved_RA = -4

; function prologue:
addiu $sp, -0x28
sw $ra, 0x28+saved_RA($sp)
sw $fp, 0x28+saved_FP($sp)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

245
move $fp, $sp

; initialize counter at 2 and store this value in local stack
li $v0, 2
sw $v0, 0x28+i($fp)

; pseudoinstruction. "BEQ $ZERO, $ZERO, loc_9C" there in fact:
b loc_9C
or $at, $zero ; branch delay slot, NOP

loc_80: # CODE XREF: main+48
; load counter value from local stack and call printing_function():

lw $a0, 0x28+i($fp)
jal printing_function
or $at, $zero ; branch delay slot, NOP

; load counter, increment it, store it back:
lw $v0, 0x28+i($fp)
or $at, $zero ; NOP
addiu $v0, 1
sw $v0, 0x28+i($fp)

loc_9C: # CODE XREF: main+18
; check counter, is it 10?

lw $v0, 0x28+i($fp)
or $at, $zero ; NOP
slti $v0, 0xA

; if it is less than 10, jump to loc_80 (loop body begin):
bnez $v0, loc_80
or $at, $zero ; branch delay slot, NOP

; finishing, return 0:
move $v0, $zero

; function epilogue:
move $sp, $fp
lw $ra, 0x28+saved_RA($sp)
lw $fp, 0x28+saved_FP($sp)
addiu $sp, 0x28
jr $ra
or $at, $zero ; branch delay slot, NOP

The instruction that’s new to us is B. It is actually the pseudo instruction (BEQ).

One more thing

In the generated code we can see: after initializing i, the body of the loop is not to
be executed, as the condition for i is checked first, and only after that loop body can
be executed. And that is correct.
Because, if the loop condition is not met at the beginning, the body of the loop must
not be executed. This is possible in the following case:
for (i=0; i<total_entries_to_process; i++)

loop_body;

If total_entries_to_process is 0, the body of the loop must not be executed at all.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

246
This is why the condition checked before the execution.
However, an optimizing compiler may swap the condition check and loop body, if
it sure that the situation described here is not possible (like in the case of our very
simple example and using compilers like Keil, Xcode (LLVM), MSVC in optimization
mode).

1.22.2 Memory blocks copying routine
Real-world memory copy routines may copy 4 or 8 bytes at each iteration, use
SIMD103, vectorization, etc. But for the sake of simplicity, this example is the sim-
plest possible.
#include <stdio.h>

void my_memcpy (unsigned char* dst, unsigned char* src, size_t cnt)
{

size_t i;
for (i=0; i<cnt; i++)

dst[i]=src[i];
};

Straight-forward implementation

Listing 1.177: GCC 4.9 x64 optimized for size (-Os)
my_memcpy:
; RDI = destination address
; RSI = source address
; RDX = size of block

; initialize counter (i) at 0
xor eax, eax

.L2:
; all bytes copied? exit then:

cmp rax, rdx
je .L5

; load byte at RSI+i:
mov cl, BYTE PTR [rsi+rax]

; store byte at RDI+i:
mov BYTE PTR [rdi+rax], cl
inc rax ; i++
jmp .L2

.L5:
ret

Listing 1.178: GCC 4.9 ARM64 optimized for size (-Os)
my_memcpy:
; X0 = destination address

103Single Instruction, Multiple Data

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

247
; X1 = source address
; X2 = size of block

; initialize counter (i) at 0
mov x3, 0

.L2:
; all bytes copied? exit then:

cmp x3, x2
beq .L5

; load byte at X1+i:
ldrb w4, [x1,x3]

; store byte at X0+i:
strb w4, [x0,x3]
add x3, x3, 1 ; i++
b .L2

.L5:
ret

Listing 1.179: Optimizing Keil 6/2013 (Thumb mode)
my_memcpy PROC
; R0 = destination address
; R1 = source address
; R2 = size of block

PUSH {r4,lr}
; initialize counter (i) at 0

MOVS r3,#0
; condition checked at the end of function, so jump there:

B |L0.12|
|L0.6|
; load byte at R1+i:

LDRB r4,[r1,r3]
; store byte at R0+i:

STRB r4,[r0,r3]
; i++

ADDS r3,r3,#1
|L0.12|
; i<size?

CMP r3,r2
; jump to the loop begin if its so:

BCC |L0.6|
POP {r4,pc}
ENDP

ARM in ARM mode

Keil in ARM mode takes full advantage of conditional suffixes:

Listing 1.180: Optimizing Keil 6/2013 (ARM mode)
my_memcpy PROC
; R0 = destination address

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

248
; R1 = source address
; R2 = size of block

; initialize counter (i) at 0
MOV r3,#0

|L0.4|
; all bytes copied?

CMP r3,r2
; the following block is executed only if less than condition,
; i.e., if R2<R3 or i<size.
; load byte at R1+i:

LDRBCC r12,[r1,r3]
; store byte at R0+i:

STRBCC r12,[r0,r3]
; i++

ADDCC r3,r3,#1
; the last instruction of the conditional block.
; jump to loop begin if i<size
; do nothing otherwise (i.e., if i>=size)

BCC |L0.4|
; return

BX lr
ENDP

That’s why there is only one branch instruction instead of 2.

MIPS

Listing 1.181: GCC 4.4.5 optimized for size (-Os) (IDA)
my_memcpy:
; jump to loop check part:

b loc_14
; initialize counter (i) at 0
; it will always reside in $v0:

move $v0, $zero ; branch delay slot

loc_8: # CODE XREF: my_memcpy+1C
; load byte as unsigned at address in $t0 to $v1:

lbu $v1, 0($t0)
; increment counter (i):

addiu $v0, 1
; store byte at $a3

sb $v1, 0($a3)

loc_14: # CODE XREF: my_memcpy
; check if counter (i) in $v0 is still less then 3rd function argument ("cnt"

in $a2):
sltu $v1, $v0, $a2

; form address of byte in source block:
addu $t0, $a1, $v0

; $t0 = $a1+$v0 = src+i
; jump to loop body if counter sill less then "cnt":

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

249
bnez $v1, loc_8

; form address of byte in destination block ($a3 = $a0+$v0 = dst+i):
addu $a3, $a0, $v0 ; branch delay slot

; finish if BNEZ wasnt triggered:
jr $ra
or $at, $zero ; branch delay slot, NOP

Here we have two new instructions: LBU (“Load Byte Unsigned”) and SB (“Store
Byte”).
Just like in ARM, all MIPS registers are 32-bit wide, there are no byte-wide parts like
in x86.
So when dealing with single bytes, we have to allocate whole 32-bit registers for
them.
LBU loads a byte and clears all other bits (“Unsigned”).
On the other hand, LB (“Load Byte”) instruction sign-extends the loaded byte to a
32-bit value.
SB just writes a byte from lowest 8 bits of register to memory.

Vectorization

Optimizing GCC can do much more on this example: 1.36.1 on page 522.

1.22.3 Condition check
It’s important to keep in mind that in for() construct, condition is checked not at
the end, but at the beginning, before execution of loop body. But often, it’s more
convenient for compiler to check it at the end, after body. Sometimes, additional
check can be appended at the beginning.
For example:
#include <stdio.h>

void f(int start, int finish)
{

for (; start<finish; start++)
printf ("%d\n", start);

};

Optimizing GCC 5.4.0 x64:
f:
; check condition (1):

cmp edi, esi
jge .L9
push rbp
push rbx
mov ebp, esi
mov ebx, edi

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

250
sub rsp, 8

.L5:
mov edx, ebx
xor eax, eax
mov esi, OFFSET FLAT:.LC0 ; "%d\n"
mov edi, 1
add ebx, 1
call __printf_chk

; check condition (2):
cmp ebp, ebx
jne .L5
add rsp, 8
pop rbx
pop rbp

.L9:
rep ret

We see two checks.
Hex-Rays (at least version 2.2.0) decompiles this as:
void __cdecl f(unsigned int start, unsigned int finish)
{

unsigned int v2; // ebx@2
__int64 v3; // rdx@3

if ((signed int)start < (signed int)finish)
{
v2 = start;
do
{

v3 = v2++;
_printf_chk(1LL, "%d\n", v3);

}
while (finish != v2);

}
}

In this case, do/while() can be replaced by for()without any doubt, and the first check
can be removed.

1.22.4 Conclusion
Rough skeleton of loop from 2 to 9 inclusive:

Listing 1.182: x86
mov [counter], 2 ; initialization
jmp check

body:
; loop body
; do something here
; use counter variable in local stack

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

251
add [counter], 1 ; increment

check:
cmp [counter], 9
jle body

The increment operation may be represented as 3 instructions in non-optimized
code:

Listing 1.183: x86
MOV [counter], 2 ; initialization
JMP check

body:
; loop body
; do something here
; use counter variable in local stack
MOV REG, [counter] ; increment
INC REG
MOV [counter], REG

check:
CMP [counter], 9
JLE body

If the body of the loop is short, a whole register can be dedicated to the counter
variable:

Listing 1.184: x86
MOV EBX, 2 ; initialization
JMP check

body:
; loop body
; do something here
; use counter in EBX, but do not modify it!
INC EBX ; increment

check:
CMP EBX, 9
JLE body

Some parts of the loop may be generated by compiler in different order:

Listing 1.185: x86
MOV [counter], 2 ; initialization
JMP label_check

label_increment:
ADD [counter], 1 ; increment

label_check:
CMP [counter], 10
JGE exit
; loop body
; do something here
; use counter variable in local stack
JMP label_increment

exit:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

252
Usually the condition is checked before loop body, but the compiler may rearrange
it in a way that the condition is checked after loop body.
This is done when the compiler is sure that the condition is always true on the first
iteration, so the body of the loop is to be executed at least once:

Listing 1.186: x86
MOV REG, 2 ; initialization

body:
; loop body
; do something here
; use counter in REG, but do not modify it!
INC REG ; increment
CMP REG, 10
JL body

Using the LOOP instruction. This is rare, compilers are not using it. When you see it,
it’s a sign that this piece of code is hand-written:

Listing 1.187: x86
; count from 10 to 1
MOV ECX, 10

body:
; loop body
; do something here
; use counter in ECX, but do not modify it!
LOOP body

ARM.
The R4 register is dedicated to counter variable in this example:

Listing 1.188: ARM
MOV R4, 2 ; initialization
B check

body:
; loop body
; do something here
; use counter in R4, but do not modify it!
ADD R4,R4, #1 ; increment

check:
CMP R4, #10
BLT body

1.22.5 Exercises
• http://challenges.re/54

• http://challenges.re/55

• http://challenges.re/56

• http://challenges.re/57

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://challenges.re/54
http://challenges.re/55
http://challenges.re/56
http://challenges.re/57
https://yurichev.com/contact.html
https://yurichev.com/contact.html

253
1.23 More about strings
1.23.1 strlen()
Let’s talk about loops one more time. Often, the strlen() function 104 is imple-
mented using a while() statement. Here is how it is done in the MSVC standard
libraries:
int my_strlen (const char * str)
{

const char *eos = str;

while(*eos++) ;

return(eos - str - 1);
}

int main()
{

// test
return my_strlen("hello!");

};

x86

Non-optimizing MSVC

Let’s compile:
_eos$ = -4 ; size = 4
_str$ = 8 ; size = 4
_strlen PROC

push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _str$[ebp] ; place pointer to string from "str"
mov DWORD PTR _eos$[ebp], eax ; place it to local variable "eos"

$LN2@strlen_:
mov ecx, DWORD PTR _eos$[ebp] ; ECX=eos

; take 8-bit byte from address in ECX and place it
; as 32-bit value to EDX with sign extension

movsx edx, BYTE PTR [ecx]
mov eax, DWORD PTR _eos$[ebp] ; EAX=eos
add eax, 1 ; increment EAX
mov DWORD PTR _eos$[ebp], eax ; place EAX back to "eos"
test edx, edx ; EDX is zero?
je SHORT $LN1@strlen_ ; yes, then finish loop
jmp SHORT $LN2@strlen_ ; continue loop

104counting the characters in a string in the C language

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

254
$LN1@strlen_:

; here we calculate the difference between two pointers

mov eax, DWORD PTR _eos$[ebp]
sub eax, DWORD PTR _str$[ebp]
sub eax, 1 ; subtract 1 and return result
mov esp, ebp
pop ebp
ret 0

strlen ENDP

We get two new instructions here: MOVSX and TEST.
The first one—MOVSX—takes a byte from an address in memory and stores the value
in a 32-bit register. MOVSX stands for MOV with Sign-Extend. MOVSX sets the rest of
the bits, from the 8th to the 31th, to 1 if the source byte is negative or to 0 if is
positive.
And here is why.
By default, the char type is signed in MSVC and GCC. If we have two values of
which one is char and the other is int, (int is signed too), and if the first value con-
tain -2 (coded as 0xFE) and we just copy this byte into the int container, it makes
0x000000FE, and this from the point of signed int view is 254, but not -2. In signed
int, -2 is coded as 0xFFFFFFFE. So if we have to transfer 0xFE from a variable of char
type to int, we have to identify its sign and extend it. That is what MOVSX does.
It’s hard to say if the compiler needs to store a char variable in EDX, it could just take
a 8-bit register part (for example DL). Apparently, the compiler’s register allocator
works like that.
Then we see TEST EDX, EDX. You can read more about the TEST instruction in the
section about bit fields (1.28 on page 382). Here this instruction just checks if the
value in EDX equals to 0.

Non-optimizing GCC

Let’s try GCC 4.4.1:
public strlen

strlen proc near

eos = dword ptr -4
arg_0 = dword ptr 8

push ebp
mov ebp, esp
sub esp, 10h
mov eax, [ebp+arg_0]
mov [ebp+eos], eax

loc_80483F0:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

255
mov eax, [ebp+eos]
movzx eax, byte ptr [eax]
test al, al
setnz al
add [ebp+eos], 1
test al, al
jnz short loc_80483F0
mov edx, [ebp+eos]
mov eax, [ebp+arg_0]
mov ecx, edx
sub ecx, eax
mov eax, ecx
sub eax, 1
leave
retn

strlen endp

The result is almost the same as in MSVC, but here we see MOVZX instead of MOVSX.
MOVZX stands for MOV with Zero-Extend. This instruction copies a 8-bit or 16-bit
value into a 32-bit register and sets the rest of the bits to 0. In fact, this instruction
is convenient only because it enable us to replace this instruction pair:
xor eax, eax / mov al, [...].
On the other hand, it is obvious that the compiler could produce this code:
mov al, byte ptr [eax] / test al, al—it is almost the same, however, the high-
est bits of the EAX register will contain random noise. But let’s think it is compiler’s
drawback—it cannot producemore understandable code. Strictly speaking, the com-
piler is not obliged to emit understandable (to humans) code at all.
The next new instruction for us is SETNZ. Here, if AL doesn’t contain zero, test al,
al sets the ZF flag to 0, but SETNZ, if ZF==0 (NZ stands for not zero) sets AL to
1. Speaking in natural language, if AL is not zero, let’s jump to loc_80483F0. The
compiler emits some redundant code, but let’s not forget that the optimizations are
turned off.

Optimizing MSVC

Now let’s compile all this in MSVC 2012, with optimizations turned on (/Ox):

Listing 1.189: Optimizing MSVC 2012 /Ob0
_str$ = 8 ; size = 4
_strlen PROC

mov edx, DWORD PTR _str$[esp-4] ; EDX -> pointer to the string
mov eax, edx ; move to EAX

$LL2@strlen:
mov cl, BYTE PTR [eax] ; CL = *EAX
inc eax ; EAX++
test cl, cl ; CL==0?
jne SHORT $LL2@strlen ; no, continue loop
sub eax, edx ; calculate pointers difference
dec eax ; decrement EAX

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

256
ret 0

_strlen ENDP

Now it is all simpler. Needless to say, the compiler could use registers with such
efficiency only in small functions with a few local variables.
INC/DEC—are increment/decrement instructions, in other words: add or subtract 1
to/from a variable.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

257
Optimizing MSVC + OllyDbg

We can try this (optimized) example in OllyDbg. Here is the first iteration:

Figure 1.58: OllyDbg: first iteration start

We see that OllyDbg found a loop and, for convenience, wrapped its instructions in
brackets. By clicking the right button on EAX, we can choose “Follow in Dump” and
the memory window scrolls to the right place. Here we can see the string “hello!” in
memory. There is at least one zero byte after it and then random garbage.
If OllyDbg sees a register with a valid address in it, that points to some string, it is
shown as a string.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

258
Let’s press F8 (step over) a few times, to get to the start of the body of the loop:

Figure 1.59: OllyDbg: second iteration start

We see that EAX contains the address of the second character in the string.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

259
We have to press F8 enough number of times in order to escape from the loop:

Figure 1.60: OllyDbg: pointers difference to be calculated now

We see that EAX now contains the address of zero byte that’s right after the string
plus 1 (because INC EAX was executed regardless of whether we exit from the loop
or not). Meanwhile, EDX hasn’t changed, so it still pointing to the start of the string.
The difference between these two addresses is being calculated now.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

260
The SUB instruction just got executed:

Figure 1.61: OllyDbg: EAX to be decremented now

The difference of pointers is in the EAX register now—7. Indeed, the length of the
“hello!” string is 6, but with the zero byte included—7. But strlen() must return
the number of non-zero characters in the string. So the decrement executes and
then the function returns.

Optimizing GCC

Let’s check GCC 4.4.1 with optimizations turned on (-O3 key):
public strlen

strlen proc near

arg_0 = dword ptr 8

push ebp
mov ebp, esp
mov ecx, [ebp+arg_0]
mov eax, ecx

loc_8048418:
movzx edx, byte ptr [eax]
add eax, 1
test dl, dl
jnz short loc_8048418

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

261
not ecx
add eax, ecx
pop ebp
retn

strlen endp

Here GCC is almost the same as MSVC, except for the presence of MOVZX. However,
here MOVZX could be replaced with
mov dl, byte ptr [eax].
Perhaps it is simpler for GCC’s code generator to remember the whole 32-bit EDX
register is allocated for a char variable and it then can be sure that the highest bits
has no any noise at any point.
After that we also see a new instruction—NOT. This instruction inverts all bits in the
operand.
You can say that it is a synonym to the XOR ECX, 0ffffffffh instruction. NOT and
the following ADD calculate the pointer difference and subtract 1, just in a different
way. At the start ECX, where the pointer to str is stored, gets inverted and 1 is
subtracted from it.
In other words, at the end of the function just after loop body, these operations are
executed:
ecx=str;
eax=eos;
ecx=(-ecx)-1;
eax=eax+ecx
return eax

… and this is effectively equivalent to:
ecx=str;
eax=eos;
eax=eax-ecx;
eax=eax-1;
return eax

Why did GCC decide it would be better? Hard to guess. But perhaps the both variants
are equivalent in efficiency.

ARM

32-bit ARM

Non-optimizing Xcode 4.6.3 (LLVM) (ARM mode)

Listing 1.190: Non-optimizing Xcode 4.6.3 (LLVM) (ARM mode)
_strlen

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

262

eos = -8
str = -4

SUB SP, SP, #8 ; allocate 8 bytes for local variables
STR R0, [SP,#8+str]
LDR R0, [SP,#8+str]
STR R0, [SP,#8+eos]

loc_2CB8 ; CODE XREF: _strlen+28
LDR R0, [SP,#8+eos]
ADD R1, R0, #1
STR R1, [SP,#8+eos]
LDRSB R0, [R0]
CMP R0, #0
BEQ loc_2CD4
B loc_2CB8

loc_2CD4 ; CODE XREF: _strlen+24
LDR R0, [SP,#8+eos]
LDR R1, [SP,#8+str]
SUB R0, R0, R1 ; R0=eos-str
SUB R0, R0, #1 ; R0=R0-1
ADD SP, SP, #8 ; free allocated 8 bytes
BX LR

Non-optimizing LLVM generates too much code, however, here we can see how the
function works with local variables in the stack. There are only two local variables
in our function: eos and str. In this listing, generated by IDA, we have manually
renamed var_8 and var_4 to eos and str.
The first instructions just saves the input values into both str and eos.
The body of the loop starts at label loc_2CB8.
The first three instruction in the loop body (LDR, ADD, STR) load the value of eos into
R0. Then the value is incremented and saved back into eos, which is located in the
stack.
The next instruction, LDRSB R0, [R0] (“Load Register Signed Byte”), loads a byte
from memory at the address stored in R0 and sign-extends it to 32-bit 105. This is
similar to the MOVSX instruction in x86.
The compiler treats this byte as signed since the char type is signed according to
the C standard. It was already written about it (1.23.1 on page 254) in this section,
in relation to x86.
It has to be noted that it is impossible to use 8- or 16-bit part of a 32-bit register in
ARM separately of the whole register, as it is in x86.
Apparently, it is because x86 has a huge history of backwards compatibility with its
ancestors up to the 16-bit 8086 and even 8-bit 8080, but ARM was developed from
scratch as a 32-bit RISC-processor.
105The Keil compiler treats the char type as signed, just like MSVC and GCC.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

263
Consequently, in order to process separate bytes in ARM, one has to use 32-bit
registers anyway.
So, LDRSB loads bytes from the string into R0, one by one. The following CMP and
BEQ instructions check if the loaded byte is 0. If it’s not 0, control passes to the start
of the body of the loop. And if it’s 0, the loop ends.
At the end of the function, the difference between eos and str is calculated, 1 is
subtracted from it, and resulting value is returned via R0.
N.B. Registers were not saved in this function.
That’s because in the ARM calling convention registers R0-R3 are “scratch registers”,
intended for arguments passing, and we’re not required to restore their value when
the function exits, since the calling function will not use them anymore. Conse-
quently, they may be used for anything we want.
No other registers are used here, so that is why we have nothing to save on the
stack.
Thus, control may be returned back to calling function by a simple jump (BX), to the
address in the LR register.

Optimizing Xcode 4.6.3 (LLVM) (Thumb mode)

Listing 1.191: Optimizing Xcode 4.6.3 (LLVM) (Thumb mode)
_strlen

MOV R1, R0

loc_2DF6
LDRB.W R2, [R1],#1
CMP R2, #0
BNE loc_2DF6
MVNS R0, R0
ADD R0, R1
BX LR

As optimizing LLVM concludes, eos and str do not need space on the stack, and can
always be stored in registers.
Before the start of the loop body, str is always in R0, and eos—in R1.
The LDRB.W R2, [R1],#1 instruction loads a byte from the memory at the address
stored in R1, to R2, sign-extending it to a 32-bit value, but not just that. #1 at the
instruction’s end is implies “Post-indexed addressing”, which means that 1 is to be
added to R1 after the byte is loaded. Read more about it: 1.39.2 on page 555.
Then you can see CMP and BNE106 in the body of the loop, these instructions continue
looping until 0 is found in the string.
106(PowerPC, ARM) Branch if Not Equal

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

264
MVNS107 (inverts all bits, like NOT in x86) and ADD instructions compute eos− str − 1. In
fact, these two instructions compute R0 = str + eos, which is effectively equivalent
to what was in the source code, and why it is so, was already explained here (1.23.1
on page 261).
Apparently, LLVM, just like GCC, concludes that this code can be shorter (or faster).

Optimizing Keil 6/2013 (ARM mode)

Listing 1.192: Optimizing Keil 6/2013 (ARM mode)
_strlen

MOV R1, R0

loc_2C8
LDRB R2, [R1],#1
CMP R2, #0
SUBEQ R0, R1, R0
SUBEQ R0, R0, #1
BNE loc_2C8
BX LR

Almost the same as what we saw before, with the exception that the str − eos − 1
expression can be computed not at the function’s end, but right in the body of the
loop. The -EQ suffix, as we may recall, implies that the instruction executes only if
the operands in the CMP that has been executed before were equal to each other.
Thus, if R0 contains 0, both SUBEQ instructions executes and result is left in the R0
register.

ARM64

Optimizing GCC (Linaro) 4.9

my_strlen:
mov x1, x0
; X1 is now temporary pointer (eos), acting like cursor

.L58:
; load byte from X1 to W2, increment X1 (post-index)
ldrb w2, [x1],1
; Compare and Branch if NonZero: compare W2 with 0,
; jump to .L58 if it is not
cbnz w2, .L58
; calculate difference between initial pointer
; in X0 and current address in X1
sub x0, x1, x0
; decrement lowest 32-bit of result
sub w0, w0, #1

107MoVe Not

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

265
ret

The algorithm is the same as in 1.23.1 on page 255: find a zero byte, calculate the
difference between the pointers and decrement the result by 1. Some comments
were added by the author of this book.
The only thing worth noting is that our example is somewhat wrong:
my_strlen() returns 32-bit int, while it has to return size_t or another 64-bit type.
The reason is that, theoretically, strlen() can be called for a huge blocks in memory
that exceeds 4GB, so it must able to return a 64-bit value on 64-bit platforms.
Because of my mistake, the last SUB instruction operates on a 32-bit part of register,
while the penultimate SUB instruction works on full the 64-bit register (it calculates
the difference between the pointers).
It’s my mistake, it is better to leave it as is, as an example of how the code could
look like in such case.

Non-optimizing GCC (Linaro) 4.9

my_strlen:
; function prologue

sub sp, sp, #32
; first argument (str) will be stored in [sp,8]

str x0, [sp,8]
ldr x0, [sp,8]

; copy "str" to "eos" variable
str x0, [sp,24]
nop

.L62:
; eos++

ldr x0, [sp,24] ; load "eos" to X0
add x1, x0, 1 ; increment X0
str x1, [sp,24] ; save X0 to "eos"

; load byte from memory at address in X0 to W0
ldrb w0, [x0]

; is it zero? (WZR is the 32-bit register always contain zero)
cmp w0, wzr

; jump if not zero (Branch Not Equal)
bne .L62

; zero byte found. now calculate difference.
; load "eos" to X1

ldr x1, [sp,24]
; load "str" to X0

ldr x0, [sp,8]
; calculate difference

sub x0, x1, x0
; decrement result

sub w0, w0, #1
; function epilogue

add sp, sp, 32

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

266
ret

It’s more verbose. The variables are often tossed here to and from memory (local
stack). The same mistake here: the decrement operation happens on a 32-bit regis-
ter part.

MIPS

Listing 1.193: Optimizing GCC 4.4.5 (IDA)
my_strlen:
; "eos" variable will always reside in $v1:

move $v1, $a0

loc_4:
; load byte at address in "eos" into $a1:

lb $a1, 0($v1)
or $at, $zero ; load delay slot, NOP

; if loaded byte is not zero, jump to loc_4:
bnez $a1, loc_4

; increment "eos" anyway:
addiu $v1, 1 ; branch delay slot

; loop finished. invert "str" variable:
nor $v0, $zero, $a0

; $v0=-str-1
jr $ra

; return value = $v1 + $v0 = eos + (-str-1) = eos - str - 1
addu $v0, $v1, $v0 ; branch delay slot

MIPS lacks a NOT instruction, but has NOR which is OR + NOT operation.
This operation is widely used in digital electronics108. For example, the Apollo Guid-
ance Computer used in the Apollo program, was built by only using 5600 NOR gates:
[Jens Eickhoff, Onboard Computers, Onboard Software and Satellite Operations: An
Introduction, (2011)]. But NOR element isn’t very popular in computer programming.
So, the NOT operation is implemented here as NOR DST, $ZERO, SRC.
(Bitwise inverting a signed number is the same as changing its sign and subtracting
1 from the result.)
So what NOT does here is to take the value of str and transform it into −str − 1. The
addition operation that follows prepares result.

1.23.2 Boundaries of strings
It’s interesting to note, how parameters are passed into win32 GetOpenFileName()
function. In order to call it, one must set list of allowed file extensions:

OPENFILENAME *LPOPENFILENAME;
...

108NOR is called “universal gate”

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

267
char * filter = "Text files (*.txt)\0*.txt\0MS Word files (*.doc)⤦

Ç \0*.doc\0\0";
...
LPOPENFILENAME = (OPENFILENAME *)malloc(sizeof(OPENFILENAME));
...
LPOPENFILENAME->lpstrFilter = filter;
...

if(GetOpenFileName(LPOPENFILENAME))
{

...

What happens here is that list of strings are passed into GetOpenFileName(). It is
not a problem to parse it: whenever you encounter single zero byte, this is an item.
Whenever you encounter two zero bytes, this is end of the list. If you will pass this
string into printf(), it will treat first item as a single string.
So this is string, or...? It’s better say this is buffer containing several zero-terminated
C-strings, which can be stored and processed as a whole.
Another example is strtok() function. It takes a string and write zero bytes in the
middle of it. It thus transforms input string into some kind of buffer, which has
several zero-terminated C-strings.

1.24 Replacing arithmetic instructions to other ones
In the pursuit of optimization, one instruction may be replaced by another, or even
with a group of instructions. For example, ADD and SUB can replace each other: line
18 in listing.3.122.
For example, the LEA instruction is often used for simple arithmetic calculations: .1.6
on page 1299.

1.24.1 Multiplication
Multiplication using addition

Here is a simple example:
unsigned int f(unsigned int a)
{

return a*8;
};

Multiplication by 8 is replaced by 3 addition instructions, which do the same. Appar-
ently, MSVC’s optimizer decided that this code can be faster.

Listing 1.194: Optimizing MSVC 2010
_TEXT SEGMENT
_a$ = 8 ; size = 4
_f PROC

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

268
mov eax, DWORD PTR _a$[esp-4]
add eax, eax
add eax, eax
add eax, eax
ret 0

_f ENDP
_TEXT ENDS
END

Multiplication using shifting

Multiplication and division instructions by a numbers that’s a power of 2 are often
replaced by shift instructions.
unsigned int f(unsigned int a)
{

return a*4;
};

Listing 1.195: Non-optimizing MSVC 2010
_a$ = 8 ; size = 4
_f PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
shl eax, 2
pop ebp
ret 0

_f ENDP

Multiplication by 4 is just shifting the number to the left by 2 bits and inserting 2
zero bits at the right (as the last two bits). It is just like multiplying 3 by 100 —we
just have to add two zeros at the right.
That’s how the shift left instruction works:

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0CF 0

The added bits at right are always zeros.
Multiplication by 4 in ARM:

Listing 1.196: Non-optimizing Keil 6/2013 (ARM mode)
f PROC

LSL r0,r0,#2
BX lr
ENDP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

269
Multiplication by 4 in MIPS:

Listing 1.197: Optimizing GCC 4.4.5 (IDA)
jr $ra
sll $v0, $a0, 2 ; branch delay slot

SLL is “Shift Left Logical”.

Multiplication using shifting, subtracting, and adding

It’s still possible to get rid of the multiplication operation when you multiply by num-
bers like 7 or 17 again by using shifting. The mathematics used here is relatively
easy.

32-bit

#include <stdint.h>

int f1(int a)
{

return a*7;
};

int f2(int a)
{

return a*28;
};

int f3(int a)
{

return a*17;
};

x86

Listing 1.198: Optimizing MSVC 2012
; a*7
_a$ = 8
_f1 PROC

mov ecx, DWORD PTR _a$[esp-4]
; ECX=a

lea eax, DWORD PTR [ecx*8]
; EAX=ECX*8

sub eax, ecx
; EAX=EAX-ECX=ECX*8-ECX=ECX*7=a*7

ret 0
_f1 ENDP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

270
; a*28
_a$ = 8
_f2 PROC

mov ecx, DWORD PTR _a$[esp-4]
; ECX=a

lea eax, DWORD PTR [ecx*8]
; EAX=ECX*8

sub eax, ecx
; EAX=EAX-ECX=ECX*8-ECX=ECX*7=a*7

shl eax, 2
; EAX=EAX<<2=(a*7)*4=a*28

ret 0
_f2 ENDP

; a*17
_a$ = 8
_f3 PROC

mov eax, DWORD PTR _a$[esp-4]
; EAX=a

shl eax, 4
; EAX=EAX<<4=EAX*16=a*16

add eax, DWORD PTR _a$[esp-4]
; EAX=EAX+a=a*16+a=a*17

ret 0
_f3 ENDP

ARM

Keil for ARM mode takes advantage of the second operand’s shift modifiers:

Listing 1.199: Optimizing Keil 6/2013 (ARM mode)
; a*7
||f1|| PROC

RSB r0,r0,r0,LSL #3
; R0=R0<<3-R0=R0*8-R0=a*8-a=a*7

BX lr
ENDP

; a*28
||f2|| PROC

RSB r0,r0,r0,LSL #3
; R0=R0<<3-R0=R0*8-R0=a*8-a=a*7

LSL r0,r0,#2
; R0=R0<<2=R0*4=a*7*4=a*28

BX lr
ENDP

; a*17
||f3|| PROC

ADD r0,r0,r0,LSL #4
; R0=R0+R0<<4=R0+R0*16=R0*17=a*17

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

271
BX lr
ENDP

But there are no such modifiers in Thumb mode. It also can’t optimize f2():

Listing 1.200: Optimizing Keil 6/2013 (Thumb mode)
; a*7
||f1|| PROC

LSLS r1,r0,#3
; R1=R0<<3=a<<3=a*8

SUBS r0,r1,r0
; R0=R1-R0=a*8-a=a*7

BX lr
ENDP

; a*28
||f2|| PROC

MOVS r1,#0x1c ; 28
; R1=28

MULS r0,r1,r0
; R0=R1*R0=28*a

BX lr
ENDP

; a*17
||f3|| PROC

LSLS r1,r0,#4
; R1=R0<<4=R0*16=a*16

ADDS r0,r0,r1
; R0=R0+R1=a+a*16=a*17

BX lr
ENDP

MIPS

Listing 1.201: Optimizing GCC 4.4.5 (IDA)
_f1:

sll $v0, $a0, 3
; $v0 = $a0<<3 = $a0*8

jr $ra
subu $v0, $a0 ; branch delay slot

; $v0 = $v0-$a0 = $a0*8-$a0 = $a0*7

_f2:
sll $v0, $a0, 5

; $v0 = $a0<<5 = $a0*32
sll $a0, 2

; $a0 = $a0<<2 = $a0*4
jr $ra
subu $v0, $a0 ; branch delay slot

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

272
; $v0 = $a0*32-$a0*4 = $a0*28

_f3:
sll $v0, $a0, 4

; $v0 = $a0<<4 = $a0*16
jr $ra
addu $v0, $a0 ; branch delay slot

; $v0 = $a0*16+$a0 = $a0*17

64-bit

#include <stdint.h>

int64_t f1(int64_t a)
{

return a*7;
};

int64_t f2(int64_t a)
{

return a*28;
};

int64_t f3(int64_t a)
{

return a*17;
};

x64

Listing 1.202: Optimizing MSVC 2012
; a*7
f1:

lea rax, [0+rdi*8]
; RAX=RDI*8=a*8

sub rax, rdi
; RAX=RAX-RDI=a*8-a=a*7

ret

; a*28
f2:

lea rax, [0+rdi*4]
; RAX=RDI*4=a*4

sal rdi, 5
; RDI=RDI<<5=RDI*32=a*32

sub rdi, rax
; RDI=RDI-RAX=a*32-a*4=a*28

mov rax, rdi
ret

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

273

; a*17
f3:

mov rax, rdi
sal rax, 4

; RAX=RAX<<4=a*16
add rax, rdi

; RAX=a*16+a=a*17
ret

ARM64

GCC 4.9 for ARM64 is also terse, thanks to the shift modifiers:

Listing 1.203: Optimizing GCC (Linaro) 4.9 ARM64
; a*7
f1:

lsl x1, x0, 3
; X1=X0<<3=X0*8=a*8

sub x0, x1, x0
; X0=X1-X0=a*8-a=a*7

ret

; a*28
f2:

lsl x1, x0, 5
; X1=X0<<5=a*32

sub x0, x1, x0, lsl 2
; X0=X1-X0<<2=a*32-a<<2=a*32-a*4=a*28

ret

; a*17
f3:

add x0, x0, x0, lsl 4
; X0=X0+X0<<4=a+a*16=a*17

ret

Booth’s multiplication algorithm

There was a time when computers were big and that expensive, that some of them
lacked hardware support of multiplication operation in CPU, like Data General Nova.
And when one need multiplication operation, it can be provided at software level, for
example, using Booth’s multiplication algorithm. This is a multiplication algorithm
which uses only addition operation and shifts.
What modern optimizing compilers do, isn’t the same, but the goal (multiplication)
and resources (faster operations) are the same.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

274
1.24.2 Division
Division using shifts

Example of division by 4:
unsigned int f(unsigned int a)
{

return a/4;
};

We get (MSVC 2010):

Listing 1.204: MSVC 2010
_a$ = 8 ; size = 4
_f PROC

mov eax, DWORD PTR _a$[esp-4]
shr eax, 2
ret 0

_f ENDP

The SHR (SHift Right) instruction in this example is shifting a number by 2 bits to the
right. The two freed bits at left (e.g., two most significant bits) are set to zero. The
two least significant bits are dropped. In fact, these two dropped bits are the division
operation remainder.
The SHR instruction works just like SHL, but in the other direction.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 00 CF

It is easy to understand if you imagine the number 23 in the decimal numeral system.
23 can be easily divided by 10 just by dropping last digit (3—division remainder). 2
is left after the operation as a quotient.
So the remainder is dropped, but that’s OK, we work on integer values anyway, these
are not a real numbers!
Division by 4 in ARM:

Listing 1.205: Non-optimizing Keil 6/2013 (ARM mode)
f PROC

LSR r0,r0,#2
BX lr
ENDP

Division by 4 in MIPS:

Listing 1.206: Optimizing GCC 4.4.5 (IDA)
jr $ra

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

275
srl $v0, $a0, 2 ; branch delay slot

The SRL instruction is “Shift Right Logical”.

1.24.3 Exercise
• http://challenges.re/59

1.25 Floating-point unit
The FPU is a device within the main CPU, specially designed to deal with floating
point numbers.
It was called “coprocessor” in the past and it stays somewhat aside of the main CPU.

1.25.1 IEEE 754
A number in the IEEE 754 format consists of a sign, a significand (also called fraction)
and an exponent.

1.25.2 x86
It is worth looking into stack machines or learning the basics of the Forth language,
before studying the FPU in x86.
It is interesting to know that in the past (before the 80486 CPU) the coprocessor
was a separate chip and it was not always pre-installed on the motherboard. It was
possible to buy it separately and install it 109.
Starting with the 80486 DX CPU, the FPU is integrated in the CPU.
The FWAIT instruction reminds us of that fact—it switches the CPU to a waiting state,
so it can wait until the FPU has finished with its work.
Another rudiment is the fact that the FPU instruction opcodes start with the so called
“escape”-opcodes (D8..DF), i.e., opcodes passed to a separate coprocessor.
The FPU has a stack capable to holding 8 80-bit registers, and each register can hold
a number in the IEEE 754 format.
They are ST(0)..ST(7). For brevity, IDA and OllyDbg show ST(0) as ST, which is
represented in some textbooks and manuals as “Stack Top”.
109For example, John Carmack used fixed-point arithmetic values in his Doom video game, stored in 32-
bit GPR registers (16 bit for integral part and another 16 bit for fractional part), so Doom could work on
32-bit computers without FPU, i.e., 80386 and 80486 SX.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://challenges.re/59
https://yurichev.com/contact.html
https://yurichev.com/contact.html

276
1.25.3 ARM, MIPS, x86/x64 SIMD
In ARM and MIPS the FPU is not a stack, but a set of registers, which can be accessed
randomly, like GPR.
The same ideology is used in the SIMD extensions of x86/x64 CPUs.

1.25.4 C/C++
The standard C/C++ languages offer at least two floating number types, float (single-
precision, 32 bits) 110 and double (double-precision, 64 bits).
In [Donald E. Knuth, The Art of Computer Programming, Volume 2, 3rd ed., (1997)246]
we can find the single-precision means that the floating point value can be placed
into a single [32-bit] machine word, double-precision means it can be stored in two
words (64 bits).
GCC also supports the long double type (extended precision, 80 bit), which MSVC
doesn’t.
The float type requires the same number of bits as the int type in 32-bit environ-
ments, but the number representation is completely different.

1.25.5 Simple example
Let’s consider this simple example:
#include <stdio.h>

double f (double a, double b)
{

return a/3.14 + b*4.1;
};

int main()
{

printf ("%f\n", f(1.2, 3.4));
};

x86

MSVC

Compile it in MSVC 2010:

Listing 1.207: MSVC 2010: f()
CONST SEGMENT
__real@4010666666666666 DQ 04010666666666666r ; 4.1
CONST ENDS

110the single precision floating point number format is also addressed in the Handling float data type as
a structure (1.30.6 on page 469) section

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

277
CONST SEGMENT
__real@40091eb851eb851f DQ 040091eb851eb851fr ; 3.14
CONST ENDS
_TEXT SEGMENT
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_f PROC

push ebp
mov ebp, esp
fld QWORD PTR _a$[ebp]

; current stack state: ST(0) = _a

fdiv QWORD PTR __real@40091eb851eb851f

; current stack state: ST(0) = result of _a divided by 3.14

fld QWORD PTR _b$[ebp]

; current stack state: ST(0) = _b;
; ST(1) = result of _a divided by 3.14

fmul QWORD PTR __real@4010666666666666

; current stack state:
; ST(0) = result of _b * 4.1;
; ST(1) = result of _a divided by 3.14

faddp ST(1), ST(0)

; current stack state: ST(0) = result of addition

pop ebp
ret 0

_f ENDP

FLD takes 8 bytes from stack and loads the number into the ST(0) register, automat-
ically converting it into the internal 80-bit format (extended precision).
FDIV divides the value in ST(0) by the number stored at address
__real@40091eb851eb851f—the value 3.14 is encoded there. The assembly syntax
doesn’t support floating point numbers, so what we see here is the hexadecimal
representation of 3.14 in 64-bit IEEE 754 format.
After the execution of FDIV ST(0) holds the quotient.
By the way, there is also the FDIVP instruction, which divides ST(1) by ST(0), pop-
ping both these values from stack and then pushing the result. If you know the Forth
language, you can quickly understand that this is a stack machine.
The subsequent FLD instruction pushes the value of b into the stack.
After that, the quotient is placed in ST(1), and ST(0) has the value of b.
The next FMUL instruction does multiplication: b from ST(0) is multiplied by value at

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

278
__real@4010666666666666 (the number 4.1 is there) and leaves the result in the
ST(0) register.
The last FADDP instruction adds the two values at top of stack, storing the result in
ST(1) and then popping the value of ST(0), thereby leaving the result at the top of
the stack, in ST(0).
The function must return its result in the ST(0) register, so there are no any other
instructions except the function epilogue after FADDP.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

279
MSVC + OllyDbg

2 pairs of 32-bit words are marked by red in the stack. Each pair is a double-number
in IEEE 754 format and is passed from main().
We see how the first FLD loads a value (1.2) from the stack and puts it into ST(0):

Figure 1.62: OllyDbg: the first FLD has been executed

Because of unavoidable conversion errors from 64-bit IEEE 754 floating point to 80-
bit (used internally in the FPU), here we see 1.1999…, which is close to 1.2.
EIP now points to the next instruction (FDIV), which loads a double-number (a con-
stant) from memory. For convenience, OllyDbg shows its value: 3.14

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

280
Let’s trace further. FDIV has been executed, now ST(0) contains 0.382…(quotient):

Figure 1.63: OllyDbg: FDIV has been executed

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

281
Third step: the next FLD has been executed, loading 3.4 into ST(0) (here we see the
approximate value 3.39999…):

Figure 1.64: OllyDbg: the second FLD has been executed

At the same time, quotient is pushed into ST(1). Right now, EIP points to the next
instruction: FMUL. It loads the constant 4.1 from memory, which OllyDbg shows.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

282
Next: FMUL has been executed, so now the product is in ST(0):

Figure 1.65: OllyDbg: the FMUL has been executed

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

283
Next: the FADDP has been executed, now the result of the addition is in ST(0), and
ST(1) is cleared:

Figure 1.66: OllyDbg: FADDP has been executed

The result is left in ST(0), because the function returns its value in ST(0).
main() takes this value from the register later.
We also see something unusual: the 13.93…value is now located in ST(7). Why?
As we have read some time before in this book, the FPU registers are a stack: 1.25.2
on page 275. But this is a simplification.
Imagine if it was implemented in hardware as it’s described, then all 7 register’s con-
tents must be moved (or copied) to adjacent registers during pushing and popping,
and that’s a lot of work.
In reality, the FPU has just 8 registers and a pointer (called TOP) which contains a
register number, which is the current “top of stack”.
When a value is pushed to the stack, TOP is pointed to the next available register,
and then a value is written to that register.
The procedure is reversed if a value is popped, however, the register which has been

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

284
freed is not cleared (it could possibly be cleared, but this is more work which can
degrade performance). So that’s what we see here.
It can be said that FADDP saved the sum in the stack, and then popped one element.
But in fact, this instruction saved the sum and then shifted TOP.
More precisely, the registers of the FPU are a circular buffer.

GCC

GCC 4.4.1 (with -O3 option) emits the same code, just slightly different:

Listing 1.208: Optimizing GCC 4.4.1
public f

f proc near

arg_0 = qword ptr 8
arg_8 = qword ptr 10h

push ebp
fld ds:dbl_8048608 ; 3.14

; stack state now: ST(0) = 3.14

mov ebp, esp
fdivr [ebp+arg_0]

; stack state now: ST(0) = result of division

fld ds:dbl_8048610 ; 4.1

; stack state now: ST(0) = 4.1, ST(1) = result of division

fmul [ebp+arg_8]

; stack state now: ST(0) = result of multiplication, ST(1) = result of
division

pop ebp
faddp st(1), st

; stack state now: ST(0) = result of addition

retn
f endp

The difference is that, first of all, 3.14 is pushed to the stack (into ST(0)), and then
the value in arg_0 is divided by the value in ST(0).
FDIVR stands for Reverse Divide —to divide with divisor and dividend swapped with
each other. There is no likewise instruction for multiplication since it is a commuta-
tive operation, so we just have FMUL without its -R counterpart.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

285
FADDP adds the two values but also pops one value from the stack. After that oper-
ation, ST(0) holds the sum.

ARM: Optimizing Xcode 4.6.3 (LLVM) (ARM mode)

Until ARM got standardized floating point support, several processor manufacturers
added their own instructions extensions. Then, VFP (Vector Floating Point) was stan-
dardized.
One important difference from x86 is that in ARM, there is no stack, you work just
with registers.

Listing 1.209: Optimizing Xcode 4.6.3 (LLVM) (ARM mode)
f

VLDR D16, =3.14
VMOV D17, R0, R1 ; load "a"
VMOV D18, R2, R3 ; load "b"
VDIV.F64 D16, D17, D16 ; a/3.14
VLDR D17, =4.1
VMUL.F64 D17, D18, D17 ; b*4.1
VADD.F64 D16, D17, D16 ; +
VMOV R0, R1, D16
BX LR

dbl_2C98 DCFD 3.14 ; DATA XREF: f
dbl_2CA0 DCFD 4.1 ; DATA XREF: f+10

So, we see here new some registers used, with D prefix.
These are 64-bit registers, there are 32 of them, and they can be used both for
floating-point numbers (double) but also for SIMD (it is called NEON here in ARM).
There are also 32 32-bit S-registers, intended to be used for single precision floating
pointer numbers (float).
It is easy tomemorize: D-registers are for double precision numbers, while S-registers—
for single precision numbers. More about it: .2.3 on page 1316.
Both constants (3.14 and 4.1) are stored in memory in IEEE 754 format.
VLDR and VMOV, as it can be easily deduced, are analogous to the LDR and MOV in-
structions, but they work with D-registers.
It has to be noted that these instructions, just like the D-registers, are intended not
only for floating point numbers, but can be also used for SIMD (NEON) operations
and this will also be shown soon.
The arguments are passed to the function in a common way, via the R-registers,
however each number that has double precision has a size of 64 bits, so two R-
registers are needed to pass each one.
VMOV D17, R0, R1 at the start, composes two 32-bit values from R0 and R1 into one
64-bit value and saves it to D17.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

286
VMOV R0, R1, D16 is the inverse operation: what has been in D16 is split in two reg-
isters, R0 and R1, because a double-precision number that needs 64 bits for storage,
is returned in R0 and R1.
VDIV, VMUL and VADD, are instruction for processing floating point numbers that com-
pute quotient, product and sum, respectively.
The code for Thumb-2 is same.

ARM: Optimizing Keil 6/2013 (Thumb mode)

f
PUSH {R3-R7,LR}
MOVS R7, R2
MOVS R4, R3
MOVS R5, R0
MOVS R6, R1
LDR R2, =0x66666666 ; 4.1
LDR R3, =0x40106666
MOVS R0, R7
MOVS R1, R4
BL __aeabi_dmul
MOVS R7, R0
MOVS R4, R1
LDR R2, =0x51EB851F ; 3.14
LDR R3, =0x40091EB8
MOVS R0, R5
MOVS R1, R6
BL __aeabi_ddiv
MOVS R2, R7
MOVS R3, R4
BL __aeabi_dadd
POP {R3-R7,PC}

; 4.1 in IEEE 754 form:
dword_364 DCD 0x66666666 ; DATA XREF: f+A
dword_368 DCD 0x40106666 ; DATA XREF: f+C
; 3.14 in IEEE 754 form:
dword_36C DCD 0x51EB851F ; DATA XREF: f+1A
dword_370 DCD 0x40091EB8 ; DATA XREF: f+1C

Keil generated code for a processor without FPU or NEON support.
The double-precision floating-point numbers are passed via generic R-registers, and
instead of FPU-instructions, service library functions are called
(like __aeabi_dmul, __aeabi_ddiv, __aeabi_dadd) which emulate multiplication, di-
vision and addition for floating-point numbers.
Of course, that is slower than FPU-coprocessor, but it’s still better than nothing.
By the way, similar FPU-emulating libraries were very popular in the x86 world when
coprocessors were rare and expensive, and were installed only on expensive com-
puters.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

287
The FPU-coprocessor emulation is called soft float or armel (emulation) in the ARM
world, while using the coprocessor’s FPU-instructions is called hard float or armhf.

ARM64: Optimizing GCC (Linaro) 4.9

Very compact code:

Listing 1.210: Optimizing GCC (Linaro) 4.9
f:
; D0 = a, D1 = b

ldr d2, .LC25 ; 3.14
; D2 = 3.14

fdiv d0, d0, d2
; D0 = D0/D2 = a/3.14

ldr d2, .LC26 ; 4.1
; D2 = 4.1

fmadd d0, d1, d2, d0
; D0 = D1*D2+D0 = b*4.1+a/3.14

ret

; constants in IEEE 754 format:
.LC25:

.word 1374389535 ; 3.14

.word 1074339512
.LC26:

.word 1717986918 ; 4.1

.word 1074816614

ARM64: Non-optimizing GCC (Linaro) 4.9

Listing 1.211: Non-optimizing GCC (Linaro) 4.9
f:

sub sp, sp, #16
str d0, [sp,8] ; save "a" in Register Save Area
str d1, [sp] ; save "b" in Register Save Area
ldr x1, [sp,8]

; X1 = a
ldr x0, .LC25

; X0 = 3.14
fmov d0, x1
fmov d1, x0

; D0 = a, D1 = 3.14
fdiv d0, d0, d1

; D0 = D0/D1 = a/3.14

fmov x1, d0
; X1 = a/3.14

ldr x2, [sp]
; X2 = b

ldr x0, .LC26
; X0 = 4.1

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

288
fmov d0, x2

; D0 = b
fmov d1, x0

; D1 = 4.1
fmul d0, d0, d1

; D0 = D0*D1 = b*4.1

fmov x0, d0
; X0 = D0 = b*4.1

fmov d0, x1
; D0 = a/3.14

fmov d1, x0
; D1 = X0 = b*4.1

fadd d0, d0, d1
; D0 = D0+D1 = a/3.14 + b*4.1

fmov x0, d0 ; \ redundant code
fmov d0, x0 ; /
add sp, sp, 16
ret

.LC25:
.word 1374389535 ; 3.14
.word 1074339512

.LC26:
.word 1717986918 ; 4.1
.word 1074816614

Non-optimizing GCC is more verbose.
There is a lot of unnecessary value shuffling, including some clearly redundant code
(the last two FMOV instructions). Probably, GCC 4.9 is not yet good in generating
ARM64 code.
What is worth noting is that ARM64 has 64-bit registers, and the D-registers are
64-bit ones as well.
So the compiler is free to save values of type double in GPRs instead of the local
stack. This isn’t possible on 32-bit CPUs.
And again, as an exercise, you can try to optimize this function manually, without
introducing new instructions like FMADD.

1.25.6 Passing floating point numbers via arguments
#include <math.h>
#include <stdio.h>

int main ()
{

printf ("32.01 ^ 1.54 = %lf\n", pow (32.01,1.54));

return 0;
}

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

289
x86

Let’s see what we get in (MSVC 2010):

Listing 1.212: MSVC 2010
CONST SEGMENT
__real@40400147ae147ae1 DQ 040400147ae147ae1r ; 32.01
__real@3ff8a3d70a3d70a4 DQ 03ff8a3d70a3d70a4r ; 1.54
CONST ENDS

_main PROC
push ebp
mov ebp, esp
sub esp, 8 ; allocate space for the first variable
fld QWORD PTR __real@3ff8a3d70a3d70a4
fstp QWORD PTR [esp]
sub esp, 8 ; allocate space for the second variable
fld QWORD PTR __real@40400147ae147ae1
fstp QWORD PTR [esp]
call _pow
add esp, 8 ; return back place of one variable.

; in local stack here 8 bytes still reserved for us.
; result now in ST(0)

; move result from ST(0) to local stack for printf():
fstp QWORD PTR [esp]
push OFFSET $SG2651
call _printf
add esp, 12
xor eax, eax
pop ebp
ret 0

_main ENDP

FLD and FSTPmove variables between the data segment and the FPU stack. pow()111
takes both values from the stack and returns its result in the ST(0) register. printf()
takes 8 bytes from the local stack and interprets them as double type variable.
By the way, a pair of MOV instructions could be used here for moving values from the
memory into the stack, because the values in memory are stored in IEEE 754 format,
and pow() also takes them in this format, so no conversion is necessary. That’s how
it’s done in the next example, for ARM: 1.25.6.

ARM + Non-optimizing Xcode 4.6.3 (LLVM) (Thumb-2 mode)

_main

var_C = -0xC

PUSH {R7,LR}

111a standard C function, raises a number to the given power (exponentiation)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

290
MOV R7, SP
SUB SP, SP, #4
VLDR D16, =32.01
VMOV R0, R1, D16
VLDR D16, =1.54
VMOV R2, R3, D16
BLX _pow
VMOV D16, R0, R1
MOV R0, 0xFC1 ; "32.01 ^ 1.54 = %lf\n"
ADD R0, PC
VMOV R1, R2, D16
BLX _printf
MOVS R1, 0
STR R0, [SP,#0xC+var_C]
MOV R0, R1
ADD SP, SP, #4
POP {R7,PC}

dbl_2F90 DCFD 32.01 ; DATA XREF: _main+6
dbl_2F98 DCFD 1.54 ; DATA XREF: _main+E

As it was mentioned before, 64-bit floating pointer numbers are passed in R-registers
pairs.
This code is a bit redundant (certainly because optimization is turned off), since it is
possible to load values into the R-registers directly without touching the D-registers.
So, as we see, the _pow function receives its first argument in R0 and R1, and its
second one in R2 and R3. The function leaves its result in R0 and R1. The result of
_pow is moved into D16, then in the R1 and R2 pair, from where printf() takes the
resulting number.

ARM + Non-optimizing Keil 6/2013 (ARM mode)

_main
STMFD SP!, {R4-R6,LR}
LDR R2, =0xA3D70A4 ; y
LDR R3, =0x3FF8A3D7
LDR R0, =0xAE147AE1 ; x
LDR R1, =0x40400147
BL pow
MOV R4, R0
MOV R2, R4
MOV R3, R1
ADR R0, a32_011_54Lf ; "32.01 ^ 1.54 = %lf\n"
BL __2printf
MOV R0, #0
LDMFD SP!, {R4-R6,PC}

y DCD 0xA3D70A4 ; DATA XREF: _main+4
dword_520 DCD 0x3FF8A3D7 ; DATA XREF: _main+8
x DCD 0xAE147AE1 ; DATA XREF: _main+C
dword_528 DCD 0x40400147 ; DATA XREF: _main+10

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

291
a32_011_54Lf DCB "32.01 ^ 1.54 = %lf",0xA,0

; DATA XREF: _main+24

D-registers are not used here, just R-register pairs.

ARM64 + Optimizing GCC (Linaro) 4.9

Listing 1.213: Optimizing GCC (Linaro) 4.9
f:

stp x29, x30, [sp, -16]!
add x29, sp, 0
ldr d1, .LC1 ; load 1.54 into D1
ldr d0, .LC0 ; load 32.01 into D0
bl pow

; result of pow() in D0
adrp x0, .LC2
add x0, x0, :lo12:.LC2
bl printf
mov w0, 0
ldp x29, x30, [sp], 16
ret

.LC0:
; 32.01 in IEEE 754 format

.word -1374389535

.word 1077936455
.LC1:
; 1.54 in IEEE 754 format

.word 171798692

.word 1073259479
.LC2:

.string "32.01 ^ 1.54 = %lf\n"

The constants are loaded into D0 and D1: pow() takes them from there. The result
will be in D0 after the execution of pow(). It is to be passed to printf() without any
modification and moving, because printf() takes arguments of integral types and
pointers from X-registers, and floating point arguments from D-registers.

1.25.7 Comparison example
Let’s try this:
#include <stdio.h>

double d_max (double a, double b)
{

if (a>b)
return a;

return b;
};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

292
int main()
{

printf ("%f\n", d_max (1.2, 3.4));
printf ("%f\n", d_max (5.6, -4));

};

Despite the simplicity of the function, it will be harder to understand how it works.

x86

Non-optimizing MSVC

MSVC 2010 generates the following:

Listing 1.214: Non-optimizing MSVC 2010
PUBLIC _d_max
_TEXT SEGMENT
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_d_max PROC

push ebp
mov ebp, esp
fld QWORD PTR _b$[ebp]

; current stack state: ST(0) = _b
; compare _b (ST(0)) and _a, and pop register

fcomp QWORD PTR _a$[ebp]

; stack is empty here

fnstsw ax
test ah, 5
jp SHORT $LN1@d_max

; we are here only if a>b

fld QWORD PTR _a$[ebp]
jmp SHORT $LN2@d_max

$LN1@d_max:
fld QWORD PTR _b$[ebp]

$LN2@d_max:
pop ebp
ret 0

_d_max ENDP

So, FLD loads _b into ST(0).
FCOMP compares the value in ST(0) with what is in _a and sets C3/C2/C0 bits in FPU
status word register, accordingly. This is a 16-bit register that reflects the current
state of the FPU.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

293
After the bits are set, the FCOMP instruction also pops one variable from the stack.
This is what distinguishes it from FCOM, which is just compares values, leaving the
stack in the same state.
Unfortunately, CPUs before Intel P6 112 don’t have any conditional jumps instructions
which check the C3/C2/C0 bits. Perhaps, it is a matter of history (recall: FPU was a
separate chip in past).
Modern CPU starting at Intel P6 have FCOMI/FCOMIP/FUCOMI/FUCOMIP instructions —
which do the same, but modify the ZF/PF/CF CPU flags.
The FNSTSW instruction copies FPU the status word register to AX. C3/C2/C0 bits are
placed at positions 14/10/8, they are at the same positions in the AX register and all
they are placed in the high part of AX —AH.
• If b > a in our example, then C3/C2/C0 bits are to be set as following: 0, 0, 0.
• If a > b, then the bits are: 0, 0, 1.
• If a = b, then the bits are: 1, 0, 0.
• If the result is unordered (in case of error), then the set bits are: 1, 1, 1.

This is how C3/C2/C0 bits are located in the AX register:
14 10 9 8

C3 C2C1C0

This is how C3/C2/C0 bits are located in the AH register:
6 2 1 0

C3 C2C1C0

After the execution of test ah, 5113, only C0 and C2 bits (on 0 and 2 position) are
considered, all other bits are just ignored.
Now let’s talk about the parity flag, another notable historical rudiment.
This flag is set to 1 if the number of ones in the result of the last calculation is even,
and to 0 if it is odd.
Let’s look into Wikipedia114:

One common reason to test the parity flag actually has nothing
to do with parity. The FPU has four condition flags (C0 to C3), but
they cannot be tested directly, and must instead be first copied to the
flags register. When this happens, C0 is placed in the carry flag, C2
in the parity flag and C3 in the zero flag. The C2 flag is set when e.g.
incomparable floating point values (NaN or unsupported format) are
compared with the FUCOM instructions.

As noted in Wikipedia, the parity flag used sometimes in FPU code, let’s see how.
112Intel P6 is Pentium Pro, Pentium II, etc.
1135=101b
114https://en.wikipedia.org/wiki/Parity_flag

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://en.wikipedia.org/wiki/Parity_flag
https://yurichev.com/contact.html
https://yurichev.com/contact.html

294
The PF flag is to be set to 1 if both C0 and C2 are set to 0 or both are 1, in which case
the subsequent JP (jump if PF==1) is triggering. If we recall the values of C3/C2/C0
for various cases, we can see that the conditional jump JP is triggering in two cases:
if b > a or a = b (C3 bit is not considered here, since it has been cleared by the test
ah, 5 instruction).
It is all simple after that. If the conditional jump has been triggered, FLD loads the
value of _b in ST(0), and if it hasn’t been triggered, the value of _a is loaded there.

And what about checking C2?

The C2 flag is set in case of error (NaN, etc.), but our code doesn’t check it.
If the programmer cares about FPU errors, he/she must add additional checks.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

295
First OllyDbg example: a=1.2 and b=3.4

Let’s load the example into OllyDbg:

Figure 1.67: OllyDbg: first FLD has been executed

Current arguments of the function: a = 1.2 and b = 3.4 (We can see them in the stack:
two pairs of 32-bit values). b (3.4) is already loaded in ST(0). Now FCOMP is being
executed. OllyDbg shows the second FCOMP argument, which is in stack right now.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

296
FCOMP has been executed:

Figure 1.68: OllyDbg: FCOMP has been executed

We see the state of the FPU’s condition flags: all zeros. The popped value is reflected
as ST(7), it was written earlier about reason for this: 1.25.5 on page 283.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

297
FNSTSW has been executed:

Figure 1.69: OllyDbg: FNSTSW has been executed

We see that the AX register contain zeros: indeed, all condition flags are zero. (Olly-
Dbg disassembles the FNSTSW instruction as FSTSW—they are synonyms).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

298
TEST has been executed:

Figure 1.70: OllyDbg: TEST has been executed

The PF flag is set to 1.
Indeed: the number of bits set in 0 is 0 and 0 is an even number. OllyDbg disassem-
bles JP as JPE115—they are synonyms. And it is about to trigger now.

115Jump Parity Even (x86 instruction)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

299
JPE triggered, FLD loads the value of b (3.4) in ST(0):

Figure 1.71: OllyDbg: the second FLD has been executed

The function finishes its work.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

300
Second OllyDbg example: a=5.6 and b=-4

Let’s load example into OllyDbg:

Figure 1.72: OllyDbg: first FLD executed

Current function arguments: a = 5.6 and b = −4. b (-4) is already loaded in ST(0).
FCOMP about to execute now. OllyDbg shows the second FCOMP argument, which is
in stack right now.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

301
FCOMP executed:

Figure 1.73: OllyDbg: FCOMP executed

We see the state of the FPU’s condition flags: all zeros except C0.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

302
FNSTSW executed:

Figure 1.74: OllyDbg: FNSTSW executed

We see that the AX register contains 0x100: the C0 flag is at the 8th bit.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

303
TEST executed:

Figure 1.75: OllyDbg: TEST executed

The PF flag is cleared. Indeed:
the count of bits set in 0x100 is 1 and 1 is an odd number. JPE is being skipped now.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

304
JPE hasn’t been triggered, so FLD loads the value of a (5.6) in ST(0):

Figure 1.76: OllyDbg: second FLD executed

The function finishes its work.

Optimizing MSVC 2010

Listing 1.215: Optimizing MSVC 2010
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_d_max PROC

fld QWORD PTR _b$[esp-4]
fld QWORD PTR _a$[esp-4]

; current stack state: ST(0) = _a, ST(1) = _b

fcom ST(1) ; compare _a and ST(1) = (_b)
fnstsw ax
test ah, 65 ; 00000041H
jne SHORT $LN5@d_max

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

305
; copy ST(0) to ST(1) and pop register,
; leave (_a) on top

fstp ST(1)

; current stack state: ST(0) = _a

ret 0
$LN5@d_max:
; copy ST(0) to ST(0) and pop register,
; leave (_b) on top

fstp ST(0)

; current stack state: ST(0) = _b

ret 0
_d_max ENDP

FCOM differs from FCOMP in the sense that it just compares the values and doesn’t
change the FPU stack. Unlike the previous example, here the operands are in reverse
order, which is why the result of the comparison in C3/C2/C0 is different:
• If a > b in our example, then C3/C2/C0 bits are to be set as: 0, 0, 0.
• If b > a, then the bits are: 0, 0, 1.
• If a = b, then the bits are: 1, 0, 0.

The test ah, 65 instruction leaves just two bits —C3 and C0. Both will be zero if
a > b: in that case the JNE jump will not be triggered. Then FSTP ST(1) follows —this
instruction copies the value from ST(0) to the operand and pops one value from the
FPU stack. In other words, the instruction copies ST(0) (where the value of _a is
now) into ST(1). After that, two copies of _a are at the top of the stack. Then, one
value is popped. After that, ST(0) contains _a and the function is finishes.
The conditional jump JNE is triggering in two cases: if b > a or a = b. ST(0) is copied
into ST(0), it is just like an idle (NOP) operation, then one value is popped from the
stack and the top of the stack (ST(0)) is contain what has been in ST(1) before (that
is _b). Then the function finishes. The reason this instruction is used here probably is
because the FPU has no other instruction to pop a value from the stack and discard
it.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

306
First OllyDbg example: a=1.2 and b=3.4

Both FLD are executed:

Figure 1.77: OllyDbg: both FLD are executed

FCOM being executed: OllyDbg shows the contents of ST(0) and ST(1) for conve-
nience.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

307
FCOM has been executed:

Figure 1.78: OllyDbg: FCOM has been executed

C0 is set, all other condition flags are cleared.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

308
FNSTSW has been executed, AX=0x3100:

Figure 1.79: OllyDbg: FNSTSW is executed

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

309
TEST is executed:

Figure 1.80: OllyDbg: TEST is executed

ZF=0, conditional jump is about to trigger now.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

310
FSTP ST (or FSTP ST(0)) has been executed —1.2 has been popped from the stack,
and 3.4 was left on top:

Figure 1.81: OllyDbg: FSTP is executed

We see that the FSTP ST

instruction works just like popping one value from the FPU stack.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

311
Second OllyDbg example: a=5.6 and b=-4

Both FLD are executed:

Figure 1.82: OllyDbg: both FLD are executed

FCOM is about to execute.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

312
FCOM has been executed:

Figure 1.83: OllyDbg: FCOM is finished

All conditional flags are cleared.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

313
FNSTSW done, AX=0x3000:

Figure 1.84: OllyDbg: FNSTSW has been executed

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

314
TEST has been executed:

Figure 1.85: OllyDbg: TEST has been executed

ZF=1, jump will not happen now.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

315
FSTP ST(1) has been executed: a value of 5.6 is now at the top of the FPU stack.

Figure 1.86: OllyDbg: FSTP has been executed

We now see that the FSTP ST(1) instruction works as follows: it leaves what has
been at the top of the stack, but clears ST(1).

GCC 4.4.1

Listing 1.216: GCC 4.4.1
d_max proc near

b = qword ptr -10h
a = qword ptr -8
a_first_half = dword ptr 8
a_second_half = dword ptr 0Ch
b_first_half = dword ptr 10h
b_second_half = dword ptr 14h

push ebp
mov ebp, esp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

316
sub esp, 10h

; put a and b to local stack:

mov eax, [ebp+a_first_half]
mov dword ptr [ebp+a], eax
mov eax, [ebp+a_second_half]
mov dword ptr [ebp+a+4], eax
mov eax, [ebp+b_first_half]
mov dword ptr [ebp+b], eax
mov eax, [ebp+b_second_half]
mov dword ptr [ebp+b+4], eax

; load a and b to FPU stack:

fld [ebp+a]
fld [ebp+b]

; current stack state: ST(0) - b; ST(1) - a

fxch st(1) ; this instruction swaps ST(1) and ST(0)

; current stack state: ST(0) - a; ST(1) - b

fucompp ; compare a and b and pop two values from stack, i.e., a and b
fnstsw ax ; store FPU status to AX
sahf ; load SF, ZF, AF, PF, and CF flags state from AH
setnbe al ; store 1 to AL, if CF=0 and ZF=0
test al, al ; AL==0 ?
jz short loc_8048453 ; yes
fld [ebp+a]
jmp short locret_8048456

loc_8048453:
fld [ebp+b]

locret_8048456:
leave
retn

d_max endp

FUCOMPP is almost like FCOM, but pops both values from the stack and handles “not-
a-numbers” differently.
A bit about not-a-numbers.
The FPU is able to deal with special values which are not-a-numbers or NaNs. These
are infinity, result of division by 0, etc. Not-a-numbers can be “quiet” and “signal-
ing”. It is possible to continue to work with “quiet” NaNs, but if one tries to do any
operation with “signaling” NaNs, an exception is to be raised.
FCOM raises an exception if any operand is NaN. FUCOM raises an exception only if
any operand is a signaling NaN (SNaN).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

317
The next instruction is SAHF (Store AH into Flags) —this is a rare instruction in code
not related to the FPU. 8 bits from AH are moved into the lower 8 bits of the CPU
flags in the following order:

7 6 4 2 0

SFZF AF PF CF

Let’s recall that FNSTSW moves the bits that interest us (C3/C2/C0) into AH and they
are in positions 6, 2, 0 of the AH register:

6 2 1 0

C3 C2C1C0

In other words, the fnstsw ax / sahf instruction pair moves C3/C2/C0 into ZF, PF
and CF.
Now let’s also recall the values of C3/C2/C0 in different conditions:
• If a is greater than b in our example, then C3/C2/C0 are to be set to: 0, 0, 0.
• if a is less than b, then the bits are to be set to: 0, 0, 1.
• If a = b, then: 1, 0, 0.

In other words, these states of the CPU flags are possible after three
FUCOMPP/FNSTSW/SAHF instructions:
• If a > b, the CPU flags are to be set as: ZF=0, PF=0, CF=0.
• If a < b, then the flags are to be set as: ZF=0, PF=0, CF=1.
• And if a = b, then: ZF=1, PF=0, CF=0.

Depending on the CPU flags and conditions, SETNBE stores 1 or 0 to AL. It is almost
the counterpart of JNBE, with the exception that SETcc116 stores 1 or 0 in AL, but Jcc
does actually jump or not. SETNBE stores 1 only if CF=0 and ZF=0. If it is not true, 0
is to be stored into AL.
Only in one case both CF and ZF are 0: if a > b.
Then 1 is to be stored to AL, the subsequent JZ is not to be triggered and the function
will return _a. In all other cases, _b is to be returned.

Optimizing GCC 4.4.1

Listing 1.217: Optimizing GCC 4.4.1
public d_max

d_max proc near

arg_0 = qword ptr 8
arg_8 = qword ptr 10h

push ebp

116cc is condition code

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

318
mov ebp, esp
fld [ebp+arg_0] ; _a
fld [ebp+arg_8] ; _b

; stack state now: ST(0) = _b, ST(1) = _a
fxch st(1)

; stack state now: ST(0) = _a, ST(1) = _b
fucom st(1) ; compare _a and _b
fnstsw ax
sahf
ja short loc_8048448

; store ST(0) to ST(0) (idle operation),
; pop value at top of stack,
; leave _b at top

fstp st
jmp short loc_804844A

loc_8048448:
; store _a to ST(1), pop value at top of stack, leave _a at top

fstp st(1)

loc_804844A:
pop ebp
retn

d_max endp

It is almost the same except that JA is used after SAHF. Actually, conditional jump in-
structions that check “larger”, “lesser” or “equal” for unsigned number comparison
(these are JA, JAE, JB, JBE, JE/JZ, JNA, JNAE, JNB, JNBE, JNE/JNZ) check only flags
CF and ZF.

Let’s recall where bits C3/C2/C0 are located in the AH register after the execution
of FSTSW/FNSTSW:

6 2 1 0

C3 C2C1C0

Let’s also recall, how the bits from AH are stored into the CPU flags after the execution
of SAHF:

7 6 4 2 0

SFZF AF PF CF

After the comparison, the C3 and C0 bits are moved into ZF and CF, so the conditional
jumps are able work after. s triggering if both CF are ZF zero.
Thereby, the conditional jumps instructions listed here can be used after a FNSTSW/SAHF
instruction pair.
Apparently, the FPU C3/C2/C0 status bits were placed there intentionally, to easily
map them to base CPU flags without additional permutations?

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

319
GCC 4.8.1 with -O3 optimization turned on

Some new FPU instructions were added in the P6 Intel family117. These are FUCOMI
(compare operands and set flags of the main CPU) and FCMOVcc (works like CMOVcc,
but on FPU registers).
Apparently, the maintainers of GCC decided to drop support of pre-P6 Intel CPUs
(early Pentiums, 80486, etc.).
And also, the FPU is no longer separate unit in P6 Intel family, so now it is possible
to modify/check flags of the main CPU from the FPU.
So what we get is:

Listing 1.218: Optimizing GCC 4.8.1
fld QWORD PTR [esp+4] ; load "a"
fld QWORD PTR [esp+12] ; load "b"
; ST0=b, ST1=a
fxch st(1)
; ST0=a, ST1=b
; compare "a" and "b"
fucomi st, st(1)
; copy ST1 ("b" here) to ST0 if a<=b
; leave "a" in ST0 otherwise
fcmovbe st, st(1)
; discard value in ST1
fstp st(1)
ret

Hard to guess why FXCH (swap operands) is here.
It’s possible to get rid of it easily by swapping the first two FLD instructions or by
replacing FCMOVBE (below or equal) by FCMOVA (above). Probably it’s a compiler
inaccuracy.
So FUCOMI compares ST(0) (a) and ST(1) (b) and then sets some flags in the main
CPU. FCMOVBE checks the flags and copies ST(1) (b here at the moment) to ST(0) (a
here) if ST0(a) <= ST1(b). Otherwise (a > b), it leaves a in ST(0).
The last FSTP leaves ST(0) on top of the stack, discarding the contents of ST(1).
Let’s trace this function in GDB:

Listing 1.219: Optimizing GCC 4.8.1 and GDB
1 dennis@ubuntuvm:~/polygon$ gcc -O3 d_max.c -o d_max -fno-inline
2 dennis@ubuntuvm:~/polygon$ gdb d_max
3 GNU gdb (GDB) 7.6.1-ubuntu
4 ...
5 Reading symbols from /home/dennis/polygon/d_max...(no debugging symbols ⤦

Ç found)...done.
6 (gdb) b d_max
7 Breakpoint 1 at 0x80484a0

117Starting at Pentium Pro, Pentium-II, etc.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

320
8 (gdb) run
9 Starting program: /home/dennis/polygon/d_max
10
11 Breakpoint 1, 0x080484a0 in d_max ()
12 (gdb) ni
13 0x080484a4 in d_max ()
14 (gdb) disas $eip
15 Dump of assembler code for function d_max:
16 0x080484a0 <+0>: fldl 0x4(%esp)
17 => 0x080484a4 <+4>: fldl 0xc(%esp)
18 0x080484a8 <+8>: fxch %st(1)
19 0x080484aa <+10>: fucomi %st(1),%st
20 0x080484ac <+12>: fcmovbe %st(1),%st
21 0x080484ae <+14>: fstp %st(1)
22 0x080484b0 <+16>: ret
23 End of assembler dump.
24 (gdb) ni
25 0x080484a8 in d_max ()
26 (gdb) info float
27 R7: Valid 0x3fff9999999999999800 +1.199999999999999956
28 =>R6: Valid 0x4000d999999999999800 +3.399999999999999911
29 R5: Empty 0x00000000000000000000
30 R4: Empty 0x00000000000000000000
31 R3: Empty 0x00000000000000000000
32 R2: Empty 0x00000000000000000000
33 R1: Empty 0x00000000000000000000
34 R0: Empty 0x00000000000000000000
35
36 Status Word: 0x3000
37 TOP: 6
38 Control Word: 0x037f IM DM ZM OM UM PM
39 PC: Extended Precision (64-bits)
40 RC: Round to nearest
41 Tag Word: 0x0fff
42 Instruction Pointer: 0x73:0x080484a4
43 Operand Pointer: 0x7b:0xbffff118
44 Opcode: 0x0000
45 (gdb) ni
46 0x080484aa in d_max ()
47 (gdb) info float
48 R7: Valid 0x4000d999999999999800 +3.399999999999999911
49 =>R6: Valid 0x3fff9999999999999800 +1.199999999999999956
50 R5: Empty 0x00000000000000000000
51 R4: Empty 0x00000000000000000000
52 R3: Empty 0x00000000000000000000
53 R2: Empty 0x00000000000000000000
54 R1: Empty 0x00000000000000000000
55 R0: Empty 0x00000000000000000000
56
57 Status Word: 0x3000
58 TOP: 6
59 Control Word: 0x037f IM DM ZM OM UM PM
60 PC: Extended Precision (64-bits)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

321
61 RC: Round to nearest
62 Tag Word: 0x0fff
63 Instruction Pointer: 0x73:0x080484a8
64 Operand Pointer: 0x7b:0xbffff118
65 Opcode: 0x0000
66 (gdb) disas $eip
67 Dump of assembler code for function d_max:
68 0x080484a0 <+0>: fldl 0x4(%esp)
69 0x080484a4 <+4>: fldl 0xc(%esp)
70 0x080484a8 <+8>: fxch %st(1)
71 => 0x080484aa <+10>: fucomi %st(1),%st
72 0x080484ac <+12>: fcmovbe %st(1),%st
73 0x080484ae <+14>: fstp %st(1)
74 0x080484b0 <+16>: ret
75 End of assembler dump.
76 (gdb) ni
77 0x080484ac in d_max ()
78 (gdb) info registers
79 eax 0x1 1
80 ecx 0xbffff1c4 -1073745468
81 edx 0x8048340 134513472
82 ebx 0xb7fbf000 -1208225792
83 esp 0xbffff10c 0xbffff10c
84 ebp 0xbffff128 0xbffff128
85 esi 0x0 0
86 edi 0x0 0
87 eip 0x80484ac 0x80484ac <d_max+12>
88 eflags 0x203 [CF IF]
89 cs 0x73 115
90 ss 0x7b 123
91 ds 0x7b 123
92 es 0x7b 123
93 fs 0x0 0
94 gs 0x33 51
95 (gdb) ni
96 0x080484ae in d_max ()
97 (gdb) info float
98 R7: Valid 0x4000d999999999999800 +3.399999999999999911
99 =>R6: Valid 0x4000d999999999999800 +3.399999999999999911
100 R5: Empty 0x00000000000000000000
101 R4: Empty 0x00000000000000000000
102 R3: Empty 0x00000000000000000000
103 R2: Empty 0x00000000000000000000
104 R1: Empty 0x00000000000000000000
105 R0: Empty 0x00000000000000000000
106
107 Status Word: 0x3000
108 TOP: 6
109 Control Word: 0x037f IM DM ZM OM UM PM
110 PC: Extended Precision (64-bits)
111 RC: Round to nearest
112 Tag Word: 0x0fff
113 Instruction Pointer: 0x73:0x080484ac

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

322
114 Operand Pointer: 0x7b:0xbffff118
115 Opcode: 0x0000
116 (gdb) disas $eip
117 Dump of assembler code for function d_max:
118 0x080484a0 <+0>: fldl 0x4(%esp)
119 0x080484a4 <+4>: fldl 0xc(%esp)
120 0x080484a8 <+8>: fxch %st(1)
121 0x080484aa <+10>: fucomi %st(1),%st
122 0x080484ac <+12>: fcmovbe %st(1),%st
123 => 0x080484ae <+14>: fstp %st(1)
124 0x080484b0 <+16>: ret
125 End of assembler dump.
126 (gdb) ni
127 0x080484b0 in d_max ()
128 (gdb) info float
129 =>R7: Valid 0x4000d999999999999800 +3.399999999999999911
130 R6: Empty 0x4000d999999999999800
131 R5: Empty 0x00000000000000000000
132 R4: Empty 0x00000000000000000000
133 R3: Empty 0x00000000000000000000
134 R2: Empty 0x00000000000000000000
135 R1: Empty 0x00000000000000000000
136 R0: Empty 0x00000000000000000000
137
138 Status Word: 0x3800
139 TOP: 7
140 Control Word: 0x037f IM DM ZM OM UM PM
141 PC: Extended Precision (64-bits)
142 RC: Round to nearest
143 Tag Word: 0x3fff
144 Instruction Pointer: 0x73:0x080484ae
145 Operand Pointer: 0x7b:0xbffff118
146 Opcode: 0x0000
147 (gdb) quit
148 A debugging session is active.
149
150 Inferior 1 [process 30194] will be killed.
151
152 Quit anyway? (y or n) y
153 dennis@ubuntuvm:~/polygon$

Using “ni”, let’s execute the first two FLD instructions.
Let’s examine the FPU registers (line 33).
As it was mentioned before, the FPU registers set is a circular buffer rather than a
stack (1.25.5 on page 283). And GDB doesn’t show STx registers, but internal the
FPU registers (Rx). The arrow (at line 35) points to the current top of the stack.
You can also see the TOP register contents in Status Word (line 36-37)—it is 6 now,
so the stack top is now pointing to internal register 6.
The values of a and b are swapped after FXCH is executed (line 54).
FUCOMI is executed (line 83). Let’s see the flags: CF is set (line 95).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

323
FCMOVBE has copied the value of b (see line 104).
FSTP leaves one value at the top of stack (line 139). The value of TOP is now 7, so
the FPU stack top is pointing to internal register 7.

ARM

Optimizing Xcode 4.6.3 (LLVM) (ARM mode)

Listing 1.220: Optimizing Xcode 4.6.3 (LLVM) (ARM mode)
VMOV D16, R2, R3 ; b
VMOV D17, R0, R1 ; a
VCMPE.F64 D17, D16
VMRS APSR_nzcv, FPSCR
VMOVGT.F64 D16, D17 ; copy "a" to D16
VMOV R0, R1, D16
BX LR

A very simple case. The input values are placed into the D17 and D16 registers and
then compared using the VCMPE instruction.
Just like in the x86 coprocessor, the ARM coprocessor has its own status and flags
register (FPSCR118), since there is a necessity to store coprocessor-specific flags.
And just like in x86, there are no conditional jump instruction in ARM, that can check
bits in the status register of the coprocessor. So there is VMRS, which copies 4 bits
(N, Z, C, V) from the coprocessor status word into bits of the general status register
(APSR119).
VMOVGT is the analog of the MOVGT, instruction for D-registers, it executes if one
operand is greater than the other while comparing (GT—Greater Than).
If it gets executed, the value of a is to be written into D16 (that is currently stored in
D17). Otherwise the value of b stays in the D16 register.
The penultimate instruction VMOV prepares the value in the D16 register for returning
it via the R0 and R1 register pair.

Optimizing Xcode 4.6.3 (LLVM) (Thumb-2 mode)

Listing 1.221: Optimizing Xcode 4.6.3 (LLVM) (Thumb-2 mode)
VMOV D16, R2, R3 ; b
VMOV D17, R0, R1 ; a
VCMPE.F64 D17, D16
VMRS APSR_nzcv, FPSCR
IT GT
VMOVGT.F64 D16, D17
VMOV R0, R1, D16
BX LR

118(ARM) Floating-Point Status and Control Register
119(ARM) Application Program Status Register

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

324
Almost the same as in the previous example, however slightly different. As we al-
ready know, many instructions in ARM mode can be supplemented by condition
predicate. But there is no such thing in Thumb mode. There is no space in the 16-bit
instructions for 4 more bits in which conditions can be encoded.
However, Thumb-2 was extended to make it possible to specify predicates to old
Thumb instructions. Here, in the IDA-generated listing, we see the VMOVGT instruc-
tion, as in previous example.
In fact, the usual VMOV is encoded there, but IDA adds the -GT suffix to it, since there
is a IT GT instruction placed right before it.
The IT instruction defines a so-called if-then block.
After the instruction it is possible to place up to 4 instructions, each of them has
a predicate suffix. In our example, IT GT implies that the next instruction is to be
executed, if the GT (Greater Than) condition is true.
Here is a more complex code fragment, by the way, from Angry Birds (for iOS):

Listing 1.222: Angry Birds Classic
...
ITE NE
VMOVNE R2, R3, D16
VMOVEQ R2, R3, D17
BLX _objc_msgSend ; not suffixed
...

ITE stands for if-then-else
and it encodes suffixes for the next two instructions.
The first instruction executes if the condition encoded in ITE (NE, not equal) is true
at, and the second—if the condition is not true. (The inverse condition of NE is EQ
(equal)).
The instruction followed after the second VMOV (or VMOVEQ) is a normal one, not suf-
fixed (BLX).
One more that’s slightly harder, which is also from Angry Birds:

Listing 1.223: Angry Birds Classic
...
ITTTT EQ
MOVEQ R0, R4
ADDEQ SP, SP, #0x20
POPEQ.W {R8,R10}
POPEQ {R4-R7,PC}
BLX ___stack_chk_fail ; not suffixed
...

Four “T” symbols in the instruction mnemonic mean that the four subsequent in-
structions are to be executed if the condition is true.
That’s why IDA adds the -EQ suffix to each one of them.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

325
And if there was, for example, ITEEE EQ (if-then-else-else-else), then the suffixes
would have been set as follows:
-EQ
-NE
-NE
-NE

Another fragment from Angry Birds:

Listing 1.224: Angry Birds Classic
...
CMP.W R0, #0xFFFFFFFF
ITTE LE
SUBLE.W R10, R0, #1
NEGLE R0, R0
MOVGT R10, R0
MOVS R6, #0 ; not suffixed
CBZ R0, loc_1E7E32 ; not suffixed
...

ITTE (if-then-then-else)
implies that the 1st and 2nd instructions are to be executed if the LE (Less or Equal)
condition is true, and the 3rd—if the inverse condition (GT—Greater Than) is true.
Compilers usually don’t generate all possible combinations.
For example, in the mentioned Angry Birds game (classic version for iOS) only these
variants of the IT instruction are used: IT, ITE, ITT, ITTE, ITTT, ITTTT. How to learn
this? In IDA, it is possible to produce listing files, so it was created with an option to
show 4 bytes for each opcode. Then, knowing the high part of the 16-bit opcode (IT
is 0xBF), we do the following using grep:
cat AngryBirdsClassic.lst | grep " BF" | grep "IT" > results.lst

By the way, if you program in ARM assembly language manually for Thumb-2 mode,
and you add conditional suffixes, the assembler will add the IT instructions automat-
ically with the required flags where it is necessary.

Non-optimizing Xcode 4.6.3 (LLVM) (ARM mode)

Listing 1.225: Non-optimizing Xcode 4.6.3 (LLVM) (ARM mode)
b = -0x20
a = -0x18
val_to_return = -0x10
saved_R7 = -4

STR R7, [SP,#saved_R7]!
MOV R7, SP
SUB SP, SP, #0x1C

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

326
BIC SP, SP, #7
VMOV D16, R2, R3
VMOV D17, R0, R1
VSTR D17, [SP,#0x20+a]
VSTR D16, [SP,#0x20+b]
VLDR D16, [SP,#0x20+a]
VLDR D17, [SP,#0x20+b]
VCMPE.F64 D16, D17
VMRS APSR_nzcv, FPSCR
BLE loc_2E08
VLDR D16, [SP,#0x20+a]
VSTR D16, [SP,#0x20+val_to_return]
B loc_2E10

loc_2E08
VLDR D16, [SP,#0x20+b]
VSTR D16, [SP,#0x20+val_to_return]

loc_2E10
VLDR D16, [SP,#0x20+val_to_return]
VMOV R0, R1, D16
MOV SP, R7
LDR R7, [SP+0x20+b],#4
BX LR

Almost the same as we already saw, but there is too much redundant code because
the a and b variables are stored in the local stack, as well as the return value.

Optimizing Keil 6/2013 (Thumb mode)

Listing 1.226: Optimizing Keil 6/2013 (Thumb mode)
PUSH {R3-R7,LR}
MOVS R4, R2
MOVS R5, R3
MOVS R6, R0
MOVS R7, R1
BL __aeabi_cdrcmple
BCS loc_1C0
MOVS R0, R6
MOVS R1, R7
POP {R3-R7,PC}

loc_1C0
MOVS R0, R4
MOVS R1, R5
POP {R3-R7,PC}

Keil doesn’t generate FPU-instructions since it cannot rely on them being supported
on the target CPU, and it cannot be done by straightforward bitwise comparing. So
it calls an external library function to do the comparison: __aeabi_cdrcmple.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

327
N.B. The result of the comparison is to be left in the flags by this function, so the
following BCS (Carry set—Greater than or equal) instruction can work without any
additional code.

ARM64

Optimizing GCC (Linaro) 4.9

d_max:
; D0 - a, D1 - b

fcmpe d0, d1
fcsel d0, d0, d1, gt

; now result in D0
ret

The ARM64 ISA has FPU-instructions which set APSR the CPU flags instead of FPSCR
for convenience. TheFPU is not a separate device here anymore (at least, logically).
Here we see FCMPE. It compares the two values passed in D0 and D1 (which are the
first and second arguments of the function) and sets APSR flags (N, Z, C, V).
FCSEL (Floating Conditional Select) copies the value of D0 or D1 into D0 depending on
the condition (GT—Greater Than), and again, it uses flags in APSR register instead
of FPSCR.
This is much more convenient, compared to the instruction set in older CPUs.
If the condition is true (GT), then the value of D0 is copied into D0 (i.e., nothing
happens). If the condition is not true, the value of D1 is copied into D0.

Non-optimizing GCC (Linaro) 4.9

d_max:
; save input arguments in "Register Save Area"

sub sp, sp, #16
str d0, [sp,8]
str d1, [sp]

; reload values
ldr x1, [sp,8]
ldr x0, [sp]
fmov d0, x1
fmov d1, x0

; D0 - a, D1 - b
fcmpe d0, d1
ble .L76

; a>b; load D0 (a) into X0
ldr x0, [sp,8]
b .L74

.L76:
; a<=b; load D1 (b) into X0

ldr x0, [sp]
.L74:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

328
; result in X0

fmov d0, x0
; result in D0

add sp, sp, 16
ret

Non-optimizing GCC is more verbose.
First, the function saves its input argument values in the local stack (Register Save
Area). Then the code reloads these values into registers X0/X1 and finally copies
them to D0/D1 to be compared using FCMPE. A lot of redundant code, but that is how
non-optimizing compilers work. FCMPE compares the values and sets the APSR flags.
At this moment, the compiler is not thinking yet about the more convenient FCSEL
instruction, so it proceed using old methods: using the BLE instruction (Branch if
Less than or Equal). In the first case (a > b), the value of a gets loaded into X0. In the
other case (a <= b), the value of b gets loaded into X0. Finally, the value from X0 gets
copied into D0, because the return value needs to be in this register.

Exercise

As an exercise, you can try optimizing this piece of code manually by removing
redundant instructions and not introducing new ones (including FCSEL).

Optimizing GCC (Linaro) 4.9—float

Let’s also rewrite this example to use float instead of double.
float f_max (float a, float b)
{

if (a>b)
return a;

return b;
};

f_max:
; S0 - a, S1 - b

fcmpe s0, s1
fcsel s0, s0, s1, gt

; now result in S0
ret

It is the same code, but the S-registers are used instead of D- ones. It’s because
numbers of type float are passed in 32-bit S-registers (which are in fact the lower
parts of the 64-bit D-registers).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

329
MIPS

The co-processor of the MIPS processor has a condition bit which can be set in the
FPU and checked in the CPU.
Earlier MIPS-es have only one condition bit (called FCC0), later ones have 8 (called
FCC7-FCC0).
This bit (or bits) are located in the register called FCCR.

Listing 1.227: Optimizing GCC 4.4.5 (IDA)
d_max:
; set FPU condition bit if $f14<$f12 (b<a):

c.lt.d $f14, $f12
or $at, $zero ; NOP

; jump to locret_14 if condition bit is set
bc1t locret_14

; this instruction is always executed (set return value to "a"):
mov.d $f0, $f12 ; branch delay slot

; this instruction is executed only if branch was not taken
; (i.e., if b>=a)
; set return value to "b":

mov.d $f0, $f14

locret_14:
jr $ra
or $at, $zero ; branch delay slot, NOP

C.LT.D compares two values. LT is the condition “Less Than”. D implies values of
type double. Depending on the result of the comparison, the FCC0 condition bit is
either set or cleared.
BC1T checks the FCC0 bit and jumps if the bit is set. T means that the jump is to be
taken if the bit is set (“True”). There is also the instruction BC1F which jumps if the
bit is cleared (“False”).
Depending on the jump, one of function arguments is placed into $F0.

1.25.8 Some constants
It’s easy to find representations of some constants in Wikipedia for IEEE 754 encoded
numbers. It’s interesting to know that 0.0 in IEEE 754 is represented as 32 zero bits
(for single precision) or 64 zero bits (for double). So in order to set a floating point
variable to 0.0 in register or memory, one can use MOV or XOR reg, reg instruction.
This is suitable for structures where many variables present of various data types.
With usual memset() function one can set all integer variables to 0, all boolean vari-
ables to false, all pointers to NULL, and all floating point variables (of any precision)
to 0.0.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

330
1.25.9 Copying
One may think inertially that FLD/FST instructions must be used to load and store
(and hence, copy) IEEE 754 values. Nevertheless, same can be achieved easier by
usual MOV instruction, which, of course, copies values bitwisely.

1.25.10 Stack, calculators and reverse Polish notation
Now we understand why some old programmable calculators use reverse Polish no-
tation.
For example, for addition of 12 and 34 one has to enter 12, then 34, then press “plus”
sign.
It’s because old calculators were just stack machine implementations, and this was
much simpler than to handle complex parenthesized expressions.
Such a calculator still present in many Unix distributions: dc.

1.25.11 80 bits?
Internal numbers representation in FPU — 80-bit. Strange number, because the
number not in 2n form. There is a hypothesis that this is probably due to historical
reasons—the standard IBM punched card can encode 12 rows of 80 bits. 80 ⋅ 25 text
mode resolution was also popular in past.
Wikipedia has another explanation: https://en.wikipedia.org/wiki/Extended_
precision.
If you know better, please a drop email to the author: my emails.

1.25.12 x64
On how floating point numbers are processed in x86-64, read more here: 1.38 on
page 541.

1.25.13 Exercises
• http://challenges.re/60

• http://challenges.re/61

1.26 Arrays
An array is just a set of variables in memory that lie next to each other and that have
the same type120.yy 121

120AKA “homogeneous container”
121AKA “homogener Container”.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://en.wikipedia.org/wiki/Extended_precision
https://en.wikipedia.org/wiki/Extended_precision
https://yurichev.com/contact.html
http://challenges.re/60
http://challenges.re/61
https://yurichev.com/contact.html
https://yurichev.com/contact.html

331
1.26.1 Simple example
#include <stdio.h>

int main()
{

int a[20];
int i;

for (i=0; i<20; i++)
a[i]=i*2;

for (i=0; i<20; i++)
printf ("a[%d]=%d\n", i, a[i]);

return 0;
};

x86

MSVC

Let’s compile:

Listing 1.228: MSVC 2008
_TEXT SEGMENT
_i$ = -84 ; size = 4
_a$ = -80 ; size = 80
_main PROC

push ebp
mov ebp, esp
sub esp, 84 ; 00000054H
mov DWORD PTR _i$[ebp], 0
jmp SHORT $LN6@main

$LN5@main:
mov eax, DWORD PTR _i$[ebp]
add eax, 1
mov DWORD PTR _i$[ebp], eax

$LN6@main:
cmp DWORD PTR _i$[ebp], 20 ; 00000014H
jge SHORT $LN4@main
mov ecx, DWORD PTR _i$[ebp]
shl ecx, 1
mov edx, DWORD PTR _i$[ebp]
mov DWORD PTR _a$[ebp+edx*4], ecx
jmp SHORT $LN5@main

$LN4@main:
mov DWORD PTR _i$[ebp], 0
jmp SHORT $LN3@main

$LN2@main:
mov eax, DWORD PTR _i$[ebp]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

332
add eax, 1
mov DWORD PTR _i$[ebp], eax

$LN3@main:
cmp DWORD PTR _i$[ebp], 20 ; 00000014H
jge SHORT $LN1@main
mov ecx, DWORD PTR _i$[ebp]
mov edx, DWORD PTR _a$[ebp+ecx*4]
push edx
mov eax, DWORD PTR _i$[ebp]
push eax
push OFFSET $SG2463
call _printf
add esp, 12 ; 0000000cH
jmp SHORT $LN2@main

$LN1@main:
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

Nothing very special, just two loops: the first is a filling loop and second is a printing
loop. The shl ecx, 1 instruction is used for value multiplication by 2 in ECX, more
about it: 1.24.2 on page 274.
80 bytes are allocated on the stack for the array, 20 elements of 4 bytes.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

333
Let’s try this example in OllyDbg.
We see how the array gets filled:
each element is 32-bit word of int type and its value is the index multiplied by 2:

Figure 1.87: OllyDbg: after array filling

Since this array is located in the stack, we can see all its 20 elements there.

GCC

Here is what GCC 4.4.1 does:

Listing 1.229: GCC 4.4.1
public main

main proc near ; DATA XREF: _start+17

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

334
var_70 = dword ptr -70h
var_6C = dword ptr -6Ch
var_68 = dword ptr -68h
i_2 = dword ptr -54h
i = dword ptr -4

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 70h
mov [esp+70h+i], 0 ; i=0
jmp short loc_804840A

loc_80483F7:
mov eax, [esp+70h+i]
mov edx, [esp+70h+i]
add edx, edx ; edx=i*2
mov [esp+eax*4+70h+i_2], edx
add [esp+70h+i], 1 ; i++

loc_804840A:
cmp [esp+70h+i], 13h
jle short loc_80483F7
mov [esp+70h+i], 0
jmp short loc_8048441

loc_804841B:
mov eax, [esp+70h+i]
mov edx, [esp+eax*4+70h+i_2]
mov eax, offset aADD ; "a[%d]=%d\n"
mov [esp+70h+var_68], edx
mov edx, [esp+70h+i]
mov [esp+70h+var_6C], edx
mov [esp+70h+var_70], eax
call _printf
add [esp+70h+i], 1

loc_8048441:
cmp [esp+70h+i], 13h
jle short loc_804841B
mov eax, 0
leave
retn

main endp

By the way, variable a is of type int* (the pointer to int)—you can pass a pointer to
an array to another function, but it’s more correct to say that a pointer to the first
element of the array is passed (the addresses of rest of the elements are calculated
in an obvious way).
If you index this pointer as a[idx], idx is just to be added to the pointer and the
element placed there (to which calculated pointer is pointing) is to be returned.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

335
An interesting example: a string of characters like string is an array of characters
and it has a type of const char[].
An index can also be applied to this pointer.
And that is why it is possible to write things like “string”[i]—this is a correct C/C++
expression!

ARM

Non-optimizing Keil 6/2013 (ARM mode)

EXPORT _main
_main

STMFD SP!, {R4,LR}
SUB SP, SP, #0x50 ; allocate place for 20 int variables

; first loop

MOV R4, #0 ; i
B loc_4A0

loc_494
MOV R0, R4,LSL#1 ; R0=R4*2
STR R0, [SP,R4,LSL#2]; store R0 to SP+R4<<2 (same as SP+R4*4)
ADD R4, R4, #1 ; i=i+1

loc_4A0
CMP R4, #20 ; i<20?
BLT loc_494 ; yes, run loop body again

; second loop

MOV R4, #0 ; i
B loc_4C4

loc_4B0
LDR R2, [SP,R4,LSL#2]; (second printf argument)

R2=*(SP+R4<<4) (same as *(SP+R4*4))
MOV R1, R4 ; (first printf argument) R1=i
ADR R0, aADD ; "a[%d]=%d\n"
BL __2printf
ADD R4, R4, #1 ; i=i+1

loc_4C4
CMP R4, #20 ; i<20?
BLT loc_4B0 ; yes, run loop body again
MOV R0, #0 ; value to return
ADD SP, SP, #0x50 ; deallocate chunk, allocated for 20 int

variables
LDMFD SP!, {R4,PC}

int type requires 32 bits for storage (or 4 bytes),
so to store 20 int variables 80 (0x50) bytes are needed. So that is why the SUB SP,
SP, #0x50

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

336
instruction in the function’s prologue allocates exactly this amount of space in the
stack.
In both the first and second loops, the loop iterator i is placed in the R4 register.
The number that is to be written into the array is calculated as i∗2, which is effectively
equivalent to shifting it left by one bit,
so MOV R0, R4,LSL#1 instruction does this.
STR R0, [SP,R4,LSL#2] writes the contents of R0 into the array.
Here is how a pointer to array element is calculated: SP points to the start of the
array, R4 is i.
So shifting i left by 2 bits is effectively equivalent to multiplication by 4 (since each
array element has a size of 4 bytes) and then it’s added to the address of the start
of the array.
The second loop has an inverse LDR R2, [SP,R4,LSL#2] instruction. It loads the
value we need from the array, and the pointer to it is calculated likewise.

Optimizing Keil 6/2013 (Thumb mode)

_main
PUSH {R4,R5,LR}

; allocate place for 20 int variables + one more variable
SUB SP, SP, #0x54

; first loop

MOVS R0, #0 ; i
MOV R5, SP ; pointer to first array element

loc_1CE
LSLS R1, R0, #1 ; R1=i<<1 (same as i*2)
LSLS R2, R0, #2 ; R2=i<<2 (same as i*4)
ADDS R0, R0, #1 ; i=i+1
CMP R0, #20 ; i<20?
STR R1, [R5,R2] ; store R1 to *(R5+R2) (same R5+i*4)
BLT loc_1CE ; yes, i<20, run loop body again

; second loop

MOVS R4, #0 ; i=0
loc_1DC

LSLS R0, R4, #2 ; R0=i<<2 (same as i*4)
LDR R2, [R5,R0] ; load from *(R5+R0) (same as R5+i*4)
MOVS R1, R4
ADR R0, aADD ; "a[%d]=%d\n"
BL __2printf
ADDS R4, R4, #1 ; i=i+1
CMP R4, #20 ; i<20?
BLT loc_1DC ; yes, i<20, run loop body again
MOVS R0, #0 ; value to return

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

337
; deallocate chunk, allocated for 20 int variables
; + one more variable

ADD SP, SP, #0x54
POP {R4,R5,PC}

Thumb code is very similar.
Thumb mode has special instructions for bit shifting (like LSLS), which calculates the
value to be written into the array and the address of each element in the array as
well.
The compiler allocates slightly more space in the local stack, however, the last 4
bytes are not used.

Non-optimizing GCC 4.9.1 (ARM64)

Listing 1.230: Non-optimizing GCC 4.9.1 (ARM64)
.LC0:

.string "a[%d]=%d\n"
main:
; save FP and LR in stack frame:

stp x29, x30, [sp, -112]!
; set stack frame (FP=SP)

add x29, sp, 0
; setting initial counter variable at 0
; (WZR is the register always holding zero):

str wzr, [x29,108]
; jump to loop condition checking code:

b .L2
.L3:
; load value of "i" variable:

ldr w0, [x29,108]
; multiplicate it by 2:

lsl w2, w0, 1
; find a place of an array in local stack:

add x0, x29, 24
; load 32-bit integer from local stack and sign extend it to 64-bit one:

ldrsw x1, [x29,108]
; calculate address of element (X0+X1<<2=array address+i*4)
; and store W2 (i*2) there:

str w2, [x0,x1,lsl 2]
; increment counter (i):

ldr w0, [x29,108]
add w0, w0, 1
str w0, [x29,108]

.L2:
; check if we finished:

ldr w0, [x29,108]
cmp w0, 19

; jump to L3 (loop body begin) if not:
ble .L3

; second part of the function begins here.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

338
; setting initial counter variable at 0.
; by the way, the same place in the local stack was used for counter,
; because the same local variable (i) is being used as counter.

str wzr, [x29,108]
b .L4

.L5:
; calculate array address:

add x0, x29, 24
; load "i" value:

ldrsw x1, [x29,108]
; load value from the array at the address (X0+X1<<2 = address of array +

i*4)
ldr w2, [x0,x1,lsl 2]

; load address of the "a[%d]=%d\n" string:
adrp x0, .LC0
add x0, x0, :lo12:.LC0

; load "i" variable to W1 and pass it to printf() as second argument:
ldr w1, [x29,108]

; W2 still contains the value of array element which was just loaded.
; call printf():

bl printf
; increment "i" variable:

ldr w0, [x29,108]
add w0, w0, 1
str w0, [x29,108]

.L4:
; are we finished?

ldr w0, [x29,108]
cmp w0, 19

; jump to the loop body begin if not:
ble .L5

; return 0
mov w0, 0

; restore FP and LR:
ldp x29, x30, [sp], 112
ret

MIPS

The function uses a lot of S- registers which must be preserved, so that’s why its
values are saved in the function prologue and restored in the epilogue.

Listing 1.231: Optimizing GCC 4.4.5 (IDA)
main:

var_70 = -0x70
var_68 = -0x68
var_14 = -0x14
var_10 = -0x10
var_C = -0xC
var_8 = -8
var_4 = -4

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

339
; function prologue:

lui $gp, (__gnu_local_gp >> 16)
addiu $sp, -0x80
la $gp, (__gnu_local_gp & 0xFFFF)
sw $ra, 0x80+var_4($sp)
sw $s3, 0x80+var_8($sp)
sw $s2, 0x80+var_C($sp)
sw $s1, 0x80+var_10($sp)
sw $s0, 0x80+var_14($sp)
sw $gp, 0x80+var_70($sp)
addiu $s1, $sp, 0x80+var_68
move $v1, $s1
move $v0, $zero

; that value will be used as a loop terminator.
; it was precalculated by GCC compiler at compile stage:

li $a0, 0x28 # '('

loc_34: # CODE XREF: main+3C
; store value into memory:

sw $v0, 0($v1)
; increase value to be stored by 2 at each iteration:

addiu $v0, 2
; loop terminator reached?

bne $v0, $a0, loc_34
; add 4 to address anyway:

addiu $v1, 4
; array filling loop is ended
; second loop begin

la $s3, $LC0 # "a[%d]=%d\n"
; "i" variable will reside in $s0:

move $s0, $zero
li $s2, 0x14

loc_54: # CODE XREF: main+70
; call printf():

lw $t9, (printf & 0xFFFF)($gp)
lw $a2, 0($s1)
move $a1, $s0
move $a0, $s3
jalr $t9

; increment "i":
addiu $s0, 1
lw $gp, 0x80+var_70($sp)

; jump to loop body if end is not reached:
bne $s0, $s2, loc_54

; move memory pointer to the next 32-bit word:
addiu $s1, 4

; function epilogue
lw $ra, 0x80+var_4($sp)
move $v0, $zero
lw $s3, 0x80+var_8($sp)
lw $s2, 0x80+var_C($sp)
lw $s1, 0x80+var_10($sp)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

340
lw $s0, 0x80+var_14($sp)
jr $ra
addiu $sp, 0x80

$LC0: .ascii "a[%d]=%d\n"<0> # DATA XREF: main+44

Something interesting: there are two loops and the first one doesn’t need i, it needs
only i∗2 (increased by 2 at each iteration) and also the address in memory (increased
by 4 at each iteration).
So here we see two variables, one (in $V0) increasing by 2 each time, and another
(in $V1) — by 4.
The second loop is where printf() is called and it reports the value of i to the user,
so there is a variable which is increased by 1 each time (in $S0) and also a memory
address (in $S1) increased by 4 each time.
That reminds us of loop optimizations: 3.10 on page 612.
Their goal is to get rid of multiplications.

1.26.2 Buffer overflow
Reading outside array bounds

So, array indexing is just array[index]. If you study the generated code closely,
you’ll probably note the missing index bounds checking, which could check if it is
less than 20. What if the index is 20 or greater? That’s the one C/C++ feature it is
often blamed for.
Here is a code that successfully compiles and works:
#include <stdio.h>

int main()
{

int a[20];
int i;

for (i=0; i<20; i++)
a[i]=i*2;

printf ("a[20]=%d\n", a[20]);

return 0;
};

Compilation results (MSVC 2008):

Listing 1.232: Non-optimizing MSVC 2008
$SG2474 DB 'a[20]=%d', 0aH, 00H

_i$ = -84 ; size = 4

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

341
_a$ = -80 ; size = 80
_main PROC

push ebp
mov ebp, esp
sub esp, 84
mov DWORD PTR _i$[ebp], 0
jmp SHORT $LN3@main

$LN2@main:
mov eax, DWORD PTR _i$[ebp]
add eax, 1
mov DWORD PTR _i$[ebp], eax

$LN3@main:
cmp DWORD PTR _i$[ebp], 20
jge SHORT $LN1@main
mov ecx, DWORD PTR _i$[ebp]
shl ecx, 1
mov edx, DWORD PTR _i$[ebp]
mov DWORD PTR _a$[ebp+edx*4], ecx
jmp SHORT $LN2@main

$LN1@main:
mov eax, DWORD PTR _a$[ebp+80]
push eax
push OFFSET $SG2474 ; 'a[20]=%d'
call DWORD PTR __imp__printf
add esp, 8
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP
_TEXT ENDS
END

The code produced this result:

Listing 1.233: OllyDbg: console output
a[20]=1638280

It is just something that has been lying in the stack near to the array, 80 bytes away
from its first element.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

342
Let’s try to find out where did this value come from, using OllyDbg.
Let’s load and find the value located right after the last array element:

Figure 1.88: OllyDbg: reading of the 20th element and execution of printf()

What is this? Judging by the stack layout, this is the saved value of the EBP register.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

343
Let’s trace further and see how it gets restored:

Figure 1.89: OllyDbg: restoring value of EBP

Indeed, how it could be different? The compiler may generate some additional code
to check the index value to be always in the array’s bounds (like in higher-level
programming languages122) but this makes the code slower.

Writing beyond array bounds

OK, we read some values from the stack illegally, but what if we could write some-
thing to it?
Here is what we have got:
#include <stdio.h>

int main()
{

122Java, Python, etc.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

344
int a[20];
int i;

for (i=0; i<30; i++)
a[i]=i;

return 0;
};

MSVC

And what we get:

Listing 1.234: Non-optimizing MSVC 2008
_TEXT SEGMENT
_i$ = -84 ; size = 4
_a$ = -80 ; size = 80
_main PROC
push ebp
mov ebp, esp
sub esp, 84
mov DWORD PTR _i$[ebp], 0
jmp SHORT $LN3@main
$LN2@main:
mov eax, DWORD PTR _i$[ebp]
add eax, 1
mov DWORD PTR _i$[ebp], eax
$LN3@main:
cmp DWORD PTR _i$[ebp], 30 ; 0000001eH
jge SHORT $LN1@main
mov ecx, DWORD PTR _i$[ebp]
mov edx, DWORD PTR _i$[ebp] ; that instruction is obviously

redundant
mov DWORD PTR _a$[ebp+ecx*4], edx ; ECX could be used as second operand

here instead
jmp SHORT $LN2@main
$LN1@main:
xor eax, eax
mov esp, ebp
pop ebp
ret 0
_main ENDP

The compiled program crashes after running. No wonder. Let’s see where exactly
does it crash.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

345
Let’s load it into OllyDbg, and trace until all 30 elements are written:

Figure 1.90: OllyDbg: after restoring the value of EBP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

346
Trace until the function end:

Figure 1.91: OllyDbg: EIP has been restored, but OllyDbg can’t disassemble at 0x15

Now please keep your eyes on the registers.
EIP is 0x15 now. It is not a legal address for code—at least for win32 code! We got
there somehow against our will. It is also interesting that the EBP register contain
0x14, ECX and EDX contain 0x1D.
Let’s study stack layout a bit more.
After the control flow has been passed to main(), the value in the EBP register was
saved on the stack. Then, 84 bytes were allocated for the array and the i variable.
That’s (20+1)*sizeof(int). ESP now points to the _i variable in the local stack
and after the execution of the next PUSH something, that something is appearing
next to _i.
That’s the stack layout while the control is in main():

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

347
ESP 4 bytes allocated for i variable
ESP+4 80 bytes allocated for a[20] array
ESP+84 saved EBP value
ESP+88 return address

a[19]=something statement writes the last int in the bounds of the array (in bounds
so far!).
a[20]=something statement writes something to the place where the value of EBP
is saved.
Please take a look at the register state at the moment of the crash. In our case, 20
has been written in the 20th element. At the function end, the function epilogue
restores the original EBP value. (20 in decimal is 0x14 in hexadecimal). Then RET
gets executed, which is effectively equivalent to POP EIP instruction.
The RET instruction takes the return address from the stack (that is the address in
CRT, which has called main()), and 21 is stored there (0x15 in hexadecimal). The
CPU traps at address 0x15, but there is no executable code there, so exception gets
raised.
Welcome! It is called a buffer overflow123.
Replace the int array with a string (char array), create a long string deliberately and
pass it to the program, to the function, which doesn’t check the length of the string
and copies it in a short buffer, and you’ll able to point the program to an address to
which it must jump. It’s not that simple in reality, but that is how it emerged. Classic
article about it: [Aleph One, Smashing The Stack For Fun And Profit, (1996)]124.

GCC

Let’s try the same code in GCC 4.4.1. We get:
public main

main proc near

a = dword ptr -54h
i = dword ptr -4

push ebp
mov ebp, esp
sub esp, 60h ; 96
mov [ebp+i], 0
jmp short loc_80483D1

loc_80483C3:
mov eax, [ebp+i]
mov edx, [ebp+i]
mov [ebp+eax*4+a], edx
add [ebp+i], 1

loc_80483D1:
cmp [ebp+i], 1Dh

123wikipedia
124Also available as http://yurichev.com/mirrors/phrack/p49-0x0e.txt

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://en.wikipedia.org/wiki/Stack_buffer_overflow
http://yurichev.com/mirrors/phrack/p49-0x0e.txt
https://yurichev.com/contact.html
https://yurichev.com/contact.html

348
jle short loc_80483C3
mov eax, 0
leave
retn

main endp

Running this in Linux will produce: Segmentation fault.
If we run this in the GDB debugger, we get this:
(gdb) r
Starting program: /home/dennis/RE/1

Program received signal SIGSEGV, Segmentation fault.
0x00000016 in ?? ()
(gdb) info registers
eax 0x0 0
ecx 0xd2f96388 -755407992
edx 0x1d 29
ebx 0x26eff4 2551796
esp 0xbffff4b0 0xbffff4b0
ebp 0x15 0x15
esi 0x0 0
edi 0x0 0
eip 0x16 0x16
eflags 0x10202 [IF RF]
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51
(gdb)

The register values are slightly different than in win32 example, since the stack
layout is slightly different too.

1.26.3 Buffer overflow protection methods
There are several methods to protect against this scourge, regardless of the C/C++
programmers’ negligence. MSVC has options like125:
/RTCs Stack Frame runtime checking
/GZ Enable stack checks (/RTCs)

One of the methods is to write a random value between the local variables in stack
at function prologue and to check it in function epilogue before the function exits.
If value is not the same, do not execute the last instruction RET, but stop (or hang).
The process will halt, but that is much better than a remote attack to your host.
125compiler-side buffer overflow protection methods: wikipedia.org/wiki/Buffer_overflow_protection

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://en.wikipedia.org/wiki/Buffer_overflow_protection
https://yurichev.com/contact.html
https://yurichev.com/contact.html

349
This random value is called a “canary” sometimes, it is related to the miners’ ca-
nary126, they were used by miners in the past days in order to detect poisonous
gases quickly.
Canaries are very sensitive to mine gases, they become very agitated in case of
danger, or even die.
If we compile our very simple array example (1.26.1 on page 331) in MSVC with RTC1
and RTCs option,
you can see a call to @_RTC_CheckStackVars@8 a function at the end of the function
that checks if the “canary” is correct.
Let’s see how GCC handles this. Let’s take an alloca() (1.9.2 on page 47) example:
#ifdef __GNUC__
#include <alloca.h> // GCC
#else
#include <malloc.h> // MSVC
#endif
#include <stdio.h>

void f()
{

char *buf=(char*)alloca (600);
#ifdef __GNUC__

snprintf (buf, 600, "hi! %d, %d, %d\n", 1, 2, 3); // GCC
#else

_snprintf (buf, 600, "hi! %d, %d, %d\n", 1, 2, 3); // MSVC
#endif

puts (buf);
};

By default, without any additional options, GCC 4.7.3 inserts a “canary” check into
the code:

Listing 1.235: GCC 4.7.3
.LC0:

.string "hi! %d, %d, %d\n"
f:

push ebp
mov ebp, esp
push ebx
sub esp, 676
lea ebx, [esp+39]
and ebx, -16
mov DWORD PTR [esp+20], 3
mov DWORD PTR [esp+16], 2
mov DWORD PTR [esp+12], 1
mov DWORD PTR [esp+8], OFFSET FLAT:.LC0 ; "hi! %d, %d, %d\n"
mov DWORD PTR [esp+4], 600
mov DWORD PTR [esp], ebx

126wikipedia.org/wiki/Domestic_canary#Miner.27s_canary

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://en.wikipedia.org/wiki/Domestic_Canary#Miner.27s_canary
https://yurichev.com/contact.html
https://yurichev.com/contact.html

350
mov eax, DWORD PTR gs:20 ; canary
mov DWORD PTR [ebp-12], eax
xor eax, eax
call _snprintf
mov DWORD PTR [esp], ebx
call puts
mov eax, DWORD PTR [ebp-12]
xor eax, DWORD PTR gs:20 ; check canary
jne .L5
mov ebx, DWORD PTR [ebp-4]
leave
ret

.L5:
call __stack_chk_fail

The random value is located in gs:20. It gets written on the stack and then at the
end of the function the value in the stack is compared with the correct “canary” in
gs:20. If the values are not equal, the __stack_chk_fail function is called and we
can see in the console something like that (Ubuntu 13.04 x86):
*** buffer overflow detected ***: ./2_1 terminated
======= Backtrace: =========
/lib/i386-linux-gnu/libc.so.6(__fortify_fail+0x63)[0xb7699bc3]
/lib/i386-linux-gnu/libc.so.6(+0x10593a)[0xb769893a]
/lib/i386-linux-gnu/libc.so.6(+0x105008)[0xb7698008]
/lib/i386-linux-gnu/libc.so.6(_IO_default_xsputn+0x8c)[0xb7606e5c]
/lib/i386-linux-gnu/libc.so.6(_IO_vfprintf+0x165)[0xb75d7a45]
/lib/i386-linux-gnu/libc.so.6(__vsprintf_chk+0xc9)[0xb76980d9]
/lib/i386-linux-gnu/libc.so.6(__sprintf_chk+0x2f)[0xb7697fef]
./2_1[0x8048404]
/lib/i386-linux-gnu/libc.so.6(__libc_start_main+0xf5)[0xb75ac935]
======= Memory map: ========
08048000-08049000 r-xp 00000000 08:01 2097586 /home/dennis/2_1
08049000-0804a000 r--p 00000000 08:01 2097586 /home/dennis/2_1
0804a000-0804b000 rw-p 00001000 08:01 2097586 /home/dennis/2_1
094d1000-094f2000 rw-p 00000000 00:00 0 [heap]
b7560000-b757b000 r-xp 00000000 08:01 1048602 /lib/i386-linux-gnu/⤦

Ç libgcc_s.so.1
b757b000-b757c000 r--p 0001a000 08:01 1048602 /lib/i386-linux-gnu/⤦

Ç libgcc_s.so.1
b757c000-b757d000 rw-p 0001b000 08:01 1048602 /lib/i386-linux-gnu/⤦

Ç libgcc_s.so.1
b7592000-b7593000 rw-p 00000000 00:00 0
b7593000-b7740000 r-xp 00000000 08:01 1050781 /lib/i386-linux-gnu/libc⤦

Ç -2.17.so
b7740000-b7742000 r--p 001ad000 08:01 1050781 /lib/i386-linux-gnu/libc⤦

Ç -2.17.so
b7742000-b7743000 rw-p 001af000 08:01 1050781 /lib/i386-linux-gnu/libc⤦

Ç -2.17.so
b7743000-b7746000 rw-p 00000000 00:00 0
b775a000-b775d000 rw-p 00000000 00:00 0
b775d000-b775e000 r-xp 00000000 00:00 0 [vdso]
b775e000-b777e000 r-xp 00000000 08:01 1050794 /lib/i386-linux-gnu/ld⤦

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

351
Ç -2.17.so

b777e000-b777f000 r--p 0001f000 08:01 1050794 /lib/i386-linux-gnu/ld⤦
Ç -2.17.so

b777f000-b7780000 rw-p 00020000 08:01 1050794 /lib/i386-linux-gnu/ld⤦
Ç -2.17.so

bff35000-bff56000 rw-p 00000000 00:00 0 [stack]
Aborted (core dumped)

gs is the so-called segment register. These registers were used widely in MS-DOS
and DOS-extenders times. Today, its function is different.
To say it briefly, the gs register in Linux always points to the TLS127 (6.2 on page 944)—
some information specific to thread is stored there. By the way, in win32 the fs
register plays the same role, pointing to TIB128 129.
More information can be found in the Linux kernel source code (at least in 3.11 ver-
sion),
in arch/x86/include/asm/stackprotector.h this variable is described in the comments.

Optimizing Xcode 4.6.3 (LLVM) (Thumb-2 mode)

Let’s get back to our simple array example (1.26.1 on page 331),
again, now we can see how LLVM checks the correctness of the “canary”:
_main

var_64 = -0x64
var_60 = -0x60
var_5C = -0x5C
var_58 = -0x58
var_54 = -0x54
var_50 = -0x50
var_4C = -0x4C
var_48 = -0x48
var_44 = -0x44
var_40 = -0x40
var_3C = -0x3C
var_38 = -0x38
var_34 = -0x34
var_30 = -0x30
var_2C = -0x2C
var_28 = -0x28
var_24 = -0x24
var_20 = -0x20
var_1C = -0x1C
var_18 = -0x18
canary = -0x14
var_10 = -0x10

127Thread Local Storage
128Thread Information Block
129wikipedia.org/wiki/Win32_Thread_Information_Block

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://en.wikipedia.org/wiki/Win32_Thread_Information_Block
https://yurichev.com/contact.html
https://yurichev.com/contact.html

352
PUSH {R4-R7,LR}
ADD R7, SP, #0xC
STR.W R8, [SP,#0xC+var_10]!
SUB SP, SP, #0x54
MOVW R0, #aObjc_methtype ; "objc_methtype"
MOVS R2, #0
MOVT.W R0, #0
MOVS R5, #0
ADD R0, PC
LDR.W R8, [R0]
LDR.W R0, [R8]
STR R0, [SP,#0x64+canary]
MOVS R0, #2
STR R2, [SP,#0x64+var_64]
STR R0, [SP,#0x64+var_60]
MOVS R0, #4
STR R0, [SP,#0x64+var_5C]
MOVS R0, #6
STR R0, [SP,#0x64+var_58]
MOVS R0, #8
STR R0, [SP,#0x64+var_54]
MOVS R0, #0xA
STR R0, [SP,#0x64+var_50]
MOVS R0, #0xC
STR R0, [SP,#0x64+var_4C]
MOVS R0, #0xE
STR R0, [SP,#0x64+var_48]
MOVS R0, #0x10
STR R0, [SP,#0x64+var_44]
MOVS R0, #0x12
STR R0, [SP,#0x64+var_40]
MOVS R0, #0x14
STR R0, [SP,#0x64+var_3C]
MOVS R0, #0x16
STR R0, [SP,#0x64+var_38]
MOVS R0, #0x18
STR R0, [SP,#0x64+var_34]
MOVS R0, #0x1A
STR R0, [SP,#0x64+var_30]
MOVS R0, #0x1C
STR R0, [SP,#0x64+var_2C]
MOVS R0, #0x1E
STR R0, [SP,#0x64+var_28]
MOVS R0, #0x20
STR R0, [SP,#0x64+var_24]
MOVS R0, #0x22
STR R0, [SP,#0x64+var_20]
MOVS R0, #0x24
STR R0, [SP,#0x64+var_1C]
MOVS R0, #0x26
STR R0, [SP,#0x64+var_18]
MOV R4, 0xFDA ; "a[%d]=%d\n"
MOV R0, SP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

353
ADDS R6, R0, #4
ADD R4, PC
B loc_2F1C

; second loop begin

loc_2F14
ADDS R0, R5, #1
LDR.W R2, [R6,R5,LSL#2]
MOV R5, R0

loc_2F1C
MOV R0, R4
MOV R1, R5
BLX _printf
CMP R5, #0x13
BNE loc_2F14
LDR.W R0, [R8]
LDR R1, [SP,#0x64+canary]
CMP R0, R1
ITTTT EQ ; is canary still correct?
MOVEQ R0, #0
ADDEQ SP, SP, #0x54
LDREQ.W R8, [SP+0x64+var_64],#4
POPEQ {R4-R7,PC}
BLX ___stack_chk_fail

First of all, as we see, LLVM “unrolled” the loop and all values were written into an
array one-by-one, pre-calculated, as LLVM concluded it can work faster. By the way,
instructions in ARM mode may help to do this even faster, and finding this could be
your homework.
At the function end we see the comparison of the “canaries”—the one in the local
stack and the correct one, to which R8 points.
If they are equal to each other, a 4-instruction block is triggered by ITTTT EQ, which
contains writing 0 in R0, the function epilogue and exit. If the “canaries” are not
equal, the block being skipped,
and the jump to ___stack_chk_fail function will occur, which, perhaps will halt
execution.

1.26.4 One more word about arrays
Now we understand why it is impossible to write something like this in C/C++ code:
void f(int size)
{

int a[size];
...
};

That’s just because the compiler must know the exact array size to allocate space
for it in the local stack layout on at the compiling stage.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

354
If you need an array of arbitrary size, allocate it by using malloc(), then access the
allocated memory block as an array of variables of the type you need.
Or use the C99 standard feature [ISO/IEC 9899:TC3 (C C99 standard), (2007)6.7.5/2],
and it works like alloca() (1.9.2 on page 47) internally.
It’s also possible to use garbage collecting libraries for C.
And there are also libraries supporting smart pointers for C++.

1.26.5 Array of pointers to strings
Here is an example for an array of pointers.

Listing 1.236: Get month name
#include <stdio.h>

const char* month1[]=
{

"January", "February", "March", "April",
"May", "June", "July", "August",
"September", "October", "November", "December"

};

// in 0..11 range
const char* get_month1 (int month)
{

return month1[month];
};

x64

Listing 1.237: Optimizing MSVC 2013 x64
_DATA SEGMENT
month1 DQ FLAT:$SG3122

DQ FLAT:$SG3123
DQ FLAT:$SG3124
DQ FLAT:$SG3125
DQ FLAT:$SG3126
DQ FLAT:$SG3127
DQ FLAT:$SG3128
DQ FLAT:$SG3129
DQ FLAT:$SG3130
DQ FLAT:$SG3131
DQ FLAT:$SG3132
DQ FLAT:$SG3133

$SG3122 DB 'January', 00H
$SG3123 DB 'February', 00H
$SG3124 DB 'March', 00H
$SG3125 DB 'April', 00H
$SG3126 DB 'May', 00H
$SG3127 DB 'June', 00H

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

355
$SG3128 DB 'July', 00H
$SG3129 DB 'August', 00H
$SG3130 DB 'September', 00H
$SG3156 DB '%s', 0aH, 00H
$SG3131 DB 'October', 00H
$SG3132 DB 'November', 00H
$SG3133 DB 'December', 00H
_DATA ENDS

month$ = 8
get_month1 PROC

movsxd rax, ecx
lea rcx, OFFSET FLAT:month1
mov rax, QWORD PTR [rcx+rax*8]
ret 0

get_month1 ENDP

The code is very simple:
• The first MOVSXD instruction copies a 32-bit value from ECX (where month argu-
ment is passed) to RAX with sign-extension (because the month argument is of
type int).
The reason for the sign extension is that this 32-bit value is to be used in calcu-
lations with other 64-bit values.
Hence, it has to be promoted to 64-bit130.

• Then the address of the pointer table is loaded into RCX.
• Finally, the input value (month) is multiplied by 8 and added to the address.
Indeed: we are in a 64-bit environment and all address (or pointers) require
exactly 64 bits (or 8 bytes) for storage. Hence, each table element is 8 bytes
wide. And that’s why to pick a specific element,month∗8 bytes has to be skipped
from the start. That’s what MOV does. In addition, this instruction also loads the
element at this address. For 1, an element would be a pointer to a string that
contains “February”, etc.

Optimizing GCC 4.9 can do the job even better 131:

Listing 1.238: Optimizing GCC 4.9 x64
movsx rdi, edi
mov rax, QWORD PTR month1[0+rdi*8]
ret

130It is somewhat weird, but negative array index could be passed here asmonth (negative array indices
will have been explained later: 3.22 on page 752). And if this happens, the negative input value of int
type is sign-extended correctly and the corresponding element before table is picked. It is not going to
work correctly without sign-extension.
131“0+” was left in the listing because GCC assembler output is not tidy enough to eliminate it. It’s
displacement, and it’s zero here.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

356
32-bit MSVC

Let’s also compile it in the 32-bit MSVC compiler:

Listing 1.239: Optimizing MSVC 2013 x86
_month$ = 8
_get_month1 PROC

mov eax, DWORD PTR _month$[esp-4]
mov eax, DWORD PTR _month1[eax*4]
ret 0

_get_month1 ENDP

The input value does not need to be extended to 64-bit value, so it is used as is.
And it’s multiplied by 4, because the table elements are 32-bit (or 4 bytes) wide.

32-bit ARM

ARM in ARM mode

Listing 1.240: Optimizing Keil 6/2013 (ARM mode)
get_month1 PROC

LDR r1,|L0.100|
LDR r0,[r1,r0,LSL #2]
BX lr
ENDP

|L0.100|
DCD ||.data||

DCB "January",0
DCB "February",0
DCB "March",0
DCB "April",0
DCB "May",0
DCB "June",0
DCB "July",0
DCB "August",0
DCB "September",0
DCB "October",0
DCB "November",0
DCB "December",0

AREA ||.data||, DATA, ALIGN=2
month1

DCD ||.conststring||
DCD ||.conststring||+0x8
DCD ||.conststring||+0x11
DCD ||.conststring||+0x17
DCD ||.conststring||+0x1d
DCD ||.conststring||+0x21

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

357
DCD ||.conststring||+0x26
DCD ||.conststring||+0x2b
DCD ||.conststring||+0x32
DCD ||.conststring||+0x3c
DCD ||.conststring||+0x44
DCD ||.conststring||+0x4d

The address of the table is loaded in R1.
All the rest is done using just one LDR instruction.
Then input value month is shifted left by 2 (which is the same as multiplying by 4),
then added to R1 (where the address of the table is) and then a table element is
loaded from this address.
The 32-bit table element is loaded into R0 from the table.

ARM in Thumb mode

The code is mostly the same, but less dense, because the LSL suffix cannot be spec-
ified in the LDR instruction here:
get_month1 PROC

LSLS r0,r0,#2
LDR r1,|L0.64|
LDR r0,[r1,r0]
BX lr
ENDP

ARM64

Listing 1.241: Optimizing GCC 4.9 ARM64
get_month1:

adrp x1, .LANCHOR0
add x1, x1, :lo12:.LANCHOR0
ldr x0, [x1,w0,sxtw 3]
ret

.LANCHOR0 = . + 0
.type month1, %object
.size month1, 96

month1:
.xword .LC2
.xword .LC3
.xword .LC4
.xword .LC5
.xword .LC6
.xword .LC7
.xword .LC8
.xword .LC9
.xword .LC10

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

358
.xword .LC11
.xword .LC12
.xword .LC13

.LC2:
.string "January"

.LC3:
.string "February"

.LC4:
.string "March"

.LC5:
.string "April"

.LC6:
.string "May"

.LC7:
.string "June"

.LC8:
.string "July"

.LC9:
.string "August"

.LC10:
.string "September"

.LC11:
.string "October"

.LC12:
.string "November"

.LC13:
.string "December"

The address of the table is loaded in X1 using ADRP/ADD pair.
Then corresponding element is picked using just one LDR, which takes W0 (the reg-
ister where input argument month is), shifts it 3 bits to the left (which is the same as
multiplying by 8), sign-extends it (this is what “sxtw” suffix implies) and adds to X0.
Then the 64-bit value is loaded from the table into X0.

MIPS

Listing 1.242: Optimizing GCC 4.4.5 (IDA)
get_month1:
; load address of table into $v0:

la $v0, month1
; take input value and multiply it by 4:

sll $a0, 2
; sum up address of table and multiplied value:

addu $a0, $v0
; load table element at this address into $v0:

lw $v0, 0($a0)
; return

jr $ra
or $at, $zero ; branch delay slot, NOP

.data # .data.rel.local

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

359
.globl month1

month1: .word aJanuary # "January"
.word aFebruary # "February"
.word aMarch # "March"
.word aApril # "April"
.word aMay # "May"
.word aJune # "June"
.word aJuly # "July"
.word aAugust # "August"
.word aSeptember # "September"
.word aOctober # "October"
.word aNovember # "November"
.word aDecember # "December"

.data # .rodata.str1.4
aJanuary: .ascii "January"<0>
aFebruary: .ascii "February"<0>
aMarch: .ascii "March"<0>
aApril: .ascii "April"<0>
aMay: .ascii "May"<0>
aJune: .ascii "June"<0>
aJuly: .ascii "July"<0>
aAugust: .ascii "August"<0>
aSeptember: .ascii "September"<0>
aOctober: .ascii "October"<0>
aNovember: .ascii "November"<0>
aDecember: .ascii "December"<0>

Array overflow

Our function accepts values in the range of 0..11, but what if 12 is passed? There is
no element in table at this place.
So the function will load some value which happens to be there, and return it.
Soon after, some other function can try to get a text string from this address and
may crash.
Let’s compile the example in MSVC for win64 and open it in IDA to see what the
linker has placed after the table:

Listing 1.243: Executable file in IDA
off_140011000 dq offset aJanuary_1 ; DATA XREF: .text:0000000140001003

; "January"
dq offset aFebruary_1 ; "February"
dq offset aMarch_1 ; "March"
dq offset aApril_1 ; "April"
dq offset aMay_1 ; "May"
dq offset aJune_1 ; "June"
dq offset aJuly_1 ; "July"
dq offset aAugust_1 ; "August"
dq offset aSeptember_1 ; "September"
dq offset aOctober_1 ; "October"

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

360
dq offset aNovember_1 ; "November"
dq offset aDecember_1 ; "December"

aJanuary_1 db 'January',0 ; DATA XREF: sub_140001020+4
; .data:off_140011000

aFebruary_1 db 'February',0 ; DATA XREF: .data:0000000140011008
align 4

aMarch_1 db 'March',0 ; DATA XREF: .data:0000000140011010
align 4

aApril_1 db 'April',0 ; DATA XREF: .data:0000000140011018

Month names are came right after.
Our program is tiny, so there isn’t much data to pack in the data segment, so it just
the month names. But it has to be noted that there might be really anything that
linker has decided to put by chance.
So what if 12 is passed to the function? The 13th element will be returned.
Let’s see how the CPU treats the bytes there as a 64-bit value:

Listing 1.244: Executable file in IDA
off_140011000 dq offset qword_140011060

; DATA XREF: .text:0000000140001003
dq offset aFebruary_1 ; "February"
dq offset aMarch_1 ; "March"
dq offset aApril_1 ; "April"
dq offset aMay_1 ; "May"
dq offset aJune_1 ; "June"
dq offset aJuly_1 ; "July"
dq offset aAugust_1 ; "August"
dq offset aSeptember_1 ; "September"
dq offset aOctober_1 ; "October"
dq offset aNovember_1 ; "November"
dq offset aDecember_1 ; "December"

qword_140011060 dq 797261756E614Ah ; DATA XREF: sub_140001020+4
; .data:off_140011000

aFebruary_1 db 'February',0 ; DATA XREF: .data:0000000140011008
align 4

aMarch_1 db 'March',0 ; DATA XREF: .data:0000000140011010

And this is 0x797261756E614A.
Soon after, some other function (presumably, one that processes strings) may try to
read bytes at this address, expecting a C-string there.
Most likely it is about to crash, because this value doesn’t look like a valid address.

Array overflow protection

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

361
If something can go wrong, it will

Murphy’s Law

It’s a bit naïve to expect that every programmer who use your function or library will
never pass an argument larger than 11.
There exists the philosophy that says “fail early and fail loudly” or “fail-fast”, which
teaches to report problems as early as possible and halt.
One such method in C/C++ is assertions.
We can modify our program to fail if an incorrect value is passed:

Listing 1.245: assert() added
const char* get_month1_checked (int month)
{

assert (month<12);
return month1[month];

};

The assertion macro checks for valid values at every function start and fails if the
expression is false.

Listing 1.246: Optimizing MSVC 2013 x64
$SG3143 DB 'm', 00H, 'o', 00H, 'n', 00H, 't', 00H, 'h', 00H, '.', 00H

DB 'c', 00H, 00H, 00H
$SG3144 DB 'm', 00H, 'o', 00H, 'n', 00H, 't', 00H, 'h', 00H, '<', 00H

DB '1', 00H, '2', 00H, 00H, 00H

month$ = 48
get_month1_checked PROC
$LN5:

push rbx
sub rsp, 32
movsxd rbx, ecx
cmp ebx, 12
jl SHORT $LN3@get_month1
lea rdx, OFFSET FLAT:$SG3143
lea rcx, OFFSET FLAT:$SG3144
mov r8d, 29
call _wassert

$LN3@get_month1:
lea rcx, OFFSET FLAT:month1
mov rax, QWORD PTR [rcx+rbx*8]
add rsp, 32
pop rbx
ret 0

get_month1_checked ENDP

In fact, assert() is not a function, but macro. It checks for a condition, then passes
also the line number and file name to another function which reports this information
to the user.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

362
Here we see that both file name and condition are encoded in UTF-16. The line
number is also passed (it’s 29).
This mechanism is probably the same in all compilers. Here is what GCC does:

Listing 1.247: Optimizing GCC 4.9 x64
.LC1:

.string "month.c"
.LC2:

.string "month<12"

get_month1_checked:
cmp edi, 11
jg .L6
movsx rdi, edi
mov rax, QWORD PTR month1[0+rdi*8]
ret

.L6:
push rax
mov ecx, OFFSET FLAT:__PRETTY_FUNCTION__.2423
mov edx, 29
mov esi, OFFSET FLAT:.LC1
mov edi, OFFSET FLAT:.LC2
call __assert_fail

__PRETTY_FUNCTION__.2423:
.string "get_month1_checked"

So the macro in GCC also passes the function name for convenience.
Nothing is really free, and this is true for the sanitizing checks as well.
They make your program slower, especially if the assert() macros used in small time-
critical functions.
So MSVC, for example, leaves the checks in debug builds, but in release builds they
all disappear.
Microsoft Windows NT kernels come in “checked” and “free” builds 132.
The first has validation checks (hence, “checked”), the second one doesn’t (hence,
“free” of checks).
Of course, “checked” kernel works slower because of all these checks, so it is usually
used only in debug sessions.

Accessing specific character

An array of pointers to strings can be accessed like this:
#include <stdio.h>

const char* month[]=

132msdn.microsoft.com/en-us/library/windows/hardware/ff543450(v=vs.85).aspx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/windows/hardware/ff543450(v=vs.85).aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

363
{

"January", "February", "March", "April",
"May", "June", "July", "August",
"September", "October", "November", "December"

};

int main()
{

// 4th month, 5th character:
printf ("%c\n", month[3][4]);

};

…sincemonth[3] expression has a const char* type. And then, 5th character is taken
from that expression by adding 4 bytes to its address.
By the way, arguments list passed to main() function has the same data type:
#include <stdio.h>

int main(int argc, char *argv[])
{

printf ("3rd argument, 2nd character: %c\n", argv[3][1]);
};

It’s very important to understand, that, despite similar syntax, this is different from
two-dimensional arrays, which we will consider later.
Another important thing to notice: strings to be addressed must be encoded in a
system, where each character occupies single byte, like ASCII133 and extended ASCII.
UTF-8 wouldn’t work here.

1.26.6 Multidimensional arrays
Internally, a multidimensional array is essentially the same thing as a linear array.
Since the computer memory is linear, it is an one-dimensional array. For conve-
nience, this multi-dimensional array can be easily represented as one-dimensional.
For example, this is how the elements of the 3x4 array are placed in one-dimensional
array of 12 cells:
133American Standard Code for Information Interchange

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

364
Offset in memory array element
0 [0][0]
1 [0][1]
2 [0][2]
3 [0][3]
4 [1][0]
5 [1][1]
6 [1][2]
7 [1][3]
8 [2][0]
9 [2][1]
10 [2][2]
11 [2][3]

Table 1.3: Two-dimensional array represented in memory as one-dimensional

Here is how each cell of 3*4 array are placed in memory:

0 1 2 3
4 5 6 7
8 9 10 11

Table 1.4: Memory addresses of each cell of two-dimensional array

So, in order to calculate the address of the element we need, we first multiply the
first index by 4 (array width) and then add the second index. That’s called row-major
order, and this method of array and matrix representation is used in at least C/C++
and Python. The term row-major order in plain English language means: “first, write
the elements of the first row, then the second row …and finally the elements of the
last row”.
Another method for representation is called column-major order (the array indices
are used in reverse order) and it is used at least in Fortran, MATLAB and R. column-
major order term in plain English language means: “first, write the elements of the
first column, then the second column …and finally the elements of the last column”.
Which method is better?
In general, in terms of performance and cache memory, the best scheme for data
organization is the one, in which the elements are accessed sequentially.
So if your function accesses data per row, row-major order is better, and vice versa.

Two-dimensional array example

We are going to work with an array of type char, which implies that each element
requires only one byte in memory.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

365
Row filling example

Let’s fill the second row with these values 0..3:

Listing 1.248: Row filling example
#include <stdio.h>

char a[3][4];

int main()
{

int x, y;

// clear array
for (x=0; x<3; x++)

for (y=0; y<4; y++)
a[x][y]=0;

// fill second row by 0..3:
for (y=0; y<4; y++)

a[1][y]=y;
};

All three rows are marked with red. We see that second row now has values 0, 1, 2
and 3:

Figure 1.92: OllyDbg: array is filled

Column filling example

Let’s fill the third column with values: 0..2:

Listing 1.249: Column filling example
#include <stdio.h>

char a[3][4];

int main()
{

int x, y;

// clear array
for (x=0; x<3; x++)

for (y=0; y<4; y++)
a[x][y]=0;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

366

// fill third column by 0..2:
for (x=0; x<3; x++)

a[x][2]=x;
};

The three rows are also marked in red here.
We see that in each row, at third position these values are written: 0, 1 and 2.

Figure 1.93: OllyDbg: array is filled

Access two-dimensional array as one-dimensional

We can be easily assured that it’s possible to access a two-dimensional array as
one-dimensional array in at least two ways:
#include <stdio.h>

char a[3][4];

char get_by_coordinates1 (char array[3][4], int a, int b)
{

return array[a][b];
};

char get_by_coordinates2 (char *array, int a, int b)
{

// treat input array as one-dimensional
// 4 is array width here
return array[a*4+b];

};

char get_by_coordinates3 (char *array, int a, int b)
{

// treat input array as pointer,
// calculate address, get value at it
// 4 is array width here
return *(array+a*4+b);

};

int main()
{

a[2][3]=123;
printf ("%d\n", get_by_coordinates1(a, 2, 3));
printf ("%d\n", get_by_coordinates2(a, 2, 3));
printf ("%d\n", get_by_coordinates3(a, 2, 3));

};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

367
Compile134 and run it: it shows correct values.
What MSVC 2013 did is fascinating, all three routines are just the same!

Listing 1.250: Optimizing MSVC 2013 x64
array$ = 8
a$ = 16
b$ = 24
get_by_coordinates3 PROC
; RCX=address of array
; RDX=a
; R8=b

movsxd rax, r8d
; EAX=b

movsxd r9, edx
; R9=a

add rax, rcx
; RAX=b+address of array

movzx eax, BYTE PTR [rax+r9*4]
; AL=load byte at address RAX+R9*4=b+address of array+a*4=address of

array+a*4+b
ret 0

get_by_coordinates3 ENDP

array$ = 8
a$ = 16
b$ = 24
get_by_coordinates2 PROC

movsxd rax, r8d
movsxd r9, edx
add rax, rcx
movzx eax, BYTE PTR [rax+r9*4]
ret 0

get_by_coordinates2 ENDP

array$ = 8
a$ = 16
b$ = 24
get_by_coordinates1 PROC

movsxd rax, r8d
movsxd r9, edx
add rax, rcx
movzx eax, BYTE PTR [rax+r9*4]
ret 0

get_by_coordinates1 ENDP

GCC also generates equivalent routines, but slightly different:

Listing 1.251: Optimizing GCC 4.9 x64
; RDI=address of array
; RSI=a

134This program is to be compiled as a C program, not C++, save it to a file with .c extension to compile
it using MSVC

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

368
; RDX=b

get_by_coordinates1:
; sign-extend input 32-bit int values "a" and "b" to 64-bit ones

movsx rsi, esi
movsx rdx, edx
lea rax, [rdi+rsi*4]

; RAX=RDI+RSI*4=address of array+a*4
movzx eax, BYTE PTR [rax+rdx]

; AL=load byte at address RAX+RDX=address of array+a*4+b
ret

get_by_coordinates2:
lea eax, [rdx+rsi*4]

; RAX=RDX+RSI*4=b+a*4
cdqe
movzx eax, BYTE PTR [rdi+rax]

; AL=load byte at address RDI+RAX=address of array+b+a*4
ret

get_by_coordinates3:
sal esi, 2

; ESI=a<<2=a*4
; sign-extend input 32-bit int values "a*4" and "b" to 64-bit ones

movsx rdx, edx
movsx rsi, esi
add rdi, rsi

; RDI=RDI+RSI=address of array+a*4
movzx eax, BYTE PTR [rdi+rdx]

; AL=load byte at address RDI+RDX=address of array+a*4+b
ret

Three-dimensional array example

It’s the same for multidimensional arrays.
Now we are going to work with an array of type int: each element requires 4 bytes
in memory.
Let’s see:

Listing 1.252: simple example
#include <stdio.h>

int a[10][20][30];

void insert(int x, int y, int z, int value)
{

a[x][y][z]=value;
};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

369
x86

We get (MSVC 2010):

Listing 1.253: MSVC 2010
_DATA SEGMENT
COMM _a:DWORD:01770H
_DATA ENDS
PUBLIC _insert
_TEXT SEGMENT
_x$ = 8 ; size = 4
_y$ = 12 ; size = 4
_z$ = 16 ; size = 4
_value$ = 20 ; size = 4
_insert PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _x$[ebp]
imul eax, 2400 ; eax=600*4*x
mov ecx, DWORD PTR _y$[ebp]
imul ecx, 120 ; ecx=30*4*y
lea edx, DWORD PTR _a[eax+ecx] ; edx=a + 600*4*x + 30*4*y
mov eax, DWORD PTR _z$[ebp]
mov ecx, DWORD PTR _value$[ebp]
mov DWORD PTR [edx+eax*4], ecx ; *(edx+z*4)=value
pop ebp
ret 0

_insert ENDP
_TEXT ENDS

Nothing special. For index calculation, three input arguments are used in the formula
address = 600 ⋅ 4 ⋅ x+ 30 ⋅ 4 ⋅ y + 4z, to represent the array as multidimensional. Do not
forget that the int type is 32-bit (4 bytes), so all coefficients must be multiplied by
4.

Listing 1.254: GCC 4.4.1
public insert

insert proc near

x = dword ptr 8
y = dword ptr 0Ch
z = dword ptr 10h
value = dword ptr 14h

push ebp
mov ebp, esp
push ebx
mov ebx, [ebp+x]
mov eax, [ebp+y]
mov ecx, [ebp+z]
lea edx, [eax+eax] ; edx=y*2
mov eax, edx ; eax=y*2

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

370
shl eax, 4 ; eax=(y*2)<<4 = y*2*16 = y*32
sub eax, edx ; eax=y*32 - y*2=y*30
imul edx, ebx, 600 ; edx=x*600
add eax, edx ; eax=eax+edx=y*30 + x*600
lea edx, [eax+ecx] ; edx=y*30 + x*600 + z
mov eax, [ebp+value]
mov dword ptr ds:a[edx*4], eax ; *(a+edx*4)=value
pop ebx
pop ebp
retn

insert endp

The GCC compiler does it differently.
For one of the operations in the calculation (30y), GCC produces code without multipli-
cation instructions. This is how it done: (y+y)≪ 4−(y+y) = (2y)≪ 4−2y = 2 ⋅16 ⋅y−2y =
32y − 2y = 30y. Thus, for the 30y calculation, only one addition operation, one bitwise
shift operation and one subtraction operation are used. This works faster.

ARM + Non-optimizing Xcode 4.6.3 (LLVM) (Thumb mode)

Listing 1.255: Non-optimizing Xcode 4.6.3 (LLVM) (Thumb mode)
_insert

value = -0x10
z = -0xC
y = -8
x = -4

; allocate place in local stack for 4 values of int type
SUB SP, SP, #0x10
MOV R9, 0xFC2 ; a
ADD R9, PC
LDR.W R9, [R9] ; get pointer to array
STR R0, [SP,#0x10+x]
STR R1, [SP,#0x10+y]
STR R2, [SP,#0x10+z]
STR R3, [SP,#0x10+value]
LDR R0, [SP,#0x10+value]
LDR R1, [SP,#0x10+z]
LDR R2, [SP,#0x10+y]
LDR R3, [SP,#0x10+x]
MOV R12, 2400
MUL.W R3, R3, R12
ADD R3, R9
MOV R9, 120
MUL.W R2, R2, R9
ADD R2, R3
LSLS R1, R1, #2 ; R1=R1<<2
ADD R1, R2
STR R0, [R1] ; R1 - address of array element

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

371
; deallocate chunk in local stack, allocated for 4 values of int type
ADD SP, SP, #0x10
BX LR

Non-optimizing LLVM saves all variables in local stack, which is redundant.
The address of the array element is calculated by the formula we already saw.

ARM + Optimizing Xcode 4.6.3 (LLVM) (Thumb mode)

Listing 1.256: Optimizing Xcode 4.6.3 (LLVM) (Thumb mode)
_insert
MOVW R9, #0x10FC
MOV.W R12, #2400
MOVT.W R9, #0
RSB.W R1, R1, R1,LSL#4 ; R1 - y. R1=y<<4 - y = y*16 - y = y*15
ADD R9, PC
LDR.W R9, [R9] ; R9 = pointer to an array
MLA.W R0, R0, R12, R9 ; R0 - x, R12 - 2400, R9 - pointer to a. R0=x*2400

+ ptr to a
ADD.W R0, R0, R1,LSL#3 ; R0 = R0+R1<<3 = R0+R1*8 = x*2400 + ptr to a +

y*15*8 =
; ptr to a + y*30*4 + x*600*4

STR.W R3, [R0,R2,LSL#2] ; R2 - z, R3 - value. address=R0+z*4 =
; ptr to a + y*30*4 + x*600*4 + z*4

BX LR

The tricks for replacing multiplication by shift, addition and subtraction which we
already saw are also present here.
Here we also see a new instruction for us: RSB (Reverse Subtract).
It works just as SUB, but it swaps its operands with each other before execution.
Why? SUB and RSB are instructions, to the second operand of which shift coefficient
may be applied: (LSL#4).
But this coefficient can be applied only to second operand.
That’s fine for commutative operations like addition or multiplication (operands may
be swapped there without changing the result).
But subtraction is a non-commutative operation, so RSB exist for these cases.

MIPS

My example is tiny, so the GCC compiler decided to put the a array into the 64KiB
area addressable by the Global Pointer.

Listing 1.257: Optimizing GCC 4.4.5 (IDA)
insert:
; $a0=x

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

372
; $a1=y
; $a2=z
; $a3=value

sll $v0, $a0, 5
; $v0 = $a0<<5 = x*32

sll $a0, 3
; $a0 = $a0<<3 = x*8

addu $a0, $v0
; $a0 = $a0+$v0 = x*8+x*32 = x*40

sll $v1, $a1, 5
; $v1 = $a1<<5 = y*32

sll $v0, $a0, 4
; $v0 = $a0<<4 = x*40*16 = x*640

sll $a1, 1
; $a1 = $a1<<1 = y*2

subu $a1, $v1, $a1
; $a1 = $v1-$a1 = y*32-y*2 = y*30

subu $a0, $v0, $a0
; $a0 = $v0-$a0 = x*640-x*40 = x*600

la $gp, __gnu_local_gp
addu $a0, $a1, $a0

; $a0 = $a1+$a0 = y*30+x*600
addu $a0, $a2

; $a0 = $a0+$a2 = y*30+x*600+z
; load address of table:

lw $v0, (a & 0xFFFF)($gp)
; multiply index by 4 to seek array element:

sll $a0, 2
; sum up multiplied index and table address:

addu $a0, $v0, $a0
; store value into table and return:

jr $ra
sw $a3, 0($a0)

.comm a:0x1770

Getting dimensions of multidimensional array

Any string processing function, if an array of characters passed to it, can’t deduce a
size of the input array. Likewise, if a function processes 2D array, only one dimension
can be deduced.
For example:
int get_element(int array[10][20], int x, int y)
{

return array[x][y];
};

int main()
{

int array[10][20];

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

373
get_element(array, 4, 5);

};

... if compiled (by any compiler) and then decompiled by Hex-Rays:
int get_element(int *array, int x, int y)
{

return array[20 * x + y];
}

There is no way to find a size of the first dimension. If x value passed is too big,
buffer overflow would occur, an element from some random place of memory would
be read.
And 3D array:
int get_element(int array[10][20][30], int x, int y, int z)
{

return array[x][y][z];
};

int main()
{

int array[10][20][30];

get_element(array, 4, 5, 6);
};

Hex-Rays:
int get_element(int *array, int x, int y, int z)
{

return array[600 * x + z + 30 * y];
}

Again, sizes of only two of 3 dimensions can be deduced.

More examples

The computer screen is represented as a 2D array, but the video-buffer is a linear
1D array. We talk about it here: 8.15.2 on page 1155.
Another example in this book is Minesweeper game: it’s field is also two-dimensional
array: 8.4 on page 1021.

1.26.7 Pack of strings as a two-dimensional array
Let’s revisit the function that returns the name of a month: listing.1.236.
As you see, at least one memory load operation is needed to prepare a pointer to
the string that’s the month’s name.
Is it possible to get rid of this memory load operation?

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

374
In fact yes, if you represent the list of strings as a two-dimensional array:
#include <stdio.h>
#include <assert.h>

const char month2[12][10]=
{

{ 'J','a','n','u','a','r','y', 0, 0, 0 },
{ 'F','e','b','r','u','a','r','y', 0, 0 },
{ 'M','a','r','c','h', 0, 0, 0, 0, 0 },
{ 'A','p','r','i','l', 0, 0, 0, 0, 0 },
{ 'M','a','y', 0, 0, 0, 0, 0, 0, 0 },
{ 'J','u','n','e', 0, 0, 0, 0, 0, 0 },
{ 'J','u','l','y', 0, 0, 0, 0, 0, 0 },
{ 'A','u','g','u','s','t', 0, 0, 0, 0 },
{ 'S','e','p','t','e','m','b','e','r', 0 },
{ 'O','c','t','o','b','e','r', 0, 0, 0 },
{ 'N','o','v','e','m','b','e','r', 0, 0 },
{ 'D','e','c','e','m','b','e','r', 0, 0 }

};

// in 0..11 range
const char* get_month2 (int month)
{

return &month2[month][0];
};

Here is what we’ve get:

Listing 1.258: Optimizing MSVC 2013 x64
month2 DB 04aH

DB 061H
DB 06eH
DB 075H
DB 061H
DB 072H
DB 079H
DB 00H
DB 00H
DB 00H

...

get_month2 PROC
; sign-extend input argument and promote to 64-bit value

movsxd rax, ecx
lea rcx, QWORD PTR [rax+rax*4]

; RCX=month+month*4=month*5
lea rax, OFFSET FLAT:month2

; RAX=pointer to table
lea rax, QWORD PTR [rax+rcx*2]

; RAX=pointer to table + RCX*2=pointer to table + month*5*2=pointer to table
+ month*10

ret 0
get_month2 ENDP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

375
There are no memory accesses at all.
All this function does is to calculate a point at which the first character of the name
of the month is: pointer_to_the_table+month ∗ 10.
There are also two LEA instructions, which effectively work as several MUL and MOV
instructions.
The width of the array is 10 bytes.
Indeed, the longest string here—“September”—is 9 bytes, and plus the terminating
zero is 10 bytes.
The rest of the month names are padded by zero bytes, so they all occupy the same
space (10 bytes).
Thus, our function works even faster, because all string start at an address which
can be calculated easily.
Optimizing GCC 4.9 can do it even shorter:

Listing 1.259: Optimizing GCC 4.9 x64
movsx rdi, edi
lea rax, [rdi+rdi*4]
lea rax, month2[rax+rax]
ret

LEA is also used here for multiplication by 10.
Non-optimizing compilers do multiplication differently.

Listing 1.260: Non-optimizing GCC 4.9 x64
get_month2:

push rbp
mov rbp, rsp
mov DWORD PTR [rbp-4], edi
mov eax, DWORD PTR [rbp-4]
movsx rdx, eax

; RDX = sign-extended input value
mov rax, rdx

; RAX = month
sal rax, 2

; RAX = month<<2 = month*4
add rax, rdx

; RAX = RAX+RDX = month*4+month = month*5
add rax, rax

; RAX = RAX*2 = month*5*2 = month*10
add rax, OFFSET FLAT:month2

; RAX = month*10 + pointer to the table
pop rbp
ret

Non-optimizing MSVC just uses IMUL instruction:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

376
Listing 1.261: Non-optimizing MSVC 2013 x64

month$ = 8
get_month2 PROC

mov DWORD PTR [rsp+8], ecx
movsxd rax, DWORD PTR month$[rsp]

; RAX = sign-extended input value into 64-bit one
imul rax, rax, 10

; RAX = RAX*10
lea rcx, OFFSET FLAT:month2

; RCX = pointer to the table
add rcx, rax

; RCX = RCX+RAX = pointer to the table+month*10
mov rax, rcx

; RAX = pointer to the table+month*10
mov ecx, 1

; RCX = 1
imul rcx, rcx, 0

; RCX = 1*0 = 0
add rax, rcx

; RAX = pointer to the table+month*10 + 0 = pointer to the table+month*10
ret 0

get_month2 ENDP

But one thing is weird here: why add multiplication by zero and adding zero to the
final result?
This looks like a compiler code generator quirk, which wasn’t caught by the com-
piler’s tests (the resulting code works correctly, after all). We intentionally consider
such pieces of code so the reader would understand, that sometimes one shouldn’t
puzzle over such compiler artifacts.

32-bit ARM

Optimizing Keil for Thumb mode uses the multiplication instruction MULS:

Listing 1.262: Optimizing Keil 6/2013 (Thumb mode)
; R0 = month

MOVS r1,#0xa
; R1 = 10

MULS r0,r1,r0
; R0 = R1*R0 = 10*month

LDR r1,|L0.68|
; R1 = pointer to the table

ADDS r0,r0,r1
; R0 = R0+R1 = 10*month + pointer to the table

BX lr

Optimizing Keil for ARM mode uses add and shift operations:

Listing 1.263: Optimizing Keil 6/2013 (ARM mode)
; R0 = month

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

377
LDR r1,|L0.104|

; R1 = pointer to the table
ADD r0,r0,r0,LSL #2

; R0 = R0+R0<<2 = R0+R0*4 = month*5
ADD r0,r1,r0,LSL #1

; R0 = R1+R0<<2 = pointer to the table + month*5*2 = pointer to the table +
month*10

BX lr

ARM64

Listing 1.264: Optimizing GCC 4.9 ARM64
; W0 = month

sxtw x0, w0
; X0 = sign-extended input value

adrp x1, .LANCHOR1
add x1, x1, :lo12:.LANCHOR1

; X1 = pointer to the table
add x0, x0, x0, lsl 2

; X0 = X0+X0<<2 = X0+X0*4 = X0*5
add x0, x1, x0, lsl 1

; X0 = X1+X0<<1 = X1+X0*2 = pointer to the table + X0*10
ret

SXTW is used for sign-extension and promoting input 32-bit value into a 64-bit one
and storing it in X0.
ADRP/ADD pair is used for loading the address of the table.
The ADD instructions also has a LSL suffix, which helps with multiplications.

MIPS

Listing 1.265: Optimizing GCC 4.4.5 (IDA)
.globl get_month2

get_month2:
; $a0=month

sll $v0, $a0, 3
; $v0 = $a0<<3 = month*8

sll $a0, 1
; $a0 = $a0<<1 = month*2

addu $a0, $v0
; $a0 = month*2+month*8 = month*10
; load address of the table:

la $v0, month2
; sum up table address and index we calculated and return:

jr $ra
addu $v0, $a0

month2: .ascii "January"<0>
.byte 0, 0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

378
aFebruary: .ascii "February"<0>

.byte 0
aMarch: .ascii "March"<0>

.byte 0, 0, 0, 0
aApril: .ascii "April"<0>

.byte 0, 0, 0, 0
aMay: .ascii "May"<0>

.byte 0, 0, 0, 0, 0, 0
aJune: .ascii "June"<0>

.byte 0, 0, 0, 0, 0
aJuly: .ascii "July"<0>

.byte 0, 0, 0, 0, 0
aAugust: .ascii "August"<0>

.byte 0, 0, 0
aSeptember: .ascii "September"<0>
aOctober: .ascii "October"<0>

.byte 0, 0
aNovember: .ascii "November"<0>

.byte 0
aDecember: .ascii "December"<0>

.byte 0, 0, 0, 0, 0, 0, 0, 0, 0

Conclusion

This is a bit old-school technique to store text strings. You may find a lot of it in
Oracle RDBMS, for example. It’s hard to say if it’s worth doing on modern computers.
Nevertheless, it is a good example of arrays, so it was added to this book.

1.26.8 Conclusion
An array is a pack of values in memory located adjacently.
It’s true for any element type, including structures.
Access to a specific array element is just a calculation of its address.
So, a pointer to an array and address of a first element—is the same thing. This is
why ptr[0] and *ptr expressions are equivalent in C/C++. It’s interesting to note
that Hex-Rays often replaces the first by the second. It does so when it have no
idea that it works with pointer to the whole array, and thinks that this is a pointer to
single variable.

1.26.9 Exercises
• http://challenges.re/62

• http://challenges.re/63

• http://challenges.re/64

• http://challenges.re/65

• http://challenges.re/66

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://challenges.re/62
http://challenges.re/63
http://challenges.re/64
http://challenges.re/65
http://challenges.re/66
https://yurichev.com/contact.html
https://yurichev.com/contact.html

379
1.27 Example: a bug in Angband
An ancient rogue-like game from 1990’s 135 had a nice bug in the spirit of the “Road-
side Picnic”136 by Strugatsky brothers or “The Lost Room” TV series137:

The frog-knows version was abundant of bugs. The funniest of
them led to a cunning technique of cheating the game, that was called
”mushroom farming”. If there were more than a certain number (about
five hundred) of objects in the labyrinth, the game would break, and
many old things turned into objects thrown to the floor. Accordingly,
the player went into the maze, he made such longitudinal grooves
there (with a special spell), and walked along the grooves, creating
mushrooms with another special spell. When there were a lot of mush-
rooms, the player put and took, put and took some useful item, and
mushrooms one by one turned into this subject. After that, the player
returned with hundreds of copies of the useful item.

(Misha “tiphareth” Verbitsky, http://imperium.lenin.ru/CEBEP/arc/3/lightmusic/
light.htm)
And some information from usenet:
From: be...@uswest.com (George Bell)
Subject: [Angband] Multiple artifact copies found (bug?)
Date: Fri, 23 Jul 1993 15:55:08 GMT

Up to 2000 ft I found only 4 artifacts, now my house is littered with the
suckers (FYI, most I've gotten from killing nasties, like Dracoliches and ⤦

Ç the
like). Something really weird is happening now, as I found multiple
copies of the same artifact! My half-elf ranger is down at 2400 ft on one
level which is particularly nasty. There is a graveyard plus monsters
surrounded by permanent rock and 2 or 3 other special monster rooms! I did
so much slashing with my favorite weapon, Crisdurian, that I filled several
rooms nearly to the brim with treasure (as usual, mostly junk).

Then, when I found a way into the big vault, I noticed some of the treasure
had already been identified (in fact it looked strangely familiar!). Then ⤦

Ç I
found *two* Short Swords named Sting (1d6) (+7,+8), and I just ran across a
third copy! I have seen multiple copies of Gurthang on this level as well.
Is there some limit on the number of items per level which I have exceeded?
This sounds reasonable as all multiple copies I have seen come from this ⤦

Ç level.

I'm playing PC angband. Anybody else had this problem?

-George Bell

135https://en.wikipedia.org/wiki/Angband_(video_game), http://rephial.org/
136https://en.wikipedia.org/wiki/Roadside_Picnic
137https://en.wikipedia.org/wiki/The_Lost_Room

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://imperium.lenin.ru/CEBEP/arc/3/lightmusic/light.htm
http://imperium.lenin.ru/CEBEP/arc/3/lightmusic/light.htm
https://en.wikipedia.org/wiki/Angband_(video_game)
http://rephial.org/
https://en.wikipedia.org/wiki/Roadside_Picnic
https://en.wikipedia.org/wiki/The_Lost_Room
https://yurichev.com/contact.html
https://yurichev.com/contact.html

380

Help! I need a Rod of Restore Life Levels, if there is such a thing. ⤦
Ç These

Graveyards are nasty (Black Reavers and some speed 2 wraith in particular).

(https://groups.google.com/forum/#!original/rec.games.moria/jItmfrdGyL8/
8csctQqA7PQJ)
From: Ceri <cm...@andrew.cmu.edu>
Subject: Re: [Angband] Multiple artifact copies found (bug?)
Date: Fri, 23 Jul 1993 23:32:20 -0400

welcome to the mush bug. if there are more than 256 items
on the floor, things start duplicating. learn to harness
this power and you will win shortly :>

--Rick

(google groups)
From: nwe...@soda.berkeley.edu (Nicholas C. Weaver)
Subject: Re: [Angband] Multiple artifact copies found (bug?)
Date: 24 Jul 1993 18:18:05 GMT

In article <74348474...@unix1.andrew.cmu.edu> Ceri <cm...@andrew.cmu.edu> ⤦
Ç writes:

>welcome to the mush bug. if there are more than 256 items
>on the floor, things start duplicating. learn to harness
>this power and you will win shortly :>
>
>--Rick

QUestion on this. Is it only the first 256 items which get
duplicated? What about the original items? Etc ETc ETc...

Oh, for those who like to know about bugs, though, the -n option
(start new character) has the following behavior:

(this is in version 2.4.Frog.knows on unix)

If you hit controll-p, you keep your old stats.

YOu loose all record of artifacts founds and named monsters killed.

YOu loose all items you are carrying (they get turned into error in
objid()s).

You loose your gold.

You KEEP all the stuff in your house.

If you kill something, and then quaff a potion of restore life

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://groups.google.com/forum/#!original/rec.games.moria/jItmfrdGyL8/8csctQqA7PQJ
https://groups.google.com/forum/#!original/rec.games.moria/jItmfrdGyL8/8csctQqA7PQJ
https://groups.google.com/forum/#!search/angband$202.4$20bug$20multiplying$20items/rec.games.moria/jItmfrdGyL8/FoQeiccewHAJ
https://yurichev.com/contact.html
https://yurichev.com/contact.html

381
levels, you are back up to where you were before in EXPERIENCE POINTS!!

Gaining spells will not work right after this, unless you have a
gain int item (for spellcasters) or gain wis item (for priests/palidans), ⤦

Ç in
which case after performing the above, then take the item back on and off,
you will be able to learn spells normally again.

This can be exploited, if you are a REAL H0ZER (like me), into
getting multiple artifacts early on. Just get to a level where you can
pound wormtongue into the ground, kill him, go up, drop your stuff in your
house, buy a few potions of restore exp and high value spellbooks with your
leftover gold, angband -n yourself back to what you were before, and repeat
the process. Yes, you CAN kill wormtongue multiple times. :)

This also allows the creation of a human rogue with dunedain ⤦
Ç warrior

starting stats.

Of course, such practices are evil, vile, and disgusting. I take ⤦
Ç no

liability for the results of spreading this information. Yeah, it's ⤦
Ç another

bug to go onto the pile.
--
Nicholas C. Weaver perpetual ensign guppy nwe...@soda.berkeley.⤦

Ç edu
It is a tale, told by an idiot, full of sound and fury, .signifying ⤦
Ç nothing.

Since C evolved out of B, and a C+ is close to a B,
does that mean that C++ is a devolution of the language?

(https://groups.google.com/forum/#!original/rec.games.moria/jItmfrdGyL8/
FoQeiccewHAJ)
The whole thread.
The author of these lines has found the version with the bug (2.4 fk) 138, and we can
clearly see how the global arrays are declared:
/* Number of dungeon objects */
#define MAX_DUNGEON_OBJ 423

...

int16 sorted_objects[MAX_DUNGEON_OBJ];

/* Identified objects flags */
int8u object_ident[OBJECT_IDENT_SIZE];
int16 t_level[MAX_OBJ_LEVEL+1];
inven_type t_list[MAX_TALLOC];

138http://rephial.org/release/2.4.fk, https://yurichev.com/mirrors/angband-2.4.fk.tar

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://groups.google.com/forum/#!original/rec.games.moria/jItmfrdGyL8/FoQeiccewHAJ
https://groups.google.com/forum/#!original/rec.games.moria/jItmfrdGyL8/FoQeiccewHAJ
https://groups.google.com/forum/#!search/angband$202.4$20bug$20multiplying$20items/rec.games.moria/jItmfrdGyL8/FoQeiccewHAJ
http://rephial.org/release/2.4.fk
https://yurichev.com/mirrors/angband-2.4.fk.tar
https://yurichev.com/contact.html
https://yurichev.com/contact.html

382
inven_type inventory[INVEN_ARRAY_SIZE];

Perhaps this is a reason. The MAX_DUNGEON_OBJ constant is too small. Perhaps, au-
thors should use linked lists or other data structures, which are unlimited by size.
But arrays are simpler to use.
Another example of buffer overflow over globally defined arrays: 3.31 on page 813.

1.28 Manipulating specific bit(s)
A lot of functions define their input arguments as flags in bit fields.
Of course, they could be substituted by a set of bool-typed variables, but it is not
frugally.

1.28.1 Specific bit checking
x86

Win32 API example:
HANDLE fh;

fh=CreateFile ("file", GENERIC_WRITE | GENERIC_READ, ⤦
Ç FILE_SHARE_READ, NULL, OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

We get (MSVC 2010):

Listing 1.266: MSVC 2010
push 0
push 128 ; 00000080H
push 4
push 0
push 1
push -1073741824 ; c0000000H
push OFFSET $SG78813
call DWORD PTR __imp__CreateFileA@28
mov DWORD PTR _fh$[ebp], eax

Let’s take a look in WinNT.h:

Listing 1.267: WinNT.h
#define GENERIC_READ (0x80000000L)
#define GENERIC_WRITE (0x40000000L)
#define GENERIC_EXECUTE (0x20000000L)
#define GENERIC_ALL (0x10000000L)

Everything is clear, GENERIC_READ | GENERIC_WRITE = 0x80000000 | 0x40000000
= 0xC0000000, and that value is used as the second argument for the CreateFile()139function.
139msdn.microsoft.com/en-us/library/aa363858(VS.85).aspx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/aa363858(VS.85).aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

383
How would CreateFile() check these flags?
If we look in KERNEL32.DLL in Windows XP SP3 x86, we’ll find this fragment of code
in CreateFileW:

Listing 1.268: KERNEL32.DLL (Windows XP SP3 x86)
.text:7C83D429 test byte ptr [ebp+dwDesiredAccess+3], 40h
.text:7C83D42D mov [ebp+var_8], 1
.text:7C83D434 jz short loc_7C83D417
.text:7C83D436 jmp loc_7C810817

Here we see the TEST instruction, however it doesn’t take the whole second argu-
ment,
but only the most significant byte (ebp+dwDesiredAccess+3) and checks it for flag
0x40 (which implies the GENERIC_WRITE flag here).
TEST is basically the same instruction as AND, but without saving the result (recall
the fact CMP is merely the same as SUB, but without saving the result (1.12.4 on
page 113)).
The logic of this code fragment is as follows:
if ((dwDesiredAccess&0x40000000) == 0) goto loc_7C83D417

If AND instruction leaves this bit, the ZF flag is to be cleared and the JZ conditional
jump is not to be triggered. The conditional jump is triggered only if the 0x40000000
bit is absent in dwDesiredAccess variable —then the result of AND is 0, ZF is to be
set and the conditional jump is to be triggered.
Let’s try GCC 4.4.1 and Linux:
#include <stdio.h>
#include <fcntl.h>

void main()
{

int handle;

handle=open ("file", O_RDWR | O_CREAT);
};

We get:

Listing 1.269: GCC 4.4.1
public main

main proc near

var_20 = dword ptr -20h
var_1C = dword ptr -1Ch
var_4 = dword ptr -4

push ebp
mov ebp, esp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

384
and esp, 0FFFFFFF0h
sub esp, 20h
mov [esp+20h+var_1C], 42h
mov [esp+20h+var_20], offset aFile ; "file"
call _open
mov [esp+20h+var_4], eax
leave
retn

main endp

If we take a look in the open() function in the libc.so.6 library, it is only a syscall:

Listing 1.270: open() (libc.so.6)
.text:000BE69B mov edx, [esp+4+mode] ; mode
.text:000BE69F mov ecx, [esp+4+flags] ; flags
.text:000BE6A3 mov ebx, [esp+4+filename] ; filename
.text:000BE6A7 mov eax, 5
.text:000BE6AC int 80h ; LINUX - sys_open

So, the bit fields for open() are apparently checked somewhere in the Linux kernel.
Of course, it is easy to download both Glibc and the Linux kernel source code, but
we are interested in understanding the matter without it.
So, as of Linux 2.6, when the sys_open syscall is called, control eventually passes to
do_sys_open, and from there—to the do_filp_open() function (it’s located in the
kernel source tree in fs/namei.c).
N.B. Aside from passing arguments via the stack, there is also a method of passing
some of them via registers. This is also called fastcall (6.1.3 on page 934). This works
faster since CPU does not need to access the stack in memory to read argument
values. GCC has the option regparm140, through which it’s possible to set the number
of arguments that can be passed via registers.
The Linux 2.6 kernel is compiled with -mregparm=3 option 141 142.
What this means to us is that the first 3 arguments are to be passed via registers
EAX, EDX and ECX, and the rest via the stack. Of course, if the number of arguments
is less than 3, only part of registers set is to be used.
So, let’s download Linux Kernel 2.6.31, compile it in Ubuntu: make vmlinux, open it
in IDA, and find the do_filp_open() function. At the beginning, we see (the com-
ments are mine):

Listing 1.271: do_filp_open() (linux kernel 2.6.31)
do_filp_open proc near
...

push ebp
mov ebp, esp
push edi

140ohse.de/uwe/articles/gcc-attributes.html#func-regparm
141kernelnewbies.org/Linux_2_6_20#head-042c62f290834eb1fe0a1942bbf5bb9a4accbc8f
142See also arch/x86/include/asm/calling.h file in kernel tree

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.ohse.de/uwe/articles/gcc-attributes.html#func-regparm
http://kernelnewbies.org/Linux_2_6_20#head-042c62f290834eb1fe0a1942bbf5bb9a4accbc8f
https://yurichev.com/contact.html
https://yurichev.com/contact.html

385
push esi
push ebx
mov ebx, ecx
add ebx, 1
sub esp, 98h
mov esi, [ebp+arg_4] ; acc_mode (5th argument)
test bl, 3
mov [ebp+var_80], eax ; dfd (1th argument)
mov [ebp+var_7C], edx ; pathname (2th argument)
mov [ebp+var_78], ecx ; open_flag (3th argument)
jnz short loc_C01EF684
mov ebx, ecx ; ebx <- open_flag

GCC saves the values of the first 3 arguments in the local stack. If that wasn’t
done, the compiler would not touch these registers, and that would be too tight
environment for the compiler’s register allocator.
Let’s find this fragment of code:

Listing 1.272: do_filp_open() (linux kernel 2.6.31)
loc_C01EF684: ; CODE XREF: do_filp_open+4F

test bl, 40h ; O_CREAT
jnz loc_C01EF810
mov edi, ebx
shr edi, 11h
xor edi, 1
and edi, 1
test ebx, 10000h
jz short loc_C01EF6D3
or edi, 2

0x40—is what the O_CREAT macro equals to. open_flag gets checked for the pres-
ence of the 0x40 bit, and if this bit is 1, the next JNZ instruction is triggered.

ARM

The O_CREAT bit is checked differently in Linux kernel 3.8.0.

Listing 1.273: linux kernel 3.8.0
struct file *do_filp_open(int dfd, struct filename *pathname,

const struct open_flags *op)
{
...

filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
...
}

static struct file *path_openat(int dfd, struct filename *pathname,
struct nameidata *nd, const struct open_flags *op, int ⤦

Ç flags)
{
...

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

386
error = do_last(nd, &path, file, op, &opened, pathname);

...
}

static int do_last(struct nameidata *nd, struct path *path,
struct file *file, const struct open_flags *op,
int *opened, struct filename *name)

{
...

if (!(open_flag & O_CREAT)) {
...

error = lookup_fast(nd, path, &inode);
...

} else {
...

error = complete_walk(nd);
}

...
}

Here is how the kernel compiled for ARM mode looks in IDA:

Listing 1.274: do_last() from vmlinux (IDA)
...
.text:C0169EA8 MOV R9, R3 ; R3 - (4th argument) open_flag
...
.text:C0169ED4 LDR R6, [R9] ; R6 - open_flag
...
.text:C0169F68 TST R6, #0x40 ; jumptable C0169F00 default case
.text:C0169F6C BNE loc_C016A128
.text:C0169F70 LDR R2, [R4,#0x10]
.text:C0169F74 ADD R12, R4, #8
.text:C0169F78 LDR R3, [R4,#0xC]
.text:C0169F7C MOV R0, R4
.text:C0169F80 STR R12, [R11,#var_50]
.text:C0169F84 LDRB R3, [R2,R3]
.text:C0169F88 MOV R2, R8
.text:C0169F8C CMP R3, #0
.text:C0169F90 ORRNE R1, R1, #3
.text:C0169F94 STRNE R1, [R4,#0x24]
.text:C0169F98 ANDS R3, R6, #0x200000
.text:C0169F9C MOV R1, R12
.text:C0169FA0 LDRNE R3, [R4,#0x24]
.text:C0169FA4 ANDNE R3, R3, #1
.text:C0169FA8 EORNE R3, R3, #1
.text:C0169FAC STR R3, [R11,#var_54]
.text:C0169FB0 SUB R3, R11, #-var_38
.text:C0169FB4 BL lookup_fast
...
.text:C016A128 loc_C016A128 ; CODE XREF: do_last.isra.14+DC
.text:C016A128 MOV R0, R4
.text:C016A12C BL complete_walk

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

387
...

TST is analogous to the TEST instruction in x86. We can “spot” visually this code frag-
ment by the fact the lookup_fast() is to be executed in one case and complete_walk()
in the other. This corresponds to the source code of the do_last() function. The
O_CREAT macro equals to 0x40 here too.

1.28.2 Setting and clearing specific bits
For example:
#include <stdio.h>

#define IS_SET(flag, bit) ((flag) & (bit))
#define SET_BIT(var, bit) ((var) |= (bit))
#define REMOVE_BIT(var, bit) ((var) &= ~(bit))

int f(int a)
{

int rt=a;

SET_BIT (rt, 0x4000);
REMOVE_BIT (rt, 0x200);

return rt;
};

int main()
{

f(0x12340678);
};

x86

Non-optimizing MSVC

We get (MSVC 2010):

Listing 1.275: MSVC 2010
_rt$ = -4 ; size = 4
_a$ = 8 ; size = 4
_f PROC

push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _a$[ebp]
mov DWORD PTR _rt$[ebp], eax
mov ecx, DWORD PTR _rt$[ebp]
or ecx, 16384 ; 00004000H
mov DWORD PTR _rt$[ebp], ecx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

388
mov edx, DWORD PTR _rt$[ebp]
and edx, -513 ; fffffdffH
mov DWORD PTR _rt$[ebp], edx
mov eax, DWORD PTR _rt$[ebp]
mov esp, ebp
pop ebp
ret 0

_f ENDP

The OR instruction sets one bit into a register while ignoring other 1 bits.
AND resets one bit. It can be said that AND just copies all bits except one. Indeed, in
the second AND operand only the bits that need to be saved are set, just the one do
not want to copy is not (which is 0 in the bitmask). It is the easier way to memorize
the logic.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

389
OllyDbg

Let’s try this example in OllyDbg.
First, let’s see the binary form of the constants we are going to use:
0x200 (0b00000000000000000001000000000) (i.e., the 10th bit (counting from 1st)).
Inverted 0x200 is 0xFFFFFDFF (0b11111111111111111110111111111).
0x4000 (0b00000000000000100000000000000) (i.e., the 15th bit).
The input value is: 0x12340678 (0b10010001101000000011001111000). We see
how it’s loaded:

Figure 1.94: OllyDbg: value is loaded into ECX

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

390
OR got executed:

Figure 1.95: OllyDbg: OR executed

15th bit is set: 0x12344678 (0b10010001101000100011001111000).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

391
The value is reloaded again (because the compiler is not in optimizing mode):

Figure 1.96: OllyDbg: value has been reloaded into EDX

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

392
AND got executed:

Figure 1.97: OllyDbg: AND executed

The 10th bit has been cleared (or, in other words, all bits were left except the 10th)
and the final value now is
0x12344478 (0b10010001101000100010001111000).

Optimizing MSVC

If we compile it in MSVC with optimization turned on (/Ox), the code is even shorter:

Listing 1.276: Optimizing MSVC
_a$ = 8 ; size = 4
_f PROC

mov eax, DWORD PTR _a$[esp-4]
and eax, -513 ; fffffdffH
or eax, 16384 ; 00004000H
ret 0

_f ENDP

Non-optimizing GCC

Let’s try GCC 4.4.1 without optimization:

Listing 1.277: Non-optimizing GCC
public f

f proc near

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

393
var_4 = dword ptr -4
arg_0 = dword ptr 8

push ebp
mov ebp, esp
sub esp, 10h
mov eax, [ebp+arg_0]
mov [ebp+var_4], eax
or [ebp+var_4], 4000h
and [ebp+var_4], 0FFFFFDFFh
mov eax, [ebp+var_4]
leave
retn

f endp

There is a redundant code present, however, it is shorter than the MSVC version
without optimization.
Now let’s try GCC with optimization turned on -O3:

Optimizing GCC

Listing 1.278: Optimizing GCC
public f

f proc near

arg_0 = dword ptr 8

push ebp
mov ebp, esp
mov eax, [ebp+arg_0]
pop ebp
or ah, 40h
and ah, 0FDh
retn

f endp

That’s shorter. It is worth noting the compiler works with the EAX register part via
the AH register—that is the EAX register part from the 8th to the 15th bits included.

Byte number:
7th 6th 5th 4th 3rd 2nd 1st 0th

RAXx64
EAX

AX
AH AL

N.B. The 16-bit CPU 8086 accumulator was named AX and consisted of two 8-bit
halves—AL (lower byte) and AH (higher byte). In 80386 almost all registers were
extended to 32-bit, the accumulator was named EAX, but for the sake of compatibility,
its older parts may be still accessed as AX/AH/AL.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

394
Since all x86 CPUs are successors of the 16-bit 8086 CPU, these older 16-bit opcodes
are shorter than the newer 32-bit ones. That’s why the or ah, 40h instruction oc-
cupies only 3 bytes. It would be more logical way to emit here or eax, 04000h but
that is 5 bytes, or even 6 (in case the register in the first operand is not EAX).

Optimizing GCC and regparm

It would be even shorter if to turn on the -O3 optimization flag and also set regparm=3.

Listing 1.279: Optimizing GCC
public f

f proc near
push ebp
or ah, 40h
mov ebp, esp
and ah, 0FDh
pop ebp
retn

f endp

Indeed, the first argument is already loaded in EAX, so it is possible to work with it in-
place. It is worth noting that both the function prologue (push ebp / mov ebp,esp)
and epilogue (pop ebp) can easily be omitted here, but GCC probably is not good
enough to do such code size optimizations. However, such short functions are better
to be inlined functions (3.14 on page 634).

ARM + Optimizing Keil 6/2013 (ARM mode)

Listing 1.280: Optimizing Keil 6/2013 (ARM mode)
02 0C C0 E3 BIC R0, R0, #0x200
01 09 80 E3 ORR R0, R0, #0x4000
1E FF 2F E1 BX LR

BIC (BItwise bit Clear) is an instruction for clearing specific bits. This is just like
the AND instruction, but with inverted operand. I.e., it’s analogous to a NOT +AND
instruction pair.
ORR is “logical or”, analogous to OR in x86.
So far it’s easy.

ARM + Optimizing Keil 6/2013 (Thumb mode)

Listing 1.281: Optimizing Keil 6/2013 (Thumb mode)
01 21 89 03 MOVS R1, 0x4000
08 43 ORRS R0, R1
49 11 ASRS R1, R1, #5 ; generate 0x200 and place to R1
88 43 BICS R0, R1
70 47 BX LR

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

395
Seems like Keil decided that the code in Thumb mode, making 0x200 from 0x4000,
is more compact than the code for writing 0x200 to an arbitrary register.
So that is why, with the help of ASRS (arithmetic shift right), this value is calculated
as 0x4000≫ 5.

ARM + Optimizing Xcode 4.6.3 (LLVM) (ARM mode)

Listing 1.282: Optimizing Xcode 4.6.3 (LLVM) (ARM mode)
42 0C C0 E3 BIC R0, R0, #0x4200
01 09 80 E3 ORR R0, R0, #0x4000
1E FF 2F E1 BX LR

The code that was generated by LLVM, in source code form could be something like
this:

REMOVE_BIT (rt, 0x4200);
SET_BIT (rt, 0x4000);

And it does exactly what we need. But why 0x4200? Perhaps that an artifact from
LLVM’s optimizer 143.
Probably a compiler’s optimizer error, but the generated code works correctly any-
way.
You can read more about compiler anomalies here (11.5 on page 1258).
Optimizing Xcode 4.6.3 (LLVM) for Thumb mode generates the same code.

ARM: more about the BIC instruction

Let’s rework the example slightly:
int f(int a)
{

int rt=a;

REMOVE_BIT (rt, 0x1234);

return rt;
};

Then the optimizing Keil 5.03 in ARM mode does:
f PROC

BIC r0,r0,#0x1000
BIC r0,r0,#0x234
BX lr
ENDP

143It was LLVM build 2410.2.00 bundled with Apple Xcode 4.6.3

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

396
There are two BIC instructions, i.e., bits 0x1234 are cleared in two passes.
This is because it’s not possible to encode 0x1234 in a BIC instruction, but it’s possi-
ble to encode 0x1000 and 0x234.

ARM64: Optimizing GCC (Linaro) 4.9

Optimizing GCCcompiling for ARM64 can use the AND instruction instead of BIC:

Listing 1.283: Optimizing GCC (Linaro) 4.9
f:

and w0, w0, -513 ; 0xFFFFFFFFFFFFFDFF
orr w0, w0, 16384 ; 0x4000
ret

ARM64: Non-optimizing GCC (Linaro) 4.9

Non-optimizing GCC generates more redundant code, but works just like optimized:

Listing 1.284: Non-optimizing GCC (Linaro) 4.9
f:

sub sp, sp, #32
str w0, [sp,12]
ldr w0, [sp,12]
str w0, [sp,28]
ldr w0, [sp,28]
orr w0, w0, 16384 ; 0x4000
str w0, [sp,28]
ldr w0, [sp,28]
and w0, w0, -513 ; 0xFFFFFFFFFFFFFDFF
str w0, [sp,28]
ldr w0, [sp,28]
add sp, sp, 32
ret

MIPS

Listing 1.285: Optimizing GCC 4.4.5 (IDA)
f:
; $a0=a

ori $a0, 0x4000
; $a0=a|0x4000

li $v0, 0xFFFFFDFF
jr $ra
and $v0, $a0, $v0

; at finish: $v0 = $a0 & $v0 = a|0x4000 & 0xFFFFFDFF

ORI is, of course, the OR operation. “I” in the instruction name means that the value
is embedded in the machine code.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

397
But after that we have AND. There is no way to use ANDI because it’s not possible to
embed the 0xFFFFFDFF number in a single instruction, so the compiler has to load
0xFFFFFDFF into register $V0 first and then generates AND which takes all its values
from registers.

1.28.3 Shifts
Bit shifts in C/C++ are implemented using ≪ and ≫ operators. The x86 ISA has
the SHL (SHift Left) and SHR (SHift Right) instructions for this. Shift instructions are
often used in division and multiplications by powers of two: 2n (e.g., 1, 2, 4, 8, etc.):
1.24.1 on page 268, 1.24.2 on page 274.
Shifting operations are also so important because they are often used for specific bit
isolation or for constructing a value of several scattered bits.

1.28.4 Setting and clearing specific bits: FPU example
Here is how bits are located in the float type in IEEE 754 form:

022233031

S exponent mantissa or fraction

(S — sign)
The sign of number is in the MSB144. Will it be possible to change the sign of a
floating point number without any FPU instructions?
#include <stdio.h>

float my_abs (float i)
{

unsigned int tmp=(*(unsigned int*)&i) & 0x7FFFFFFF;
return *(float*)&tmp;

};

float set_sign (float i)
{

unsigned int tmp=(*(unsigned int*)&i) | 0x80000000;
return *(float*)&tmp;

};

float negate (float i)
{

unsigned int tmp=(*(unsigned int*)&i) ^ 0x80000000;
return *(float*)&tmp;

};

int main()
{

printf ("my_abs():\n");

144Most Significant Bit

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

398
printf ("%f\n", my_abs (123.456));
printf ("%f\n", my_abs (-456.123));
printf ("set_sign():\n");
printf ("%f\n", set_sign (123.456));
printf ("%f\n", set_sign (-456.123));
printf ("negate():\n");
printf ("%f\n", negate (123.456));
printf ("%f\n", negate (-456.123));

};

We need this trickery in C/C++ to copy to/from float value without actual conver-
sion. So there are three functions: my_abs() resets MSB; set_sign() sets MSB and
negate() flips it.
XOR can be used to flip a bit.

x86

The code is pretty straightforward:

Listing 1.286: Optimizing MSVC 2012
_tmp$ = 8
_i$ = 8
_my_abs PROC

and DWORD PTR _i$[esp-4], 2147483647 ; 7fffffffH
fld DWORD PTR _tmp$[esp-4]
ret 0

_my_abs ENDP

_tmp$ = 8
_i$ = 8
_set_sign PROC

or DWORD PTR _i$[esp-4], -2147483648 ; 80000000H
fld DWORD PTR _tmp$[esp-4]
ret 0

_set_sign ENDP

_tmp$ = 8
_i$ = 8
_negate PROC

xor DWORD PTR _i$[esp-4], -2147483648 ; 80000000H
fld DWORD PTR _tmp$[esp-4]
ret 0

_negate ENDP

An input value of type float is taken from the stack, but treated as an integer value.
AND and OR reset and set the desired bit. XOR flips it.
Finally, the modified value is loaded into ST0, because floating-point numbers are
returned in this register.
Now let’s try optimizing MSVC 2012 for x64:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

399
Listing 1.287: Optimizing MSVC 2012 x64

tmp$ = 8
i$ = 8
my_abs PROC

movss DWORD PTR [rsp+8], xmm0
mov eax, DWORD PTR i$[rsp]
btr eax, 31
mov DWORD PTR tmp$[rsp], eax
movss xmm0, DWORD PTR tmp$[rsp]
ret 0

my_abs ENDP
_TEXT ENDS

tmp$ = 8
i$ = 8
set_sign PROC

movss DWORD PTR [rsp+8], xmm0
mov eax, DWORD PTR i$[rsp]
bts eax, 31
mov DWORD PTR tmp$[rsp], eax
movss xmm0, DWORD PTR tmp$[rsp]
ret 0

set_sign ENDP

tmp$ = 8
i$ = 8
negate PROC

movss DWORD PTR [rsp+8], xmm0
mov eax, DWORD PTR i$[rsp]
btc eax, 31
mov DWORD PTR tmp$[rsp], eax
movss xmm0, DWORD PTR tmp$[rsp]
ret 0

negate ENDP

The input value is passed in XMM0, then it is copied into the local stack and then we
see some instructions that are new to us: BTR, BTS, BTC.
These instructions are used for resetting (BTR), setting (BTS) and inverting (or com-
plementing: BTC) specific bits. The 31st bit is MSB, counting from 0.
Finally, the result is copied into XMM0, because floating point values are returned
through XMM0 in Win64 environment.

MIPS

GCC 4.4.5 for MIPS does mostly the same:

Listing 1.288: Optimizing GCC 4.4.5 (IDA)
my_abs:
; move from coprocessor 1:

mfc1 $v1, $f12

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

400
li $v0, 0x7FFFFFFF

; $v0=0x7FFFFFFF
; do AND:

and $v0, $v1
; move to coprocessor 1:

mtc1 $v0, $f0
; return

jr $ra
or $at, $zero ; branch delay slot

set_sign:
; move from coprocessor 1:

mfc1 $v0, $f12
lui $v1, 0x8000

; $v1=0x80000000
; do OR:

or $v0, $v1, $v0
; move to coprocessor 1:

mtc1 $v0, $f0
; return

jr $ra
or $at, $zero ; branch delay slot

negate:
; move from coprocessor 1:

mfc1 $v0, $f12
lui $v1, 0x8000

; $v1=0x80000000
; do XOR:

xor $v0, $v1, $v0
; move to coprocessor 1:

mtc1 $v0, $f0
; return

jr $ra
or $at, $zero ; branch delay slot

One single LUI instruction is used to load 0x80000000 into a register, because LUI
is clearing the low 16 bits and these are zeros in the constant, so one LUI without
subsequent ORI is enough.

ARM

Optimizing Keil 6/2013 (ARM mode)

Listing 1.289: Optimizing Keil 6/2013 (ARM mode)
my_abs PROC
; clear bit:

BIC r0,r0,#0x80000000
BX lr
ENDP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

401
set_sign PROC
; do OR:

ORR r0,r0,#0x80000000
BX lr
ENDP

negate PROC
; do XOR:

EOR r0,r0,#0x80000000
BX lr
ENDP

So far so good.
ARM has the BIC instruction, which explicitly clears specific bit(s). EOR is the ARM
instruction name for XOR (“Exclusive OR”).

Optimizing Keil 6/2013 (Thumb mode)

Listing 1.290: Optimizing Keil 6/2013 (Thumb mode)
my_abs PROC

LSLS r0,r0,#1
; r0=i<<1

LSRS r0,r0,#1
; r0=(i<<1)>>1

BX lr
ENDP

set_sign PROC
MOVS r1,#1

; r1=1
LSLS r1,r1,#31

; r1=1<<31=0x80000000
ORRS r0,r0,r1

; r0=r0 | 0x80000000
BX lr
ENDP

negate PROC
MOVS r1,#1

; r1=1
LSLS r1,r1,#31

; r1=1<<31=0x80000000
EORS r0,r0,r1

; r0=r0 ^ 0x80000000
BX lr
ENDP

Thumb mode in ARM offers 16-bit instructions and not much data can be encoded
in them, so here a MOVS/LSLS instruction pair is used for forming the 0x80000000
constant. It works like this: 1 << 31 = 0x80000000.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

402
The code of my_abs is weird and it effectively works like this expression: (i << 1) >> 1.
This statement looks meaningless. But nevertheless, when input << 1 is executed,
the MSB (sign bit) is just dropped. When the subsequent result >> 1 statement is
executed, all bits are now in their own places, but MSB is zero, because all “new”
bits appearing from the shift operations are always zeros. That is how the LSLS/LSRS
instruction pair clears MSB.

Optimizing GCC 4.6.3 (Raspberry Pi, ARM mode)

Listing 1.291: Optimizing GCC 4.6.3 for Raspberry Pi (ARM mode)
my_abs
; copy from S0 to R2:

FMRS R2, S0
; clear bit:

BIC R3, R2, #0x80000000
; copy from R3 to S0:

FMSR S0, R3
BX LR

set_sign
; copy from S0 to R2:

FMRS R2, S0
; do OR:

ORR R3, R2, #0x80000000
; copy from R3 to S0:

FMSR S0, R3
BX LR

negate
; copy from S0 to R2:

FMRS R2, S0
; do ADD:

ADD R3, R2, #0x80000000
; copy from R3 to S0:

FMSR S0, R3
BX LR

Let’s run Raspberry Pi Linux in QEMU and it emulates an ARM FPU, so S-registers are
used here for floating point numbers instead of R-registers.
The FMRS instruction copies data from GPR to the FPU and back.
my_abs() and set_sign() looks as expected, but negate()? Why is there ADD instead
of XOR?
It’s hard to believe, but the instruction ADD register, 0x80000000 works just like
XOR register, 0x80000000. First of all, what’s our goal? The goal is to flip the
MSB, so let’s forget about the XOR operation. From school-level mathematics wemay
recall that adding values like 1000 to other values never affects the last 3 digits. For
example: 1234567 + 10000 = 1244567 (last 4 digits are never affected).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

403
But here we operate in binary base and
0x80000000 is 0b100000000000000000000000000000000, i.e., only the highest
bit is set.
Adding 0x80000000 to any value never affects the lowest 31 bits, but affects only
the MSB. Adding 1 to 0 is resulting in 1.
Adding 1 to 1 is resulting in 0b10 in binary form, but the 32th bit (counting from zero)
gets dropped, because our registers are 32 bit wide, so the result is 0. That’s why
XOR can be replaced by ADD here.
It’s hard to say why GCC decided to do this, but it works correctly.

1.28.5 Counting bits set to 1
Here is a simple example of a function that calculates the number of bits set in the
input value.
This operation is also called “population count”145.
#include <stdio.h>

#define IS_SET(flag, bit) ((flag) & (bit))

int f(unsigned int a)
{

int i;
int rt=0;

for (i=0; i<32; i++)
if (IS_SET (a, 1<<i))

rt++;

return rt;
};

int main()
{

f(0x12345678); // test
};

In this loop, the iteration count value i is counting from 0 to 31, so the 1≪ i statement
is counting from 1 to 0x80000000. Describing this operation in natural language,
we would say shift 1 by n bits left. In other words, 1 ≪ i statement consequently
produces all possible bit positions in a 32-bit number. The freed bit at right is always
cleared.
Here is a table of all possible 1≪ i for i = 0 . . . 31:
145modern x86 CPUs (supporting SSE4) even have a POPCNT instruction for it

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

404
C/C++ expression Power of two Decimal form Hexadecimal form
1≪ 0 20 1 1
1≪ 1 21 2 2
1≪ 2 22 4 4
1≪ 3 23 8 8
1≪ 4 24 16 0x10
1≪ 5 25 32 0x20
1≪ 6 26 64 0x40
1≪ 7 27 128 0x80
1≪ 8 28 256 0x100
1≪ 9 29 512 0x200
1≪ 10 210 1024 0x400
1≪ 11 211 2048 0x800
1≪ 12 212 4096 0x1000
1≪ 13 213 8192 0x2000
1≪ 14 214 16384 0x4000
1≪ 15 215 32768 0x8000
1≪ 16 216 65536 0x10000
1≪ 17 217 131072 0x20000
1≪ 18 218 262144 0x40000
1≪ 19 219 524288 0x80000
1≪ 20 220 1048576 0x100000
1≪ 21 221 2097152 0x200000
1≪ 22 222 4194304 0x400000
1≪ 23 223 8388608 0x800000
1≪ 24 224 16777216 0x1000000
1≪ 25 225 33554432 0x2000000
1≪ 26 226 67108864 0x4000000
1≪ 27 227 134217728 0x8000000
1≪ 28 228 268435456 0x10000000
1≪ 29 229 536870912 0x20000000
1≪ 30 230 1073741824 0x40000000
1≪ 31 231 2147483648 0x80000000

These constant numbers (bit masks) very often appear in code and a practicing
reverse engineer must be able to spot them quickly.
Decimal numbers below 65536 and hexadecimal ones are very easy to memorize.
While decimal numbers above 65536 are, probably, not worth memorizing.
These constants are very often used for mapping flags to specific bits. For example,
here is excerpt from ssl_private.h from Apache 2.4.6 source code:
/**
* Define the SSL options
*/
#define SSL_OPT_NONE (0)
#define SSL_OPT_RELSET (1<<0)
#define SSL_OPT_STDENVVARS (1<<1)
#define SSL_OPT_EXPORTCERTDATA (1<<3)
#define SSL_OPT_FAKEBASICAUTH (1<<4)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

405
#define SSL_OPT_STRICTREQUIRE (1<<5)
#define SSL_OPT_OPTRENEGOTIATE (1<<6)
#define SSL_OPT_LEGACYDNFORMAT (1<<7)

Let’s get back to our example.
The IS_SET macro checks bit presence in a.
The IS_SET macro is in fact the logical AND operation (AND) and it returns 0 if the
specific bit is absent there, or the bit mask, if the bit is present. The if() operator in
C/C++ triggers if the expression in it is not zero, it might be even 123456, that is
why it always works correctly.

x86

MSVC

Let’s compile (MSVC 2010):

Listing 1.292: MSVC 2010
_rt$ = -8 ; size = 4
_i$ = -4 ; size = 4
_a$ = 8 ; size = 4
_f PROC

push ebp
mov ebp, esp
sub esp, 8
mov DWORD PTR _rt$[ebp], 0
mov DWORD PTR _i$[ebp], 0
jmp SHORT $LN4@f

$LN3@f:
mov eax, DWORD PTR _i$[ebp] ; increment of i
add eax, 1
mov DWORD PTR _i$[ebp], eax

$LN4@f:
cmp DWORD PTR _i$[ebp], 32 ; 00000020H
jge SHORT $LN2@f ; loop finished?
mov edx, 1
mov ecx, DWORD PTR _i$[ebp]
shl edx, cl ; EDX=EDX<<CL
and edx, DWORD PTR _a$[ebp]
je SHORT $LN1@f ; result of AND instruction was 0?

; then skip next instructions
mov eax, DWORD PTR _rt$[ebp] ; no, not zero
add eax, 1 ; increment rt
mov DWORD PTR _rt$[ebp], eax

$LN1@f:
jmp SHORT $LN3@f

$LN2@f:
mov eax, DWORD PTR _rt$[ebp]
mov esp, ebp
pop ebp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

406
ret 0

_f ENDP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

407
OllyDbg

Let’s load this example into OllyDbg. Let the input value be 0x12345678.
For i = 1, we see how i is loaded into ECX:

Figure 1.98: OllyDbg: i = 1, i is loaded into ECX

EDX is 1. SHL is to be executed now.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

408
SHL has been executed:

Figure 1.99: OllyDbg: i = 1, EDX =1≪ 1 = 2

EDX contain 1≪ 1 (or 2). This is a bit mask.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

409
AND sets ZF to 1, which implies that the input value (0x12345678) ANDed with 2
results in 0:

Figure 1.100: OllyDbg: i = 1, is there that bit in the input value? No. (ZF =1)

So, there is no corresponding bit in the input value.
The piece of code, which increments the counter is not to be executed: the JZ in-
struction bypassing it.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

410
Let’s trace a bit further and i is now 4. SHL is to be executed now:

Figure 1.101: OllyDbg: i = 4, i is loaded into ECX

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

411
EDX =1≪ 4 (or 0x10 or 16):

Figure 1.102: OllyDbg: i = 4, EDX =1≪ 4 = 0x10

This is another bit mask.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

412
AND is executed:

Figure 1.103: OllyDbg: i = 4, is there that bit in the input value? Yes. (ZF =0)

ZF is 0 because this bit is present in the input value.
Indeed, 0x12345678 & 0x10 = 0x10.
This bit counts: the jump is not triggering and the bit counter incrementing.
The function returns 13. This is total number of bits set in 0x12345678.

GCC

Let’s compile it in GCC 4.4.1:

Listing 1.293: GCC 4.4.1
public f

f proc near

rt = dword ptr -0Ch
i = dword ptr -8
arg_0 = dword ptr 8

push ebp
mov ebp, esp
push ebx
sub esp, 10h
mov [ebp+rt], 0
mov [ebp+i], 0
jmp short loc_80483EF

loc_80483D0:
mov eax, [ebp+i]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

413
mov edx, 1
mov ebx, edx
mov ecx, eax
shl ebx, cl
mov eax, ebx
and eax, [ebp+arg_0]
test eax, eax
jz short loc_80483EB
add [ebp+rt], 1

loc_80483EB:
add [ebp+i], 1

loc_80483EF:
cmp [ebp+i], 1Fh
jle short loc_80483D0
mov eax, [ebp+rt]
add esp, 10h
pop ebx
pop ebp
retn

f endp

x64

Let’s modify the example slightly to extend it to 64-bit:
#include <stdio.h>
#include <stdint.h>

#define IS_SET(flag, bit) ((flag) & (bit))

int f(uint64_t a)
{

uint64_t i;
int rt=0;

for (i=0; i<64; i++)
if (IS_SET (a, 1ULL<<i))

rt++;

return rt;
};

Non-optimizing GCC 4.8.2

So far so easy.

Listing 1.294: Non-optimizing GCC 4.8.2
f:

push rbp
mov rbp, rsp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

414
mov QWORD PTR [rbp-24], rdi ; a
mov DWORD PTR [rbp-12], 0 ; rt=0
mov QWORD PTR [rbp-8], 0 ; i=0
jmp .L2

.L4:
mov rax, QWORD PTR [rbp-8]
mov rdx, QWORD PTR [rbp-24]

; RAX = i, RDX = a
mov ecx, eax

; ECX = i
shr rdx, cl

; RDX = RDX>>CL = a>>i
mov rax, rdx

; RAX = RDX = a>>i
and eax, 1

; EAX = EAX&1 = (a>>i)&1
test rax, rax

; the last bit is zero?
; skip the next ADD instruction, if it was so.

je .L3
add DWORD PTR [rbp-12], 1 ; rt++

.L3:
add QWORD PTR [rbp-8], 1 ; i++

.L2:
cmp QWORD PTR [rbp-8], 63 ; i<63?
jbe .L4 ; jump to the loop body begin, if so
mov eax, DWORD PTR [rbp-12] ; return rt
pop rbp
ret

Optimizing GCC 4.8.2

Listing 1.295: Optimizing GCC 4.8.2
1 f:
2 xor eax, eax ; rt variable will be in EAX register
3 xor ecx, ecx ; i variable will be in ECX register
4 .L3:
5 mov rsi, rdi ; load input value
6 lea edx, [rax+1] ; EDX=EAX+1
7 ; EDX here is a new version of rt,
8 ; which will be written into rt variable, if the last bit is 1
9 shr rsi, cl ; RSI=RSI>>CL
10 and esi, 1 ; ESI=ESI&1
11 ; the last bit is 1? If so, write new version of rt into EAX
12 cmovne eax, edx
13 add rcx, 1 ; RCX++
14 cmp rcx, 64
15 jne .L3
16 rep ret ; AKA fatret

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

415
This code is terser, but has a quirk.
In all examples that we see so far, we were incrementing the “rt” value after compar-
ing a specific bit, but the code here increments “rt” before (line 6), writing the new
value into register EDX. Thus, if the last bit is 1, the CMOVNE146 instruction (which is
a synonym for CMOVNZ147) commits the new value of “rt” by moving EDX (“proposed
rt value”) into EAX (“current rt” to be returned at the end).
Hence, the incrementing is performed at each step of loop, i.e., 64 times, without
any relation to the input value.
The advantage of this code is that it contain only one conditional jump (at the end of
the loop) instead of two jumps (skipping the “rt” value increment and at the end of
loop). And that might work faster on the modern CPUs with branch predictors: 2.4.1
on page 575.
The last instruction is REP RET (opcode F3 C3) which is also called FATRET by MSVC.
This is somewhat optimized version of RET, which is recommended by AMD to be
placed at the end of function, if RET goes right after conditional jump: [Software
Optimization Guide for AMD Family 16h Processors, (2013)p.15] 148.

Optimizing MSVC 2010

Listing 1.296: Optimizing MSVC 2010
a$ = 8
f PROC
; RCX = input value

xor eax, eax
mov edx, 1
lea r8d, QWORD PTR [rax+64]

; R8D=64
npad 5

$LL4@f:
test rdx, rcx

; there are no such bit in input value?
; skip the next INC instruction then.

je SHORT $LN3@f
inc eax ; rt++

$LN3@f:
rol rdx, 1 ; RDX=RDX<<1
dec r8 ; R8--
jne SHORT $LL4@f
fatret 0

f ENDP

Here the ROL instruction is used instead of SHL, which is in fact “rotate left” instead
of “shift left”, but in this example it works just as SHL.
146Conditional MOVe if Not Equal
147Conditional MOVe if Not Zero
148More information on it: http://repzret.org/p/repzret/

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://repzret.org/p/repzret/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

416
You can read more about the rotate instruction here: .1.6 on page 1308.
R8 here is counting from 64 to 0. It’s just like an inverted i.
Here is a table of some registers during the execution:

RDX R8
0x0000000000000001 64
0x0000000000000002 63
0x0000000000000004 62
0x0000000000000008 61
... ...
0x4000000000000000 2
0x8000000000000000 1

At the end we see the FATRET instruction, which was explained here: 1.28.5 on the
preceding page.

Optimizing MSVC 2012

Listing 1.297: Optimizing MSVC 2012
a$ = 8
f PROC
; RCX = input value

xor eax, eax
mov edx, 1
lea r8d, QWORD PTR [rax+32]

; EDX = 1, R8D = 32
npad 5

$LL4@f:
; pass 1 ------------------------------

test rdx, rcx
je SHORT $LN3@f
inc eax ; rt++

$LN3@f:
rol rdx, 1 ; RDX=RDX<<1

; -------------------------------------
; pass 2 ------------------------------

test rdx, rcx
je SHORT $LN11@f
inc eax ; rt++

$LN11@f:
rol rdx, 1 ; RDX=RDX<<1

; -------------------------------------
dec r8 ; R8--
jne SHORT $LL4@f
fatret 0

f ENDP

Optimizing MSVC 2012 does almost the same job as optimizing MSVC 2010, but
somehow, it generates two identical loop bodies and the loop count is now 32 instead
of 64.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

417
To be honest, it’s not possible to say why. Some optimization trick? Maybe it’s better
for the loop body to be slightly longer?
Anyway, such code is relevant here to show that sometimes the compiler output
may be really weird and illogical, but perfectly working.

ARM + Optimizing Xcode 4.6.3 (LLVM) (ARM mode)

Listing 1.298: Optimizing Xcode 4.6.3 (LLVM) (ARM mode)
MOV R1, R0
MOV R0, #0
MOV R2, #1
MOV R3, R0

loc_2E54
TST R1, R2,LSL R3 ; set flags according to R1 &

(R2<<R3)
ADD R3, R3, #1 ; R3++
ADDNE R0, R0, #1 ; if ZF flag is cleared by TST,

then R0++
CMP R3, #32
BNE loc_2E54
BX LR

TST is the same thing as TEST in x86.
As was noted before (3.12.3 on page 624), there are no separate shifting instructions
in ARMmode. However, there aremodifiers LSL (Logical Shift Left), LSR (Logical Shift
Right), ASR (Arithmetic Shift Right), ROR (Rotate Right) and RRX (Rotate Right with
Extend), which may be added to such instructions as MOV, TST, CMP, ADD, SUB, RSB149.
These modificators define how to shift the second operand and by how many bits.
Thus the “TST R1, R2,LSL R3” instruction works here as R1 ∧ (R2≪ R3).

ARM + Optimizing Xcode 4.6.3 (LLVM) (Thumb-2 mode)

Almost the same, but here are two LSL.W/TST instructions are used instead of a single
TST, because in Thumb mode it is not possible to define LSL modifier directly in TST.

MOV R1, R0
MOVS R0, #0
MOV.W R9, #1
MOVS R3, #0

loc_2F7A
LSL.W R2, R9, R3
TST R2, R1
ADD.W R3, R3, #1
IT NE
ADDNE R0, #1
CMP R3, #32
BNE loc_2F7A
BX LR

149These instructions are also called “data processing instructions”

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

418
ARM64 + Optimizing GCC 4.9

Let’s take the 64-bit example which has been already used: 1.28.5 on page 413.

Listing 1.299: Optimizing GCC (Linaro) 4.8
f:

mov w2, 0 ; rt=0
mov x5, 1
mov w1, w2

.L2:
lsl x4, x5, x1 ; w4 = w5<<w1 = 1<<i
add w3, w2, 1 ; new_rt=rt+1
tst x4, x0 ; (1<<i) & a
add w1, w1, 1 ; i++

; result of TST was non-zero?
; then w2=w3 or rt=new_rt.
; otherwise: w2=w2 or rt=rt (idle operation)

csel w2, w3, w2, ne
cmp w1, 64 ; i<64?
bne .L2 ; yes
mov w0, w2 ; return rt
ret

The result is very similar to what GCC generates for x64: 1.295 on page 414.
The CSEL instruction is “Conditional SELect”. It just chooses one variable of two
depending on the flags set by TST and copies the value into W2, which holds the “rt”
variable.

ARM64 + Non-optimizing GCC 4.9

And again, we’ll work on the 64-bit example which was already used: 1.28.5 on
page 413. The code is more verbose, as usual.

Listing 1.300: Non-optimizing GCC (Linaro) 4.8
f:

sub sp, sp, #32
str x0, [sp,8] ; store "a" value to Register Save Area
str wzr, [sp,24] ; rt=0
str wzr, [sp,28] ; i=0
b .L2

.L4:
ldr w0, [sp,28]
mov x1, 1
lsl x0, x1, x0 ; X0 = X1<<X0 = 1<<i
mov x1, x0

; X1 = 1<<i
ldr x0, [sp,8]

; X0 = a
and x0, x1, x0

; X0 = X1&X0 = (1<<i) & a
; X0 contain zero? then jump to .L3, skipping "rt" increment

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

419
cmp x0, xzr
beq .L3

; rt++
ldr w0, [sp,24]
add w0, w0, 1
str w0, [sp,24]

.L3:
; i++

ldr w0, [sp,28]
add w0, w0, 1
str w0, [sp,28]

.L2:
; i<=63? then jump to .L4

ldr w0, [sp,28]
cmp w0, 63
ble .L4

; return rt
ldr w0, [sp,24]
add sp, sp, 32
ret

MIPS

Non-optimizing GCC

Listing 1.301: Non-optimizing GCC 4.4.5 (IDA)
f:
; IDA is not aware of variable names, we gave them manually:
rt = -0x10
i = -0xC
var_4 = -4
a = 0

addiu $sp, -0x18
sw $fp, 0x18+var_4($sp)
move $fp, $sp
sw $a0, 0x18+a($fp)

; initialize rt and i variables to zero:
sw $zero, 0x18+rt($fp)
sw $zero, 0x18+i($fp)

; jump to loop check instructions:
b loc_68
or $at, $zero ; branch delay slot, NOP

loc_20:
li $v1, 1
lw $v0, 0x18+i($fp)
or $at, $zero ; load delay slot, NOP
sllv $v0, $v1, $v0

; $v0 = 1<<i
move $v1, $v0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

420
lw $v0, 0x18+a($fp)
or $at, $zero ; load delay slot, NOP
and $v0, $v1, $v0

; $v0 = a & (1<<i)
; is a & (1<<i) equals to zero? jump to loc_58 then:

beqz $v0, loc_58
or $at, $zero

; no jump occurred, that means a & (1<<i)!=0, so increment "rt" then:
lw $v0, 0x18+rt($fp)
or $at, $zero ; load delay slot, NOP
addiu $v0, 1
sw $v0, 0x18+rt($fp)

loc_58:
; increment i:

lw $v0, 0x18+i($fp)
or $at, $zero ; load delay slot, NOP
addiu $v0, 1
sw $v0, 0x18+i($fp)

loc_68:
; load i and compare it with 0x20 (32).
; jump to loc_20 if it is less then 0x20 (32):

lw $v0, 0x18+i($fp)
or $at, $zero ; load delay slot, NOP
slti $v0, 0x20 # ' '
bnez $v0, loc_20
or $at, $zero ; branch delay slot, NOP

; function epilogue. return rt:
lw $v0, 0x18+rt($fp)
move $sp, $fp ; load delay slot
lw $fp, 0x18+var_4($sp)
addiu $sp, 0x18 ; load delay slot
jr $ra
or $at, $zero ; branch delay slot, NOP

That is verbose: all local variables are located in the local stack and reloaded each
time they’re needed.
The SLLV instruction is “Shift Word Left Logical Variable”, it differs from SLL only in
that the shift amount is encoded in the SLL instruction (and is fixed, as a conse-
quence), but SLLV takes shift amount from a register.

Optimizing GCC

That is terser. There are two shift instructions instead of one. Why?
It’s possible to replace the first SLLV instruction with an unconditional branch instruc-
tion that jumps right to the second SLLV. But this is another branching instruction in
the function, and it’s always favorable to get rid of them: 2.4.1 on page 575.

Listing 1.302: Optimizing GCC 4.4.5 (IDA)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

421
f:
; $a0=a
; rt variable will reside in $v0:

move $v0, $zero
; i variable will reside in $v1:

move $v1, $zero
li $t0, 1
li $a3, 32
sllv $a1, $t0, $v1

; $a1 = $t0<<$v1 = 1<<i

loc_14:
and $a1, $a0

; $a1 = a&(1<<i)
; increment i:

addiu $v1, 1
; jump to loc_28 if a&(1<<i)==0 and increment rt:

beqz $a1, loc_28
addiu $a2, $v0, 1

; if BEQZ was not triggered, save updated rt into $v0:
move $v0, $a2

loc_28:
; if i!=32, jump to loc_14 and also prepare next shifted value:

bne $v1, $a3, loc_14
sllv $a1, $t0, $v1

; return
jr $ra
or $at, $zero ; branch delay slot, NOP

1.28.6 Conclusion
Analogous to the C/C++ shifting operators ≪ and ≫, the shift instructions in x86 are
SHR/SHL (for unsigned values) and SAR/SHL (for signed values).
The shift instructions in ARM are LSR/LSL (for unsigned values) and ASR/LSL (for
signed values).
It’s also possible to add shift suffix to some instructions (which are called “data
processing instructions”).

Check for specific bit (known at compile stage)

Test if the 0b1000000 bit (0x40) is present in the register’s value:

Listing 1.303: C/C++
if (input&0x40)

...

Listing 1.304: x86
TEST REG, 40h

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

422
JNZ is_set
; bit is not set

Listing 1.305: x86
TEST REG, 40h
JZ is_cleared
; bit is set

Listing 1.306: ARM (ARM mode)
TST REG, #0x40
BNE is_set
; bit is not set

Sometimes, AND is used instead of TEST, but the flags that are set are the same.

Check for specific bit (specified at runtime)

This is usually done by this C/C++ code snippet (shift value by n bits right, then cut
off lowest bit):

Listing 1.307: C/C++
if ((value>>n)&1)

....

This is usually implemented in x86 code as:

Listing 1.308: x86
; REG=input_value
; CL=n
SHR REG, CL
AND REG, 1

Or (shift 1 bit n times left, isolate this bit in input value and check if it’s not zero):

Listing 1.309: C/C++
if (value & (1<<n))

....

This is usually implemented in x86 code as:

Listing 1.310: x86
; CL=n
MOV REG, 1
SHL REG, CL
AND input_value, REG

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

423
Set specific bit (known at compile stage)

Listing 1.311: C/C++
value=value|0x40;

Listing 1.312: x86
OR REG, 40h

Listing 1.313: ARM (ARM mode) and ARM64
ORR R0, R0, #0x40

Set specific bit (specified at runtime)

Listing 1.314: C/C++
value=value|(1<<n);

This is usually implemented in x86 code as:

Listing 1.315: x86
; CL=n
MOV REG, 1
SHL REG, CL
OR input_value, REG

Clear specific bit (known at compile stage)

Just apply AND operation with the inverted value:

Listing 1.316: C/C++
value=value&(~0x40);

Listing 1.317: x86
AND REG, 0FFFFFFBFh

Listing 1.318: x64
AND REG, 0FFFFFFFFFFFFFFBFh

This is actually leaving all bits set except one.
ARM in ARM mode has BIC instruction, which works like the NOT +AND instruction
pair:

Listing 1.319: ARM (ARM mode)
BIC R0, R0, #0x40

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

424
Clear specific bit (specified at runtime)

Listing 1.320: C/C++
value=value&(~(1<<n));

Listing 1.321: x86
; CL=n
MOV REG, 1
SHL REG, CL
NOT REG
AND input_value, REG

1.28.7 Exercises
• http://challenges.re/67

• http://challenges.re/68

• http://challenges.re/69

• http://challenges.re/70

1.29 Linear congruential generator as pseudoran-
dom number generator

Perhaps, the linear congruential generator is the simplest possible way to generate
random numbers.
It’s not in favour nowadays150, but it’s so simple (just onemultiplication, one addition
and AND operation), that we can use it as an example.
#include <stdint.h>

// constants from the Numerical Recipes book
#define RNG_a 1664525
#define RNG_c 1013904223

static uint32_t rand_state;

void my_srand (uint32_t init)
{

rand_state=init;
}

int my_rand ()
{

rand_state=rand_state*RNG_a;
rand_state=rand_state+RNG_c;

150Mersenne twister is better

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://challenges.re/67
http://challenges.re/68
http://challenges.re/69
http://challenges.re/70
https://yurichev.com/contact.html
https://yurichev.com/contact.html

425
return rand_state & 0x7fff;

}

There are two functions: the first one is used to initialize the internal state, and the
second one is called to generate pseudorandom numbers.
We see that two constants are used in the algorithm. They are taken from [William H.
Press and Saul A. Teukolsky andWilliam T. Vetterling and Brian P. Flannery, Numerical
Recipes, (2007)].
Let’s define them using a #define C/C++ statement. It’s a macro.
The difference between a C/C++macro and a constant is that all macros are replaced
with their value by C/C++ preprocessor, and they don’t take any memory, unlike
variables.
In contrast, a constant is a read-only variable.
It’s possible to take a pointer (or address) of a constant variable, but impossible to
do so with a macro.
The last AND operation is needed because by C-standard my_rand() has to return a
value in the 0..32767 range.
If you want to get 32-bit pseudorandom values, just omit the last AND operation.

1.29.1 x86

Listing 1.322: Optimizing MSVC 2013
_BSS SEGMENT
_rand_state DD 01H DUP (?)
_BSS ENDS

_init$ = 8
_srand PROC

mov eax, DWORD PTR _init$[esp-4]
mov DWORD PTR _rand_state, eax
ret 0

_srand ENDP

_TEXT SEGMENT
_rand PROC

imul eax, DWORD PTR _rand_state, 1664525
add eax, 1013904223 ; 3c6ef35fH
mov DWORD PTR _rand_state, eax
and eax, 32767 ; 00007fffH
ret 0

_rand ENDP

_TEXT ENDS

Here we see it: both constants are embedded into the code. There is no memory
allocated for them.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

426
The my_srand() function just copies its input value into the internal
rand_state variable.
my_rand() takes it, calculates the next rand_state, cuts it and leaves it in the EAX
register.
The non-optimized version is more verbose:

Listing 1.323: Non-optimizing MSVC 2013
_BSS SEGMENT
_rand_state DD 01H DUP (?)
_BSS ENDS

_init$ = 8
_srand PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _init$[ebp]
mov DWORD PTR _rand_state, eax
pop ebp
ret 0

_srand ENDP

_TEXT SEGMENT
_rand PROC

push ebp
mov ebp, esp
imul eax, DWORD PTR _rand_state, 1664525
mov DWORD PTR _rand_state, eax
mov ecx, DWORD PTR _rand_state
add ecx, 1013904223 ; 3c6ef35fH
mov DWORD PTR _rand_state, ecx
mov eax, DWORD PTR _rand_state
and eax, 32767 ; 00007fffH
pop ebp
ret 0

_rand ENDP

_TEXT ENDS

1.29.2 x64
The x64 version is mostly the same and uses 32-bit registers instead of 64-bit ones
(because we are working with int values here).
But my_srand() takes its input argument from the ECX register rather than from
stack:

Listing 1.324: Optimizing MSVC 2013 x64
_BSS SEGMENT
rand_state DD 01H DUP (?)
_BSS ENDS

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

427

init$ = 8
my_srand PROC
; ECX = input argument

mov DWORD PTR rand_state, ecx
ret 0

my_srand ENDP

_TEXT SEGMENT
my_rand PROC

imul eax, DWORD PTR rand_state, 1664525 ; 0019660dH
add eax, 1013904223 ; 3c6ef35fH
mov DWORD PTR rand_state, eax
and eax, 32767 ; 00007fffH
ret 0

my_rand ENDP

_TEXT ENDS

GCC compiler generates mostly the same code.

1.29.3 32-bit ARM

Listing 1.325: Optimizing Keil 6/2013 (ARM mode)
my_srand PROC

LDR r1,|L0.52| ; load pointer to rand_state
STR r0,[r1,#0] ; save rand_state
BX lr
ENDP

my_rand PROC
LDR r0,|L0.52| ; load pointer to rand_state
LDR r2,|L0.56| ; load RNG_a
LDR r1,[r0,#0] ; load rand_state
MUL r1,r2,r1
LDR r2,|L0.60| ; load RNG_c
ADD r1,r1,r2
STR r1,[r0,#0] ; save rand_state

; AND with 0x7FFF:
LSL r0,r1,#17
LSR r0,r0,#17
BX lr
ENDP

|L0.52|
DCD ||.data||

|L0.56|
DCD 0x0019660d

|L0.60|
DCD 0x3c6ef35f

AREA ||.data||, DATA, ALIGN=2

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

428

rand_state
DCD 0x00000000

It’s not possible to embed 32-bit constants into ARM instructions, so Keil has to
place them externally and load them additionally. One interesting thing is that it’s
not possible to embed the 0x7FFF constant as well. So what Keil does is shifting
rand_state left by 17 bits and then shifting it right by 17 bits. This is analogous to
the (rand_state≪ 17)≫ 17 statement in C/C++. It seems to be useless operation, but
what it does is clearing the high 17 bits, leaving the low 15 bits intact, and that’s our
goal after all.

Optimizing Keil for Thumb mode generates mostly the same code.

1.29.4 MIPS
Listing 1.326: Optimizing GCC 4.4.5 (IDA)

my_srand:
; store $a0 to rand_state:

lui $v0, (rand_state >> 16)
jr $ra
sw $a0, rand_state

my_rand:
; load rand_state to $v0:

lui $v1, (rand_state >> 16)
lw $v0, rand_state
or $at, $zero ; load delay slot

; multiplicate rand_state in $v0 by 1664525 (RNG_a):
sll $a1, $v0, 2
sll $a0, $v0, 4
addu $a0, $a1, $a0
sll $a1, $a0, 6
subu $a0, $a1, $a0
addu $a0, $v0
sll $a1, $a0, 5
addu $a0, $a1
sll $a0, 3
addu $v0, $a0, $v0
sll $a0, $v0, 2
addu $v0, $a0

; add 1013904223 (RNG_c)
; the LI instruction is coalesced by IDA from LUI and ORI

li $a0, 0x3C6EF35F
addu $v0, $a0

; store to rand_state:
sw $v0, (rand_state & 0xFFFF)($v1)
jr $ra
andi $v0, 0x7FFF ; branch delay slot

Wow, here we see only one constant (0x3C6EF35F or 1013904223). Where is the
other one (1664525)?

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

429
It seems that multiplication by 1664525 is performed by just using shifts and addi-
tions! Let’s check this assumption:
#define RNG_a 1664525

int f (int a)
{

return a*RNG_a;
}

Listing 1.327: Optimizing GCC 4.4.5 (IDA)
f:

sll $v1, $a0, 2
sll $v0, $a0, 4
addu $v0, $v1, $v0
sll $v1, $v0, 6
subu $v0, $v1, $v0
addu $v0, $a0
sll $v1, $v0, 5
addu $v0, $v1
sll $v0, 3
addu $a0, $v0, $a0
sll $v0, $a0, 2
jr $ra
addu $v0, $a0, $v0 ; branch delay slot

Indeed!

MIPS relocations

We will also focus on how such operations as load frommemory and store to memory
actually work.
The listings here are produced by IDA, which hides some details.
We’ll run objdump twice: to get a disassembled listing and also relocations list:

Listing 1.328: Optimizing GCC 4.4.5 (objdump)
objdump -D rand_O3.o

...

00000000 <my_srand>:
0: 3c020000 lui v0,0x0
4: 03e00008 jr ra
8: ac440000 sw a0,0(v0)

0000000c <my_rand>:
c: 3c030000 lui v1,0x0
10: 8c620000 lw v0,0(v1)
14: 00200825 move at,at
18: 00022880 sll a1,v0,0x2

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

430
1c: 00022100 sll a0,v0,0x4
20: 00a42021 addu a0,a1,a0
24: 00042980 sll a1,a0,0x6
28: 00a42023 subu a0,a1,a0
2c: 00822021 addu a0,a0,v0
30: 00042940 sll a1,a0,0x5
34: 00852021 addu a0,a0,a1
38: 000420c0 sll a0,a0,0x3
3c: 00821021 addu v0,a0,v0
40: 00022080 sll a0,v0,0x2
44: 00441021 addu v0,v0,a0
48: 3c043c6e lui a0,0x3c6e
4c: 3484f35f ori a0,a0,0xf35f
50: 00441021 addu v0,v0,a0
54: ac620000 sw v0,0(v1)
58: 03e00008 jr ra
5c: 30427fff andi v0,v0,0x7fff

...

objdump -r rand_O3.o

...

RELOCATION RECORDS FOR [.text]:
OFFSET TYPE VALUE
00000000 R_MIPS_HI16 .bss
00000008 R_MIPS_LO16 .bss
0000000c R_MIPS_HI16 .bss
00000010 R_MIPS_LO16 .bss
00000054 R_MIPS_LO16 .bss

...

Let’s consider the two relocations for the my_srand() function.
The first one, for address 0 has a type of R_MIPS_HI16 and the second one for address
8 has a type of R_MIPS_LO16.
That implies that address of the beginning of the .bss segment is to be written into
the instructions at address of 0 (high part of address) and 8 (low part of address).
The rand_state variable is at the very start of the .bss segment.
So we see zeros in the operands of instructions LUI and SW, because nothing is there
yet— the compiler don’t know what to write there.
The linker will fix this, and the high part of the address will be written into the operand
of LUI and the low part of the address—to the operand of SW.
SW will sum up the low part of the address and what is in register $V0 (the high part
is there).
It’s the same story with the my_rand() function: R_MIPS_HI16 relocation instructs
the linker to write the high part of the .bss segment address into instruction LUI.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

431
So the high part of the rand_state variable address is residing in register $V1.
The LW instruction at address 0x10 sums up the high and low parts and loads the
value of the rand_state variable into $V0.
The SW instruction at address 0x54 do the summing again and then stores the new
value to the rand_state global variable.
IDA processes relocations while loading, thus hiding these details, but we should
keep them in mind.

1.29.5 Thread-safe version of the example
The thread-safe version of the example is to be demonstrated later: 6.2.1 on page 944.

1.30 Structures
A C/C++ structure, with some assumptions, is just a set of variables, always stored
in memory together, not necessary of the same type 151.

1.30.1 MSVC: SYSTEMTIME example
Let’s take the SYSTEMTIME152 win32 structure that describes time.
This is how it’s defined:

Listing 1.329: WinBase.h
typedef struct _SYSTEMTIME {

WORD wYear;
WORD wMonth;
WORD wDayOfWeek;
WORD wDay;
WORD wHour;
WORD wMinute;
WORD wSecond;
WORD wMilliseconds;

} SYSTEMTIME, *PSYSTEMTIME;

Let’s write a C function to get the current time:
#include <windows.h>
#include <stdio.h>

void main()
{

SYSTEMTIME t;
GetSystemTime (&t);

151AKA “heterogeneous container”
152MSDN: SYSTEMTIME structure

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/ms724950(VS.85).aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

432
printf ("%04d-%02d-%02d %02d:%02d:%02d\n",

t.wYear, t.wMonth, t.wDay,
t.wHour, t.wMinute, t.wSecond);

return;
};

We get (MSVC 2010):

Listing 1.330: MSVC 2010 /GS-
_t$ = -16 ; size = 16
_main PROC

push ebp
mov ebp, esp
sub esp, 16
lea eax, DWORD PTR _t$[ebp]
push eax
call DWORD PTR __imp__GetSystemTime@4
movzx ecx, WORD PTR _t$[ebp+12] ; wSecond
push ecx
movzx edx, WORD PTR _t$[ebp+10] ; wMinute
push edx
movzx eax, WORD PTR _t$[ebp+8] ; wHour
push eax
movzx ecx, WORD PTR _t$[ebp+6] ; wDay
push ecx
movzx edx, WORD PTR _t$[ebp+2] ; wMonth
push edx
movzx eax, WORD PTR _t$[ebp] ; wYear
push eax
push OFFSET $SG78811 ; '%04d-%02d-%02d %02d:%02d:%02d', 0aH, 00H
call _printf
add esp, 28
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

16 bytes are allocated for this structure in the local stack—that is exactly sizeof(WORD)*8
(there are 8 WORD variables in the structure).
Pay attention to the fact that the structure begins with the wYear field. It can be said
that a pointer to the SYSTEMTIME structure is passed to the GetSystemTime()153,
but it is also can be said that a pointer to the wYear field is passed, and that is the
same! GetSystemTime() writes the current year to the WORD pointer pointing to,
then shifts 2 bytes ahead, writes current month, etc., etc.

153MSDN: SYSTEMTIME structure

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/ms724950(VS.85).aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

433
OllyDbg

Let’s compile this example in MSVC 2010 with /GS- /MD keys and run it in OllyDbg.
Let’s open windows for data and stack at the address which is passed as the first
argument of the GetSystemTime() function, and let’s wait until it’s executed. We
see this:

Figure 1.104: OllyDbg: GetSystemTime() just executed

The system time of the function execution on my computer is 9 December 2014,
22:29:52:

Listing 1.331: printf() output
2014-12-09 22:29:52

So we see these 16 bytes in the data window:
DE 07 0C 00 02 00 09 00 16 00 1D 00 34 00 D4 03

Each two bytes represent one field of the structure. Since the endianness is little
endian, we see the low byte first and then the high one.
Hence, these are the values currently stored in memory:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

434
Hexadecimal number decimal number field name
0x07DE 2014 wYear
0x000C 12 wMonth
0x0002 2 wDayOfWeek
0x0009 9 wDay
0x0016 22 wHour
0x001D 29 wMinute
0x0034 52 wSecond
0x03D4 980 wMilliseconds

The same values are seen in the stack window, but they are grouped as 32-bit values.
And then printf() just takes the values it needs and outputs them to the console.
Some values aren’t output by printf() (wDayOfWeek and wMilliseconds), but they
are in memory right now, available for use.

Replacing the structure with array

The fact that the structure fields are just variables located side-by-side, can be easily
demonstrated by doing the following. Keeping in mind the SYSTEMTIME structure
description, it’s possible to rewrite this simple example like this:
#include <windows.h>
#include <stdio.h>

void main()
{

WORD array[8];
GetSystemTime (array);

printf ("%04d-%02d-%02d %02d:%02d:%02d\n",
array[0] /* wYear */, array[1] /* wMonth */, array[3] /* wDay */,
array[4] /* wHour */, array[5] /* wMinute */, array[6] /* wSecond ⤦

Ç */);

return;
};

The compiler grumbles a bit:
systemtime2.c(7) : warning C4133: 'function' : incompatible types - from '⤦

Ç WORD [8]' to 'LPSYSTEMTIME'

But nevertheless, it produces this code:

Listing 1.332: Non-optimizing MSVC 2010
$SG78573 DB '%04d-%02d-%02d %02d:%02d:%02d', 0aH, 00H

_array$ = -16 ; size = 16
_main PROC

push ebp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

435
mov ebp, esp
sub esp, 16
lea eax, DWORD PTR _array$[ebp]
push eax
call DWORD PTR __imp__GetSystemTime@4
movzx ecx, WORD PTR _array$[ebp+12] ; wSecond
push ecx
movzx edx, WORD PTR _array$[ebp+10] ; wMinute
push edx
movzx eax, WORD PTR _array$[ebp+8] ; wHoure
push eax
movzx ecx, WORD PTR _array$[ebp+6] ; wDay
push ecx
movzx edx, WORD PTR _array$[ebp+2] ; wMonth
push edx
movzx eax, WORD PTR _array$[ebp] ; wYear
push eax
push OFFSET $SG78573 ; '%04d-%02d-%02d %02d:%02d:%02d', 0aH, 00H
call _printf
add esp, 28
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

And it works just as the same!
It is very interesting that the result in assembly form cannot be distinguished from
the result of the previous compilation.
So by looking at this code, one cannot say for sure if there was a structure declared,
or an array.
Nevertheless, no sane person would do it, as it is not convenient.
Also the structure fields may be changed by developers, swapped, etc.
We will not study this example in OllyDbg, because it will be just the same as in the
case with the structure.

1.30.2 Let’s allocate space for a structure using malloc()
Sometimes it is simpler to place structures not in the local stack, but in the heap:
#include <windows.h>
#include <stdio.h>

void main()
{

SYSTEMTIME *t;

t=(SYSTEMTIME *)malloc (sizeof (SYSTEMTIME));

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

436
GetSystemTime (t);

printf ("%04d-%02d-%02d %02d:%02d:%02d\n",
t->wYear, t->wMonth, t->wDay,
t->wHour, t->wMinute, t->wSecond);

free (t);

return;
};

Let’s compile it now with optimization (/Ox) so it would be easy to see what we need.

Listing 1.333: Optimizing MSVC
_main PROC

push esi
push 16
call _malloc
add esp, 4
mov esi, eax
push esi
call DWORD PTR __imp__GetSystemTime@4
movzx eax, WORD PTR [esi+12] ; wSecond
movzx ecx, WORD PTR [esi+10] ; wMinute
movzx edx, WORD PTR [esi+8] ; wHour
push eax
movzx eax, WORD PTR [esi+6] ; wDay
push ecx
movzx ecx, WORD PTR [esi+2] ; wMonth
push edx
movzx edx, WORD PTR [esi] ; wYear
push eax
push ecx
push edx
push OFFSET $SG78833
call _printf
push esi
call _free
add esp, 32
xor eax, eax
pop esi
ret 0

_main ENDP

So, sizeof(SYSTEMTIME) = 16 and that is exact number of bytes to be allocated by
malloc(). It returns a pointer to a freshly allocated memory block in the EAX register,
which is then moved into the ESI register. GetSystemTime() win32 function takes
care of saving value in ESI, and that is why it is not saved here and continues to be
used after the GetSystemTime() call.
New instruction —MOVZX (Move with Zero eXtend). It may be used in most cases
as MOVSX, but it sets the remaining bits to 0. That’s because printf() requires a

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

437
32-bit int, but we got a WORD in the structure —that is 16-bit unsigned type. That’s
why by copying the value from a WORD into int, bits from 16 to 31 must be cleared,
because a random noise may be there, which is left from the previous operations on
the register(s).
In this example, it’s possible to represent the structure as an array of 8 WORDs:
#include <windows.h>
#include <stdio.h>

void main()
{

WORD *t;

t=(WORD *)malloc (16);

GetSystemTime (t);

printf ("%04d-%02d-%02d %02d:%02d:%02d\n",
t[0] /* wYear */, t[1] /* wMonth */, t[3] /* wDay */,
t[4] /* wHour */, t[5] /* wMinute */, t[6] /* wSecond */);

free (t);

return;
};

We get:

Listing 1.334: Optimizing MSVC
$SG78594 DB '%04d-%02d-%02d %02d:%02d:%02d', 0aH, 00H

_main PROC
push esi
push 16
call _malloc
add esp, 4
mov esi, eax
push esi
call DWORD PTR __imp__GetSystemTime@4
movzx eax, WORD PTR [esi+12]
movzx ecx, WORD PTR [esi+10]
movzx edx, WORD PTR [esi+8]
push eax
movzx eax, WORD PTR [esi+6]
push ecx
movzx ecx, WORD PTR [esi+2]
push edx
movzx edx, WORD PTR [esi]
push eax
push ecx
push edx
push OFFSET $SG78594

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

438
call _printf
push esi
call _free
add esp, 32
xor eax, eax
pop esi
ret 0

_main ENDP

Again, we got the code that cannot be distinguished from the previous one.
And again it has to be noted, you haven’t to do this in practice, unless you really
know what you are doing.

1.30.3 UNIX: struct tm
Linux

Let’s take the tm structure from time.h in Linux for example:
#include <stdio.h>
#include <time.h>

void main()
{

struct tm t;
time_t unix_time;

unix_time=time(NULL);

localtime_r (&unix_time, &t);

printf ("Year: %d\n", t.tm_year+1900);
printf ("Month: %d\n", t.tm_mon);
printf ("Day: %d\n", t.tm_mday);
printf ("Hour: %d\n", t.tm_hour);
printf ("Minutes: %d\n", t.tm_min);
printf ("Seconds: %d\n", t.tm_sec);

};

Let’s compile it in GCC 4.4.1:

Listing 1.335: GCC 4.4.1
main proc near

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 40h
mov dword ptr [esp], 0 ; first argument for time()
call time
mov [esp+3Ch], eax
lea eax, [esp+3Ch] ; take pointer to what time() returned
lea edx, [esp+10h] ; at ESP+10h struct tm will begin

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

439
mov [esp+4], edx ; pass pointer to the structure begin
mov [esp], eax ; pass pointer to result of time()
call localtime_r
mov eax, [esp+24h] ; tm_year
lea edx, [eax+76Ch] ; edx=eax+1900
mov eax, offset format ; "Year: %d\n"
mov [esp+4], edx
mov [esp], eax
call printf
mov edx, [esp+20h] ; tm_mon
mov eax, offset aMonthD ; "Month: %d\n"
mov [esp+4], edx
mov [esp], eax
call printf
mov edx, [esp+1Ch] ; tm_mday
mov eax, offset aDayD ; "Day: %d\n"
mov [esp+4], edx
mov [esp], eax
call printf
mov edx, [esp+18h] ; tm_hour
mov eax, offset aHourD ; "Hour: %d\n"
mov [esp+4], edx
mov [esp], eax
call printf
mov edx, [esp+14h] ; tm_min
mov eax, offset aMinutesD ; "Minutes: %d\n"
mov [esp+4], edx
mov [esp], eax
call printf
mov edx, [esp+10h]
mov eax, offset aSecondsD ; "Seconds: %d\n"
mov [esp+4], edx ; tm_sec
mov [esp], eax
call printf
leave
retn

main endp

Somehow, IDA did not write the local variables’ names in the local stack. But since we
already are experienced reverse engineers :-) we may do it without this information
in this simple example.
Please also pay attention to the lea edx, [eax+76Ch] —this instruction just adds
0x76C (1900) to value in EAX, but doesn’t modify any flags. See also the relevant
section about LEA (.1.6 on page 1299).

GDB

Let’s try to load the example into GDB 154:
154The date result is slightly corrected for demonstration purposes. Of course, it’s not possible to run
GDB that quickly, in the same second.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

440
Listing 1.336: GDB

dennis@ubuntuvm:~/polygon$ date
Mon Jun 2 18:10:37 EEST 2014
dennis@ubuntuvm:~/polygon$ gcc GCC_tm.c -o GCC_tm
dennis@ubuntuvm:~/polygon$ gdb GCC_tm
GNU gdb (GDB) 7.6.1-ubuntu
...
Reading symbols from /home/dennis/polygon/GCC_tm...(no debugging symbols ⤦

Ç found)...done.
(gdb) b printf
Breakpoint 1 at 0x8048330
(gdb) run
Starting program: /home/dennis/polygon/GCC_tm

Breakpoint 1, __printf (format=0x80485c0 "Year: %d\n") at printf.c:29
29 printf.c: No such file or directory.
(gdb) x/20x $esp
0xbffff0dc: 0x080484c3 0x080485c0 0x000007de 0x00000000
0xbffff0ec: 0x08048301 0x538c93ed 0x00000025 0x0000000a
0xbffff0fc: 0x00000012 0x00000002 0x00000005 0x00000072
0xbffff10c: 0x00000001 0x00000098 0x00000001 0x00002a30
0xbffff11c: 0x0804b090 0x08048530 0x00000000 0x00000000
(gdb)

We can easily find our structure in the stack. First, let’s see how it’s defined in time.h:

Listing 1.337: time.h
struct tm
{

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};

Pay attention that 32-bit int is used here instead of WORD in SYSTEMTIME. So, each
field occupies 32-bit.
Here are the fields of our structure in the stack:
0xbffff0dc: 0x080484c3 0x080485c0 0x000007de 0x00000000
0xbffff0ec: 0x08048301 0x538c93ed 0x00000025 sec 0x0000000a min
0xbffff0fc: 0x00000012 hour 0x00000002 mday 0x00000005 mon 0x00000072 ⤦

Ç year
0xbffff10c: 0x00000001 wday 0x00000098 yday 0x00000001 isdst 0x00002a30
0xbffff11c: 0x0804b090 0x08048530 0x00000000 0x00000000

Or as a table:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

441
Hexadecimal number decimal number field name
0x00000025 37 tm_sec
0x0000000a 10 tm_min
0x00000012 18 tm_hour
0x00000002 2 tm_mday
0x00000005 5 tm_mon
0x00000072 114 tm_year
0x00000001 1 tm_wday
0x00000098 152 tm_yday
0x00000001 1 tm_isdst

Just like SYSTEMTIME (1.30.1 on page 431),
there are also other fields available that are not used, like tm_wday, tm_yday, tm_isdst.

ARM

Optimizing Keil 6/2013 (Thumb mode)

Same example:

Listing 1.338: Optimizing Keil 6/2013 (Thumb mode)
var_38 = -0x38
var_34 = -0x34
var_30 = -0x30
var_2C = -0x2C
var_28 = -0x28
var_24 = -0x24
timer = -0xC

PUSH {LR}
MOVS R0, #0 ; timer
SUB SP, SP, #0x34
BL time
STR R0, [SP,#0x38+timer]
MOV R1, SP ; tp
ADD R0, SP, #0x38+timer ; timer
BL localtime_r
LDR R1, =0x76C
LDR R0, [SP,#0x38+var_24]
ADDS R1, R0, R1
ADR R0, aYearD ; "Year: %d\n"
BL __2printf
LDR R1, [SP,#0x38+var_28]
ADR R0, aMonthD ; "Month: %d\n"
BL __2printf
LDR R1, [SP,#0x38+var_2C]
ADR R0, aDayD ; "Day: %d\n"
BL __2printf
LDR R1, [SP,#0x38+var_30]
ADR R0, aHourD ; "Hour: %d\n"

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

442
BL __2printf
LDR R1, [SP,#0x38+var_34]
ADR R0, aMinutesD ; "Minutes: %d\n"
BL __2printf
LDR R1, [SP,#0x38+var_38]
ADR R0, aSecondsD ; "Seconds: %d\n"
BL __2printf
ADD SP, SP, #0x34
POP {PC}

Optimizing Xcode 4.6.3 (LLVM) (Thumb-2 mode)

IDA “knows” the tm structure (because IDA “knows” the types of the arguments of
library functions like localtime_r()),
so it shows here structure elements accesses and their names.

Listing 1.339: Optimizing Xcode 4.6.3 (LLVM) (Thumb-2 mode)
var_38 = -0x38
var_34 = -0x34

PUSH {R7,LR}
MOV R7, SP
SUB SP, SP, #0x30
MOVS R0, #0 ; time_t *
BLX _time
ADD R1, SP, #0x38+var_34 ; struct tm *
STR R0, [SP,#0x38+var_38]
MOV R0, SP ; time_t *
BLX _localtime_r
LDR R1, [SP,#0x38+var_34.tm_year]
MOV R0, 0xF44 ; "Year: %d\n"
ADD R0, PC ; char *
ADDW R1, R1, #0x76C
BLX _printf
LDR R1, [SP,#0x38+var_34.tm_mon]
MOV R0, 0xF3A ; "Month: %d\n"
ADD R0, PC ; char *
BLX _printf
LDR R1, [SP,#0x38+var_34.tm_mday]
MOV R0, 0xF35 ; "Day: %d\n"
ADD R0, PC ; char *
BLX _printf
LDR R1, [SP,#0x38+var_34.tm_hour]
MOV R0, 0xF2E ; "Hour: %d\n"
ADD R0, PC ; char *
BLX _printf
LDR R1, [SP,#0x38+var_34.tm_min]
MOV R0, 0xF28 ; "Minutes: %d\n"
ADD R0, PC ; char *
BLX _printf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

443
LDR R1, [SP,#0x38+var_34]
MOV R0, 0xF25 ; "Seconds: %d\n"
ADD R0, PC ; char *
BLX _printf
ADD SP, SP, #0x30
POP {R7,PC}

...

00000000 tm struc ; (sizeof=0x2C, standard type)
00000000 tm_sec DCD ?
00000004 tm_min DCD ?
00000008 tm_hour DCD ?
0000000C tm_mday DCD ?
00000010 tm_mon DCD ?
00000014 tm_year DCD ?
00000018 tm_wday DCD ?
0000001C tm_yday DCD ?
00000020 tm_isdst DCD ?
00000024 tm_gmtoff DCD ?
00000028 tm_zone DCD ? ; offset
0000002C tm ends

MIPS

Listing 1.340: Optimizing GCC 4.4.5 (IDA)
1 main:
2
3 ; IDA is not aware of structure field names, we named them manually:
4
5 var_40 = -0x40
6 var_38 = -0x38
7 seconds = -0x34
8 minutes = -0x30
9 hour = -0x2C
10 day = -0x28
11 month = -0x24
12 year = -0x20
13 var_4 = -4
14
15 lui $gp, (__gnu_local_gp >> 16)
16 addiu $sp, -0x50
17 la $gp, (__gnu_local_gp & 0xFFFF)
18 sw $ra, 0x50+var_4($sp)
19 sw $gp, 0x50+var_40($sp)
20 lw $t9, (time & 0xFFFF)($gp)
21 or $at, $zero ; load delay slot, NOP
22 jalr $t9
23 move $a0, $zero ; branch delay slot, NOP
24 lw $gp, 0x50+var_40($sp)
25 addiu $a0, $sp, 0x50+var_38
26 lw $t9, (localtime_r & 0xFFFF)($gp)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

444
27 addiu $a1, $sp, 0x50+seconds
28 jalr $t9
29 sw $v0, 0x50+var_38($sp) ; branch delay slot
30 lw $gp, 0x50+var_40($sp)
31 lw $a1, 0x50+year($sp)
32 lw $t9, (printf & 0xFFFF)($gp)
33 la $a0, $LC0 # "Year: %d\n"
34 jalr $t9
35 addiu $a1, 1900 ; branch delay slot
36 lw $gp, 0x50+var_40($sp)
37 lw $a1, 0x50+month($sp)
38 lw $t9, (printf & 0xFFFF)($gp)
39 lui $a0, ($LC1 >> 16) # "Month: %d\n"
40 jalr $t9
41 la $a0, ($LC1 & 0xFFFF) # "Month: %d\n" ; branch delay slot
42 lw $gp, 0x50+var_40($sp)
43 lw $a1, 0x50+day($sp)
44 lw $t9, (printf & 0xFFFF)($gp)
45 lui $a0, ($LC2 >> 16) # "Day: %d\n"
46 jalr $t9
47 la $a0, ($LC2 & 0xFFFF) # "Day: %d\n" ; branch delay slot
48 lw $gp, 0x50+var_40($sp)
49 lw $a1, 0x50+hour($sp)
50 lw $t9, (printf & 0xFFFF)($gp)
51 lui $a0, ($LC3 >> 16) # "Hour: %d\n"
52 jalr $t9
53 la $a0, ($LC3 & 0xFFFF) # "Hour: %d\n" ; branch delay slot
54 lw $gp, 0x50+var_40($sp)
55 lw $a1, 0x50+minutes($sp)
56 lw $t9, (printf & 0xFFFF)($gp)
57 lui $a0, ($LC4 >> 16) # "Minutes: %d\n"
58 jalr $t9
59 la $a0, ($LC4 & 0xFFFF) # "Minutes: %d\n" ; branch delay slot
60 lw $gp, 0x50+var_40($sp)
61 lw $a1, 0x50+seconds($sp)
62 lw $t9, (printf & 0xFFFF)($gp)
63 lui $a0, ($LC5 >> 16) # "Seconds: %d\n"
64 jalr $t9
65 la $a0, ($LC5 & 0xFFFF) # "Seconds: %d\n" ; branch delay slot
66 lw $ra, 0x50+var_4($sp)
67 or $at, $zero ; load delay slot, NOP
68 jr $ra
69 addiu $sp, 0x50
70
71 $LC0: .ascii "Year: %d\n"<0>
72 $LC1: .ascii "Month: %d\n"<0>
73 $LC2: .ascii "Day: %d\n"<0>
74 $LC3: .ascii "Hour: %d\n"<0>
75 $LC4: .ascii "Minutes: %d\n"<0>
76 $LC5: .ascii "Seconds: %d\n"<0>

This is an example where the branch delay slots can confuse us.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

445
For example, there is the instruction addiu $a1, 1900 at line 35 which adds 1900
to the year number.
It’s executed before the corresponding JALR at line 34, do not forget about it.

Structure as a set of values

In order to illustrate that the structure is just variables laying side-by-side in one
place, let’s rework our example while looking at the tm structure definition again:
listing.1.337.
#include <stdio.h>
#include <time.h>

void main()
{

int tm_sec, tm_min, tm_hour, tm_mday, tm_mon, tm_year, tm_wday, tm_yday⤦
Ç , tm_isdst;
time_t unix_time;

unix_time=time(NULL);

localtime_r (&unix_time, &tm_sec);

printf ("Year: %d\n", tm_year+1900);
printf ("Month: %d\n", tm_mon);
printf ("Day: %d\n", tm_mday);
printf ("Hour: %d\n", tm_hour);
printf ("Minutes: %d\n", tm_min);
printf ("Seconds: %d\n", tm_sec);

};

N.B. The pointer to the tm_sec field is passed into localtime_r, i.e., to the first
element of the “structure”.
The compiler warns us:

Listing 1.341: GCC 4.7.3
GCC_tm2.c: In function 'main':
GCC_tm2.c:11:5: warning: passing argument 2 of 'localtime_r' from ⤦

Ç incompatible pointer type [enabled by default]
In file included from GCC_tm2.c:2:0:
/usr/include/time.h:59:12: note: expected 'struct tm *' but argument is of ⤦

Ç type 'int *'

But nevertheless, it generates this:

Listing 1.342: GCC 4.7.3
main proc near

var_30 = dword ptr -30h
var_2C = dword ptr -2Ch

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

446
unix_time = dword ptr -1Ch
tm_sec = dword ptr -18h
tm_min = dword ptr -14h
tm_hour = dword ptr -10h
tm_mday = dword ptr -0Ch
tm_mon = dword ptr -8
tm_year = dword ptr -4

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 30h
call __main
mov [esp+30h+var_30], 0 ; arg 0
call time
mov [esp+30h+unix_time], eax
lea eax, [esp+30h+tm_sec]
mov [esp+30h+var_2C], eax
lea eax, [esp+30h+unix_time]
mov [esp+30h+var_30], eax
call localtime_r
mov eax, [esp+30h+tm_year]
add eax, 1900
mov [esp+30h+var_2C], eax
mov [esp+30h+var_30], offset aYearD ; "Year: %d\n"
call printf
mov eax, [esp+30h+tm_mon]
mov [esp+30h+var_2C], eax
mov [esp+30h+var_30], offset aMonthD ; "Month: %d\n"
call printf
mov eax, [esp+30h+tm_mday]
mov [esp+30h+var_2C], eax
mov [esp+30h+var_30], offset aDayD ; "Day: %d\n"
call printf
mov eax, [esp+30h+tm_hour]
mov [esp+30h+var_2C], eax
mov [esp+30h+var_30], offset aHourD ; "Hour: %d\n"
call printf
mov eax, [esp+30h+tm_min]
mov [esp+30h+var_2C], eax
mov [esp+30h+var_30], offset aMinutesD ; "Minutes: %d\n"
call printf
mov eax, [esp+30h+tm_sec]
mov [esp+30h+var_2C], eax
mov [esp+30h+var_30], offset aSecondsD ; "Seconds: %d\n"
call printf
leave
retn

main endp

This code is identical to what we saw previously and it is not possible to say, was it
a structure in original source code or just a pack of variables.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

447
And this works. However, it is not recommended to do this in practice.
Usually, non-optimizing compilers allocates variables in the local stack in the same
order as they were declared in the function.
Nevertheless, there is no guarantee.
By the way, some other compiler may warn about the tm_year, tm_mon, tm_mday,
tm_hour, tm_min variables, but not tm_sec are used without being initialized.
Indeed, the compiler is not aware that these are to be filled by
localtime_r() function.
We chose this example, since all structure fields are of type int.
This would not work if structure fields are 16-bit (WORD), like in the case of the
SYSTEMTIME structure—GetSystemTime() will fill them incorrectly (because the lo-
cal variables are aligned on a 32-bit boundary). Read more about it in next section:
“Fields packing in structure” (1.30.4 on page 451).
So, a structure is just a pack of variables laying in one place, side-by-side. We could
say that the structure is the instruction to the compiler, directing it to hold variables
in one place. By the way, in some very early C versions (before 1972), there were no
structures at all [Dennis M. Ritchie, The development of the C language, (1993)]155.
There is no debugger example here: it is just the same as you already saw.

Structure as an array of 32-bit words

#include <stdio.h>
#include <time.h>

void main()
{

struct tm t;
time_t unix_time;
int i;

unix_time=time(NULL);

localtime_r (&unix_time, &t);

for (i=0; i<9; i++)
{

int tmp=((int*)&t)[i];
printf ("0x%08X (%d)\n", tmp, tmp);

};
};

We just cast a pointer to structure to an array of int’s. And that works! We run the
example at 23:51:45 26-July-2014.
155Also available as pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/mirrors/C/dmr-The%20Development%20of%20the%20C%20Language-1993.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

448

0x0000002D (45)
0x00000033 (51)
0x00000017 (23)
0x0000001A (26)
0x00000006 (6)
0x00000072 (114)
0x00000006 (6)
0x000000CE (206)
0x00000001 (1)

The variables here are in the same order as they are enumerated in the definition of
the structure: 1.337 on page 440.
Here is how it gets compiled:

Listing 1.343: Optimizing GCC 4.8.1
main proc near

push ebp
mov ebp, esp
push esi
push ebx
and esp, 0FFFFFFF0h
sub esp, 40h
mov dword ptr [esp], 0 ; timer
lea ebx, [esp+14h]
call _time
lea esi, [esp+38h]
mov [esp+4], ebx ; tp
mov [esp+10h], eax
lea eax, [esp+10h]
mov [esp], eax ; timer
call _localtime_r
nop
lea esi, [esi+0] ; NOP

loc_80483D8:
; EBX here is pointer to structure,
; ESI is the pointer to the end of it.

mov eax, [ebx] ; get 32-bit word from array
add ebx, 4 ; next field in structure
mov dword ptr [esp+4], offset a0x08xD ; "0x%08X (%d)\n"
mov dword ptr [esp], 1
mov [esp+0Ch], eax ; pass value to printf()
mov [esp+8], eax ; pass value to printf()
call ___printf_chk
cmp ebx, esi ; meet structure end?
jnz short loc_80483D8 ; no - load next value then
lea esp, [ebp-8]
pop ebx
pop esi
pop ebp
retn

main endp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

449
Indeed: the space in the local stack is first treated as a structure, and then it’s
treated as an array.
It’s even possible to modify the fields of the structure through this pointer.
And again, it’s dubiously hackish way to do things, not recommended for use in
production code.

Exercise

As an exercise, try to modify (increase by 1) the current month number, treating the
structure as an array.

Structure as an array of bytes

We can go even further. Let’s cast the pointer to an array of bytes and dump it:
#include <stdio.h>
#include <time.h>

void main()
{

struct tm t;
time_t unix_time;
int i, j;

unix_time=time(NULL);

localtime_r (&unix_time, &t);

for (i=0; i<9; i++)
{

for (j=0; j<4; j++)
printf ("0x%02X ", ((unsigned char*)&t)[i*4+j]);

printf ("\n");
};

};

0x2D 0x00 0x00 0x00
0x33 0x00 0x00 0x00
0x17 0x00 0x00 0x00
0x1A 0x00 0x00 0x00
0x06 0x00 0x00 0x00
0x72 0x00 0x00 0x00
0x06 0x00 0x00 0x00
0xCE 0x00 0x00 0x00
0x01 0x00 0x00 0x00

We also run this example at 23:51:45 26-July-2014 156. The values are just the same
as in the previous dump (1.30.3 on the previous page), and of course, the lowest
156The time and date are the same for demonstration purposes. Byte values are fixed up.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

450
byte goes first, because this is a little-endian architecture (2.2 on page 572).

Listing 1.344: Optimizing GCC 4.8.1
main proc near

push ebp
mov ebp, esp
push edi
push esi
push ebx
and esp, 0FFFFFFF0h
sub esp, 40h
mov dword ptr [esp], 0 ; timer
lea esi, [esp+14h]
call _time
lea edi, [esp+38h] ; struct end
mov [esp+4], esi ; tp
mov [esp+10h], eax
lea eax, [esp+10h]
mov [esp], eax ; timer
call _localtime_r
lea esi, [esi+0] ; NOP

; ESI here is the pointer to structure in local stack.
; EDI is the pointer to structure end.
loc_8048408:

xor ebx, ebx ; j=0

loc_804840A:
movzx eax, byte ptr [esi+ebx] ; load byte
add ebx, 1 ; j=j+1
mov dword ptr [esp+4], offset a0x02x ; "0x%02X "
mov dword ptr [esp], 1
mov [esp+8], eax ; pass loaded byte to printf()
call ___printf_chk
cmp ebx, 4
jnz short loc_804840A

; print carriage return character (CR)
mov dword ptr [esp], 0Ah ; c
add esi, 4
call _putchar
cmp esi, edi ; meet struct end?
jnz short loc_8048408 ; j=0
lea esp, [ebp-0Ch]
pop ebx
pop esi
pop edi
pop ebp
retn

main endp

GNU Scientific Library: Representation of complex numbers

This is a relatively rare case when an array is used instead of a structure, on purpose:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

451

Representation of complex numbers
=================================

Complex numbers are represented using the type :code:`gsl_complex`. The
internal representation of this type may vary across platforms and
should not be accessed directly. The functions and macros described
below allow complex numbers to be manipulated in a portable way.

For reference, the default form of the :code:`gsl_complex` type is
given by the following struct::

typedef struct
{

double dat[2];
} gsl_complex;

The real and imaginary part are stored in contiguous elements of a two
element array. This eliminates any padding between the real and
imaginary parts, :code:`dat[0]` and :code:`dat[1]`, allowing the struct to
be mapped correctly onto packed complex arrays.

(URL)

1.30.4 Fields packing in structure
One important thing is fields packing in structures.
Let’s take a simple example:
#include <stdio.h>

struct s
{

char a;
int b;
char c;
int d;

};

void f(struct s s)
{

printf ("a=%d; b=%d; c=%d; d=%d\n", s.a, s.b, s.c, s.d);
};

int main()
{

struct s tmp;
tmp.a=1;
tmp.b=2;
tmp.c=3;
tmp.d=4;
f(tmp);

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://www.gnu.org/software/gsl/doc/html/complex.html#representation-of-complex-numbers
https://yurichev.com/contact.html
https://yurichev.com/contact.html

452
};

As we see, we have two char fields (each is exactly one byte) and two more —int
(each — 4 bytes).

x86

This compiles to:

Listing 1.345: MSVC 2012 /GS- /Ob0
1 _tmp$ = -16
2 _main PROC
3 push ebp
4 mov ebp, esp
5 sub esp, 16
6 mov BYTE PTR _tmp$[ebp], 1 ; set field a
7 mov DWORD PTR _tmp$[ebp+4], 2 ; set field b
8 mov BYTE PTR _tmp$[ebp+8], 3 ; set field c
9 mov DWORD PTR _tmp$[ebp+12], 4 ; set field d
10 sub esp, 16 ; allocate place for temporary

structure
11 mov eax, esp
12 mov ecx, DWORD PTR _tmp$[ebp] ; copy our structure to the temporary

one
13 mov DWORD PTR [eax], ecx
14 mov edx, DWORD PTR _tmp$[ebp+4]
15 mov DWORD PTR [eax+4], edx
16 mov ecx, DWORD PTR _tmp$[ebp+8]
17 mov DWORD PTR [eax+8], ecx
18 mov edx, DWORD PTR _tmp$[ebp+12]
19 mov DWORD PTR [eax+12], edx
20 call _f
21 add esp, 16
22 xor eax, eax
23 mov esp, ebp
24 pop ebp
25 ret 0
26 _main ENDP
27
28 _s$ = 8 ; size = 16
29 ?f@@YAXUs@@@Z PROC ; f
30 push ebp
31 mov ebp, esp
32 mov eax, DWORD PTR _s$[ebp+12]
33 push eax
34 movsx ecx, BYTE PTR _s$[ebp+8]
35 push ecx
36 mov edx, DWORD PTR _s$[ebp+4]
37 push edx
38 movsx eax, BYTE PTR _s$[ebp]
39 push eax
40 push OFFSET $SG3842
41 call _printf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

453
42 add esp, 20
43 pop ebp
44 ret 0
45 ?f@@YAXUs@@@Z ENDP ; f
46 _TEXT ENDS

We pass the structure as a whole, but in fact, as we can see, the structure is being
copied to a temporary one (a place in stack is allocated in line 10 for it, and then all
4 fields, one by one, are copied in lines 12 … 19), and then its pointer (address) is
to be passed.
The structure is copied because it’s not known whether the f() function going to
modify the structure or not. If it gets changed, then the structure in main() has to
remain as it has been.
We could use C/C++ pointers, and the resulting code will be almost the same, but
without the copying.
As we can see, each field’s address is aligned on a 4-byte boundary. That’s why each
char occupies 4 bytes here (like int). Why? Because it is easier for the CPU to access
memory at aligned addresses and to cache data from it.
However, it is not very economical.
Let’s try to compile it with option (/Zp1) (/Zp[n] pack structures on n-byte boundary).

Listing 1.346: MSVC 2012 /GS- /Zp1
1 _main PROC
2 push ebp
3 mov ebp, esp
4 sub esp, 12
5 mov BYTE PTR _tmp$[ebp], 1 ; set field a
6 mov DWORD PTR _tmp$[ebp+1], 2 ; set field b
7 mov BYTE PTR _tmp$[ebp+5], 3 ; set field c
8 mov DWORD PTR _tmp$[ebp+6], 4 ; set field d
9 sub esp, 12 ; allocate place for temporary

structure
10 mov eax, esp
11 mov ecx, DWORD PTR _tmp$[ebp] ; copy 10 bytes
12 mov DWORD PTR [eax], ecx
13 mov edx, DWORD PTR _tmp$[ebp+4]
14 mov DWORD PTR [eax+4], edx
15 mov cx, WORD PTR _tmp$[ebp+8]
16 mov WORD PTR [eax+8], cx
17 call _f
18 add esp, 12
19 xor eax, eax
20 mov esp, ebp
21 pop ebp
22 ret 0
23 _main ENDP
24
25 _TEXT SEGMENT
26 _s$ = 8 ; size = 10

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

454
27 ?f@@YAXUs@@@Z PROC ; f
28 push ebp
29 mov ebp, esp
30 mov eax, DWORD PTR _s$[ebp+6]
31 push eax
32 movsx ecx, BYTE PTR _s$[ebp+5]
33 push ecx
34 mov edx, DWORD PTR _s$[ebp+1]
35 push edx
36 movsx eax, BYTE PTR _s$[ebp]
37 push eax
38 push OFFSET $SG3842
39 call _printf
40 add esp, 20
41 pop ebp
42 ret 0
43 ?f@@YAXUs@@@Z ENDP ; f

Now the structure takes only 10 bytes and each char value takes 1 byte. What does
it give to us? Size economy. And as drawback —the CPU accessing these fields
slower than it could.
The structure is also copied in main(). Not field-by-field, but directly 10 bytes, using
three pairs of MOV. Why not 4?
The compiler decided that it’s better to copy 10 bytes using 3 MOV pairs than to copy
two 32-bit words and two bytes using 4 MOV pairs.
By the way, such copy implementation using MOV instead of calling the memcpy()
function is widely used, because it’s faster than a call to memcpy()—for short blocks,
of course: 3.14.1 on page 640.
As it can be easily guessed, if the structure is used in many source and object files,
all these must be compiled with the same convention about structures packing.
Aside from MSVC /Zp option which sets how to align each structure field, there is
also the #pragma pack compiler option, which can be defined right in the source
code. It is available in both MSVC157and GCC158.
Let’s get back to the SYSTEMTIME structure that consists of 16-bit fields. How does
our compiler know to pack them on 1-byte alignment boundary?
WinNT.h file has this:

Listing 1.347: WinNT.h
#include "pshpack1.h"

And this:

Listing 1.348: WinNT.h
#include "pshpack4.h" // 4 byte packing is the default

157MSDN: Working with Packing Structures
158Structure-Packing Pragmas

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://docs.microsoft.com/en-us/previous-versions/ms253935(v=vs.90)
https://gcc.gnu.org/onlinedocs/gcc-4.4.4/gcc/Structure_002dPacking-Pragmas.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

455
The file PshPack1.h looks like:

Listing 1.349: PshPack1.h
#if ! (defined(lint) || defined(RC_INVOKED))
#if (_MSC_VER >= 800 && !defined(_M_I86)) || defined(_PUSHPOP_SUPPORTED)
#pragma warning(disable:4103)
#if !(defined(MIDL_PASS)) || defined(__midl)
#pragma pack(push,1)
#else
#pragma pack(1)
#endif
#else
#pragma pack(1)
#endif
#endif /* ! (defined(lint) || defined(RC_INVOKED)) */

This tell the compiler how to pack the structures defined after #pragma pack.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

456
OllyDbg + fields are packed by default

Let’s try our example (where the fields are aligned by default (4 bytes)) in OllyDbg:

Figure 1.105: OllyDbg: Before printf() execution

We see our 4 fields in the data window.
But where do the random bytes (0x30, 0x37, 0x01) come from, that are next to the
first (a) and third (c) fields?
By looking at our listing 1.345 on page 452, we can see that the first and third fields
are char, therefore only one byte is written, 1 and 3 respectively (lines 6 and 8).
The remaining 3 bytes of the 32-bit words are not being modified in memory! Hence,
random garbage is left there.
This garbage doesn’t influence the printf() output in any way, because the val-
ues for it are prepared using the MOVSX instruction, which takes bytes, not words:
listing.1.345 (lines 34 and 38).
By the way, the MOVSX (sign-extending) instruction is used here, because char is
signed by default in MSVC and GCC. If the unsigned char data type or uint8_t was
used here, MOVZX instruction would have been used instead.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

457
OllyDbg + fields aligning on 1 byte boundary

Things are much clearer here: 4 fields occupy 10 bytes and the values are stored
side-by-side

Figure 1.106: OllyDbg: Before printf() execution

ARM

Optimizing Keil 6/2013 (Thumb mode)

Listing 1.350: Optimizing Keil 6/2013 (Thumb mode)
.text:0000003E exit ; CODE XREF: f+16
.text:0000003E 05 B0 ADD SP, SP, #0x14
.text:00000040 00 BD POP {PC}

.text:00000280 f

.text:00000280

.text:00000280 var_18 = -0x18

.text:00000280 a = -0x14

.text:00000280 b = -0x10

.text:00000280 c = -0xC

.text:00000280 d = -8

.text:00000280

.text:00000280 0F B5 PUSH {R0-R3,LR}

.text:00000282 81 B0 SUB SP, SP, #4

.text:00000284 04 98 LDR R0, [SP,#16] ; d

.text:00000286 02 9A LDR R2, [SP,#8] ; b

.text:00000288 00 90 STR R0, [SP]

.text:0000028A 68 46 MOV R0, SP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

458
.text:0000028C 03 7B LDRB R3, [R0,#12] ; c
.text:0000028E 01 79 LDRB R1, [R0,#4] ; a
.text:00000290 59 A0 ADR R0, aADBDCDDD ; "a=%d; b=%d;

c=%d; d=%d\n"
.text:00000292 05 F0 AD FF BL __2printf
.text:00000296 D2 E6 B exit

As we may recall, here a structure is passed instead of pointer to one, and since the
first 4 function arguments in ARM are passed via registers, the structure’s fields are
passed via R0-R3.
LDRB loads one byte from memory and extends it to 32-bit, taking its sign into ac-
count. This is similar to MOVSX in x86. Here it is used to load fields a and c from the
structure.
One more thing we spot easily is that instead of function epilogue, there is jump to
another function’s epilogue! Indeed, that was quite different function, not related
in any way to ours, however, it has exactly the same epilogue (probably because, it
hold 5 local variables too (5 ∗ 4 = 0x14)).
Also it is located nearby (take a look at the addresses).
Indeed, it doesn’t matter which epilogue gets executed, if it works just as we need.
Apparently, Keil decides to reuse a part of another function to economize.
The epilogue takes 4 bytes while jump—only 2.

ARM + Optimizing Xcode 4.6.3 (LLVM) (Thumb-2 mode)

Listing 1.351: Optimizing Xcode 4.6.3 (LLVM) (Thumb-2 mode)
var_C = -0xC

PUSH {R7,LR}
MOV R7, SP
SUB SP, SP, #4
MOV R9, R1 ; b
MOV R1, R0 ; a
MOVW R0, #0xF10 ; "a=%d; b=%d; c=%d; d=%d\n"
SXTB R1, R1 ; prepare a
MOVT.W R0, #0
STR R3, [SP,#0xC+var_C] ; place d to stack for printf()
ADD R0, PC ; format-string
SXTB R3, R2 ; prepare c
MOV R2, R9 ; b
BLX _printf
ADD SP, SP, #4
POP {R7,PC}

SXTB (Signed Extend Byte) is analogous to MOVSX in x86. All the rest—just the same.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

459
MIPS

Listing 1.352: Optimizing GCC 4.4.5 (IDA)
1 f:
2
3 var_18 = -0x18
4 var_10 = -0x10
5 var_4 = -4
6 arg_0 = 0
7 arg_4 = 4
8 arg_8 = 8
9 arg_C = 0xC
10
11 ; $a0=s.a
12 ; $a1=s.b
13 ; $a2=s.c
14 ; $a3=s.d
15 lui $gp, (__gnu_local_gp >> 16)
16 addiu $sp, -0x28
17 la $gp, (__gnu_local_gp & 0xFFFF)
18 sw $ra, 0x28+var_4($sp)
19 sw $gp, 0x28+var_10($sp)
20 ; prepare a byte from 32-bit big-endian integer:
21 sra $t0, $a0, 24
22 move $v1, $a1
23 ; prepare a byte from 32-bit big-endian integer:
24 sra $v0, $a2, 24
25 lw $t9, (printf & 0xFFFF)($gp)
26 sw $a0, 0x28+arg_0($sp)
27 lui $a0, ($LC0 >> 16) # "a=%d; b=%d; c=%d; d=%d\n"
28 sw $a3, 0x28+var_18($sp)
29 sw $a1, 0x28+arg_4($sp)
30 sw $a2, 0x28+arg_8($sp)
31 sw $a3, 0x28+arg_C($sp)
32 la $a0, ($LC0 & 0xFFFF) # "a=%d; b=%d; c=%d; d=%d\n"
33 move $a1, $t0
34 move $a2, $v1
35 jalr $t9
36 move $a3, $v0 ; branch delay slot
37 lw $ra, 0x28+var_4($sp)
38 or $at, $zero ; load delay slot, NOP
39 jr $ra
40 addiu $sp, 0x28 ; branch delay slot
41
42 $LC0: .ascii "a=%d; b=%d; c=%d; d=%d\n"<0>

Structure fields come in registers $A0..$A3 and then get reshuffled into $A1..$A3 for
printf(), while 4th field (from $A3) is passed via local stack using SW.
But there are two SRA (“Shift Word Right Arithmetic”) instructions, which prepare
char fields. Why?
MIPS is a big-endian architecture by default 2.2 on page 572, and the Debian Linux

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

460
we work in is big-endian as well.
So when byte variables are stored in 32-bit structure slots, they occupy the high
31..24 bits.
And when a char variable needs to be extended into a 32-bit value, it must be shifted
right by 24 bits.
char is a signed type, so an arithmetical shift is used here instead of logical.

One more word

Passing a structure as a function argument (instead of a passing pointer to structure)
is the same as passing all structure fields one by one.
If the structure fields are packed by default, the f() function can be rewritten as:
void f(char a, int b, char c, int d)
{

printf ("a=%d; b=%d; c=%d; d=%d\n", a, b, c, d);
};

And that leads to the same code.

1.30.5 Nested structures
Now what about situations when one structure is defined inside of another?
#include <stdio.h>

struct inner_struct
{

int a;
int b;

};

struct outer_struct
{

char a;
int b;
struct inner_struct c;
char d;
int e;

};

void f(struct outer_struct s)
{

printf ("a=%d; b=%d; c.a=%d; c.b=%d; d=%d; e=%d\n",
s.a, s.b, s.c.a, s.c.b, s.d, s.e);

};

int main()
{

struct outer_struct s;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

461
s.a=1;
s.b=2;
s.c.a=100;
s.c.b=101;
s.d=3;
s.e=4;
f(s);

};

…in this case, both inner_struct fields are to be placed between the a,b and d,e
fields of the outer_struct.
Let’s compile (MSVC 2010):

Listing 1.353: Optimizing MSVC 2010 /Ob0
$SG2802 DB 'a=%d; b=%d; c.a=%d; c.b=%d; d=%d; e=%d', 0aH, 00H

_TEXT SEGMENT
_s$ = 8
_f PROC

mov eax, DWORD PTR _s$[esp+16]
movsx ecx, BYTE PTR _s$[esp+12]
mov edx, DWORD PTR _s$[esp+8]
push eax
mov eax, DWORD PTR _s$[esp+8]
push ecx
mov ecx, DWORD PTR _s$[esp+8]
push edx
movsx edx, BYTE PTR _s$[esp+8]
push eax
push ecx
push edx
push OFFSET $SG2802 ; 'a=%d; b=%d; c.a=%d; c.b=%d; d=%d; e=%d'
call _printf
add esp, 28
ret 0

_f ENDP

_s$ = -24
_main PROC

sub esp, 24
push ebx
push esi
push edi
mov ecx, 2
sub esp, 24
mov eax, esp

; from this moment, EAX is synonymous to ESP:
mov BYTE PTR _s$[esp+60], 1
mov ebx, DWORD PTR _s$[esp+60]
mov DWORD PTR [eax], ebx
mov DWORD PTR [eax+4], ecx
lea edx, DWORD PTR [ecx+98]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

462
lea esi, DWORD PTR [ecx+99]
lea edi, DWORD PTR [ecx+2]
mov DWORD PTR [eax+8], edx
mov BYTE PTR _s$[esp+76], 3
mov ecx, DWORD PTR _s$[esp+76]
mov DWORD PTR [eax+12], esi
mov DWORD PTR [eax+16], ecx
mov DWORD PTR [eax+20], edi
call _f
add esp, 24
pop edi
pop esi
xor eax, eax
pop ebx
add esp, 24
ret 0

_main ENDP

One curious thing here is that by looking onto this assembly code, we do not even see
that another structure was used inside of it! Thus, we would say, nested structures
are unfolded into linear or one-dimensional structure.
Of course, if we replace the struct inner_struct c; declaration with struct inner_struct
*c; (thus making a pointer here) the situation will be quite different.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

463
OllyDbg

Let’s load the example into OllyDbg and take a look at outer_struct in memory:

Figure 1.107: OllyDbg: Before printf() execution

That’s how the values are located in memory:
• (outer_struct.a) (byte) 1 + 3 bytes of random garbage;
• (outer_struct.b) (32-bit word) 2;
• (inner_struct.a) (32-bit word) 0x64 (100);
• (inner_struct.b) (32-bit word) 0x65 (101);
• (outer_struct.d) (byte) 3 + 3 bytes of random garbage;
• (outer_struct.e) (32-bit word) 4.

1.30.6 Bit fields in a structure
CPUID example

The C/C++ language allows to define the exact number of bits for each structure
field. It is very useful if one needs to save memory space. For example, one bit is
enough for a bool variable. But of course, it is not rational if speed is important.
Let’s consider the CPUID159instruction example. This instruction returns information
about the current CPU and its features.
If the EAX is set to 1 before the instruction’s execution, CPUID returning this informa-
tion packed into the EAX register:
159wikipedia

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://en.wikipedia.org/wiki/CPUID
https://yurichev.com/contact.html
https://yurichev.com/contact.html

464
3:0 (4 bits) Stepping
7:4 (4 bits) Model
11:8 (4 bits) Family
13:12 (2 bits) Processor Type
19:16 (4 bits) Extended Model
27:20 (8 bits) Extended Family

MSVC 2010 has CPUID macro, but GCC 4.4.1 does not. So let’s make this function
by ourselves for GCC with the help of its built-in assembler160.
#include <stdio.h>

#ifdef __GNUC__
static inline void cpuid(int code, int *a, int *b, int *c, int *d) {

asm volatile("cpuid":"=a"(*a),"=b"(*b),"=c"(*c),"=d"(*d):"a"(code));
}
#endif

#ifdef _MSC_VER
#include <intrin.h>
#endif

struct CPUID_1_EAX
{

unsigned int stepping:4;
unsigned int model:4;
unsigned int family_id:4;
unsigned int processor_type:2;
unsigned int reserved1:2;
unsigned int extended_model_id:4;
unsigned int extended_family_id:8;
unsigned int reserved2:4;

};

int main()
{

struct CPUID_1_EAX *tmp;
int b[4];

#ifdef _MSC_VER
__cpuid(b,1);

#endif

#ifdef __GNUC__
cpuid (1, &b[0], &b[1], &b[2], &b[3]);

#endif

tmp=(struct CPUID_1_EAX *)&b[0];

printf ("stepping=%d\n", tmp->stepping);
printf ("model=%d\n", tmp->model);
printf ("family_id=%d\n", tmp->family_id);

160More about internal GCC assembler

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

465
printf ("processor_type=%d\n", tmp->processor_type);
printf ("extended_model_id=%d\n", tmp->extended_model_id);
printf ("extended_family_id=%d\n", tmp->extended_family_id);

return 0;
};

After CPUID fills EAX/EBX/ECX/EDX, these registers are to be written in the b[] array.
Then, we have a pointer to the CPUID_1_EAX structure and we point it to the value
in EAX from the b[] array.
In other words, we treat a 32-bit int value as a structure. Then we read specific bits
from the structure.

MSVC

Let’s compile it in MSVC 2008 with /Ox option:

Listing 1.354: Optimizing MSVC 2008
_b$ = -16 ; size = 16
_main PROC

sub esp, 16
push ebx

xor ecx, ecx
mov eax, 1
cpuid
push esi
lea esi, DWORD PTR _b$[esp+24]
mov DWORD PTR [esi], eax
mov DWORD PTR [esi+4], ebx
mov DWORD PTR [esi+8], ecx
mov DWORD PTR [esi+12], edx

mov esi, DWORD PTR _b$[esp+24]
mov eax, esi
and eax, 15
push eax
push OFFSET $SG15435 ; 'stepping=%d', 0aH, 00H
call _printf

mov ecx, esi
shr ecx, 4
and ecx, 15
push ecx
push OFFSET $SG15436 ; 'model=%d', 0aH, 00H
call _printf

mov edx, esi
shr edx, 8
and edx, 15
push edx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

466
push OFFSET $SG15437 ; 'family_id=%d', 0aH, 00H
call _printf

mov eax, esi
shr eax, 12
and eax, 3
push eax
push OFFSET $SG15438 ; 'processor_type=%d', 0aH, 00H
call _printf

mov ecx, esi
shr ecx, 16
and ecx, 15
push ecx
push OFFSET $SG15439 ; 'extended_model_id=%d', 0aH, 00H
call _printf

shr esi, 20
and esi, 255
push esi
push OFFSET $SG15440 ; 'extended_family_id=%d', 0aH, 00H
call _printf
add esp, 48
pop esi

xor eax, eax
pop ebx

add esp, 16
ret 0

_main ENDP

The SHR instruction shifting the value in EAX by the number of bits that must be
skipped, e.g., we ignore some bits at the right side.
The AND instruction clears the unneeded bits on the left, or, in other words, leaves
only those bits in the EAX register we need.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

467
MSVC + OllyDbg

Let’s load our example into OllyDbg and see, what values are set in EAX/EBX/ECX/EDX
after the execution of CPUID:

Figure 1.108: OllyDbg: After CPUID execution

EAX has 0x000206A7 (my CPU is Intel Xeon E3-1220).
This is 0b00000000000000100000011010100111 in binary form.
Here is how the bits are distributed by fields:

field in binary form in decimal form
reserved2 0000 0
extended_family_id 00000000 0
extended_model_id 0010 2
reserved1 00 0
processor_id 00 0
family_id 0110 6
model 1010 10
stepping 0111 7

Listing 1.355: Console output
stepping=7
model=10
family_id=6
processor_type=0
extended_model_id=2
extended_family_id=0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

468
GCC

Let’s try GCC 4.4.1 with -O3 option.

Listing 1.356: Optimizing GCC 4.4.1
main proc near ; DATA XREF: _start+17

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
push esi
mov esi, 1
push ebx
mov eax, esi
sub esp, 18h
cpuid
mov esi, eax
and eax, 0Fh
mov [esp+8], eax
mov dword ptr [esp+4], offset aSteppingD ; "stepping=%d\n"
mov dword ptr [esp], 1
call ___printf_chk
mov eax, esi
shr eax, 4
and eax, 0Fh
mov [esp+8], eax
mov dword ptr [esp+4], offset aModelD ; "model=%d\n"
mov dword ptr [esp], 1
call ___printf_chk
mov eax, esi
shr eax, 8
and eax, 0Fh
mov [esp+8], eax
mov dword ptr [esp+4], offset aFamily_idD ; "family_id=%d\n"
mov dword ptr [esp], 1
call ___printf_chk
mov eax, esi
shr eax, 0Ch
and eax, 3
mov [esp+8], eax
mov dword ptr [esp+4], offset aProcessor_type ; "processor_type=%d\n"
mov dword ptr [esp], 1
call ___printf_chk
mov eax, esi
shr eax, 10h
shr esi, 14h
and eax, 0Fh
and esi, 0FFh
mov [esp+8], eax
mov dword ptr [esp+4], offset aExtended_model ;
"extended_model_id=%d\n"
mov dword ptr [esp], 1
call ___printf_chk
mov [esp+8], esi

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

469
mov dword ptr [esp+4], offset unk_80486D0
mov dword ptr [esp], 1
call ___printf_chk
add esp, 18h
xor eax, eax
pop ebx
pop esi
mov esp, ebp
pop ebp
retn

main endp

Almost the same. The only thing worth noting is that GCC somehow combines the
calculation of
extended_model_id and extended_family_id into one block, instead of calculating
them separately before each printf() call.

Handling float data type as a structure

As we already noted in the section about FPU (1.25 on page 275), both float and
double types consist of a sign, a significand (or fraction) and an exponent. But will
we be able to work with these fields directly? Let’s try this with float.

022233031

S exponent mantissa or fraction

(S — sign)
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <memory.h>

struct float_as_struct
{

unsigned int fraction : 23; // fractional part
unsigned int exponent : 8; // exponent + 0x3FF
unsigned int sign : 1; // sign bit

};

float f(float _in)
{

float f=_in;
struct float_as_struct t;

assert (sizeof (struct float_as_struct) == sizeof (float));

memcpy (&t, &f, sizeof (float));

t.sign=1; // set negative sign
t.exponent=t.exponent+2; // multiply d by 2n(n here is 2)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

470
memcpy (&f, &t, sizeof (float));

return f;
};

int main()
{

printf ("%f\n", f(1.234));
};

The float_as_struct structure occupies the same amount of memory as float, i.e.,
4 bytes or 32 bits.
Now we are setting the negative sign in the input value and also, by adding 2 to the
exponent, we thereby multiply the whole number by 22, i.e., by 4.
Let’s compile in MSVC 2008 without optimization turned on:

Listing 1.357: Non-optimizing MSVC 2008
_t$ = -8 ; size = 4
_f$ = -4 ; size = 4
__in$ = 8 ; size = 4
?f@@YAMM@Z PROC ; f

push ebp
mov ebp, esp
sub esp, 8

fld DWORD PTR __in$[ebp]
fstp DWORD PTR _f$[ebp]

push 4
lea eax, DWORD PTR _f$[ebp]
push eax
lea ecx, DWORD PTR _t$[ebp]
push ecx
call _memcpy
add esp, 12

mov edx, DWORD PTR _t$[ebp]
or edx, -2147483648 ; 80000000H - set minus sign
mov DWORD PTR _t$[ebp], edx

mov eax, DWORD PTR _t$[ebp]
shr eax, 23 ; 00000017H - drop significand
and eax, 255 ; 000000ffH - leave here only exponent
add eax, 2 ; add 2 to it
and eax, 255 ; 000000ffH
shl eax, 23 ; 00000017H - shift result to place of bits 30:23
mov ecx, DWORD PTR _t$[ebp]
and ecx, -2139095041 ; 807fffffH - drop exponent

; add original value without exponent with new calculated exponent:
or ecx, eax

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

471
mov DWORD PTR _t$[ebp], ecx

push 4
lea edx, DWORD PTR _t$[ebp]
push edx
lea eax, DWORD PTR _f$[ebp]
push eax
call _memcpy
add esp, 12

fld DWORD PTR _f$[ebp]

mov esp, ebp
pop ebp
ret 0

?f@@YAMM@Z ENDP ; f

A bit redundant. If it was compiled with /Ox flag there would be no memcpy() call, the
f variable is used directly. But it is easier to understand by looking at the unoptimized
version.
What would GCC 4.4.1 with -O3 do?

Listing 1.358: Optimizing GCC 4.4.1
; f(float)

public _Z1ff
_Z1ff proc near

var_4 = dword ptr -4
arg_0 = dword ptr 8

push ebp
mov ebp, esp
sub esp, 4
mov eax, [ebp+arg_0]
or eax, 80000000h ; set minus sign
mov edx, eax
and eax, 807FFFFFh ; leave only sign and significand in EAX
shr edx, 23 ; prepare exponent
add edx, 2 ; add 2
movzx edx, dl ; clear all bits except 7:0 in EDX
shl edx, 23 ; shift new calculated exponent to its place
or eax, edx ; join new exponent and original value without

exponent
mov [ebp+var_4], eax
fld [ebp+var_4]
leave
retn

_Z1ff endp

public main
main proc near

push ebp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

472
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 10h
fld ds:dword_8048614 ; -4.936
fstp qword ptr [esp+8]
mov dword ptr [esp+4], offset asc_8048610 ; "%f\n"
mov dword ptr [esp], 1
call ___printf_chk
xor eax, eax
leave
retn

main endp

The f() function is almost understandable. However, what is interesting is that
GCC was able to calculate the result of f(1.234) during compilation despite all this
hodge-podge with the structure fields and prepared this argument to printf() as
precalculated at compile time!

1.30.7 Exercises
• http://challenges.re/71

• http://challenges.re/72

1.31 The classic struct bug
This is a classic struct bug.
A sample definition:
struct test
{

int field1;
int field2;

};

And then C files:
void setter(struct test *t, int a, int b)
{

t->field1=a;
t->field2=b;

};

#include <stdio.h>

void printer(struct test *t)
{

printf ("%d\n", t->field1);
printf ("%d\n", t->field2);

};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://challenges.re/71
http://challenges.re/72
https://yurichev.com/contact.html
https://yurichev.com/contact.html

473
So far so good.
Now you add a third field into the structure, some place between two fields:
struct test
{

int field1;
int inserted;
int field2;

};

And you probably modify setter() function, but forget about printer():
void setter(struct test *t, int a, int b, int c)
{

t->field1=a;
t->inserted=b;
t->field2=c;

};

You compile your project, but the C file where printer() is residing, isn’t recompiling,
because your IDE161 or build system has no idea thatmodule depends on a test struct
definition. Maybe because #include <new.h> is omitted. Or maybe, new.h header
file is included in printer.c via some other header file. The object file remains
untouched (IDE thinks it doesn’t need to be recompiled), while setter() function is
already a new version. These two object files (old and new) eventually linked into
an executable file.
Then you run it, and the setter() sets 3 fields at +0, +4 and +8 offsets. However,
the printer() only knows about 2 fields, and gets them from +0 and +4 offsets
during printing.
This leads to very obscure and nasty bugs. The reason is that IDE or build system or
Makefile doesn’t know the fact that both C files (or modules) depends on the header
file with test definition. A popular remedy is to clean everything and recompile.
This is true for C++ classes as well, since they works just like structures: 3.21.1 on
page 682.
This is a C/C++’s malady, and a source of criticism, yes. Many newer PLs has better
support of modules and interfaces. But keep in mind, when C compiler was cre-
ated: 1970s, on old PDP computers. So everything was simplified down to this by C
creators.

1.32 Unions
C/C++ union is mostly used for interpreting a variable (or memory block) of one data
type as a variable of another data type.
161Integrated development environment

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

474
1.32.1 Pseudo-random number generator example
If we need float random numbers between 0 and 1, the simplest thing is to use a
PRNG like the Mersenne twister. It produces random unsigned 32-bit values (in other
words, it produces random 32 bits). Then we can transform this value to float and
then divide it by RAND_MAX (0xFFFFFFFF in our case)—we getting a value in the 0..1
interval.
But as we know, division is slow. Also, we would like to issue as few FPU operations
as possible. Can we get rid of the division?
Let’s recall what a floating point number consists of: sign bit, significand bits and
exponent bits. We just have to store random bits in all significand bits to get a
random float number!
The exponent cannot be zero (the floating number is denormalized in this case), so
we are storing 0b01111111 to exponent—thismeans that the exponent is 1. Then we
filling the significand with random bits, set the sign bit to 0 (which means a positive
number) and voilà. The generated numbers is to be between 1 and 2, so we must
also subtract 1.
A very simple linear congruential random numbers generator is used in my exam-
ple162, it produces 32-bit numbers. The PRNG is initialized with the current time in
UNIX timestamp format.
Here we represent the float type as an union—it is the C/C++ construction that
enables us to interpret a piece of memory as different types. In our case, we are
able to create a variable of type union and then access to it as it is float or as it is
uint32_t. It can be said, it is just a hack. A dirty one.
The integer PRNG code is the same as we already considered: 1.29 on page 424. So
this code in compiled form is omitted.
#include <stdio.h>
#include <stdint.h>
#include <time.h>

// integer PRNG definitions, data and routines:

// constants from the Numerical Recipes book
const uint32_t RNG_a=1664525;
const uint32_t RNG_c=1013904223;
uint32_t RNG_state; // global variable

void my_srand(uint32_t i)
{

RNG_state=i;
};

uint32_t my_rand()
{

RNG_state=RNG_state*RNG_a+RNG_c;
return RNG_state;

162the idea was taken from: URL

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://xor0110.wordpress.com/2010/09/24/how-to-generate-floating-point-random-numbers-efficiently/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

475
};

// FPU PRNG definitions and routines:

union uint32_t_float
{

uint32_t i;
float f;

};

float float_rand()
{

union uint32_t_float tmp;
tmp.i=my_rand() & 0x007fffff | 0x3F800000;
return tmp.f-1;

};

// test

int main()
{

my_srand(time(NULL)); // PRNG initialization

for (int i=0; i<100; i++)
printf ("%f\n", float_rand());

return 0;
};

x86

Listing 1.359: Optimizing MSVC 2010
$SG4238 DB '%f', 0aH, 00H

__real@3ff0000000000000 DQ 03ff0000000000000r ; 1

tv130 = -4
_tmp$ = -4
?float_rand@@YAMXZ PROC

push ecx
call ?my_rand@@YAIXZ

; EAX=pseudorandom value
and eax, 8388607 ; 007fffffH
or eax, 1065353216 ; 3f800000H

; EAX=pseudorandom value & 0x007fffff | 0x3f800000
; store it into local stack:

mov DWORD PTR _tmp$[esp+4], eax
; reload it as float point number:

fld DWORD PTR _tmp$[esp+4]
; subtract 1.0:

fsub QWORD PTR __real@3ff0000000000000
; store value we got into local stack and reload it:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

476
; these instructions are redundant:

fstp DWORD PTR tv130[esp+4]
fld DWORD PTR tv130[esp+4]
pop ecx
ret 0

?float_rand@@YAMXZ ENDP

_main PROC
push esi
xor eax, eax
call _time
push eax
call ?my_srand@@YAXI@Z
add esp, 4
mov esi, 100

$LL3@main:
call ?float_rand@@YAMXZ
sub esp, 8
fstp QWORD PTR [esp]
push OFFSET $SG4238
call _printf
add esp, 12
dec esi
jne SHORT $LL3@main
xor eax, eax
pop esi
ret 0

_main ENDP

Function names are so strange here because this example was compiled as C++
and this is name mangling in C++, we will talk about it later: 3.21.1 on page 683. If
we compile this in MSVC 2012, it uses the SIMD instructions for the FPU, read more
about it here: 1.38.5 on page 554.

ARM (ARM mode)

Listing 1.360: Optimizing GCC 4.6.3 (IDA)
float_rand

STMFD SP!, {R3,LR}
BL my_rand

; R0=pseudorandom value
FLDS S0, =1.0

; S0=1.0
BIC R3, R0, #0xFF000000
BIC R3, R3, #0x800000
ORR R3, R3, #0x3F800000

; R3=pseudorandom value & 0x007fffff | 0x3f800000
; copy from R3 to FPU (register S15).
; it behaves like bitwise copy, no conversion done:

FMSR S15, R3
; subtract 1.0 and leave result in S0:

FSUBS S0, S15, S0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

477
LDMFD SP!, {R3,PC}

flt_5C DCFS 1.0

main
STMFD SP!, {R4,LR}
MOV R0, #0
BL time
BL my_srand
MOV R4, #0x64 ; 'd'

loc_78
BL float_rand

; S0=pseudorandom value
LDR R0, =aF ; "%f"

; convert float type value into double type value (printf() will need it):
FCVTDS D7, S0

; bitwise copy from D7 into R2/R3 pair of registers (for printf()):
FMRRD R2, R3, D7
BL printf
SUBS R4, R4, #1
BNE loc_78
MOV R0, R4
LDMFD SP!, {R4,PC}

aF DCB "%f",0xA,0

We’ll also make a dump in objdump and we’ll see that the FPU instructions have
different names than in IDA. Apparently, IDA and binutils developers used different
manuals? Perhaps it would be good to know both instruction name variants.

Listing 1.361: Optimizing GCC 4.6.3 (objdump)
00000038 <float_rand>:

38: e92d4008 push {r3, lr}
3c: ebfffffe bl 10 <my_rand>
40: ed9f0a05 vldr s0, [pc, #20] ; 5c <float_rand+0x24>
44: e3c034ff bic r3, r0, #-16777216 ; 0xff000000
48: e3c33502 bic r3, r3, #8388608 ; 0x800000
4c: e38335fe orr r3, r3, #1065353216 ; 0x3f800000
50: ee073a90 vmov s15, r3
54: ee370ac0 vsub.f32 s0, s15, s0
58: e8bd8008 pop {r3, pc}
5c: 3f800000 svccc 0x00800000

00000000 <main>:
0: e92d4010 push {r4, lr}
4: e3a00000 mov r0, #0
8: ebfffffe bl 0 <time>
c: ebfffffe bl 0 <main>
10: e3a04064 mov r4, #100 ; 0x64
14: ebfffffe bl 38 <main+0x38>
18: e59f0018 ldr r0, [pc, #24] ; 38 <main+0x38>
1c: eeb77ac0 vcvt.f64.f32 d7, s0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

478
20: ec532b17 vmov r2, r3, d7
24: ebfffffe bl 0 <printf>
28: e2544001 subs r4, r4, #1
2c: 1afffff8 bne 14 <main+0x14>
30: e1a00004 mov r0, r4
34: e8bd8010 pop {r4, pc}
38: 00000000 andeq r0, r0, r0

The instructions at 0x5c in float_rand() and at 0x38 in main() are (pseudo-)random
noise.

1.32.2 Calculating machine epsilon
The machine epsilon is the smallest possible value the FPU can work with. The
more bits allocated for floating point number, the smaller the machine epsilon. It is
2−23 ≈ 1.19e − 07 for float and 2−52 ≈ 2.22e − 16 for double. See also: Wikipedia article.
It’s interesting, how easy it’s to calculate the machine epsilon:
#include <stdio.h>
#include <stdint.h>

union uint_float
{

uint32_t i;
float f;

};

float calculate_machine_epsilon(float start)
{

union uint_float v;
v.f=start;
v.i++;
return v.f-start;

}

void main()
{

printf ("%g\n", calculate_machine_epsilon(1.0));
};

What we do here is just treat the fraction part of the IEEE 754 number as integer and
add 1 to it. The resulting floating number is equal to starting_value+machine_epsilon,
so we just have to subtract the starting value (using floating point arithmetic) to
measure, what difference one bit reflects in the single precision (float). The union
serves here as a way to access IEEE 754 number as a regular integer. Adding 1 to it
in fact adds 1 to the fraction part of the number, however, needless to say, overflow
is possible, which will add another 1 to the exponent part.

x86

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://en.wikipedia.org/wiki/Arithmetic_underflow
https://yurichev.com/contact.html
https://yurichev.com/contact.html

479
Listing 1.362: Optimizing MSVC 2010

tv130 = 8
_v$ = 8
_start$ = 8
_calculate_machine_epsilon PROC

fld DWORD PTR _start$[esp-4]
; this instruction is redundant:

fst DWORD PTR _v$[esp-4]
inc DWORD PTR _v$[esp-4]
fsubr DWORD PTR _v$[esp-4]

; this instruction pair is also redundant:
fstp DWORD PTR tv130[esp-4]
fld DWORD PTR tv130[esp-4]
ret 0

_calculate_machine_epsilon ENDP

The second FST instruction is redundant: there is no necessity to store the input
value in the same place (the compiler decided to allocate the v variable at the same
point in the local stack as the input argument). Then it is incremented with INC, as
it is a normal integer variable. Then it is loaded into the FPU as a 32-bit IEEE 754
number, FSUBR does the rest of job and the resulting value is stored in ST0. The last
FSTP/FLD instruction pair is redundant, but the compiler didn’t optimize it out.

ARM64

Let’s extend our example to 64-bit:
#include <stdio.h>
#include <stdint.h>

typedef union
{

uint64_t i;
double d;

} uint_double;

double calculate_machine_epsilon(double start)
{

uint_double v;
v.d=start;
v.i++;
return v.d-start;

}

void main()
{

printf ("%g\n", calculate_machine_epsilon(1.0));
};

ARM64 has no instruction that can add a number to a FPU D-register, so the input
value (that came in D0) is first copied into GPR, incremented, copied to FPU register
D1, and then subtraction occurs.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

480
Listing 1.363: Optimizing GCC 4.9 ARM64

calculate_machine_epsilon:
fmov x0, d0 ; load input value of double type into X0
add x0, x0, 1 ; X0++
fmov d1, x0 ; move it to FPU register
fsub d0, d1, d0 ; subtract
ret

See also this example compiled for x64 with SIMD instructions: 1.38.4 on page 553.

MIPS

The new instruction here is MTC1 (“Move To Coprocessor 1”), it just transfers data
from GPR to the FPU’s registers.

Listing 1.364: Optimizing GCC 4.4.5 (IDA)
calculate_machine_epsilon:

mfc1 $v0, $f12
or $at, $zero ; NOP
addiu $v1, $v0, 1
mtc1 $v1, $f2
jr $ra
sub.s $f0, $f2, $f12 ; branch delay slot

Conclusion

It’s hard to say whether someone may need this trickery in real-world code, but as
was mentioned many times in this book, this example serves well for explaining the
IEEE 754 format and unions in C/C++.

1.32.3 FSCALE instruction replacement
Agner Fog in his Optimizing subroutines in assembly language / An optimization
guide for x86 platforms work 163 states that FSCALE FPU instruction (calculating 2n)
may be slow on many CPUs, and he offers faster replacement.
Here is my translation of his assembly code to C/C++:
#include <stdint.h>
#include <stdio.h>

union uint_float
{

uint32_t i;
float f;

};

float flt_2n(int N)

163http://www.agner.org/optimize/optimizing_assembly.pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.agner.org/optimize/optimizing_assembly.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

481
{

union uint_float tmp;

tmp.i=(N<<23)+0x3f800000;
return tmp.f;

};

struct float_as_struct
{

unsigned int fraction : 23;
unsigned int exponent : 8;
unsigned int sign : 1;

};

float flt_2n_v2(int N)
{

struct float_as_struct tmp;

tmp.fraction=0;
tmp.sign=0;
tmp.exponent=N+0x7f;
return *(float*)(&tmp);

};

union uint64_double
{

uint64_t i;
double d;

};

double dbl_2n(int N)
{

union uint64_double tmp;

tmp.i=((uint64_t)N<<52)+0x3ff0000000000000UL;
return tmp.d;

};

struct double_as_struct
{

uint64_t fraction : 52;
int exponent : 11;
int sign : 1;

};

double dbl_2n_v2(int N)
{

struct double_as_struct tmp;

tmp.fraction=0;
tmp.sign=0;
tmp.exponent=N+0x3ff;
return *(double*)(&tmp);

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

482
};

int main()
{

// 211 = 2048
printf ("%f\n", flt_2n(11));
printf ("%f\n", flt_2n_v2(11));
printf ("%lf\n", dbl_2n(11));
printf ("%lf\n", dbl_2n_v2(11));

};

FSCALE instruction may be faster in your environment, but still, it’s a good example
of union’s and the fact that exponent is stored in 2n form, so an input n value is shifted
to the exponent in IEEE 754 encoded number. Then exponent is then corrected with
addition of 0x3f800000 or 0x3ff0000000000000.
The same can be done without shift using struct, but internally, shift operations still
occurred.

1.32.4 Fast square root calculation
Another well-known algorithm where float is interpreted as integer is fast calculation
of square root.

Listing 1.365: The source code is taken from Wikipedia: https://en.wikipedia.
org/wiki/Methods_of_computing_square_roots
/* Assumes that float is in the IEEE 754 single precision floating point ⤦

Ç format
* and that int is 32 bits. */
float sqrt_approx(float z)
{

int val_int = *(int*)&z; /* Same bits, but as an int */
/*
* To justify the following code, prove that
*
* ((((val_int / 2^m) - b) / 2) + b) * 2^m = ((val_int - 2^m) / 2) + ((⤦
Ç b + 1) / 2) * 2^m)
*
* where
*
* b = exponent bias
* m = number of mantissa bits
*
* .
*/

val_int -= 1 << 23; /* Subtract 2^m. */
val_int >>= 1; /* Divide by 2. */
val_int += 1 << 29; /* Add ((b + 1) / 2) * 2^m. */

return *(float*)&val_int; /* Interpret again as float */
}

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://en.wikipedia.org/wiki/Methods_of_computing_square_roots
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots
https://yurichev.com/contact.html
https://yurichev.com/contact.html

483
As an exercise, you can try to compile this function and to understand, how it works.

There is also well-known algorithm of fast calculation of 1√
x
. Algorithm became pop-

ular, supposedly, because it was used in Quake III Arena.
Algorithm description can be found in Wikipedia: http://en.wikipedia.org/wiki/
Fast_inverse_square_root.

1.33 Pointers to functions
A pointer to a function, as any other pointer, is just the address of the function’s
start in its code segment.
They are often used for calling callback functions.
Well-known examples are:
• qsort(), atexit() from the standard C library;
• *NIX OS signals.
• thread starting: CreateThread() (win32), pthread_create() (POSIX);
• lots of win32 functions, like EnumChildWindows().
• lots of places in the Linux kernel, for example the filesystem driver functions
are called via callbacks.

• The GCC plugin functions are also called via callbacks.
So, the qsort() function is an implementation of quicksort in the C/C++ standard
library. The function is able to sort anything, any type of data, as long as you have
a function to compare these two elements and qsort() is able to call it.
The comparison function can be defined as:
int (*compare)(const void *, const void *)

Let’s use the following example:
1 /* ex3 Sorting ints with qsort */
2
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 int comp(const void * _a, const void * _b)
7 {
8 const int *a=(const int *)_a;
9 const int *b=(const int *)_b;
10
11 if (*a==*b)
12 return 0;
13 else
14 if (*a < *b)
15 return -1;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://en.wikipedia.org/wiki/Fast_inverse_square_root
http://en.wikipedia.org/wiki/Fast_inverse_square_root
https://yurichev.com/contact.html
https://yurichev.com/contact.html

484
16 else
17 return 1;
18 }
19
20 int main(int argc, char* argv[])
21 {
22 int numbers[10]={1892,45,200,-98,4087,5,-12345,1087,88,-100000};
23 int i;
24
25 /* Sort the array */
26 qsort(numbers,10,sizeof(int),comp) ;
27 for (i=0;i<9;i++)
28 printf("Number = %d\n",numbers[i]) ;
29 return 0;
30 }

1.33.1 MSVC
Let’s compile it in MSVC 2010 (some parts were omitted for the sake of brevity) with
/Ox option:

Listing 1.366: Optimizing MSVC 2010: /GS- /MD
__a$ = 8 ; size = 4
__b$ = 12 ; size = 4
_comp PROC

mov eax, DWORD PTR __a$[esp-4]
mov ecx, DWORD PTR __b$[esp-4]
mov eax, DWORD PTR [eax]
mov ecx, DWORD PTR [ecx]
cmp eax, ecx
jne SHORT $LN4@comp
xor eax, eax
ret 0

$LN4@comp:
xor edx, edx
cmp eax, ecx
setge dl
lea eax, DWORD PTR [edx+edx-1]
ret 0

_comp ENDP

_numbers$ = -40 ; size = 40
_argc$ = 8 ; size = 4
_argv$ = 12 ; size = 4
_main PROC

sub esp, 40 ; 00000028H
push esi
push OFFSET _comp
push 4
lea eax, DWORD PTR _numbers$[esp+52]
push 10 ; 0000000aH

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

485
push eax
mov DWORD PTR _numbers$[esp+60], 1892 ; 00000764H
mov DWORD PTR _numbers$[esp+64], 45 ; 0000002dH
mov DWORD PTR _numbers$[esp+68], 200 ; 000000c8H
mov DWORD PTR _numbers$[esp+72], -98 ; ffffff9eH
mov DWORD PTR _numbers$[esp+76], 4087 ; 00000ff7H
mov DWORD PTR _numbers$[esp+80], 5
mov DWORD PTR _numbers$[esp+84], -12345 ; ffffcfc7H
mov DWORD PTR _numbers$[esp+88], 1087 ; 0000043fH
mov DWORD PTR _numbers$[esp+92], 88 ; 00000058H
mov DWORD PTR _numbers$[esp+96], -100000 ; fffe7960H
call _qsort
add esp, 16 ; 00000010H

...

Nothing surprising so far. As a fourth argument, the address of label _comp is passed,
which is just a place where comp() is located, or, in other words, the address of the
very first instruction of that function.
How does qsort() call it?
Let’s take a look at this function, located in MSVCR80.DLL (a MSVC DLL module with
C standard library functions):

Listing 1.367: MSVCR80.DLL
.text:7816CBF0 ; void __cdecl qsort(void *, unsigned int, unsigned int, int

(__cdecl *)(const void *, const void *))
.text:7816CBF0 public _qsort
.text:7816CBF0 _qsort proc near
.text:7816CBF0
.text:7816CBF0 lo = dword ptr -104h
.text:7816CBF0 hi = dword ptr -100h
.text:7816CBF0 var_FC = dword ptr -0FCh
.text:7816CBF0 stkptr = dword ptr -0F8h
.text:7816CBF0 lostk = dword ptr -0F4h
.text:7816CBF0 histk = dword ptr -7Ch
.text:7816CBF0 base = dword ptr 4
.text:7816CBF0 num = dword ptr 8
.text:7816CBF0 width = dword ptr 0Ch
.text:7816CBF0 comp = dword ptr 10h
.text:7816CBF0
.text:7816CBF0 sub esp, 100h

....

.text:7816CCE0 loc_7816CCE0: ; CODE XREF: _qsort+B1

.text:7816CCE0 shr eax, 1

.text:7816CCE2 imul eax, ebp

.text:7816CCE5 add eax, ebx

.text:7816CCE7 mov edi, eax

.text:7816CCE9 push edi

.text:7816CCEA push ebx

.text:7816CCEB call [esp+118h+comp]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

486
.text:7816CCF2 add esp, 8
.text:7816CCF5 test eax, eax
.text:7816CCF7 jle short loc_7816CD04

comp—is the fourth function argument. Here the control gets passed to the address
in the comp argument. Before it, two arguments are prepared for comp(). Its result
is checked after its execution.
That’s why it is dangerous to use pointers to functions. First of all, if you call qsort()
with an incorrect function pointer, qsort() may pass control flow to an incorrect
point, the process may crash and this bug will be hard to find.
The second reason is that the callback function typesmust comply strictly, calling the
wrong function with wrong arguments of wrong types may lead to serious problems,
however, the crashing of the process is not a problem here —the problem is how to
determine the reason for the crash —because the compiler may be silent about the
potential problems while compiling.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

487
MSVC + OllyDbg

Let’s load our example into OllyDbg and set a breakpoint on comp(). We can see
how the values are compared at the first comp() call:

Figure 1.109: OllyDbg: first call of comp()

OllyDbg shows the compared values in the window under the code window, for con-
venience. We can also see that the SP points to RA, where the qsort() function is
(located in MSVCR100.DLL).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

488
By tracing (F8) until the RETN instruction and pressing F8 one more time, we return
to the qsort() function:

Figure 1.110: OllyDbg: the code in qsort() right after comp() call

That has been a call to the comparison function.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

489
Here is also a screenshot of the moment of the second call of comp()—now values
that have to be compared are different:

Figure 1.111: OllyDbg: second call of comp()

MSVC + tracer

Let’s also see which pairs are compared. These 10 numbers are being sorted: 1892,
45, 200, -98, 4087, 5, -12345, 1087, 88, -100000.
We got the address of the first CMP instruction in comp(), it is 0x0040100C and we’ve
set a breakpoint on it:
tracer.exe -l:17_1.exe bpx=17_1.exe!0x0040100C

Now we get some information about the registers at the breakpoint:
PID=4336|New process 17_1.exe
(0) 17_1.exe!0x40100c
EAX=0x00000764 EBX=0x0051f7c8 ECX=0x00000005 EDX=0x00000000
ESI=0x0051f7d8 EDI=0x0051f7b4 EBP=0x0051f794 ESP=0x0051f67c
EIP=0x0028100c
FLAGS=IF
(0) 17_1.exe!0x40100c
EAX=0x00000005 EBX=0x0051f7c8 ECX=0xfffe7960 EDX=0x00000000
ESI=0x0051f7d8 EDI=0x0051f7b4 EBP=0x0051f794 ESP=0x0051f67c
EIP=0x0028100c
FLAGS=PF ZF IF
(0) 17_1.exe!0x40100c
EAX=0x00000764 EBX=0x0051f7c8 ECX=0x00000005 EDX=0x00000000
ESI=0x0051f7d8 EDI=0x0051f7b4 EBP=0x0051f794 ESP=0x0051f67c
EIP=0x0028100c
FLAGS=CF PF ZF IF
...

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

490
Let’s filter out EAX and ECX and we got:
EAX=0x00000764 ECX=0x00000005
EAX=0x00000005 ECX=0xfffe7960
EAX=0x00000764 ECX=0x00000005
EAX=0x0000002d ECX=0x00000005
EAX=0x00000058 ECX=0x00000005
EAX=0x0000043f ECX=0x00000005
EAX=0xffffcfc7 ECX=0x00000005
EAX=0x000000c8 ECX=0x00000005
EAX=0xffffff9e ECX=0x00000005
EAX=0x00000ff7 ECX=0x00000005
EAX=0x00000ff7 ECX=0x00000005
EAX=0xffffff9e ECX=0x00000005
EAX=0xffffff9e ECX=0x00000005
EAX=0xffffcfc7 ECX=0xfffe7960
EAX=0x00000005 ECX=0xffffcfc7
EAX=0xffffff9e ECX=0x00000005
EAX=0xffffcfc7 ECX=0xfffe7960
EAX=0xffffff9e ECX=0xffffcfc7
EAX=0xffffcfc7 ECX=0xfffe7960
EAX=0x000000c8 ECX=0x00000ff7
EAX=0x0000002d ECX=0x00000ff7
EAX=0x0000043f ECX=0x00000ff7
EAX=0x00000058 ECX=0x00000ff7
EAX=0x00000764 ECX=0x00000ff7
EAX=0x000000c8 ECX=0x00000764
EAX=0x0000002d ECX=0x00000764
EAX=0x0000043f ECX=0x00000764
EAX=0x00000058 ECX=0x00000764
EAX=0x000000c8 ECX=0x00000058
EAX=0x0000002d ECX=0x000000c8
EAX=0x0000043f ECX=0x000000c8
EAX=0x000000c8 ECX=0x00000058
EAX=0x0000002d ECX=0x000000c8
EAX=0x0000002d ECX=0x00000058

That’s 34 pairs. Therefore, the quick sort algorithm needs 34 comparison operations
to sort these 10 numbers.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

491
MSVC + tracer (code coverage)

We can also use the tracer’s feature to collect all possible register values and show
them in IDA.
Let’s trace all instructions in comp():
tracer.exe -l:17_1.exe bpf=17_1.exe!0x00401000,trace:cc

We get an .idc-script for loading into IDA and load it:

Figure 1.112: tracer and IDA. N.B.: some values are cut at right

IDA gave the function a name (PtFuncCompare)—because IDA sees that the pointer
to this function is passed to qsort().
We see that the a and b pointers are pointing to various places in the array, but the
step between them is 4, as 32-bit values are stored in the array.
We see that the instructions at 0x401010 and 0x401012 were never executed (so
they left as white): indeed, comp() has never returned 0, because there no equal
elements in the array.

1.33.2 GCC
Not a big difference:

Listing 1.368: GCC
lea eax, [esp+40h+var_28]
mov [esp+40h+var_40], eax
mov [esp+40h+var_28], 764h
mov [esp+40h+var_24], 2Dh

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

492
mov [esp+40h+var_20], 0C8h
mov [esp+40h+var_1C], 0FFFFFF9Eh
mov [esp+40h+var_18], 0FF7h
mov [esp+40h+var_14], 5
mov [esp+40h+var_10], 0FFFFCFC7h
mov [esp+40h+var_C], 43Fh
mov [esp+40h+var_8], 58h
mov [esp+40h+var_4], 0FFFE7960h
mov [esp+40h+var_34], offset comp
mov [esp+40h+var_38], 4
mov [esp+40h+var_3C], 0Ah
call _qsort

comp() function:
public comp

comp proc near

arg_0 = dword ptr 8
arg_4 = dword ptr 0Ch

push ebp
mov ebp, esp
mov eax, [ebp+arg_4]
mov ecx, [ebp+arg_0]
mov edx, [eax]
xor eax, eax
cmp [ecx], edx
jnz short loc_8048458
pop ebp
retn

loc_8048458:
setnl al
movzx eax, al
lea eax, [eax+eax-1]
pop ebp
retn

comp endp

The implementation of qsort() is located in libc.so.6 and it is in fact just a wrapper
164 for qsort_r().
In turn, it is calling quicksort(), where our defined function is called via a passed
pointer:

Listing 1.369: (file libc.so.6, glibc version—2.10.1)
...
.text:0002DDF6 mov edx, [ebp+arg_10]
.text:0002DDF9 mov [esp+4], esi
.text:0002DDFD mov [esp], edi
.text:0002DE00 mov [esp+8], edx

164a concept like thunk function

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

493
.text:0002DE04 call [ebp+arg_C]
...

GCC + GDB (with source code)

Obviously, we have the C-source code of our example (1.33 on page 483), so we can
set a breakpoint (b) on line number (11—the line where the first comparison occurs).
We also have to compile the example with debugging information included (-g), so
the table with addresses and corresponding line numbers is present.
We can also print values using variable names (p): the debugging information also
has tells us which register and/or local stack element contains which variable.
We can also see the stack (bt) and find out that there is some intermediate function
msort_with_tmp() used in Glibc.

Listing 1.370: GDB session
dennis@ubuntuvm:~/polygon$ gcc 17_1.c -g
dennis@ubuntuvm:~/polygon$ gdb ./a.out
GNU gdb (GDB) 7.6.1-ubuntu
Copyright (C) 2013 Free Software Foundation, Inc.
...
Reading symbols from /home/dennis/polygon/a.out...done.
(gdb) b 17_1.c:11
Breakpoint 1 at 0x804845f: file 17_1.c, line 11.
(gdb) run
Starting program: /home/dennis/polygon/./a.out

Breakpoint 1, comp (_a=0xbffff0f8, _b=_b@entry=0xbffff0fc) at 17_1.c:11
11 if (*a==*b)
(gdb) p *a
$1 = 1892
(gdb) p *b
$2 = 45
(gdb) c
Continuing.

Breakpoint 1, comp (_a=0xbffff104, _b=_b@entry=0xbffff108) at 17_1.c:11
11 if (*a==*b)
(gdb) p *a
$3 = -98
(gdb) p *b
$4 = 4087
(gdb) bt
#0 comp (_a=0xbffff0f8, _b=_b@entry=0xbffff0fc) at 17_1.c:11
#1 0xb7e42872 in msort_with_tmp (p=p@entry=0xbffff07c, b=b@entry=0⤦

Ç xbffff0f8, n=n@entry=2)
at msort.c:65

#2 0xb7e4273e in msort_with_tmp (n=2, b=0xbffff0f8, p=0xbffff07c) at msort⤦
Ç .c:45

#3 msort_with_tmp (p=p@entry=0xbffff07c, b=b@entry=0xbffff0f8, n=n@entry⤦
Ç =5) at msort.c:53

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

494
#4 0xb7e4273e in msort_with_tmp (n=5, b=0xbffff0f8, p=0xbffff07c) at msort⤦

Ç .c:45
#5 msort_with_tmp (p=p@entry=0xbffff07c, b=b@entry=0xbffff0f8, n=n@entry⤦

Ç =10) at msort.c:53
#6 0xb7e42cef in msort_with_tmp (n=10, b=0xbffff0f8, p=0xbffff07c) at ⤦

Ç msort.c:45
#7 __GI_qsort_r (b=b@entry=0xbffff0f8, n=n@entry=10, s=s@entry=4, cmp=⤦

Ç cmp@entry=0x804844d <comp>,
arg=arg@entry=0x0) at msort.c:297

#8 0xb7e42dcf in __GI_qsort (b=0xbffff0f8, n=10, s=4, cmp=0x804844d <comp⤦
Ç >) at msort.c:307

#9 0x0804850d in main (argc=1, argv=0xbffff1c4) at 17_1.c:26
(gdb)

GCC + GDB (no source code)

But often there is no source code at all, so we can disassemble the comp() function
(disas), find the very first CMP instruction and set a breakpoint (b) at that address.
At each breakpoint, we are going to dump all register contents
(info registers). The stack information is also available (bt),
but partially: there is no line number information for comp().

Listing 1.371: GDB session
dennis@ubuntuvm:~/polygon$ gcc 17_1.c
dennis@ubuntuvm:~/polygon$ gdb ./a.out
GNU gdb (GDB) 7.6.1-ubuntu
Copyright (C) 2013 Free Software Foundation, Inc.
...
Reading symbols from /home/dennis/polygon/a.out...(no debugging symbols ⤦

Ç found)...done.
(gdb) set disassembly-flavor intel
(gdb) disas comp
Dump of assembler code for function comp:

0x0804844d <+0>: push ebp
0x0804844e <+1>: mov ebp,esp
0x08048450 <+3>: sub esp,0x10
0x08048453 <+6>: mov eax,DWORD PTR [ebp+0x8]
0x08048456 <+9>: mov DWORD PTR [ebp-0x8],eax
0x08048459 <+12>: mov eax,DWORD PTR [ebp+0xc]
0x0804845c <+15>: mov DWORD PTR [ebp-0x4],eax
0x0804845f <+18>: mov eax,DWORD PTR [ebp-0x8]
0x08048462 <+21>: mov edx,DWORD PTR [eax]
0x08048464 <+23>: mov eax,DWORD PTR [ebp-0x4]
0x08048467 <+26>: mov eax,DWORD PTR [eax]
0x08048469 <+28>: cmp edx,eax
0x0804846b <+30>: jne 0x8048474 <comp+39>
0x0804846d <+32>: mov eax,0x0
0x08048472 <+37>: jmp 0x804848e <comp+65>
0x08048474 <+39>: mov eax,DWORD PTR [ebp-0x8]
0x08048477 <+42>: mov edx,DWORD PTR [eax]
0x08048479 <+44>: mov eax,DWORD PTR [ebp-0x4]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

495
0x0804847c <+47>: mov eax,DWORD PTR [eax]
0x0804847e <+49>: cmp edx,eax
0x08048480 <+51>: jge 0x8048489 <comp+60>
0x08048482 <+53>: mov eax,0xffffffff
0x08048487 <+58>: jmp 0x804848e <comp+65>
0x08048489 <+60>: mov eax,0x1
0x0804848e <+65>: leave
0x0804848f <+66>: ret

End of assembler dump.
(gdb) b *0x08048469
Breakpoint 1 at 0x8048469
(gdb) run
Starting program: /home/dennis/polygon/./a.out

Breakpoint 1, 0x08048469 in comp ()
(gdb) info registers
eax 0x2d 45
ecx 0xbffff0f8 -1073745672
edx 0x764 1892
ebx 0xb7fc0000 -1208221696
esp 0xbfffeeb8 0xbfffeeb8
ebp 0xbfffeec8 0xbfffeec8
esi 0xbffff0fc -1073745668
edi 0xbffff010 -1073745904
eip 0x8048469 0x8048469 <comp+28>
eflags 0x286 [PF SF IF]
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51
(gdb) c
Continuing.

Breakpoint 1, 0x08048469 in comp ()
(gdb) info registers
eax 0xff7 4087
ecx 0xbffff104 -1073745660
edx 0xffffff9e -98
ebx 0xb7fc0000 -1208221696
esp 0xbfffee58 0xbfffee58
ebp 0xbfffee68 0xbfffee68
esi 0xbffff108 -1073745656
edi 0xbffff010 -1073745904
eip 0x8048469 0x8048469 <comp+28>
eflags 0x282 [SF IF]
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

496
(gdb) c
Continuing.

Breakpoint 1, 0x08048469 in comp ()
(gdb) info registers
eax 0xffffff9e -98
ecx 0xbffff100 -1073745664
edx 0xc8 200
ebx 0xb7fc0000 -1208221696
esp 0xbfffeeb8 0xbfffeeb8
ebp 0xbfffeec8 0xbfffeec8
esi 0xbffff104 -1073745660
edi 0xbffff010 -1073745904
eip 0x8048469 0x8048469 <comp+28>
eflags 0x286 [PF SF IF]
cs 0x73 115
ss 0x7b 123
ds 0x7b 123
es 0x7b 123
fs 0x0 0
gs 0x33 51
(gdb) bt
#0 0x08048469 in comp ()
#1 0xb7e42872 in msort_with_tmp (p=p@entry=0xbffff07c, b=b@entry=0⤦

Ç xbffff0f8, n=n@entry=2)
at msort.c:65

#2 0xb7e4273e in msort_with_tmp (n=2, b=0xbffff0f8, p=0xbffff07c) at msort⤦
Ç .c:45

#3 msort_with_tmp (p=p@entry=0xbffff07c, b=b@entry=0xbffff0f8, n=n@entry⤦
Ç =5) at msort.c:53

#4 0xb7e4273e in msort_with_tmp (n=5, b=0xbffff0f8, p=0xbffff07c) at msort⤦
Ç .c:45

#5 msort_with_tmp (p=p@entry=0xbffff07c, b=b@entry=0xbffff0f8, n=n@entry⤦
Ç =10) at msort.c:53

#6 0xb7e42cef in msort_with_tmp (n=10, b=0xbffff0f8, p=0xbffff07c) at ⤦
Ç msort.c:45

#7 __GI_qsort_r (b=b@entry=0xbffff0f8, n=n@entry=10, s=s@entry=4, cmp=⤦
Ç cmp@entry=0x804844d <comp>,
arg=arg@entry=0x0) at msort.c:297

#8 0xb7e42dcf in __GI_qsort (b=0xbffff0f8, n=10, s=4, cmp=0x804844d <comp⤦
Ç >) at msort.c:307

#9 0x0804850d in main ()

1.33.3 Danger of pointers to functions
As we can see, qsort() function expects a pointer to function which takes two void*
arguments and returning integer. If you have several comparison functions in your
code (one compares string, another—integers, etc), it’s very easy to mix them up
with each other. You could try to sort array of string using function which compares
integers, and compiler will not warn you about bug.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

497
1.34 64-bit values in 32-bit environment
In a 32-bit environment, GPR’s are 32-bit, so 64-bit values are stored and passed as
32-bit value pairs 165.

1.34.1 Returning of 64-bit value
#include <stdint.h>

uint64_t f ()
{

return 0x1234567890ABCDEF;
};

x86

In a 32-bit environment, 64-bit values are returned from functions in the EDX:EAX
register pair.

Listing 1.372: Optimizing MSVC 2010
_f PROC

mov eax, -1867788817 ; 90abcdefH
mov edx, 305419896 ; 12345678H
ret 0

_f ENDP

ARM

A 64-bit value is returned in the R0-R1 register pair (R1 is for the high part and R0 for
the low part):

Listing 1.373: Optimizing Keil 6/2013 (ARM mode)
||f|| PROC

LDR r0,|L0.12|
LDR r1,|L0.16|
BX lr
ENDP

|L0.12|
DCD 0x90abcdef

|L0.16|
DCD 0x12345678

165By the way, 32-bit values are passed as pairs in 16-bit environment in the same way: 3.34.4 on
page 824

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

498
MIPS

A 64-bit value is returned in the V0-V1 ($2-$3) register pair (V0 ($2) is for the high
part and V1 ($3) for the low part):

Listing 1.374: Optimizing GCC 4.4.5 (assembly listing)
li $3,-1867841536 # 0xffffffff90ab0000
li $2,305397760 # 0x12340000
ori $3,$3,0xcdef
j $31
ori $2,$2,0x5678

Listing 1.375: Optimizing GCC 4.4.5 (IDA)
lui $v1, 0x90AB
lui $v0, 0x1234
li $v1, 0x90ABCDEF
jr $ra
li $v0, 0x12345678

1.34.2 Arguments passing, addition, subtraction
#include <stdint.h>

uint64_t f_add (uint64_t a, uint64_t b)
{

return a+b;
};

void f_add_test ()
{
#ifdef __GNUC__

printf ("%lld\n", f_add(12345678901234, 23456789012345));
#else

printf ("%I64d\n", f_add(12345678901234, 23456789012345));
#endif
};

uint64_t f_sub (uint64_t a, uint64_t b)
{

return a-b;
};

x86

Listing 1.376: Optimizing MSVC 2012 /Ob1
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_f_add PROC

mov eax, DWORD PTR _a$[esp-4]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

499
add eax, DWORD PTR _b$[esp-4]
mov edx, DWORD PTR _a$[esp]
adc edx, DWORD PTR _b$[esp]
ret 0

_f_add ENDP

_f_add_test PROC
push 5461 ; 00001555H
push 1972608889 ; 75939f79H
push 2874 ; 00000b3aH
push 1942892530 ; 73ce2ff2H
call _f_add
push edx
push eax
push OFFSET $SG1436 ; '%I64d', 0aH, 00H
call _printf
add esp, 28
ret 0

_f_add_test ENDP

_f_sub PROC
mov eax, DWORD PTR _a$[esp-4]
sub eax, DWORD PTR _b$[esp-4]
mov edx, DWORD PTR _a$[esp]
sbb edx, DWORD PTR _b$[esp]
ret 0

_f_sub ENDP

We can see in the f_add_test() function that each 64-bit value is passed using two
32-bit values, high part first, then low part.
Addition and subtraction occur in pairs as well.
In addition, the low 32-bit part are added first. If carry has been occurred while
adding, the CF flag is set.
The following ADC instruction adds the high parts of the values, and also adds 1 if
CF = 1.
Subtraction also occurs in pairs. The first SUB may also turn on the CF flag, which
is to be checked in the subsequent SBB instruction: if the carry flag is on, then 1 is
also to be subtracted from the result.
It is easy to see how the f_add() function result is then passed to printf().

Listing 1.377: GCC 4.8.1 -O1 -fno-inline
_f_add:

mov eax, DWORD PTR [esp+12]
mov edx, DWORD PTR [esp+16]
add eax, DWORD PTR [esp+4]
adc edx, DWORD PTR [esp+8]
ret

_f_add_test:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

500
sub esp, 28
mov DWORD PTR [esp+8], 1972608889 ; 75939f79H
mov DWORD PTR [esp+12], 5461 ; 00001555H
mov DWORD PTR [esp], 1942892530 ; 73ce2ff2H
mov DWORD PTR [esp+4], 2874 ; 00000b3aH
call _f_add
mov DWORD PTR [esp+4], eax
mov DWORD PTR [esp+8], edx
mov DWORD PTR [esp], OFFSET FLAT:LC0 ; "%lld\n"
call _printf
add esp, 28
ret

_f_sub:
mov eax, DWORD PTR [esp+4]
mov edx, DWORD PTR [esp+8]
sub eax, DWORD PTR [esp+12]
sbb edx, DWORD PTR [esp+16]
ret

GCC code is the same.

ARM

Listing 1.378: Optimizing Keil 6/2013 (ARM mode)
f_add PROC

ADDS r0,r0,r2
ADC r1,r1,r3
BX lr
ENDP

f_sub PROC
SUBS r0,r0,r2
SBC r1,r1,r3
BX lr
ENDP

f_add_test PROC
PUSH {r4,lr}
LDR r2,|L0.68| ; 0x75939f79
LDR r3,|L0.72| ; 0x00001555
LDR r0,|L0.76| ; 0x73ce2ff2
LDR r1,|L0.80| ; 0x00000b3a
BL f_add
POP {r4,lr}
MOV r2,r0
MOV r3,r1
ADR r0,|L0.84| ; "%I64d\n"
B __2printf
ENDP

|L0.68|

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

501
DCD 0x75939f79

|L0.72|
DCD 0x00001555

|L0.76|
DCD 0x73ce2ff2

|L0.80|
DCD 0x00000b3a

|L0.84|
DCB "%I64d\n",0

The first 64-bit value is passed in R0 and R1 register pair, the second in R2 and R3
register pair. ARM has the ADC instruction as well (which counts carry flag) and SBC
(“subtract with carry”). Important thing: when the low parts are added/subtracted,
ADDS and SUBS instructions with -S suffix are used. The -S suffix stands for “set flags”,
and flags (esp. carry flag) is what consequent ADC/SBC instructions definitely need.
Otherwise, instructions without the -S suffix would do the job (ADD and SUB).

MIPS

Listing 1.379: Optimizing GCC 4.4.5 (IDA)
f_add:
; $a0 - high part of a
; $a1 - low part of a
; $a2 - high part of b
; $a3 - low part of b

addu $v1, $a3, $a1 ; sum up low parts
addu $a0, $a2, $a0 ; sum up high parts

; will carry generated while summing up low parts?
; if yes, set $v0 to 1

sltu $v0, $v1, $a3
jr $ra

; add 1 to high part of result if carry should be generated:
addu $v0, $a0 ; branch delay slot

; $v0 - high part of result
; $v1 - low part of result

f_sub:
; $a0 - high part of a
; $a1 - low part of a
; $a2 - high part of b
; $a3 - low part of b

subu $v1, $a1, $a3 ; subtract low parts
subu $v0, $a0, $a2 ; subtract high parts

; will carry generated while subtracting low parts?
; if yes, set $a0 to 1

sltu $a1, $v1
jr $ra

; subtract 1 from high part of result if carry should be generated:
subu $v0, $a1 ; branch delay slot

; $v0 - high part of result
; $v1 - low part of result

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

502
f_add_test:

var_10 = -0x10
var_4 = -4

lui $gp, (__gnu_local_gp >> 16)
addiu $sp, -0x20
la $gp, (__gnu_local_gp & 0xFFFF)
sw $ra, 0x20+var_4($sp)
sw $gp, 0x20+var_10($sp)
lui $a1, 0x73CE
lui $a3, 0x7593
li $a0, 0xB3A
li $a3, 0x75939F79
li $a2, 0x1555
jal f_add
li $a1, 0x73CE2FF2
lw $gp, 0x20+var_10($sp)
lui $a0, ($LC0 >> 16) # "%lld\n"
lw $t9, (printf & 0xFFFF)($gp)
lw $ra, 0x20+var_4($sp)
la $a0, ($LC0 & 0xFFFF) # "%lld\n"
move $a3, $v1
move $a2, $v0
jr $t9
addiu $sp, 0x20

$LC0: .ascii "%lld\n"<0>

MIPS has no flags register, so there is no such information present after the execution
of arithmetic operations. So there are no instructions like x86’s ADC and SBB. To know
if the carry flag would be set, a comparison (using SLTU instruction) also occurs,
which sets the destination register to 1 or 0. This 1 or 0 is then added or subtracted
to/from the final result.

1.34.3 Multiplication, division
#include <stdint.h>

uint64_t f_mul (uint64_t a, uint64_t b)
{

return a*b;
};

uint64_t f_div (uint64_t a, uint64_t b)
{

return a/b;
};

uint64_t f_rem (uint64_t a, uint64_t b)
{

return a % b;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

503
};

x86

Listing 1.380: Optimizing MSVC 2013 /Ob1
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_f_mul PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _b$[ebp+4]
push eax
mov ecx, DWORD PTR _b$[ebp]
push ecx
mov edx, DWORD PTR _a$[ebp+4]
push edx
mov eax, DWORD PTR _a$[ebp]
push eax
call __allmul ; long long multiplication
pop ebp
ret 0

_f_mul ENDP

_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_f_div PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _b$[ebp+4]
push eax
mov ecx, DWORD PTR _b$[ebp]
push ecx
mov edx, DWORD PTR _a$[ebp+4]
push edx
mov eax, DWORD PTR _a$[ebp]
push eax
call __aulldiv ; unsigned long long division
pop ebp
ret 0

_f_div ENDP

_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_f_rem PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _b$[ebp+4]
push eax
mov ecx, DWORD PTR _b$[ebp]
push ecx
mov edx, DWORD PTR _a$[ebp+4]
push edx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

504
mov eax, DWORD PTR _a$[ebp]
push eax
call __aullrem ; unsigned long long remainder
pop ebp
ret 0

_f_rem ENDP

Multiplication and division are more complex operations, so usually the compiler
embeds calls to a library functions doing that.
These functions are described here: .5 on page 1320.

Listing 1.381: Optimizing GCC 4.8.1 -fno-inline
_f_mul:

push ebx
mov edx, DWORD PTR [esp+8]
mov eax, DWORD PTR [esp+16]
mov ebx, DWORD PTR [esp+12]
mov ecx, DWORD PTR [esp+20]
imul ebx, eax
imul ecx, edx
mul edx
add ecx, ebx
add edx, ecx
pop ebx
ret

_f_div:
sub esp, 28
mov eax, DWORD PTR [esp+40]
mov edx, DWORD PTR [esp+44]
mov DWORD PTR [esp+8], eax
mov eax, DWORD PTR [esp+32]
mov DWORD PTR [esp+12], edx
mov edx, DWORD PTR [esp+36]
mov DWORD PTR [esp], eax
mov DWORD PTR [esp+4], edx
call ___udivdi3 ; unsigned division
add esp, 28
ret

_f_rem:
sub esp, 28
mov eax, DWORD PTR [esp+40]
mov edx, DWORD PTR [esp+44]
mov DWORD PTR [esp+8], eax
mov eax, DWORD PTR [esp+32]
mov DWORD PTR [esp+12], edx
mov edx, DWORD PTR [esp+36]
mov DWORD PTR [esp], eax
mov DWORD PTR [esp+4], edx
call ___umoddi3 ; unsigned modulo
add esp, 28

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

505
ret

GCC does the expected, but the multiplication code is inlined right in the function,
thinking it could be more efficient. GCC has different library function names: .4 on
page 1320.

ARM

Keil for Thumb mode inserts library subroutine calls:

Listing 1.382: Optimizing Keil 6/2013 (Thumb mode)
||f_mul|| PROC

PUSH {r4,lr}
BL __aeabi_lmul
POP {r4,pc}
ENDP

||f_div|| PROC
PUSH {r4,lr}
BL __aeabi_uldivmod
POP {r4,pc}
ENDP

||f_rem|| PROC
PUSH {r4,lr}
BL __aeabi_uldivmod
MOVS r0,r2
MOVS r1,r3
POP {r4,pc}
ENDP

Keil for ARM mode, on the other hand, is able to produce 64-bit multiplication code:

Listing 1.383: Optimizing Keil 6/2013 (ARM mode)
||f_mul|| PROC

PUSH {r4,lr}
UMULL r12,r4,r0,r2
MLA r1,r2,r1,r4
MLA r1,r0,r3,r1
MOV r0,r12
POP {r4,pc}
ENDP

||f_div|| PROC
PUSH {r4,lr}
BL __aeabi_uldivmod
POP {r4,pc}
ENDP

||f_rem|| PROC
PUSH {r4,lr}
BL __aeabi_uldivmod

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

506
MOV r0,r2
MOV r1,r3
POP {r4,pc}
ENDP

MIPS

Optimizing GCC for MIPS can generate 64-bit multiplication code, but has to call a
library routine for 64-bit division:

Listing 1.384: Optimizing GCC 4.4.5 (IDA)
f_mul:

mult $a2, $a1
mflo $v0
or $at, $zero ; NOP
or $at, $zero ; NOP
mult $a0, $a3
mflo $a0
addu $v0, $a0
or $at, $zero ; NOP
multu $a3, $a1
mfhi $a2
mflo $v1
jr $ra
addu $v0, $a2

f_div:

var_10 = -0x10
var_4 = -4

lui $gp, (__gnu_local_gp >> 16)
addiu $sp, -0x20
la $gp, (__gnu_local_gp & 0xFFFF)
sw $ra, 0x20+var_4($sp)
sw $gp, 0x20+var_10($sp)
lw $t9, (__udivdi3 & 0xFFFF)($gp)
or $at, $zero
jalr $t9
or $at, $zero
lw $ra, 0x20+var_4($sp)
or $at, $zero
jr $ra
addiu $sp, 0x20

f_rem:

var_10 = -0x10
var_4 = -4

lui $gp, (__gnu_local_gp >> 16)
addiu $sp, -0x20

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

507
la $gp, (__gnu_local_gp & 0xFFFF)
sw $ra, 0x20+var_4($sp)
sw $gp, 0x20+var_10($sp)
lw $t9, (__umoddi3 & 0xFFFF)($gp)
or $at, $zero
jalr $t9
or $at, $zero
lw $ra, 0x20+var_4($sp)
or $at, $zero
jr $ra
addiu $sp, 0x20

There are a lot of NOPs, probably delay slots filled after the multiplication instruction
(it’s slower than other instructions, after all).

1.34.4 Shifting right
#include <stdint.h>

uint64_t f (uint64_t a)
{

return a>>7;
};

x86

Listing 1.385: Optimizing MSVC 2012 /Ob1
_a$ = 8 ; size = 8
_f PROC

mov eax, DWORD PTR _a$[esp-4]
mov edx, DWORD PTR _a$[esp]
shrd eax, edx, 7
shr edx, 7
ret 0

_f ENDP

Listing 1.386: Optimizing GCC 4.8.1 -fno-inline
_f:

mov edx, DWORD PTR [esp+8]
mov eax, DWORD PTR [esp+4]
shrd eax, edx, 7
shr edx, 7
ret

Shifting also occurs in two passes: first the lower part is shifted, then the higher part.
But the lower part is shifted with the help of the SHRD instruction, it shifts the value of
EAX by 7 bits, but pulls new bits from EDX, i.e., from the higher part. In other words,
64-bit value from EDX:EAX register’s pair, as a whole, is shifted by 7 bits and lowest
32 bits of result are placed into EAX. The higher part is shifted using the much more

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

508
popular SHR instruction: indeed, the freed bits in the higher part must be filled with
zeros.

ARM

ARM doesn’t have such instruction as SHRD in x86, so the Keil compiler ought to do
this using simple shifts and OR operations:

Listing 1.387: Optimizing Keil 6/2013 (ARM mode)
||f|| PROC

LSR r0,r0,#7
ORR r0,r0,r1,LSL #25
LSR r1,r1,#7
BX lr
ENDP

Listing 1.388: Optimizing Keil 6/2013 (Thumb mode)
||f|| PROC

LSLS r2,r1,#25
LSRS r0,r0,#7
ORRS r0,r0,r2
LSRS r1,r1,#7
BX lr
ENDP

MIPS

GCC for MIPS follows the same algorithm as Keil does for Thumb mode:

Listing 1.389: Optimizing GCC 4.4.5 (IDA)
f:

sll $v0, $a0, 25
srl $v1, $a1, 7
or $v1, $v0, $v1
jr $ra
srl $v0, $a0, 7

1.34.5 Converting 32-bit value into 64-bit one
#include <stdint.h>

int64_t f (int32_t a)
{

return a;
};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

509
x86

Listing 1.390: Optimizing MSVC 2012
_a$ = 8
_f PROC

mov eax, DWORD PTR _a$[esp-4]
cdq
ret 0

_f ENDP

Here we also run into necessity to extend a 32-bit signed value into a 64-bit signed
one. Unsigned values are converted straightforwardly: all bits in the higher part
must be set to 0. But this is not appropriate for signed data types: the sign has to
be copied into the higher part of the resulting number.
The CDQ instruction does that here, it takes its input value in EAX, extends it to 64-bit
and leaves it in the EDX:EAX register pair. In other words, CDQ gets the number sign
from EAX (by getting the most significant bit in EAX), and depending of it, sets all 32
bits in EDX to 0 or 1. Its operation is somewhat similar to the MOVSX instruction.

ARM

Listing 1.391: Optimizing Keil 6/2013 (ARM mode)
||f|| PROC

ASR r1,r0,#31
BX lr
ENDP

Keil for ARM is different: it just arithmetically shifts right the input value by 31 bits.
As we know, the sign bit is MSB, and the arithmetical shift copies the sign bit into
the “emerged” bits. So after “ASR r1,r0,#31”, R1 containing 0xFFFFFFFF if the input
value has been negative and 0 otherwise. R1 contains the high part of the resulting
64-bit value. In other words, this code just copies the MSB (sign bit) from the input
value in R0 to all bits of the high 32-bit part of the resulting 64-bit value.

MIPS

GCC for MIPS does the same as Keil did for ARM mode:

Listing 1.392: Optimizing GCC 4.4.5 (IDA)
f:

sra $v0, $a0, 31
jr $ra
move $v1, $a0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

510
1.35 LARGE_INTEGER structure case
Imagine this: late 1980s, you’re Microsoft, and you’re developing a new serious OS
(Windows NT), that will compete with Unices. Target platforms has both 32-bit and
64-bit CPUs. And you need a 64-bit integer datatype for all sort of purposes, starting
at FILETIME166 structure.
The problem: not all target C/C++ compilers support 64-bit integer yet (this is late
1980s). Surely, this will be changed in (near) future, but not now. What would you
do?
While reading this, try to stop (and/or close this book) and think, how can you solve
this problem.

166https://docs.microsoft.com/en-us/windows/desktop/api/minwinbase/
ns-minwinbase-filetime

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://docs.microsoft.com/en-us/windows/desktop/api/minwinbase/ns-minwinbase-filetime
https://docs.microsoft.com/en-us/windows/desktop/api/minwinbase/ns-minwinbase-filetime
https://yurichev.com/contact.html
https://yurichev.com/contact.html

511
This is what Microsoft did, something like this167:
union ULARGE_INTEGER
{

struct backward_compatibility
{

DWORD LowPart;
DWORD HighPart;

};
#ifdef NEW_FANCY_COMPILER_SUPPORTING_64_BIT

ULONGLONG QuadPart;
#endif
};

This is a chunk of 8 bytes, which can be accessed via 64-bit integer QuadPart (if
compiled using newer compiler), or using two 32-bit integers (if compiled using old
one).
QuadPart field is just absent here when compiled using old compiler.
Order is crucial: first field (LowPart) maps to lower 4 bytes of 64-bit value, second
field (HighPart) maps to higher 4 bytes.
Microsoft also added utility functions for all the arithmetical operation, in a same
manner as I already described: 1.34 on page 497.
And this is from the leaked Windows 2000 source code base:

Listing 1.393: i386 arch
;++
;
; LARGE_INTEGER
; RtlLargeIntegerAdd (
; IN LARGE_INTEGER Addend1,
; IN LARGE_INTEGER Addend2
;)
;
; Routine Description:
;
; This function adds a signed large integer to a signed large integer and
; returns the signed large integer result.
;
; Arguments:
;
; (TOS+4) = Addend1 - first addend value
; (TOS+12) = Addend2 - second addend value
;
; Return Value:
;
; The large integer result is stored in (edx:eax)
;
;--

167Not a copypasted source code, I wrote this

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

512
cPublicProc _RtlLargeIntegerAdd ,4
cPublicFpo 4,0

mov eax,[esp]+4 ; (eax)=add1.low
add eax,[esp]+12 ; (eax)=sum.low
mov edx,[esp]+8 ; (edx)=add1.hi
adc edx,[esp]+16 ; (edx)=sum.hi
stdRET _RtlLargeIntegerAdd

stdENDP _RtlLargeIntegerAdd

Listing 1.394: MIPS arch
LEAF_ENTRY(RtlLargeIntegerAdd)

lw t0,4 * 4(sp) // get low part of addend2 value
lw t1,4 * 5(sp) // get high part of addend2 value
addu t0,t0,a2 // add low parts of large integer
addu t1,t1,a3 // add high parts of large integer
sltu t2,t0,a2 // generate carry from low part
addu t1,t1,t2 // add carry to high part
sw t0,0(a0) // store low part of result
sw t1,4(a0) // store high part of result
move v0,a0 // set function return register
j ra // return

.end RtlLargeIntegerAdd

Now two 64-bit architectures:

Listing 1.395: Itanium arch
LEAF_ENTRY(RtlLargeIntegerAdd)

add v0 = a0, a1 // add both quadword ⤦
Ç arguments

LEAF_RETURN

LEAF_EXIT(RtlLargeIntegerAdd)

Listing 1.396: DEC Alpha arch
LEAF_ENTRY(RtlLargeIntegerAdd)

addq a0, a1, v0 // add both quadword arguments
ret zero, (ra) // return

.end RtlLargeIntegerAdd

No need using 32-bit instructions on Itanium and DEC Alpha—64-bit ones are here
already.
And this is what we can find in Windows Research Kernel:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

513

DECLSPEC_DEPRECATED_DDK // Use native __int64 math
__inline
LARGE_INTEGER
NTAPI
RtlLargeIntegerAdd (

LARGE_INTEGER Addend1,
LARGE_INTEGER Addend2
)

{
LARGE_INTEGER Sum;

Sum.QuadPart = Addend1.QuadPart + Addend2.QuadPart;
return Sum;

}

All these functions can be dropped (in future), but now they just operate on Quad-
Part field. If this piece of code is to be compiled using a modern 32-bit compiler
(that supports 64-bit integer), it will generate two 32-bit additions under the hood.
From this moment, LowPart/HighPart fields can be dropped from the LARGE_INTEGER
union/structure.
Would you use such a technique today? Probably not, but if someone would need
128-bit integer data type, you can implement it just like this.
Also, needless to say, this works thanks to little-endian (2.2 on page 572) (all ar-
chitectures Windows NT was developed for are little-endian). This trick wouldn’t be
possible on a big-endian architecture.

1.36 SIMD
SIMD is an acronym: Single Instruction, Multiple Data.
As its name implies, it processes multiple data using only one instruction.
Like the FPU, that CPU subsystem looks like a separate processor inside x86.
SIMD began as MMX in x86. 8 new 64-bit registers appeared: MM0-MM7.
Each MMX register can hold 2 32-bit values, 4 16-bit values or 8 bytes. For example,
it is possible to add 8 8-bit values (bytes) simultaneously by adding two values in
MMX registers.
One simple example is a graphics editor that represents an image as a two dimen-
sional array. When the user changes the brightness of the image, the editor must
add or subtract a coefficient to/from each pixel value. For the sake of brevity if we
say that the image is grayscale and each pixel is defined by one 8-bit byte, then it
is possible to change the brightness of 8 pixels simultaneously.
By the way, this is the reason why the saturation instructions are present in SIMD.
When the user changes the brightness in the graphics editor, overflow and underflow
are not desirable, so there are addition instructions in SIMD which are not adding
anything if the maximum value is reached, etc.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

514
When MMX appeared, these registers were actually located in the FPU’s registers. It
was possible to use either FPU or MMX at the same time. One might think that Intel
saved on transistors, but in fact the reason of such symbiosis was simpler —older
OSes that are not aware of the additional CPU registers would not save them at the
context switch, but saving the FPU registers. Thus, MMX-enabled CPU + old OS +
process utilizing MMX features will still work.
SSE—is extension of the SIMD registers to 128 bits, now separate from the FPU.
AVX—another extension, to 256 bits.
Now about practical usage.
Of course, this is memory copy routines (memcpy), memory comparing (memcmp) and
so on.
One more example: the DES encryption algorithm takes a 64-bit block and a 56-
bit key, encrypt the block and produces a 64-bit result. The DES algorithm may be
considered as a very large electronic circuit, with wires and AND/OR/NOT gates.
Bitslice DES168 —is the idea of processing groups of blocks and keys simultaneously.
Let’s say, variable of type unsigned int on x86 can hold up to 32 bits, so it is possi-
ble to store there intermediate results for 32 block-key pairs simultaneously, using
64+56 variables of type unsigned int.
There is an utility to brute-force Oracle RDBMS passwords/hashes (ones based on
DES), using slightly modified bitslice DES algorithm for SSE2 and AVX—now it is
possible to encrypt 128 or 256 block-keys pairs simultaneously.
http://conus.info/utils/ops_SIMD/

1.36.1 Vectorization
Vectorization169 is when, for example, you have a loop taking couple of arrays for
input and producing one array. The loop body takes values from the input arrays,
does something and puts the result into the output array. Vectorization is to process
several elements simultaneously.
Vectorization is not very fresh technology: the author of this textbook saw it at least
on the Cray Y-MP supercomputer line from 1988 when he played with its “lite” version
Cray Y-MP EL 170.
For example:
for (i = 0; i < 1024; i++)
{

C[i] = A[i]*B[i];
}

This fragment of code takes elements from A and B, multiplies them and saves the
result into C.
168http://www.darkside.com.au/bitslice/
169Wikipedia: vectorization
170Remotely. It is installed in the museum of supercomputers: http://www.cray-cyber.org

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://conus.info/utils/ops_SIMD/
http://www.darkside.com.au/bitslice/
http://en.wikipedia.org/wiki/Vectorization_(computer_science)
http://www.cray-cyber.org
https://yurichev.com/contact.html
https://yurichev.com/contact.html

515
If each array element we have is 32-bit int, then it is possible to load 4 elements from
A into a 128-bit XMM-register, from B to another XMM-registers, and by executing
PMULLD (Multiply Packed Signed Dword Integers and Store Low Result) and PMULHW
(Multiply Packed Signed Integers and Store High Result), it is possible to get 4 64-bit
products at once.
Thus, loop body execution count is 1024/4 instead of 1024, that is 4 times less and,
of course, faster.

Addition example

Some compilers can do vectorization automatically in simple cases, e.g., Intel C++171.
Here is tiny function:
int f (int sz, int *ar1, int *ar2, int *ar3)
{

for (int i=0; i<sz; i++)
ar3[i]=ar1[i]+ar2[i];

return 0;
};

Intel C++

Let’s compile it with Intel C++ 11.1.051 win32:
icl intel.cpp /QaxSSE2 /Faintel.asm /Ox

We got (in IDA):
; int __cdecl f(int, int *, int *, int *)

public ?f@@YAHHPAH00@Z
?f@@YAHHPAH00@Z proc near

var_10 = dword ptr -10h
sz = dword ptr 4
ar1 = dword ptr 8
ar2 = dword ptr 0Ch
ar3 = dword ptr 10h

push edi
push esi
push ebx
push esi
mov edx, [esp+10h+sz]
test edx, edx
jle loc_15B
mov eax, [esp+10h+ar3]
cmp edx, 6
jle loc_143

171More about Intel C++ automatic vectorization: Excerpt: Effective Automatic Vectorization

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.intel.com/intelpress/sum_vmmx.htm
https://yurichev.com/contact.html
https://yurichev.com/contact.html

516
cmp eax, [esp+10h+ar2]
jbe short loc_36
mov esi, [esp+10h+ar2]
sub esi, eax
lea ecx, ds:0[edx*4]
neg esi
cmp ecx, esi
jbe short loc_55

loc_36: ; CODE XREF: f(int,int *,int *,int *)+21
cmp eax, [esp+10h+ar2]
jnb loc_143
mov esi, [esp+10h+ar2]
sub esi, eax
lea ecx, ds:0[edx*4]
cmp esi, ecx
jb loc_143

loc_55: ; CODE XREF: f(int,int *,int *,int *)+34
cmp eax, [esp+10h+ar1]
jbe short loc_67
mov esi, [esp+10h+ar1]
sub esi, eax
neg esi
cmp ecx, esi
jbe short loc_7F

loc_67: ; CODE XREF: f(int,int *,int *,int *)+59
cmp eax, [esp+10h+ar1]
jnb loc_143
mov esi, [esp+10h+ar1]
sub esi, eax
cmp esi, ecx
jb loc_143

loc_7F: ; CODE XREF: f(int,int *,int *,int *)+65
mov edi, eax ; edi = ar3
and edi, 0Fh ; is ar3 16-byte aligned?
jz short loc_9A ; yes
test edi, 3
jnz loc_162
neg edi
add edi, 10h
shr edi, 2

loc_9A: ; CODE XREF: f(int,int *,int *,int *)+84
lea ecx, [edi+4]
cmp edx, ecx
jl loc_162
mov ecx, edx
sub ecx, edi
and ecx, 3
neg ecx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

517
add ecx, edx
test edi, edi
jbe short loc_D6
mov ebx, [esp+10h+ar2]
mov [esp+10h+var_10], ecx
mov ecx, [esp+10h+ar1]
xor esi, esi

loc_C1: ; CODE XREF: f(int,int *,int *,int *)+CD
mov edx, [ecx+esi*4]
add edx, [ebx+esi*4]
mov [eax+esi*4], edx
inc esi
cmp esi, edi
jb short loc_C1
mov ecx, [esp+10h+var_10]
mov edx, [esp+10h+sz]

loc_D6: ; CODE XREF: f(int,int *,int *,int *)+B2
mov esi, [esp+10h+ar2]
lea esi, [esi+edi*4] ; is ar2+i*4 16-byte aligned?
test esi, 0Fh
jz short loc_109 ; yes!
mov ebx, [esp+10h+ar1]
mov esi, [esp+10h+ar2]

loc_ED: ; CODE XREF: f(int,int *,int *,int *)+105
movdqu xmm1, xmmword ptr [ebx+edi*4] ; ar1+i*4
movdqu xmm0, xmmword ptr [esi+edi*4] ; ar2+i*4 is not 16-byte

aligned, so load it to XMM0
paddd xmm1, xmm0
movdqa xmmword ptr [eax+edi*4], xmm1 ; ar3+i*4
add edi, 4
cmp edi, ecx
jb short loc_ED
jmp short loc_127

loc_109: ; CODE XREF: f(int,int *,int *,int *)+E3
mov ebx, [esp+10h+ar1]
mov esi, [esp+10h+ar2]

loc_111: ; CODE XREF: f(int,int *,int *,int *)+125
movdqu xmm0, xmmword ptr [ebx+edi*4]
paddd xmm0, xmmword ptr [esi+edi*4]
movdqa xmmword ptr [eax+edi*4], xmm0
add edi, 4
cmp edi, ecx
jb short loc_111

loc_127: ; CODE XREF: f(int,int *,int *,int *)+107
; f(int,int *,int *,int *)+164

cmp ecx, edx
jnb short loc_15B
mov esi, [esp+10h+ar1]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

518
mov edi, [esp+10h+ar2]

loc_133: ; CODE XREF: f(int,int *,int *,int *)+13F
mov ebx, [esi+ecx*4]
add ebx, [edi+ecx*4]
mov [eax+ecx*4], ebx
inc ecx
cmp ecx, edx
jb short loc_133
jmp short loc_15B

loc_143: ; CODE XREF: f(int,int *,int *,int *)+17
; f(int,int *,int *,int *)+3A ...

mov esi, [esp+10h+ar1]
mov edi, [esp+10h+ar2]
xor ecx, ecx

loc_14D: ; CODE XREF: f(int,int *,int *,int *)+159
mov ebx, [esi+ecx*4]
add ebx, [edi+ecx*4]
mov [eax+ecx*4], ebx
inc ecx
cmp ecx, edx
jb short loc_14D

loc_15B: ; CODE XREF: f(int,int *,int *,int *)+A
; f(int,int *,int *,int *)+129 ...

xor eax, eax
pop ecx
pop ebx
pop esi
pop edi
retn

loc_162: ; CODE XREF: f(int,int *,int *,int *)+8C
; f(int,int *,int *,int *)+9F

xor ecx, ecx
jmp short loc_127

?f@@YAHHPAH00@Z endp

The SSE2-related instructions are:
• MOVDQU (Move Unaligned Double Quadword)—just loads 16 bytes from memory
into a XMM-register.

• PADDD (Add Packed Integers)—adds 4 pairs of 32-bit numbers and leaves the
result in the first operand. By the way, no exception is raised in case of overflow
and no flags are to be set, just the low 32 bits of the result are to be stored. If
one of PADDD’s operands is the address of a value in memory, then the address
must be aligned on a 16-byte boundary. If it is not aligned, an exception will be
triggered.

• MOVDQA (Move Aligned Double Quadword) is the same as MOVDQU, but requires
the address of the value in memory to be aligned on a 16-bit boundary. If it

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

519
is not aligned, exception will be raised. MOVDQA works faster than MOVDQU, but
requires aforesaid.

So, these SSE2-instructions are to be executed only in case there are more than 4
pairs to work on and the pointer ar3 is aligned on a 16-byte boundary.
Also, if ar2 is aligned on a 16-byte boundary as well, this fragment of code is to be
executed:
movdqu xmm0, xmmword ptr [ebx+edi*4] ; ar1+i*4
paddd xmm0, xmmword ptr [esi+edi*4] ; ar2+i*4
movdqa xmmword ptr [eax+edi*4], xmm0 ; ar3+i*4

Otherwise, the value from ar2 is to be loaded into XMM0 using MOVDQU, which does
not require aligned pointer, but may work slower:
movdqu xmm1, xmmword ptr [ebx+edi*4] ; ar1+i*4
movdqu xmm0, xmmword ptr [esi+edi*4] ; ar2+i*4 is not 16-byte aligned, so

load it to XMM0
paddd xmm1, xmm0
movdqa xmmword ptr [eax+edi*4], xmm1 ; ar3+i*4

In all other cases, non-SSE2 code is to be executed.

GCC

GCCmay also vectorize in simple cases172, if the -O3 option is used and SSE2 support
is turned on: -msse2.
What we get (GCC 4.4.1):
; f(int, int *, int *, int *)

public _Z1fiPiS_S_
_Z1fiPiS_S_ proc near

var_18 = dword ptr -18h
var_14 = dword ptr -14h
var_10 = dword ptr -10h
arg_0 = dword ptr 8
arg_4 = dword ptr 0Ch
arg_8 = dword ptr 10h
arg_C = dword ptr 14h

push ebp
mov ebp, esp
push edi
push esi
push ebx
sub esp, 0Ch
mov ecx, [ebp+arg_0]
mov esi, [ebp+arg_4]

172More about GCC vectorization support: http://gcc.gnu.org/projects/tree-ssa/vectorization.
html

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

520
mov edi, [ebp+arg_8]
mov ebx, [ebp+arg_C]
test ecx, ecx
jle short loc_80484D8
cmp ecx, 6
lea eax, [ebx+10h]
ja short loc_80484E8

loc_80484C1: ; CODE XREF: f(int,int *,int *,int *)+4B
; f(int,int *,int *,int *)+61 ...
xor eax, eax
nop
lea esi, [esi+0]

loc_80484C8: ; CODE XREF: f(int,int *,int *,int *)+36
mov edx, [edi+eax*4]
add edx, [esi+eax*4]
mov [ebx+eax*4], edx
add eax, 1
cmp eax, ecx
jnz short loc_80484C8

loc_80484D8: ; CODE XREF: f(int,int *,int *,int *)+17
; f(int,int *,int *,int *)+A5
add esp, 0Ch
xor eax, eax
pop ebx
pop esi
pop edi
pop ebp
retn

align 8

loc_80484E8: ; CODE XREF: f(int,int *,int *,int *)+1F
test bl, 0Fh
jnz short loc_80484C1
lea edx, [esi+10h]
cmp ebx, edx
jbe loc_8048578

loc_80484F8: ; CODE XREF: f(int,int *,int *,int *)+E0
lea edx, [edi+10h]
cmp ebx, edx
ja short loc_8048503
cmp edi, eax
jbe short loc_80484C1

loc_8048503: ; CODE XREF: f(int,int *,int *,int *)+5D
mov eax, ecx
shr eax, 2
mov [ebp+var_14], eax
shl eax, 2

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

521
test eax, eax
mov [ebp+var_10], eax
jz short loc_8048547
mov [ebp+var_18], ecx
mov ecx, [ebp+var_14]
xor eax, eax
xor edx, edx
nop

loc_8048520: ; CODE XREF: f(int,int *,int *,int *)+9B
movdqu xmm1, xmmword ptr [edi+eax]
movdqu xmm0, xmmword ptr [esi+eax]
add edx, 1
paddd xmm0, xmm1
movdqa xmmword ptr [ebx+eax], xmm0
add eax, 10h
cmp edx, ecx
jb short loc_8048520
mov ecx, [ebp+var_18]
mov eax, [ebp+var_10]
cmp ecx, eax
jz short loc_80484D8

loc_8048547: ; CODE XREF: f(int,int *,int *,int *)+73
lea edx, ds:0[eax*4]
add esi, edx
add edi, edx
add ebx, edx
lea esi, [esi+0]

loc_8048558: ; CODE XREF: f(int,int *,int *,int *)+CC
mov edx, [edi]
add eax, 1
add edi, 4
add edx, [esi]
add esi, 4
mov [ebx], edx
add ebx, 4
cmp ecx, eax
jg short loc_8048558
add esp, 0Ch
xor eax, eax
pop ebx
pop esi
pop edi
pop ebp
retn

loc_8048578: ; CODE XREF: f(int,int *,int *,int *)+52
cmp eax, esi
jnb loc_80484C1
jmp loc_80484F8

_Z1fiPiS_S_ endp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

522
Almost the same, however, not as meticulously as Intel C++.

Memory copy example

Let’s revisit the simple memcpy() example (1.22.2 on page 246):
#include <stdio.h>

void my_memcpy (unsigned char* dst, unsigned char* src, size_t cnt)
{

size_t i;
for (i=0; i<cnt; i++)

dst[i]=src[i];
};

And that’s what optimizations GCC 4.9.1 did:

Listing 1.397: Optimizing GCC 4.9.1 x64
my_memcpy:
; RDI = destination address
; RSI = source address
; RDX = size of block

test rdx, rdx
je .L41
lea rax, [rdi+16]
cmp rsi, rax
lea rax, [rsi+16]
setae cl
cmp rdi, rax
setae al
or cl, al
je .L13
cmp rdx, 22
jbe .L13
mov rcx, rsi
push rbp
push rbx
neg rcx
and ecx, 15
cmp rcx, rdx
cmova rcx, rdx
xor eax, eax
test rcx, rcx
je .L4
movzx eax, BYTE PTR [rsi]
cmp rcx, 1
mov BYTE PTR [rdi], al
je .L15
movzx eax, BYTE PTR [rsi+1]
cmp rcx, 2
mov BYTE PTR [rdi+1], al
je .L16
movzx eax, BYTE PTR [rsi+2]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

523
cmp rcx, 3
mov BYTE PTR [rdi+2], al
je .L17
movzx eax, BYTE PTR [rsi+3]
cmp rcx, 4
mov BYTE PTR [rdi+3], al
je .L18
movzx eax, BYTE PTR [rsi+4]
cmp rcx, 5
mov BYTE PTR [rdi+4], al
je .L19
movzx eax, BYTE PTR [rsi+5]
cmp rcx, 6
mov BYTE PTR [rdi+5], al
je .L20
movzx eax, BYTE PTR [rsi+6]
cmp rcx, 7
mov BYTE PTR [rdi+6], al
je .L21
movzx eax, BYTE PTR [rsi+7]
cmp rcx, 8
mov BYTE PTR [rdi+7], al
je .L22
movzx eax, BYTE PTR [rsi+8]
cmp rcx, 9
mov BYTE PTR [rdi+8], al
je .L23
movzx eax, BYTE PTR [rsi+9]
cmp rcx, 10
mov BYTE PTR [rdi+9], al
je .L24
movzx eax, BYTE PTR [rsi+10]
cmp rcx, 11
mov BYTE PTR [rdi+10], al
je .L25
movzx eax, BYTE PTR [rsi+11]
cmp rcx, 12
mov BYTE PTR [rdi+11], al
je .L26
movzx eax, BYTE PTR [rsi+12]
cmp rcx, 13
mov BYTE PTR [rdi+12], al
je .L27
movzx eax, BYTE PTR [rsi+13]
cmp rcx, 15
mov BYTE PTR [rdi+13], al
jne .L28
movzx eax, BYTE PTR [rsi+14]
mov BYTE PTR [rdi+14], al
mov eax, 15

.L4:
mov r10, rdx
lea r9, [rdx-1]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

524
sub r10, rcx
lea r8, [r10-16]
sub r9, rcx
shr r8, 4
add r8, 1
mov r11, r8
sal r11, 4
cmp r9, 14
jbe .L6
lea rbp, [rsi+rcx]
xor r9d, r9d
add rcx, rdi
xor ebx, ebx

.L7:
movdqa xmm0, XMMWORD PTR [rbp+0+r9]
add rbx, 1
movups XMMWORD PTR [rcx+r9], xmm0
add r9, 16
cmp rbx, r8
jb .L7
add rax, r11
cmp r10, r11
je .L1

.L6:
movzx ecx, BYTE PTR [rsi+rax]
mov BYTE PTR [rdi+rax], cl
lea rcx, [rax+1]
cmp rdx, rcx
jbe .L1
movzx ecx, BYTE PTR [rsi+1+rax]
mov BYTE PTR [rdi+1+rax], cl
lea rcx, [rax+2]
cmp rdx, rcx
jbe .L1
movzx ecx, BYTE PTR [rsi+2+rax]
mov BYTE PTR [rdi+2+rax], cl
lea rcx, [rax+3]
cmp rdx, rcx
jbe .L1
movzx ecx, BYTE PTR [rsi+3+rax]
mov BYTE PTR [rdi+3+rax], cl
lea rcx, [rax+4]
cmp rdx, rcx
jbe .L1
movzx ecx, BYTE PTR [rsi+4+rax]
mov BYTE PTR [rdi+4+rax], cl
lea rcx, [rax+5]
cmp rdx, rcx
jbe .L1
movzx ecx, BYTE PTR [rsi+5+rax]
mov BYTE PTR [rdi+5+rax], cl
lea rcx, [rax+6]
cmp rdx, rcx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

525
jbe .L1
movzx ecx, BYTE PTR [rsi+6+rax]
mov BYTE PTR [rdi+6+rax], cl
lea rcx, [rax+7]
cmp rdx, rcx
jbe .L1
movzx ecx, BYTE PTR [rsi+7+rax]
mov BYTE PTR [rdi+7+rax], cl
lea rcx, [rax+8]
cmp rdx, rcx
jbe .L1
movzx ecx, BYTE PTR [rsi+8+rax]
mov BYTE PTR [rdi+8+rax], cl
lea rcx, [rax+9]
cmp rdx, rcx
jbe .L1
movzx ecx, BYTE PTR [rsi+9+rax]
mov BYTE PTR [rdi+9+rax], cl
lea rcx, [rax+10]
cmp rdx, rcx
jbe .L1
movzx ecx, BYTE PTR [rsi+10+rax]
mov BYTE PTR [rdi+10+rax], cl
lea rcx, [rax+11]
cmp rdx, rcx
jbe .L1
movzx ecx, BYTE PTR [rsi+11+rax]
mov BYTE PTR [rdi+11+rax], cl
lea rcx, [rax+12]
cmp rdx, rcx
jbe .L1
movzx ecx, BYTE PTR [rsi+12+rax]
mov BYTE PTR [rdi+12+rax], cl
lea rcx, [rax+13]
cmp rdx, rcx
jbe .L1
movzx ecx, BYTE PTR [rsi+13+rax]
mov BYTE PTR [rdi+13+rax], cl
lea rcx, [rax+14]
cmp rdx, rcx
jbe .L1
movzx edx, BYTE PTR [rsi+14+rax]
mov BYTE PTR [rdi+14+rax], dl

.L1:
pop rbx
pop rbp

.L41:
rep ret

.L13:
xor eax, eax

.L3:
movzx ecx, BYTE PTR [rsi+rax]
mov BYTE PTR [rdi+rax], cl

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

526
add rax, 1
cmp rax, rdx
jne .L3
rep ret

.L28:
mov eax, 14
jmp .L4

.L15:
mov eax, 1
jmp .L4

.L16:
mov eax, 2
jmp .L4

.L17:
mov eax, 3
jmp .L4

.L18:
mov eax, 4
jmp .L4

.L19:
mov eax, 5
jmp .L4

.L20:
mov eax, 6
jmp .L4

.L21:
mov eax, 7
jmp .L4

.L22:
mov eax, 8
jmp .L4

.L23:
mov eax, 9
jmp .L4

.L24:
mov eax, 10
jmp .L4

.L25:
mov eax, 11
jmp .L4

.L26:
mov eax, 12
jmp .L4

.L27:
mov eax, 13
jmp .L4

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

527
1.36.2 SIMD strlen() implementation
It has to be noted that the SIMD instructions can be inserted in C/C++ code via
special macros173. For MSVC, some of them are located in the intrin.h file.
It is possible to implement the strlen() function174 using SIMD instructions that
works 2-2.5 times faster than the common implementation. This function loads 16
characters into a XMM-register and check each against zero 175.
size_t strlen_sse2(const char *str)
{

register size_t len = 0;
const char *s=str;
bool str_is_aligned=(((unsigned int)str)&0xFFFFFFF0) == (unsigned int)⤦
Ç str;

if (str_is_aligned==false)
return strlen (str);

__m128i xmm0 = _mm_setzero_si128();
__m128i xmm1;
int mask = 0;

for (;;)
{

xmm1 = _mm_load_si128((__m128i *)s);
xmm1 = _mm_cmpeq_epi8(xmm1, xmm0);
if ((mask = _mm_movemask_epi8(xmm1)) != 0)
{

unsigned long pos;
_BitScanForward(&pos, mask);
len += (size_t)pos;

break;
}
s += sizeof(__m128i);
len += sizeof(__m128i);

};

return len;
}

Let’s compile it in MSVC 2010 with /Ox option:

Listing 1.398: Optimizing MSVC 2010
_pos$75552 = -4 ; size = 4
_str$ = 8 ; size = 4
?strlen_sse2@@YAIPBD@Z PROC ; strlen_sse2

push ebp

173MSDN: MMX, SSE, and SSE2 Intrinsics
174strlen() —standard C library function for calculating string length
175The example is based on source code from: http://www.strchr.com/sse2_optimised_strlen.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/y0dh78ez(VS.80).aspx
http://www.strchr.com/sse2_optimised_strlen
https://yurichev.com/contact.html
https://yurichev.com/contact.html

528
mov ebp, esp
and esp, -16 ; fffffff0H
mov eax, DWORD PTR _str$[ebp]
sub esp, 12 ; 0000000cH
push esi
mov esi, eax
and esi, -16 ; fffffff0H
xor edx, edx
mov ecx, eax
cmp esi, eax
je SHORT $LN4@strlen_sse
lea edx, DWORD PTR [eax+1]
npad 3 ; align next label

$LL11@strlen_sse:
mov cl, BYTE PTR [eax]
inc eax
test cl, cl
jne SHORT $LL11@strlen_sse
sub eax, edx
pop esi
mov esp, ebp
pop ebp
ret 0

$LN4@strlen_sse:
movdqa xmm1, XMMWORD PTR [eax]
pxor xmm0, xmm0
pcmpeqb xmm1, xmm0
pmovmskb eax, xmm1
test eax, eax
jne SHORT $LN9@strlen_sse

$LL3@strlen_sse:
movdqa xmm1, XMMWORD PTR [ecx+16]
add ecx, 16 ; 00000010H
pcmpeqb xmm1, xmm0
add edx, 16 ; 00000010H
pmovmskb eax, xmm1
test eax, eax
je SHORT $LL3@strlen_sse

$LN9@strlen_sse:
bsf eax, eax
mov ecx, eax
mov DWORD PTR _pos$75552[esp+16], eax
lea eax, DWORD PTR [ecx+edx]
pop esi
mov esp, ebp
pop ebp
ret 0

?strlen_sse2@@YAIPBD@Z ENDP ; strlen_sse2

How it works? First of all, we must understand goal of the function. It calculates
C-string length, but we can use different terms: it’s task is searching for zero byte,
and then calculating its position relatively to string start.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

529
First, we check if the str pointer is aligned on a 16-byte boundary. If not, we call the
generic strlen() implementation.
Then, we load the next 16 bytes into the XMM1 register using MOVDQA.
An observant reader might ask, why can’t MOVDQU be used here since it can load data
from the memory regardless pointer alignment?
Yes, it might be done in this way: if the pointer is aligned, load data using MOVDQA, if
not —use the slower MOVDQU.
But here we are may hit another caveat:
In the Windows NT line of OS (but not limited to it), memory is allocated by pages of
4 KiB (4096 bytes). Each win32-process has 4 GiB available, but in fact, only some
parts of the address space are connected to real physical memory. If the process
is accessing an absent memory block, an exception is to be raised. That’s how VM
works176.
So, a function loading 16 bytes at once may step over the border of an allocated
memory block. Let’s say that the OS has allocated 8192 (0x2000) bytes at address
0x008c0000. Thus, the block is the bytes starting from address 0x008c0000 to
0x008c1fff inclusive.
After the block, that is, starting from address 0x008c2000 there is nothing at all, e.g.
the OS not allocated any memory there. Any attempt to access memory starting
from that address will raise an exception.
And let’s consider the example in which the program is holding a string that contains
5 characters almost at the end of a block, and that is not a crime.

0x008c1ff8 ’h’
0x008c1ff9 ’e’
0x008c1ffa ’l’
0x008c1ffb ’l’
0x008c1ffc ’o’
0x008c1ffd ’\x00’
0x008c1ffe random noise
0x008c1fff random noise

So, in normal conditions the program calls strlen(), passing it a pointer to the string
'hello' placed in memory at address 0x008c1ff8. strlen() reads one byte at a
time until 0x008c1ffd, where there’s a zero byte, and then it stops.
Now if we implement our own strlen() reading 16 bytes at once, starting at any
address, aligned or not, MOVDQU may attempt to load 16 bytes at once at address
0x008c1ff8 up to 0x008c2008, and then an exception will be raised. That situation
is to be avoided, of course.
So then we’ll work only with the addresses aligned on a 16 bytes boundary, which
in combination with the knowledge that the OS’ page size is usually aligned on a
16-byte boundary gives us some warranty that our function will not read from unal-
located memory.
176wikipedia

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://en.wikipedia.org/wiki/Page_(computer_memory)
https://yurichev.com/contact.html
https://yurichev.com/contact.html

530
Let’s get back to our function.
_mm_setzero_si128()—is a macro generating pxor xmm0, xmm0—it just clears the
XMM0 register.
_mm_load_si128()—is a macro for MOVDQA, it just loads 16 bytes from the address
into the XMM1 register.
_mm_cmpeq_epi8()—is a macro for PCMPEQB, an instruction that compares two XMM-
registers bytewise.
And if some byte is equals to the one in the other register, there will be 0xff at this
point in the result or 0 if otherwise.
For example:
XMM1: 0x11223344556677880000000000000000
XMM0: 0x11ab3444007877881111111111111111

After the execution of pcmpeqb xmm1, xmm0, the XMM1 register contains:
XMM1: 0xff0000ff0000ffff0000000000000000

In our case, this instruction compares each 16-byte block with a block of 16 zero-
bytes, which has been set in the XMM0 register by pxor xmm0, xmm0.
The next macro is _mm_movemask_epi8() —that is the PMOVMSKB instruction.
It is very useful with PCMPEQB.
pmovmskb eax, xmm1

This instruction sets first EAX bit to 1 if the most significant bit of the first byte in
XMM1 is 1. In other words, if the first byte of the XMM1 register is 0xff, then the first
bit of EAX is to be 1, too.
If the second byte in the XMM1 register is 0xff, then the second bit in EAX is to be set
to 1. In other words, the instruction is answering the question “which bytes in XMM1
has the most significant bit set, or greater than 0x7f”, and returns 16 bits in the EAX
register. The other bits in the EAX register are to be cleared.
By the way, do not forget about this quirk of our algorithm. There might be 16 bytes
in the input like:

15 14 13 12 11 10 9 3 2 1 0

’h’ ’e’ ’l’ ’l’ ’o’ 0 garbage 0 garbage

It is the 'hello' string, terminating zero, and some random noise in memory.
If we load these 16 bytes into XMM1 and compare them with the zeroed XMM0, we are
getting something like 177:
XMM1: 0x0000ff00000000000000ff0000000000

This means that the instruction found two zero bytes, and it is not surprising.
PMOVMSKB in our case will set EAX to
0b0010000000100000.
177An order from MSB to LSB178 is used here.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

531
Obviously, our function must take only the first zero bit and ignore the rest.
The next instruction is BSF (Bit Scan Forward).
This instruction finds the first bit set to 1 and stores its position into the first operand.
EAX=0b0010000000100000

After the execution of bsf eax, eax, EAX contains 5, meaning 1 has been found at
the 5th bit position (starting from zero).
MSVC has a macro for this instruction: _BitScanForward.
Now it is simple. If a zero byte has been found, its position is added to what we have
already counted and now we have the return result.
Almost all.
By the way, it is also has to be noted that the MSVC compiler emitted two loop bodies
side by side, for optimization.
By the way, SSE 4.2 (that appeared in Intel Core i7) offers more instructions where
these stringmanipulationsmight be even easier: http://www.strchr.com/strcmp_
and_strlen_using_sse_4.2

1.37 64 bits
1.37.1 x86-64
It is a 64-bit extension to the x86 architecture.
From the reverse engineer’s perspective, the most important changes are:
• Almost all registers (except FPU and SIMD) were extended to 64 bits and got a
R- prefix. 8 additional registers were added. Now GPR’s are: RAX, RBX, RCX, RDX,
RBP, RSP, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15.
It is still possible to access the older register parts as usual. For example, it is
possible to access the lower 32-bit part of the RAX register using EAX:

Byte number:
7th 6th 5th 4th 3rd 2nd 1st 0th

RAXx64
EAX

AX
AH AL

The new R8-R15 registers also have their lower parts: R8D-R15D (lower 32-bit
parts), R8W-R15W (lower 16-bit parts), R8L-R15L (lower 8-bit parts).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.strchr.com/strcmp_and_strlen_using_sse_4.2
http://www.strchr.com/strcmp_and_strlen_using_sse_4.2
https://yurichev.com/contact.html
https://yurichev.com/contact.html

532
Byte number:

7th 6th 5th 4th 3rd 2nd 1st 0th
R8

R8D
R8W
R8L

The number of SIMD registers was doubled from 8 to 16: XMM0-XMM15.
• In Win64, the function calling convention is slightly different, somewhat resem-
bling fastcall (6.1.3 on page 934). The first 4 arguments are stored in the RCX,
RDX, R8, R9 registers, the rest —in the stack. The caller function must also al-
locate 32 bytes so the callee may save there 4 first arguments and use these
registers for its own needs. Short functions may use arguments just from reg-
isters, but larger ones may save their values on the stack.
System V AMD64 ABI (Linux, *BSD, Mac OS X)[Michael Matz, Jan Hubicka, An-
dreas Jaeger, Mark Mitchell, System V Application Binary Interface. AMD64 Ar-
chitecture Processor Supplement, (2013)] 179also somewhat resembles fastcall,
it uses 6 registers RDI, RSI, RDX, RCX, R8, R9 for the first 6 arguments. All the
rest are passed via the stack.
See also the section on calling conventions (6.1 on page 932).

• The C/C++ int type is still 32-bit for compatibility.
• All pointers are 64-bit now.

Since now the number of registers is doubled, the compilers have more space for
maneuvering called register allocation. For us this implies that the emitted code
containing less number of local variables.
For example, the function that calculates the first S-box of the DES encryption algo-
rithm processes 32/64/128/256 values at once (depending on DES_type type (uint32,
uint64, SSE2 or AVX)) using the bitslice DES method (read more about this technique
here (1.36 on page 514)):
/*
* Generated S-box files.
*
* This software may be modified, redistributed, and used for any purpose,
* so long as its origin is acknowledged.
*
* Produced by Matthew Kwan - March 1998
*/

#ifdef _WIN64
#define DES_type unsigned __int64
#else
#define DES_type unsigned int
#endif

179Also available as https://software.intel.com/sites/default/files/article/402129/
mpx-linux64-abi.pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

533
void
s1 (

DES_type a1,
DES_type a2,
DES_type a3,
DES_type a4,
DES_type a5,
DES_type a6,
DES_type *out1,
DES_type *out2,
DES_type *out3,
DES_type *out4

) {
DES_type x1, x2, x3, x4, x5, x6, x7, x8;
DES_type x9, x10, x11, x12, x13, x14, x15, x16;
DES_type x17, x18, x19, x20, x21, x22, x23, x24;
DES_type x25, x26, x27, x28, x29, x30, x31, x32;
DES_type x33, x34, x35, x36, x37, x38, x39, x40;
DES_type x41, x42, x43, x44, x45, x46, x47, x48;
DES_type x49, x50, x51, x52, x53, x54, x55, x56;

x1 = a3 & ~a5;
x2 = x1 ^ a4;
x3 = a3 & ~a4;
x4 = x3 | a5;
x5 = a6 & x4;
x6 = x2 ^ x5;
x7 = a4 & ~a5;
x8 = a3 ^ a4;
x9 = a6 & ~x8;
x10 = x7 ^ x9;
x11 = a2 | x10;
x12 = x6 ^ x11;
x13 = a5 ^ x5;
x14 = x13 & x8;
x15 = a5 & ~a4;
x16 = x3 ^ x14;
x17 = a6 | x16;
x18 = x15 ^ x17;
x19 = a2 | x18;
x20 = x14 ^ x19;
x21 = a1 & x20;
x22 = x12 ^ ~x21;
*out2 ^= x22;
x23 = x1 | x5;
x24 = x23 ^ x8;
x25 = x18 & ~x2;
x26 = a2 & ~x25;
x27 = x24 ^ x26;
x28 = x6 | x7;
x29 = x28 ^ x25;
x30 = x9 ^ x24;
x31 = x18 & ~x30;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

534
x32 = a2 & x31;
x33 = x29 ^ x32;
x34 = a1 & x33;
x35 = x27 ^ x34;
*out4 ^= x35;
x36 = a3 & x28;
x37 = x18 & ~x36;
x38 = a2 | x3;
x39 = x37 ^ x38;
x40 = a3 | x31;
x41 = x24 & ~x37;
x42 = x41 | x3;
x43 = x42 & ~a2;
x44 = x40 ^ x43;
x45 = a1 & ~x44;
x46 = x39 ^ ~x45;
*out1 ^= x46;
x47 = x33 & ~x9;
x48 = x47 ^ x39;
x49 = x4 ^ x36;
x50 = x49 & ~x5;
x51 = x42 | x18;
x52 = x51 ^ a5;
x53 = a2 & ~x52;
x54 = x50 ^ x53;
x55 = a1 | x54;
x56 = x48 ^ ~x55;
*out3 ^= x56;

}

There are a lot of local variables. Of course, not all those going into the local stack.
Let’s compile it with MSVC 2008 with /Ox option:

Listing 1.399: Optimizing MSVC 2008
PUBLIC _s1
; Function compile flags: /Ogtpy
_TEXT SEGMENT
_x6$ = -20 ; size = 4
_x3$ = -16 ; size = 4
_x1$ = -12 ; size = 4
_x8$ = -8 ; size = 4
_x4$ = -4 ; size = 4
_a1$ = 8 ; size = 4
_a2$ = 12 ; size = 4
_a3$ = 16 ; size = 4
_x33$ = 20 ; size = 4
_x7$ = 20 ; size = 4
_a4$ = 20 ; size = 4
_a5$ = 24 ; size = 4
tv326 = 28 ; size = 4
_x36$ = 28 ; size = 4
_x28$ = 28 ; size = 4
_a6$ = 28 ; size = 4

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

535
_out1$ = 32 ; size = 4
_x24$ = 36 ; size = 4
_out2$ = 36 ; size = 4
_out3$ = 40 ; size = 4
_out4$ = 44 ; size = 4
_s1 PROC

sub esp, 20 ; 00000014H
mov edx, DWORD PTR _a5$[esp+16]
push ebx
mov ebx, DWORD PTR _a4$[esp+20]
push ebp
push esi
mov esi, DWORD PTR _a3$[esp+28]
push edi
mov edi, ebx
not edi
mov ebp, edi
and edi, DWORD PTR _a5$[esp+32]
mov ecx, edx
not ecx
and ebp, esi
mov eax, ecx
and eax, esi
and ecx, ebx
mov DWORD PTR _x1$[esp+36], eax
xor eax, ebx
mov esi, ebp
or esi, edx
mov DWORD PTR _x4$[esp+36], esi
and esi, DWORD PTR _a6$[esp+32]
mov DWORD PTR _x7$[esp+32], ecx
mov edx, esi
xor edx, eax
mov DWORD PTR _x6$[esp+36], edx
mov edx, DWORD PTR _a3$[esp+32]
xor edx, ebx
mov ebx, esi
xor ebx, DWORD PTR _a5$[esp+32]
mov DWORD PTR _x8$[esp+36], edx
and ebx, edx
mov ecx, edx
mov edx, ebx
xor edx, ebp
or edx, DWORD PTR _a6$[esp+32]
not ecx
and ecx, DWORD PTR _a6$[esp+32]
xor edx, edi
mov edi, edx
or edi, DWORD PTR _a2$[esp+32]
mov DWORD PTR _x3$[esp+36], ebp
mov ebp, DWORD PTR _a2$[esp+32]
xor edi, ebx
and edi, DWORD PTR _a1$[esp+32]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

536
mov ebx, ecx
xor ebx, DWORD PTR _x7$[esp+32]
not edi
or ebx, ebp
xor edi, ebx
mov ebx, edi
mov edi, DWORD PTR _out2$[esp+32]
xor ebx, DWORD PTR [edi]
not eax
xor ebx, DWORD PTR _x6$[esp+36]
and eax, edx
mov DWORD PTR [edi], ebx
mov ebx, DWORD PTR _x7$[esp+32]
or ebx, DWORD PTR _x6$[esp+36]
mov edi, esi
or edi, DWORD PTR _x1$[esp+36]
mov DWORD PTR _x28$[esp+32], ebx
xor edi, DWORD PTR _x8$[esp+36]
mov DWORD PTR _x24$[esp+32], edi
xor edi, ecx
not edi
and edi, edx
mov ebx, edi
and ebx, ebp
xor ebx, DWORD PTR _x28$[esp+32]
xor ebx, eax
not eax
mov DWORD PTR _x33$[esp+32], ebx
and ebx, DWORD PTR _a1$[esp+32]
and eax, ebp
xor eax, ebx
mov ebx, DWORD PTR _out4$[esp+32]
xor eax, DWORD PTR [ebx]
xor eax, DWORD PTR _x24$[esp+32]
mov DWORD PTR [ebx], eax
mov eax, DWORD PTR _x28$[esp+32]
and eax, DWORD PTR _a3$[esp+32]
mov ebx, DWORD PTR _x3$[esp+36]
or edi, DWORD PTR _a3$[esp+32]
mov DWORD PTR _x36$[esp+32], eax
not eax
and eax, edx
or ebx, ebp
xor ebx, eax
not eax
and eax, DWORD PTR _x24$[esp+32]
not ebp
or eax, DWORD PTR _x3$[esp+36]
not esi
and ebp, eax
or eax, edx
xor eax, DWORD PTR _a5$[esp+32]
mov edx, DWORD PTR _x36$[esp+32]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

537
xor edx, DWORD PTR _x4$[esp+36]
xor ebp, edi
mov edi, DWORD PTR _out1$[esp+32]
not eax
and eax, DWORD PTR _a2$[esp+32]
not ebp
and ebp, DWORD PTR _a1$[esp+32]
and edx, esi
xor eax, edx
or eax, DWORD PTR _a1$[esp+32]
not ebp
xor ebp, DWORD PTR [edi]
not ecx
and ecx, DWORD PTR _x33$[esp+32]
xor ebp, ebx
not eax
mov DWORD PTR [edi], ebp
xor eax, ecx
mov ecx, DWORD PTR _out3$[esp+32]
xor eax, DWORD PTR [ecx]
pop edi
pop esi
xor eax, ebx
pop ebp
mov DWORD PTR [ecx], eax
pop ebx
add esp, 20
ret 0

_s1 ENDP

5 variables were allocated in the local stack by the compiler.
Now let’s try the same thing in the 64-bit version of MSVC 2008:

Listing 1.400: Optimizing MSVC 2008
a1$ = 56
a2$ = 64
a3$ = 72
a4$ = 80
x36$1$ = 88
a5$ = 88
a6$ = 96
out1$ = 104
out2$ = 112
out3$ = 120
out4$ = 128
s1 PROC
$LN3:

mov QWORD PTR [rsp+24], rbx
mov QWORD PTR [rsp+32], rbp
mov QWORD PTR [rsp+16], rdx
mov QWORD PTR [rsp+8], rcx
push rsi

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

538
push rdi
push r12
push r13
push r14
push r15
mov r15, QWORD PTR a5$[rsp]
mov rcx, QWORD PTR a6$[rsp]
mov rbp, r8
mov r10, r9
mov rax, r15
mov rdx, rbp
not rax
xor rdx, r9
not r10
mov r11, rax
and rax, r9
mov rsi, r10
mov QWORD PTR x36$1$[rsp], rax
and r11, r8
and rsi, r8
and r10, r15
mov r13, rdx
mov rbx, r11
xor rbx, r9
mov r9, QWORD PTR a2$[rsp]
mov r12, rsi
or r12, r15
not r13
and r13, rcx
mov r14, r12
and r14, rcx
mov rax, r14
mov r8, r14
xor r8, rbx
xor rax, r15
not rbx
and rax, rdx
mov rdi, rax
xor rdi, rsi
or rdi, rcx
xor rdi, r10
and rbx, rdi
mov rcx, rdi
or rcx, r9
xor rcx, rax
mov rax, r13
xor rax, QWORD PTR x36$1$[rsp]
and rcx, QWORD PTR a1$[rsp]
or rax, r9
not rcx
xor rcx, rax
mov rax, QWORD PTR out2$[rsp]
xor rcx, QWORD PTR [rax]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

539
xor rcx, r8
mov QWORD PTR [rax], rcx
mov rax, QWORD PTR x36$1$[rsp]
mov rcx, r14
or rax, r8
or rcx, r11
mov r11, r9
xor rcx, rdx
mov QWORD PTR x36$1$[rsp], rax
mov r8, rsi
mov rdx, rcx
xor rdx, r13
not rdx
and rdx, rdi
mov r10, rdx
and r10, r9
xor r10, rax
xor r10, rbx
not rbx
and rbx, r9
mov rax, r10
and rax, QWORD PTR a1$[rsp]
xor rbx, rax
mov rax, QWORD PTR out4$[rsp]
xor rbx, QWORD PTR [rax]
xor rbx, rcx
mov QWORD PTR [rax], rbx
mov rbx, QWORD PTR x36$1$[rsp]
and rbx, rbp
mov r9, rbx
not r9
and r9, rdi
or r8, r11
mov rax, QWORD PTR out1$[rsp]
xor r8, r9
not r9
and r9, rcx
or rdx, rbp
mov rbp, QWORD PTR [rsp+80]
or r9, rsi
xor rbx, r12
mov rcx, r11
not rcx
not r14
not r13
and rcx, r9
or r9, rdi
and rbx, r14
xor r9, r15
xor rcx, rdx
mov rdx, QWORD PTR a1$[rsp]
not r9
not rcx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

540
and r13, r10
and r9, r11
and rcx, rdx
xor r9, rbx
mov rbx, QWORD PTR [rsp+72]
not rcx
xor rcx, QWORD PTR [rax]
or r9, rdx
not r9
xor rcx, r8
mov QWORD PTR [rax], rcx
mov rax, QWORD PTR out3$[rsp]
xor r9, r13
xor r9, QWORD PTR [rax]
xor r9, r8
mov QWORD PTR [rax], r9
pop r15
pop r14
pop r13
pop r12
pop rdi
pop rsi
ret 0

s1 ENDP

Nothing was allocated in the local stack by the compiler, x36 is synonym for a5.
By the way, there are CPUs with much more GPR’s, e.g. Itanium (128 registers).

1.37.2 ARM
64-bit instructions appeared in ARMv8.

1.37.3 Float point numbers
How floating point numbers are processed in x86-64 is explained here: 1.38 on the
following page.

1.37.4 64-bit architecture criticism
Some people has irritation sometimes: now one needs twice as much memory for
storing pointers, including cache memory, despite the fact that x64 CPUs can ad-
dress only 48 bits of external RAM.

Pointers have gone out of favor to the point now where I had to
flame about it because on my 64-bit computer that I have here, if I re-
ally care about using the capability of my machine I find that I’d better
not use pointers because I have a machine that has 64-bit registers
but it only has 2 gigabytes of RAM. So a pointer never has more than

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

541

32 significant bits to it. But every time I use a pointer it’s costing me
64 bits and that doubles the size of my data structure. Worse, it goes
into the cache and half of my cache is gone and that costs cash—cache
is expensive.
So if I’m really trying to push the envelope now, I have to use arrays

instead of pointers. I make complicated macros so that it looks like I’m
using pointers, but I’m not really.

(Donald Knuth in “Coders at Work: Reflections on the Craft of Programming ”.)
Some people make their own memory allocators. It’s interesting to know about
CryptoMiniSat180 case. This program rarely uses more than 4GiB of RAM, but it uses
pointers heavily. So it requires less memory on 32-bit architecture than on 64-bit one.
To mitigate this problem, author made his own allocator (in clauseallocator.(h|cpp)
files), which allows to have access to allocated memory using 32-bit identifiers in-
stead of 64-bit pointers.

1.38 Workingwith floating point numbers using SIMD
Of course, the FPU has remained in x86-compatible processors when the SIMD ex-
tensions were added.
The SIMD extensions (SSE2) offer an easier way to work with floating-point numbers.
The number format remains the same (IEEE 754).
So, modern compilers (including those generating for x86-64) usually use SIMD in-
structions instead of FPU ones.
It can be said that it’s good news, because it’s easier to work with them.
We are going to reuse the examples from the FPU section here: 1.25 on page 275.

1.38.1 Simple example
#include <stdio.h>

double f (double a, double b)
{

return a/3.14 + b*4.1;
};

int main()
{

printf ("%f\n", f(1.2, 3.4));
};

180https://github.com/msoos/cryptominisat/

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://github.com/msoos/cryptominisat/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

542
x64

Listing 1.401: Optimizing MSVC 2012 x64
__real@4010666666666666 DQ 04010666666666666r ; 4.1
__real@40091eb851eb851f DQ 040091eb851eb851fr ; 3.14

a$ = 8
b$ = 16
f PROC

divsd xmm0, QWORD PTR __real@40091eb851eb851f
mulsd xmm1, QWORD PTR __real@4010666666666666
addsd xmm0, xmm1
ret 0

f ENDP

The input floating point values are passed in the XMM0-XMM3 registers, all the rest—via
the stack 181.
a is passed in XMM0, b—via XMM1.
The XMM-registers are 128-bit (as we know from the section about SIMD: 1.36 on
page 513), but the double values are 64 bit, so only lower register half is used.
DIVSD is an SSE-instruction that stands for “Divide Scalar Double-Precision Floating-
Point Values”, it just divides one value of type double by another, stored in the lower
halves of operands.
The constants are encoded by compiler in IEEE 754 format.
MULSD and ADDSD work just as the same, but do multiplication and addition.
The result of the function’s execution in type double is left in the in XMM0 register.

That is how non-optimizing MSVC works:

Listing 1.402: MSVC 2012 x64
__real@4010666666666666 DQ 04010666666666666r ; 4.1
__real@40091eb851eb851f DQ 040091eb851eb851fr ; 3.14

a$ = 8
b$ = 16
f PROC

movsdx QWORD PTR [rsp+16], xmm1
movsdx QWORD PTR [rsp+8], xmm0
movsdx xmm0, QWORD PTR a$[rsp]
divsd xmm0, QWORD PTR __real@40091eb851eb851f
movsdx xmm1, QWORD PTR b$[rsp]
mulsd xmm1, QWORD PTR __real@4010666666666666
addsd xmm0, xmm1
ret 0

f ENDP

181MSDN: Parameter Passing

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/zthk2dkh.aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

543
Slightly redundant. The input arguments are saved in the “shadow space” (1.14.2
on page 129), but only their lower register halves, i.e., only 64-bit values of type
double. GCC produces the same code.

x86

Let’s also compile this example for x86. Despite the fact it’s generating for x86,
MSVC 2012 uses SSE2 instructions:

Listing 1.403: Non-optimizing MSVC 2012 x86
tv70 = -8 ; size = 8
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_f PROC

push ebp
mov ebp, esp
sub esp, 8
movsd xmm0, QWORD PTR _a$[ebp]
divsd xmm0, QWORD PTR __real@40091eb851eb851f
movsd xmm1, QWORD PTR _b$[ebp]
mulsd xmm1, QWORD PTR __real@4010666666666666
addsd xmm0, xmm1
movsd QWORD PTR tv70[ebp], xmm0
fld QWORD PTR tv70[ebp]
mov esp, ebp
pop ebp
ret 0

_f ENDP

Listing 1.404: Optimizing MSVC 2012 x86
tv67 = 8 ; size = 8
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_f PROC

movsd xmm1, QWORD PTR _a$[esp-4]
divsd xmm1, QWORD PTR __real@40091eb851eb851f
movsd xmm0, QWORD PTR _b$[esp-4]
mulsd xmm0, QWORD PTR __real@4010666666666666
addsd xmm1, xmm0
movsd QWORD PTR tv67[esp-4], xmm1
fld QWORD PTR tv67[esp-4]
ret 0

_f ENDP

It’s almost the same code, however, there are some differences related to calling
conventions: 1) the arguments are passed not in XMM registers, but in the stack,
like in the FPU examples (1.25 on page 275); 2) the result of the function is returned
in ST(0) — in order to do so, it’s copied (through local variable tv) from one of the
XMM registers to ST(0).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

544
Let’s try the optimized example in OllyDbg:

Figure 1.113: OllyDbg: MOVSD loads the value of a into XMM1

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

545

Figure 1.114: OllyDbg: DIVSD calculated quotient and stored it in XMM1

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

546

Figure 1.115: OllyDbg: MULSD calculated product and stored it in XMM0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

547

Figure 1.116: OllyDbg: ADDSD adds value in XMM0 to XMM1

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

548

Figure 1.117: OllyDbg: FLD left function result in ST(0)

We see that OllyDbg shows the XMM registers as pairs of double numbers, but only
the lower part is used.
Apparently, OllyDbg shows them in that format because the SSE2 instructions (suf-
fixed with -SD) are executed right now.
But of course, it’s possible to switch the register format and to see their contents as
4 float-numbers or just as 16 bytes.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

549
1.38.2 Passing floating point number via arguments
#include <math.h>
#include <stdio.h>

int main ()
{

printf ("32.01 ^ 1.54 = %lf\n", pow (32.01,1.54));

return 0;
}

They are passed in the lower halves of the XMM0-XMM3 registers.

Listing 1.405: Optimizing MSVC 2012 x64
$SG1354 DB '32.01 ^ 1.54 = %lf', 0aH, 00H

__real@40400147ae147ae1 DQ 040400147ae147ae1r ; 32.01
__real@3ff8a3d70a3d70a4 DQ 03ff8a3d70a3d70a4r ; 1.54

main PROC
sub rsp, 40 ; 00000028H
movsdx xmm1, QWORD PTR __real@3ff8a3d70a3d70a4
movsdx xmm0, QWORD PTR __real@40400147ae147ae1
call pow
lea rcx, OFFSET FLAT:$SG1354
movaps xmm1, xmm0
movd rdx, xmm1
call printf
xor eax, eax
add rsp, 40 ; 00000028H
ret 0

main ENDP

There is no MOVSDX instruction in Intel and AMDmanuals (12.1.4 on page 1282), there
it is called just MOVSD. So there are two instructions sharing the same name in x86
(about the other see: .1.6 on page 1300). Apparently, Microsoft developers wanted
to get rid of the mess, so they renamed it to MOVSDX. It just loads a value into the
lower half of a XMM register.
pow() takes arguments from XMM0 and XMM1, and returns result in XMM0. It is then
moved to RDX for printf(). Why? Maybe because printf()—is a variable argu-
ments function?

Listing 1.406: Optimizing GCC 4.4.6 x64
.LC2:

.string "32.01 ^ 1.54 = %lf\n"
main:

sub rsp, 8
movsd xmm1, QWORD PTR .LC0[rip]
movsd xmm0, QWORD PTR .LC1[rip]
call pow

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

550
; result is now in XMM0
mov edi, OFFSET FLAT:.LC2
mov eax, 1 ; number of vector registers passed
call printf
xor eax, eax
add rsp, 8
ret

.LC0:
.long 171798692
.long 1073259479

.LC1:
.long 2920577761
.long 1077936455

GCC generates clearer output. The value for printf() is passed in XMM0. By the way,
here is a case when 1 is written into EAX for printf()—this implies that one argu-
ment will be passed in vector registers, just as the standard requires [Michael Matz,
Jan Hubicka, Andreas Jaeger, Mark Mitchell, System V Application Binary Interface.
AMD64 Architecture Processor Supplement, (2013)] 182.

1.38.3 Comparison example
#include <stdio.h>

double d_max (double a, double b)
{

if (a>b)
return a;

return b;
};

int main()
{

printf ("%f\n", d_max (1.2, 3.4));
printf ("%f\n", d_max (5.6, -4));

};

x64

Listing 1.407: Optimizing MSVC 2012 x64
a$ = 8
b$ = 16
d_max PROC

comisd xmm0, xmm1
ja SHORT $LN2@d_max
movaps xmm0, xmm1

$LN2@d_max:

182Also available as https://software.intel.com/sites/default/files/article/402129/
mpx-linux64-abi.pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

551
fatret 0

d_max ENDP

Optimizing MSVC generates a code very easy to understand.
COMISD is “Compare Scalar Ordered Double-Precision Floating-Point Values and Set
EFLAGS”. Essentially, that is what it does.

Non-optimizing MSVC generates more redundant code, but it is still not hard to un-
derstand:

Listing 1.408: MSVC 2012 x64
a$ = 8
b$ = 16
d_max PROC

movsdx QWORD PTR [rsp+16], xmm1
movsdx QWORD PTR [rsp+8], xmm0
movsdx xmm0, QWORD PTR a$[rsp]
comisd xmm0, QWORD PTR b$[rsp]
jbe SHORT $LN1@d_max
movsdx xmm0, QWORD PTR a$[rsp]
jmp SHORT $LN2@d_max

$LN1@d_max:
movsdx xmm0, QWORD PTR b$[rsp]

$LN2@d_max:
fatret 0

d_max ENDP

However, GCC 4.4.6 did more optimizations and used the MAXSD (“Return Maximum
Scalar Double-Precision Floating-Point Value”) instruction, which just choose themax-
imum value!

Listing 1.409: Optimizing GCC 4.4.6 x64
d_max:

maxsd xmm0, xmm1
ret

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

552
x86

Let’s compile this example in MSVC 2012 with optimization turned on:

Listing 1.410: Optimizing MSVC 2012 x86
_a$ = 8 ; size = 8
_b$ = 16 ; size = 8
_d_max PROC

movsd xmm0, QWORD PTR _a$[esp-4]
comisd xmm0, QWORD PTR _b$[esp-4]
jbe SHORT $LN1@d_max
fld QWORD PTR _a$[esp-4]
ret 0

$LN1@d_max:
fld QWORD PTR _b$[esp-4]
ret 0

_d_max ENDP

Almost the same, but the values of a and b are taken from the stack and the function
result is left in ST(0).
If we load this example in OllyDbg, we can see how the COMISD instruction compares
values and sets/clears the CF and PF flags:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

553

Figure 1.118: OllyDbg: COMISD changed CF and PF flags

1.38.4 Calculating machine epsilon: x64 and SIMD
Let’s revisit the “calculating machine epsilon” example for double listing.1.32.2.
Now we compile it for x64:

Listing 1.411: Optimizing MSVC 2012 x64
v$ = 8
calculate_machine_epsilon PROC

movsdx QWORD PTR v$[rsp], xmm0
movaps xmm1, xmm0
inc QWORD PTR v$[rsp]
movsdx xmm0, QWORD PTR v$[rsp]
subsd xmm0, xmm1
ret 0

calculate_machine_epsilon ENDP

There is no way to add 1 to a value in 128-bit XMM register, so it must be placed into
memory.
There is, however, the ADDSD instruction (Add Scalar Double-Precision Floating-Point

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

554
Values) which can add a value to the lowest 64-bit half of a XMM register while
ignoring the higher one, but MSVC 2012 probably is not that good yet 183.
Nevertheless, the value is then reloaded to a XMM register and subtraction occurs.
SUBSD is “Subtract Scalar Double-Precision Floating-Point Values”, i.e., it operates
on the lower 64-bit part of 128-bit XMM register. The result is returned in the XMM0
register.

1.38.5 Pseudo-random number generator example revisited
Let’s revisit “pseudo-random number generator example” example listing.1.32.1.
If we compile this in MSVC 2012, it will use the SIMD instructions for the FPU.

Listing 1.412: Optimizing MSVC 2012
__real@3f800000 DD 03f800000r ; 1

tv128 = -4
_tmp$ = -4
?float_rand@@YAMXZ PROC

push ecx
call ?my_rand@@YAIXZ

; EAX=pseudorandom value
and eax, 8388607 ; 007fffffH
or eax, 1065353216 ; 3f800000H

; EAX=pseudorandom value & 0x007fffff | 0x3f800000
; store it into local stack:

mov DWORD PTR _tmp$[esp+4], eax
; reload it as float point number:

movss xmm0, DWORD PTR _tmp$[esp+4]
; subtract 1.0:

subss xmm0, DWORD PTR __real@3f800000
; move value to ST0 by placing it in temporary variable...

movss DWORD PTR tv128[esp+4], xmm0
; ... and reloading it into ST0:

fld DWORD PTR tv128[esp+4]
pop ecx
ret 0

?float_rand@@YAMXZ ENDP

All instructions have the -SS suffix, which stands for “Scalar Single”.
“Scalar” implies that only one value is stored in the register.
“Single”184 stands for float data type.

1.38.6 Summary
Only the lower half of XMM registers is used in all examples here, to store number
in IEEE 754 format.
183As an exercise, you may try to rework this code to eliminate the usage of the local stack.
184I.e., single precision.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

555
Essentially, all instructions prefixed by -SD (“Scalar Double-Precision”)—are instruc-
tions working with floating point numbers in IEEE 754 format, stored in the lower
64-bit half of a XMM register.
And it is easier than in the FPU, probably because the SIMD extensions were evolved
in a less chaotic way than the FPU ones in the past. The stack register model is not
used.
If you would try to replace double with float
in these examples, the same instructions will be used, but prefixed with -SS (“Scalar
Single-Precision”), for example, MOVSS, COMISS, ADDSS, etc.
“Scalar” implies that the SIMD register containing only one value instead of several.
Instructions working with several values in a register simultaneously have “Packed”
in their name.
Needless to say, the SSE2 instructions work with 64-bit IEEE 754 numbers (double),
while the internal representation of the floating-point numbers in FPU is 80-bit num-
bers.
Hence, the FPU may produce less round-off errors and as a consequence, FPU may
give more precise calculation results.

1.39 ARM-specific details
1.39.1 Number sign (#) before number
The Keil compiler, IDA and objdump precede all numbers with the “#” number sign,
for example: listing.1.22.1.
But when GCC 4.9 generates assembly language output, it doesn’t, for example:
listing.3.18.
The ARM listings in this book are somewhat mixed.
It’s hard to say, which method is right. Supposedly, one has to obey the rules ac-
cepted in environment he/she works in.

1.39.2 Addressing modes
This instruction is possible in ARM64:
ldr x0, [x29,24]

This means add 24 to the value in X29 and load the value from this address.
Please note that 24 is inside the brackets. The meaning is different if the number is
outside the brackets:
ldr w4, [x1],28

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

556
This means load the value at the address in X1, then add 28 to X1.
ARM allows you to add or subtract a constant to/from the address used for loading.
And it’s possible to do that both before and after loading.
There is no such addressing mode in x86, but it is present in some other processors,
even on PDP-11.
There is a legend that the pre-increment, post-increment, pre-decrement and post-
decrement modes in PDP-11, were “guilty” for the appearance of such C language
(which developed on PDP-11) constructs as *ptr++, *++ptr, *ptr--, *--ptr.
By the way, this is one of the hard to memorize C features. This is how it is:

C term ARM term C statement how it works
Post-increment post-indexed addressing *ptr++ use *ptr value,

then increment
ptr pointer

Post-decrement post-indexed addressing *ptr-- use *ptr value,
then decrement
ptr pointer

Pre-increment pre-indexed addressing *++ptr increment ptr pointer,
then use
*ptr value

Pre-decrement pre-indexed addressing *--ptr decrement ptr pointer,
then use
*ptr value

Pre-indexing is marked with an exclamation mark in the ARM assembly language.
For example, see line 2 in listing.1.29.
Dennis Ritchie (one of the creators of the C language) mentioned that it presumably
was invented by Ken Thompson (another C creator) because this processor feature
was present in PDP-7 185, [Dennis M. Ritchie, The development of the C language,
(1993)]186.
Thus, C language compilers may use it, if it is present on the target processor.
That’s very convenient for array processing.

1.39.3 Loading a constant into a register
32-bit ARM

As we already know, all instructions have a length of 4 bytes in ARM mode and 2
bytes in Thumb mode.
Then how can we load a 32-bit value into a register, if it’s not possible to encode it
in one instruction?
Let’s try:
185http://yurichev.com/mirrors/C/c_dmr_postincrement.txt
186Also available as pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://yurichev.com/mirrors/C/c_dmr_postincrement.txt
https://yurichev.com/mirrors/C/dmr-The%20Development%20of%20the%20C%20Language-1993.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

557

unsigned int f()
{

return 0x12345678;
};

Listing 1.413: GCC 4.6.3 -O3 ARM mode
f:

ldr r0, .L2
bx lr

.L2:
.word 305419896 ; 0x12345678

So, the 0x12345678 value is just stored aside in memory and loaded if needed.
But it’s possible to get rid of the additional memory access.

Listing 1.414: GCC 4.6.3 -O3 -march=armv7-a (ARM mode)
movw r0, #22136 ; 0x5678
movt r0, #4660 ; 0x1234
bx lr

We see that the value is loaded into the register by parts, the lower part first (using
MOVW), then the higher (using MOVT).
This implies that 2 instructions are necessary in ARM mode for loading a 32-bit value
into a register.
It’s not a real problem, because in fact there are not many constants in real code
(except of 0 and 1).
Does it mean that the two-instruction version is slower than one-instruction version?
Doubtfully. Most likely, modern ARM processors are able to detect such sequences
and execute them fast.
On the other hand, IDA is able to detect such patterns in the code and disassembles
this function as:
MOV R0, 0x12345678
BX LR

ARM64

uint64_t f()
{

return 0x12345678ABCDEF01;
};

Listing 1.415: GCC 4.9.1 -O3
mov x0, 61185 ; 0xef01

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

558
movk x0, 0xabcd, lsl 16
movk x0, 0x5678, lsl 32
movk x0, 0x1234, lsl 48
ret

MOVK stands for “MOV Keep”, i.e., it writes a 16-bit value into the register, not touch-
ing the rest of the bits. The LSL suffix shifts left the value by 16, 32 and 48 bits at
each step. The shifting is done before loading.
This implies that 4 instructions are necessary to load a 64-bit value into a register.

Storing floating-point number into register

It’s possible to store a floating-point number into a D-register using only one instruc-
tion.
For example:
double a()
{

return 1.5;
};

Listing 1.416: GCC 4.9.1 -O3 + objdump
0000000000000000 <a>:

0: 1e6f1000 fmov d0, #1.500000000000000000e+000
4: d65f03c0 ret

The number 1.5 was indeed encoded in a 32-bit instruction. But how?
In ARM64, there are 8 bits in the FMOV instruction for encoding some floating-point
numbers.
The algorithm is called VFPExpandImm() in [ARM Architecture Reference Manual,
ARMv8, for ARMv8-A architecture profile, (2013)]187. This is also called minifloat188.
We can try different values: the compiler is able to encode 30.0 and 31.0, but it
couldn’t encode 32.0, as 8 bytes have to be allocated for this number in the IEEE
754 format:
double a()
{

return 32;
};

Listing 1.417: GCC 4.9.1 -O3
a:

187Also available as http://yurichev.com/mirrors/ARMv8-A_Architecture_Reference_Manual_
(Issue_A.a).pdf
188wikipedia

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://yurichev.com/mirrors/ARMv8-A_Architecture_Reference_Manual_(Issue_A.a).pdf
http://yurichev.com/mirrors/ARMv8-A_Architecture_Reference_Manual_(Issue_A.a).pdf
http://en.wikipedia.org/wiki/Minifloat
https://yurichev.com/contact.html
https://yurichev.com/contact.html

559
ldr d0, .LC0
ret

.LC0:
.word 0
.word 1077936128

1.39.4 Relocs in ARM64
As we know, there are 4-byte instructions in ARM64, so it is impossible to write a
large number into a register using a single instruction.
Nevertheless, an executable image can be loaded at any random address in memory,
so that’s why relocs exists. Read more about them (in relation to Win32 PE): 6.5.2
on page 967.
The address is formed using the ADRP and ADD instruction pair in ARM64.
The first loads a 4KiB-page address and the second one adds the remainder. Let’s
compile the example from “Hello, world!” (listing.1.11) in GCC (Linaro) 4.9 under
win32:

Listing 1.418: GCC (Linaro) 4.9 and objdump of object file
...>aarch64-linux-gnu-gcc.exe hw.c -c

...>aarch64-linux-gnu-objdump.exe -d hw.o

...

0000000000000000 <main>:
0: a9bf7bfd stp x29, x30, [sp,#-16]!
4: 910003fd mov x29, sp
8: 90000000 adrp x0, 0 <main>
c: 91000000 add x0, x0, #0x0
10: 94000000 bl 0 <printf>
14: 52800000 mov w0, #0x0 // #0
18: a8c17bfd ldp x29, x30, [sp],#16
1c: d65f03c0 ret

...>aarch64-linux-gnu-objdump.exe -r hw.o

...

RELOCATION RECORDS FOR [.text]:
OFFSET TYPE VALUE
0000000000000008 R_AARCH64_ADR_PREL_PG_HI21 .rodata
000000000000000c R_AARCH64_ADD_ABS_LO12_NC .rodata
0000000000000010 R_AARCH64_CALL26 printf

So there are 3 relocs in this object file.
• The first one takes the page address, cuts the lowest 12 bits and writes the
remaining high 21 bits to the ADRP instruction’s bit fields. This is because we

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

560
don’t need to encode the low 12 bits, and the ADRP instruction has space only
for 21 bits.

• The second one puts the 12 bits of the address relative to the page start into
the ADD instruction’s bit fields.

• The last, 26-bit one, is applied to the instruction at address 0x10 where the
jump to the printf() function is.
All ARM64 (and in ARM in ARM mode) instruction addresses have zeros in the
two lowest bits (because all instructions have a size of 4 bytes), so one have to
encode only the highest 26 bits of 28-bit address space (±128MB).

There are no such relocs in the executable file: because it’s known where the “Hello!”
string is located, in which page, and the address of puts() is also known.
So there are values set already in the ADRP, ADD and BL instructions (the linker has
written them while linking):

Listing 1.419: objdump of executable file
0000000000400590 <main>:

400590: a9bf7bfd stp x29, x30, [sp,#-16]!
400594: 910003fd mov x29, sp
400598: 90000000 adrp x0, 400000 <_init-0x3b8>
40059c: 91192000 add x0, x0, #0x648
4005a0: 97ffffa0 bl 400420 <puts@plt>
4005a4: 52800000 mov w0, #0x0 // #0
4005a8: a8c17bfd ldp x29, x30, [sp],#16
4005ac: d65f03c0 ret

...

Contents of section .rodata:
400640 01000200 00000000 48656c6c 6f210000Hello!..

As an example, let’s try to disassemble the BL instruction manually.
0x97ffffa0 is 0b10010111111111111111111110100000. According to [ARM Architecture
Reference Manual, ARMv8, for ARMv8-A architecture profile, (2013)C5.6.26], imm26
is the last 26 bits:
imm26 = 0b11111111111111111110100000. It is 0x3FFFFA0, but the MSB is 1, so the
number is negative, and we can convert it manually to convenient form for us.
By the rules of negation, just invert all bits: (it is 0b1011111=0x5F), and add 1
(0x5F+1=0x60). So the number in signed form is -0x60. Let’s multiply -0x60 by 4
(because address stored in opcode is divided by 4): it is -0x180. Now let’s calculate
destination address: 0x4005a0 + (-0x180) = 0x400420 (please note: we consider
the address of the BL instruction, not the current value of PC, which may be differ-
ent!). So the destination address is 0x400420.

More about ARM64-related relocs: [ELF for the ARM 64-bit Architecture (AArch64),
(2013)]189.
189Also available as http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_
aaelf64.pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

561
1.40 MIPS-specific details
1.40.1 Loading a 32-bit constant into register
unsigned int f()
{

return 0x12345678;
};

All instructions in MIPS, just like ARM, have a size of 32-bit, so it’s not possible to
embed a 32-bit constant into one instruction.
So one have to use at least two instructions: the first loads the high part of the 32-bit
number and the second one applies an OR operation, which effectively sets the low
16-bit part of the target register:

Listing 1.420: GCC 4.4.5 -O3 (assembly output)
li $2,305397760 # 0x12340000
j $31
ori $2,$2,0x5678 ; branch delay slot

IDA is fully aware of such frequently encountered code patterns, so, for convenience
it shows the last ORI instruction as the LI pseudo instruction, which allegedly loads
a full 32-bit number into the $V0 register.

Listing 1.421: GCC 4.4.5 -O3 (IDA)
lui $v0, 0x1234
jr $ra
li $v0, 0x12345678 ; branch delay slot

The GCC assembly output has the LI pseudo instruction, but in fact, LUI (“Load Upper
Immediate”) is there, which stores a 16-bit value into the high part of the register.
Let’s see in objdump output:

Listing 1.422: objdump
00000000 <f>:

0: 3c021234 lui v0,0x1234
4: 03e00008 jr ra
8: 34425678 ori v0,v0,0x5678

Loading a 32-bit global variable into register

unsigned int global_var=0x12345678;

unsigned int f2()
{

return global_var;
};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

562
This is slightly different: LUI loads upper 16-bit from global_var into $2 (or $V0) and
then LW loads lower 16-bits summing it with the contents of $2:

Listing 1.423: GCC 4.4.5 -O3 (assembly output)
f2:

lui $2,%hi(global_var)
lw $2,%lo(global_var)($2)
j $31
nop ; branch delay slot

...

global_var:
.word 305419896

IDA is fully aware of often used LUI/LW instruction pair, so it coalesces both into a
single LW instruction:

Listing 1.424: GCC 4.4.5 -O3 (IDA)
_f2:

lw $v0, global_var
jr $ra
or $at, $zero ; branch delay slot

...

.data

.globl global_var
global_var: .word 0x12345678 # DATA XREF: _f2

objdump’s output is the same as GCC’s assembly output. Let’s also dump relocs of
the object file:

Listing 1.425: objdump
objdump -D filename.o

...

0000000c <f2>:
c: 3c020000 lui v0,0x0
10: 8c420000 lw v0,0(v0)
14: 03e00008 jr ra
18: 00200825 move at,at ; branch delay slot
1c: 00200825 move at,at

Disassembly of section .data:

00000000 <global_var>:
0: 12345678 beq s1,s4,159e4 <f2+0x159d8>

...

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

563
objdump -r filename.o

...

RELOCATION RECORDS FOR [.text]:
OFFSET TYPE VALUE
0000000c R_MIPS_HI16 global_var
00000010 R_MIPS_LO16 global_var

...

We can see that address of global_var is to be written right into LUI and LW instruc-
tions during executable file loading: high 16-bit part of global_var goes into the first
one (LUI), lower 16-bit part goes into the second one (LW).

1.40.2 Further reading about MIPS
Dominic Sweetman, See MIPS Run, Second Edition, (2010).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

Chapter 2

Important fundamentals

Mathematical Recipes1has some important notes about boolean algebra and signed
numbers representation.

2.1 Integral datatypes
Integral datatype is a type for a value which can be converted to number. These are
numbers, enumerations, booleans.

2.1.1 Bit
Obvious usage for bits are boolean values: 0 for false and 1 for true.
Set of booleans can be packed into word: there will be 32 booleans in 32-bit word,
etc. This way is called bitmap or bitfield.
But it has obvious overhead: a bit jiggling, isolating, etc. While using word (or int
type) for boolean variable is not economic, but highly efficient.
In C/C++ environment, 0 is for false and any non-zero value is for true. For example:

if (1234)
printf ("this will always be executed\n");

else
printf ("this will never\n");

This is popular way of enumerating characters in a C-string:
char *input=...;

while(*input) // execute body if *input character is non-zero
{

// do something with *input

1https://math.recipes

564

https://math.recipes

565
input++;

};

2.1.2 Nibble AKA nybble
AKA half-byte, tetrade. Equals to 4 bits.
All these terms are still in use today.

Binary-coded decimal (BCD2)

4-bit nibbles were used in 4-bit CPUs like legendary Intel 4004 (used in calculators).
It’s interesting to know that there was binary-coded decimal (BCD) way of represent-
ing decimal digit using 4 bits. Decimal 0 is represented as 0b0000, decimal 9 as
0b1001 and higher values are not used. Decimal 1234 is represented as 0x1234. Of
course, this way is not economical.
Nevertheless, it has one advantage: decimal to BCD-packed number conversion
and back is extremely easy. BCD-numbers can be added, subtracted, etc., but an
additional correction is needed. x86 CPUs has rare instructions for that: AAA/DAA
(adjust after addition), AAS/DAS (adjust after subtraction), AAM (after multiplication),
AAD (after division).
The need for CPUs to support BCD numbers is a reason why half-carry flag (on
8080/Z80) and auxiliary flag (AF on x86) are exist: this is carry-flag generated af-
ter proceeding of lower 4 bits. The flag is then used for adjustment instructions.
The fact of easy conversion had led to popularity of [Peter Abel, IBM PC assembly
language and programming (1987)] book. But aside of this book, the author of these
notes never seen BCD numbers in practice, except for magic numbers (5.6.1 on
page 906), like when someone’s birthday is encoded like 0x19791011—this is indeed
packed BCD number.
Surprisingly, the author found a use of BCD-encoded numbers in SAP software: https:
//yurichev.com/blog/SAP/. Some numbers, including prices, are encoded in BCD
form in database. Perhaps, they used it to make it compatible with some ancient
software/hardware?
BCD instructions in x86 were often used for other purposes, especially in undocu-
mented ways, for example:

cmp al,10
sbb al,69h
das

This obscure code converts number in 0..15 range into ASCII character ’0’..’9’, ’A’..’F’.
2Binary-Coded Decimal

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/blog/SAP/
https://yurichev.com/blog/SAP/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

566
Z80

Z80 was clone of 8-bit Intel 8080 CPU, and because of space constraints, it has 4-bit
ALU, i.e., each operation over two 8-bit numbers had to be proceeded in two steps.
One side-effect of this was easy and natural generation of half-carry flag.

2.1.3 Byte
Byte is primarily used for character storage. 8-bit bytes were not common as today.
Punched tapes for teletypes had 5 and 6 possible holes, this is 5 or 6 bits for byte.
To emphasize the fact the byte has 8 bits, byte is sometimes called octet: at least
fetchmail uses this terminology.
9-bit bytes used to exist in 36-bit architectures: 4 9-bit bytes would fit in a single
word. Probably because of this fact, C/C++ standard tells that char has to have a
room for at least 8 bits, but more bits are allowable.
For example, in the early C language manual3, we can find this:
char one byte character (PDP-11, IBM360: 8 bits; H6070: 9 bits)

By H6070 they probably meant Honeywell 6070, with 36-bit words.

Standard ASCII table

7-bit ASCII table is standard, which has only 128 possible characters. Early E-Mail
transport software were operating only on 7-bit ASCII codes, so a MIME4 standard
needed to encode messages in non-Latin writing systems. 7-bit ASCII code was
augmented by parity bit, resulting in 8 bits.
Data Encryption Standard (DES5) has a 56 bits key, this is 8 7-bit bytes, leaving a
space to parity bit for each character.
There is no need to memorize whole ASCII table, but rather ranges. [0..0x1F] are
control characters (non-printable). [0x20..0x7E] are printable ones. Codes starting
at 0x80 are usually used for non-Latin writing systems and/or pseudographics.
Significant codes which will be easily memorized are: 0 (end of C-string, '\0' in
C/C++); 0xA or 10 (line feed, '\n' in C/C++); 0xD or 13 (carriage return, '\r' in
C/C++).
0x20 (space) is also often memorized.

8-bit CPUs

x86 has capability to work with byte(s) on register level (because they are descen-
dants of 8-bit 8080 CPU), RISC CPUs like ARM and MIPS—not.

3https://yurichev.com/mirrors/C/bwk-tutor.html
4Multipurpose Internet Mail Extensions
5Data Encryption Standard

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/mirrors/C/bwk-tutor.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

567
2.1.4 Wide char
This is an attempt to support multi-lingual environment by extending byte to 16-bit.
Most well-known example is Windows NT kernel and win32 functions with W suffix.
This is why each Latin character in plain English text string is interleaved with zero
byte. This encoding is called UCS-2 or UTF-16
Usually, wchar_t is synonym to 16-bit short data type.

2.1.5 Signed integer vs unsigned
Some may argue, why unsigned data types exist at first place, since any unsigned
number can be represented as signed. Yes, but absence of sign bit in a value ex-
tends its range twice. Hence, signed byte has range of -128..127, and unsigned
one: 0..255. Another benefit of using unsigned data types is self-documenting: you
define a variable which can’t be assigned to negative values.
Unsigned data types are absent in Java, for which it’s criticized. It’s hard to imple-
ment cryptographical algorithms using boolean operations over signed data types.
Values like 0xFFFFFFFF (-1) are used often, mostly as error codes.

2.1.6 Word
Word word is somewhat ambiguous term and usually denotes a data type fitting
in GPR. Bytes are practical for characters, but impractical for other arithmetical
calculations.
Hence, many CPUs have GPRs with width of 16, 32 or 64 bits. Even 8-bit CPUs
like 8080 and Z80 offer to work with 8-bit register pairs, each pair forming a 16-bit
pseudoregister (BC, DE, HL, etc.). Z80 has some capability to work with register
pairs, and this is, in a sense, some kind of 16-bit CPU emulation.
In general, if a CPU marketed as “n-bit CPU”, this usually means it has n-bit GPRs.
There was a time when hard disks and RAM modules were marketed as having n
kilo-words instead of b kilobytes/megabytes.
For example, Apollo Guidance Computer has 2048 words of RAM. This was a 16-bit
computer, so there was 4096 bytes of RAM.
TX-0 had 64K of 18-bit words of magnetic core memory, i.e., 64 kilo-words.
DECSYSTEM-2060 could have up to 4096 kilowords of solid state memory (i.e., hard
disks, tapes, etc). This was 36-bit computer, so this is 18432 kilobytes or 18
megabytes.
Essentially, why do you need bytes if you have words? Mostly for text strings pro-
cessing. Words can be used in almost any other situations.

int in C/C++ is almost always mapped to word. (Except of AMD64 architecture where
int is still 32-bit one, perhaps, for the reason of better portability.)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

568
int is 16-bit on PDP-11 and old MS-DOS compilers. int is 32-bit on VAX, on x86 starting
at 80386, etc.
Even more than that, if type declaration for a variable is omitted in C/C++ program,
int is used silently by default. Perhaps, this is inheritance of B programming lan-
guage6.

GPR is usually fastest container for variable, faster than packed bit, and sometimes
even faster than byte (because there is no need to isolate a single bit/byte from
GPR). Even if you use it as a container for loop counter in 0..99 range.

Word in assembly language is still 16-bit for x86, because it was so for 16-bit 8086.
Double word is 32-bit, quad word is 64-bit. That’s why 16-bit words are declared
using DW in x86 assembly, 32-bit ones using DD and 64-bit ones using DQ.
Word is 32-bit for ARM, MIPS, etc., 16-bit data types are called half-word there.
Hence, double word on 32-bit RISC is 64-bit data type.
GDB has the following terminology: halfword for 16-bit, word for 32-bit and giant
word for 64-bit.
16-bit C/C++ environment on PDP-11 and MS-DOS has long data type with width of
32 bits, perhaps, they meant long word or long int?
32-bit C/C++ environment has long long data type with width of 64 bits.
Now you see why the word word is ambiguous.

Should I use int?

Some people argue that int shouldn’t be used at all, because it ambiguity can lead
to bugs. For example, well-known lzhuf library uses int at one point and everything
works fine on 16-bit architecture. But if ported to architecture with 32-bit int, it can
crash: http://yurichev.com/blog/lzhuf/.
Less ambiguous types are defined in stdint.h file: uint8_t, uint16_t, uint32_t, uint64_t,
etc.
Some people like Donald E. Knuth proposed7 more sonorous words for these types:
byte/wyde/tetrabyte/octabyte. But these names are less popular than clear terms
with inclusion of u (unsigned) character and number right into the type name.

Word-oriented computers

Despite the ambiguity of the word term, modern computers are still word-oriented:
RAM and all levels of cache are still organized by words, not by bytes. However, size
in bytes is used in marketing.

6http://yurichev.com/blog/typeless/
7http://www-cs-faculty.stanford.edu/~uno/news98.html

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://yurichev.com/blog/lzhuf/
http://yurichev.com/blog/typeless/
http://www-cs-faculty.stanford.edu/~uno/news98.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

569
Access to RAM/cache by address aligned by word boundary is often cheaper than
non-aligned.
During data structures development, which are supposed to be fast and efficient, one
should always take into consideration length of the word on the CPU to be executed
on. Sometimes the compiler will do this for programmer, sometimes not.

2.1.7 Address register
For those who fostered on 32-bit and/or 64-bit x86, and/or RISC of 90s like ARM,
MIPS, PowerPC, it’s natural that address bus has the same width as GPR or word.
Nevertheless, width of address bus can be different on other architectures.
8-bit Z80 can address 216 bytes, using 8-bit registers pairs or dedicated registers (IX,
IY). SP and PC registers are also 16-bit ones.
Cray-1 supercomputer has 64-bit GPRs, but 24-bit address registers, so it can ad-
dress 224 (16 megawords or 128 megabytes). RAM was very expensive in 1970s,
and a typical Cray had 1048576 (0x100000) words of RAM or 8MB. So why to allo-
cate 64-bit register for address or pointer?
8086/8088 CPUs had a really weird addressing scheme: values of two 16-bit registers
were summed in a weird manner resulting in a 20-bit address. Perhaps, this was
some kind of toy-level virtualization (11.7 on page 1264)? 8086 could run several
programs (not simultaneously, though).
Early ARM1 has an interesting artifact:

Another interesting thing about the register file is the PC register is
missing a few bits. Since the ARM1 uses 26-bit addresses, the top 6 bits
are not used. Because all instructions are aligned on a 32-bit boundary,
the bottom two address bits in the PC are always zero. These 8 bits
are not only unused, they are omitted from the chip entirely.

(http://www.righto.com/2015/12/reverse-engineering-arm1-ancestor-of.html
)
Hence, it’s physically not possible to push a value with one of two last bits set into
PC register. Nor it’s possible to set any bits in high 6 bits of PC.
x86-64 architecture has virtual 64-bit pointers/addresses, but internally, width of
address bus is 48 bits (seems enough to address 256TB of RAM).

2.1.8 Numbers
What are numbers used for?
When you see some number(s) altering in a CPU register, you may be interested in
what this number means. It’s an important skill for a reverse engineer to determine
possible data type from a set of changing numbers.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.righto.com/2015/12/reverse-engineering-arm1-ancestor-of.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

570
Boolean

If the number is switching from 0 to 1 and back, most chances that this value has
boolean data type.

Loop counter, array index

Variable increasing from 0, like: 0, 1, 2, 3…—a good chance this is a loop counter
and/or array index.

Signed numbers

If you see a variable which holds very low numbers and sometimes very high num-
bers, like 0, 1, 2, 3, and 0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFD, there’s a good chance
it is a signed variable in two’s complement form, and last 3 numbers are -1, -2, -3.

32-bit numbers

There are numbers so large, that there is even a special notation which exists to
represent them (Knuth’s up-arrow notation). These numbers are so large so these
are not practical for engineering, science and mathematics.
Almost all engineers and scientists are happy with IEEE 754 double precision floating
point, which has maximal value around 1.8 ⋅ 10308. (As a comparison, the number of
atoms in the observable universe, is estimated to be between 4 ⋅ 1079 and 4 ⋅ 1081.)
In fact, upper bound in practical computing is much, much lower. In MS-DOS era
16-bit int was used almost for everything (array indices, loop counters), while 32-bit
long was used rarely.
During advent of x86-64, it was decided for int to stay as 32 bit size integer, because,
probably, usage of 64-bit int is even rarer.
I would say, 16-bit numbers in range 0..65535 are probably most used numbers in
computing.
Given that, if you see unusually large 32-bit value like 0x87654321, this is a good
chance this can be:
• this can still be a 16-bit number, but signed, between 0xFFFF8000 (-32768) and
0xFFFFFFFF (-1).

• address of memory cell (can be checked using memory map feature of debug-
ger).

• packed bytes (can be checked visually).
• bit flags.
• something related to (amateur) cryptography.
• magic number (5.6.1 on page 906).
• IEEE 754 floating point number (can also be checked).

Almost same story for 64-bit values.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

571
…so 16-bit int is enough for almost everything?

It’s interesting to note: in [Michael Abrash, Graphics Programming Black Book, 1997
chapter 13] we can find that there are plenty cases in which 16-bit variables are
just enough. In a meantime, Michael Abrash has a pity that 80386 and 80486 CPUs
has so little available registers, so he offers to put two 16-bit values into one 32-bit
register and then to rotate it using ROR reg, 16 (on 80386 and later) (ROL reg, 16
will also work) or BSWAP (on 80486 and later) instruction.
That reminds us Z80 with alternate pack of registers (suffixed with apostrophe), to
which CPU can switch (and then switch back) using EXX instruction.

Size of buffer

When a programmer needs to declare the size of some buffer, values in form of 2x
are usually used (512 bytes, 1024, etc.). Values in 2x form are easily recognizable
(1.28.5 on page 403) in decimal, hexadecimal and binary base.
But needless to say, programmers are still humans with their decimal culture. And
somehow, in DBMS area, size of textual database fields is often chosen as 10x num-
ber, like 100, 200. They just think “Okay, 100 is enough, wait, 200 will be better”.
And they are right, of course.
Maximum width of VARCHAR2 data type in Oracle RDBMS is 4000 characters, not
4096.
There is nothing wrong with this, this is just a place where numbers like 10x can be
encountered.

Address

It’s always a good idea to keep in mind an approximate memory map of the process
you currently debug. For example, many win32 executables started at 0x00401000,
so an address like 0x00451230 is probably located inside executable section. You’ll
see addresses like these in the EIP register.
Stack is usually located somewhere below.
Many debuggers are able to show the memory map of the debuggee, for example:
1.12.3 on page 103.
If a value is increasing by step 4 on 32-bit architecture or by step 8 on 64-bit one,
this probably sliding address of some elements of array.
It’s important to know that win32 doesn’t use addresses below 0x10000, so if you
see some number below this constant, this cannot be an address (see also: https:
//msdn.microsoft.com/en-us/library/ms810627.aspx).
Anyway, many debuggers can show you if the value in a register can be an address
to something. OllyDbg can also show an ASCII string if the value is an address of it.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://msdn.microsoft.com/en-us/library/ms810627.aspx
https://msdn.microsoft.com/en-us/library/ms810627.aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

572
Bit field

If you see a value where one (or more) bit(s) are flipping from time to time like
0xABCD1234 → 0xABCD1434 and back, this is probably a bit field (or bitmap).

Packed bytes

When strcmp() or memcmp() copies a buffer, it loads/stores 4 (or 8) bytes simulta-
neously, so if a string containing “4321”, and it would be copied to another place, at
one point you’ll see 0x31323334 value in some register. This is 4 packed bytes into
a 32-bit value.

2.1.9 AND/OR/XOR as MOV
OR reg, 0xFFFFFFFF sets all bits to 1, hence, no matter what has been in register
before, it will be set to −1. OR reg, -1 is shorter than MOV reg, -1, so MSVC uses
OR instead the latter, for example: 3.18.1 on page 661.
Likewise, AND reg, 0 always resets all bits, hence, it acts like MOV reg, 0.
XOR reg, reg, no matter what has been in register beforehand, resets all bits, and
also acts like MOV reg, 0.

2.2 Endianness
The endianness is a way of representing values in memory.

2.2.1 Big-endian
The 0x12345678 value is represented in memory as:

address in memory byte value
+0 0x12
+1 0x34
+2 0x56
+3 0x78

Big-endian CPUs include Motorola 68k, IBM POWER.

2.2.2 Little-endian
The 0x12345678 value is represented in memory as:

address in memory byte value
+0 0x78
+1 0x56
+2 0x34
+3 0x12

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

573
Little-endian CPUs include Intel x86. One important example of little-endian using
in this book is: 1.35 on page 510.

2.2.3 Example
Let’s take big-endian MIPS Linux installed and ready in QEMU 8.
And let’s compile this simple example:
#include <stdio.h>

int main()
{

int v;

v=123;

printf ("%02X %02X %02X %02X\n",
(char)&v,
(((char)&v)+1),
(((char)&v)+2),
(((char)&v)+3));

};

After running it we get:
root@debian-mips:~# ./a.out
00 00 00 7B

That is it. 0x7B is 123 in decimal. In little-endian architectures, 7B is the first byte
(you can check on x86 or x86-64), but here it is the last one, because the highest
byte goes first.
That’s why there are separate Linux distributions for MIPS (“mips” (big-endian) and
“mipsel” (little-endian)). It is impossible for a binary compiled for one endianness to
work on an OS with different endianness.
There is another example of MIPS big-endiannes in this book: 1.30.4 on page 459.

2.2.4 Bi-endian
CPUs that may switch between endianness are ARM, PowerPC, SPARC, MIPS, IA649,
etc.

2.2.5 Converting data
The BSWAP instruction can be used for conversion.

8Available for download here: https://people.debian.org/~aurel32/qemu/mips/
9Intel Architecture 64 (Itanium)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://people.debian.org/~aurel32/qemu/mips/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

574
TCP/IP network data packets use the big-endian conventions, so that is why a pro-
gram working on a little-endian architecture has to convert the values. The htonl()
and htons() functions are usually used.
In TCP/IP, big-endian is also called “network byte order”, while byte order on the com-
puter “host byte order”. “host byte order” is little-endian on Intel x86 and other little-
endian architectures, but it is big-endian on IBM POWER, so htonl() and htons()
don’t shuffle any bytes on the latter.

2.3 Memory
There are 3 main types of memory:
• Global memory AKA “static memory allocation”. No need to allocate explicitly,
the allocation is performed just by declaring variables/arrays globally. These
are global variables, residing in the data or constant segments. They are avail-
able globally (hence, considered as an anti-pattern). Not convenient for buffer-
s/arrays, because they must have a fixed size. Buffer overflows that occur here
usually overwrite variables or buffers residing next to them in memory. There’s
an example in this book: 1.12.3 on page 100.

• Stack AKA “allocate on stack”. The allocation is performed just by declaring
variables/arrays locally in the function. These are usually local variables for
the function. Sometimes these local variable are also available to descending
functions (to callee functions, if caller passes a pointer to a variable to the callee
to be executed). Allocation and deallocation are very fast, it just SP needs to
be shifted.
But they’re also not convenient for buffers/arrays, because the buffer size has
to be fixed, unless alloca() (1.9.2 on page 47) (or a variable-length array) is
used. Buffer overflows usually overwrite important stack structures: 1.26.2 on
page 340.

• Heap AKA “dynamic memory allocation”. Allocation/deallocation is performed
by calling
malloc()/free() or new/delete in C++. This is the most convenient method:
the block size may be set at runtime.
Resizing is possible (using realloc()), but can be slow. This is the slowest way
to allocate memory: the memory allocator must support and update all control
structures while allocating and deallocating. Buffer overflows usually overwrite
these structures. Heap allocations are also source of memory leak problems:
each memory block has to be deallocated explicitly, but one may forget about
it, or do it incorrectly.
Another problem is the “use after free”—using a memory block after free()
has been called on it, which is very dangerous.
Example in this book: 1.30.2 on page 435.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

575
2.4 CPU
2.4.1 Branch predictors
Some latest compilers try to get rid of conditional jump instructions. Examples in
this book are: 1.18.1 on page 170, 1.18.3 on page 180, 1.28.5 on page 413.
This is because the branch predictor is not always perfect, so the compilers try to do
without conditional jumps, if possible.
Conditional instructions in ARM (like ADRcc) are one way, another one is the CMOVcc
x86 instruction.

2.4.2 Data dependencies
Modern CPUs are able to execute instructions simultaneously (OOE10), but in order
to do so, the results of one instruction in a group must not influence the execution
of others. Hence, the compiler endeavors to use instructions with minimal influence
on the CPU state.
That’s why the LEA instruction is so popular, because it does not modify CPU flags,
while other arithmetic instructions does.

2.5 Hash functions
A very simple example is CRC32, an algorithm that provides “stronger” checksum
for integrity checking purposes. It is impossible to restore the original text from the
hash value, it has much less information: But CRC32 is not cryptographically secure:
it is known how to alter a text in a way that the resulting CRC32 hash value will be
the one we need. Cryptographic hash functions are protected from this.

MD5, SHA1, etc. are such functions and they are widely used to hash user pass-
words in order to store them in a database. Indeed: an Internet forum database may
not contain user passwords (a stolen database can compromise all users’ passwords)
but only hashes (so a cracker can’t reveal the passwords). Besides, an Internet fo-
rum engine does not need to know your password exactly, it needs only to check if
its hash is the same as the one in the database, and give you access if they match.
One of the simplest password cracking methods is just to try hashing all possible
passwords in order to see which matches the resulting value that we need. Other
methods are much more complex.

2.5.1 How do one-way functions work?
A one-way function is a function which is able to transform one value into another,
while it is impossible (or very hard) to reverse it. Some people have difficulties while
understanding how this is possible at all. Here is a simple demonstration.
We have a vector of 10 numbers in range 0..9, each is present only once, for example:
10Out-of-Order Execution

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

576

4 6 0 1 3 5 7 8 9 2

The algorithm for the simplest possible one-way function is:
• take the number at zeroth position (4 in our case);
• take the number at first position (6 in our case);
• swap numbers at positions of 4 and 6.

Let’s mark the numbers at positions 4 and 6:
4 6 0 1 3 5 7 8 9 2

^ ^

Let’s swap them and we get this result:
4 6 0 1 7 5 3 8 9 2

While looking at the result, and even if we know the algorithm, we can’t know unam-
biguously the initial state, because the first two numbers could be 0 and/or 1, and
then they could participate in the swapping procedure.
This is an utterly simplified example for demonstration. Real one-way functions are
much more complex.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

Chapter 3

Slightly more advanced
examples

3.1 Zero register
x86 architecture lacks zero register, unlike MIPS and ARM. However, it’s often a case,
when a compiler assigns a zero to a register, that will hold it upon the function’s exit.
This is a case of Mahjong game from Windows 7 x86. Zeroed EBX (at 0x010281BF)
is used to initialize local variables, to pass zero argument into other functions and
to compare values against it.

Listing 3.1: Mahjong.exe from Windows 7 x86
.text:010281AE sub_10281AE proc near ; CODE XREF: sub_1028790+4FFp
.text:010281AE ; sub_102909A+357p ...
.text:010281AE
.text:010281AE var_34 = dword ptr -34h
.text:010281AE var_30 = dword ptr -30h
.text:010281AE var_2C = dword ptr -2Ch
.text:010281AE var_28 = dword ptr -28h
.text:010281AE var_24 = dword ptr -24h
.text:010281AE var_20 = dword ptr -20h
.text:010281AE var_1C = dword ptr -1Ch
.text:010281AE var_18 = dword ptr -18h
.text:010281AE var_14 = dword ptr -14h
.text:010281AE var_10 = dword ptr -10h
.text:010281AE var_4 = dword ptr -4
.text:010281AE arg_0 = dword ptr 8
.text:010281AE arg_4 = byte ptr 0Ch
.text:010281AE
.text:010281AE push 28h
.text:010281B0 mov eax, offset __ehhandler ...
.text:010281B5 call __EH_prolog3
.text:010281BA mov edi, ecx
.text:010281BC mov esi, [ebp+arg_0]

577

578
.text:010281BF xor ebx, ebx ; *
.text:010281C1 mov [ebp+var_10], ebx ; *
.text:010281C4 cmp [esi], ebx ; *
.text:010281C6 jbe short loc_10281E8
.text:010281C8
.text:010281C8 loc_10281C8: ; CODE XREF: sub_10281AE+38j
.text:010281C8 mov eax, [esi+0Ch]
.text:010281CB mov ecx, [ebp+var_10]
.text:010281CE push dword ptr [eax+ecx*4]
.text:010281D1 call sub_10506C9
.text:010281D6 mov eax, [ebp+var_10]
.text:010281D9 pop ecx
.text:010281DA mov ecx, [esi+0Ch]
.text:010281DD mov [ecx+eax*4], ebx ; *
.text:010281E0 inc eax
.text:010281E1 mov [ebp+var_10], eax
.text:010281E4 cmp eax, [esi]
.text:010281E6 jb short loc_10281C8
.text:010281E8
.text:010281E8 loc_10281E8: ; CODE XREF: sub_10281AE+18j
.text:010281E8 mov [esi], ebx ; *
.text:010281EA mov [edi+14h], ebx ; *
.text:010281ED mov [ebp+var_34], ebx ; *
.text:010281F0 mov [ebp+var_30], ebx ; *
.text:010281F3 mov [ebp+var_2C], 10h
.text:010281FA mov [ebp+var_28], ebx ; *
.text:010281FD mov [ebp+var_4], ebx ; *
.text:01028200 mov [ebp+arg_0], ebx ; *
.text:01028203 cmp [edi+0B0h], ebx ; *
.text:01028209 jbe loc_10282C3
.text:0102820F
.text:0102820F loc_102820F: ; CODE XREF: sub_10281AE+10Fj
.text:0102820F mov eax, [edi+0BCh]
.text:01028215 mov ecx, [ebp+arg_0]
.text:01028218 mov eax, [eax+ecx*4]
.text:0102821B mov [ebp+var_14], eax
.text:0102821E cmp eax, ebx ; *
.text:01028220 jz loc_10282A6
.text:01028226 push ebx ; *
.text:01028227 push eax
.text:01028228 mov ecx, edi
.text:0102822A call sub_1026B3D
.text:0102822F test al, al
.text:01028231 jz short loc_10282A6
.text:01028233 mov [ebp+var_24], ebx ; *
.text:01028236 mov [ebp+var_20], ebx ; *
.text:01028239 mov [ebp+var_1C], 10h
.text:01028240 mov [ebp+var_18], ebx ; *
.text:01028243 lea eax, [ebp+var_34]
.text:01028246 push eax
.text:01028247 lea eax, [ebp+var_24]
.text:0102824A push eax
.text:0102824B push [ebp+var_14]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

579
.text:0102824E mov ecx, edi
.text:01028250 mov byte ptr [ebp+var_4], 1
.text:01028254 call sub_1026E4F
.text:01028259 mov [ebp+var_10], ebx ; *
.text:0102825C cmp [ebp+var_24], ebx ; *
.text:0102825F jbe short loc_102829B
.text:01028261
.text:01028261 loc_1028261: ; CODE XREF: sub_10281AE+EBj
.text:01028261 push 0Ch; Size
.text:01028263 call sub_102E741
.text:01028268 pop ecx
.text:01028269 cmp eax, ebx ; *
.text:0102826B jz short loc_1028286
.text:0102826D mov edx, [ebp+var_10]
.text:01028270 mov ecx, [ebp+var_18]
.text:01028273 mov ecx, [ecx+edx*4]
.text:01028276 mov edx, [ebp+var_14]
.text:01028279 mov edx, [edx+4]
.text:0102827C mov [eax], edx
.text:0102827E mov [eax+4], ecx
.text:01028281 mov [eax+8], ebx ; *
.text:01028284 jmp short loc_1028288
.text:01028286 ;---
.text:01028286
.text:01028286 loc_1028286: ; CODE XREF: sub_10281AE+BDj
.text:01028286 xor eax, eax
.text:01028288
.text:01028288 loc_1028288: ; CODE XREF: sub_10281AE+D6j
.text:01028288 push eax
.text:01028289 mov ecx, esi
.text:0102828B call sub_104922B
.text:01028290 inc [ebp+var_10]
.text:01028293 mov eax, [ebp+var_10]
.text:01028296 cmp eax, [ebp+var_24]
.text:01028299 jb short loc_1028261
.text:0102829B
.text:0102829B loc_102829B: ; CODE XREF: sub_10281AE+B1j
.text:0102829B lea ecx, [ebp+var_24]
.text:0102829E mov byte ptr [ebp+var_4], bl
.text:010282A1 call sub_10349DB
.text:010282A6
.text:010282A6 loc_10282A6: ; CODE XREF: sub_10281AE+72j
.text:010282A6 ; sub_10281AE+83j
.text:010282A6 push [ebp+arg_0]
.text:010282A9 lea ecx, [ebp+var_34]
.text:010282AC call sub_104922B
.text:010282B1 inc [ebp+arg_0]
.text:010282B4 mov eax, [ebp+arg_0]
.text:010282B7 cmp eax, [edi+0B0h]
.text:010282BD jb loc_102820F
.text:010282C3
.text:010282C3 loc_10282C3: ; CODE XREF: sub_10281AE+5Bj
.text:010282C3 cmp [ebp+arg_4], bl

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

580
.text:010282C6 jz short loc_1028337
.text:010282C8 mov eax, dword_1088AD8
.text:010282CD mov esi, ds:EnableMenuItem
.text:010282D3 mov edi, 40002
.text:010282D8 cmp [eax+8], ebx ; *
.text:010282DB jnz short loc_10282EC
.text:010282DD push 3 ; uEnable
.text:010282DF push edi ; uIDEnableItem
.text:010282E0 push hMenu ; hMenu
.text:010282E6 call esi ; EnableMenuItem
.text:010282E8 push 3
.text:010282EA jmp short loc_10282F7
.text:010282EC ;---
.text:010282EC
.text:010282EC loc_10282EC: ; CODE XREF: sub_10281AE+12Dj
.text:010282EC push ebx ; *
.text:010282ED push edi ; uIDEnableItem
.text:010282EE push hMenu ; hMenu
.text:010282F4 call esi ; EnableMenuItem
.text:010282F6 push ebx ; *
.text:010282F7
.text:010282F7 loc_10282F7: ; CODE XREF: sub_10281AE+13Cj
.text:010282F7 push edi ; uIDEnableItem
.text:010282F8 push hmenu ; hMenu
.text:010282FE call esi ; EnableMenuItem
.text:01028300 mov ecx, dword_1088AD8
.text:01028306 call sub_1020402
.text:0102830B mov edi, 40001
.text:01028310 test al, al
.text:01028312 jz short loc_1028321
.text:01028314 push ebx ; *
.text:01028315 push edi ; uIDEnableItem
.text:01028316 push hMenu ; hMenu
.text:0102831C call esi ; EnableMenuItem
.text:0102831E push ebx ; *
.text:0102831F jmp short loc_102832E
.text:01028321 ;---
.text:01028321
.text:01028321 loc_1028321: ; CODE XREF: sub_10281AE+164j
.text:01028321 push 3 ; uEnable
.text:01028323 push edi ; uIDEnableItem
.text:01028324 push hMenu ; hMenu
.text:0102832A call esi ; EnableMenuItem
.text:0102832C push 3 ; uEnable
.text:0102832E
.text:0102832E loc_102832E: ; CODE XREF: sub_10281AE+171j
.text:0102832E push edi ; uIDEnableItem
.text:0102832F push hmenu ; hMenu
.text:01028335 call esi ; EnableMenuItem
.text:01028337
.text:01028337 loc_1028337: ; CODE XREF: sub_10281AE+118j
.text:01028337 lea ecx, [ebp+var_34]
.text:0102833A call sub_10349DB

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

581
.text:0102833F call __EH_epilog3
.text:01028344 retn 8
.text:01028344 sub_10281AE endp

By the way, IDA can rename a register inside a function (press n):

Listing 3.2: Mahjong.exe from Windows 7 x86
.text:010281AE sub_10281AE proc near

...

.text:010281AE zero = ebx

...

.text:010281BF xor zero, zero ; *

.text:010281C1 mov [ebp+var_10], zero ; *

.text:010281C4 cmp [esi], zero ; *

.text:010281C6 jbe short loc_10281E8

...

3.2 Double negation
A popular way1 to convert non-zero value into 1 (or boolean true) and zero value into
0 (or boolean false) is !!statement:
int convert_to_bool(int a)
{

return !!a;
};

Optimizing GCC 5.4 x86:
convert_to_bool:

mov edx, DWORD PTR [esp+4]
xor eax, eax
test edx, edx
setne al
ret

XOR always clears return value in EAX, even in case if SETNE will not trigger. I.e., XOR
sets default return value to zero.
If the input value is not equal to zero (-NE suffix in SET instruction), 1 is set to AL,
otherwise AL isn’t touched.
Why SETNE operates on low 8-bit part of EAX register? Because the matter is just in
the last bit (0 or 1), while other bits are cleared by XOR.

1This way is also controversial, because it leads to hard-to-read code

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

582
Therefore, that C/C++ code could be rewritten like this:
int convert_to_bool(int a)
{

if (a!=0)
return 1;

else
return 0;

};

…or even:
int convert_to_bool(int a)
{

if (a)
return 1;

else
return 0;

};

Compilers targeting CPUs lacking instruction similar to SET, in this case, generates
branching instructions, etc.

3.3 const correctness
This is undeservedly underused feature of many programming languages. Read here
about its importance: 1, 2.
Ideally, everything you don’t modify should have const modifier.
Interestingly, how const correctness is implemented at low level. There are no run-
time checks of local const variables and function arguments (only compile-time
checks). But global variables of such a type are to be allocated in read-only data
segments.
This is example is to be crashed, because if compiled by MSVC for win32, the a global
variable is allocated in .rdata read-only segment:
const a=123;

void f(int *i)
{

*i=11; // crash
};

int main()
{

f(&a);
return a;

};

Anonymous (not linked to a variable name) C strings also have const char* type.
You can’t modify them:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://isocpp.org/wiki/faq/const-correctness
https://stackoverflow.com/questions/136880/sell-me-on-const-correctness
https://yurichev.com/contact.html
https://yurichev.com/contact.html

583

#include <string.h>
#include <stdio.h>

void alter_string(char *s)
{

strcpy (s, "Goodbye!");
printf ("Result: %s\n", s);

};

int main()
{

alter_string ("Hello, world!\n");
};

This code will crash on Linux (“segmentation fault”) and on Windows if compiled by
MinGW.
GCC for Linux places all text strings info .rodata data segment, which is explicitly
read-only (“read only data”):
$ objdump -s 1

...

Contents of section .rodata:
400600 01000200 52657375 6c743a20 25730a00Result: %s..
400610 48656c6c 6f2c2077 6f726c64 210a00 Hello, world!..

When the alter_string() function tries to write there, exception occurred.
Things are different in the code generated by MSVC, strings are located in .data
segment, which has no READONLY flag. MSVC’s developers misstep?
C:\...>objdump -s 1.exe

...

Contents of section .data:
40b000 476f6f64 62796521 00000000 52657375 Goodbye!....Resu
40b010 6c743a20 25730a00 48656c6c 6f2c2077 lt: %s..Hello, w
40b020 6f726c64 210a0000 00000000 00000000 orld!...........
40b030 01000000 00000000 c0cb4000 00000000@.....

...

C:\...>objdump -x 1.exe

...

Sections:
Idx Name Size VMA LMA File off Algn

0 .text 00006d2a 00401000 00401000 00000400 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

584
1 .rdata 00002262 00408000 00408000 00007200 2**2

CONTENTS, ALLOC, LOAD, READONLY, DATA
2 .data 00000e00 0040b000 0040b000 00009600 2**2

CONTENTS, ALLOC, LOAD, DATA
3 .reloc 00000b98 0040e000 0040e000 0000a400 2**2

CONTENTS, ALLOC, LOAD, READONLY, DATA

However, MinGW hasn’t this fault and allocates text strings in .rdata segment.

3.3.1 Overlapping const strings
The fact that an anonymous C-string has const type (1.5.1 on page 12), and that
C-strings allocated in constants segment are guaranteed to be immutable, has an
interesting consequence: the compiler may use a specific part of the string.
Let’s try this example:
#include <stdio.h>

int f1()
{

printf ("world\n");
}

int f2()
{

printf ("hello world\n");
}

int main()
{

f1();
f2();

}

Common C/C++-compilers (including MSVC) allocate two strings, but let’s see what
GCC 4.8.1 does:

Listing 3.3: GCC 4.8.1 + IDA listing
f1 proc near

s = dword ptr -1Ch

sub esp, 1Ch
mov [esp+1Ch+s], offset s ; "world\n"
call _puts
add esp, 1Ch
retn

f1 endp

f2 proc near

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

585
s = dword ptr -1Ch

sub esp, 1Ch
mov [esp+1Ch+s], offset aHello ; "hello "
call _puts
add esp, 1Ch
retn

f2 endp

aHello db 'hello '
s db 'world',0xa,0

Indeed: when we print the “hello world” string these two words are positioned in
memory adjacently and puts() called from f2() function is not aware that this string
is divided. In fact, it’s not divided; it’s divided only virtually, in this listing.
When puts() is called from f1(), it uses the “world” string plus a zero byte. puts()
is not aware that there is something before this string!
This clever trick is often used by at least GCC and can save some memory. This is
close to string interning.
Another related example is here: 3.4.

3.4 strstr() example
Let’s back to the fact that GCC sometimes can use part of string: 3.3.1 on the previ-
ous page.
The strstr() C/C++ standard library function is used to find any occurrence in a string.
This is what we will do:
#include <string.h>
#include <stdio.h>

int main()
{

char *s="Hello, world!";
char *w=strstr(s, "world");

printf ("%p, [%s]\n", s, s);
printf ("%p, [%s]\n", w, w);

};

The output is:
0x8048530, [Hello, world!]
0x8048537, [world!]

The difference between the address of the original string and the address of the
substring that strstr() has returned is 7. Indeed, “Hello, ” string has length of 7
characters.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

586
The printf() function during second call has no idea there are some other char-
acters before the passed string and it prints characters from the middle of original
string till the end (marked by zero byte).

3.5 qsort() revisited
(Let’s back to the fact that CMP instruction works like SUB: 1.12.4 on page 113.)
Now that you already familiar with qsort() function (1.33 on page 483), here is a nice
example where comparison operation (CMP) can be replaced by subtraction operation
(SUB).
/* qsort int comparison function */
int int_cmp(const void *a, const void *b)
{

const int *ia = (const int *)a; // casting pointer types
const int *ib = (const int *)b;
return *ia - *ib;

/* integer comparison: returns negative if b > a
and positive if a > b */

}

(http://www.anyexample.com/programming/c/qsort__sorting_array_of_strings_
_integers_and_structs.xml http://archive.is/Hh3jz)
Also, a typical implementation of strcmp() (from OpenBSD):
int
strcmp(const char *s1, const char *s2)
{

while (*s1 == *s2++)
if (*s1++ == 0)

return (0);
return (*(unsigned char *)s1 - *(unsigned char *)--s2);

}

3.6 Temperature converting
Another very popular example in programming books for beginners is a small pro-
gram that converts Fahrenheit temperature to Celsius or back.

C =
5 ⋅ (F − 32)

9

We can also add simple error handling: 1) we must check if the user has entered
a correct number; 2) we must check if the Celsius temperature is not below −273
(which is below absolute zero, as we may recall from school physics lessons).
The exit() function terminates the program instantly, without returning to the caller
function.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.anyexample.com/programming/c/qsort__sorting_array_of_strings__integers_and_structs.xml
http://www.anyexample.com/programming/c/qsort__sorting_array_of_strings__integers_and_structs.xml
http://archive.is/Hh3jz
https://yurichev.com/contact.html
https://yurichev.com/contact.html

587
3.6.1 Integer values
#include <stdio.h>
#include <stdlib.h>

int main()
{

int celsius, fahr;
printf ("Enter temperature in Fahrenheit:\n");
if (scanf ("%d", &fahr)!=1)
{

printf ("Error while parsing your input\n");
exit(0);

};

celsius = 5 * (fahr-32) / 9;

if (celsius<-273)
{

printf ("Error: incorrect temperature!\n");
exit(0);

};
printf ("Celsius: %d\n", celsius);

};

Optimizing MSVC 2012 x86

Listing 3.4: Optimizing MSVC 2012 x86
$SG4228 DB 'Enter temperature in Fahrenheit:', 0aH, 00H
$SG4230 DB '%d', 00H
$SG4231 DB 'Error while parsing your input', 0aH, 00H
$SG4233 DB 'Error: incorrect temperature!', 0aH, 00H
$SG4234 DB 'Celsius: %d', 0aH, 00H

_fahr$ = -4 ; size = 4
_main PROC

push ecx
push esi
mov esi, DWORD PTR __imp__printf
push OFFSET $SG4228 ; 'Enter temperature in Fahrenheit:'
call esi ; call printf()
lea eax, DWORD PTR _fahr$[esp+12]
push eax
push OFFSET $SG4230 ; '%d'
call DWORD PTR __imp__scanf
add esp, 12
cmp eax, 1
je SHORT $LN2@main
push OFFSET $SG4231 ; 'Error while parsing your input'
call esi ; call printf()
add esp, 4
push 0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

588
call DWORD PTR __imp__exit

$LN9@main:
$LN2@main:

mov eax, DWORD PTR _fahr$[esp+8]
add eax, -32 ; ffffffe0H
lea ecx, DWORD PTR [eax+eax*4]
mov eax, 954437177 ; 38e38e39H
imul ecx
sar edx, 1
mov eax, edx
shr eax, 31 ; 0000001fH
add eax, edx
cmp eax, -273 ; fffffeefH
jge SHORT $LN1@main
push OFFSET $SG4233 ; 'Error: incorrect temperature!'
call esi ; call printf()
add esp, 4
push 0
call DWORD PTR __imp__exit

$LN10@main:
$LN1@main:

push eax
push OFFSET $SG4234 ; 'Celsius: %d'
call esi ; call printf()
add esp, 8
; return 0 - by C99 standard
xor eax, eax
pop esi
pop ecx
ret 0

$LN8@main:
_main ENDP

What we can say about it:
• The address of printf() is first loaded in the ESI register, so the subsequent
printf() calls are done just by the CALL ESI instruction. It’s a very popular
compiler technique, possible if several consequent calls to the same function
are present in the code, and/or if there is a free register which can be used for
this.

• We see the ADD EAX, -32 instruction at the place where 32 has to be subtracted
from the value. EAX = EAX + (−32) is equivalent to EAX = EAX − 32 and
somehow, the compiler decided to use ADD instead of SUB. Maybe it’s worth it,
it’s hard to be sure.

• The LEA instruction is used when the value is to be multiplied by 5: lea ecx,
DWORD PTR [eax+eax*4]. Yes, i+ i∗4 is equivalent to i∗5 and LEA works faster
then IMUL.
By the way, the SHL EAX, 2 / ADD EAX, EAX instruction pair could be also
used here instead— some compilers do it like.

• The division by multiplication trick (3.12 on page 621) is also used here.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

589
• main() returns 0 if we don’t have return 0 at its end. The C99 standard tells
us [ISO/IEC 9899:TC3 (C C99 standard), (2007)5.1.2.2.3] that main() will return
0 in case the return statement is missing. This rule works only for the main()
function.
Though, MSVC doesn’t officially support C99, but maybe it support it partially?

Optimizing MSVC 2012 x64

The code is almost the same, but we can find INT 3 instructions after each exit()
call.

xor ecx, ecx
call QWORD PTR __imp_exit
int 3

INT 3 is a debugger breakpoint.
It is known that exit() is one of the functions which can never return 2, so if it does,
something really odd has happened and it’s time to load the debugger.

3.6.2 Floating-point values
#include <stdio.h>
#include <stdlib.h>

int main()
{

double celsius, fahr;
printf ("Enter temperature in Fahrenheit:\n");
if (scanf ("%lf", &fahr)!=1)
{

printf ("Error while parsing your input\n");
exit(0);

};

celsius = 5 * (fahr-32) / 9;

if (celsius<-273)
{

printf ("Error: incorrect temperature!\n");
exit(0);

};
printf ("Celsius: %lf\n", celsius);

};

MSVC 2010 x86 uses FPU instructions…

Listing 3.5: Optimizing MSVC 2010 x86
$SG4038 DB 'Enter temperature in Fahrenheit:', 0aH, 00H

2another popular one is longjmp()

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

590
$SG4040 DB '%lf', 00H
$SG4041 DB 'Error while parsing your input', 0aH, 00H
$SG4043 DB 'Error: incorrect temperature!', 0aH, 00H
$SG4044 DB 'Celsius: %lf', 0aH, 00H

__real@c071100000000000 DQ 0c071100000000000r ; -273
__real@4022000000000000 DQ 04022000000000000r ; 9
__real@4014000000000000 DQ 04014000000000000r ; 5
__real@4040000000000000 DQ 04040000000000000r ; 32

_fahr$ = -8 ; size = 8
_main PROC

sub esp, 8
push esi
mov esi, DWORD PTR __imp__printf
push OFFSET $SG4038 ; 'Enter temperature in Fahrenheit:'
call esi ; call printf()
lea eax, DWORD PTR _fahr$[esp+16]
push eax
push OFFSET $SG4040 ; '%lf'
call DWORD PTR __imp__scanf
add esp, 12
cmp eax, 1
je SHORT $LN2@main
push OFFSET $SG4041 ; 'Error while parsing your input'
call esi ; call printf()
add esp, 4
push 0
call DWORD PTR __imp__exit

$LN2@main:
fld QWORD PTR _fahr$[esp+12]
fsub QWORD PTR __real@4040000000000000 ; 32
fmul QWORD PTR __real@4014000000000000 ; 5
fdiv QWORD PTR __real@4022000000000000 ; 9
fld QWORD PTR __real@c071100000000000 ; -273
fcomp ST(1)
fnstsw ax
test ah, 65 ; 00000041H
jne SHORT $LN1@main
push OFFSET $SG4043 ; 'Error: incorrect temperature!'
fstp ST(0)
call esi ; call printf()
add esp, 4
push 0
call DWORD PTR __imp__exit

$LN1@main:
sub esp, 8
fstp QWORD PTR [esp]
push OFFSET $SG4044 ; 'Celsius: %lf'
call esi
add esp, 12
; return 0 - by C99 standard
xor eax, eax

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

591
pop esi
add esp, 8
ret 0

$LN10@main:
_main ENDP

…but MSVC 2012 uses SIMD instructions instead:

Listing 3.6: Optimizing MSVC 2010 x86
$SG4228 DB 'Enter temperature in Fahrenheit:', 0aH, 00H
$SG4230 DB '%lf', 00H
$SG4231 DB 'Error while parsing your input', 0aH, 00H
$SG4233 DB 'Error: incorrect temperature!', 0aH, 00H
$SG4234 DB 'Celsius: %lf', 0aH, 00H
__real@c071100000000000 DQ 0c071100000000000r ; -273
__real@4040000000000000 DQ 04040000000000000r ; 32
__real@4022000000000000 DQ 04022000000000000r ; 9
__real@4014000000000000 DQ 04014000000000000r ; 5

_fahr$ = -8 ; size = 8
_main PROC

sub esp, 8
push esi
mov esi, DWORD PTR __imp__printf
push OFFSET $SG4228 ; 'Enter temperature in Fahrenheit:'
call esi ; call printf()
lea eax, DWORD PTR _fahr$[esp+16]
push eax
push OFFSET $SG4230 ; '%lf'
call DWORD PTR __imp__scanf
add esp, 12
cmp eax, 1
je SHORT $LN2@main
push OFFSET $SG4231 ; 'Error while parsing your input'
call esi ; call printf()
add esp, 4
push 0
call DWORD PTR __imp__exit

$LN9@main:
$LN2@main:

movsd xmm1, QWORD PTR _fahr$[esp+12]
subsd xmm1, QWORD PTR __real@4040000000000000 ; 32
movsd xmm0, QWORD PTR __real@c071100000000000 ; -273
mulsd xmm1, QWORD PTR __real@4014000000000000 ; 5
divsd xmm1, QWORD PTR __real@4022000000000000 ; 9
comisd xmm0, xmm1
jbe SHORT $LN1@main
push OFFSET $SG4233 ; 'Error: incorrect temperature!'
call esi ; call printf()
add esp, 4
push 0
call DWORD PTR __imp__exit

$LN10@main:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

592
$LN1@main:

sub esp, 8
movsd QWORD PTR [esp], xmm1
push OFFSET $SG4234 ; 'Celsius: %lf'
call esi ; call printf()
add esp, 12
; return 0 - by C99 standard
xor eax, eax
pop esi
add esp, 8
ret 0

$LN8@main:
_main ENDP

Of course, SIMD instructions are available in x86 mode, including those working with
floating point numbers.
It’s somewhat easier to use them for calculations, so the new Microsoft compiler
uses them.
We can also see that the −273 value is loaded into XMM0 register too early. And that’s
OK, because the compiler may emit instructions not in the order they are in the
source code.

3.7 Fibonacci numbers
Another widespread example used in programming textbooks is a recursive function
that generates the Fibonacci numbers3. The sequence is very simple: each consec-
utive number is the sum of the previous two. The first two numbers are 0 and 1, or
1 and 1.
The sequence starts like this:

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181...

3.7.1 Example #1
The implementation is simple. This program generates the sequence until 21.
#include <stdio.h>

void fib (int a, int b, int limit)
{

printf ("%d\n", a+b);
if (a+b > limit)

return;
fib (b, a+b, limit);

};

int main()

3http://oeis.org/A000045

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://oeis.org/A000045
https://yurichev.com/contact.html
https://yurichev.com/contact.html

593
{

printf ("0\n1\n1\n");
fib (1, 1, 20);

};

Listing 3.7: MSVC 2010 x86
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_limit$ = 16 ; size = 4
_fib PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
add eax, DWORD PTR _b$[ebp]
push eax
push OFFSET $SG2643
call DWORD PTR __imp__printf
add esp, 8
mov ecx, DWORD PTR _a$[ebp]
add ecx, DWORD PTR _b$[ebp]
cmp ecx, DWORD PTR _limit$[ebp]
jle SHORT $LN1@fib
jmp SHORT $LN2@fib

$LN1@fib:
mov edx, DWORD PTR _limit$[ebp]
push edx
mov eax, DWORD PTR _a$[ebp]
add eax, DWORD PTR _b$[ebp]
push eax
mov ecx, DWORD PTR _b$[ebp]
push ecx
call _fib
add esp, 12

$LN2@fib:
pop ebp
ret 0

_fib ENDP

_main PROC
push ebp
mov ebp, esp
push OFFSET $SG2647 ; "0\n1\n1\n"
call DWORD PTR __imp__printf
add esp, 4
push 20
push 1
push 1
call _fib
add esp, 12
xor eax, eax
pop ebp
ret 0

_main ENDP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

594

We will illustrate the stack frames with this.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

595
Let’s load the example in OllyDbg and trace to the last call of f():

Figure 3.1: OllyDbg: last call of f()

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

596
Let’s investigate the stack more closely. Comments were added by the author of
this book 4:
0035F940 00FD1039 RETURN to fib.00FD1039 from fib.00FD1000
0035F944 00000008 1st argument: a
0035F948 0000000D 2nd argument b
0035F94C 00000014 3rd argument: limit
0035F950 /0035F964 saved EBP register
0035F954 |00FD1039 RETURN to fib.00FD1039 from fib.00FD1000
0035F958 |00000005 1st argument: a
0035F95C |00000008 2nd argument: b
0035F960 |00000014 3rd argument: limit
0035F964]0035F978 saved EBP register
0035F968 |00FD1039 RETURN to fib.00FD1039 from fib.00FD1000
0035F96C |00000003 1st argument: a
0035F970 |00000005 2nd argument: b
0035F974 |00000014 3rd argument: limit
0035F978]0035F98C saved EBP register
0035F97C |00FD1039 RETURN to fib.00FD1039 from fib.00FD1000
0035F980 |00000002 1st argument: a
0035F984 |00000003 2nd argument: b
0035F988 |00000014 3rd argument: limit
0035F98C]0035F9A0 saved EBP register
0035F990 |00FD1039 RETURN to fib.00FD1039 from fib.00FD1000
0035F994 |00000001 1st argument: a
0035F998 |00000002 2nd argument: b
0035F99C |00000014 3rd argument: limit
0035F9A0]0035F9B4 saved EBP register
0035F9A4 |00FD105C RETURN to fib.00FD105C from fib.00FD1000
0035F9A8 |00000001 1st argument: a \
0035F9AC |00000001 2nd argument: b | prepared in main() for f1()
0035F9B0 |00000014 3rd argument: limit /
0035F9B4]0035F9F8 saved EBP register
0035F9B8 |00FD11D0 RETURN to fib.00FD11D0 from fib.00FD1040
0035F9BC |00000001 main() 1st argument: argc \
0035F9C0 |006812C8 main() 2nd argument: argv | prepared in CRT for main()
0035F9C4 |00682940 main() 3rd argument: envp /

The function is recursive 5, hence stack looks like a “sandwich”.
We see that the limit argument is always the same (0x14 or 20), but the a and b
arguments are different for each call.
There are also the RA-s and the saved EBP values. OllyDbg is able to determine the
EBP-based frames, so it draws these brackets. The values inside each bracket make
the stack frame, in other words, the stack area which each function incarnation uses
as scratch space.
We can also say that each function incarnation must not access stack elements be-
yond the boundaries of its frame (excluding function arguments), although it’s tech-
nically possible.

4By the way, it’s possible to select several entries in OllyDbg and copy them to the clipboard (Ctrl-C).
That’s what was done by author for this example.

5i.e., it calls itself

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

597
It’s usually true, unless the function has bugs.
Each saved EBP value is the address of the previous stack frame: this is the reason
why some debuggers can easily divide the stack in frames and dump each function’s
arguments.
As we see here, each function incarnation prepares the arguments for the next func-
tion call.
At the end we see the 3 arguments for main(). argc is 1 (yes, indeed, we have ran
the program without command-line arguments).
This easily to lead to a stack overflow: just remove (or comment out) the limit check
and it will crash with exception 0xC00000FD (stack overflow.)

3.7.2 Example #2
My function has some redundancy, so let’s add a new local variable next and replace
all “a+b” with it:
#include <stdio.h>

void fib (int a, int b, int limit)
{

int next=a+b;
printf ("%d\n", next);
if (next > limit)

return;
fib (b, next, limit);

};

int main()
{

printf ("0\n1\n1\n");
fib (1, 1, 20);

};

This is the output of non-optimizing MSVC, so the next variable is actually allocated
in the local stack:

Listing 3.8: MSVC 2010 x86
_next$ = -4 ; size = 4
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_limit$ = 16 ; size = 4
_fib PROC

push ebp
mov ebp, esp
push ecx
mov eax, DWORD PTR _a$[ebp]
add eax, DWORD PTR _b$[ebp]
mov DWORD PTR _next$[ebp], eax
mov ecx, DWORD PTR _next$[ebp]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

598
push ecx
push OFFSET $SG2751 ; '%d'
call DWORD PTR __imp__printf
add esp, 8
mov edx, DWORD PTR _next$[ebp]
cmp edx, DWORD PTR _limit$[ebp]
jle SHORT $LN1@fib
jmp SHORT $LN2@fib

$LN1@fib:
mov eax, DWORD PTR _limit$[ebp]
push eax
mov ecx, DWORD PTR _next$[ebp]
push ecx
mov edx, DWORD PTR _b$[ebp]
push edx
call _fib
add esp, 12

$LN2@fib:
mov esp, ebp
pop ebp
ret 0

_fib ENDP

_main PROC
push ebp
mov ebp, esp
push OFFSET $SG2753 ; "0\n1\n1\n"
call DWORD PTR __imp__printf
add esp, 4
push 20
push 1
push 1
call _fib
add esp, 12
xor eax, eax
pop ebp
ret 0

_main ENDP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

599
Let’s load it in OllyDbg once again:

Figure 3.2: OllyDbg: last call of f()

Now the next variable is present in each frame.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

600
Let’s investigate the stack more closely. The author has again added his comments:
0029FC14 00E0103A RETURN to fib2.00E0103A from fib2.00E01000
0029FC18 00000008 1st argument: a
0029FC1C 0000000D 2nd argument: b
0029FC20 00000014 3rd argument: limit
0029FC24 0000000D "next" variable
0029FC28 /0029FC40 saved EBP register
0029FC2C |00E0103A RETURN to fib2.00E0103A from fib2.00E01000
0029FC30 |00000005 1st argument: a
0029FC34 |00000008 2nd argument: b
0029FC38 |00000014 3rd argument: limit
0029FC3C |00000008 "next" variable
0029FC40]0029FC58 saved EBP register
0029FC44 |00E0103A RETURN to fib2.00E0103A from fib2.00E01000
0029FC48 |00000003 1st argument: a
0029FC4C |00000005 2nd argument: b
0029FC50 |00000014 3rd argument: limit
0029FC54 |00000005 "next" variable
0029FC58]0029FC70 saved EBP register
0029FC5C |00E0103A RETURN to fib2.00E0103A from fib2.00E01000
0029FC60 |00000002 1st argument: a
0029FC64 |00000003 2nd argument: b
0029FC68 |00000014 3rd argument: limit
0029FC6C |00000003 "next" variable
0029FC70]0029FC88 saved EBP register
0029FC74 |00E0103A RETURN to fib2.00E0103A from fib2.00E01000
0029FC78 |00000001 1st argument: a \
0029FC7C |00000002 2nd argument: b | prepared in f1() for next f1() ⤦

Ç call
0029FC80 |00000014 3rd argument: limit /
0029FC84 |00000002 "next" variable
0029FC88]0029FC9C saved EBP register
0029FC8C |00E0106C RETURN to fib2.00E0106C from fib2.00E01000
0029FC90 |00000001 1st argument: a \
0029FC94 |00000001 2nd argument: b | prepared in main() for f1()
0029FC98 |00000014 3rd argument: limit /
0029FC9C]0029FCE0 saved EBP register
0029FCA0 |00E011E0 RETURN to fib2.00E011E0 from fib2.00E01050
0029FCA4 |00000001 main() 1st argument: argc \
0029FCA8 |000812C8 main() 2nd argument: argv | prepared in CRT for main()
0029FCAC |00082940 main() 3rd argument: envp /

Here we see it: the next value is calculated in each function incarnation, then passed
as argument b to the next incarnation.

3.7.3 Summary
Recursive functions are æsthetically nice, but technically may degrade performance
because of their heavy stack usage. Everyone who writes performance critical code
probably should avoid recursion.
For example, the author of this book once wrote a function to seek a particular node

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

601
in a binary tree. As a recursive function it looked quite stylish but since additional
time was spent at each function call for the prologue/epilogue, it was working a
couple of times slower than an iterative (recursion-free) implementation.
By the way, that is the reason that some functional PL6 compilers (where recursion
is used heavily) use tail call. We talk about tail call when a function has only one
single call to itself located at the end of it, like:

Listing 3.9: Scheme, example is copypasted from Wikipedia
;; factorial : number -> number
;; to calculate the product of all positive
;; integers less than or equal to n.
(define (factorial n)
(if (= n 1)

1
(* n (factorial (- n 1)))))

Tail call is important because compiler can rework this code easily into iterative one,
to get rid of recursion.

3.8 CRC32 calculation example
This is a very popular table-based CRC32 hash calculation technique7.
/* By Bob Jenkins, (c) 2006, Public Domain */

#include <stdio.h>
#include <stddef.h>
#include <string.h>

typedef unsigned long ub4;
typedef unsigned char ub1;

static const ub4 crctab[256] = {
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,

6LISP, Python, Lua, etc.
7The source code has been taken from here: http://burtleburtle.net/bob/c/crc.c

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://burtleburtle.net/bob/c/crc.c
https://yurichev.com/contact.html
https://yurichev.com/contact.html

602
0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
0x2d02ef8d

};

/* how to derive the values in crctab[] from polynomial 0xedb88320 */
void build_table()
{

ub4 i, j;
for (i=0; i<256; ++i) {
j = i;
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);
j = (j>>1) ^ ((j&1) ? 0xedb88320 : 0);

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

603
printf("0x%.8lx, ", j);
if (i%6 == 5) printf("\n");

}
}

/* the hash function */
ub4 crc(const void *key, ub4 len, ub4 hash)
{

ub4 i;
const ub1 *k = key;
for (hash=len, i=0; i<len; ++i)
hash = (hash >> 8) ^ crctab[(hash & 0xff) ^ k[i]];

return hash;
}

/* To use, try "gcc -O crc.c -o crc; crc < crc.c" */
int main()
{

char s[1000];
while (gets(s)) printf("%.8lx\n", crc(s, strlen(s), 0));
return 0;

}

We are interested in the crc() function only. By the way, pay attention to the two
loop initializers in the for() statement: hash=len, i=0. The C/C++ standard allows
this, of course. The emitted code will contain two operations in the loop initialization
part instead of one.
Let’s compile it in MSVC with optimization (/Ox). For the sake of brevity, only the
crc() function is listed here, with my comments.
_key$ = 8 ; size = 4
_len$ = 12 ; size = 4
_hash$ = 16 ; size = 4
_crc PROC

mov edx, DWORD PTR _len$[esp-4]
xor ecx, ecx ; i will be stored in ECX
mov eax, edx
test edx, edx
jbe SHORT $LN1@crc
push ebx
push esi
mov esi, DWORD PTR _key$[esp+4] ; ESI = key
push edi

$LL3@crc:

; work with bytes using only 32-bit registers. byte from address key+i we
store into EDI

movzx edi, BYTE PTR [ecx+esi]
mov ebx, eax ; EBX = (hash = len)
and ebx, 255 ; EBX = hash & 0xff

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

604
; XOR EDI, EBX (EDI=EDI^EBX)
; this operation uses all 32 bits of each register
; but other bits (8-31) are cleared all time, so it is OK
; these are cleared because, as for EDI, it was done by MOVZX instruction

above
; high bits of EBX was cleared by AND EBX, 255 instruction above (255 = 0xff)

xor edi, ebx

; EAX=EAX>>8; bits 24-31 taken from nowhere will be cleared
shr eax, 8

; EAX=EAX^crctab[EDI*4] - choose EDI-th element from crctab[] table
xor eax, DWORD PTR _crctab[edi*4]
inc ecx ; i++
cmp ecx, edx ; i<len ?
jb SHORT $LL3@crc ; yes
pop edi
pop esi
pop ebx

$LN1@crc:
ret 0

_crc ENDP

Let’s try the same in GCC 4.4.1 with -O3 option:
public crc

crc proc near

key = dword ptr 8
hash = dword ptr 0Ch

push ebp
xor edx, edx
mov ebp, esp
push esi
mov esi, [ebp+key]
push ebx
mov ebx, [ebp+hash]
test ebx, ebx
mov eax, ebx
jz short loc_80484D3
nop ; padding
lea esi, [esi+0] ; padding; works as NOP (ESI does not

change here)

loc_80484B8:
mov ecx, eax ; save previous state of hash to ECX
xor al, [esi+edx]; AL=*(key+i)
add edx, 1 ; i++
shr ecx, 8 ; ECX=hash>>8
movzx eax, al ; EAX=*(key+i)
mov eax, dword ptr ds:crctab[eax*4] ; EAX=crctab[EAX]
xor eax, ecx ; hash=EAX^ECX

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

605
cmp ebx, edx
ja short loc_80484B8

loc_80484D3:
pop ebx
pop esi
pop ebp
retn

crc endp

GCC has aligned the loop start on a 8-byte boundary by adding NOP and lea esi,
[esi+0] (that is an idle operation too). Read more about it in npad section (.1.7 on
page 1313).

3.9 Network address calculation example
As we know, a TCP/IP address (IPv4) consists of four numbers in the 0 . . . 255 range,
i.e., four bytes.
Four bytes can be fit in a 32-bit variable easily, so an IPv4 host address, network
mask or network address can all be 32-bit integers.
From the user’s point of view, the network mask is defined as four numbers and is
formatted like 255.255.255.0 or so, but network engineers (sysadmins) use a more
compact notation (CIDR8), like “/8”, “/16”, etc.
This notation just defines the number of bits the mask has, starting at the MSB.

Mask Hosts Usable Netmask Hex mask
/30 4 2 255.255.255.252 0xfffffffc
/29 8 6 255.255.255.248 0xfffffff8
/28 16 14 255.255.255.240 0xfffffff0
/27 32 30 255.255.255.224 0xffffffe0
/26 64 62 255.255.255.192 0xffffffc0
/24 256 254 255.255.255.0 0xffffff00 class C network
/23 512 510 255.255.254.0 0xfffffe00
/22 1024 1022 255.255.252.0 0xfffffc00
/21 2048 2046 255.255.248.0 0xfffff800
/20 4096 4094 255.255.240.0 0xfffff000
/19 8192 8190 255.255.224.0 0xffffe000
/18 16384 16382 255.255.192.0 0xffffc000
/17 32768 32766 255.255.128.0 0xffff8000
/16 65536 65534 255.255.0.0 0xffff0000 class B network
/8 16777216 16777214 255.0.0.0 0xff000000 class A network

Here is a small example, which calculates the network address by applying the net-
work mask to the host address.
#include <stdio.h>
#include <stdint.h>

8Classless Inter-Domain Routing

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

606
uint32_t form_IP (uint8_t ip1, uint8_t ip2, uint8_t ip3, uint8_t ip4)
{

return (ip1<<24) | (ip2<<16) | (ip3<<8) | ip4;
};

void print_as_IP (uint32_t a)
{

printf ("%d.%d.%d.%d\n",
(a>>24)&0xFF,
(a>>16)&0xFF,
(a>>8)&0xFF,
(a)&0xFF);

};

// bit=31..0
uint32_t set_bit (uint32_t input, int bit)
{

return input=input|(1<<bit);
};

uint32_t form_netmask (uint8_t netmask_bits)
{

uint32_t netmask=0;
uint8_t i;

for (i=0; i<netmask_bits; i++)
netmask=set_bit(netmask, 31-i);

return netmask;
};

void calc_network_address (uint8_t ip1, uint8_t ip2, uint8_t ip3, uint8_t ⤦
Ç ip4, uint8_t netmask_bits)

{
uint32_t netmask=form_netmask(netmask_bits);
uint32_t ip=form_IP(ip1, ip2, ip3, ip4);
uint32_t netw_adr;

printf ("netmask=");
print_as_IP (netmask);

netw_adr=ip&netmask;

printf ("network address=");
print_as_IP (netw_adr);

};

int main()
{

calc_network_address (10, 1, 2, 4, 24); // 10.1.2.4, /24
calc_network_address (10, 1, 2, 4, 8); // 10.1.2.4, /8
calc_network_address (10, 1, 2, 4, 25); // 10.1.2.4, /25
calc_network_address (10, 1, 2, 64, 26); // 10.1.2.4, /26

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

607
};

3.9.1 calc_network_address()
calc_network_address() function is simplest one: it just ANDs the host address
with the network mask, resulting in the network address.

Listing 3.10: Optimizing MSVC 2012 /Ob0
1 _ip1$ = 8 ; size = 1
2 _ip2$ = 12 ; size = 1
3 _ip3$ = 16 ; size = 1
4 _ip4$ = 20 ; size = 1
5 _netmask_bits$ = 24 ; size = 1
6 _calc_network_address PROC
7 push edi
8 push DWORD PTR _netmask_bits$[esp]
9 call _form_netmask
10 push OFFSET $SG3045 ; 'netmask='
11 mov edi, eax
12 call DWORD PTR __imp__printf
13 push edi
14 call _print_as_IP
15 push OFFSET $SG3046 ; 'network address='
16 call DWORD PTR __imp__printf
17 push DWORD PTR _ip4$[esp+16]
18 push DWORD PTR _ip3$[esp+20]
19 push DWORD PTR _ip2$[esp+24]
20 push DWORD PTR _ip1$[esp+28]
21 call _form_IP
22 and eax, edi ; network address = host address & netmask
23 push eax
24 call _print_as_IP
25 add esp, 36
26 pop edi
27 ret 0
28 _calc_network_address ENDP

At line 22 we see the most important AND—here the network address is calculated.

3.9.2 form_IP()
The form_IP() function just puts all 4 bytes into a 32-bit value.
Here is how it is usually done:
• Allocate a variable for the return value. Set it to 0.
• Take the fourth (lowest) byte, apply OR operation to this byte and return the
value. The return value contain the 4th byte now.

• Take the third byte, shift it left by 8 bits. You’ll get a value like 0x0000bb00
where bb is your third byte. Apply the OR operation to the resulting value and

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

608
returning value. The return value has contained 0x000000aa so far, so ORing
the values will produce a value like 0x0000bbaa.

• Take the second byte, shift it left by 16 bits. You’ll get a value like 0x00cc0000,
where cc is your second byte. Apply the OR operation to the resulting value and
returning value. The return value has contained 0x0000bbaa so far, so ORing
the values will produce a value like 0x00ccbbaa.

• Take the first byte, shift it left by 24 bits. You’ll get a value like 0xdd000000,
where dd is your first byte. Apply the OR operation to the resulting value and
returning value. The return value has contained 0x00ccbbaa so far, so ORing
the values will produce a value like 0xddccbbaa.

And this is how it’s done by non-optimizing MSVC 2012:

Listing 3.11: Non-optimizing MSVC 2012
; denote ip1 as "dd", ip2 as "cc", ip3 as "bb", ip4 as "aa".
_ip1$ = 8 ; size = 1
_ip2$ = 12 ; size = 1
_ip3$ = 16 ; size = 1
_ip4$ = 20 ; size = 1
_form_IP PROC

push ebp
mov ebp, esp
movzx eax, BYTE PTR _ip1$[ebp]
; EAX=000000dd
shl eax, 24
; EAX=dd000000
movzx ecx, BYTE PTR _ip2$[ebp]
; ECX=000000cc
shl ecx, 16
; ECX=00cc0000
or eax, ecx
; EAX=ddcc0000
movzx edx, BYTE PTR _ip3$[ebp]
; EDX=000000bb
shl edx, 8
; EDX=0000bb00
or eax, edx
; EAX=ddccbb00
movzx ecx, BYTE PTR _ip4$[ebp]
; ECX=000000aa
or eax, ecx
; EAX=ddccbbaa
pop ebp
ret 0

_form_IP ENDP

Well, the order is different, but, of course, the order of the operations doesn’t matter.
Optimizing MSVC 2012 does essentially the same, but in a different way:

Listing 3.12: Optimizing MSVC 2012 /Ob0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

609
; denote ip1 as "dd", ip2 as "cc", ip3 as "bb", ip4 as "aa".
_ip1$ = 8 ; size = 1
_ip2$ = 12 ; size = 1
_ip3$ = 16 ; size = 1
_ip4$ = 20 ; size = 1
_form_IP PROC

movzx eax, BYTE PTR _ip1$[esp-4]
; EAX=000000dd
movzx ecx, BYTE PTR _ip2$[esp-4]
; ECX=000000cc
shl eax, 8
; EAX=0000dd00
or eax, ecx
; EAX=0000ddcc
movzx ecx, BYTE PTR _ip3$[esp-4]
; ECX=000000bb
shl eax, 8
; EAX=00ddcc00
or eax, ecx
; EAX=00ddccbb
movzx ecx, BYTE PTR _ip4$[esp-4]
; ECX=000000aa
shl eax, 8
; EAX=ddccbb00
or eax, ecx
; EAX=ddccbbaa
ret 0

_form_IP ENDP

We could say that each byte is written to the lowest 8 bits of the return value, and
then the return value is shifted left by one byte at each step.
Repeat 4 times for each input byte.
That’s it! Unfortunately, there are probably no other ways to do it.
There are no popular CPUs or ISAs which has instruction for composing a value from
bits or bytes.
It’s all usually done by bit shifting and ORing.

3.9.3 print_as_IP()
print_as_IP() does the inverse: splitting a 32-bit value into 4 bytes.
Slicing works somewhat simpler: just shift input value by 24, 16, 8 or 0 bits, take
the bits from zeroth to seventh (lowest byte), and that’s it:

Listing 3.13: Non-optimizing MSVC 2012
_a$ = 8 ; size = 4
_print_as_IP PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

610
; EAX=ddccbbaa
and eax, 255
; EAX=000000aa
push eax
mov ecx, DWORD PTR _a$[ebp]
; ECX=ddccbbaa
shr ecx, 8
; ECX=00ddccbb
and ecx, 255
; ECX=000000bb
push ecx
mov edx, DWORD PTR _a$[ebp]
; EDX=ddccbbaa
shr edx, 16
; EDX=0000ddcc
and edx, 255
; EDX=000000cc
push edx
mov eax, DWORD PTR _a$[ebp]
; EAX=ddccbbaa
shr eax, 24
; EAX=000000dd
and eax, 255 ; probably redundant instruction
; EAX=000000dd
push eax
push OFFSET $SG2973 ; '%d.%d.%d.%d'
call DWORD PTR __imp__printf
add esp, 20
pop ebp
ret 0

_print_as_IP ENDP

Optimizing MSVC 2012 does almost the same, but without unnecessary reloading of
the input value:

Listing 3.14: Optimizing MSVC 2012 /Ob0
_a$ = 8 ; size = 4
_print_as_IP PROC

mov ecx, DWORD PTR _a$[esp-4]
; ECX=ddccbbaa
movzx eax, cl
; EAX=000000aa
push eax
mov eax, ecx
; EAX=ddccbbaa
shr eax, 8
; EAX=00ddccbb
and eax, 255
; EAX=000000bb
push eax
mov eax, ecx
; EAX=ddccbbaa
shr eax, 16

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

611
; EAX=0000ddcc
and eax, 255
; EAX=000000cc
push eax
; ECX=ddccbbaa
shr ecx, 24
; ECX=000000dd
push ecx
push OFFSET $SG3020 ; '%d.%d.%d.%d'
call DWORD PTR __imp__printf
add esp, 20
ret 0

_print_as_IP ENDP

3.9.4 form_netmask() and set_bit()
form_netmask() makes a network mask value from CIDR notation. Of course, it
would be much effective to use here some kind of a precalculated table, but we
consider it in this way intentionally, to demonstrate bit shifts.
We will also write a separate function set_bit(). It’s a not very good idea to create
a function for such primitive operation, but it would be easy to understand how it all
works.

Listing 3.15: Optimizing MSVC 2012 /Ob0
_input$ = 8 ; size = 4
_bit$ = 12 ; size = 4
_set_bit PROC

mov ecx, DWORD PTR _bit$[esp-4]
mov eax, 1
shl eax, cl
or eax, DWORD PTR _input$[esp-4]
ret 0

_set_bit ENDP

_netmask_bits$ = 8 ; size = 1
_form_netmask PROC

push ebx
push esi
movzx esi, BYTE PTR _netmask_bits$[esp+4]
xor ecx, ecx
xor bl, bl
test esi, esi
jle SHORT $LN9@form_netma
xor edx, edx

$LL3@form_netma:
mov eax, 31
sub eax, edx
push eax
push ecx
call _set_bit
inc bl

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

612
movzx edx, bl
add esp, 8
mov ecx, eax
cmp edx, esi
jl SHORT $LL3@form_netma

$LN9@form_netma:
pop esi
mov eax, ecx
pop ebx
ret 0

_form_netmask ENDP

set_bit() is primitive: it just shift left 1 to number of bits we need and then ORs it
with the “input” value. form_netmask() has a loop: it will set as many bits (starting
from the MSB) as passed in the netmask_bits argument

3.9.5 Summary
That’s it! We run it and getting:
netmask=255.255.255.0
network address=10.1.2.0
netmask=255.0.0.0
network address=10.0.0.0
netmask=255.255.255.128
network address=10.1.2.0
netmask=255.255.255.192
network address=10.1.2.64

3.10 Loops: several iterators
In most cases loops have only one iterator, but there could be several in the resulting
code.
Here is a very simple example:
#include <stdio.h>

void f(int *a1, int *a2, size_t cnt)
{

size_t i;

// copy from one array to another in some weird scheme
for (i=0; i<cnt; i++)

a1[i*3]=a2[i*7];
};

There are two multiplications at each iteration and they are costly operations. Can
we optimize it somehow?

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

613
Yes, if we notice that both array indices are jumping on values that we can easily
calculate without multiplication.

3.10.1 Three iterators

Listing 3.16: Optimizing MSVC 2013 x64
f PROC
; RCX=a1
; RDX=a2
; R8=cnt

test r8, r8 ; cnt==0? exit then
je SHORT $LN1@f
npad 11

$LL3@f:
mov eax, DWORD PTR [rdx]
lea rcx, QWORD PTR [rcx+12]
lea rdx, QWORD PTR [rdx+28]
mov DWORD PTR [rcx-12], eax
dec r8
jne SHORT $LL3@f

$LN1@f:
ret 0

f ENDP

Now there are 3 iterators: the cnt variable and two indices, which are increased by
12 and 28 at each iteration. We can rewrite this code in C/C++:
#include <stdio.h>

void f(int *a1, int *a2, size_t cnt)
{

size_t i;
size_t idx1=0; idx2=0;

// copy from one array to another in some weird scheme
for (i=0; i<cnt; i++)
{

a1[idx1]=a2[idx2];
idx1+=3;
idx2+=7;

};
};

So, at the cost of updating 3 iterators at each iteration instead of one, we can remove
two multiplication operations.

3.10.2 Two iterators
GCC 4.9 does even more, leaving only 2 iterators:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

614
Listing 3.17: Optimizing GCC 4.9 x64

; RDI=a1
; RSI=a2
; RDX=cnt
f:

test rdx, rdx ; cnt==0? exit then
je .L1

; calculate last element address in "a2" and leave it in RDX
lea rax, [0+rdx*4]

; RAX=RDX*4=cnt*4
sal rdx, 5

; RDX=RDX<<5=cnt*32
sub rdx, rax

; RDX=RDX-RAX=cnt*32-cnt*4=cnt*28
add rdx, rsi

; RDX=RDX+RSI=a2+cnt*28
.L3:

mov eax, DWORD PTR [rsi]
add rsi, 28
add rdi, 12
mov DWORD PTR [rdi-12], eax
cmp rsi, rdx
jne .L3

.L1:
rep ret

There is no counter variable any more: GCC concluded that it is not needed.
The last element of the a2 array is calculated before the loop begins (which is easy:
cnt ∗ 7) and that’s how the loop is to be stopped: just iterate until the second index
reaches this precalculated value.
You can readmore aboutmultiplication using shifts/additions/subtractions here: 1.24.1
on page 269.
This code can be rewritten into C/C++ like that:
#include <stdio.h>

void f(int *a1, int *a2, size_t cnt)
{

size_t idx1=0; idx2=0;
size_t last_idx2=cnt*7;

// copy from one array to another in some weird scheme
for (;;)
{

a1[idx1]=a2[idx2];
idx1+=3;
idx2+=7;
if (idx2==last_idx2)

break;
};

};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

615
GCC (Linaro) 4.9 for ARM64 does the same, but it precalculates the last index of a1
instead of a2, which, of course has the same effect:

Listing 3.18: Optimizing GCC (Linaro) 4.9 ARM64
; X0=a1
; X1=a2
; X2=cnt
f:

cbz x2, .L1 ; cnt==0? exit then
; calculate last element of "a1" array

add x2, x2, x2, lsl 1
; X2=X2+X2<<1=X2+X2*2=X2*3

mov x3, 0
lsl x2, x2, 2

; X2=X2<<2=X2*4=X2*3*4=X2*12
.L3:

ldr w4, [x1],28 ; load at X1, add 28 to X1
(post-increment)

str w4, [x0,x3] ; store at X0+X3=a1+X3
add x3, x3, 12 ; shift X3
cmp x3, x2 ; end?
bne .L3

.L1:
ret

GCC 4.4.5 for MIPS does the same:

Listing 3.19: Optimizing GCC 4.4.5 for MIPS (IDA)
; $a0=a1
; $a1=a2
; $a2=cnt
f:
; jump to loop check code:

beqz $a2, locret_24
; initialize counter (i) at 0:

move $v0, $zero ; branch delay slot, NOP

loc_8:
; load 32-bit word at $a1

lw $a3, 0($a1)
; increment counter (i):

addiu $v0, 1
; check for finish (compare "i" in $v0 and "cnt" in $a2):

sltu $v1, $v0, $a2
; store 32-bit word at $a0:

sw $a3, 0($a0)
; add 0x1C (28) to $a1 at each iteration:

addiu $a1, 0x1C
; jump to loop body if i<cnt:

bnez $v1, loc_8
; add 0xC (12) to $a0 at each iteration:

addiu $a0, 0xC ; branch delay slot

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

616
locret_24:

jr $ra
or $at, $zero ; branch delay slot, NOP

3.10.3 Intel C++ 2011 case
Compiler optimizations can also be weird, but nevertheless, still correct. Here is
what the Intel C++ compiler 2011 does:

Listing 3.20: Optimizing Intel C++ 2011 x64
f PROC
; parameter 1: rcx = a1
; parameter 2: rdx = a2
; parameter 3: r8 = cnt
.B1.1::

test r8, r8
jbe exit

.B1.2::
cmp r8, 6
jbe just_copy

.B1.3::
cmp rcx, rdx
jbe .B1.5

.B1.4::
mov r10, r8
mov r9, rcx
shl r10, 5
lea rax, QWORD PTR [r8*4]
sub r9, rdx
sub r10, rax
cmp r9, r10
jge just_copy2

.B1.5::
cmp rdx, rcx
jbe just_copy

.B1.6::
mov r9, rdx
lea rax, QWORD PTR [r8*8]
sub r9, rcx
lea r10, QWORD PTR [rax+r8*4]
cmp r9, r10
jl just_copy

just_copy2::
; R8 = cnt
; RDX = a2
; RCX = a1

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

617
xor r10d, r10d
xor r9d, r9d
xor eax, eax

.B1.8::
mov r11d, DWORD PTR [rax+rdx]
inc r10
mov DWORD PTR [r9+rcx], r11d
add r9, 12
add rax, 28
cmp r10, r8
jb .B1.8
jmp exit

just_copy::
; R8 = cnt
; RDX = a2
; RCX = a1

xor r10d, r10d
xor r9d, r9d
xor eax, eax

.B1.11::
mov r11d, DWORD PTR [rax+rdx]
inc r10
mov DWORD PTR [r9+rcx], r11d
add r9, 12
add rax, 28
cmp r10, r8
jb .B1.11

exit::
ret

First, there are some decisions taken, then one of the routines is executed.
Looks like it is a check if arrays intersect.
This is very well known way of optimizing memory block copy routines. But copy
routines are the same!
This is has to be an error of the Intel C++ optimizer, which still produces workable
code, though.
We intentionally considering such example code in this book so the reader would
understand that compiler output is weird at times, but still correct, because when
the compiler was tested, it passed the tests.

3.11 Duff’s device
Duff’s device is an unrolled loop with the possibility to jump to the middle of it. The
unrolled loop is implemented using a fallthrough switch() statement. We would use

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

618
here a slightly simplified version of Tom Duff’s original code. Let’s say, we have to
write a function that clears a region in memory. One can come with a simple loop,
clearing byte by byte. It’s obviously slow, since all modern computers have much
wider memory bus. So the better way is to clear the memory region using 4 or 8
bytes blocks. Since we are going to work with a 64-bit example here, we are going
to clear the memory in 8 bytes blocks. So far so good. But what about the tail?
Memory clearing routine can also be called for regions of size that’s not a multiple
of 8. So here is the algorithm:
• calculate the number of 8-bytes blocks, clear them using 8-bytes (64-bit) mem-
ory accesses;

• calculate the size of the tail, clear it using 1-byte memory accesses.
The second step can be implemented using a simple loop. But let’s implement it as
an unrolled loop:
#include <stdint.h>
#include <stdio.h>

void bzero(uint8_t* dst, size_t count)
{

int i;

if (count&(~7))
// work out 8-byte blocks
for (i=0; i<count>>3; i++)
{

(uint64_t)dst=0;
dst=dst+8;

};

// work out the tail
switch(count & 7)
{
case 7: *dst++ = 0;
case 6: *dst++ = 0;
case 5: *dst++ = 0;
case 4: *dst++ = 0;
case 3: *dst++ = 0;
case 2: *dst++ = 0;
case 1: *dst++ = 0;
case 0: // do nothing

break;
}

}

Let’s first understand how the calculation is performed. The memory region size
comes as a 64-bit value. And this value can be divided in two parts:

7 6 5 4 3 2 1 0

… B B B B B S S S

(“B” is number of 8-byte blocks and “S” is length of the tail in bytes).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

619
When we divide the input memory region size by 8, the value is just shifted right by
3 bits. But to calculate the remainder, we can just to isolate the lowest 3 bits! So the
number of 8-byte blocks is calculated as count >> 3 and remainder as count&7. We also
have to find out if we are going to execute the 8-byte procedure at all, so we need to
check if the value of count is greater than 7. We do this by clearing the 3 lowest bits
and comparing the resulting number with zero, because all we need here is to answer
the question, is the high part of count non-zero. Of course, this works because 8 is
23 and division by numbers that are 2n is easy. It’s not possible for other numbers.
It’s actually hard to say if these hacks are worth using, because they lead to hard-
to-read code. However, these tricks are very popular and a practicing programmer,
even if he/she is not using them, nevertheless has to understand them.
So the first part is simple: get the number of 8-byte blocks and write 64-bit zero
values to memory. The second part is an unrolled loop implemented as fallthrough
switch() statement.
First, let’s express in plain English what we have to do here.
We have to “write as many zero bytes in memory, as count&7 value tells us”. If it’s
0, jump to the end, there is no work to do. If it’s 1, jump to the place inside switch()
statement where only one storage operation is to be executed. If it’s 2, jump to
another place, where two storage operation are to be executed, etc. 7 as input
value leads to the execution of all 7 operations. There is no 8, because a memory
region of 8 bytes is to be processed by the first part of our function. So we wrote
an unrolled loop. It was definitely faster on older computers than normal loops (and
conversely, latest CPUs works better for short loops than for unrolled ones). Maybe
this is still meaningful on modern low-cost embedded MCU9s.
Let’s see what the optimizing MSVC 2012 does:
dst$ = 8
count$ = 16
bzero PROC

test rdx, -8
je SHORT $LN11@bzero

; work out 8-byte blocks
xor r10d, r10d
mov r9, rdx
shr r9, 3
mov r8d, r10d
test r9, r9
je SHORT $LN11@bzero
npad 5

$LL19@bzero:
inc r8d
mov QWORD PTR [rcx], r10
add rcx, 8
movsxd rax, r8d
cmp rax, r9
jb SHORT $LL19@bzero

$LN11@bzero:
; work out the tail

9Microcontroller Unit

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

620
and edx, 7
dec rdx
cmp rdx, 6
ja SHORT $LN9@bzero
lea r8, OFFSET FLAT:__ImageBase
mov eax, DWORD PTR $LN22@bzero[r8+rdx*4]
add rax, r8
jmp rax

$LN8@bzero:
mov BYTE PTR [rcx], 0
inc rcx

$LN7@bzero:
mov BYTE PTR [rcx], 0
inc rcx

$LN6@bzero:
mov BYTE PTR [rcx], 0
inc rcx

$LN5@bzero:
mov BYTE PTR [rcx], 0
inc rcx

$LN4@bzero:
mov BYTE PTR [rcx], 0
inc rcx

$LN3@bzero:
mov BYTE PTR [rcx], 0
inc rcx

$LN2@bzero:
mov BYTE PTR [rcx], 0

$LN9@bzero:
fatret 0
npad 1

$LN22@bzero:
DD $LN2@bzero
DD $LN3@bzero
DD $LN4@bzero
DD $LN5@bzero
DD $LN6@bzero
DD $LN7@bzero
DD $LN8@bzero

bzero ENDP

The first part of the function is predictable. The second part is just an unrolled loop
and a jump passing control flow to the correct instruction inside it. There is no other
code between the MOV/INC instruction pairs, so the execution is to fall until the very
end, executing as many pairs as needed. By the way, we can observe that the
MOV/INC pair consumes a fixed number of bytes (3+3). So the pair consumes 6
bytes. Knowing that, we can get rid of the switch() jumptable, we can just multiple
the input value by 6 and jump to current_RIP + input_value ∗ 6.
This can also be faster because we are not in need to fetch a value from the jumpt-
able.
It’s possible that 6 probably is not a very good constant for fast multiplication and

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

621
maybe it’s not worth it, but you get the idea10.
That is what old-school demomakers did in the past with unrolled loops.

3.11.1 Should one use unrolled loops?
Unrolled loops can have benefits if there is no fast cache memory between RAM and
CPU, and the CPU, in order to get the code of the next instruction, must load it from
RAM each time. This is a case of modern low-cost MCU and old CPUs.
Unrolled loops are slower than short loops if there is a fast cache between RAM and
CPU and the body of loop can fit into cache, and CPU will load the code from it not
touching the RAM. Fast loops are the loops which body’s size can fit into L1 cache,
but even faster loops are those small ones which can fit into micro-operation cache.

3.12 Division using multiplication
A very simple function:
int f(int a)
{

return a/9;
};

3.12.1 x86
…is compiled in a very predictable way:

Listing 3.21: MSVC
_a$ = 8 ; size = 4
_f PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
cdq ; sign extend EAX to EDX:EAX
mov ecx, 9
idiv ecx
pop ebp
ret 0

_f ENDP

IDIV divides the 64-bit number stored in the EDX:EAX register pair by the value in the
ECX. As a result, EAX will contain the quotient, and EDX— the remainder. The result
is returned from the f() function in the EAX register, so the value is not moved after
the division operation, it is in right place already.
10As an exercise, you can try to rework the code to get rid of the jumptable. The instruction pair can
be rewritten in a way that it will consume 4 bytes or maybe 8. 1 byte is also possible (using STOSB
instruction).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

622
Since IDIV uses the value in the EDX:EAX register pair, the CDQ instruction (before
IDIV) extends the value in EAX to a 64-bit value taking its sign into account, just as
MOVSX does.
If we turn optimization on (/Ox), we get:

Listing 3.22: Optimizing MSVC
_a$ = 8 ; size = 4
_f PROC

mov ecx, DWORD PTR _a$[esp-4]
mov eax, 954437177 ; 38e38e39H
imul ecx
sar edx, 1
mov eax, edx
shr eax, 31 ; 0000001fH
add eax, edx
ret 0

_f ENDP

This is division by multiplication. Multiplication operations work much faster. And
it is possible to use this trick 11 to produce code which is effectively equivalent and
faster.
This is also called “strength reduction” in compiler optimizations.
GCC 4.4.1 generates almost the same code even without additional optimization
flags, just like MSVC with optimization turned on:

Listing 3.23: Non-optimizing GCC 4.4.1
public f

f proc near

arg_0 = dword ptr 8

push ebp
mov ebp, esp
mov ecx, [ebp+arg_0]
mov edx, 954437177 ; 38E38E39h
mov eax, ecx
imul edx
sar edx, 1
mov eax, ecx
sar eax, 1Fh
mov ecx, edx
sub ecx, eax
mov eax, ecx
pop ebp
retn

f endp

11Read more about division by multiplication in [Henry S. Warren, Hacker’s Delight, (2002)10-3]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

623
3.12.2 How it works
From school-level mathematics, we can remember that division by 9 can be replaced
by multiplication by 1

9
. In fact, sometimes compilers do so for floating-point arith-

metics, for example, FDIV instruction in x86 code can be replaced by FMUL. At least
MSVC 6.0 will replace division by 9 by multiplication by 0.111111... and sometimes it’s
hard to be sure, what operation was in the original source code.
But when we operate over integer values and integer CPU registers, we can’t use
fractions. However, we can rework fraction like that:

result = x
9
= x ⋅ 1

9
= x ⋅ 1⋅MagicNumber

9⋅MagicNumber

Given the fact that division by 2n is very fast (using shifts), we now should find that
MagicNumber, for which the following equation will be true: 2n = 9 ⋅MagicNumber.
Division by 232 is somewhat hidden: lower 32-bit of product in EAX is not used
(dropped), only higher 32-bit of product (in EDX) is used and then shifted by ad-
ditional 1 bit.

In other words, the assembly code we have just seen multiplicates by 954437177
232+1 , or

divides by 232+1

954437177 . To find a divisor we just have to divide numerator by denomi-
nator. Using Wolfram Alpha, we can get 8.99999999.... as result (which is close to
9).
Read more about it in [Henry S. Warren, Hacker’s Delight, (2002)10-3].
Many people miss “hidden” division by 232 or 264, when lower 32-bit part (or 64-
bit part) of product is not used. This is why division by multiplication is difficult to
understand at the beginning.
Mathematical Recipes12has yet another explanation.

3.12.3 ARM
The ARM processor, just like in any other “pure” RISC processor lacks an instruction
for division. It also lacks a single instruction for multiplication by a 32-bit constant
(recall that a 32-bit constant cannot fit into a 32-bit opcode).
By taking advantage of this clever trick (or hack), it is possible to do division using
only three instructions: addition, subtraction and bit shifts (1.28 on page 382).
Here is an example that divides a 32-bit number by 10, from [Advanced RISC Ma-
chines Ltd, The ARM Cookbook, (1994)3.3 Division by a Constant]. The output con-
sists of the quotient and the remainder.
; takes argument in a1
; returns quotient in a1, remainder in a2
; cycles could be saved if only divide or remainder is required

SUB a2, a1, #10 ; keep (x-10) for later
SUB a1, a1, a1, lsr #2
ADD a1, a1, a1, lsr #4

12https://math.recipes

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://math.recipes
https://yurichev.com/contact.html
https://yurichev.com/contact.html

624
ADD a1, a1, a1, lsr #8
ADD a1, a1, a1, lsr #16
MOV a1, a1, lsr #3
ADD a3, a1, a1, asl #2
SUBS a2, a2, a3, asl #1 ; calc (x-10) - (x/10)*10
ADDPL a1, a1, #1 ; fix-up quotient
ADDMI a2, a2, #10 ; fix-up remainder
MOV pc, lr

Optimizing Xcode 4.6.3 (LLVM) (ARM mode)

__text:00002C58 39 1E 08 E3 E3 18 43 E3 MOV R1, 0x38E38E39
__text:00002C60 10 F1 50 E7 SMMUL R0, R0, R1
__text:00002C64 C0 10 A0 E1 MOV R1, R0,ASR#1
__text:00002C68 A0 0F 81 E0 ADD R0, R1, R0,LSR#31
__text:00002C6C 1E FF 2F E1 BX LR

This code is almost the same as the one generated by the optimizing MSVC and GCC.
Apparently, LLVM uses the same algorithm for generating constants.
The observant reader may ask, how does MOVwrites a 32-bit value in a register, when
this is not possible in ARM mode.
it is impossible indeed, but, as we see, there are 8 bytes per instruction instead of
the standard 4, in fact, there are two instructions.
The first instruction loads 0x8E39 into the low 16 bits of register and the second
instruction is MOVT, it loads 0x383E into the high 16 bits of the register. IDA is fully
aware of such sequences, and for the sake of compactness reduces them to one
single “pseudo-instruction”.
The SMMUL (Signed Most Significant Word Multiply) instruction two multiplies num-
bers, treating them as signed numbers and leaving the high 32-bit part of result in
the R0 register, dropping the low 32-bit part of the result.
The“MOV R1, R0,ASR#1” instruction is an arithmetic shift right by one bit.
“ADD R0, R1, R0,LSR#31” is R0 = R1 +R0 >> 31

There is no separate shifting instruction in ARM mode. Instead, an instructions like
(MOV, ADD, SUB, RSB)13 can have a suffix added, that says if the second operand must
be shifted, and if yes, by what value and how. ASR stands for Arithmetic Shift Right,
LSR—Logical Shift Right.

Optimizing Xcode 4.6.3 (LLVM) (Thumb-2 mode)

MOV R1, 0x38E38E39
SMMUL.W R0, R0, R1
ASRS R1, R0, #1
ADD.W R0, R1, R0,LSR#31
BX LR

13These instructions are also called “data processing instructions”

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

625
There are separate instructions for shifting in Thumb mode, and one of them is used
here—ASRS (arithmetic shift right).

Non-optimizing Xcode 4.6.3 (LLVM) and Keil 6/2013

Non-optimizing LLVM does not generate the code we saw before in this section, but
instead inserts a call to the library function ___divsi3.
What about Keil: it inserts a call to the library function __aeabi_idivmod in all cases.

3.12.4 MIPS
For some reason, optimizing GCC 4.4.5 generate just a division instruction:

Listing 3.24: Optimizing GCC 4.4.5 (IDA)
f:

li $v0, 9
bnez $v0, loc_10
div $a0, $v0 ; branch delay slot
break 0x1C00 ; "break 7" in assembly output and objdump

loc_10:
mflo $v0
jr $ra
or $at, $zero ; branch delay slot, NOP

Here we see here a new instruction: BREAK. It just raises an exception.
In this case, an exception is raised if the divisor is zero (it’s not possible to divide by
zero in conventional math).
But GCC probably did not do very well the optimization job and did not see that $V0
is never zero.
So the check is left here. So if $V0 is zero somehow, BREAK is to be executed,
signaling to the OS about the exception.
Otherwise, MFLO executes, which takes the result of the division from the LO register
and copies it in $V0.
By the way, as wemay know, the MUL instruction leaves the high 32 bits of the result
in register HI and the low 32 bits in register LO.
DIV leaves the result in the LO register, and remainder in the HI register.
If we alter the statement to “a % 9”, the MFHI instruction is to be used here instead
of MFLO.

3.12.5 Exercise
• http://challenges.re/27

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://challenges.re/27
https://yurichev.com/contact.html
https://yurichev.com/contact.html

626
3.13 String to number conversion (atoi())
Let’s try to reimplement the standard atoi() C function.

3.13.1 Simple example
Here is the simplest possible way to read a number represented in ASCII encoding.
It’s not error-prone: a character other than a digit leads to incorrect result.
#include <stdio.h>

int my_atoi (char *s)
{

int rt=0;

while (*s)
{

rt=rt*10 + (*s-'0');
s++;

};

return rt;
};

int main()
{

printf ("%d\n", my_atoi ("1234"));
printf ("%d\n", my_atoi ("1234567890"));

};

So what the algorithm does is just reading digits from left to right.
The zero ASCII character is subtracted from each digit.
The digits from “0” to “9” are consecutive in the ASCII table, so we do not even need
to know the exact value of the “0” character.
All we have to know is that “0” minus “0” is 0, “9” minus “0”’is 9 and so on.
Subtracting “0” from each character results in a number from 0 to 9 inclusive.
Any other character leads to an incorrect result, of course!
Each digit has to be added to the final result (in variable “rt”), but the final result is
also multiplied by 10 at each digit.
In other words, the result is shifted left by one position in decimal form on each
iteration.
The last digit is added, but there is no shift.

Optimizing MSVC 2013 x64

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

627
Listing 3.25: Optimizing MSVC 2013 x64

s$ = 8
my_atoi PROC
; load first character

movzx r8d, BYTE PTR [rcx]
; EAX is allocated for "rt" variable
; its 0 at start

xor eax, eax
; first character is zero-byte, i.e., string terminator?
; exit then.

test r8b, r8b
je SHORT $LN9@my_atoi

$LL2@my_atoi:
lea edx, DWORD PTR [rax+rax*4]

; EDX=RAX+RAX*4=rt+rt*4=rt*5
movsx eax, r8b

; EAX=input character
; load next character to R8D

movzx r8d, BYTE PTR [rcx+1]
; shift pointer in RCX to the next character:

lea rcx, QWORD PTR [rcx+1]
lea eax, DWORD PTR [rax+rdx*2]

; EAX=RAX+RDX*2=input character + rt*5*2=input character + rt*10
; correct digit by subtracting 48 (0x30 or '0')

add eax, -48 ; ffffffffffffffd0H
; was the last character zero?

test r8b, r8b
; jump to loop begin, if not

jne SHORT $LL2@my_atoi
$LN9@my_atoi:

ret 0
my_atoi ENDP

A character can be loaded in two places: the first character and all subsequent
characters. This is arranged so for loop regrouping.
There is no instruction for multiplication by 10, two LEA instruction do this instead.
MSVC sometimes uses the ADD instruction with a negative constant instead of SUB.
This is the case.
It’s very hard to say why this is better then SUB. But MSVC does this often.

Optimizing GCC 4.9.1 x64

Optimizing GCC 4.9.1 is more concise, but there is one redundant RET instruction at
the end. One would be enough.

Listing 3.26: Optimizing GCC 4.9.1 x64
my_atoi:
; load input character into EDX

movsx edx, BYTE PTR [rdi]
; EAX is allocated for "rt" variable

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

628
xor eax, eax

; exit, if loaded character is null byte
test dl, dl
je .L4

.L3:
lea eax, [rax+rax*4]

; EAX=RAX*5=rt*5
; shift pointer to the next character:

add rdi, 1
lea eax, [rdx-48+rax*2]

; EAX=input character - 48 + RAX*2 = input character - '0' + rt*10
; load next character:

movsx edx, BYTE PTR [rdi]
; goto loop begin, if loaded character is not null byte

test dl, dl
jne .L3
rep ret

.L4:
rep ret

Optimizing Keil 6/2013 (ARM mode)

Listing 3.27: Optimizing Keil 6/2013 (ARM mode)
my_atoi PROC
; R1 will contain pointer to character

MOV r1,r0
; R0 will contain "rt" variable

MOV r0,#0
B |L0.28|

|L0.12|
ADD r0,r0,r0,LSL #2

; R0=R0+R0<<2=rt*5
ADD r0,r2,r0,LSL #1

; R0=input character + rt*5<<1 = input character + rt*10
; correct whole thing by subtracting '0' from rt:

SUB r0,r0,#0x30
; shift pointer to the next character:

ADD r1,r1,#1
|L0.28|
; load input character to R2

LDRB r2,[r1,#0]
; is it null byte? if no, jump to loop body.

CMP r2,#0
BNE |L0.12|

; exit if null byte.
; "rt" variable is still in R0 register, ready to be used in caller function

BX lr
ENDP

Optimizing Keil 6/2013 (Thumb mode)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

629
Listing 3.28: Optimizing Keil 6/2013 (Thumb mode)

my_atoi PROC
; R1 will be pointer to the input character

MOVS r1,r0
; R0 is allocated to "rt" variable

MOVS r0,#0
B |L0.16|

|L0.6|
MOVS r3,#0xa

; R3=10
MULS r0,r3,r0

; R0=R3*R0=rt*10
; shift pointer to the next character:

ADDS r1,r1,#1
; correct whole thing by subtracting '0' character from it:

SUBS r0,r0,#0x30
ADDS r0,r2,r0

; rt=R2+R0=input character + (rt*10 - '0')
|L0.16|
; load input character to R2

LDRB r2,[r1,#0]
; is it zero?

CMP r2,#0
; jump to loop body if it is not

BNE |L0.6|
; rt variable in R0 now, ready to be used in caller function

BX lr
ENDP

Interestingly, from school mathematics we may recall that the order of addition and
subtraction operations doesn’t matter.
That’s our case: first, the rt∗10−′0′ expression is computed, then the input character
value is added to it.
Indeed, the result is the same, but the compiler did some regrouping.

Optimizing GCC 4.9.1 ARM64

The ARM64 compiler can use the pre-increment instruction suffix:

Listing 3.29: Optimizing GCC 4.9.1 ARM64
my_atoi:
; load input character into W1

ldrb w1, [x0]
mov x2, x0

; X2=address of input string
; is loaded character zero?
; jump to exit if its so
; W1 will contain 0 in this case.
; it will be reloaded into W0 at L4.

cbz w1, .L4
; W0 will contain "rt" variable

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

630
; initialize it at zero:

mov w0, 0
.L3:
; subtract 48 or '0' from input variable and put result into W3:

sub w3, w1, #48
; load next character at address X2+1 into W1 with pre-increment:

ldrb w1, [x2,1]!
add w0, w0, w0, lsl 2

; W0=W0+W0<<2=W0+W0*4=rt*5
add w0, w3, w0, lsl 1

; W0=input digit + W0<<1 = input digit + rt*5*2 = input digit + rt*10
; if the character we just loaded is not null byte, jump to the loop begin

cbnz w1, .L3
; variable to be returned (rt) is in W0, ready to be used in caller function

ret
.L4:

mov w0, w1
ret

3.13.2 A slightly advanced example
My new code snippet is more advanced, now it checks for the “minus” sign at the
first character and reports an error if a non-digit has been found in the input string:
#include <stdio.h>

int my_atoi (char *s)
{

int negative=0;
int rt=0;

if (*s=='-')
{

negative=1;
s++;

};

while (*s)
{

if (*s<'0' || *s>'9')
{

printf ("Error! Unexpected char: '%c'\n", *s);
exit(0);

};
rt=rt*10 + (*s-'0');
s++;

};

if (negative)
return -rt;

return rt;
};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

631

int main()
{

printf ("%d\n", my_atoi ("1234"));
printf ("%d\n", my_atoi ("1234567890"));
printf ("%d\n", my_atoi ("-1234"));
printf ("%d\n", my_atoi ("-1234567890"));
printf ("%d\n", my_atoi ("-a1234567890")); // error

};

Optimizing GCC 4.9.1 x64

Listing 3.30: Optimizing GCC 4.9.1 x64
.LC0:

.string "Error! Unexpected char: '%c'\n"

my_atoi:
sub rsp, 8
movsx edx, BYTE PTR [rdi]

; check for minus sign
cmp dl, 45 ; '-'
je .L22
xor esi, esi
test dl, dl
je .L20

.L10:
; ESI=0 here if there was no minus sign and 1 if it was

lea eax, [rdx-48]
; any character other than digit will result
; in unsigned number greater than 9 after subtraction
; so if it is not digit, jump to L4,
; where error will be reported:

cmp al, 9
ja .L4
xor eax, eax
jmp .L6

.L7:
lea ecx, [rdx-48]
cmp cl, 9
ja .L4

.L6:
lea eax, [rax+rax*4]
add rdi, 1
lea eax, [rdx-48+rax*2]
movsx edx, BYTE PTR [rdi]
test dl, dl
jne .L7

; if there was no minus sign, skip NEG instruction
; if it was, execute it.

test esi, esi
je .L18
neg eax

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

632
.L18:

add rsp, 8
ret

.L22:
movsx edx, BYTE PTR [rdi+1]
lea rax, [rdi+1]
test dl, dl
je .L20
mov rdi, rax
mov esi, 1
jmp .L10

.L20:
xor eax, eax
jmp .L18

.L4:
; report error. character is in EDX

mov edi, 1
mov esi, OFFSET FLAT:.LC0 ; "Error! Unexpected char: '%c'\n"
xor eax, eax
call __printf_chk
xor edi, edi
call exit

If the “minus” sign has been encountered at the string start, the NEG instruction is
to be executed at the end. It just negates the number.
There is one more thing that needs mentioning.
How would a common programmer check if the character is not a digit? Just how we
have it in the source code:
if (*s<'0' || *s>'9')

...

There are two comparison operations.
What is interesting is that we can replace both operations by single one: just subtract
“0” from character value,
treat result as unsigned value (this is important) and check if it’s greater than 9.
For example, let’s say that the user input contains the dot character (“.”) which has
ASCII code 46. 46 − 48 = −2 if we treat the result as a signed number.
Indeed, the dot character is located two places earlier than the “0” character in the
ASCII table. But it is 0xFFFFFFFE (4294967294) if we treat the result as an unsigned
value, and that’s definitely bigger than 9!
The compilers do this often, so it’s important to recognize these tricks.
Another example of it in this book: 3.19.1 on page 672.
Optimizing MSVC 2013 x64 does the same tricks.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

633
Optimizing Keil 6/2013 (ARM mode)

Listing 3.31: Optimizing Keil 6/2013 (ARM mode)
1 my_atoi PROC
2 PUSH {r4-r6,lr}
3 MOV r4,r0
4 LDRB r0,[r0,#0]
5 MOV r6,#0
6 MOV r5,r6
7 CMP r0,#0x2d '-'
8 ; R6 will contain 1 if minus was encountered, 0 if otherwise
9 MOVEQ r6,#1
10 ADDEQ r4,r4,#1
11 B |L0.80|
12 |L0.36|
13 SUB r0,r1,#0x30
14 CMP r0,#0xa
15 BCC |L0.64|
16 ADR r0,|L0.220|
17 BL __2printf
18 MOV r0,#0
19 BL exit
20 |L0.64|
21 LDRB r0,[r4],#1
22 ADD r1,r5,r5,LSL #2
23 ADD r0,r0,r1,LSL #1
24 SUB r5,r0,#0x30
25 |L0.80|
26 LDRB r1,[r4,#0]
27 CMP r1,#0
28 BNE |L0.36|
29 CMP r6,#0
30 ; negate result
31 RSBNE r0,r5,#0
32 MOVEQ r0,r5
33 POP {r4-r6,pc}
34 ENDP
35
36 |L0.220|
37 DCB "Error! Unexpected char: '%c'\n",0

There is no NEG instruction in 32-bit ARM, so the “Reverse Subtraction” operation
(line 31) is used here.
It is triggered if the result of the CMP instruction (at line 29) has been “Not Equal”
(hence -NE suffix).
So what RSBNE does is to subtract the resulting value from 0.
It works just like the regular subtraction operation, but swaps operands.
Subtracting any number from 0 results in negation: 0 − x = −x.
Thumb mode code is mostly the same.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

634
GCC 4.9 for ARM64 can use the NEG instruction, which is available in ARM64.

3.13.3 Exercise
Oh, by the way, security researchers deals often with unpredictable behavior of pro-
gram while handling of incorrect data.
For example, while fuzzing. As an exercise, you may try to enter non-digit characters
and see what happens.
Try to explain, what happened and why.

3.14 Inline functions
Inlined code is when the compiler, instead of placing a call instruction to a small or
tiny function, just places its body right in-place.

Listing 3.32: A simple example
#include <stdio.h>

int celsius_to_fahrenheit (int celsius)
{

return celsius * 9 / 5 + 32;
};

int main(int argc, char *argv[])
{

int celsius=atol(argv[1]);
printf ("%d\n", celsius_to_fahrenheit (celsius));

};

…is compiled in very predictable way, however, if we turn on GCC optimizations
(-O3), we’ll see:

Listing 3.33: Optimizing GCC 4.8.1
_main:

push ebp
mov ebp, esp
and esp, -16
sub esp, 16
call ___main
mov eax, DWORD PTR [ebp+12]
mov eax, DWORD PTR [eax+4]
mov DWORD PTR [esp], eax
call _atol
mov edx, 1717986919
mov DWORD PTR [esp], OFFSET FLAT:LC2 ; "%d\n"
lea ecx, [eax+eax*8]
mov eax, ecx
imul edx
sar ecx, 31

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

635
sar edx
sub edx, ecx
add edx, 32
mov DWORD PTR [esp+4], edx
call _printf
leave
ret

(Here the division is performed by multiplication(3.12 on page 621).)
Yes, our small function celsius_to_fahrenheit() has just been placed before the
printf() call.
Why? It can be faster than executing this function’s code plus the overhead of call-
ing/returning.
Modern optimizing compilers are choosing small functions for inlining automatically.
But it’s possible to force compiler additionally to inline some function, if to mark it
with the “inline” keyword in its declaration.

3.14.1 Strings and memory functions
Another very common automatic optimization tactic is the inlining of string functions
like strcpy(), strcmp(), strlen(), memset(), memcmp(), memcpy(), etc..
Sometimes it’s faster than to call a separate function.
These are very frequent patterns and it is highly advisable for reverse engineers to
learn to detect automatically.

strcmp()

Listing 3.34: strcmp() example
bool is_bool (char *s)
{

if (strcmp (s, "true")==0)
return true;

if (strcmp (s, "false")==0)
return false;

assert(0);
};

Listing 3.35: Optimizing GCC 4.8.1
.LC0:

.string "true"
.LC1:

.string "false"
is_bool:
.LFB0:

push edi

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

636
mov ecx, 5
push esi
mov edi, OFFSET FLAT:.LC0
sub esp, 20
mov esi, DWORD PTR [esp+32]
repz cmpsb
je .L3
mov esi, DWORD PTR [esp+32]
mov ecx, 6
mov edi, OFFSET FLAT:.LC1
repz cmpsb
seta cl
setb dl
xor eax, eax
cmp cl, dl
jne .L8
add esp, 20
pop esi
pop edi
ret

.L8:
mov DWORD PTR [esp], 0
call assert
add esp, 20
pop esi
pop edi
ret

.L3:
add esp, 20
mov eax, 1
pop esi
pop edi
ret

Listing 3.36: Optimizing MSVC 2010
$SG3454 DB 'true', 00H
$SG3456 DB 'false', 00H

_s$ = 8 ; size = 4
?is_bool@@YA_NPAD@Z PROC ; is_bool

push esi
mov esi, DWORD PTR _s$[esp]
mov ecx, OFFSET $SG3454 ; 'true'
mov eax, esi
npad 4 ; align next label

$LL6@is_bool:
mov dl, BYTE PTR [eax]
cmp dl, BYTE PTR [ecx]
jne SHORT $LN7@is_bool
test dl, dl
je SHORT $LN8@is_bool
mov dl, BYTE PTR [eax+1]
cmp dl, BYTE PTR [ecx+1]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

637
jne SHORT $LN7@is_bool
add eax, 2
add ecx, 2
test dl, dl
jne SHORT $LL6@is_bool

$LN8@is_bool:
xor eax, eax
jmp SHORT $LN9@is_bool

$LN7@is_bool:
sbb eax, eax
sbb eax, -1

$LN9@is_bool:
test eax, eax
jne SHORT $LN2@is_bool

mov al, 1
pop esi

ret 0
$LN2@is_bool:

mov ecx, OFFSET $SG3456 ; 'false'
mov eax, esi

$LL10@is_bool:
mov dl, BYTE PTR [eax]
cmp dl, BYTE PTR [ecx]
jne SHORT $LN11@is_bool
test dl, dl
je SHORT $LN12@is_bool
mov dl, BYTE PTR [eax+1]
cmp dl, BYTE PTR [ecx+1]
jne SHORT $LN11@is_bool
add eax, 2
add ecx, 2
test dl, dl
jne SHORT $LL10@is_bool

$LN12@is_bool:
xor eax, eax
jmp SHORT $LN13@is_bool

$LN11@is_bool:
sbb eax, eax
sbb eax, -1

$LN13@is_bool:
test eax, eax
jne SHORT $LN1@is_bool

xor al, al
pop esi

ret 0
$LN1@is_bool:

push 11

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

638
push OFFSET $SG3458
push OFFSET $SG3459
call DWORD PTR __imp___wassert
add esp, 12
pop esi

ret 0
?is_bool@@YA_NPAD@Z ENDP ; is_bool

strlen()

Listing 3.37: strlen() example
int strlen_test(char *s1)
{

return strlen(s1);
};

Listing 3.38: Optimizing MSVC 2010
_s1$ = 8 ; size = 4
_strlen_test PROC

mov eax, DWORD PTR _s1$[esp-4]
lea edx, DWORD PTR [eax+1]

$LL3@strlen_tes:
mov cl, BYTE PTR [eax]
inc eax
test cl, cl
jne SHORT $LL3@strlen_tes
sub eax, edx
ret 0

_strlen_test ENDP

strcpy()

Listing 3.39: strcpy() example
void strcpy_test(char *s1, char *outbuf)
{

strcpy(outbuf, s1);
};

Listing 3.40: Optimizing MSVC 2010
_s1$ = 8 ; size = 4
_outbuf$ = 12 ; size = 4
_strcpy_test PROC

mov eax, DWORD PTR _s1$[esp-4]
mov edx, DWORD PTR _outbuf$[esp-4]
sub edx, eax
npad 6 ; align next label

$LL3@strcpy_tes:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

639
mov cl, BYTE PTR [eax]
mov BYTE PTR [edx+eax], cl
inc eax
test cl, cl
jne SHORT $LL3@strcpy_tes
ret 0

_strcpy_test ENDP

memset()

Example#1

Listing 3.41: 32 bytes
#include <stdio.h>

void f(char *out)
{

memset(out, 0, 32);
};

Many compilers don’t generate a call to memset() for short blocks, but rather insert
a pack of MOVs:

Listing 3.42: Optimizing GCC 4.9.1 x64
f:

mov QWORD PTR [rdi], 0
mov QWORD PTR [rdi+8], 0
mov QWORD PTR [rdi+16], 0
mov QWORD PTR [rdi+24], 0
ret

By the way, that remind us of unrolled loops: 1.22.1 on page 241.

Example#2

Listing 3.43: 67 bytes
#include <stdio.h>

void f(char *out)
{

memset(out, 0, 67);
};

When the block size is not a multiple of 4 or 8, the compilers can behave differently.
For instance, MSVC 2012 continues to insert MOVs:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

640
Listing 3.44: Optimizing MSVC 2012 x64

out$ = 8
f PROC

xor eax, eax
mov QWORD PTR [rcx], rax
mov QWORD PTR [rcx+8], rax
mov QWORD PTR [rcx+16], rax
mov QWORD PTR [rcx+24], rax
mov QWORD PTR [rcx+32], rax
mov QWORD PTR [rcx+40], rax
mov QWORD PTR [rcx+48], rax
mov QWORD PTR [rcx+56], rax
mov WORD PTR [rcx+64], ax
mov BYTE PTR [rcx+66], al
ret 0

f ENDP

…while GCC uses REP STOSQ, concluding that this would be shorter than a pack of
MOVs:

Listing 3.45: Optimizing GCC 4.9.1 x64
f:

mov QWORD PTR [rdi], 0
mov QWORD PTR [rdi+59], 0
mov rcx, rdi
lea rdi, [rdi+8]
xor eax, eax
and rdi, -8
sub rcx, rdi
add ecx, 67
shr ecx, 3
rep stosq
ret

memcpy()

Short blocks

The routine to copy short blocks is often implemented as a sequence of MOV instruc-
tions.

Listing 3.46: memcpy() example
void memcpy_7(char *inbuf, char *outbuf)
{

memcpy(outbuf+10, inbuf, 7);
};

Listing 3.47: Optimizing MSVC 2010
_inbuf$ = 8 ; size = 4

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

641
_outbuf$ = 12 ; size = 4
_memcpy_7 PROC

mov ecx, DWORD PTR _inbuf$[esp-4]
mov edx, DWORD PTR [ecx]
mov eax, DWORD PTR _outbuf$[esp-4]
mov DWORD PTR [eax+10], edx
mov dx, WORD PTR [ecx+4]
mov WORD PTR [eax+14], dx
mov cl, BYTE PTR [ecx+6]
mov BYTE PTR [eax+16], cl
ret 0

_memcpy_7 ENDP

Listing 3.48: Optimizing GCC 4.8.1
memcpy_7:

push ebx
mov eax, DWORD PTR [esp+8]
mov ecx, DWORD PTR [esp+12]
mov ebx, DWORD PTR [eax]
lea edx, [ecx+10]
mov DWORD PTR [ecx+10], ebx
movzx ecx, WORD PTR [eax+4]
mov WORD PTR [edx+4], cx
movzx eax, BYTE PTR [eax+6]
mov BYTE PTR [edx+6], al
pop ebx
ret

That’s usually done as follows: 4-byte blocks are copied first, then a 16-bit word (if
needed), then the last byte (if needed).
Structures are also copied using MOV: 1.30.4 on page 454.

Long blocks

The compilers behave differently in this case.

Listing 3.49: memcpy() example
void memcpy_128(char *inbuf, char *outbuf)
{

memcpy(outbuf+10, inbuf, 128);
};

void memcpy_123(char *inbuf, char *outbuf)
{

memcpy(outbuf+10, inbuf, 123);
};

For copying 128 bytes, MSVC uses a single MOVSD instruction (because 128 divides
evenly by 4):

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

642
Listing 3.50: Optimizing MSVC 2010

_inbuf$ = 8 ; size = 4
_outbuf$ = 12 ; size = 4
_memcpy_128 PROC

push esi
mov esi, DWORD PTR _inbuf$[esp]
push edi
mov edi, DWORD PTR _outbuf$[esp+4]
add edi, 10
mov ecx, 32
rep movsd
pop edi
pop esi
ret 0

_memcpy_128 ENDP

When copying 123 bytes, 30 32-bit words are copied first using MOVSD (that’s 120
bytes), then 2 bytes are copied using MOVSW, then one more byte using MOVSB.

Listing 3.51: Optimizing MSVC 2010
_inbuf$ = 8 ; size = 4
_outbuf$ = 12 ; size = 4
_memcpy_123 PROC

push esi
mov esi, DWORD PTR _inbuf$[esp]
push edi
mov edi, DWORD PTR _outbuf$[esp+4]
add edi, 10
mov ecx, 30
rep movsd
movsw
movsb
pop edi
pop esi
ret 0

_memcpy_123 ENDP

GCC uses one big universal functions, that works for any block size:

Listing 3.52: Optimizing GCC 4.8.1
memcpy_123:
.LFB3:

push edi
mov eax, 123
push esi
mov edx, DWORD PTR [esp+16]
mov esi, DWORD PTR [esp+12]
lea edi, [edx+10]
test edi, 1
jne .L24
test edi, 2
jne .L25

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

643
.L7:

mov ecx, eax
xor edx, edx
shr ecx, 2
test al, 2
rep movsd
je .L8
movzx edx, WORD PTR [esi]
mov WORD PTR [edi], dx
mov edx, 2

.L8:
test al, 1
je .L5
movzx eax, BYTE PTR [esi+edx]
mov BYTE PTR [edi+edx], al

.L5:
pop esi
pop edi
ret

.L24:
movzx eax, BYTE PTR [esi]
lea edi, [edx+11]
add esi, 1
test edi, 2
mov BYTE PTR [edx+10], al
mov eax, 122
je .L7

.L25:
movzx edx, WORD PTR [esi]
add edi, 2
add esi, 2
sub eax, 2
mov WORD PTR [edi-2], dx
jmp .L7

.LFE3:

Universal memory copy functions usually work as follows: calculate howmany 32-bit
words can be copied, then copy them using MOVSD, then copy the remaining bytes.
More advanced and complex copy functions use SIMD instructions and also take the
memory alignment in consideration.
As an example of SIMD strlen() function: 1.36.2 on page 527.

memcmp()

Listing 3.53: memcmp() example
int memcmp_1235(char *buf1, char *buf2)
{

return memcmp(buf1, buf2, 1235);
};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

644
For any block size, MSVC 2013 inserts the same universal function:

Listing 3.54: Optimizing MSVC 2010
_buf1$ = 8 ; size = 4
_buf2$ = 12 ; size = 4
_memcmp_1235 PROC

mov ecx, DWORD PTR _buf1$[esp-4]
mov edx, DWORD PTR _buf2$[esp-4]
push esi
mov esi, 1231
npad 2

$LL5@memcmp_123:
mov eax, DWORD PTR [ecx]
cmp eax, DWORD PTR [edx]
jne SHORT $LN4@memcmp_123
add ecx, 4
add edx, 4
sub esi, 4
jae SHORT $LL5@memcmp_123

$LN4@memcmp_123:
mov al, BYTE PTR [ecx]
cmp al, BYTE PTR [edx]
jne SHORT $LN6@memcmp_123
mov al, BYTE PTR [ecx+1]
cmp al, BYTE PTR [edx+1]
jne SHORT $LN6@memcmp_123
mov al, BYTE PTR [ecx+2]
cmp al, BYTE PTR [edx+2]
jne SHORT $LN6@memcmp_123
cmp esi, -1
je SHORT $LN3@memcmp_123
mov al, BYTE PTR [ecx+3]
cmp al, BYTE PTR [edx+3]
jne SHORT $LN6@memcmp_123

$LN3@memcmp_123:
xor eax, eax
pop esi
ret 0

$LN6@memcmp_123:
sbb eax, eax
or eax, 1
pop esi
ret 0

_memcmp_1235 ENDP

strcat()

This is inlined strcat() as it has been generated by MSVC 6.0. There are 3 parts
visible: 1) getting source string length (first scasb); 2) getting destination string
length (second scasb); 3) copying source string into the end of destination string
(movsd/movsb pair).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

645
Listing 3.55: strcat()

lea edi, [src]
or ecx, 0FFFFFFFFh
repne scasb
not ecx
sub edi, ecx
mov esi, edi
mov edi, [dst]
mov edx, ecx
or ecx, 0FFFFFFFFh
repne scasb
mov ecx, edx
dec edi
shr ecx, 2
rep movsd
mov ecx, edx
and ecx, 3
rep movsb

IDA script

There is also a small IDA script for searching and folding such very frequently seen
pieces of inline code:
GitHub.

3.15 C99 restrict
Here is a reason why Fortran programs, in some cases, work faster than C/C++ ones.
void f1 (int* x, int* y, int* sum, int* product, int* sum_product, int* ⤦

Ç update_me, size_t s)
{

for (int i=0; i<s; i++)
{

sum[i]=x[i]+y[i];
product[i]=x[i]*y[i];
update_me[i]=i*123; // some dummy value
sum_product[i]=sum[i]+product[i];

};
};

That’s very simple example with one specific thing in it: the pointer to the update_me
array could be a pointer to the sum array, product array, or even the sum_product
array—nothing forbids that, right?
The compiler is fully aware of this, so it generates code with four stages in the loop
body:
• calculate next sum[i]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://github.com/yurichev/IDA_scripts
https://yurichev.com/contact.html
https://yurichev.com/contact.html

646
• calculate next product[i]
• calculate next update_me[i]
• calculate next sum_product[i]—on this stage, we need to load from memory
the already calculated sum[i] and product[i]

Is it possible to optimize the last stage? Since we have already calculated sum[i]
and product[i] it is not necessary to load them again from memory.
Yes, but compiler is not sure that nothing has been overwritten at the 3rd stage!
This is called “pointer aliasing”, a situation when the compiler cannot be sure that a
memory to which a pointer is pointing hasn’t been changed.
restrict in the C99 standard [ISO/IEC 9899:TC3 (C C99 standard), (2007) 6.7.3/1] is a
promise, given by programmer to the compiler that the function arguments marked
by this keyword always points to different memory locations and never intersects.
To be more precise and describe this formally, restrict shows that only this pointer
is to be used to access an object, and no other pointer will be used for it.
It can be even said the object will be accessed only via one single pointer, if it is
marked as restrict.
Let’s add this keyword to each pointer argument:
void f2 (int* restrict x, int* restrict y, int* restrict sum, int* restrict⤦

Ç product, int* restrict sum_product,
int* restrict update_me, size_t s)

{
for (int i=0; i<s; i++)
{

sum[i]=x[i]+y[i];
product[i]=x[i]*y[i];
update_me[i]=i*123; // some dummy value
sum_product[i]=sum[i]+product[i];

};
};

Let’s see results:

Listing 3.56: GCC x64: f1()
f1:

push r15 r14 r13 r12 rbp rdi rsi rbx
mov r13, QWORD PTR 120[rsp]
mov rbp, QWORD PTR 104[rsp]
mov r12, QWORD PTR 112[rsp]
test r13, r13
je .L1
add r13, 1
xor ebx, ebx
mov edi, 1
xor r11d, r11d
jmp .L4

.L6:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

647
mov r11, rdi
mov rdi, rax

.L4:
lea rax, 0[0+r11*4]
lea r10, [rcx+rax]
lea r14, [rdx+rax]
lea rsi, [r8+rax]
add rax, r9
mov r15d, DWORD PTR [r10]
add r15d, DWORD PTR [r14]
mov DWORD PTR [rsi], r15d ; store to sum[]
mov r10d, DWORD PTR [r10]
imul r10d, DWORD PTR [r14]
mov DWORD PTR [rax], r10d ; store to product[]
mov DWORD PTR [r12+r11*4], ebx ; store to update_me[]
add ebx, 123
mov r10d, DWORD PTR [rsi] ; reload sum[i]
add r10d, DWORD PTR [rax] ; reload product[i]
lea rax, 1[rdi]
cmp rax, r13
mov DWORD PTR 0[rbp+r11*4], r10d ; store to sum_product[]
jne .L6

.L1:
pop rbx rsi rdi rbp r12 r13 r14 r15
ret

Listing 3.57: GCC x64: f2()
f2:

push r13 r12 rbp rdi rsi rbx
mov r13, QWORD PTR 104[rsp]
mov rbp, QWORD PTR 88[rsp]
mov r12, QWORD PTR 96[rsp]
test r13, r13
je .L7
add r13, 1
xor r10d, r10d
mov edi, 1
xor eax, eax
jmp .L10

.L11:
mov rax, rdi
mov rdi, r11

.L10:
mov esi, DWORD PTR [rcx+rax*4]
mov r11d, DWORD PTR [rdx+rax*4]
mov DWORD PTR [r12+rax*4], r10d ; store to update_me[]
add r10d, 123
lea ebx, [rsi+r11]
imul r11d, esi
mov DWORD PTR [r8+rax*4], ebx ; store to sum[]
mov DWORD PTR [r9+rax*4], r11d ; store to product[]
add r11d, ebx
mov DWORD PTR 0[rbp+rax*4], r11d ; store to sum_product[]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

648
lea r11, 1[rdi]
cmp r11, r13
jne .L11

.L7:
pop rbx rsi rdi rbp r12 r13
ret

The difference between the compiled f1() and f2() functions is as follows: in f1(),
sum[i] and product[i] are reloaded in the middle of the loop, and in f2() there
is no such thing, the already calculated values are used, since we “promised” the
compiler that no one and nothing will change the values in sum[i] and product[i]
during the execution of the loop’s body, so it is “sure” that there is no need to load
the value from memory again.
Obviously, the second example works faster.
But what if the pointers in the function’s arguments intersect somehow?
This is on the programmer’s conscience, and the results will be incorrect.
Let’s go back to Fortran.
Compilers of this programming language treats all pointers as such, so when it was
not possible to set restrict in C, Fortran could generate faster code in these cases.
How practical is it?
In the cases when the function works with several big blocks in memory.
There are a lot of such in linear algebra, for instance.
Supercomputers/HPC14 are very busy with linear algebra, so probably that is why,
traditionally, Fortran is still used there [Eugene Loh, The Ideal HPC Programming
Language, (2010)].
But when the number of iterations is not very big, certainly, the speed boost may
not to be significant.

3.16 Branchless abs() function
Let’s revisit an example we considered earlier 1.18.2 on page 177 and ask ourselves,
is it possible to make a branchless version of the function in x86 code?
int my_abs (int i)
{

if (i<0)
return -i;

else
return i;

};

And the answer is yes.
14High-Performance Computing

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

649
3.16.1 Optimizing GCC 4.9.1 x64
We could see it if we compile it using optimizing GCC 4.9:

Listing 3.58: Optimizing GCC 4.9 x64
my_abs:

mov edx, edi
mov eax, edi
sar edx, 31

; EDX is 0xFFFFFFFF here if sign of input value is minus
; EDX is 0 if sign of input value is plus (including 0)
; the following two instructions have effect only if EDX is 0xFFFFFFFF
; or idle if EDX is 0

xor eax, edx
sub eax, edx
ret

This is how it works:
Arithmetically shift the input value right by 31.
Arithmetical shift implies sign extension, so if the MSB is 1, all 32 bits are to be filled
with 1, or with 0 if otherwise.
In other words, the SAR REG, 31 instruction makes 0xFFFFFFFF if the sign has been
negative or 0 if positive.
After the execution of SAR, we have this value in EDX.
Then, if the value is 0xFFFFFFFF (i.e., the sign is negative), the input value is inverted
(because XOR REG, 0xFFFFFFFF is effectively an inverse all bits operation).
Then, again, if the value is 0xFFFFFFFF (i.e., the sign is negative), 1 is added to the
final result (because subtracting −1 from some value resulting in incrementing it).
Inversion of all bits and incrementing is exactly how two’s complement value is
negated.
We may observe that the last two instruction do something if the sign of the input
value is negative.
Otherwise (if the sign is positive) they do nothing at all, leaving the input value
untouched.
The algorithm is explained in [Henry S. Warren, Hacker’s Delight, (2002)2-4].
It’s hard to say, how GCC did it, deduced it by itself or found a suitable pattern among
known ones?

3.16.2 Optimizing GCC 4.9 ARM64
GCC 4.9 for ARM64 generates mostly the same, just decides to use the full 64-bit
registers.
There are less instructions, because the input value can be shifted using a suffixed
instruction (“asr”) instead of using a separate instruction.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

650
Listing 3.59: Optimizing GCC 4.9 ARM64

my_abs:
; sign-extend input 32-bit value to X0 64-bit register:

sxtw x0, w0
eor x1, x0, x0, asr 63

; X1=X0^(X0>>63) (shift is arithmetical)
sub x0, x1, x0, asr 63

; X0=X1-(X0>>63)=X0^(X0>>63)-(X0>>63)
; (all shifts are arithmetical)

ret

3.17 Variadic functions
Functions like printf() and scanf() can have a variable number of arguments. How
are these arguments accessed?

3.17.1 Computing arithmetic mean
Let’s imagine that we want to calculate arithmetic mean, and for some weird reason
we want to specify all the values as function arguments.
But it’s impossible to get the number of arguments in a variadic function in C/C++,
so let’s denote the value of −1 as a terminator.

Using va_arg macro

There is the standard stdarg.h header file which define macros for dealing with such
arguments.
The printf() and scanf() functions use them as well.
#include <stdio.h>
#include <stdarg.h>

int arith_mean(int v, ...)
{

va_list args;
int sum=v, count=1, i;
va_start(args, v);

while(1)
{

i=va_arg(args, int);
if (i==-1) // terminator

break;
sum=sum+i;
count++;

}

va_end(args);

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

651
return sum/count;

};

int main()
{

printf ("%d\n", arith_mean (1, 2, 7, 10, 15, -1 /* terminator */));
};

The first argument has to be treated just like a normal argument.
All other arguments are loaded using the va_arg macro and then summed.
So what is inside?

cdecl calling conventions

Listing 3.60: Optimizing MSVC 6.0
_v$ = 8
_arith_mean PROC NEAR

mov eax, DWORD PTR _v$[esp-4] ; load 1st argument into sum
push esi
mov esi, 1 ; count=1
lea edx, DWORD PTR _v$[esp] ; address of the 1st argument

$L838:
mov ecx, DWORD PTR [edx+4] ; load next argument
add edx, 4 ; shift pointer to the next

argument
cmp ecx, -1 ; is it -1?
je SHORT $L856 ; exit if so
add eax, ecx ; sum = sum + loaded argument
inc esi ; count++
jmp SHORT $L838

$L856:
; calculate quotient

cdq
idiv esi
pop esi
ret 0

_arith_mean ENDP

$SG851 DB '%d', 0aH, 00H

_main PROC NEAR
push -1
push 15
push 10
push 7
push 2
push 1
call _arith_mean
push eax

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

652
push OFFSET FLAT:$SG851 ; '%d'
call _printf
add esp, 32
ret 0

_main ENDP

The arguments, as we may see, are passed to main() one-by-one.
The first argument is pushed into the local stack as first.
The terminating value (−1) is pushed last.
The arith_mean() function takes the value of the first argument and stores it in the
sum variable.
Then, it sets the EDX register to the address of the second argument, takes the value
from it, adds it to sum, and does this in an infinite loop, until −1 is found.
When it’s found, the sum is divided by the number of all values (excluding −1) and
the quotient is returned.
So, in other words, the function treats the stack fragment as an array of integer
values of infinite length.
Now we can understand why the cdecl calling convention forces us to push the first
argument into the stack as last.
Because otherwise, it would not be possible to find the first argument, or, for printf-
like functions, it would not be possible to find the address of the format-string.

Register-based calling conventions

The observant reader may ask, what about calling conventions where the first few
arguments are passed in registers? Let’s see:

Listing 3.61: Optimizing MSVC 2012 x64
$SG3013 DB '%d', 0aH, 00H

v$ = 8
arith_mean PROC

mov DWORD PTR [rsp+8], ecx ; 1st argument
mov QWORD PTR [rsp+16], rdx ; 2nd argument
mov QWORD PTR [rsp+24], r8 ; 3rd argument
mov eax, ecx ; sum = 1st argument
lea rcx, QWORD PTR v$[rsp+8] ; pointer to the 2nd argument
mov QWORD PTR [rsp+32], r9 ; 4th argument
mov edx, DWORD PTR [rcx] ; load 2nd argument
mov r8d, 1 ; count=1
cmp edx, -1 ; 2nd argument is -1?
je SHORT $LN8@arith_mean ; exit if so

$LL3@arith_mean:
add eax, edx ; sum = sum + loaded argument
mov edx, DWORD PTR [rcx+8] ; load next argument

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

653
lea rcx, QWORD PTR [rcx+8] ; shift pointer to point to the

argument after next
inc r8d ; count++
cmp edx, -1 ; is loaded argument -1?
jne SHORT $LL3@arith_mean ; go to loop begin if its not

$LN8@arith_mean:
; calculate quotient

cdq
idiv r8d
ret 0

arith_mean ENDP

main PROC
sub rsp, 56
mov edx, 2
mov DWORD PTR [rsp+40], -1
mov DWORD PTR [rsp+32], 15
lea r9d, QWORD PTR [rdx+8]
lea r8d, QWORD PTR [rdx+5]
lea ecx, QWORD PTR [rdx-1]
call arith_mean
lea rcx, OFFSET FLAT:$SG3013
mov edx, eax
call printf
xor eax, eax
add rsp, 56
ret 0

main ENDP

We see that the first 4 arguments are passed in the registers and two more—in the
stack.
The arith_mean() function first places these 4 arguments into the Shadow Space
and then treats the Shadow Space and stack behind it as a single continuous array!
What about GCC? Things are slightly clumsier here, because now the function is
divided in two parts: the first part saves the registers into the “red zone”, processes
that space, and the second part of the function processes the stack:

Listing 3.62: Optimizing GCC 4.9.1 x64
arith_mean:

lea rax, [rsp+8]
; save 6 input registers in
; red zone in the local stack
mov QWORD PTR [rsp-40], rsi
mov QWORD PTR [rsp-32], rdx
mov QWORD PTR [rsp-16], r8
mov QWORD PTR [rsp-24], rcx
mov esi, 8
mov QWORD PTR [rsp-64], rax
lea rax, [rsp-48]
mov QWORD PTR [rsp-8], r9
mov DWORD PTR [rsp-72], 8
lea rdx, [rsp+8]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

654
mov r8d, 1
mov QWORD PTR [rsp-56], rax
jmp .L5

.L7:
; work out saved arguments
lea rax, [rsp-48]
mov ecx, esi
add esi, 8
add rcx, rax
mov ecx, DWORD PTR [rcx]
cmp ecx, -1
je .L4

.L8:
add edi, ecx
add r8d, 1

.L5:
; decide, which part we will work out now.
; is current argument number less or equal 6?
cmp esi, 47
jbe .L7 ; no, process saved arguments then
; work out arguments from stack
mov rcx, rdx
add rdx, 8
mov ecx, DWORD PTR [rcx]
cmp ecx, -1
jne .L8

.L4:
mov eax, edi
cdq
idiv r8d
ret

.LC1:
.string "%d\n"

main:
sub rsp, 8
mov edx, 7
mov esi, 2
mov edi, 1
mov r9d, -1
mov r8d, 15
mov ecx, 10
xor eax, eax
call arith_mean
mov esi, OFFSET FLAT:.LC1
mov edx, eax
mov edi, 1
xor eax, eax
add rsp, 8
jmp __printf_chk

By the way, a similar usage of the Shadow Space is also considered here: 6.1.8 on
page 941.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

655
Using pointer to the first function argument

The example can be rewritten without va_arg macro:
#include <stdio.h>

int arith_mean(int v, ...)
{

int *i=&v;
int sum=*i, count=1;
i++;

while(1)
{

if ((*i)==-1) // terminator
break;

sum=sum+(*i);
count++;
i++;

}

return sum/count;
};

int main()
{

printf ("%d\n", arith_mean (1, 2, 7, 10, 15, -1 /* terminator */));
// test: https://www.wolframalpha.com/input/?i=mean(1,2,7,10,15)

};

In other words, if an argument set is array of words (32-bit or 64-bit), we just enu-
merate array elements starting at first one.

3.17.2 vprintf() function case
Many programmers define their own logging functions which take a printf-like format
string + a variable number of arguments.
Another popular example is the die() function, which prints some message and exits.
We need some way to pack input arguments of unknown number and pass them to
the printf() function. But how?
That’s why there are functions with “v” in name.
One of them is vprintf(): it takes a format-string and a pointer to a variable of type
va_list:
#include <stdlib.h>
#include <stdarg.h>

void die (const char * fmt, ...)
{

va_list va;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

656
va_start (va, fmt);

vprintf (fmt, va);
exit(0);

};

By closer examination, we can see that va_list is a pointer to an array. Let’s com-
pile:

Listing 3.63: Optimizing MSVC 2010
_fmt$ = 8
_die PROC

; load 1st argument (format-string)
mov ecx, DWORD PTR _fmt$[esp-4]
; get pointer to the 2nd argument
lea eax, DWORD PTR _fmt$[esp]
push eax ; pass a pointer
push ecx
call _vprintf
add esp, 8
push 0
call _exit

$LN3@die:
int 3

_die ENDP

We see that all our function does is just taking a pointer to the arguments and passing
it to vprintf(), and that function is treating it like an infinite array of arguments!

Listing 3.64: Optimizing MSVC 2012 x64
fmt$ = 48
die PROC

; save first 4 arguments in Shadow Space
mov QWORD PTR [rsp+8], rcx
mov QWORD PTR [rsp+16], rdx
mov QWORD PTR [rsp+24], r8
mov QWORD PTR [rsp+32], r9
sub rsp, 40
lea rdx, QWORD PTR fmt$[rsp+8] ; pass pointer to the 1st argument
; RCX here is still points to the 1st argument (format-string) of

die()
; so vprintf() will take it right from RCX
call vprintf
xor ecx, ecx
call exit
int 3

die ENDP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

657
3.17.3 Pin case
It’s interesting to note how some functions from Pin DBI15 framework takes number
of arguments:

INS_InsertPredicatedCall(
ins, IPOINT_BEFORE, (AFUNPTR)RecordMemRead,
IARG_INST_PTR,
IARG_MEMORYOP_EA, memOp,
IARG_END);

(pinatrace.cpp)
And this is how INS_InsertPredicatedCall() function is declared:
extern VOID INS_InsertPredicatedCall(INS ins, IPOINT ipoint, AFUNPTR funptr⤦

Ç , ...);

(pin_client.PH)
Hence, constants with names starting with IARG_ are some kinds of arguments
to the function, which are handled inside of INS_InsertPredicatedCall(). You
can pass as many arguments, as you need. Some commands has additional ar-
gument(s), some are not. Full list of arguments: https://software.intel.com/
sites/landingpage/pintool/docs/58423/Pin/html/group__INST__ARGS.html. And
it has to be a way to detect an end of arguments list, so the list must be terminated
with IARG_END constant, without which, the function will (try to) handle random noise
in the local stack, treating it as additional arguments.
Also, in [Brian W. Kernighan, Rob Pike, Practice of Programming, (1999)] we can find
a nice example of C/C++ routines very similar to pack/unpack16 in Python.

3.17.4 Format string exploit
It’s a popularmistake, to write printf(string) instead of puts(string) or printf("%s",
string). If the attacker can put his/her own text into string, he/she can crash pro-
cess, or get insight into variables in the local stack.
Take a look at this:
#include <stdio.h>

int main()
{

char *s1="hello";
char *s2="world";
char buf[128];

// do something mundane here
strcpy (buf, s1);
strcpy (buf, " ");

15Dynamic Binary Instrumentation
16https://docs.python.org/3/library/struct.html

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://software.intel.com/sites/landingpage/pintool/docs/58423/Pin/html/group__INST__ARGS.html
https://software.intel.com/sites/landingpage/pintool/docs/58423/Pin/html/group__INST__ARGS.html
https://docs.python.org/3/library/struct.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

658
strcpy (buf, s2);

printf ("%s");
};

Please note, that printf() has no additional arguments besides single format string.
Now let’s imagine, that was the attacker who put %s string into the last printf()
first arguments. I compile this example using GCC 5.4.0 on x86 Ubuntu, and the
resulting executable prints “world” string if it gets executed!
If I turn optimization on, printf() outputs some garbage, though—probably, strcpy()
calls has been optimized and/or local variables as well. Also, result will be different
for x64 code, different compiler, OS, etc.
Now, let’s say, attacker could pass the following string to printf() call: %x %x %x
%x %x. In may case, output is: “80485c6 b7751b48 1 0 80485c0” (these are just
values from local stack). You see, there are 1 and 0 values, and some pointers (first is
probably pointer to “world” string). So if the attacker passes %s %s %s %s %s string,
the process will crash, because printf() treats 1 and/or 0 as pointer to string, tries
to read characters from there and fails.
Even worse, there could be sprintf (buf, string) in code, where buf is a buffer
in the local stack with size of 1024 bytes or so, attacker can craft string in such
a way that buf will be overflown, maybe even in a way that would lead to code
execution.
Many popular and well-known software was (or even still) vulnerable:

QuakeWorld went up, got to around 4000 users, then the master
server exploded.
Disrupter and cohorts are working on more robust code now.
If anyone did it on purpose, how about letting us know... (It wasn’t

all the people that tried %s as a name)

(John Carmack’s .plan file, 17-Dec-199617)
Nowadays, almost all decent compilers warn about this.
Another problem is the lesser known %n printf() argument: whenever printf()
reaches it in a format string, it writes the number of characters printed so far into
the corresponding argument: stackoverflow.com. Thus, an attacker could zap local
variables by passing many %n commands in format string.

3.18 Strings trimming
A very common string processing task is to remove some characters at the start
and/or at the end.
17https://github.com/ESWAT/john-carmack-plan-archive/blob/33ae52fdba46aa0d1abfed6fc7598233748541c0/

by_day/johnc_plan_19961217.txt

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://stackoverflow.com/questions/3401156/what-is-the-use-of-the-n-format-specifier-in-c
https://github.com/ESWAT/john-carmack-plan-archive/blob/33ae52fdba46aa0d1abfed6fc7598233748541c0/by_day/johnc_plan_19961217.txt
https://github.com/ESWAT/john-carmack-plan-archive/blob/33ae52fdba46aa0d1abfed6fc7598233748541c0/by_day/johnc_plan_19961217.txt
https://yurichev.com/contact.html
https://yurichev.com/contact.html

659
In this example, we are going to work with a function which removes all newline
characters (CR18/LF19) from the end of the input string:
#include <stdio.h>
#include <string.h>

char* str_trim (char *s)
{

char c;
size_t str_len;

// work as long as \r or \n is at the end of string
// stop if some other character there or its an empty string
// (at start or due to our operation)
for (str_len=strlen(s); str_len>0 && (c=s[str_len-1]); str_len--)
{

if (c=='\r' || c=='\n')
s[str_len-1]=0;

else
break;

};
return s;

};

int main()
{

// test

// strdup() is used to copy text string into data segment,
// because it will crash on Linux otherwise,
// where text strings are allocated in constant data segment,
// and not modifiable.

printf ("[%s]\n", str_trim (strdup("")));
printf ("[%s]\n", str_trim (strdup("\n")));
printf ("[%s]\n", str_trim (strdup("\r")));
printf ("[%s]\n", str_trim (strdup("\n\r")));
printf ("[%s]\n", str_trim (strdup("\r\n")));
printf ("[%s]\n", str_trim (strdup("test1\r\n")));
printf ("[%s]\n", str_trim (strdup("test2\n\r")));
printf ("[%s]\n", str_trim (strdup("test3\n\r\n\r")));
printf ("[%s]\n", str_trim (strdup("test4\n")));
printf ("[%s]\n", str_trim (strdup("test5\r")));
printf ("[%s]\n", str_trim (strdup("test6\r\r\r")));

};

The input argument is always returned on exit, this is convenient when you want to
chain string processing functions, like it has done here in the main() function.
The second part of for() (str_len>0 && (c=s[str_len-1])) is the so called “short-
circuit” in C/C++ and is very convenient [Dennis Yurichev, C/C++ programming lan-
18Carriage Return (13 or ’\r’ in C/C++)
19Line Feed (10 or ’\n’ in C/C++)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

660
guage notes1.3.8].
The C/C++ compilers guarantee an evaluation sequence from left to right.
So if the first clause is false after evaluation, the second one is never to be evaluated.

3.18.1 x64: Optimizing MSVC 2013

Listing 3.65: Optimizing MSVC 2013 x64
s$ = 8
str_trim PROC

; RCX is the first function argument and it always holds pointer to the
string

mov rdx, rcx
; this is strlen() function inlined right here:
; set RAX to 0xFFFFFFFFFFFFFFFF (-1)

or rax, -1
$LL14@str_trim:

inc rax
cmp BYTE PTR [rcx+rax], 0
jne SHORT $LL14@str_trim

; is the input string length zero? exit then:
test rax, rax
je SHORT $LN15@str_trim

; RAX holds string length
dec rcx

; RCX = s-1
mov r8d, 1
add rcx, rax

; RCX = s-1+strlen(s), i.e., this is the address of the last character in the
string

sub r8, rdx
; R8 = 1-s
$LL6@str_trim:
; load the last character of the string:
; jump, if its code is 13 or 10:

movzx eax, BYTE PTR [rcx]
cmp al, 13
je SHORT $LN2@str_trim
cmp al, 10
jne SHORT $LN15@str_trim

$LN2@str_trim:
; the last character has a 13 or 10 code
; write zero at this place:

mov BYTE PTR [rcx], 0
; decrement address of the last character,
; so it will point to the character before the one which has just been

erased:
dec rcx
lea rax, QWORD PTR [r8+rcx]

; RAX = 1 - s + address of the current last character
; thus we can determine if we reached the first character and we need to

stop, if it is so

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

661
test rax, rax
jne SHORT $LL6@str_trim

$LN15@str_trim:
mov rax, rdx
ret 0

str_trim ENDP

First, MSVC inlined the strlen() function code, because it concluded this is to be
faster than the usual strlen() work + the cost of calling it and returning from it.
This is called inlining: 3.14 on page 634.
The first instruction of the inlined strlen() is
OR RAX, 0xFFFFFFFFFFFFFFFF.
MSVC often uses OR instead of MOV RAX, 0xFFFFFFFFFFFFFFFF, because resulting
opcode is shorter.
And of course, it is equivalent: all bits are set, and a number with all bits set is −1 in
two’s complement arithmetic.
Why would the −1 number be used in strlen(), one might ask. Due to optimizations,
of course. Here is the code that MSVC generated:

Listing 3.66: Inlined strlen() by MSVC 2013 x64
; RCX = pointer to the input string
; RAX = current string length

or rax, -1
label:

inc rax
cmp BYTE PTR [rcx+rax], 0
jne SHORT label

; RAX = string length

Try to write shorter if you want to initialize the counter at 0! OK, let’ try:

Listing 3.67: Our version of strlen()
; RCX = pointer to the input string
; RAX = current string length

xor rax, rax
label:

cmp byte ptr [rcx+rax], 0
jz exit
inc rax
jmp label

exit:
; RAX = string length

We failed. We have to use additional JMP instruction!
So what the MSVC 2013 compiler did is to move the INC instruction to the place
before the actual character loading.
If the first character is 0, that’s OK, RAX is 0 at this moment, so the resulting string
length is 0.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

662
The rest in this function seems easy to understand.

3.18.2 x64: Non-optimizing GCC 4.9.1
str_trim:

push rbp
mov rbp, rsp
sub rsp, 32
mov QWORD PTR [rbp-24], rdi

; for() first part begins here
mov rax, QWORD PTR [rbp-24]
mov rdi, rax
call strlen
mov QWORD PTR [rbp-8], rax ; str_len

; for() first part ends here
jmp .L2

; for() body begins here
.L5:

cmp BYTE PTR [rbp-9], 13 ; c=='\r'?
je .L3
cmp BYTE PTR [rbp-9], 10 ; c=='\n'?
jne .L4

.L3:
mov rax, QWORD PTR [rbp-8] ; str_len
lea rdx, [rax-1] ; EDX=str_len-1
mov rax, QWORD PTR [rbp-24] ; s
add rax, rdx ; RAX=s+str_len-1
mov BYTE PTR [rax], 0 ; s[str_len-1]=0

; for() body ends here
; for() third part begins here

sub QWORD PTR [rbp-8], 1 ; str_len--
; for() third part ends here
.L2:
; for() second part begins here

cmp QWORD PTR [rbp-8], 0 ; str_len==0?
je .L4 ; exit then

; check second clause, and load "c"
mov rax, QWORD PTR [rbp-8] ; RAX=str_len
lea rdx, [rax-1] ; RDX=str_len-1
mov rax, QWORD PTR [rbp-24] ; RAX=s
add rax, rdx ; RAX=s+str_len-1
movzx eax, BYTE PTR [rax] ; AL=s[str_len-1]
mov BYTE PTR [rbp-9], al ; store loaded char into "c"
cmp BYTE PTR [rbp-9], 0 ; is it zero?
jne .L5 ; yes? exit then

; for() second part ends here
.L4:
; return "s"

mov rax, QWORD PTR [rbp-24]
leave
ret

Comments are added by the author of the book.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

663
After the execution of strlen(), the control is passed to the L2 label, and there two
clauses are checked, one after another.
The second will never be checked, if the first one (str_len==0) is false (this is “short-
circuit”).
Now let’s see this function in short form:
• First for() part (call to strlen())
• goto L2
• L5: for() body. goto exit, if needed
• for() third part (decrement of str_len)
• L2: for() second part: check first clause, then second. goto loop body begin or
exit.

• L4: // exit
• return s

3.18.3 x64: Optimizing GCC 4.9.1
str_trim:

push rbx
mov rbx, rdi

; RBX will always be "s"
call strlen

; check for str_len==0 and exit if its so
test rax, rax
je .L9
lea rdx, [rax-1]

; RDX will always contain str_len-1 value, not str_len
; so RDX is more like buffer index variable

lea rsi, [rbx+rdx] ; RSI=s+str_len-1
movzx ecx, BYTE PTR [rsi] ; load character
test cl, cl
je .L9 ; exit if its zero
cmp cl, 10
je .L4
cmp cl, 13 ; exit if its not '\n' and not '\r'
jne .L9

.L4:
; this is weird instruction. we need RSI=s-1 here.
; its possible to get it by MOV RSI, EBX / DEC RSI
; but this is two instructions instead of one

sub rsi, rax
; RSI = s+str_len-1-str_len = s-1
; main loop begin
.L12:

test rdx, rdx
; store zero at address s-1+str_len-1+1 = s-1+str_len = s+str_len-1

mov BYTE PTR [rsi+1+rdx], 0
; check for str_len-1==0. exit if so.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

664
je .L9
sub rdx, 1 ; equivalent to str_len--

; load next character at address s+str_len-1
movzx ecx, BYTE PTR [rbx+rdx]
test cl, cl ; is it zero? exit then
je .L9
cmp cl, 10 ; is it '\n'?
je .L12
cmp cl, 13 ; is it '\r'?
je .L12

.L9:
; return "s"

mov rax, rbx
pop rbx
ret

Now this is more complex.
The code before the loop’s body start is executed only once, but it has the CR/LF
characters check too! What is this code duplication for?
The common way to implement the main loop is probably this:
• (loop start) check for CR/LF characters, make decisions
• store zero character

But GCC has decided to reverse these two steps.
Of course, store zero character cannot be first step, so another check is needed:
• workout first character. match it to CR/LF, exit if character is not CR/LF
• (loop begin) store zero character
• check for CR/LF characters, make decisions

Now the main loop is very short, which is good for latest CPUs.
The code doesn’t use the str_len variable, but str_len-1. So this is more like an index
in a buffer.
Apparently, GCC notices that the str_len-1 statement is used twice.
So it’s better to allocate a variable which always holds a value that’s smaller than
the current string length by one, and decrement it (this is the same effect as decre-
menting the str_len variable).

3.18.4 ARM64: Non-optimizing GCC (Linaro) 4.9
This implementation is straightforward:

Listing 3.68: Non-optimizing GCC (Linaro) 4.9
str_trim:

stp x29, x30, [sp, -48]!
add x29, sp, 0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

665
str x0, [x29,24] ; copy input argument into local stack
ldr x0, [x29,24] ; s
bl strlen
str x0, [x29,40] ; str_len variable in local stack
b .L2

; main loop begin
.L5:

ldrb w0, [x29,39]
; W0=c

cmp w0, 13 ; is it '\r'?
beq .L3
ldrb w0, [x29,39]

; W0=c
cmp w0, 10 ; is it '\n'?
bne .L4 ; goto exit if it is not

.L3:
ldr x0, [x29,40]

; X0=str_len
sub x0, x0, #1

; X0=str_len-1
ldr x1, [x29,24]

; X1=s
add x0, x1, x0

; X0=s+str_len-1
strb wzr, [x0] ; write byte at s+str_len-1

; decrement str_len:
ldr x0, [x29,40]

; X0=str_len
sub x0, x0, #1

; X0=str_len-1
str x0, [x29,40]

; save X0 (or str_len-1) to local stack
.L2:

ldr x0, [x29,40]
; str_len==0?

cmp x0, xzr
; goto exit then

beq .L4
ldr x0, [x29,40]

; X0=str_len
sub x0, x0, #1

; X0=str_len-1
ldr x1, [x29,24]

; X1=s
add x0, x1, x0

; X0=s+str_len-1
; load byte at address s+str_len-1 to W0

ldrb w0, [x0]
strb w0, [x29,39] ; store loaded byte to "c"
ldrb w0, [x29,39] ; reload it

; is it zero byte?
cmp w0, wzr

; goto exit, if its zero or to L5 if its not

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

666
bne .L5

.L4:
; return s

ldr x0, [x29,24]
ldp x29, x30, [sp], 48
ret

3.18.5 ARM64: Optimizing GCC (Linaro) 4.9
This is a more advanced optimization.
The first character is loaded at the beginning, and compared against 10 (the LF
character).
Characters are also loaded in the main loop, for the characters after first one.
This is somewhat similar to the 3.18.3 on page 663 example.

Listing 3.69: Optimizing GCC (Linaro) 4.9
str_trim:

stp x29, x30, [sp, -32]!
add x29, sp, 0
str x19, [sp,16]
mov x19, x0

; X19 will always hold value of "s"
bl strlen

; X0=str_len
cbz x0, .L9 ; goto L9 (exit) if str_len==0
sub x1, x0, #1

; X1=X0-1=str_len-1
add x3, x19, x1

; X3=X19+X1=s+str_len-1
ldrb w2, [x19,x1] ; load byte at address X19+X1=s+str_len-1

; W2=loaded character
cbz w2, .L9 ; is it zero? jump to exit then
cmp w2, 10 ; is it '\n'?
bne .L15

.L12:
; main loop body. loaded character is always 10 or 13 at this moment!

sub x2, x1, x0
; X2=X1-X0=str_len-1-str_len=-1

add x2, x3, x2
; X2=X3+X2=s+str_len-1+(-1)=s+str_len-2

strb wzr, [x2,1] ; store zero byte at address
s+str_len-2+1=s+str_len-1

cbz x1, .L9 ; str_len-1==0? goto exit, if so
sub x1, x1, #1 ; str_len--
ldrb w2, [x19,x1] ; load next character at address

X19+X1=s+str_len-1
cmp w2, 10 ; is it '\n'?
cbz w2, .L9 ; jump to exit, if its zero
beq .L12 ; jump to begin loop, if its '\n'

.L15:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

667
cmp w2, 13 ; is it '\r'?
beq .L12 ; yes, jump to the loop body begin

.L9:
; return "s"

mov x0, x19
ldr x19, [sp,16]
ldp x29, x30, [sp], 32
ret

3.18.6 ARM: Optimizing Keil 6/2013 (ARM mode)
And again, the compiler took advantage of ARM mode’s conditional instructions, so
the code is much more compact.

Listing 3.70: Optimizing Keil 6/2013 (ARM mode)
str_trim PROC

PUSH {r4,lr}
; R0=s

MOV r4,r0
; R4=s

BL strlen ; strlen() takes "s" value from R0
; R0=str_len

MOV r3,#0
; R3 will always hold 0
|L0.16|

CMP r0,#0 ; str_len==0?
ADDNE r2,r4,r0 ; (if str_len!=0) R2=R4+R0=s+str_len
LDRBNE r1,[r2,#-1] ; (if str_len!=0) R1=load byte at address

R2-1=s+str_len-1
CMPNE r1,#0 ; (if str_len!=0) compare loaded byte against 0
BEQ |L0.56| ; jump to exit if str_len==0 or loaded byte is

0
CMP r1,#0xd ; is loaded byte '\r'?
CMPNE r1,#0xa ;

(if loaded byte is not '\r') is loaded byte '\r'?
SUBEQ r0,r0,#1 ;

(if loaded byte is '\r' or '\n') R0-- or str_len--
STRBEQ r3,[r2,#-1] ; (if loaded byte is '\r' or '\n') store R3

(zero) at address R2-1=s+str_len-1
BEQ |L0.16| ;

jump to loop begin if loaded byte was '\r' or '\n'
|L0.56|
; return "s"

MOV r0,r4
POP {r4,pc}
ENDP

3.18.7 ARM: Optimizing Keil 6/2013 (Thumb mode)
There are less conditional instructions in Thumb mode, so the code is simpler.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

668
But there are is really weird thing with the 0x20 and 0x1F offsets (lines 22 and 23).
Why did the Keil compiler do so? Honestly, it’s hard to say.
It has to be a quirk of Keil’s optimization process. Nevertheless, the code works
correctly.

Listing 3.71: Optimizing Keil 6/2013 (Thumb mode)
1 str_trim PROC
2 PUSH {r4,lr}
3 MOVS r4,r0
4 ; R4=s
5 BL strlen ; strlen() takes "s" value from R0
6 ; R0=str_len
7 MOVS r3,#0
8 ; R3 will always hold 0
9 B |L0.24|
10 |L0.12|
11 CMP r1,#0xd ; is loaded byte '\r'?
12 BEQ |L0.20|
13 CMP r1,#0xa ; is loaded byte '\n'?
14 BNE |L0.38| ; jump to exit, if no
15 |L0.20|
16 SUBS r0,r0,#1 ; R0-- or str_len--
17 STRB r3,[r2,#0x1f] ; store 0 at address

R2+0x1F=s+str_len-0x20+0x1F=s+str_len-1
18 |L0.24|
19 CMP r0,#0 ; str_len==0?
20 BEQ |L0.38| ; yes? jump to exit
21 ADDS r2,r4,r0 ; R2=R4+R0=s+str_len
22 SUBS r2,r2,#0x20 ; R2=R2-0x20=s+str_len-0x20
23 LDRB r1,[r2,#0x1f] ; load byte at address

R2+0x1F=s+str_len-0x20+0x1F=s+str_len-1 to R1
24 CMP r1,#0 ; is loaded byte 0?
25 BNE |L0.12| ; jump to loop begin, if its not 0
26 |L0.38|
27 ; return "s"
28 MOVS r0,r4
29 POP {r4,pc}
30 ENDP

3.18.8 MIPS

Listing 3.72: Optimizing GCC 4.4.5 (IDA)
str_trim:
; IDA is not aware of local variable names, we gave them manually:
saved_GP = -0x10
saved_S0 = -8
saved_RA = -4

lui $gp, (__gnu_local_gp >> 16)
addiu $sp, -0x20
la $gp, (__gnu_local_gp & 0xFFFF)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

669
sw $ra, 0x20+saved_RA($sp)
sw $s0, 0x20+saved_S0($sp)
sw $gp, 0x20+saved_GP($sp)

; call strlen(). input string address is still in $a0, strlen() will take it
from there:

lw $t9, (strlen & 0xFFFF)($gp)
or $at, $zero ; load delay slot, NOP
jalr $t9

; input string address is still in $a0, put it to $s0:
move $s0, $a0 ; branch delay slot

; result of strlen() (i.e, length of string) is in $v0 now
; jump to exit if $v0==0 (i.e., if length of string is 0):

beqz $v0, exit
or $at, $zero ; branch delay slot, NOP
addiu $a1, $v0, -1

; $a1 = $v0-1 = str_len-1
addu $a1, $s0, $a1

; $a1 = input string address + $a1 = s+strlen-1
; load byte at address $a1:

lb $a0, 0($a1)
or $at, $zero ; load delay slot, NOP

; loaded byte is zero? jump to exit if its so:
beqz $a0, exit
or $at, $zero ; branch delay slot, NOP
addiu $v1, $v0, -2

; $v1 = str_len-2
addu $v1, $s0, $v1

; $v1 = $s0+$v1 = s+str_len-2
li $a2, 0xD

; skip loop body:
b loc_6C
li $a3, 0xA ; branch delay slot

loc_5C:
; load next byte from memory to $a0:

lb $a0, 0($v1)
move $a1, $v1

; $a1=s+str_len-2
; jump to exit if loaded byte is zero:

beqz $a0, exit
; decrement str_len:

addiu $v1, -1 ; branch delay slot
loc_6C:
; at this moment, $a0=loaded byte, $a2=0xD (CR symbol) and $a3=0xA (LF

symbol)
; loaded byte is CR? jump to loc_7C then:

beq $a0, $a2, loc_7C
addiu $v0, -1 ; branch delay slot

; loaded byte is LF? jump to exit if its not LF:
bne $a0, $a3, exit
or $at, $zero ; branch delay slot, NOP

loc_7C:
; loaded byte is CR at this moment
; jump to loc_5c (loop body begin) if str_len (in $v0) is not zero:

bnez $v0, loc_5C

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

670
; simultaneously, store zero at that place in memory:

sb $zero, 0($a1) ; branch delay slot
; "exit" label was named by me manually:
exit:

lw $ra, 0x20+saved_RA($sp)
move $v0, $s0
lw $s0, 0x20+saved_S0($sp)
jr $ra
addiu $sp, 0x20 ; branch delay slot

Registers prefixed with S- are also called “saved temporaries”, so $S0 value is saved
in the local stack and restored upon finish.

3.19 toupper() function
Another very popular function transforms a symbol from lower case to upper case,
if needed:
char toupper (char c)
{

if(c>='a' && c<='z')
return c-'a'+'A';

else
return c;

}

The 'a'+'A' expression is left in the source code for better readability, it will be
optimized by compiler, of course 20.
The ASCII code of “a” is 97 (or 0x61), and 65 (or 0x41) for “A”.
The difference (or distance) between them in the ASCII table is 32 (or 0x20).
For better understanding, the reader may take a look at the 7-bit standard ASCII
table:

Figure 3.3: 7-bit ASCII table in Emacs
20However, to be meticulous, there still could be compilers which can’t optimize such expressions and
will leave them right in the code.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

671
3.19.1 x64
Two comparison operations

Non-optimizing MSVC is straightforward: the code checks if the input symbol is in
[97..122] range (or in [‘a’..‘z’] range) and subtracts 32 if it’s true.
There are also some minor compiler artifact:

Listing 3.73: Non-optimizing MSVC 2013 (x64)
1 c$ = 8
2 toupper PROC
3 mov BYTE PTR [rsp+8], cl
4 movsx eax, BYTE PTR c$[rsp]
5 cmp eax, 97
6 jl SHORT $LN2@toupper
7 movsx eax, BYTE PTR c$[rsp]
8 cmp eax, 122
9 jg SHORT $LN2@toupper
10 movsx eax, BYTE PTR c$[rsp]
11 sub eax, 32
12 jmp SHORT $LN3@toupper
13 jmp SHORT $LN1@toupper ; compiler artifact
14 $LN2@toupper:
15 movzx eax, BYTE PTR c$[rsp] ; unnecessary casting
16 $LN1@toupper:
17 $LN3@toupper: ; compiler artifact
18 ret 0
19 toupper ENDP

It’s important to notice that the input byte is loaded into a 64-bit local stack slot at
line 3.
All the remaining bits ([8..63]) are untouched, i.e., contain some random noise (you’ll
see it in debugger).
All instructions operate only on byte-level, so it’s fine.
The last MOVZX instruction at line 15 takes the byte from the local stack slot and
zero-extends it to a int 32-bit data type.
Non-optimizing GCC does mostly the same:

Listing 3.74: Non-optimizing GCC 4.9 (x64)
toupper:

push rbp
mov rbp, rsp
mov eax, edi
mov BYTE PTR [rbp-4], al
cmp BYTE PTR [rbp-4], 96
jle .L2
cmp BYTE PTR [rbp-4], 122
jg .L2
movzx eax, BYTE PTR [rbp-4]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

672
sub eax, 32
jmp .L3

.L2:
movzx eax, BYTE PTR [rbp-4]

.L3:
pop rbp
ret

One comparison operation

Optimizing MSVC does a better job, it generates only one comparison operation:

Listing 3.75: Optimizing MSVC 2013 (x64)
toupper PROC

lea eax, DWORD PTR [rcx-97]
cmp al, 25
ja SHORT $LN2@toupper
movsx eax, cl
sub eax, 32
ret 0

$LN2@toupper:
movzx eax, cl
ret 0

toupper ENDP

It was explained earlier how to replace the two comparison operations with a single
one: 3.13.2 on page 632.
We will now rewrite this in C/C++:
int tmp=c-97;

if (tmp>25)
return c;

else
return c-32;

The tmp variable must be signed.
This makes two subtraction operations in case of a transformation plus one compar-
ison.
In contrast the original algorithm uses two comparison operations plus one subtract-
ing.
Optimizing GCC is even better, it gets rid of the jumps (which is good: 2.4.1 on
page 575) by using the CMOVcc instruction:

Listing 3.76: Optimizing GCC 4.9 (x64)
1 toupper:
2 lea edx, [rdi-97] ; 0x61
3 lea eax, [rdi-32] ; 0x20

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

673
4 cmp dl, 25
5 cmova eax, edi
6 ret

At line 3 the code prepares the subtracted value in advance, as if the conversion will
always happen.
At line 5 the subtracted value in EAX is replaced by the untouched input value if a
conversion is not needed. And then this value (of course incorrect) is dropped.
Advance subtracting is a price the compiler pays for the absence of conditional
jumps.

3.19.2 ARM
Optimizing Keil for ARM mode also generates only one comparison:

Listing 3.77: Optimizing Keil 6/2013 (ARM mode)
toupper PROC

SUB r1,r0,#0x61
CMP r1,#0x19
SUBLS r0,r0,#0x20
ANDLS r0,r0,#0xff
BX lr
ENDP

The SUBLS and ANDLS instructions are executed only if the value in R1 is less than
0x19 (or equal). They also do the actual conversion.
Optimizing Keil for Thumb mode generates only one comparison operation as well:

Listing 3.78: Optimizing Keil 6/2013 (Thumb mode)
toupper PROC

MOVS r1,r0
SUBS r1,r1,#0x61
CMP r1,#0x19
BHI |L0.14|
SUBS r0,r0,#0x20
LSLS r0,r0,#24
LSRS r0,r0,#24

|L0.14|
BX lr
ENDP

The last two LSLS and LSRS instructions work like AND reg, 0xFF: they are equiva-
lent to the C/C++-expression (i << 24) >> 24.
Seems like that Keil for Thumbmode deduced that two 2-byte instructions are shorter
than the code that loads the 0xFF constant into a register plus an AND instruction.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

674
GCC for ARM64

Listing 3.79: Non-optimizing GCC 4.9 (ARM64)
toupper:

sub sp, sp, #16
strb w0, [sp,15]
ldrb w0, [sp,15]
cmp w0, 96
bls .L2
ldrb w0, [sp,15]
cmp w0, 122
bhi .L2
ldrb w0, [sp,15]
sub w0, w0, #32
uxtb w0, w0
b .L3

.L2:
ldrb w0, [sp,15]

.L3:
add sp, sp, 16
ret

Listing 3.80: Optimizing GCC 4.9 (ARM64)
toupper:

uxtb w0, w0
sub w1, w0, #97
uxtb w1, w1
cmp w1, 25
bhi .L2
sub w0, w0, #32
uxtb w0, w0

.L2:
ret

3.19.3 Using bit operations
Given the fact that 5th bit (counting from 0th) is always present after the check,
subtracting is merely clearing this sole bit, but the very same effect can be achieved
with ANDing.
Even simpler, with XOR-ing:
char toupper (char c)
{

if(c>='a' && c<='z')
return c^0x20;

else
return c;

}

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

675
The code is close to what the optimized GCC has produced for the previous example
(3.76 on page 672):

Listing 3.81: Optimizing GCC 5.4 (x86)
toupper:

mov edx, DWORD PTR [esp+4]
lea ecx, [edx-97]
mov eax, edx
xor eax, 32
cmp cl, 25
cmova eax, edx
ret

…but XOR is used instead of SUB.
Flipping 5th bit is just moving a cursor in ASCII table up and down by two rows.
Some people say that lowercase/uppercase letters has been placed in the ASCII table
in such a way deliberately, because:

Very old keyboards used to do Shift just by toggling the 32 or 16
bit, depending on the key; this is why the relationship between small
and capital letters in ASCII is so regular, and the relationship between
numbers and symbols, and some pairs of symbols, is sort of regular if
you squint at it.

(Eric S. Raymond, http://www.catb.org/esr/faqs/things-every-hacker-once-knew/
)
Therefore, we can write this piece of code, which just flips the case of letters:
#include <stdio.h>

char flip (char c)
{

if((c>='a' && c<='z') || (c>='A' && c<='Z'))
return c^0x20;

else
return c;

}

int main()
{

// will produce "hELLO, WORLD!"
for (char *s="Hello, world!"; *s; s++)

printf ("%c", flip(*s));
};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.catb.org/esr/faqs/things-every-hacker-once-knew/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

676
3.19.4 Summary
All these compiler optimizations are very popular nowadays and a practicing reverse
engineer usually sees such code patterns often.

3.20 Obfuscation
The obfuscation is an attempt to hide the code (or its meaning) from reverse engi-
neers.

3.20.1 Text strings
As we know from (5.4 on page 895), text strings may be really helpful.
Programmers who are aware of this try to hide them, making it impossible to find
the string in IDA or any hex editor.
Here is the simplest method.
This is how the string can be constructed:
mov byte ptr [ebx], 'h'
mov byte ptr [ebx+1], 'e'
mov byte ptr [ebx+2], 'l'
mov byte ptr [ebx+3], 'l'
mov byte ptr [ebx+4], 'o'
mov byte ptr [ebx+5], ' '
mov byte ptr [ebx+6], 'w'
mov byte ptr [ebx+7], 'o'
mov byte ptr [ebx+8], 'r'
mov byte ptr [ebx+9], 'l'
mov byte ptr [ebx+10], 'd'

The string can also be compared with another one like this:
mov ebx, offset username
cmp byte ptr [ebx], 'j'
jnz fail
cmp byte ptr [ebx+1], 'o'
jnz fail
cmp byte ptr [ebx+2], 'h'
jnz fail
cmp byte ptr [ebx+3], 'n'
jnz fail
jz it_is_john

In both cases, it is impossible to find these strings straightforwardly in a hex editor.
By the way, this is a way to work with the strings when it is impossible to allocate
space for them in the data segment, for example in a PIC21 or in shellcode.
Another method is to use sprintf() for the construction:
21Position Independent Code

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

677

sprintf(buf, "%s%c%s%c%s", "hel",'l',"o w",'o',"rld");

The code looks weird, but as a simple anti-reversing measure, it may be helpful.
Text strings may also be present in encrypted form, then every string usage is to be
preceded by a string decrypting routine. For example: 8.8.2 on page 1065.

3.20.2 Executable code
Inserting garbage

Executable code obfuscation implies inserting random garbage code between real
one, which executes but does nothing useful.
A simple example:

Listing 3.82: original code
add eax, ebx
mul ecx

Listing 3.83: obfuscated code
xor esi, 011223344h ; garbage
add esi, eax ; garbage
add eax, ebx
mov edx, eax ; garbage
shl edx, 4 ; garbage
mul ecx
xor esi, ecx ; garbage

Here the garbage code uses registers which are not used in the real code (ESI and
EDX). However, the intermediate results produced by the real code may be used by
the garbage instructions for some extra mess—why not?

Replacing instructions with bloated equivalents

• MOV op1, op2 can be replaced by the PUSH op2 / POP op1 pair.
• JMP label can be replaced by the PUSH label / RET pair. IDA will not show
the references to the label.

• CALL label can be replaced by the following instructions triplet:
PUSH label_after_CALL_instruction / PUSH label / RET.

• PUSH op can also be replaced with the following instructions pair:
SUB ESP, 4 (or 8) / MOV [ESP], op.

Always executed/never executed code

If the developer is sure that ESI at always 0 at that point:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

678

mov esi, 1
... ; some code not touching ESI
dec esi
... ; some code not touching ESI
cmp esi, 0
jz real_code
; fake luggage
real_code:

The reverse engineer needs some time to get into it.
This is also called an opaque predicate.
Another example (and again, the developer is sure that ESI is always zero):
; ESI=0
add eax, ebx ; real code
mul ecx ; real code
add eax, esi ; opaque predicate. XOR, AND or SHL, etc, can be here

instead of ADD.

Making a lot of mess

instruction 1
instruction 2
instruction 3

Can be replaced with:
begin: jmp ins1_label

ins2_label: instruction 2
jmp ins3_label

ins3_label: instruction 3
jmp exit:

ins1_label: instruction 1
jmp ins2_label

exit:

Using indirect pointers

dummy_data1 db 100h dup (0)
message1 db 'hello world',0

dummy_data2 db 200h dup (0)
message2 db 'another message',0

func proc
...

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

679
mov eax, offset dummy_data1 ; PE or ELF reloc here
add eax, 100h
push eax
call dump_string
...
mov eax, offset dummy_data2 ; PE or ELF reloc here
add eax, 200h
push eax
call dump_string
...

func endp

IDA will show references only to dummy_data1 and dummy_data2, but not to the text
strings.
Global variables and even functions may be accessed like that.
Now something slightly more advanced.
Honestly, I don’t know its exact name, but I would call it shifted pointer. This tech-
nique is quite common, at least in copy protection schemes.
In short: while writing a value into global memory you use an address, but by reading
you use a sum of (other) addresses, or maybe a difference. The goal is to hide a real
address from a reverse engineer who debugs the code or exploring it in IDA (or
another disassembler).
This can be a nuisance.
#include <stdio.h>

// 64KiB, but it's OK
unsigned char secret_array[0x10000];

void check_lic_key()
{

// pretend licence check has been failed
secret_array[0x6123]=1; // 1 mean failed

printf ("check failed\n"); // exit(0); // / a cracker may patch here

// or put there another value if check is succeeded
secret_array[0x6123]=0;

};

unsigned char get_byte_at_0x6000(unsigned char *a)
{

return *(a+0x6000);
};

void check_again()
{

if (get_byte_at_0x6000(secret_array+0x123)==1)
{

// do something mean (add watermark maybe) or report error:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

680
printf ("check failed\n");

}
else
{

// proceed further
};

};

int main()
{

// at start:
check_lic_key();

// do something

// ... and while in some very critical part:
check_again();

};

If compiled by non-optimizing MSVC 2015:
_check_lic_key proc near

push ebp
mov ebp, esp
mov eax, 1
imul ecx, eax, 6123h
mov _secret_array[ecx], 1
pop ebp
retn

_check_lic_key endp

_get_byte_at_0x6000 proc near

a = dword ptr 8

push ebp
mov ebp, esp
mov eax, [ebp+a]
mov al, [eax+6000h]
pop ebp
retn

_get_byte_at_0x6000 endp

_check_again proc near
push ebp
mov ebp, esp
push offset point_passed_to_get_byte_at_0x6000
call j__get_byte_at_0x6000
add esp, 4
movzx eax, al
cmp eax, 1
jnz short loc_406735
push offset _Format ; "check failed\n"

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

681
call j__printf
add esp, 4

loc_406735:
pop ebp
retn

_check_again endp

.data:0045F5C0 ; char secret_array[65536]

.data:0045F5C0 _secret_array db 123h dup(?)

.data:0045F6E3 ; char point_passed_to_get_byte_at_0x6000[65245]

.data:0045F6E3 point_passed_to_get_byte_at_0x6000 db 0FEDDh dup(?)

You see, IDA can only get two addresses: secret_array[] (start of the array) and
point_passed_to_get_byte_at_0x6000.
How to deal with it: you can use hardware breakpoints on memory access operations
tracer has BPMx options) or symbolic execution engine or maybe you can write a
plugin for IDA...
Surely, one array can be used for many values, not limited to boolean ones...
N.B.: OptimizingMSVC 2015 is smart enough to optimize the get_byte_at_0x6000()
function out.

3.20.3 Virtual machine / pseudo-code
A programmer can construct his/her own PL or ISA and interpreter for it.
(Like the pre-5.0 Visual Basic, .NET or Java machines). The reverse engineer will
have to spend some time to understand the meaning and details of all of the ISA’s
instructions.
He/she will also have to write a disassembler/decompiler of some sort.

3.20.4 Other things to mention
My own (yet weak) attempt to patch the Tiny C compiler to produce obfuscated code:
http://blog.yurichev.com/node/58.
Using the MOV instruction for really complicated things: [Stephen Dolan, mov is
Turing-complete, (2013)] 22.

3.20.5 Exercise
• http://challenges.re/29

22Also available as http://www.cl.cam.ac.uk/~sd601/papers/mov.pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://blog.yurichev.com/node/58
http://challenges.re/29
http://www.cl.cam.ac.uk/~sd601/papers/mov.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

682
3.21 C++
3.21.1 Classes
A simple example

Internally, the representation of C++ classes is almost the same as the structures.
Let’s try an example with two variables, two constructors and one method:
#include <stdio.h>

class c
{
private:

int v1;
int v2;

public:
c() // default ctor
{

v1=667;
v2=999;

};

c(int a, int b) // ctor
{

v1=a;
v2=b;

};

void dump()
{

printf ("%d; %d\n", v1, v2);
};

};

int main()
{

class c c1;
class c c2(5,6);

c1.dump();
c2.dump();

return 0;
};

MSVC: x86

Here is how the main() function looks like, translated into assembly language:

Listing 3.84: MSVC

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

683
_c2$ = -16 ; size = 8
_c1$ = -8 ; size = 8
_main PROC

push ebp
mov ebp, esp
sub esp, 16
lea ecx, DWORD PTR _c1$[ebp]
call ??0c@@QAE@XZ ; c::c
push 6
push 5
lea ecx, DWORD PTR _c2$[ebp]
call ??0c@@QAE@HH@Z ; c::c
lea ecx, DWORD PTR _c1$[ebp]
call ?dump@c@@QAEXXZ ; c::dump
lea ecx, DWORD PTR _c2$[ebp]
call ?dump@c@@QAEXXZ ; c::dump
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

Here’s what’s going on. For each object (instance of class c) 8 bytes are allocated,
exactly the size needed to store the 2 variables.
For c1 a default argumentless constructor ??0c@@QAE@XZ is called. For c2 another
constructor ??0c@@QAE@HH@Z is called and two numbers are passed as arguments.
A pointer to the object (this in C++ terminology) is passed in the ECX register. This
is called thiscall (3.21.1)—the method for passing a pointer to the object.
MSVC does it using the ECX register. Needless to say, it is not a standardized method,
other compilers can do it differently, e.g., via the first function argument (like GCC).
Why do these functions have such odd names? That’s name mangling.
A C++ class may contain several methods sharing the same name but having dif-
ferent arguments—that is polymorphism. And of course, different classes may have
their own methods with the same name.
Name mangling enable us to encode the class name + method name + all method
argument types in one ASCII string, which is then used as an internal function name.
That’s all because neither the linker, nor the DLL OS loader (mangled names may be
among the DLL exports as well) knows anything about C++ or OOP23.
The dump() function is called two times.
Now let’s see the constructors’ code:

Listing 3.85: MSVC
_this$ = -4 ; size = 4
??0c@@QAE@XZ PROC ; c::c, COMDAT
; _this$ = ecx

23Object-Oriented Programming

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

684
push ebp
mov ebp, esp
push ecx
mov DWORD PTR _this$[ebp], ecx
mov eax, DWORD PTR _this$[ebp]
mov DWORD PTR [eax], 667
mov ecx, DWORD PTR _this$[ebp]
mov DWORD PTR [ecx+4], 999
mov eax, DWORD PTR _this$[ebp]
mov esp, ebp
pop ebp
ret 0

??0c@@QAE@XZ ENDP ; c::c

_this$ = -4 ; size = 4
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
??0c@@QAE@HH@Z PROC ; c::c, COMDAT
; _this$ = ecx

push ebp
mov ebp, esp
push ecx
mov DWORD PTR _this$[ebp], ecx
mov eax, DWORD PTR _this$[ebp]
mov ecx, DWORD PTR _a$[ebp]
mov DWORD PTR [eax], ecx
mov edx, DWORD PTR _this$[ebp]
mov eax, DWORD PTR _b$[ebp]
mov DWORD PTR [edx+4], eax
mov eax, DWORD PTR _this$[ebp]
mov esp, ebp
pop ebp
ret 8

??0c@@QAE@HH@Z ENDP ; c::c

The constructors are just functions, they use a pointer to the structure in ECX, copying
the pointer into their own local variable, however, it is not necessary.
From the C++ standard (C++11 12.1) we know that constructors are not required
to return any values.
In fact, internally, the constructors return a pointer to the newly created object, i.e.,
this.
Now the dump() method:

Listing 3.86: MSVC
_this$ = -4 ; size = 4
?dump@c@@QAEXXZ PROC ; c::dump, COMDAT
; _this$ = ecx

push ebp
mov ebp, esp
push ecx
mov DWORD PTR _this$[ebp], ecx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

685
mov eax, DWORD PTR _this$[ebp]
mov ecx, DWORD PTR [eax+4]
push ecx
mov edx, DWORD PTR _this$[ebp]
mov eax, DWORD PTR [edx]
push eax
push OFFSET ??_C@_07NJBDCIEC@?$CFd?$DL?5?$CFd?6?$AA@
call _printf
add esp, 12
mov esp, ebp
pop ebp
ret 0

?dump@c@@QAEXXZ ENDP ; c::dump

Simple enough: dump() takes a pointer to the structure that contains the two int’s
from ECX, takes both values from it and passes them to printf().
The code is much shorter if compiled with optimizations (/Ox):

Listing 3.87: MSVC
??0c@@QAE@XZ PROC ; c::c, COMDAT
; _this$ = ecx

mov eax, ecx
mov DWORD PTR [eax], 667
mov DWORD PTR [eax+4], 999
ret 0

??0c@@QAE@XZ ENDP ; c::c

_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
??0c@@QAE@HH@Z PROC ; c::c, COMDAT
; _this$ = ecx

mov edx, DWORD PTR _b$[esp-4]
mov eax, ecx
mov ecx, DWORD PTR _a$[esp-4]
mov DWORD PTR [eax], ecx
mov DWORD PTR [eax+4], edx
ret 8

??0c@@QAE@HH@Z ENDP ; c::c

?dump@c@@QAEXXZ PROC ; c::dump, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx+4]
mov ecx, DWORD PTR [ecx]
push eax
push ecx
push OFFSET ??_C@_07NJBDCIEC@?$CFd?$DL?5?$CFd?6?$AA@
call _printf
add esp, 12
ret 0

?dump@c@@QAEXXZ ENDP ; c::dump

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

686
That’s all. The other thing we must note is that the stack pointer hasn’t been cor-
rected with add esp, X after the constructor has been called. At the same time, the
constructor has ret 8 instead of RET at the end.
This is all because the thiscall (3.21.1 on page 683) calling convention is used here,
which together with the stdcall (6.1.2 on page 932) method offers the callee to cor-
rect the stack instead of the caller. The ret x instruction adds X to the value in ESP,
then passes the control to the caller function.
See also the section about calling conventions (6.1 on page 932).
It also has to be noted that the compiler decides when to call the constructor and
destructor—but we already know that from the C++ language basics.

MSVC: x86-64

As we already know, the first 4 function arguments in x86-64 are passed in RCX, RDX,
R8 and R9 registers, all the rest—via the stack.
Nevertheless, the this pointer to the object is passed in RCX, the first argument of
the method in RDX, etc. We can see this in the c(int a, int b) method internals:

Listing 3.88: Optimizing MSVC 2012 x64
; void dump()

?dump@c@@QEAAXXZ PROC ; c::dump
mov r8d, DWORD PTR [rcx+4]
mov edx, DWORD PTR [rcx]
lea rcx, OFFSET FLAT:??_C@_07NJBDCIEC@?$CFd?$DL?5?$CFd?6?$AA@ ;
'%d; %d'
jmp printf

?dump@c@@QEAAXXZ ENDP ; c::dump

; c(int a, int b)

??0c@@QEAA@HH@Z PROC ; c::c
mov DWORD PTR [rcx], edx ; 1st argument: a
mov DWORD PTR [rcx+4], r8d ; 2nd argument: b
mov rax, rcx
ret 0

??0c@@QEAA@HH@Z ENDP ; c::c

; default ctor

??0c@@QEAA@XZ PROC ; c::c
mov DWORD PTR [rcx], 667
mov DWORD PTR [rcx+4], 999
mov rax, rcx
ret 0

??0c@@QEAA@XZ ENDP ; c::c

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

687
The int data type is still 32-bit in x64 24, so that is why 32-bit register parts are used
here.
We also see JMP printf instead of RET in the dump() method, that hack we already
saw earlier: 1.21.1 on page 197.

GCC: x86

It is almost the same story in GCC 4.4.1, with a few exceptions.

Listing 3.89: GCC 4.4.1
public main

main proc near

var_20 = dword ptr -20h
var_1C = dword ptr -1Ch
var_18 = dword ptr -18h
var_10 = dword ptr -10h
var_8 = dword ptr -8

push ebp
mov ebp, esp
and esp, 0FFFFFFF0h
sub esp, 20h
lea eax, [esp+20h+var_8]
mov [esp+20h+var_20], eax
call _ZN1cC1Ev
mov [esp+20h+var_18], 6
mov [esp+20h+var_1C], 5
lea eax, [esp+20h+var_10]
mov [esp+20h+var_20], eax
call _ZN1cC1Eii
lea eax, [esp+20h+var_8]
mov [esp+20h+var_20], eax
call _ZN1c4dumpEv
lea eax, [esp+20h+var_10]
mov [esp+20h+var_20], eax
call _ZN1c4dumpEv
mov eax, 0
leave
retn

main endp

Here we see another name mangling style, specific to GNU 25. It can also be noted
that the pointer to the object is passed as the first function argument—invisible to
programmer, of course.
First constructor:
24Apparently, for easier porting of 32-bit C/C++ code to x64.
25There is a good document about the various name mangling conventions in different compilers:
[Agner Fog, Calling conventions (2015)].

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

688

public _ZN1cC1Ev ; weak
_ZN1cC1Ev proc near ; CODE XREF: main+10

arg_0 = dword ptr 8

push ebp
mov ebp, esp
mov eax, [ebp+arg_0]
mov dword ptr [eax], 667
mov eax, [ebp+arg_0]
mov dword ptr [eax+4], 999
pop ebp
retn

_ZN1cC1Ev endp

It just writes two numbers using the pointer passed in the first (and only) argument.
Second constructor:

public _ZN1cC1Eii
_ZN1cC1Eii proc near

arg_0 = dword ptr 8
arg_4 = dword ptr 0Ch
arg_8 = dword ptr 10h

push ebp
mov ebp, esp
mov eax, [ebp+arg_0]
mov edx, [ebp+arg_4]
mov [eax], edx
mov eax, [ebp+arg_0]
mov edx, [ebp+arg_8]
mov [eax+4], edx
pop ebp
retn

_ZN1cC1Eii endp

This is a function, the analog of which can look like this:
void ZN1cC1Eii (int *obj, int a, int b)
{

*obj=a;
*(obj+1)=b;

};

…and that is completely predictable.
Now the dump() function:

public _ZN1c4dumpEv
_ZN1c4dumpEv proc near

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

689
var_18 = dword ptr -18h
var_14 = dword ptr -14h
var_10 = dword ptr -10h
arg_0 = dword ptr 8

push ebp
mov ebp, esp
sub esp, 18h
mov eax, [ebp+arg_0]
mov edx, [eax+4]
mov eax, [ebp+arg_0]
mov eax, [eax]
mov [esp+18h+var_10], edx
mov [esp+18h+var_14], eax
mov [esp+18h+var_18], offset aDD ; "%d; %d\n"
call _printf
leave
retn

_ZN1c4dumpEv endp

This function in its internal representation has only one argument, used as pointer
to the object (this).
This function could be rewritten in C like this:
void ZN1c4dumpEv (int *obj)
{

printf ("%d; %d\n", *obj, *(obj+1));
};

Thus, if we base our judgment on these simple examples, the difference between
MSVC and GCC is the style of the encoding of function names (name mangling) and
the method for passing a pointer to the object (via the ECX register or via the first
argument).

GCC: x86-64

The first 6 arguments, as we already know, are passed in the RDI, RSI, RDX, RCX,
R8 and R9 ([Michael Matz, Jan Hubicka, Andreas Jaeger, Mark Mitchell, System V
Application Binary Interface. AMD64 Architecture Processor Supplement, (2013)] 26)
registers, and the pointer to this via the first one (RDI) and that is what we see here.
The int data type is also 32-bit here.
The JMP instead of RET hack is also used here.

Listing 3.90: GCC 4.4.6 x64
; default ctor

_ZN1cC2Ev:

26Also available as https://software.intel.com/sites/default/files/article/402129/
mpx-linux64-abi.pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

690
mov DWORD PTR [rdi], 667
mov DWORD PTR [rdi+4], 999
ret

; c(int a, int b)

_ZN1cC2Eii:
mov DWORD PTR [rdi], esi
mov DWORD PTR [rdi+4], edx
ret

; dump()

_ZN1c4dumpEv:
mov edx, DWORD PTR [rdi+4]
mov esi, DWORD PTR [rdi]
xor eax, eax
mov edi, OFFSET FLAT:.LC0 ; "%d; %d\n"
jmp printf

Class inheritance

Inherited classes are similar to the simple structures we already discussed, but ex-
tended in inheritable classes.
Let’s take this simple example:
#include <stdio.h>

class object
{

public:
int color;
object() { };
object (int color) { this->color=color; };
void print_color() { printf ("color=%d\n", color); };

};

class box : public object
{

private:
int width, height, depth;

public:
box(int color, int width, int height, int depth)
{

this->color=color;
this->width=width;
this->height=height;
this->depth=depth;

};
void dump()
{

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

691
printf ("this is a box. color=%d, width=%d, height=%d, depth=%d⤦

Ç \n", color, width, height, depth);
};

};

class sphere : public object
{
private:

int radius;
public:

sphere(int color, int radius)
{

this->color=color;
this->radius=radius;

};
void dump()
{

printf ("this is sphere. color=%d, radius=%d\n", color, radius);
};

};

int main()
{

box b(1, 10, 20, 30);
sphere s(2, 40);

b.print_color();
s.print_color();

b.dump();
s.dump();

return 0;
};

Let’s investigate the generated code of the dump() functions/methods and also
object::print_color(), and see the memory layout for the structures-objects (for
32-bit code).
So, here are the dump() methods for several classes, generated by MSVC 2008 with
/Ox and /Ob0 options 27.

Listing 3.91: Optimizing MSVC 2008 /Ob0
??_C@_09GCEDOLPA@color?$DN?$CFd?6?$AA@ DB 'color=%d', 0aH, 00H ; `string'
?print_color@object@@QAEXXZ PROC ; object::print_color, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx]
push eax

; 'color=%d', 0aH, 00H

27The /Ob0 option stands for disabling inline expansion since function inlining can make our experiment
harder.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

692
push OFFSET ??_C@_09GCEDOLPA@color?$DN?$CFd?6?$AA@
call _printf
add esp, 8
ret 0

?print_color@object@@QAEXXZ ENDP ; object::print_color

Listing 3.92: Optimizing MSVC 2008 /Ob0
?dump@box@@QAEXXZ PROC ; box::dump, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx+12]
mov edx, DWORD PTR [ecx+8]
push eax
mov eax, DWORD PTR [ecx+4]
mov ecx, DWORD PTR [ecx]
push edx
push eax
push ecx

;
'this is a box. color=%d, width=%d, height=%d, depth=%d', 0aH, 00H ; `string'
push OFFSET ??_C@_0DG@NCNGAADL@this?5is?5box?4?5color?$DN?$CFd?0?5width⤦
Ç ?$DN?$CFd?0@
call _printf
add esp, 20
ret 0

?dump@box@@QAEXXZ ENDP ; box::dump

Listing 3.93: Optimizing MSVC 2008 /Ob0
?dump@sphere@@QAEXXZ PROC ; sphere::dump, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx+4]
mov ecx, DWORD PTR [ecx]
push eax
push ecx

; 'this is sphere. color=%d, radius=%d', 0aH, 00H
push OFFSET ??_C@_0CF@EFEDJLDC@this?5is?5sphere?4?5color?$DN?$CFd?0?5⤦
Ç radius@
call _printf
add esp, 12
ret 0

?dump@sphere@@QAEXXZ ENDP ; sphere::dump

So, here is the memory layout:
(base class object)

offset description
+0x0 int color

(inherited classes)
box:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

693
offset description
+0x0 int color
+0x4 int width
+0x8 int height
+0xC int depth

sphere:
offset description
+0x0 int color
+0x4 int radius

Let’s see main() function body:

Listing 3.94: Optimizing MSVC 2008 /Ob0
PUBLIC _main
_TEXT SEGMENT
_s$ = -24 ; size = 8
_b$ = -16 ; size = 16
_main PROC

sub esp, 24
push 30
push 20
push 10
push 1
lea ecx, DWORD PTR _b$[esp+40]
call ??0box@@QAE@HHHH@Z ; box::box
push 40
push 2
lea ecx, DWORD PTR _s$[esp+32]
call ??0sphere@@QAE@HH@Z ; sphere::sphere
lea ecx, DWORD PTR _b$[esp+24]
call ?print_color@object@@QAEXXZ ; object::print_color
lea ecx, DWORD PTR _s$[esp+24]
call ?print_color@object@@QAEXXZ ; object::print_color
lea ecx, DWORD PTR _b$[esp+24]
call ?dump@box@@QAEXXZ ; box::dump
lea ecx, DWORD PTR _s$[esp+24]
call ?dump@sphere@@QAEXXZ ; sphere::dump
xor eax, eax
add esp, 24
ret 0

_main ENDP

The inherited classes must always add their fields after the base classes’ fields, to
make it possible for the base class methods to work with their own fields.
When the object::print_color()method is called, a pointers to both the box and
sphere objects are passed as this, and it can work with these objects easily since
the color field in these objects is always at the pinned address (at offset +0x0).
It can be said that the object::print_color()method is agnostic in relation to the
input object type as long as the fields are pinned at the same addresses, and this
condition is always true.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

694
And if you create inherited class of the box class, the compiler will add the new fields
after the depth field, leaving the box class fields at the pinned addresses.
Thus, the box::dump() method will work fine for accessing the color, width, height
and depths fields, which are always pinned at known addresses.
The code generated by GCC is almost the same, with the sole exception of passing
the this pointer (as it has been explained above, it is passed as the first argument
instead of using the ECX register).

Encapsulation

Encapsulation is hiding the data in the private sections of the class, e.g. to allow
access to them only from this class methods.
However, are there any marks in code the about the fact that some field is private
and some other—not?
No, there are no such marks.
Let’s try this simple example:
#include <stdio.h>

class box
{

private:
int color, width, height, depth;

public:
box(int color, int width, int height, int depth)
{

this->color=color;
this->width=width;
this->height=height;
this->depth=depth;

};
void dump()
{

printf ("this is a box. color=%d, width=%d, height=%d, depth=%d⤦
Ç \n", color, width, height, depth);

};
};

Let’s compile it again in MSVC 2008with /Ox and /Ob0 options and see the box::dump()
method code:
?dump@box@@QAEXXZ PROC ; box::dump, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx+12]
mov edx, DWORD PTR [ecx+8]
push eax
mov eax, DWORD PTR [ecx+4]
mov ecx, DWORD PTR [ecx]
push edx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

695
push eax
push ecx

; 'this is a box. color=%d, width=%d, height=%d, depth=%d', 0aH, 00H
push OFFSET ??_C@_0DG@NCNGAADL@this?5is?5box?4?5color?$DN?$CFd?0?5width⤦
Ç ?$DN?$CFd?0@
call _printf
add esp, 20
ret 0

?dump@box@@QAEXXZ ENDP ; box::dump

Here is a memory layout of the class:
offset description
+0x0 int color
+0x4 int width
+0x8 int height
+0xC int depth

All fields are private and not allowed to be accessed from any other function, but
knowing this layout, can we create code that modifies these fields?
To do this we’ll add the hack_oop_encapsulation() function, which is not going to
compile if it looked like this:
void hack_oop_encapsulation(class box * o)
{

o->width=1; // that code can't be compiled:
// "error C2248: 'box::width' : cannot access private member

declared in class 'box'"
};

Nevertheless, if we cast the box type to a pointer to an int array, and we modify the
array of int-s that we have, we can succeed.
void hack_oop_encapsulation(class box * o)
{

unsigned int *ptr_to_object=reinterpret_cast<unsigned int*>(o);
ptr_to_object[1]=123;

};

This function’s code is very simple—it can be said that the function takes a pointer
to an array of int-s for input and writes 123 to the second int:
?hack_oop_encapsulation@@YAXPAVbox@@@Z PROC ; hack_oop_encapsulation

mov eax, DWORD PTR _o$[esp-4]
mov DWORD PTR [eax+4], 123
ret 0

?hack_oop_encapsulation@@YAXPAVbox@@@Z ENDP ; hack_oop_encapsulation

Let’s check how it works:
int main()
{

box b(1, 10, 20, 30);

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

696

b.dump();

hack_oop_encapsulation(&b);

b.dump();

return 0;
};

Let’s run:
this is a box. color=1, width=10, height=20, depth=30
this is a box. color=1, width=123, height=20, depth=30

We see that the encapsulation is just protection of class fields only in the compilation
stage.
The C++ compiler is not allowing the generation of code that modifies protected
fields straightforwardly, nevertheless, it is possible with the help of dirty hacks.

Multiple inheritance

Multiple inheritance is creating a class which inherits fields and methods from two
or more classes.
Let’s write a simple example again:
#include <stdio.h>

class box
{

public:
int width, height, depth;
box() { };
box(int width, int height, int depth)
{

this->width=width;
this->height=height;
this->depth=depth;

};
void dump()
{

printf ("this is a box. width=%d, height=%d, depth=%d\n", width⤦
Ç , height, depth);

};
int get_volume()
{

return width * height * depth;
};

};

class solid_object

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

697
{

public:
int density;
solid_object() { };
solid_object(int density)
{

this->density=density;
};
int get_density()
{

return density;
};
void dump()
{

printf ("this is a solid_object. density=%d\n", density);
};

};

class solid_box: box, solid_object
{

public:
solid_box (int width, int height, int depth, int density)
{

this->width=width;
this->height=height;
this->depth=depth;
this->density=density;

};
void dump()
{

printf ("this is a solid_box. width=%d, height=%d, depth=%d, ⤦
Ç density=%d\n", width, height, depth, density);

};
int get_weight() { return get_volume() * get_density(); };

};

int main()
{

box b(10, 20, 30);
solid_object so(100);
solid_box sb(10, 20, 30, 3);

b.dump();
so.dump();
sb.dump();
printf ("%d\n", sb.get_weight());

return 0;
};

Let’s compile it in MSVC 2008 with the /Ox and /Ob0 options and see the code of
box::dump(),
solid_object::dump() and solid_box::dump():

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

698
Listing 3.95: Optimizing MSVC 2008 /Ob0

?dump@box@@QAEXXZ PROC ; box::dump, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx+8]
mov edx, DWORD PTR [ecx+4]
push eax
mov eax, DWORD PTR [ecx]
push edx
push eax

; 'this is a box. width=%d, height=%d, depth=%d', 0aH, 00H
push OFFSET ??_C@_0CM@DIKPHDFI@this?5is?5box?4?5width?$DN?$CFd?0?5⤦
Ç height?$DN?$CFd@
call _printf
add esp, 16
ret 0

?dump@box@@QAEXXZ ENDP ; box::dump

Listing 3.96: Optimizing MSVC 2008 /Ob0
?dump@solid_object@@QAEXXZ PROC ; solid_object::dump, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx]
push eax

; 'this is a solid_object. density=%d', 0aH
push OFFSET ??_C@_0CC@KICFJINL@this?5is?5solid_object?4?5density?$DN?⤦
Ç $CFd@
call _printf
add esp, 8
ret 0

?dump@solid_object@@QAEXXZ ENDP ; solid_object::dump

Listing 3.97: Optimizing MSVC 2008 /Ob0
?dump@solid_box@@QAEXXZ PROC ; solid_box::dump, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx+12]
mov edx, DWORD PTR [ecx+8]
push eax
mov eax, DWORD PTR [ecx+4]
mov ecx, DWORD PTR [ecx]
push edx
push eax
push ecx

; 'this is a solid_box. width=%d, height=%d, depth=%d, density=%d', 0aH
push OFFSET ??_C@_0DO@HNCNIHNN@this?5is?5solid_box?4?5width?$DN?$CFd⤦
Ç ?0?5hei@
call _printf
add esp, 20
ret 0

?dump@solid_box@@QAEXXZ ENDP ; solid_box::dump

So, the memory layout for all three classes is:
box class:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

699
offset description
+0x0 width
+0x4 height
+0x8 depth

solid_object class:
offset description
+0x0 density

It can be said that the solid_box class memory layout is united:
solid_box class:

offset description
+0x0 width
+0x4 height
+0x8 depth
+0xC density

The code of the box::get_volume() and solid_object::get_density() methods
is trivial:

Listing 3.98: Optimizing MSVC 2008 /Ob0
?get_volume@box@@QAEHXZ PROC ; box::get_volume, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx+8]
imul eax, DWORD PTR [ecx+4]
imul eax, DWORD PTR [ecx]
ret 0

?get_volume@box@@QAEHXZ ENDP ; box::get_volume

Listing 3.99: Optimizing MSVC 2008 /Ob0
?get_density@solid_object@@QAEHXZ PROC ; solid_object::get_density, COMDAT
; _this$ = ecx

mov eax, DWORD PTR [ecx]
ret 0

?get_density@solid_object@@QAEHXZ ENDP ; solid_object::get_density

But the code of the solid_box::get_weight() method is much more interesting:

Listing 3.100: Optimizing MSVC 2008 /Ob0
?get_weight@solid_box@@QAEHXZ PROC ; solid_box::get_weight, COMDAT
; _this$ = ecx

push esi
mov esi, ecx
push edi
lea ecx, DWORD PTR [esi+12]
call ?get_density@solid_object@@QAEHXZ ; solid_object::get_density
mov ecx, esi
mov edi, eax
call ?get_volume@box@@QAEHXZ ; box::get_volume
imul eax, edi

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

700
pop edi
pop esi
ret 0

?get_weight@solid_box@@QAEHXZ ENDP ; solid_box::get_weight

get_weight() just calls two methods, but for get_volume() it just passes pointer
to this, and for get_density() it passes a pointer to this incremented by 12
(or 0xC) bytes, and there, in the solid_box class memory layout, the fields of the
solid_object class start.
Thus, the solid_object::get_density() method will believe like it is dealing with
the usual solid_object class, and the box::get_volume() method will work with
its three fields, believing this is just the usual object of class box.
Thus, we can say, an object of a class, that inherits from several other classes, is
representing in memory as a united class, that contains all inherited fields. And each
inherited method is called with a pointer to the corresponding structure’s part.

Virtual methods

Yet another simple example:
#include <stdio.h>

class object
{

public:
int color;
object() { };
object (int color) { this->color=color; };
virtual void dump()
{

printf ("color=%d\n", color);
};

};

class box : public object
{

private:
int width, height, depth;

public:
box(int color, int width, int height, int depth)
{

this->color=color;
this->width=width;
this->height=height;
this->depth=depth;

};
void dump()
{

printf ("this is a box. color=%d, width=%d, height=%d, depth=%d⤦
Ç \n", color, width, height, depth);

};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

701
};

class sphere : public object
{

private:
int radius;

public:
sphere(int color, int radius)
{

this->color=color;
this->radius=radius;

};
void dump()
{

printf ("this is sphere. color=%d, radius=%d\n", color, radius)⤦
Ç ;

};
};

int main()
{

box b(1, 10, 20, 30);
sphere s(2, 40);

object *o1=&b;
object *o2=&s;

o1->dump();
o2->dump();
return 0;

};

Class object has a virtual method dump() that is being replaced in the inheriting box
and sphere classes.
If we are in an environment where it is not known the type of an object, as in the
main() function in example, where the virtual method dump() is called, the informa-
tion about its type must be stored somewhere, to be able to call the relevant virtual
method.
Let’s compile it in MSVC 2008 with the /Ox and /Ob0 options and see the code of
main():
_s$ = -32 ; size = 12
_b$ = -20 ; size = 20
_main PROC

sub esp, 32
push 30
push 20
push 10
push 1
lea ecx, DWORD PTR _b$[esp+48]
call ??0box@@QAE@HHHH@Z ; box::box
push 40

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

702
push 2
lea ecx, DWORD PTR _s$[esp+40]
call ??0sphere@@QAE@HH@Z ; sphere::sphere
mov eax, DWORD PTR _b$[esp+32]
mov edx, DWORD PTR [eax]
lea ecx, DWORD PTR _b$[esp+32]
call edx
mov eax, DWORD PTR _s$[esp+32]
mov edx, DWORD PTR [eax]
lea ecx, DWORD PTR _s$[esp+32]
call edx
xor eax, eax
add esp, 32
ret 0

_main ENDP

A pointer to the dump() function is taken somewhere from the object. Where could
we store the address of the newmethod? Only somewhere in the constructors: there
is no other place since nothing else is called in the main() function. 28

Let’s see the code of the constructor of the box class:
??_R0?AVbox@@@8 DD FLAT:??_7type_info@@6B@ ; box `RTTI Type Descriptor'

DD 00H
DB '.?AVbox@@', 00H

??_R1A@?0A@EA@box@@8 DD FLAT:??_R0?AVbox@@@8 ; box::`RTTI Base Class
Descriptor at (0,-1,0,64)'
DD 01H
DD 00H
DD 0ffffffffH
DD 00H
DD 040H
DD FLAT:??_R3box@@8

??_R2box@@8 DD FLAT:??_R1A@?0A@EA@box@@8 ; box::`RTTI Base Class Array'
DD FLAT:??_R1A@?0A@EA@object@@8

??_R3box@@8 DD 00H ; box::`RTTI Class Hierarchy Descriptor'
DD 00H
DD 02H
DD FLAT:??_R2box@@8

??_R4box@@6B@ DD 00H ; box::`RTTI Complete Object Locator'
DD 00H
DD 00H
DD FLAT:??_R0?AVbox@@@8
DD FLAT:??_R3box@@8

??_7box@@6B@ DD FLAT:??_R4box@@6B@ ; box::`vftable'
DD FLAT:?dump@box@@UAEXXZ

28You can read more about pointers to functions in the relevant section:(1.33 on page 483)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

703
_color$ = 8 ; size = 4
_width$ = 12 ; size = 4
_height$ = 16 ; size = 4
_depth$ = 20 ; size = 4
??0box@@QAE@HHHH@Z PROC ; box::box, COMDAT
; _this$ = ecx

push esi
mov esi, ecx
call ??0object@@QAE@XZ ; object::object
mov eax, DWORD PTR _color$[esp]
mov ecx, DWORD PTR _width$[esp]
mov edx, DWORD PTR _height$[esp]
mov DWORD PTR [esi+4], eax
mov eax, DWORD PTR _depth$[esp]
mov DWORD PTR [esi+16], eax
mov DWORD PTR [esi], OFFSET ??_7box@@6B@
mov DWORD PTR [esi+8], ecx
mov DWORD PTR [esi+12], edx
mov eax, esi
pop esi
ret 16

??0box@@QAE@HHHH@Z ENDP ; box::box

Here we see a slightly different memory layout: the first field is a pointer to some
table box::`vftable' (the name has been set by the MSVC compiler).
In this table we see a link to a table named
box::`RTTI Complete Object Locator' and also a link
to the box::dump() method.
These are called virtual methods table and RTTI29. The table of virtual methods has
the addresses of methods and the RTTI table contains information about types.
By the way, the RTTI tables are used while calling dynamic_cast and typeid in C++.
You can also see here the class name as a plain text string.
Thus, a method of the base object class may call the virtual method object::dump(),
which in turn will call a method of an inherited class, since that information is present
right in the object’s structure.
Some additional CPU time is needed for doing look-ups in these tables and finding the
right virtual method address, thus virtual methods are widely considered as slightly
slower than common methods.
In GCC-generated code the RTTI tables are constructed slightly differently.

3.21.2 ostream
Let’s start again with a “hello world” example, but now we are going to use ostream:
#include <iostream>

29Run-Time Type Information

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

704
int main()
{

std::cout << "Hello, world!\n";
}

Almost any C++ textbook tells us that the << operation can be defined (overloaded)
for other types. That is what is done in ostream. We see that operator<< is called
for ostream:

Listing 3.101: MSVC 2012 (reduced listing)
$SG37112 DB 'Hello, world!', 0aH, 00H

_main PROC
push OFFSET $SG37112
push OFFSET ?cout@std@@3V?$basic_ostream@DU?$char_traits@D@std@@@1@A ;
std::cout
call ??$?6U?$char_traits@D@std@@@std@@YAAAV?$basic_ostream@DU?⤦
Ç $char_traits@D@std@@@0@AAV10@PBD@Z ;
std::operator<<<std::char_traits<char> >
add esp, 8
xor eax, eax
ret 0

_main ENDP

Let’s modify the example:
#include <iostream>

int main()
{

std::cout << "Hello, " << "world!\n";
}

And again, from many C++ textbooks we know that the result of each operator<<
in ostream is forwarded to the next one. Indeed:

Listing 3.102: MSVC 2012
$SG37112 DB 'world!', 0aH, 00H
$SG37113 DB 'Hello, ', 00H

_main PROC
push OFFSET $SG37113 ; 'Hello, '
push OFFSET ?cout@std@@3V?$basic_ostream@DU?$char_traits@D@std@@@1@A ;
std::cout
call ??$?6U?$char_traits@D@std@@@std@@YAAAV?$basic_ostream@DU?⤦
Ç $char_traits@D@std@@@0@AAV10@PBD@Z ;
std::operator<<<std::char_traits<char> >
add esp, 8

push OFFSET $SG37112 ; 'world!'
push eax ; result of previous function execution
call ??$?6U?$char_traits@D@std@@@std@@YAAAV?$basic_ostream@DU?⤦
Ç $char_traits@D@std@@@0@AAV10@PBD@Z ;
std::operator<<<std::char_traits<char> >

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

705
add esp, 8

xor eax, eax
ret 0

_main ENDP

If we would rename operator<< method name to f(), that code will looks like:
f(f(std::cout, "Hello, "), "world!");

GCC generates almost the same code as MSVC.

3.21.3 References
In C++, references are pointers (3.23 on page 756) as well, but they are called safe,
because it is harder to make a mistake while dealing with them (C++11 8.3.2).
For example, reference must always be pointing to an object of the corresponding
type and cannot be NULL [Marshall Cline, C++ FAQ8.6].
Even more than that, references cannot be changed, it is impossible to point them
to another object (reseat) [Marshall Cline, C++ FAQ8.5].
If we are going to change the example with pointers (3.23 on page 756) to use
references instead …
void f2 (int x, int y, int & sum, int & product)
{

sum=x+y;
product=x*y;

};

…then we can see that the compiled code is just the same as in the pointers example
(3.23 on page 756):

Listing 3.103: Optimizing MSVC 2010
_x$ = 8 ; size = 4
_y$ = 12 ; size = 4
_sum$ = 16 ; size = 4
_product$ = 20 ; size = 4
?f2@@YAXHHAAH0@Z PROC ; f2

mov ecx, DWORD PTR _y$[esp-4]
mov eax, DWORD PTR _x$[esp-4]
lea edx, DWORD PTR [eax+ecx]
imul eax, ecx
mov ecx, DWORD PTR _product$[esp-4]
push esi
mov esi, DWORD PTR _sum$[esp]
mov DWORD PTR [esi], edx
mov DWORD PTR [ecx], eax
pop esi
ret 0

?f2@@YAXHHAAH0@Z ENDP ; f2

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

706
(The reason why C++ functions has such strange names is explained here: 3.21.1
on page 683.)
Hence, C++ references are as much efficient as usual pointers.

3.21.4 STL
N.B.: all examples here were checked only in 32-bit environment. x64wasn’t checked.

std::string

Internals

Many string libraries [Dennis Yurichev, C/C++ programming language notes2.2] im-
plement a structure that contains a pointer to a string buffer, a variable that al-
ways contains the current string length (which is very convenient for many func-
tions: [Dennis Yurichev, C/C++ programming language notes2.2.1]) and a variable
containing the current buffer size.
The string in the buffer is usually terminated with zero, in order to be able to pass a
pointer to the buffer into the functions that take usual C ASCIIZ strings.
It is not specified in the C++ standard how std::string has to be implemented, how-
ever, it is usually implemented as explained above.
The C++ string is not a class (as QString in Qt, for instance) but a template (ba-
sic_string), this is made in order to support various character types: at least char
and wchar_t.
So, std::string is a class with char as its base type.
And std::wstring is a class with wchar_t as its base type.

MSVC

The MSVC implementation may store the buffer in place instead of using a pointer
to a buffer (if the string is shorter than 16 symbols).
This implies that a short string is to occupy at least 16 + 4 + 4 = 24 bytes in 32-bit
environment or at least 16 + 8+ 8 = 32

bytes in 64-bit one, and if the string is longer than 16 characters, we also have to
add the length of the string itself.

Listing 3.104: example for MSVC
#include <string>
#include <stdio.h>

struct std_string
{

union
{

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

707
char buf[16];
char* ptr;

} u;
size_t size; // AKA 'Mysize' in MSVC
size_t capacity; // AKA 'Myres' in MSVC

};

void dump_std_string(std::string s)
{

struct std_string *p=(struct std_string*)&s;
printf ("[%s] size:%d capacity:%d\n", p->size>16 ? p->u.ptr : p->u.buf,⤦
Ç p->size, p->capacity);

};

int main()
{

std::string s1="a short string";
std::string s2="a string longer than 16 bytes";

dump_std_string(s1);
dump_std_string(s2);

// that works without using c_str()
printf ("%s\n", &s1);
printf ("%s\n", s2);

};

Almost everything is clear from the source code.
A couple of notes:
If the string is shorter than 16 symbols, a buffer for the string is not to be allocated
in the heap.
This is convenient because in practice, a lot of strings are short indeed.
Looks like that Microsoft’s developers chose 16 characters as a good balance.
One very important thing here can be seen at the end of main(): we’re not using
the c_str() method, nevertheless, if we compile and run this code, both strings will
appear in the console!
This is why it works.
In the first case the string is shorter than 16 characters and the buffer with the string
is located in the beginning of the std::string object (it can be treated as a structure).
printf() treats the pointer as a pointer to the null-terminated array of characters,
hence it works.
Printing the second string (longer than 16 characters) is even more dangerous: it is
a typical programmer’s mistake (or typo) to forget to write c_str().
This works because at the moment a pointer to buffer is located at the start of struc-
ture.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

708
This may stay unnoticed for a long time, until a longer string appears there at some
time, then the process will crash.

GCC

GCC’s implementation of this structure has one more variable—reference count.
One interesting fact is that in GCC, a pointer to an instance of std::string instance
points not to the beginning of the structure, but to the buffer pointer. In libstdc++-
v3\include\bits\basic_string.h we can read that it was done for more convenient de-
bugging:

* The reason you want _M_data pointing to the character %array and
* not the _Rep is so that the debugger can see the string
* contents. (Probably we should add a non-inline member to get
* the _Rep for the debugger to use, so users can check the actual
* string length.)

basic_string.h source code
We consider this in our example:

Listing 3.105: example for GCC
#include <string>
#include <stdio.h>

struct std_string
{

size_t length;
size_t capacity;
size_t refcount;

};

void dump_std_string(std::string s)
{

char *p1=*(char**)&s; // GCC type checking workaround
struct std_string *p2=(struct std_string*)(p1-sizeof(struct std_string)⤦
Ç);
printf ("[%s] size:%d capacity:%d\n", p1, p2->length, p2->capacity);

};

int main()
{

std::string s1="a short string";
std::string s2="a string longer than 16 bytes";

dump_std_string(s1);
dump_std_string(s2);

// GCC type checking workaround:
printf ("%s\n", *(char**)&s1);
printf ("%s\n", *(char**)&s2);

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01068.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

709
};

A trickery has to be used to imitate the mistake we already have seen above because
GCC has stronger type checking, nevertheless, printf() works here without c_str() as
well.

A more advanced example

#include <string>
#include <stdio.h>

int main()
{

std::string s1="Hello, ";
std::string s2="world!\n";
std::string s3=s1+s2;

printf ("%s\n", s3.c_str());
}

Listing 3.106: MSVC 2012
$SG39512 DB 'Hello, ', 00H
$SG39514 DB 'world!', 0aH, 00H
$SG39581 DB '%s', 0aH, 00H

_s2$ = -72 ; size = 24
_s3$ = -48 ; size = 24
_s1$ = -24 ; size = 24
_main PROC

sub esp, 72

push 7
push OFFSET $SG39512
lea ecx, DWORD PTR _s1$[esp+80]
mov DWORD PTR _s1$[esp+100], 15
mov DWORD PTR _s1$[esp+96], 0
mov BYTE PTR _s1$[esp+80], 0
call ?assign@?$basic_string@DU?$char_traits@D@std@@V?⤦
Ç $allocator@D@2@@std@@QAEAAV12@PBDI@Z ;
std::basic_string<char,std::char_traits<char>,std::allocator<char> >::assign

push 7
push OFFSET $SG39514
lea ecx, DWORD PTR _s2$[esp+80]
mov DWORD PTR _s2$[esp+100], 15
mov DWORD PTR _s2$[esp+96], 0
mov BYTE PTR _s2$[esp+80], 0
call ?assign@?$basic_string@DU?$char_traits@D@std@@V?⤦
Ç $allocator@D@2@@std@@QAEAAV12@PBDI@Z ;
std::basic_string<char,std::char_traits<char>,std::allocator<char> >::assign

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

710
lea eax, DWORD PTR _s2$[esp+72]
push eax
lea eax, DWORD PTR _s1$[esp+76]
push eax
lea eax, DWORD PTR _s3$[esp+80]
push eax
call ??$?HDU?$char_traits@D@std@@V?$allocator@D@1@@std@@YA?AV?⤦
Ç $basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@0@ABV10@0@Z ;
std::operator+<char,std::char_traits<char>,std::allocator<char> >

; inlined c_str() method:
cmp DWORD PTR _s3$[esp+104], 16
lea eax, DWORD PTR _s3$[esp+84]
cmovae eax, DWORD PTR _s3$[esp+84]

push eax
push OFFSET $SG39581
call _printf
add esp, 20

cmp DWORD PTR _s3$[esp+92], 16
jb SHORT $LN119@main
push DWORD PTR _s3$[esp+72]
call ??3@YAXPAX@Z ; operator delete
add esp, 4

$LN119@main:
cmp DWORD PTR _s2$[esp+92], 16
mov DWORD PTR _s3$[esp+92], 15
mov DWORD PTR _s3$[esp+88], 0
mov BYTE PTR _s3$[esp+72], 0
jb SHORT $LN151@main
push DWORD PTR _s2$[esp+72]
call ??3@YAXPAX@Z ; operator delete
add esp, 4

$LN151@main:
cmp DWORD PTR _s1$[esp+92], 16
mov DWORD PTR _s2$[esp+92], 15
mov DWORD PTR _s2$[esp+88], 0
mov BYTE PTR _s2$[esp+72], 0
jb SHORT $LN195@main
push DWORD PTR _s1$[esp+72]
call ??3@YAXPAX@Z ; operator delete
add esp, 4

$LN195@main:
xor eax, eax
add esp, 72
ret 0

_main ENDP

The compiler does not construct strings statically: it would not be possible anyway
if the buffer needs to be located in the heap.
Instead, the ASCIIZ strings are stored in the data segment, and later, at runtime,

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

711
with the help of the “assign” method, the s1 and s2 strings are constructed. And
with the help of operator+, the s3 string is constructed.
Please note that there is no call to the c_str() method, because its code is tiny enough
so the compiler inlined it right there: if the string is shorter than 16 characters, a
pointer to buffer is left in EAX, otherwise the address of the string buffer located in
the heap is fetched.
Next, we see calls to the 3 destructors, they are called if the string is longer than
16 characters: then the buffers in the heap have to be freed. Otherwise, since all
three std::string objects are stored in the stack, they are freed automatically, when
the function ends.
As a consequence, processing short strings is faster, because of less heap accesses.
GCC code is even simpler (because the GCC way, as we saw above, is to not store
shorter strings right in the structure):

Listing 3.107: GCC 4.8.1
.LC0:

.string "Hello, "
.LC1:

.string "world!\n"
main:

push ebp
mov ebp, esp
push edi
push esi
push ebx
and esp, -16
sub esp, 32
lea ebx, [esp+28]
lea edi, [esp+20]
mov DWORD PTR [esp+8], ebx
lea esi, [esp+24]
mov DWORD PTR [esp+4], OFFSET FLAT:.LC0
mov DWORD PTR [esp], edi

call _ZNSsC1EPKcRKSaIcE

mov DWORD PTR [esp+8], ebx
mov DWORD PTR [esp+4], OFFSET FLAT:.LC1
mov DWORD PTR [esp], esi

call _ZNSsC1EPKcRKSaIcE

mov DWORD PTR [esp+4], edi
mov DWORD PTR [esp], ebx

call _ZNSsC1ERKSs

mov DWORD PTR [esp+4], esi
mov DWORD PTR [esp], ebx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

712
call _ZNSs6appendERKSs

; inlined c_str():
mov eax, DWORD PTR [esp+28]
mov DWORD PTR [esp], eax

call puts

mov eax, DWORD PTR [esp+28]
lea ebx, [esp+19]
mov DWORD PTR [esp+4], ebx
sub eax, 12
mov DWORD PTR [esp], eax
call _ZNSs4_Rep10_M_disposeERKSaIcE
mov eax, DWORD PTR [esp+24]
mov DWORD PTR [esp+4], ebx
sub eax, 12
mov DWORD PTR [esp], eax
call _ZNSs4_Rep10_M_disposeERKSaIcE
mov eax, DWORD PTR [esp+20]
mov DWORD PTR [esp+4], ebx
sub eax, 12
mov DWORD PTR [esp], eax
call _ZNSs4_Rep10_M_disposeERKSaIcE
lea esp, [ebp-12]
xor eax, eax
pop ebx
pop esi
pop edi
pop ebp
ret

It can be seen that it’s not a pointer to the object that is passed to destructors, but
rather an address 12 bytes (or 3 words) before, i.e., a pointer to the real start of the
structure.

std::string as a global variable

Experienced C++ programmers knows that global variables of STL30 types can be
defined without problems.
Yes, indeed:
#include <stdio.h>
#include <string>

std::string s="a string";

int main()
{

30(C++) Standard Template Library

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

713
printf ("%s\n", s.c_str());

};

But how and where std::string constructor will be called?
In fact, this variable is to be initialized even before main() start.

Listing 3.108: MSVC 2012: here is how a global variable is constructed and also its
destructor is registered
??__Es@@YAXXZ PROC

push 8
push OFFSET $SG39512 ; 'a string'
mov ecx, OFFSET ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?⤦
Ç $allocator@D@2@@std@@A ;
s
call ?assign@?$basic_string@DU?$char_traits@D@std@@V?⤦
Ç $allocator@D@2@@std@@QAEAAV12@PBDI@Z ;
std::basic_string<char,std::char_traits<char>,std::allocator<char> >::assign
push OFFSET ??__Fs@@YAXXZ ; `dynamic atexit destructor for 's''
call _atexit
pop ecx
ret 0

??__Es@@YAXXZ ENDP

Listing 3.109: MSVC 2012: here a global variable is used in main()
$SG39512 DB 'a string', 00H
$SG39519 DB '%s', 0aH, 00H

_main PROC
cmp DWORD PTR ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?⤦
Ç $allocator@D@2@@std@@A+20, 16
mov eax, OFFSET ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?⤦
Ç $allocator@D@2@@std@@A ;
s
cmovae eax, DWORD PTR ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?⤦
Ç $allocator@D@2@@std@@A
push eax
push OFFSET $SG39519 ; '%s'
call _printf
add esp, 8
xor eax, eax
ret 0

_main ENDP

Listing 3.110: MSVC 2012: this destructor function is called before exit
??__Fs@@YAXXZ PROC

push ecx
cmp DWORD PTR ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?⤦
Ç $allocator@D@2@@std@@A+20, 16
jb SHORT $LN23@dynamic
push esi
mov esi, DWORD PTR ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?⤦
Ç $allocator@D@2@@std@@A

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

714
lea ecx, DWORD PTR $T2[esp+8]
call ??0?$_Wrap_alloc@V?$allocator@D@std@@@std@@QAE@XZ
push OFFSET ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?⤦
Ç $allocator@D@2@@std@@A ;
s
lea ecx, DWORD PTR $T2[esp+12]
call ??$destroy@PAD@?$_Wrap_alloc@V?$allocator@D@std@@@std@@QAEXPAPAD@Z
lea ecx, DWORD PTR $T1[esp+8]
call ??0?$_Wrap_alloc@V?$allocator@D@std@@@std@@QAE@XZ
push esi
call ??3@YAXPAX@Z ; operator delete
add esp, 4
pop esi

$LN23@dynamic:
mov DWORD PTR ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?⤦
Ç $allocator@D@2@@std@@A+20, 15
mov DWORD PTR ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?⤦
Ç $allocator@D@2@@std@@A+16, 0
mov BYTE PTR ?s@@3V?$basic_string@DU?$char_traits@D@std@@V?⤦
Ç $allocator@D@2@@std@@A, 0
pop ecx
ret 0

??__Fs@@YAXXZ ENDP

In fact, a special function with all constructors of global variables is called from CRT,
before main().
More than that: with the help of atexit() another function is registered, which contain
calls to all destructors of such global variables.
GCC works likewise:

Listing 3.111: GCC 4.8.1
main:

push ebp
mov ebp, esp
and esp, -16
sub esp, 16
mov eax, DWORD PTR s
mov DWORD PTR [esp], eax
call puts
xor eax, eax
leave
ret

.LC0:
.string "a string"

_GLOBAL__sub_I_s:
sub esp, 44
lea eax, [esp+31]
mov DWORD PTR [esp+8], eax
mov DWORD PTR [esp+4], OFFSET FLAT:.LC0
mov DWORD PTR [esp], OFFSET FLAT:s
call _ZNSsC1EPKcRKSaIcE
mov DWORD PTR [esp+8], OFFSET FLAT:__dso_handle

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

715
mov DWORD PTR [esp+4], OFFSET FLAT:s
mov DWORD PTR [esp], OFFSET FLAT:_ZNSsD1Ev
call __cxa_atexit
add esp, 44
ret

.LFE645:
.size _GLOBAL__sub_I_s, .-_GLOBAL__sub_I_s
.section .init_array,"aw"
.align 4
.long _GLOBAL__sub_I_s
.globl s
.bss
.align 4
.type s, @object
.size s, 4

s:
.zero 4
.hidden __dso_handle

But it does not create a separate function for this, each destructor is passed to
atexit(), one by one.

std::list

This is the well-known doubly-linked list: each element has two pointers, to the pre-
vious and next elements.
This implies that the memory footprint is enlarged by 2 words for each element (8
bytes in 32-bit environment or 16 bytes in 64-bit).
C++ STL just adds the “next” and “previous” pointers to the existing structure of
the type that you want to unite in a list.
Let’s work out an example with a simple 2-variable structure that we want to store
in a list.
Although the C++ standard does not say how to implement it, both MSVC’s and
GCC’s implementations are straightforward and similar, so here is only one source
code for both:
#include <stdio.h>
#include <list>
#include <iostream>

struct a
{

int x;
int y;

};

struct List_node
{

struct List_node* _Next;
struct List_node* _Prev;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

716
int x;
int y;

};

void dump_List_node (struct List_node *n)
{

printf ("ptr=0x%p _Next=0x%p _Prev=0x%p x=%d y=%d\n",
n, n->_Next, n->_Prev, n->x, n->y);

};

void dump_List_vals (struct List_node* n)
{

struct List_node* current=n;

for (;;)
{

dump_List_node (current);
current=current->_Next;
if (current==n) // end

break;
};

};

void dump_List_val (unsigned int *a)
{
#ifdef _MSC_VER

// GCC implementation does not have "size" field
printf ("_Myhead=0x%p, _Mysize=%d\n", a[0], a[1]);

#endif
dump_List_vals ((struct List_node*)a[0]);

};

int main()
{

std::list<struct a> l;

printf ("* empty list:\n");
dump_List_val((unsigned int*)(void*)&l);

struct a t1;
t1.x=1;
t1.y=2;
l.push_front (t1);
t1.x=3;
t1.y=4;
l.push_front (t1);
t1.x=5;
t1.y=6;
l.push_back (t1);

printf ("* 3-elements list:\n");
dump_List_val((unsigned int*)(void*)&l);

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

717
std::list<struct a>::iterator tmp;
printf ("node at .begin:\n");
tmp=l.begin();
dump_List_node ((struct List_node *)*(void**)&tmp);
printf ("node at .end:\n");
tmp=l.end();
dump_List_node ((struct List_node *)*(void**)&tmp);

printf ("* let's count from the beginning:\n");
std::list<struct a>::iterator it=l.begin();
printf ("1st element: %d %d\n", (*it).x, (*it).y);
it++;
printf ("2nd element: %d %d\n", (*it).x, (*it).y);
it++;
printf ("3rd element: %d %d\n", (*it).x, (*it).y);
it++;
printf ("element at .end(): %d %d\n", (*it).x, (*it).y);

printf ("* let's count from the end:\n");
std::list<struct a>::iterator it2=l.end();
printf ("element at .end(): %d %d\n", (*it2).x, (*it2).y);
it2--;
printf ("3rd element: %d %d\n", (*it2).x, (*it2).y);
it2--;
printf ("2nd element: %d %d\n", (*it2).x, (*it2).y);
it2--;
printf ("1st element: %d %d\n", (*it2).x, (*it2).y);

printf ("removing last element...\n");
l.pop_back();
dump_List_val((unsigned int*)(void*)&l);

};

GCC

Let’s start with GCC.
When we run the example, we’ll see a long dump, let’s work with it in pieces.
* empty list:
ptr=0x0028fe90 _Next=0x0028fe90 _Prev=0x0028fe90 x=3 y=0

Here we see an empty list.
Despite the fact it is empty, it has one element with garbage (AKA dummy node) in
x and y. Both the “next” and “prev” pointers are pointing to the self node:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

718

Next

Prev

X=garbage

Y=garbage

Variable
std::listlist.begin() list.end()

At this moment, the .begin and .end iterators are equal to each other.
If we push 3 elements, the list internally will be:
* 3-elements list:
ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
ptr=0x00034988 _Next=0x00034b40 _Prev=0x000349a0 x=1 y=2
ptr=0x00034b40 _Next=0x0028fe90 _Prev=0x00034988 x=5 y=6
ptr=0x0028fe90 _Next=0x000349a0 _Prev=0x00034b40 x=5 y=6

The last element is still at 0x0028fe90, it not to be moved until the list’s disposal.
It still contain random garbage in x and y (5 and 6). By coincidence, these values
are the same as in the last element, but it doesn’t mean that they are meaningful.
Here is how these 3 elements are stored in memory:

Next

Prev

X=1st ele-
ment
Y=1st ele-
ment

Next

Prev

X=2nd ele-
ment
Y=2nd ele-
ment

Next

Prev

X=3rd ele-
ment
Y=3rd ele-
ment

Next

Prev

X=garbage

Y=garbage

Variable
std::list

list.begin() list.end()

The l variable always points to the first node.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

719
The .begin() and .end() iterators are not variables, but functions, which when called
return pointers to the corresponding nodes.
Having a dummy element (AKA sentinel node) is a very popular practice in imple-
menting doubly-linked lists.
Without it, a lot of operations may become slightly more complex and, hence, slower.
The iterator is in fact just a pointer to a node. list.begin() and list.end() just return
pointers.
node at .begin:
ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
node at .end:
ptr=0x0028fe90 _Next=0x000349a0 _Prev=0x00034b40 x=5 y=6

The fact that the last element has a pointer to the first and the first element has a
pointer to the last one remind us of circular lists.
This is very helpful here: having a pointer to the first list element, i.e., that is in the
l variable, it is easy to get a pointer to the last one quickly, without the necessity to
traverse the whole list.
Inserting an element at the end of the list is also quick, thanks to this feature.
operator-- and operator++ just set the current iterator’s value to the
current_node->prev or current_node->next values.
The reverse iterators (.rbegin, .rend) work just as the same, but in reverse.
operator* just returns a pointer to the point in the node structure, where the user’s
structure starts, i.e., a pointer to the first element of the structure (x).
The list insertion and deletion are trivial: just allocate a new node (or deallocate)
and update all pointers to be valid.
That’s why an iterator may become invalid after element deletion: it may still point
to the node that has been already deallocated. This is also called a dangling pointer.
And of course, the information from the freed node (to which iterator still points)
cannot be used anymore.
The GCC implementation (as of 4.8.1) doesn’t store the current size of the list: this
implies a slow .size() method: it has to traverse the whole list to count the elements,
because it doesn’t have any other way to get the information.
This means that this operation is O(n), i.e., it steadily gets slower as the list grows.

Listing 3.112: Optimizing GCC 4.8.1 -fno-inline-small-functions
main proc near

push ebp
mov ebp, esp
push esi
push ebx
and esp, 0FFFFFFF0h
sub esp, 20h
lea ebx, [esp+10h]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

720
mov dword ptr [esp], offset s ; "* empty list:"
mov [esp+10h], ebx
mov [esp+14h], ebx
call puts
mov [esp], ebx
call _Z13dump_List_valPj ; dump_List_val(uint *)
lea esi, [esp+18h]
mov [esp+4], esi
mov [esp], ebx
mov dword ptr [esp+18h], 1 ; X for new element
mov dword ptr [esp+1Ch], 2 ; Y for new element
call _ZNSt4listI1aSaIS0_EE10push_frontERKS0_ ;
std::list<a,std::allocator<a>>::push_front(a const&)
mov [esp+4], esi
mov [esp], ebx
mov dword ptr [esp+18h], 3 ; X for new element
mov dword ptr [esp+1Ch], 4 ; Y for new element
call _ZNSt4listI1aSaIS0_EE10push_frontERKS0_ ;
std::list<a,std::allocator<a>>::push_front(a const&)
mov dword ptr [esp], 10h
mov dword ptr [esp+18h], 5 ; X for new element
mov dword ptr [esp+1Ch], 6 ; Y for new element
call _Znwj ; operator new(uint)
cmp eax, 0FFFFFFF8h
jz short loc_80002A6
mov ecx, [esp+1Ch]
mov edx, [esp+18h]
mov [eax+0Ch], ecx
mov [eax+8], edx

loc_80002A6: ; CODE XREF: main+86
mov [esp+4], ebx
mov [esp], eax
call _ZNSt8__detail15_List_node_base7_M_hookEPS0_ ;
std::__detail::_List_node_base::_M_hook(std::__detail::_List_node_base*)
mov dword ptr [esp], offset a3ElementsList ; "* 3-elements list:"
call puts
mov [esp], ebx
call _Z13dump_List_valPj ; dump_List_val(uint *)
mov dword ptr [esp], offset aNodeAt_begin ; "node at .begin:"
call puts
mov eax, [esp+10h]
mov [esp], eax
call _Z14dump_List_nodeP9List_node ; dump_List_node(List_node *)
mov dword ptr [esp], offset aNodeAt_end ; "node at .end:"
call puts
mov [esp], ebx
call _Z14dump_List_nodeP9List_node ; dump_List_node(List_node *)
mov dword ptr [esp], offset aLetSCountFromT ; "* let's count from the
beginning:"
call puts
mov esi, [esp+10h]
mov eax, [esi+0Ch]
mov [esp+0Ch], eax

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

721
mov eax, [esi+8]
mov dword ptr [esp+4], offset a1stElementDD ; "1st element: %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov esi, [esi] ; operator++: get ->next pointer
mov eax, [esi+0Ch]
mov [esp+0Ch], eax
mov eax, [esi+8]
mov dword ptr [esp+4], offset a2ndElementDD ; "2nd element: %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov esi, [esi] ; operator++: get ->next pointer
mov eax, [esi+0Ch]
mov [esp+0Ch], eax
mov eax, [esi+8]
mov dword ptr [esp+4], offset a3rdElementDD ; "3rd element: %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov eax, [esi] ; operator++: get ->next pointer
mov edx, [eax+0Ch]
mov [esp+0Ch], edx
mov eax, [eax+8]
mov dword ptr [esp+4], offset aElementAt_endD ;
"element at .end(): %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov dword ptr [esp], offset aLetSCountFro_0 ; "* let's count from the
end:"
call puts
mov eax, [esp+1Ch]
mov dword ptr [esp+4], offset aElementAt_endD ;
"element at .end(): %d %d\n"
mov dword ptr [esp], 1
mov [esp+0Ch], eax
mov eax, [esp+18h]
mov [esp+8], eax
call __printf_chk
mov esi, [esp+14h]
mov eax, [esi+0Ch]
mov [esp+0Ch], eax
mov eax, [esi+8]
mov dword ptr [esp+4], offset a3rdElementDD ; "3rd element: %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov esi, [esi+4] ; operator--: get ->prev pointer
mov eax, [esi+0Ch]
mov [esp+0Ch], eax
mov eax, [esi+8]
mov dword ptr [esp+4], offset a2ndElementDD ; "2nd element: %d %d\n"

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

722
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov eax, [esi+4] ; operator--: get ->prev pointer
mov edx, [eax+0Ch]
mov [esp+0Ch], edx
mov eax, [eax+8]
mov dword ptr [esp+4], offset a1stElementDD ; "1st element: %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov dword ptr [esp], offset aRemovingLastEl ; "removing last element..."
call puts
mov esi, [esp+14h]
mov [esp], esi
call _ZNSt8__detail15_List_node_base9_M_unhookEv ;
std::__detail::_List_node_base::_M_unhook(void)
mov [esp], esi ; void *
call _ZdlPv ; operator delete(void *)
mov [esp], ebx
call _Z13dump_List_valPj ; dump_List_val(uint *)
mov [esp], ebx
call _ZNSt10_List_baseI1aSaIS0_EE8_M_clearEv ;
std::_List_base<a,std::allocator<a>>::_M_clear(void)
lea esp, [ebp-8]
xor eax, eax
pop ebx
pop esi
pop ebp
retn

main endp

Listing 3.113: The whole output
* empty list:
ptr=0x0028fe90 _Next=0x0028fe90 _Prev=0x0028fe90 x=3 y=0
* 3-elements list:
ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
ptr=0x00034988 _Next=0x00034b40 _Prev=0x000349a0 x=1 y=2
ptr=0x00034b40 _Next=0x0028fe90 _Prev=0x00034988 x=5 y=6
ptr=0x0028fe90 _Next=0x000349a0 _Prev=0x00034b40 x=5 y=6
node at .begin:
ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
node at .end:
ptr=0x0028fe90 _Next=0x000349a0 _Prev=0x00034b40 x=5 y=6
* let's count from the beginning:
1st element: 3 4
2nd element: 1 2
3rd element: 5 6
element at .end(): 5 6
* let's count from the end:
element at .end(): 5 6
3rd element: 5 6
2nd element: 1 2

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

723
1st element: 3 4
removing last element...
ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
ptr=0x00034988 _Next=0x0028fe90 _Prev=0x000349a0 x=1 y=2
ptr=0x0028fe90 _Next=0x000349a0 _Prev=0x00034988 x=5 y=6

MSVC

MSVC’s implementation (2012) is just the same, but it also stores the current size of
the list.
This implies that the .size() method is very fast (O(1)): it just reads one value from
memory.
On the other hand, the size variable must be updated at each insertion/deletion.
MSVC’s implementation is also slightly different in the way it arranges the nodes:

Next

Prev

X=garbage

Y=garbage

Next

Prev

X=1st ele-
ment
Y=1st ele-
ment

Next

Prev

X=2nd ele-
ment
Y=2nd ele-
ment2nd élé-
ment

Next

Prev

X=3rd ele-
ment
Y=3rd ele-
ment

Variable
std::list

list.end() list.begin()

GCC has its dummy element at the end of the list, while MSVC’s is at the beginning.

Listing 3.114: Optimizing MSVC 2012 /Fa2.asm /GS- /Ob1
_l$ = -16 ; size = 8
_t1$ = -8 ; size = 8
_main PROC

sub esp, 16
push ebx
push esi
push edi
push 0
push 0
lea ecx, DWORD PTR _l$[esp+36]
mov DWORD PTR _l$[esp+40], 0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

724
; allocate first garbage element
call ?_Buynode0@?$_List_alloc@$0A@U?$_List_base_types@Ua@@V?⤦
Ç $allocator@Ua@@@std@@@std@@@std@@QAEPAU?⤦
Ç $_List_node@Ua@@PAX@2@PAU32@0@Z ;
std::_List_alloc<0,std::_List_base_types<a,std::allocator<a> > >::_Buynode0
mov edi, DWORD PTR __imp__printf
mov ebx, eax
push OFFSET $SG40685 ; '* empty list:'
mov DWORD PTR _l$[esp+32], ebx
call edi ; printf
lea eax, DWORD PTR _l$[esp+32]
push eax
call ?dump_List_val@@YAXPAI@Z ; dump_List_val
mov esi, DWORD PTR [ebx]
add esp, 8
lea eax, DWORD PTR _t1$[esp+28]
push eax
push DWORD PTR [esi+4]
lea ecx, DWORD PTR _l$[esp+36]
push esi
mov DWORD PTR _t1$[esp+40], 1 ; data for a new node
mov DWORD PTR _t1$[esp+44], 2 ; data for a new node
; allocate new node
call ??$_Buynode@ABUa@@@?$_List_buy@Ua@@V?⤦
Ç $allocator@Ua@@@std@@@std@@QAEPAU?⤦
Ç $_List_node@Ua@@PAX@1@PAU21@0ABUa@@@Z ;
std::_List_buy<a,std::allocator<a> >::_Buynode<a const &>
mov DWORD PTR [esi+4], eax
mov ecx, DWORD PTR [eax+4]
mov DWORD PTR _t1$[esp+28], 3 ; data for a new node
mov DWORD PTR [ecx], eax
mov esi, DWORD PTR [ebx]
lea eax, DWORD PTR _t1$[esp+28]
push eax
push DWORD PTR [esi+4]
lea ecx, DWORD PTR _l$[esp+36]
push esi
mov DWORD PTR _t1$[esp+44], 4 ; data for a new node
; allocate new node
call ??$_Buynode@ABUa@@@?$_List_buy@Ua@@V?⤦
Ç $allocator@Ua@@@std@@@std@@QAEPAU?⤦
Ç $_List_node@Ua@@PAX@1@PAU21@0ABUa@@@Z ;
std::_List_buy<a,std::allocator<a> >::_Buynode<a const &>
mov DWORD PTR [esi+4], eax
mov ecx, DWORD PTR [eax+4]
mov DWORD PTR _t1$[esp+28], 5 ; data for a new node
mov DWORD PTR [ecx], eax
lea eax, DWORD PTR _t1$[esp+28]
push eax
push DWORD PTR [ebx+4]
lea ecx, DWORD PTR _l$[esp+36]
push ebx
mov DWORD PTR _t1$[esp+44], 6 ; data for a new node
; allocate new node

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

725
call ??$_Buynode@ABUa@@@?$_List_buy@Ua@@V?⤦
Ç $allocator@Ua@@@std@@@std@@QAEPAU?⤦
Ç $_List_node@Ua@@PAX@1@PAU21@0ABUa@@@Z ;
std::_List_buy<a,std::allocator<a> >::_Buynode<a const &>
mov DWORD PTR [ebx+4], eax
mov ecx, DWORD PTR [eax+4]
push OFFSET $SG40689 ; '* 3-elements list:'
mov DWORD PTR _l$[esp+36], 3
mov DWORD PTR [ecx], eax
call edi ; printf
lea eax, DWORD PTR _l$[esp+32]
push eax
call ?dump_List_val@@YAXPAI@Z ; dump_List_val
push OFFSET $SG40831 ; 'node at .begin:'
call edi ; printf
push DWORD PTR [ebx] ; get next field of node "l" variable points to
call ?dump_List_node@@YAXPAUList_node@@@Z ; dump_List_node
push OFFSET $SG40835 ; 'node at .end:'
call edi ; printf
push ebx ; pointer to the node "l" variable points to!
call ?dump_List_node@@YAXPAUList_node@@@Z ; dump_List_node
push OFFSET $SG40839 ; '* let''s count from the begin:'
call edi ; printf
mov esi, DWORD PTR [ebx] ; operator++: get ->next pointer
push DWORD PTR [esi+12]
push DWORD PTR [esi+8]
push OFFSET $SG40846 ; '1st element: %d %d'
call edi ; printf
mov esi, DWORD PTR [esi] ; operator++: get ->next pointer
push DWORD PTR [esi+12]
push DWORD PTR [esi+8]
push OFFSET $SG40848 ; '2nd element: %d %d'
call edi ; printf
mov esi, DWORD PTR [esi] ; operator++: get ->next pointer
push DWORD PTR [esi+12]
push DWORD PTR [esi+8]
push OFFSET $SG40850 ; '3rd element: %d %d'
call edi ; printf
mov eax, DWORD PTR [esi] ; operator++: get ->next pointer
add esp, 64
push DWORD PTR [eax+12]
push DWORD PTR [eax+8]
push OFFSET $SG40852 ; 'element at .end(): %d %d'
call edi ; printf
push OFFSET $SG40853 ; '* let''s count from the end:'
call edi ; printf
push DWORD PTR [ebx+12] ; use x and y fields from the node "l" variable
points to
push DWORD PTR [ebx+8]
push OFFSET $SG40860 ; 'element at .end(): %d %d'
call edi ; printf
mov esi, DWORD PTR [ebx+4] ; operator--: get ->prev pointer
push DWORD PTR [esi+12]
push DWORD PTR [esi+8]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

726
push OFFSET $SG40862 ; '3rd element: %d %d'
call edi ; printf
mov esi, DWORD PTR [esi+4] ; operator--: get ->prev pointer
push DWORD PTR [esi+12]
push DWORD PTR [esi+8]
push OFFSET $SG40864 ; '2nd element: %d %d'
call edi ; printf
mov eax, DWORD PTR [esi+4] ; operator--: get ->prev pointer
push DWORD PTR [eax+12]
push DWORD PTR [eax+8]
push OFFSET $SG40866 ; '1st element: %d %d'
call edi ; printf
add esp, 64
push OFFSET $SG40867 ; 'removing last element...'
call edi ; printf
mov edx, DWORD PTR [ebx+4]
add esp, 4

; prev=next?
; it is the only element, garbage one?
; if yes, do not delete it!
cmp edx, ebx
je SHORT $LN349@main
mov ecx, DWORD PTR [edx+4]
mov eax, DWORD PTR [edx]
mov DWORD PTR [ecx], eax
mov ecx, DWORD PTR [edx]
mov eax, DWORD PTR [edx+4]
push edx
mov DWORD PTR [ecx+4], eax
call ??3@YAXPAX@Z ; operator delete
add esp, 4
mov DWORD PTR _l$[esp+32], 2

$LN349@main:
lea eax, DWORD PTR _l$[esp+28]
push eax
call ?dump_List_val@@YAXPAI@Z ; dump_List_val
mov eax, DWORD PTR [ebx]
add esp, 4
mov DWORD PTR [ebx], ebx
mov DWORD PTR [ebx+4], ebx
cmp eax, ebx
je SHORT $LN412@main

$LL414@main:
mov esi, DWORD PTR [eax]
push eax
call ??3@YAXPAX@Z ; operator delete
add esp, 4
mov eax, esi
cmp esi, ebx
jne SHORT $LL414@main

$LN412@main:
push ebx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

727
call ??3@YAXPAX@Z ; operator delete
add esp, 4
xor eax, eax
pop edi
pop esi
pop ebx
add esp, 16
ret 0

_main ENDP

Unlike GCC, MSVC’s code allocates the dummy element at the start of the function
with the help of the “Buynode” function, it is also used to allocate the rest of the
nodes (GCC’s code allocates the first element in the local stack).

Listing 3.115: The whole output
* empty list:
_Myhead=0x003CC258, _Mysize=0
ptr=0x003CC258 _Next=0x003CC258 _Prev=0x003CC258 x=6226002 y=4522072
* 3-elements list:
_Myhead=0x003CC258, _Mysize=3
ptr=0x003CC258 _Next=0x003CC288 _Prev=0x003CC2A0 x=6226002 y=4522072
ptr=0x003CC288 _Next=0x003CC270 _Prev=0x003CC258 x=3 y=4
ptr=0x003CC270 _Next=0x003CC2A0 _Prev=0x003CC288 x=1 y=2
ptr=0x003CC2A0 _Next=0x003CC258 _Prev=0x003CC270 x=5 y=6
node at .begin:
ptr=0x003CC288 _Next=0x003CC270 _Prev=0x003CC258 x=3 y=4
node at .end:
ptr=0x003CC258 _Next=0x003CC288 _Prev=0x003CC2A0 x=6226002 y=4522072
* let's count from the beginning:
1st element: 3 4
2nd element: 1 2
3rd element: 5 6
element at .end(): 6226002 4522072
* let's count from the end:
element at .end(): 6226002 4522072
3rd element: 5 6
2nd element: 1 2
1st element: 3 4
removing last element...
_Myhead=0x003CC258, _Mysize=2
ptr=0x003CC258 _Next=0x003CC288 _Prev=0x003CC270 x=6226002 y=4522072
ptr=0x003CC288 _Next=0x003CC270 _Prev=0x003CC258 x=3 y=4
ptr=0x003CC270 _Next=0x003CC258 _Prev=0x003CC288 x=1 y=2

C++11 std::forward_list

The same thing as std::list, but singly-linked one, i.e., having only the “next” field at
each node.
It has a smaller memory footprint, but also don’t offer the ability to traverse list
backwards.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

728
std::vector

We would call std::vector a safe wrapper of the PODT31 C array. Internally it is
somewhat similar to std::string (3.21.4 on page 706): it has a pointer to the
allocated buffer, a pointer to the end of the array, and a pointer to the end of the
allocated buffer.
The array’s elements lie in memory adjacently to each other, just like in a normal
array (1.26 on page 330). In C++11 there is a new method called .data() , that
returns a pointer to the buffer, like .c_str() in std::string.
The buffer allocated in the heap can be larger than the array itself.
Both MSVC’s and GCC’s implementations are similar, just the names of the struc-
ture’s fields are slightly different32, so here is one source code that works for both
compilers. Here is again the C-like code for dumping the structure of std::vector:
#include <stdio.h>
#include <vector>
#include <algorithm>
#include <functional>

struct vector_of_ints
{

// MSVC names:
int *Myfirst;
int *Mylast;
int *Myend;

// GCC structure is the same, but names are:
_M_start, _M_finish, _M_end_of_storage

};

void dump(struct vector_of_ints *in)
{

printf ("_Myfirst=%p, _Mylast=%p, _Myend=%p\n", in->Myfirst, in->Mylast⤦
Ç , in->Myend);
size_t size=(in->Mylast-in->Myfirst);
size_t capacity=(in->Myend-in->Myfirst);
printf ("size=%d, capacity=%d\n", size, capacity);
for (size_t i=0; i<size; i++)

printf ("element %d: %d\n", i, in->Myfirst[i]);
};

int main()
{

std::vector<int> c;
dump ((struct vector_of_ints*)(void*)&c);
c.push_back(1);
dump ((struct vector_of_ints*)(void*)&c);
c.push_back(2);

31(C++) Plain Old Data Type
32GCC internals: http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/

a01371.html

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01371.html
http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01371.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

729
dump ((struct vector_of_ints*)(void*)&c);
c.push_back(3);
dump ((struct vector_of_ints*)(void*)&c);
c.push_back(4);
dump ((struct vector_of_ints*)(void*)&c);
c.reserve (6);
dump ((struct vector_of_ints*)(void*)&c);
c.push_back(5);
dump ((struct vector_of_ints*)(void*)&c);
c.push_back(6);
dump ((struct vector_of_ints*)(void*)&c);
printf ("%d\n", c.at(5)); // with bounds checking
printf ("%d\n", c[8]); // operator[], without bounds checking

};

Here is the output of this program when compiled in MSVC:
_Myfirst=00000000, _Mylast=00000000, _Myend=00000000
size=0, capacity=0
_Myfirst=0051CF48, _Mylast=0051CF4C, _Myend=0051CF4C
size=1, capacity=1
element 0: 1
_Myfirst=0051CF58, _Mylast=0051CF60, _Myend=0051CF60
size=2, capacity=2
element 0: 1
element 1: 2
_Myfirst=0051C278, _Mylast=0051C284, _Myend=0051C284
size=3, capacity=3
element 0: 1
element 1: 2
element 2: 3
_Myfirst=0051C290, _Mylast=0051C2A0, _Myend=0051C2A0
size=4, capacity=4
element 0: 1
element 1: 2
element 2: 3
element 3: 4
_Myfirst=0051B180, _Mylast=0051B190, _Myend=0051B198
size=4, capacity=6
element 0: 1
element 1: 2
element 2: 3
element 3: 4
_Myfirst=0051B180, _Mylast=0051B194, _Myend=0051B198
size=5, capacity=6
element 0: 1
element 1: 2
element 2: 3
element 3: 4
element 4: 5
_Myfirst=0051B180, _Mylast=0051B198, _Myend=0051B198
size=6, capacity=6
element 0: 1
element 1: 2

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

730
element 2: 3
element 3: 4
element 4: 5
element 5: 6
6
6619158

As it can be seen, there is no allocated buffer when main() starts. After the first
push_back() call, a buffer is allocated. And then, after each push_back() call, both
array size and buffer size (capacity) are increased. But the buffer address changes
as well, because push_back() reallocates the buffer in the heap each time. It is
costly operation, that’s why it is very important to predict the size of the array in the
future and reserve enough space for it with the .reserve() method.
The last number is garbage: there are no array elements at this point, so a random
number is printed. This illustrates the fact that operator[] of std::vector does
not check of the index is in the array’s bounds. The slower .at() method, however,
does this checking and throws an std::out_of_range exception in case of error.
Let’s see the code:

Listing 3.116: MSVC 2012 /GS- /Ob1
$SG52650 DB '%d', 0aH, 00H
$SG52651 DB '%d', 0aH, 00H

_this$ = -4 ; size = 4
__Pos$ = 8 ; size = 4
?at@?$vector@HV?$allocator@H@std@@@std@@QAEAAHI@Z PROC ;

std::vector<int,std::allocator<int> >::at, COMDAT
; _this$ = ecx

push ebp
mov ebp, esp
push ecx
mov DWORD PTR _this$[ebp], ecx
mov eax, DWORD PTR _this$[ebp]
mov ecx, DWORD PTR _this$[ebp]
mov edx, DWORD PTR [eax+4]
sub edx, DWORD PTR [ecx]
sar edx, 2
cmp edx, DWORD PTR __Pos$[ebp]
ja SHORT $LN1@at
push OFFSET ??_C@_0BM@NMJKDPPO@invalid?5vector?$DMT?$DO?5subscript?$AA@
call DWORD PTR __imp_?_Xout_of_range@std@@YAXPBD@Z

$LN1@at:
mov eax, DWORD PTR _this$[ebp]
mov ecx, DWORD PTR [eax]
mov edx, DWORD PTR __Pos$[ebp]
lea eax, DWORD PTR [ecx+edx*4]

$LN3@at:
mov esp, ebp
pop ebp
ret 4

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

731
?at@?$vector@HV?$allocator@H@std@@@std@@QAEAAHI@Z ENDP ;

std::vector<int,std::allocator<int> >::at

_c$ = -36 ; size = 12
$T1 = -24 ; size = 4
$T2 = -20 ; size = 4
$T3 = -16 ; size = 4
$T4 = -12 ; size = 4
$T5 = -8 ; size = 4
$T6 = -4 ; size = 4
_main PROC

push ebp
mov ebp, esp
sub esp, 36
mov DWORD PTR _c$[ebp], 0 ; Myfirst
mov DWORD PTR _c$[ebp+4], 0 ; Mylast
mov DWORD PTR _c$[ebp+8], 0 ; Myend
lea eax, DWORD PTR _c$[ebp]
push eax
call ?dump@@YAXPAUvector_of_ints@@@Z ; dump
add esp, 4
mov DWORD PTR $T6[ebp], 1
lea ecx, DWORD PTR $T6[ebp]
push ecx
lea ecx, DWORD PTR _c$[ebp]
call ?push_back@?$vector@HV?$allocator@H@std@@@std@@QAEX$$QAH@Z ;
std::vector<int,std::allocator<int> >::push_back
lea edx, DWORD PTR _c$[ebp]
push edx
call ?dump@@YAXPAUvector_of_ints@@@Z ; dump
add esp, 4
mov DWORD PTR $T5[ebp], 2
lea eax, DWORD PTR $T5[ebp]
push eax
lea ecx, DWORD PTR _c$[ebp]
call ?push_back@?$vector@HV?$allocator@H@std@@@std@@QAEX$$QAH@Z ;
std::vector<int,std::allocator<int> >::push_back
lea ecx, DWORD PTR _c$[ebp]
push ecx
call ?dump@@YAXPAUvector_of_ints@@@Z ; dump
add esp, 4
mov DWORD PTR $T4[ebp], 3
lea edx, DWORD PTR $T4[ebp]
push edx
lea ecx, DWORD PTR _c$[ebp]
call ?push_back@?$vector@HV?$allocator@H@std@@@std@@QAEX$$QAH@Z ;
std::vector<int,std::allocator<int> >::push_back
lea eax, DWORD PTR _c$[ebp]
push eax
call ?dump@@YAXPAUvector_of_ints@@@Z ; dump
add esp, 4
mov DWORD PTR $T3[ebp], 4
lea ecx, DWORD PTR $T3[ebp]
push ecx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

732
lea ecx, DWORD PTR _c$[ebp]
call ?push_back@?$vector@HV?$allocator@H@std@@@std@@QAEX$$QAH@Z ;
std::vector<int,std::allocator<int> >::push_back
lea edx, DWORD PTR _c$[ebp]
push edx
call ?dump@@YAXPAUvector_of_ints@@@Z ; dump
add esp, 4
push 6
lea ecx, DWORD PTR _c$[ebp]
call ?reserve@?$vector@HV?$allocator@H@std@@@std@@QAEXI@Z ;
std::vector<int,std::allocator<int> >::reserve
lea eax, DWORD PTR _c$[ebp]
push eax
call ?dump@@YAXPAUvector_of_ints@@@Z ; dump
add esp, 4
mov DWORD PTR $T2[ebp], 5
lea ecx, DWORD PTR $T2[ebp]
push ecx
lea ecx, DWORD PTR _c$[ebp]
call ?push_back@?$vector@HV?$allocator@H@std@@@std@@QAEX$$QAH@Z ;
std::vector<int,std::allocator<int> >::push_back
lea edx, DWORD PTR _c$[ebp]
push edx
call ?dump@@YAXPAUvector_of_ints@@@Z ; dump
add esp, 4
mov DWORD PTR $T1[ebp], 6
lea eax, DWORD PTR $T1[ebp]
push eax
lea ecx, DWORD PTR _c$[ebp]
call ?push_back@?$vector@HV?$allocator@H@std@@@std@@QAEX$$QAH@Z ;
std::vector<int,std::allocator<int> >::push_back
lea ecx, DWORD PTR _c$[ebp]
push ecx
call ?dump@@YAXPAUvector_of_ints@@@Z ; dump
add esp, 4
push 5
lea ecx, DWORD PTR _c$[ebp]
call ?at@?$vector@HV?$allocator@H@std@@@std@@QAEAAHI@Z ;
std::vector<int,std::allocator<int> >::at
mov edx, DWORD PTR [eax]
push edx
push OFFSET $SG52650 ; '%d'
call DWORD PTR __imp__printf
add esp, 8
mov eax, 8
shl eax, 2
mov ecx, DWORD PTR _c$[ebp]
mov edx, DWORD PTR [ecx+eax]
push edx
push OFFSET $SG52651 ; '%d'
call DWORD PTR __imp__printf
add esp, 8
lea ecx, DWORD PTR _c$[ebp]
call ?_Tidy@?$vector@HV?$allocator@H@std@@@std@@IAEXXZ ;
std::vector<int,std::allocator<int> >::_Tidy

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

733
xor eax, eax
mov esp, ebp
pop ebp
ret 0

_main ENDP

We see how the .at() method checks the bounds and throws an exception in case
of error. The number that the last printf() call prints is just taken from the memory,
without any checks.
One may ask, why not use the variables like “size” and “capacity”, like it was done
in std::string. Supposedly, this was done for faster bounds checking.
The code GCC generates is in general almost the same, but the .at() method is
inlined:

Listing 3.117: GCC 4.8.1 -fno-inline-small-functions -O1
main proc near

push ebp
mov ebp, esp
push edi
push esi
push ebx
and esp, 0FFFFFFF0h
sub esp, 20h
mov dword ptr [esp+14h], 0
mov dword ptr [esp+18h], 0
mov dword ptr [esp+1Ch], 0
lea eax, [esp+14h]
mov [esp], eax
call _Z4dumpP14vector_of_ints ; dump(vector_of_ints *)
mov dword ptr [esp+10h], 1
lea eax, [esp+10h]
mov [esp+4], eax
lea eax, [esp+14h]
mov [esp], eax
call _ZNSt6vectorIiSaIiEE9push_backERKi ;

std::vector<int,std::allocator<int>>::push_back(int const&)
lea eax, [esp+14h]
mov [esp], eax
call _Z4dumpP14vector_of_ints ; dump(vector_of_ints *)
mov dword ptr [esp+10h], 2
lea eax, [esp+10h]
mov [esp+4], eax
lea eax, [esp+14h]
mov [esp], eax
call _ZNSt6vectorIiSaIiEE9push_backERKi ;

std::vector<int,std::allocator<int>>::push_back(int const&)
lea eax, [esp+14h]
mov [esp], eax
call _Z4dumpP14vector_of_ints ; dump(vector_of_ints *)
mov dword ptr [esp+10h], 3
lea eax, [esp+10h]
mov [esp+4], eax

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

734
lea eax, [esp+14h]
mov [esp], eax
call _ZNSt6vectorIiSaIiEE9push_backERKi ;

std::vector<int,std::allocator<int>>::push_back(int const&)
lea eax, [esp+14h]
mov [esp], eax
call _Z4dumpP14vector_of_ints ; dump(vector_of_ints *)
mov dword ptr [esp+10h], 4
lea eax, [esp+10h]
mov [esp+4], eax
lea eax, [esp+14h]
mov [esp], eax
call _ZNSt6vectorIiSaIiEE9push_backERKi ;

std::vector<int,std::allocator<int>>::push_back(int const&)
lea eax, [esp+14h]
mov [esp], eax
call _Z4dumpP14vector_of_ints ; dump(vector_of_ints *)
mov ebx, [esp+14h]
mov eax, [esp+1Ch]
sub eax, ebx
cmp eax, 17h
ja short loc_80001CF
mov edi, [esp+18h]
sub edi, ebx
sar edi, 2
mov dword ptr [esp], 18h
call _Znwj ; operator new(uint)
mov esi, eax
test edi, edi
jz short loc_80001AD
lea eax, ds:0[edi*4]
mov [esp+8], eax ; n
mov [esp+4], ebx ; src
mov [esp], esi ; dest
call memmove

loc_80001AD: ; CODE XREF: main+F8
mov eax, [esp+14h]
test eax, eax
jz short loc_80001BD
mov [esp], eax ; void *
call _ZdlPv ; operator delete(void *)

loc_80001BD: ; CODE XREF: main+117
mov [esp+14h], esi
lea eax, [esi+edi*4]
mov [esp+18h], eax
add esi, 18h
mov [esp+1Ch], esi

loc_80001CF: ; CODE XREF: main+DD
lea eax, [esp+14h]
mov [esp], eax
call _Z4dumpP14vector_of_ints ; dump(vector_of_ints *)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

735
mov dword ptr [esp+10h], 5
lea eax, [esp+10h]
mov [esp+4], eax
lea eax, [esp+14h]
mov [esp], eax
call _ZNSt6vectorIiSaIiEE9push_backERKi ;

std::vector<int,std::allocator<int>>::push_back(int const&)
lea eax, [esp+14h]
mov [esp], eax
call _Z4dumpP14vector_of_ints ; dump(vector_of_ints *)
mov dword ptr [esp+10h], 6
lea eax, [esp+10h]
mov [esp+4], eax
lea eax, [esp+14h]
mov [esp], eax
call _ZNSt6vectorIiSaIiEE9push_backERKi ;

std::vector<int,std::allocator<int>>::push_back(int const&)
lea eax, [esp+14h]
mov [esp], eax
call _Z4dumpP14vector_of_ints ; dump(vector_of_ints *)
mov eax, [esp+14h]
mov edx, [esp+18h]
sub edx, eax
cmp edx, 17h
ja short loc_8000246
mov dword ptr [esp], offset aVector_m_range ; "vector::_M_range_check"
call _ZSt20__throw_out_of_rangePKc ;

std::__throw_out_of_range(char const*)

loc_8000246: ; CODE XREF: main+19C
mov eax, [eax+14h]
mov [esp+8], eax
mov dword ptr [esp+4], offset aD ; "%d\n"
mov dword ptr [esp], 1
call __printf_chk
mov eax, [esp+14h]
mov eax, [eax+20h]
mov [esp+8], eax
mov dword ptr [esp+4], offset aD ; "%d\n"
mov dword ptr [esp], 1
call __printf_chk
mov eax, [esp+14h]
test eax, eax
jz short loc_80002AC
mov [esp], eax ; void *
call _ZdlPv ; operator delete(void *)
jmp short loc_80002AC

mov ebx, eax
mov edx, [esp+14h]
test edx, edx
jz short loc_80002A4
mov [esp], edx ; void *
call _ZdlPv ; operator delete(void *)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

736

loc_80002A4: ; CODE XREF: main+1FE
mov [esp], ebx
call _Unwind_Resume

loc_80002AC: ; CODE XREF: main+1EA
; main+1F4

mov eax, 0
lea esp, [ebp-0Ch]
pop ebx
pop esi
pop edi
pop ebp

locret_80002B8: ; DATA XREF: .eh_frame:08000510
; .eh_frame:080005BC

retn
main endp

.reserve() is inlined as well. It calls new() if the buffer is too small for the new size,
calls memmove() to copy the contents of the buffer, and calls delete() to free the
old buffer.
Let’s also see what the compiled program outputs if compiled with GCC:
_Myfirst=0x(nil), _Mylast=0x(nil), _Myend=0x(nil)
size=0, capacity=0
_Myfirst=0x8257008, _Mylast=0x825700c, _Myend=0x825700c
size=1, capacity=1
element 0: 1
_Myfirst=0x8257018, _Mylast=0x8257020, _Myend=0x8257020
size=2, capacity=2
element 0: 1
element 1: 2
_Myfirst=0x8257028, _Mylast=0x8257034, _Myend=0x8257038
size=3, capacity=4
element 0: 1
element 1: 2
element 2: 3
_Myfirst=0x8257028, _Mylast=0x8257038, _Myend=0x8257038
size=4, capacity=4
element 0: 1
element 1: 2
element 2: 3
element 3: 4
_Myfirst=0x8257040, _Mylast=0x8257050, _Myend=0x8257058
size=4, capacity=6
element 0: 1
element 1: 2
element 2: 3
element 3: 4
_Myfirst=0x8257040, _Mylast=0x8257054, _Myend=0x8257058
size=5, capacity=6

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

737
element 0: 1
element 1: 2
element 2: 3
element 3: 4
element 4: 5
_Myfirst=0x8257040, _Mylast=0x8257058, _Myend=0x8257058
size=6, capacity=6
element 0: 1
element 1: 2
element 2: 3
element 3: 4
element 4: 5
element 5: 6
6
0

We can spot that the buffer size grows in a different way that in MSVC.
Simple experimentation shows that in MSVC’s implementation the buffer grows by
~50% each time it needs to be enlarged, while GCC’s code enlarges it by 100% each
time, i.e., doubles it.

std::map and std::set

The binary tree is another fundamental data structure.
As its name states, this is a tree where each node has at most 2 links to other nodes.
Each node has key and/or value: std::set provides only key at each node, std::map
provides both key and value at each node.
Binary trees are usually the structure used in the implementation of “dictionaries”
of key-values (AKA “associative arrays”).
There are at least three important properties that a binary trees has:
• All keys are always stored in sorted form.
• Keys of any types can be stored easily. Binary tree algorithms are unaware of
the key’s type, only a key comparison function is required.

• Finding a specific key is relatively fast in comparison with lists and arrays.
Here is a very simple example: let’s store these numbers in a binary tree: 0, 1, 2, 3,
5, 6, 9, 10, 11, 12, 20, 99, 100, 101, 107, 1001, 1010.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

738
10

1

0 5

3

2

6

9

100

20

12

11

99

107

101 1001

1010

All keys that are smaller than the node key’s value are stored on the left side.
All keys that are bigger than the node key’s value are stored on the right side.
Hence, the lookup algorithm is straightforward: if the value that you are looking for
is smaller than the current node’s key value: move left, if it is bigger: move right,
stop if the value required is equal to the node key’s value.
That is why the searching algorithm may search for numbers, text strings, etc., as
long as a key comparison function is provided.
All keys have unique values.
Having that, one needs ≈ log2 n steps in order to find a key in a balanced binary tree
with n keys. This implies that ≈ 10 steps are needed ≈ 1000 keys, or ≈ 13 steps for
≈ 10000 keys.
Not bad, but the tree has always to be balanced for this: i.e., the keys has to be
distributed evenly on all levels. The insertion and removal operations do some main-
tenance to keep the tree in a balanced state.
There are several popular balancing algorithms available, including the AVL tree and
the red-black tree.
The latter extends each node with a “color” value to simplify the balancing process,
hence, each node may be “red” or “black”.
Both GCC’s and MSVC’s std::map and std::set template implementations use red-
black trees.
std::set has only keys. std::map is the “extended” version of std::set: it also has
a value at each node.

MSVC

#include <map>

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

739
#include <set>
#include <string>
#include <iostream>

// Structure is not packed! Each field occupies 4 bytes.
struct tree_node
{

struct tree_node *Left;
struct tree_node *Parent;
struct tree_node *Right;
char Color; // 0 - Red, 1 - Black
char Isnil;
//std::pair Myval;
unsigned int first; // called Myval in std::set
const char *second; // not present in std::set

};

struct tree_struct
{

struct tree_node *Myhead;
size_t Mysize;

};

void dump_tree_node (struct tree_node *n, bool is_set, bool traverse)
{

printf ("ptr=0x%p Left=0x%p Parent=0x%p Right=0x%p Color=%d Isnil=%d\n"⤦
Ç ,

n, n->Left, n->Parent, n->Right, n->Color, n->Isnil);
if (n->Isnil==0)
{

if (is_set)
printf ("first=%d\n", n->first);

else
printf ("first=%d second=[%s]\n", n->first, n->second);

}

if (traverse)
{

if (n->Isnil==1)
dump_tree_node (n->Parent, is_set, true);

else
{

if (n->Left->Isnil==0)
dump_tree_node (n->Left, is_set, true);

if (n->Right->Isnil==0)
dump_tree_node (n->Right, is_set, true);

};
};

};

const char* ALOT_OF_TABS="\t\t\t\t\t\t\t\t\t\t\t";

void dump_as_tree (int tabs, struct tree_node *n, bool is_set)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

740
{

if (is_set)
printf ("%d\n", n->first);

else
printf ("%d [%s]\n", n->first, n->second);

if (n->Left->Isnil==0)
{

printf ("%.*sL-------", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+1, n->Left, is_set);

};
if (n->Right->Isnil==0)
{

printf ("%.*sR-------", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+1, n->Right, is_set);

};
};

void dump_map_and_set(struct tree_struct *m, bool is_set)
{

printf ("ptr=0x%p, Myhead=0x%p, Mysize=%d\n", m, m->Myhead, m->Mysize);
dump_tree_node (m->Myhead, is_set, true);
printf ("As a tree:\n");
printf ("root----");
dump_as_tree (1, m->Myhead->Parent, is_set);

};

int main()
{

// map

std::map<int, const char*> m;

m[10]="ten";
m[20]="twenty";
m[3]="three";
m[101]="one hundred one";
m[100]="one hundred";
m[12]="twelve";
m[107]="one hundred seven";
m[0]="zero";
m[1]="one";
m[6]="six";
m[99]="ninety-nine";
m[5]="five";
m[11]="eleven";
m[1001]="one thousand one";
m[1010]="one thousand ten";
m[2]="two";
m[9]="nine";
printf ("dumping m as map:\n");
dump_map_and_set ((struct tree_struct *)(void*)&m, false);

std::map<int, const char*>::iterator it1=m.begin();

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

741
printf ("m.begin():\n");
dump_tree_node ((struct tree_node *)*(void**)&it1, false, false);
it1=m.end();
printf ("m.end():\n");
dump_tree_node ((struct tree_node *)*(void**)&it1, false, false);

// set

std::set<int> s;
s.insert(123);
s.insert(456);
s.insert(11);
s.insert(12);
s.insert(100);
s.insert(1001);
printf ("dumping s as set:\n");
dump_map_and_set ((struct tree_struct *)(void*)&s, true);
std::set<int>::iterator it2=s.begin();
printf ("s.begin():\n");
dump_tree_node ((struct tree_node *)*(void**)&it2, true, false);
it2=s.end();
printf ("s.end():\n");
dump_tree_node ((struct tree_node *)*(void**)&it2, true, false);

};

Listing 3.118: MSVC 2012
dumping m as map:
ptr=0x0020FE04, Myhead=0x005BB3A0, Mysize=17
ptr=0x005BB3A0 Left=0x005BB4A0 Parent=0x005BB3C0 Right=0x005BB580 Color=1 ⤦

Ç Isnil=1
ptr=0x005BB3C0 Left=0x005BB4C0 Parent=0x005BB3A0 Right=0x005BB440 Color=1 ⤦

Ç Isnil=0
first=10 second=[ten]
ptr=0x005BB4C0 Left=0x005BB4A0 Parent=0x005BB3C0 Right=0x005BB520 Color=1 ⤦

Ç Isnil=0
first=1 second=[one]
ptr=0x005BB4A0 Left=0x005BB3A0 Parent=0x005BB4C0 Right=0x005BB3A0 Color=1 ⤦

Ç Isnil=0
first=0 second=[zero]
ptr=0x005BB520 Left=0x005BB400 Parent=0x005BB4C0 Right=0x005BB4E0 Color=0 ⤦

Ç Isnil=0
first=5 second=[five]
ptr=0x005BB400 Left=0x005BB5A0 Parent=0x005BB520 Right=0x005BB3A0 Color=1 ⤦

Ç Isnil=0
first=3 second=[three]
ptr=0x005BB5A0 Left=0x005BB3A0 Parent=0x005BB400 Right=0x005BB3A0 Color=0 ⤦

Ç Isnil=0
first=2 second=[two]
ptr=0x005BB4E0 Left=0x005BB3A0 Parent=0x005BB520 Right=0x005BB5C0 Color=1 ⤦

Ç Isnil=0
first=6 second=[six]
ptr=0x005BB5C0 Left=0x005BB3A0 Parent=0x005BB4E0 Right=0x005BB3A0 Color=0 ⤦

Ç Isnil=0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

742
first=9 second=[nine]
ptr=0x005BB440 Left=0x005BB3E0 Parent=0x005BB3C0 Right=0x005BB480 Color=1 ⤦

Ç Isnil=0
first=100 second=[one hundred]
ptr=0x005BB3E0 Left=0x005BB460 Parent=0x005BB440 Right=0x005BB500 Color=0 ⤦

Ç Isnil=0
first=20 second=[twenty]
ptr=0x005BB460 Left=0x005BB540 Parent=0x005BB3E0 Right=0x005BB3A0 Color=1 ⤦

Ç Isnil=0
first=12 second=[twelve]
ptr=0x005BB540 Left=0x005BB3A0 Parent=0x005BB460 Right=0x005BB3A0 Color=0 ⤦

Ç Isnil=0
first=11 second=[eleven]
ptr=0x005BB500 Left=0x005BB3A0 Parent=0x005BB3E0 Right=0x005BB3A0 Color=1 ⤦

Ç Isnil=0
first=99 second=[ninety-nine]
ptr=0x005BB480 Left=0x005BB420 Parent=0x005BB440 Right=0x005BB560 Color=0 ⤦

Ç Isnil=0
first=107 second=[one hundred seven]
ptr=0x005BB420 Left=0x005BB3A0 Parent=0x005BB480 Right=0x005BB3A0 Color=1 ⤦

Ç Isnil=0
first=101 second=[one hundred one]
ptr=0x005BB560 Left=0x005BB3A0 Parent=0x005BB480 Right=0x005BB580 Color=1 ⤦

Ç Isnil=0
first=1001 second=[one thousand one]
ptr=0x005BB580 Left=0x005BB3A0 Parent=0x005BB560 Right=0x005BB3A0 Color=0 ⤦

Ç Isnil=0
first=1010 second=[one thousand ten]
As a tree:
root----10 [ten]

L-------1 [one]
L-------0 [zero]
R-------5 [five]

L-------3 [three]
L-------2 [two]

R-------6 [six]
R-------9 [nine]

R-------100 [one hundred]
L-------20 [twenty]

L-------12 [twelve]
L-------11 [eleven]

R-------99 [ninety-nine]
R-------107 [one hundred seven]

L-------101 [one hundred one]
R-------1001 [one thousand one]

R-------1010 [one thousand ten]
m.begin():
ptr=0x005BB4A0 Left=0x005BB3A0 Parent=0x005BB4C0 Right=0x005BB3A0 Color=1 ⤦

Ç Isnil=0
first=0 second=[zero]
m.end():
ptr=0x005BB3A0 Left=0x005BB4A0 Parent=0x005BB3C0 Right=0x005BB580 Color=1 ⤦

Ç Isnil=1

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

743

dumping s as set:
ptr=0x0020FDFC, Myhead=0x005BB5E0, Mysize=6
ptr=0x005BB5E0 Left=0x005BB640 Parent=0x005BB600 Right=0x005BB6A0 Color=1 ⤦

Ç Isnil=1
ptr=0x005BB600 Left=0x005BB660 Parent=0x005BB5E0 Right=0x005BB620 Color=1 ⤦

Ç Isnil=0
first=123
ptr=0x005BB660 Left=0x005BB640 Parent=0x005BB600 Right=0x005BB680 Color=1 ⤦

Ç Isnil=0
first=12
ptr=0x005BB640 Left=0x005BB5E0 Parent=0x005BB660 Right=0x005BB5E0 Color=0 ⤦

Ç Isnil=0
first=11
ptr=0x005BB680 Left=0x005BB5E0 Parent=0x005BB660 Right=0x005BB5E0 Color=0 ⤦

Ç Isnil=0
first=100
ptr=0x005BB620 Left=0x005BB5E0 Parent=0x005BB600 Right=0x005BB6A0 Color=1 ⤦

Ç Isnil=0
first=456
ptr=0x005BB6A0 Left=0x005BB5E0 Parent=0x005BB620 Right=0x005BB5E0 Color=0 ⤦

Ç Isnil=0
first=1001
As a tree:
root----123

L-------12
L-------11
R-------100

R-------456
R-------1001

s.begin():
ptr=0x005BB640 Left=0x005BB5E0 Parent=0x005BB660 Right=0x005BB5E0 Color=0 ⤦

Ç Isnil=0
first=11
s.end():
ptr=0x005BB5E0 Left=0x005BB640 Parent=0x005BB600 Right=0x005BB6A0 Color=1 ⤦

Ç Isnil=1

The structure is not packed, so both char values occupy 4 bytes each.
As for std::map, first and second can be viewed as a single value of type std::pair.
std::set has only one value at this address in the structure instead.
The current size of the tree is always present, as in the case of the implementation
of std::list in MSVC (3.21.4 on page 723).
As in the case of std::list, the iterators are just pointers to nodes. The .begin()
iterator points to the minimal key.
That pointer is not stored anywhere (as in lists), the minimal key of the tree is looked
up every time. operator-- and operator++ move the current node pointer to the
predecessor or successor respectively, i.e., the nodes which have the previous or
next key.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

744
The algorithms for all these operations are explained in [Cormen, Thomas H. and
Leiserson, Charles E. and Rivest, Ronald L. and Stein, Clifford, Introduction to Algo-
rithms, Third Edition, (2009)].
The .end() iterator points to the dummy node, it has 1 in Isnil, which implies that
the node has no key and/or value. It can be viewed as a “landing zone” in HDD33
and often called sentinel [see N. Wirth, Algorithms and Data Structures, 1985] 34.
The “parent” field of the dummy node points to the root node, which serves as a
vertex of the tree and contains information.

GCC

#include <stdio.h>
#include <map>
#include <set>
#include <string>
#include <iostream>

struct map_pair
{

int key;
const char *value;

};

struct tree_node
{

int M_color; // 0 - Red, 1 - Black
struct tree_node *M_parent;
struct tree_node *M_left;
struct tree_node *M_right;

};

struct tree_struct
{

int M_key_compare;
struct tree_node M_header;
size_t M_node_count;

};

void dump_tree_node (struct tree_node *n, bool is_set, bool traverse, bool ⤦
Ç dump_keys_and_values)

{
printf ("ptr=0x%p M_left=0x%p M_parent=0x%p M_right=0x%p M_color=%d\n",

n, n->M_left, n->M_parent, n->M_right, n->M_color);

void *point_after_struct=((char*)n)+sizeof(struct tree_node);

if (dump_keys_and_values)
{

33Hard Disk Drive
34http://www.ethoberon.ethz.ch/WirthPubl/AD.pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.ethoberon.ethz.ch/WirthPubl/AD.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

745
if (is_set)

printf ("key=%d\n", *(int*)point_after_struct);
else
{

struct map_pair *p=(struct map_pair *)point_after_struct;
printf ("key=%d value=[%s]\n", p->key, p->value);

};
};

if (traverse==false)
return;

if (n->M_left)
dump_tree_node (n->M_left, is_set, traverse, dump_keys_and_values);

if (n->M_right)
dump_tree_node (n->M_right, is_set, traverse, dump_keys_and_values)⤦

Ç ;
};

const char* ALOT_OF_TABS="\t\t\t\t\t\t\t\t\t\t\t";

void dump_as_tree (int tabs, struct tree_node *n, bool is_set)
{

void *point_after_struct=((char*)n)+sizeof(struct tree_node);

if (is_set)
printf ("%d\n", *(int*)point_after_struct);

else
{

struct map_pair *p=(struct map_pair *)point_after_struct;
printf ("%d [%s]\n", p->key, p->value);

}

if (n->M_left)
{

printf ("%.*sL-------", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+1, n->M_left, is_set);

};
if (n->M_right)
{

printf ("%.*sR-------", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+1, n->M_right, is_set);

};
};

void dump_map_and_set(struct tree_struct *m, bool is_set)
{

printf ("ptr=0x%p, M_key_compare=0x%x, M_header=0x%p, M_node_count=%d\n⤦
Ç ",

m, m->M_key_compare, &m->M_header, m->M_node_count);
dump_tree_node (m->M_header.M_parent, is_set, true, true);
printf ("As a tree:\n");
printf ("root----");

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

746
dump_as_tree (1, m->M_header.M_parent, is_set);

};

int main()
{

// map

std::map<int, const char*> m;

m[10]="ten";
m[20]="twenty";
m[3]="three";
m[101]="one hundred one";
m[100]="one hundred";
m[12]="twelve";
m[107]="one hundred seven";
m[0]="zero";
m[1]="one";
m[6]="six";
m[99]="ninety-nine";
m[5]="five";
m[11]="eleven";
m[1001]="one thousand one";
m[1010]="one thousand ten";
m[2]="two";
m[9]="nine";

printf ("dumping m as map:\n");
dump_map_and_set ((struct tree_struct *)(void*)&m, false);

std::map<int, const char*>::iterator it1=m.begin();
printf ("m.begin():\n");
dump_tree_node ((struct tree_node *)*(void**)&it1, false, false, true);
it1=m.end();
printf ("m.end():\n");
dump_tree_node ((struct tree_node *)*(void**)&it1, false, false, false)⤦
Ç ;

// set

std::set<int> s;
s.insert(123);
s.insert(456);
s.insert(11);
s.insert(12);
s.insert(100);
s.insert(1001);
printf ("dumping s as set:\n");
dump_map_and_set ((struct tree_struct *)(void*)&s, true);
std::set<int>::iterator it2=s.begin();
printf ("s.begin():\n");
dump_tree_node ((struct tree_node *)*(void**)&it2, true, false, true);
it2=s.end();

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

747
printf ("s.end():\n");
dump_tree_node ((struct tree_node *)*(void**)&it2, true, false, false);

};

Listing 3.119: GCC 4.8.1
dumping m as map:
ptr=0x0028FE3C, M_key_compare=0x402b70, M_header=0x0028FE40, M_node_count⤦

Ç =17
ptr=0x007A4988 M_left=0x007A4C00 M_parent=0x0028FE40 M_right=0x007A4B80 ⤦

Ç M_color=1
key=10 value=[ten]
ptr=0x007A4C00 M_left=0x007A4BE0 M_parent=0x007A4988 M_right=0x007A4C60 ⤦

Ç M_color=1
key=1 value=[one]
ptr=0x007A4BE0 M_left=0x00000000 M_parent=0x007A4C00 M_right=0x00000000 ⤦

Ç M_color=1
key=0 value=[zero]
ptr=0x007A4C60 M_left=0x007A4B40 M_parent=0x007A4C00 M_right=0x007A4C20 ⤦

Ç M_color=0
key=5 value=[five]
ptr=0x007A4B40 M_left=0x007A4CE0 M_parent=0x007A4C60 M_right=0x00000000 ⤦

Ç M_color=1
key=3 value=[three]
ptr=0x007A4CE0 M_left=0x00000000 M_parent=0x007A4B40 M_right=0x00000000 ⤦

Ç M_color=0
key=2 value=[two]
ptr=0x007A4C20 M_left=0x00000000 M_parent=0x007A4C60 M_right=0x007A4D00 ⤦

Ç M_color=1
key=6 value=[six]
ptr=0x007A4D00 M_left=0x00000000 M_parent=0x007A4C20 M_right=0x00000000 ⤦

Ç M_color=0
key=9 value=[nine]
ptr=0x007A4B80 M_left=0x007A49A8 M_parent=0x007A4988 M_right=0x007A4BC0 ⤦

Ç M_color=1
key=100 value=[one hundred]
ptr=0x007A49A8 M_left=0x007A4BA0 M_parent=0x007A4B80 M_right=0x007A4C40 ⤦

Ç M_color=0
key=20 value=[twenty]
ptr=0x007A4BA0 M_left=0x007A4C80 M_parent=0x007A49A8 M_right=0x00000000 ⤦

Ç M_color=1
key=12 value=[twelve]
ptr=0x007A4C80 M_left=0x00000000 M_parent=0x007A4BA0 M_right=0x00000000 ⤦

Ç M_color=0
key=11 value=[eleven]
ptr=0x007A4C40 M_left=0x00000000 M_parent=0x007A49A8 M_right=0x00000000 ⤦

Ç M_color=1
key=99 value=[ninety-nine]
ptr=0x007A4BC0 M_left=0x007A4B60 M_parent=0x007A4B80 M_right=0x007A4CA0 ⤦

Ç M_color=0
key=107 value=[one hundred seven]
ptr=0x007A4B60 M_left=0x00000000 M_parent=0x007A4BC0 M_right=0x00000000 ⤦

Ç M_color=1
key=101 value=[one hundred one]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

748
ptr=0x007A4CA0 M_left=0x00000000 M_parent=0x007A4BC0 M_right=0x007A4CC0 ⤦

Ç M_color=1
key=1001 value=[one thousand one]
ptr=0x007A4CC0 M_left=0x00000000 M_parent=0x007A4CA0 M_right=0x00000000 ⤦

Ç M_color=0
key=1010 value=[one thousand ten]
As a tree:
root----10 [ten]

L-------1 [one]
L-------0 [zero]
R-------5 [five]

L-------3 [three]
L-------2 [two]

R-------6 [six]
R-------9 [nine]

R-------100 [one hundred]
L-------20 [twenty]

L-------12 [twelve]
L-------11 [eleven]

R-------99 [ninety-nine]
R-------107 [one hundred seven]

L-------101 [one hundred one]
R-------1001 [one thousand one]

R-------1010 [one thousand ten]
m.begin():
ptr=0x007A4BE0 M_left=0x00000000 M_parent=0x007A4C00 M_right=0x00000000 ⤦

Ç M_color=1
key=0 value=[zero]
m.end():
ptr=0x0028FE40 M_left=0x007A4BE0 M_parent=0x007A4988 M_right=0x007A4CC0 ⤦

Ç M_color=0

dumping s as set:
ptr=0x0028FE20, M_key_compare=0x8, M_header=0x0028FE24, M_node_count=6
ptr=0x007A1E80 M_left=0x01D5D890 M_parent=0x0028FE24 M_right=0x01D5D850 ⤦

Ç M_color=1
key=123
ptr=0x01D5D890 M_left=0x01D5D870 M_parent=0x007A1E80 M_right=0x01D5D8B0 ⤦

Ç M_color=1
key=12
ptr=0x01D5D870 M_left=0x00000000 M_parent=0x01D5D890 M_right=0x00000000 ⤦

Ç M_color=0
key=11
ptr=0x01D5D8B0 M_left=0x00000000 M_parent=0x01D5D890 M_right=0x00000000 ⤦

Ç M_color=0
key=100
ptr=0x01D5D850 M_left=0x00000000 M_parent=0x007A1E80 M_right=0x01D5D8D0 ⤦

Ç M_color=1
key=456
ptr=0x01D5D8D0 M_left=0x00000000 M_parent=0x01D5D850 M_right=0x00000000 ⤦

Ç M_color=0
key=1001
As a tree:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

749
root----123

L-------12
L-------11
R-------100

R-------456
R-------1001

s.begin():
ptr=0x01D5D870 M_left=0x00000000 M_parent=0x01D5D890 M_right=0x00000000 ⤦

Ç M_color=0
key=11
s.end():
ptr=0x0028FE24 M_left=0x01D5D870 M_parent=0x007A1E80 M_right=0x01D5D8D0 ⤦

Ç M_color=0

GCC’s implementation is very similar 35. The only difference is the absence of the
Isnil field, so the structure occupies slightly less space in memory than its imple-
mentation in MSVC.
The dummy node is also used as a place to point the .end() iterator also has no key
and/or value.

Rebalancing demo (GCC)

Here is also a demo showing us how a tree is rebalanced after some insertions.

Listing 3.120: GCC
#include <stdio.h>
#include <map>
#include <set>
#include <string>
#include <iostream>

struct map_pair
{

int key;
const char *value;

};

struct tree_node
{

int M_color; // 0 - Red, 1 - Black
struct tree_node *M_parent;
struct tree_node *M_left;
struct tree_node *M_right;

};

struct tree_struct
{

int M_key_compare;

35http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.1/stl__tree_
8h-source.html

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.1/stl__tree_8h-source.html
http://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.1/stl__tree_8h-source.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

750
struct tree_node M_header;
size_t M_node_count;

};

const char* ALOT_OF_TABS="\t\t\t\t\t\t\t\t\t\t\t";

void dump_as_tree (int tabs, struct tree_node *n)
{

void *point_after_struct=((char*)n)+sizeof(struct tree_node);

printf ("%d\n", *(int*)point_after_struct);

if (n->M_left)
{

printf ("%.*sL-------", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+1, n->M_left);

};
if (n->M_right)
{

printf ("%.*sR-------", tabs, ALOT_OF_TABS);
dump_as_tree (tabs+1, n->M_right);

};
};

void dump_map_and_set(struct tree_struct *m)
{

printf ("root----");
dump_as_tree (1, m->M_header.M_parent);

};

int main()
{

std::set<int> s;
s.insert(123);
s.insert(456);
printf ("123, 456 has been inserted\n");
dump_map_and_set ((struct tree_struct *)(void*)&s);
s.insert(11);
s.insert(12);
printf ("\n");
printf ("11, 12 has been inserted\n");
dump_map_and_set ((struct tree_struct *)(void*)&s);
s.insert(100);
s.insert(1001);
printf ("\n");
printf ("100, 1001 has been inserted\n");
dump_map_and_set ((struct tree_struct *)(void*)&s);
s.insert(667);
s.insert(1);
s.insert(4);
s.insert(7);
printf ("\n");
printf ("667, 1, 4, 7 has been inserted\n");

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

751
dump_map_and_set ((struct tree_struct *)(void*)&s);
printf ("\n");

};

Listing 3.121: GCC 4.8.1
123, 456 has been inserted
root----123

R-------456

11, 12 has been inserted
root----123

L-------11
R-------12

R-------456

100, 1001 has been inserted
root----123

L-------12
L-------11
R-------100

R-------456
R-------1001

667, 1, 4, 7 has been inserted
root----12

L-------4
L-------1
R-------11

L-------7
R-------123

L-------100
R-------667

L-------456
R-------1001

3.21.5 Memory
Sometimes youmay hear fromC++programmers “allocatememory on stack” and/or
“allocate memory on heap”.
Allocating object on stack:
void f()
{

...

Class o=Class(...);

...
};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

752
The memory for object (or structure) is allocated in stack, using simple SP shift. The
memory is deallocated upon function exit, or, more precisely, at the end of scope—
SP is returning to its state (same as at the start of function) and destructor of Class
is called. In the same manner, memory for allocated structure in C is deallocated
upon function exit.
Allocating object on heap:
void f1()
{

...

Class *o=new Class(...);

...
};

void f2()
{

...

delete o;

...
};

This is the same as allocating memory for a structure usingmalloc() call. In fact, new
in C++ is wrapper formalloc(), and delete is wrapper for free(). Since memory block
has been allocated in heap, it must be deallocated explicitly, using delete. Class
destructor will be automatically called right before that moment.
Which method is better? Allocating on stack is very fast, and good for small, short-
lived object, which will be used only in the current function.
Allocating on heap is slower, and better for long-lived object, which will be used
across many functions. Also, objects allocated in heap are prone to memory leakage,
because they must to be freed explicitly, but one can forget about it.
Anyway, this is matter of taste.

3.22 Negative array indices
It’s possible to address the space before an array by supplying a negative index, e.g.,
array[−1].

3.22.1 Addressing string from the end
Python PL allows to address arrays and strings from the end. For example, string[-1]
returns the last character, string[-2] returns penultimate, etc. Hard to believe, but
this is also possible in C/C++:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

753

#include <string.h>
#include <stdio.h>

int main()
{

char *s="Hello, world!";
char *s_end=s+strlen(s);

printf ("last character: %c\n", s_end[-1]);
printf ("penultimate character: %c\n", s_end[-2]);

};

It works, but s_end must always has an address of terminating zero byte at the end
of s string. If s string’s size get changed, s_end must be updated.
The trick is dubious, but again, this is a demonstration of negative indices.

3.22.2 Addressing some kind of block from the end
Let’s first recall why stack grows backwards (1.9.1 on page 41). There is some kind
of block in memory and you want to store both heap and stack there, and you are
not sure, how big they both can grow during runtime.
You can set a heap pointer to the beginning of the block, then you can set a stack
pointer to the end of the block (heap + size_of_block), and then you can address nth
element of stack like stack[-n]. For example, stack[-1] for 1st element, stack[-2] for
2nd, etc.
This will work in the same fashion, as our trick of addressing string from the end.
You can easily check if the structures has not begun to overlap each other: just be
sure that address of the last element in heap is below the address of the last element
of stack.
Unfortunately, −0 as index will not work, since two’s complement way of represent-
ing negative numbers don’t allow negative zero, so it cannot be distinguished from
positive zero.
This method is also mentioned in “Transaction processing”, Jim Gray, 1993, “The
Tuple-Oriented File System” chapter, p. 755.

3.22.3 Arrays started at 1
Fortran and Mathematica defined first element of array as 1th, probably because
this is tradition in mathematics. Other PLs like C/C++ defined it as 0th. Which is
better? Edsger W. Dijkstra argued that latter is better 36.
But programmers may still have a habit after Fortran, so using this little trick, it’s
possible to address the first element in C/C++ using index 1:
36See https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

754

#include <stdio.h>

int main()
{

int random_value=0x11223344;
unsigned char array[10];
int i;
unsigned char *fakearray=&array[-1];

for (i=0; i<10; i++)
array[i]=i;

printf ("first element %d\n", fakearray[1]);
printf ("second element %d\n", fakearray[2]);
printf ("last element %d\n", fakearray[10]);

printf ("array[-1]=%02X, array[-2]=%02X, array[-3]=%02X, array⤦
Ç [-4]=%02X\n",

array[-1],
array[-2],
array[-3],
array[-4]);

};

Listing 3.122: Non-optimizing MSVC 2010
1 $SG2751 DB 'first element %d', 0aH, 00H
2 $SG2752 DB 'second element %d', 0aH, 00H
3 $SG2753 DB 'last element %d', 0aH, 00H
4 $SG2754 DB 'array[-1]=%02X, array[-2]=%02X, array[-3]=%02X, array[-4'
5 DB ']=%02X', 0aH, 00H
6
7 _fakearray$ = -24 ; size = 4
8 _random_value$ = -20 ; size = 4
9 _array$ = -16 ; size = 10
10 _i$ = -4 ; size = 4
11 _main PROC
12 push ebp
13 mov ebp, esp
14 sub esp, 24
15 mov DWORD PTR _random_value$[ebp], 287454020 ; 11223344H
16 ; set fakearray[] one byte earlier before array[]
17 lea eax, DWORD PTR _array$[ebp]
18 add eax, -1 ; eax=eax-1
19 mov DWORD PTR _fakearray$[ebp], eax
20 mov DWORD PTR _i$[ebp], 0
21 jmp SHORT $LN3@main
22 ; fill array[] with 0..9
23 $LN2@main:
24 mov ecx, DWORD PTR _i$[ebp]
25 add ecx, 1
26 mov DWORD PTR _i$[ebp], ecx
27 $LN3@main:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

755
28 cmp DWORD PTR _i$[ebp], 10
29 jge SHORT $LN1@main
30 mov edx, DWORD PTR _i$[ebp]
31 mov al, BYTE PTR _i$[ebp]
32 mov BYTE PTR _array$[ebp+edx], al
33 jmp SHORT $LN2@main
34 $LN1@main:
35 mov ecx, DWORD PTR _fakearray$[ebp]
36 ; ecx=address of fakearray[0], ecx+1 is fakearray[1] or array[0]
37 movzx edx, BYTE PTR [ecx+1]
38 push edx
39 push OFFSET $SG2751 ; 'first element %d'
40 call _printf
41 add esp, 8
42 mov eax, DWORD PTR _fakearray$[ebp]
43 ; eax=address of fakearray[0], eax+2 is fakearray[2] or array[1]
44 movzx ecx, BYTE PTR [eax+2]
45 push ecx
46 push OFFSET $SG2752 ; 'second element %d'
47 call _printf
48 add esp, 8
49 mov edx, DWORD PTR _fakearray$[ebp]
50 ; edx=address of fakearray[0], edx+10 is fakearray[10] or array[9]
51 movzx eax, BYTE PTR [edx+10]
52 push eax
53 push OFFSET $SG2753 ; 'last element %d'
54 call _printf
55 add esp, 8
56 ; subtract 4, 3, 2 and 1 from pointer to array[0] in order to find

values before array[]
57 lea ecx, DWORD PTR _array$[ebp]
58 movzx edx, BYTE PTR [ecx-4]
59 push edx
60 lea eax, DWORD PTR _array$[ebp]
61 movzx ecx, BYTE PTR [eax-3]
62 push ecx
63 lea edx, DWORD PTR _array$[ebp]
64 movzx eax, BYTE PTR [edx-2]
65 push eax
66 lea ecx, DWORD PTR _array$[ebp]
67 movzx edx, BYTE PTR [ecx-1]
68 push edx
69 push OFFSET $SG2754 ;

'array[-1]=%02X, array[-2]=%02X, array[-3]=%02X, array[-4]=%02X'
70 call _printf
71 add esp, 20
72 xor eax, eax
73 mov esp, ebp
74 pop ebp
75 ret 0
76 _main ENDP

So we have array[] of ten elements, filled with 0 . . . 9 bytes.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

756
Then we have the fakearray[] pointer, which points one byte before array[].
fakearray[1] points exactly to array[0]. But we are still curious, what is there be-
fore array[]? We have added random_value before array[] and set it to 0x11223344.
The non-optimizing compiler allocated the variables in the order they were declared,
so yes, the 32-bit random_value is right before the array.
We ran it, and:
first element 0
second element 1
last element 9
array[-1]=11, array[-2]=22, array[-3]=33, array[-4]=44

Here is the stack fragment we will copypaste from OllyDbg’s stack window (with
comments added by the author):

Listing 3.123: Non-optimizing MSVC 2010
CPU Stack
Address Value
001DFBCC /001DFBD3 ; fakearray pointer
001DFBD0 |11223344 ; random_value
001DFBD4 |03020100 ; 4 bytes of array[]
001DFBD8 |07060504 ; 4 bytes of array[]
001DFBDC |00CB0908 ; random garbage + 2 last bytes of array[]
001DFBE0 |0000000A ; last i value after loop was finished
001DFBE4 |001DFC2C ; saved EBP value
001DFBE8 \00CB129D ; Return Address

The pointer to the fakearray[] (0x001DFBD3) is indeed the address of array[] in
the stack (0x001DFBD4), but minus 1 byte.
It’s still very hackish and dubious trick. Doubtfully anyone should use it in production
code, but as a demonstration, it fits perfectly here.

3.23 More about pointers

The way C handles pointers, for example,
was a brilliant innovation; it solved a lot of
problems that we had before in data
structuring and made the programs look
good afterwards.

Donald Knuth, interview (1993)

For those, who still have hard time understanding C/C++ pointers, here are more
examples. Some of them are weird and serves only demonstration purpose: use
them in production code only if you really know what you’re doing.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

757
3.23.1 Working with addresses instead of pointers
Pointer is just an address in memory. But why we write char* string instead of
something like address string? Pointer variable is supplied with a type of the value
to which pointer points. So then compiler will be able to catch data typization bugs
during compilation.
To be pedantic, data typing in programming languages is all about preventing bugs
and self-documentation. It’s possible to use maybe two of data types like int (or
int64_t) and byte—these are the only types which are available to assembly lan-
guage programmers. But it’s just very hard task to write big and practical assembly
programs without nasty bugs. Any small typo can lead to hard-to-find bug.
Data type information is absent in a compiled code (and this is one of the main
problems for decompilers), and I can demonstrate this.
This is what sane C/C++ programmer can write:
#include <stdio.h>
#include <stdint.h>

void print_string (char *s)
{

printf ("(address: 0x%llx)\n", s);
printf ("%s\n", s);

};

int main()
{

char *s="Hello, world!";

print_string (s);
};

This is what I can write:
#include <stdio.h>
#include <stdint.h>

void print_string (uint64_t address)
{

printf ("(address: 0x%llx)\n", address);
puts ((char*)address);

};

int main()
{

char *s="Hello, world!";

print_string ((uint64_t)s);
};

I use uint64_t because I run this example on Linux x64. int would work for 32-bit
OS-es. First, a pointer to character (the very first in the greeting string) is casted

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

758
to uint64_t, then it’s passed further. print_string() function casts back incoming
uint64_t value into pointer to a character.
What is interesting is that GCC 4.8.4 produces identical assembly output for both
versions:
gcc 1.c -S -masm=intel -O3 -fno-inline

.LC0:
.string "(address: 0x%llx)\n"

print_string:
push rbx
mov rdx, rdi
mov rbx, rdi
mov esi, OFFSET FLAT:.LC0
mov edi, 1
xor eax, eax
call __printf_chk
mov rdi, rbx
pop rbx
jmp puts

.LC1:
.string "Hello, world!"

main:
sub rsp, 8
mov edi, OFFSET FLAT:.LC1
call print_string
add rsp, 8
ret

(I’ve removed all insignificant GCC directives.)
I also tried UNIX diff utility and it shows no differences at all.
Let’s continue to abuse C/C++ programming traditions heavily. Someone may write
this:
#include <stdio.h>
#include <stdint.h>

uint8_t load_byte_at_address (uint8_t* address)
{

return *address;
//this is also possible: return address[0];

};

void print_string (char *s)
{

char* current_address=s;
while (1)
{

char current_char=load_byte_at_address(current_address);
if (current_char==0)

break;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

759
printf ("%c", current_char);
current_address++;

};
};

int main()
{

char *s="Hello, world!";

print_string (s);
};

It can be rewritten like this:
#include <stdio.h>
#include <stdint.h>

uint8_t load_byte_at_address (uint64_t address)
{

return *(uint8_t*)address;
};

void print_string (uint64_t address)
{

uint64_t current_address=address;
while (1)
{

char current_char=load_byte_at_address(current_address);
if (current_char==0)

break;
printf ("%c", current_char);
current_address++;

};
};

int main()
{

char *s="Hello, world!";

print_string ((uint64_t)s);
};

Both source codes resulting in the same assembly output:
gcc 1.c -S -masm=intel -O3 -fno-inline

load_byte_at_address:
movzx eax, BYTE PTR [rdi]
ret

print_string:
.LFB15:

push rbx
mov rbx, rdi

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

760
jmp .L4

.L7:
movsx edi, al
add rbx, 1
call putchar

.L4:
mov rdi, rbx
call load_byte_at_address
test al, al
jne .L7
pop rbx
ret

.LC0:
.string "Hello, world!"

main:
sub rsp, 8
mov edi, OFFSET FLAT:.LC0
call print_string
add rsp, 8
ret

(I have also removed all insignificant GCC directives.)
No difference: C/C++ pointers are essentially addresses, but supplied with type
information, in order to prevent possible mistakes at the time of compilation. Types
are not checked during runtime—it would be huge (and unneeded) overhead.

3.23.2 Passing values as pointers; tagged unions
Here is an example on how to pass values in pointers:
#include <stdio.h>
#include <stdint.h>

uint64_t multiply1 (uint64_t a, uint64_t b)
{

return a*b;
};

uint64_t* multiply2 (uint64_t *a, uint64_t *b)
{

return (uint64_t*)((uint64_t)a*(uint64_t)b);
};

int main()
{

printf ("%d\n", multiply1(123, 456));
printf ("%d\n", (uint64_t)multiply2((uint64_t*)123, (uint64_t*)456)⤦

Ç);
};

It works smoothly and GCC 4.8.4 compiles both multiply1() and multiply2() functions
identically!

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

761

multiply1:
mov rax, rdi
imul rax, rsi
ret

multiply2:
mov rax, rdi
imul rax, rsi
ret

As long as you do not dereference pointer (in other words, you don’t read any data
from the address stored in pointer), everything will work fine. Pointer is a variable
which can store anything, like usual variable.
Signed multiplication instruction (IMUL) is used here instead of unsigned one (MUL),
read more about it here: 11.1 on page 1255.
By the way, it’s well-known hack to abuse pointers a little called tagged pointers.
In short, if all your pointers points to blocks of memory with size of, let’s say, 16
bytes (or it is always aligned on 16-byte boundary), 4 lowest bits of pointer is always
zero bits and this space can be used somehow. It’s very popular in LISP compilers
and interpreters. They store cell/object type in these unused bits, this can save
some memory. Even more, you can judge about cell/object type using just pointer,
with no additional memory access. Read more about it: [Dennis Yurichev, C/C++
programming language notes1.3].

3.23.3 Pointers abuse in Windows kernel
The resource section of PE executable file in Windows OS is a section containing
pictures, icons, strings, etc. Early Windows versions allowed to address resources
only by IDs, but then Microsoft added a way to address them using strings.
So then it would be possible to pass ID or string to FindResource() function. Which
is declared like this:
HRSRC WINAPI FindResource(

_In_opt_ HMODULE hModule,
In LPCTSTR lpName,
In LPCTSTR lpType

);

lpName and lpType has char* or wchar* types, and when someone still wants to pass
ID, he/she have to use MAKEINTRESOURCE macro, like this:
result = FindResource(..., MAKEINTRESOURCE(1234), ...);

It’s interesting fact that MAKEINTRESOURCE is merely casting integer to pointer. In
MSVC 2013, in the file
Microsoft SDKs\Windows\v7.1A\Include\Ks.h we can find this:
...

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://msdn.microsoft.com/en-us/library/windows/desktop/ms648042%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms648029%28v=vs.85%29.aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

762
#if (!defined(MAKEINTRESOURCE))
#define MAKEINTRESOURCE(res) ((ULONG_PTR) (USHORT) res)
#endif

...

Sounds insane. Let’s peek into ancient leaked Windows NT4 source code. In pri-
vate/windows/base/client/module.c we can find FindResource() source code:
HRSRC
FindResourceA(

HMODULE hModule,
LPCSTR lpName,
LPCSTR lpType
)

...

{
NTSTATUS Status;
ULONG IdPath[3];
PVOID p;

IdPath[0] = 0;
IdPath[1] = 0;
try {

if ((IdPath[0] = BaseDllMapResourceIdA(lpType)) == -1) {
Status = STATUS_INVALID_PARAMETER;
}

else
if ((IdPath[1] = BaseDllMapResourceIdA(lpName)) == -1) {

Status = STATUS_INVALID_PARAMETER;
...

Let’s proceed to BaseDllMapResourceIdA() in the same source file:
ULONG
BaseDllMapResourceIdA(

LPCSTR lpId
)

{
NTSTATUS Status;
ULONG Id;
UNICODE_STRING UnicodeString;
ANSI_STRING AnsiString;
PWSTR s;

try {
if ((ULONG)lpId & LDR_RESOURCE_ID_NAME_MASK) {

if (*lpId == '#') {
Status = RtlCharToInteger(lpId+1, 10, &Id);
if (!NT_SUCCESS(Status) || Id & LDR_RESOURCE_ID_NAME_MASK⤦

Ç) {

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

763
if (NT_SUCCESS(Status)) {

Status = STATUS_INVALID_PARAMETER;
}

BaseSetLastNTError(Status);
Id = (ULONG)-1;
}

}
else {

RtlInitAnsiString(&AnsiString, lpId);
Status = RtlAnsiStringToUnicodeString(&UnicodeString,

&AnsiString,
TRUE

);
if (!NT_SUCCESS(Status)){

BaseSetLastNTError(Status);
Id = (ULONG)-1;
}

else {
s = UnicodeString.Buffer;
while (*s != UNICODE_NULL) {

*s = RtlUpcaseUnicodeChar(*s);
s++;
}

Id = (ULONG)UnicodeString.Buffer;
}

}
}

else {
Id = (ULONG)lpId;
}

}
except (EXCEPTION_EXECUTE_HANDLER) {

BaseSetLastNTError(GetExceptionCode());
Id = (ULONG)-1;
}

return Id;
}

lpId is ANDed with LDR_RESOURCE_ID_NAME_MASK.
Which we can find in public/sdk/inc/ntldr.h:
...

#define LDR_RESOURCE_ID_NAME_MASK 0xFFFF0000

...

So lpId is ANDed with 0xFFFF0000 and if some bits beyond lowest 16 bits are still
present, first half of function is executed (lpId is treated as an address of string).
Otherwise—second half (lpId is treated as 16-bit value).
Still, this code can be found in Windows 7 kernel32.dll file:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

764

....

.text:0000000078D24510 ;
__int64 __fastcall BaseDllMapResourceIdA(PCSZ SourceString)

.text:0000000078D24510 BaseDllMapResourceIdA proc near ; CODE XREF:
FindResourceExA+34

.text:0000000078D24510 ;
FindResourceExA+4B

.text:0000000078D24510

.text:0000000078D24510 var_38 = qword ptr -38h

.text:0000000078D24510 var_30 = qword ptr -30h

.text:0000000078D24510 var_28 = _UNICODE_STRING ptr -28h

.text:0000000078D24510 DestinationString= _STRING ptr -18h

.text:0000000078D24510 arg_8 = dword ptr 10h

.text:0000000078D24510

.text:0000000078D24510 ; FUNCTION CHUNK AT .text:0000000078D42FB4 SIZE
000000D5 BYTES

.text:0000000078D24510

.text:0000000078D24510 push rbx

.text:0000000078D24512 sub rsp, 50h

.text:0000000078D24516 cmp rcx, 10000h

.text:0000000078D2451D jnb loc_78D42FB4

.text:0000000078D24523 mov [rsp+58h+var_38], rcx

.text:0000000078D24528 jmp short $+2

.text:0000000078D2452A ;---

.text:0000000078D2452A

.text:0000000078D2452A loc_78D2452A: ; CODE XREF:
BaseDllMapResourceIdA+18

.text:0000000078D2452A ;
BaseDllMapResourceIdA+1EAD0

.text:0000000078D2452A jmp short $+2

.text:0000000078D2452C ;---

.text:0000000078D2452C

.text:0000000078D2452C loc_78D2452C: ;
CODE XREF: BaseDllMapResourceIdA:loc_78D2452A

.text:0000000078D2452C ;
BaseDllMapResourceIdA+1EB74

.text:0000000078D2452C mov rax, rcx

.text:0000000078D2452F add rsp, 50h

.text:0000000078D24533 pop rbx

.text:0000000078D24534 retn

.text:0000000078D24534 ;---

.text:0000000078D24535 align 20h

.text:0000000078D24535 BaseDllMapResourceIdA endp

....

.text:0000000078D42FB4 loc_78D42FB4: ; CODE XREF:
BaseDllMapResourceIdA+D

.text:0000000078D42FB4 cmp byte ptr [rcx], '#'

.text:0000000078D42FB7 jnz short loc_78D43005

.text:0000000078D42FB9 inc rcx

.text:0000000078D42FBC lea r8, [rsp+58h+arg_8]

.text:0000000078D42FC1 mov edx, 0Ah

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

765
.text:0000000078D42FC6 call cs:__imp_RtlCharToInteger
.text:0000000078D42FCC mov ecx, [rsp+58h+arg_8]
.text:0000000078D42FD0 mov [rsp+58h+var_38], rcx
.text:0000000078D42FD5 test eax, eax
.text:0000000078D42FD7 js short loc_78D42FE6
.text:0000000078D42FD9 test rcx, 0FFFFFFFFFFFF0000h
.text:0000000078D42FE0 jz loc_78D2452A

....

If value in input pointer is greater than 0x10000, jump to string processing is oc-
curred. Otherwise, input value of lpId is returned as is. 0xFFFF0000mask is not used
here any more, because this is 64-bit code after all, but still, 0xFFFFFFFFFFFF0000
could work here.
Attentive reader may ask, what if address of input string is lower than 0x10000?
This code relied on the fact that in Windows there are nothing on addresses below
0x10000, at least in Win32 realm.
Raymond Chen writes about this:

How does MAKEINTRESOURCE work? It just stashes the integer in
the bottom 16 bits of a pointer, leaving the upper bits zero. This relies
on the convention that the first 64KB of address space is never mapped
to valid memory, a convention that is enforced starting in Windows 7.

In short words, this is dirty hack and probably one should use it only if there is
a real necessity. Perhaps, FindResource() function in past had SHORT type for its
arguments, and then Microsoft has added a way to pass strings there, but older
code must also be supported.
Now here is my short distilled example:
#include <stdio.h>
#include <stdint.h>

void f(char* a)
{

if (((uint64_t)a)>0x10000)
printf ("Pointer to string has been passed: %s\n", a);

else
printf ("16-bit value has been passed: %d\n", (uint64_t)a);

};

int main()
{

f("Hello!"); // pass string
f((char*)1234); // pass 16-bit value

};

It works!

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://blogs.msdn.microsoft.com/oldnewthing/20130925-00/?p=3123
https://yurichev.com/contact.html
https://yurichev.com/contact.html

766
Pointers abuse in Linux kernel

As it has been noted in comments on Hacker News, Linux kernel also has something
like that.
For example, this function can return both error code and pointer:
struct kernfs_node *kernfs_create_link(struct kernfs_node *parent,

const char *name,
struct kernfs_node *target)

{
struct kernfs_node *kn;
int error;

kn = kernfs_new_node(parent, name, S_IFLNK|S_IRWXUGO, KERNFS_LINK);
if (!kn)

return ERR_PTR(-ENOMEM);

if (kernfs_ns_enabled(parent))
kn->ns = target->ns;

kn->symlink.target_kn = target;
kernfs_get(target); /* ref owned by symlink */

error = kernfs_add_one(kn);
if (!error)

return kn;

kernfs_put(kn);
return ERR_PTR(error);

}

(https://github.com/torvalds/linux/blob/fceef393a538134f03b778c5d2519e670269342f/
fs/kernfs/symlink.c#L25)
ERR_PTR is a macro to cast integer to pointer:
static inline void * __must_check ERR_PTR(long error)
{

return (void *) error;
}

(https://github.com/torvalds/linux/blob/61d0b5a4b2777dcf5daef245e212b3c1fa8091ca/
tools/virtio/linux/err.h)
This header file also has a macro helper to distinguish error code from pointer:
#define IS_ERR_VALUE(x) unlikely((x) >= (unsigned long)-MAX_ERRNO)

This means, error codes are the “pointers” which are very close to -1 and, hope-
fully, there are nothing in kernel memory on the addresses like 0xFFFFFFFFFFFFFFFF,
0xFFFFFFFFFFFFFFFE, 0xFFFFFFFFFFFFFFFD, etc.
Much more popular solution is to return NULL in case of error and to pass error code
via additional argument. Linux kernel authors don’t do that, but everyone who use

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://news.ycombinator.com/item?id=11823647
https://github.com/torvalds/linux/blob/fceef393a538134f03b778c5d2519e670269342f/fs/kernfs/symlink.c#L25
https://github.com/torvalds/linux/blob/fceef393a538134f03b778c5d2519e670269342f/fs/kernfs/symlink.c#L25
https://github.com/torvalds/linux/blob/61d0b5a4b2777dcf5daef245e212b3c1fa8091ca/tools/virtio/linux/err.h
https://github.com/torvalds/linux/blob/61d0b5a4b2777dcf5daef245e212b3c1fa8091ca/tools/virtio/linux/err.h
https://yurichev.com/contact.html
https://yurichev.com/contact.html

767
these functions must always keep in mind that returning pointer must always be
checked with IS_ERR_VALUE before dereferencing.
For example:

fman->cam_offset = fman_muram_alloc(fman->muram, fman->cam_size);
if (IS_ERR_VALUE(fman->cam_offset)) {

dev_err(fman->dev, "%s: MURAM alloc for DMA CAM failed\n",
__func__);

return -ENOMEM;
}

(https://github.com/torvalds/linux/blob/aa00edc1287a693eadc7bc67a3d73555d969b35d/
drivers/net/ethernet/freescale/fman/fman.c#L826)

Pointers abuse in UNIX userland

mmap() function returns -1 in case of error (or MAP_FAILED, which equals to -1).
Some people say, mmap() can map a memory at zeroth address in rare situations,
so it can’t use 0 or NULL as error code.

3.23.4 Null pointers
“Null pointer assignment” error of MS-DOS era

Oldschool readers may recall a weird error message of MS-DOS era: “Null pointer
assignment”. What does it mean?
It’s not possible to write a memory at zero address in *NIX and Windows OSes, but it
was possible to do so in MS-DOS due to absence of memory protection whatsoever.
So I’ve pulled my ancient Turbo C++ 3.0 (later it was renamed to Borland C++) from
early 1990s and tried to compile this:
#include <stdio.h>

int main()
{

int *ptr=NULL;
*ptr=1234;
printf ("Now let's read at NULL\n");
printf ("%d\n", *ptr);

};

Hard to believe, but it works, with error upon exit, though:

Listing 3.124: Ancient Turbo C 3.0
C:\TC30\BIN\1
Now let's read at NULL
1234
Null pointer assignment

C:\TC30\BIN>_

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://github.com/torvalds/linux/blob/aa00edc1287a693eadc7bc67a3d73555d969b35d/drivers/net/ethernet/freescale/fman/fman.c#L826
https://github.com/torvalds/linux/blob/aa00edc1287a693eadc7bc67a3d73555d969b35d/drivers/net/ethernet/freescale/fman/fman.c#L826
https://yurichev.com/contact.html
https://yurichev.com/contact.html

768
Let’s dig deeper into the source code of CRT of Borland C++ 3.1, file c0.asm:
; _checknull() check for null pointer zapping copyright message

...

; Check for null pointers before exit

__checknull PROC DIST
PUBLIC __checknull

IF LDATA EQ false
IFNDEF __TINY__

push si
push di
mov es, cs:DGROUP@@
xor ax, ax
mov si, ax
mov cx, lgth_CopyRight

ComputeChecksum label near
add al, es:[si]
adc ah, 0
inc si
loop ComputeChecksum
sub ax, CheckSum
jz @@SumOK
mov cx, lgth_NullCheck
mov dx, offset DGROUP: NullCheck
call ErrorDisplay

@@SumOK: pop di
pop si

ENDIF
ENDIF

_DATA SEGMENT

; Magic symbol used by the debug info to locate the data segment
public DATASEG@

DATASEG@ label byte

; The CopyRight string must NOT be moved or changed without
; changing the null pointer check logic

CopyRight db 4 dup(0)
db 'Borland C++ - Copyright 1991 Borland Intl.',0

lgth_CopyRight equ $ - CopyRight

IF LDATA EQ false
IFNDEF __TINY__
CheckSum equ 00D5Ch
NullCheck db 'Null pointer assignment', 13, 10
lgth_NullCheck equ $ - NullCheck
ENDIF
ENDIF

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

769

...

The MS-DOS memory model was really weird (11.7 on page 1264) and probably not
worth looking into it unless you’re fan of retrocomputing or retrogaming. One thing
we have to keep in mind is that memory segment (included data segment) in MS-
DOS is a memory segment in which code or data is stored, but unlike “serious” OSes,
it’s started at address 0.
And in Borland C++ CRT, the data segment is started with 4 zero bytes and the
copyright string “Borland C++ - Copyright 1991 Borland Intl.”. The integrity of the
4 zero bytes and text string is checked upon exit, and if it’s corrupted, the error
message is displayed.
But why? Writing at null pointer is common mistake in C/C++, and if you do so in
*NIX or Windows, your application will crash. MS-DOS has no memory protection,
so CRT has to check this post-factum and warn about it upon exit. If you see this
message, this means, your program at some point has written at address 0.
Our program did so. And this is why 1234 number has been read correctly: because
it was written at the place of the first 4 zero bytes. Checksum is incorrect upon exit
(because the number has been left there), so error message has been displayed.
Am I right? I’ve rewritten the program to check my assumptions:
#include <stdio.h>

int main()
{

int *ptr=NULL;
*ptr=1234;
printf ("Now let's read at NULL\n");
printf ("%d\n", *ptr);
*ptr=0; // psst, cover our tracks!

};

This program executes without error message upon exit.
Though method to warn about null pointer assignment is relevant for MS-DOS, per-
haps, it can still be used today in low-cost MCUs with no memory protection and/or
MMU37.

Why would anyone write at address 0?

But why would sane programmer write a code which writes something at address 0?
It can be done accidentally: for example, a pointer must be initialized to newly allo-
cated memory block and then passed to some function which returns data through
pointer.
int *ptr=NULL;

37Memory Management Unit

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

770
... we forgot to allocate memory and initialize ptr

strcpy (ptr, buf); // strcpy() terminates silently because MS-DOS has no
memory protection

Even worse:
int *ptr=malloc(1000);

... we forgot to check if memory has been really allocated: this is MS-DOS ⤦
Ç after all and computers had small amount of RAM,

... and RAM shortage was very common.

... if malloc() returned NULL, the ptr will also be NULL.

strcpy (ptr, buf); // strcpy() terminates silently because MS-DOS has no
memory protection

Writing on 0th address on purpose

Here is an example from dmalloc38, a portable way of generating core dump, if other
ways are not available:
3.4 Generating a Core File on Errors
====================================

If the `error-abort' debug token has been enabled, when the library
detects any problems with the heap memory, it will immediately attempt
to dump a core file. *Note Debug Tokens::. Core files are a complete
copy of the program and it's state and can be used by a debugger to see
specifically what is going on when the error occurred. *Note Using
With a Debugger::. By default, the low, medium, and high arguments to
the library utility enable the `error-abort' token. You can disable
this feature by entering `dmalloc -m error-abort' (-m for minus) to
remove the `error-abort' token and your program will just log errors
and continue. You can also use the `error-dump' token which tries to
dump core when it sees an error but still continue running. *Note
Debug Tokens::.

When a program dumps core, the system writes the program and all of
its memory to a file on disk usually named `core'. If your program is
called `foo' then your system may dump core as `foo.core'. If you are
not getting a `core' file, make sure that your program has not changed
to a new directory meaning that it may have written the core file in a
different location. Also insure that your program has write privileges
over the directory that it is in otherwise it will not be able to dump
a core file. Core dumps are often security problems since they contain
all program memory so systems often block their being produced. You
will want to check your user and system's core dump size ulimit
settings.

The library by default uses the `abort' function to dump core which

38http://dmalloc.com/

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://dmalloc.com/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

771
may or may not work depending on your operating system. If the
following program does not dump core then this may be the problem. See
`KILL_PROCESS' definition in `settings.dist'.

main()
{

abort();
}

If `abort' does work then you may want to try the following setting
in `settings.dist'. This code tries to generate a segmentation fault
by dereferencing a `NULL' pointer.

#define KILL_PROCESS { int *_int_p = 0L; *_int_p = 1; }

NULL in C/C++

NULL in C/C++ is just a macro which is often defined like this:
#define NULL ((void*)0)

(libio.h file)
void* is a data type reflecting the fact it’s the pointer, but to a value of unknown
data type (void).
NULL is usually used to show absence of an object. For example, you have a single-
linked list, and each node has a value (or pointer to a value) and next pointer. To
show that there are no next node, 0 is stored to next field. (Other solutions are just
worse.) Perhaps, you may have some crazy environment where you need to allocate
memory blocks at zero address. How would you indicate absence of the next node?
Some kind of magic number? Maybe -1? Or maybe using additional bit?
In Wikipedia we may find this:

In fact, quite contrary to the zero page’s original preferential use,
some modern operating systems such as FreeBSD, Linux and Microsoft
Windows[2] actually make the zero page inaccessible to trap uses of
NULL pointers.

(https://en.wikipedia.org/wiki/Zero_page)

Null pointer to function

It’s possible to call function by its address. For example, I compile this by MSVC 2010
and run it in Windows 7:
#include <windows.h>
#include <stdio.h>

int main()

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://github.com/wzhy90/linaro_toolchains/blob/8ff8ae680bac04558d10cc9626e12c4c2f6c1348/arm-cortex_a15-linux-gnueabihf/libc/usr/include/libio.h#L70
https://en.wikipedia.org/wiki/Zero_page
https://yurichev.com/contact.html
https://yurichev.com/contact.html

772
{

printf ("0x%x\n", &MessageBoxA);
};

The result is 0x7578feae and doesn’t changing after several times I run it, because
user32.dll (where MessageBoxA function resides) is always loads at the same ad-
dress. And also because ASLR39 is not enabled (result would be different each time
in that case).
Let’s call MessageBoxA() by address:
#include <windows.h>
#include <stdio.h>

typedef int (*msgboxtype)(HWND hWnd, LPCTSTR lpText, LPCTSTR lpCaption, ⤦
Ç UINT uType);

int main()
{

msgboxtype msgboxaddr=0x7578feae;

// force to load DLL into process memory,
// since our code doesn't use any function from user32.dll,
// and DLL is not imported
LoadLibrary ("user32.dll");

msgboxaddr(NULL, "Hello, world!", "hello", MB_OK);
};

Weird, but works in Windows 7 x86.
This is commonly used in shellcodes, because it’s hard to call DLL functions by name
from there. And ASLR is a countermeasure.
Now what is really weird, some embedded C programmers may be familiar with a
code like that:
int reset()
{

void (*foo)(void) = 0;
foo();

};

Who will want to call a function at address 0? This is portable way to jump at zero
address. Many low-cost cheap microcontrollers also have no memory protection or
MMU and after reset, they start to execute code at address 0, where some kind of
initialization code is stored. So jumping to address 0 is a way to reset itself. One
could use inline assembly, but if it’s not possible, this portable method can be used.
It even compiles correctly by my GCC 4.8.4 on Linux x64:
39Address Space Layout Randomization

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

773

reset:
sub rsp, 8
xor eax, eax
call rax
add rsp, 8
ret

The fact that stack pointer is shifted is not a problem: initialization code in microcon-
trollers usually completely ignores registers and RAM state and boots from scratch.
And of course, this code will crash on *NIX or Windows because of memory protection
and even in absence of protection, there are no code at address 0.
GCC even has non-standard extension, allowing to jump to a specific address rather
than call a function there: http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.
html.

3.23.5 Array as function argument
Someone may ask, what is the difference between declaring function argument type
as array and as pointer?
As it seems, there are no difference at all:
void write_something1(int a[16])
{

a[5]=0;
};

void write_something2(int *a)
{

a[5]=0;
};

int f()
{

int a[16];
write_something1(a);
write_something2(a);

};

Optimizing GCC 4.8.4:
write_something1:

mov DWORD PTR [rdi+20], 0
ret

write_something2:
mov DWORD PTR [rdi+20], 0
ret

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

774
But you may still declare array instead of pointer for self-documenting purposes, if
the size of array is always fixed. And maybe, some static analysis tool will be able
to warn you about possible buffer overflow. Or is it possible with some tools today?
Some people, including Linus Torvalds, criticizes this C/C++ feature: https://lkml.
org/lkml/2015/9/3/428.
C99 standard also have static keyword [ISO/IEC 9899:TC3 (C C99 standard), (2007)
6.7.5.3]:

If the keyword static also appears within the [and] of the array
type derivation, then for each call to the function, the value of the cor-
responding actual argument shall provide access to the first element
of an array with at least as many elements as specified by the size
expression.

3.23.6 Pointer to a function
A function name in C/C++ without brackets, like “printf” is a pointer to function of
void (*)() type. Let’s try to read function’s contents and patch it:
#include <memory.h>
#include <stdio.h>

void print_something ()
{

printf ("we are in %s()\n", __FUNCTION__);
};

int main()
{

print_something();
printf ("first 3 bytes: %x %x %x...\n",

(unsigned char)print_something,
((unsigned char)print_something+1),
((unsigned char)print_something+2));

(unsigned char)print_something=0xC3; // RET's opcode
printf ("going to call patched print_something():\n");
print_something();
printf ("it must exit at this point\n");

};

It tells, that the first 3 bytes of functions are 55 89 e5. Indeed, these are opcodes
of PUSH EBP and MOV EBP, ESP instructions (these are x86 opcodes). But then our
program crashes, because text section is readonly.
We can recompile our example and make text section writable 40:
40http://stackoverflow.com/questions/27581279/make-text-segment-writable-elf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://lkml.org/lkml/2015/9/3/428
https://lkml.org/lkml/2015/9/3/428
http://stackoverflow.com/questions/27581279/make-text-segment-writable-elf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

775

gcc --static -g -Wl,--omagic -o example example.c

That works!
we are in print_something()
first 3 bytes: 55 89 e5...
going to call patched print_something():
it must exit at this point

3.23.7 Pointer to a function: copy protection
A software cracker can find a function that checks protection and return true or false.
He/she then can put XOR EAX,EAX / RETN or MOV EAX, 1 / RETN there.
Can you check integrity of the function? As it turns out, this can be done easily.
According to objdump, the first 3 bytes of check_protection() are 0x55 0x89 0xE5
(given the fact this is non-optimizing GCC):
#include <stdlib.h>
#include <stdio.h>

int check_protection()
{

// do something
return 0;
// or return 1;

};

int main()
{

if (check_protection()==0)
{

printf ("no protection installed\n");
exit(0);

};

// ...and then, at some very important point...
if (*(((unsigned char*)check_protection)+0) != 0x55)
{

printf ("1st byte has been altered\n");
// do something mean, add watermark, etc

};
if (*(((unsigned char*)check_protection)+1) != 0x89)
{

printf ("2nd byte has been altered\n");
// do something mean, add watermark, etc

};
if (*(((unsigned char*)check_protection)+2) != 0xe5)
{

printf ("3rd byte has been altered\n");
// do something mean, add watermark, etc

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

776
};

};

0000054d <check_protection>:
54d: 55 push %ebp
54e: 89 e5 mov %esp,%ebp
550: e8 b7 00 00 00 call 60c <__x86.get_pc_thunk.ax>
555: 05 7f 1a 00 00 add $0x1a7f,%eax
55a: b8 00 00 00 00 mov $0x0,%eax
55f: 5d pop %ebp
560: c3 ret

If someone would patch the beginning of the check_protection() function, your
program can do somethingmean, maybe exit suddenly. To find such a trick, a cracker
can set amemory read breakpoint on the address of the function’s beginning. (tracer
has BPMx options for that.)

3.23.8 Pointer to a function: a common bug (or typo)
A notorious bug/typo:
int expired()
{

// check license key, current date/time, etc
};

int main()
{

if (expired) // must be expired() here
{

print ("expired\n");
exit(0);

}
else
{

// do something
};

};

Since the function’s name alone is interpreted as a pointer to function, or its address,
the if(function_name) statement is like if(true).
Unfortunately, a C/C++ compiler wouldn’t issue a warning.

3.23.9 Pointer as object identificator
Both assembly language and C has no OOP features, but it’s possible to write a code
in OOP style (just treat structure as an object).
It’s interesting, that sometimes, pointer to an object (or its address) is called as ID
(in sense of data hiding/encapsulation).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

777
For example, LoadLibrary(), according to MSDN41, returns “handle to the module”
42. Then you pass this “handle” to other functions like GetProcAddress(). But in
fact, LoadLibrary() returns pointer to DLL file mapped into memory 43. You can read
two bytes from the address LoadLibrary() returns, and that would be “MZ” (first two
bytes of any .EXE/.DLL file in Windows).
Apparently, Microsoft “hides” that fact to provide better forward compatibility. Also,
HMODULE and HINSTANCE data types had another meaning in 16-bit Windows.
Probably, this is reason why printf() has “%p” modifier, which is used for printing
pointers (32-bit integers on 32-bit architectures, 64-bit on 64-bit, etc) in hexadecimal
form. Address of a structure dumped into debug log may help in finding it in another
place of log.
Here is also from SQLite source code:

...

struct Pager {
sqlite3_vfs *pVfs; /* OS functions to use for IO */
u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE ⤦
Ç */

u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */
u8 useJournal; /* Use a rollback journal on this file */
u8 noSync; /* Do not sync the journal if true */

....

static int pagerLockDb(Pager *pPager, int eLock){
int rc = SQLITE_OK;

assert(eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==⤦
Ç EXCLUSIVE_LOCK);

if(pPager->eLock<eLock || pPager->eLock==UNKNOWN_LOCK){
rc = sqlite3OsLock(pPager->fd, eLock);
if(rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==⤦
Ç EXCLUSIVE_LOCK)){

pPager->eLock = (u8)eLock;
IOTRACE(("LOCK %p %d\n", pPager, eLock))

}
}
return rc;

}

...

PAGER_INCR(sqlite3_pager_readdb_count);
PAGER_INCR(pPager->nRead);
IOTRACE(("PGIN %p %d\n", pPager, pgno));
PAGERTRACE(("FETCH %d page %d hash(%08x)\n",

41Microsoft Developer Network
42https://msdn.microsoft.com/ru-ru/library/windows/desktop/ms684175(v=vs.85).aspx
43https://blogs.msdn.microsoft.com/oldnewthing/20041025-00/?p=37483

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://msdn.microsoft.com/ru-ru/library/windows/desktop/ms684175(v=vs.85).aspx
https://blogs.msdn.microsoft.com/oldnewthing/20041025-00/?p=37483
https://yurichev.com/contact.html
https://yurichev.com/contact.html

778
PAGERID(pPager), pgno, pager_pagehash(pPg)));

...

3.23.10 Oracle RDBMS and a simple garbage collector for C/C++
There was a time, when the author of these lines tried to learn more about Oracle
RDBMS, searching for vulnerabilities, etc. This is a huge piece of software, and a
typical function can take very large nested objects as arguments. And I wanted to
dump these objects, as trees (or graphs).
Also, I tracked all memory allocations/deallocations by intercepting memory allocat-
ing/deallocating functions. And when a function to be intercepted getting a pointer
to a block in memory, I search for the block in a list of blocks allocated. I’m getting
its size + short name of block (this is like ”tagging” in Windows OS kernel44).
Given a block, I can scan it for 32-bit words (on 32-bit OS) or for 64-bit words (on
64-bit OS). Each word can be a pointer to another block. And if it is so (I find this
another block in my records), I can process it recursively.
And then, using GraphViz, I could render such a diagrams:

44Read more about comments in allocated blocks: Dennis Yurichev, C/C++ programming language
notes http://yurichev.com/C-book.html

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://yurichev.com/C-book.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

779
Bigger pictures: 1, 2.
This is quite impressive, given the fact that I had no information about data types of
all these structures. But I could get some information from it.

Now the garbage collector for C/C++: Boehm GC

If you use a block allocated in memory, its address has to be present somewhere, as
a pointer in some structure/array in another allocated block, or in globally allocated
structure, or in local variable in stack. If there are no pointer to a block, you can call
it ”orphan”, and it will be a reason of memory leak.
And this is what GC45 does. It scans all blocks (because it keep tabs on all blocks
allocated) for pointers. It’s important to understand, that it has no idea of data types
of all these structure fields in blocks—this is important, GC has no information about
types. It just scans blocks for 32-bit of 64-bit words and see, if they could be a
pointers to another block(s). It also scans stack. It treats allocated blocks and stack
as arrays of words, some of which may be pointers. And if it found a block allocated,
which is ”orphaned”, i.e., there are no pointer(s) to it from another block(s) or stack,
this block considered unneeded, to be freed. Scanning process takes time, and this
is what for GCs are criticized.
Also, GC like Boehm GC46 (for pure C) has function like GC_malloc_atomic()—using
it, you declare that the block allocated using this function will never contain any
pointer(s) to other block(s). Maybe this could be a text string, or other type of data.
(Indeed, GC_strdup() calls GC_malloc_atomic().) GC will not scan it.

3.24 Loop optimizations
3.24.1 Weird loop optimization
This is a simplest ever memcpy() function implementation:
void memcpy (unsigned char* dst, unsigned char* src, size_t cnt)
{

size_t i;
for (i=0; i<cnt; i++)

dst[i]=src[i];
};

At least MSVC 6.0 from the end of 1990s till MSVC 2013 can produce a really weird
code (this listing is generated by MSVC 2013 x86):
_dst$ = 8 ; size = 4
_src$ = 12 ; size = 4
_cnt$ = 16 ; size = 4
_memcpy PROC

mov edx, DWORD PTR _cnt$[esp-4]
test edx, edx

45Garbage Collector
46https://www.hboehm.info/gc/

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//advanced/450_more_ptrs/oracle1.png
https://beginners.re/paywall/RE4B-source/current-tree//advanced/450_more_ptrs/oracle2.png
https://www.hboehm.info/gc/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

780
je SHORT $LN1@f
mov eax, DWORD PTR _dst$[esp-4]
push esi
mov esi, DWORD PTR _src$[esp]
sub esi, eax

; ESI=src-dst, i.e., pointers difference
$LL8@f:

mov cl, BYTE PTR [esi+eax] ; load byte at "esi+dst" or at
"src-dst+dst" at the beginning or at just "src"

lea eax, DWORD PTR [eax+1] ; dst++
mov BYTE PTR [eax-1], cl ; store the byte at "(dst++)--" or at

just "dst" at the beginning
dec edx ; decrement counter until we finished
jne SHORT $LL8@f
pop esi

$LN1@f:
ret 0

_memcpy ENDP

This is weird, because how humans work with two pointers? They store two ad-
dresses in two registers or two memory cells. MSVC compiler in this case stores
two pointers as one pointer (sliding dst in EAX) and difference between src and dst
pointers (left unchanged over the span of loop body execution in ESI). (By the way,
this is a rare case when ptrdiff_t data type can be used.) When it needs to load a
byte from src, it loads it at diff + sliding dst and stores byte at just sliding dst.
This has to be some optimization trick. But I’ve rewritten this function to:
_f2 PROC

mov edx, DWORD PTR _cnt$[esp-4]
test edx, edx
je SHORT $LN1@f
mov eax, DWORD PTR _dst$[esp-4]
push esi
mov esi, DWORD PTR _src$[esp]
; eax=dst; esi=src

$LL8@f:
mov cl, BYTE PTR [esi+edx]
mov BYTE PTR [eax+edx], cl
dec edx
jne SHORT $LL8@f
pop esi

$LN1@f:
ret 0

_f2 ENDP

…and it works as efficient as the optimized version on my Intel Xeon E31220 @
3.10GHz. Maybe, this optimization was targeted some older x86 CPUs of 1990s era,
since this trick is used at least by ancient MS VC 6.0?
Any idea?
Hex-Rays 2.2 have a hard time recognizing patterns like that (hopefully, temporary?):

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

781

void __cdecl f1(char *dst, char *src, size_t size)
{

size_t counter; // edx@1
char *sliding_dst; // eax@2
char tmp; // cl@3

counter = size;
if (size)
{
sliding_dst = dst;
do
{

tmp = (sliding_dst++)[src - dst]; // difference (src-dst) is
calculated once, at the beginning

*(sliding_dst - 1) = tmp;
--counter;

}
while (counter);

}
}

Nevertheless, this optimization trick is often used by MSVC (not just in DIY47 home-
brew memcpy() routines, but in many loops which uses two or more arrays), so it’s
worth for reverse engineers to keep it in mind.

3.24.2 Another loop optimization
If you process all elements of some array which happens to be located in global
memory, compiler can optimize it. For example, let’s calculate a sum of all elements
of array of 128 int’s:
#include <stdio.h>

int a[128];

int sum_of_a()
{

int rt=0;

for (int i=0; i<128; i++)
rt=rt+a[i];

return rt;
};

int main()
{

// initialize
for (int i=0; i<128; i++)

a[i]=i;

47Do It Yourself

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

782

// calculate the sum
printf ("%d\n", sum_of_a());

};

Optimizing GCC 5.3.1 (x86) can produce this (IDA):
.text:080484B0 sum_of_a proc near
.text:080484B0 mov edx, offset a
.text:080484B5 xor eax, eax
.text:080484B7 mov esi, esi
.text:080484B9 lea edi, [edi+0]
.text:080484C0
.text:080484C0 loc_80484C0: ; CODE XREF: sum_of_a+1B
.text:080484C0 add eax, [edx]
.text:080484C2 add edx, 4
.text:080484C5 cmp edx, offset ⤦

Ç __libc_start_main@@GLIBC_2_0
.text:080484CB jnz short loc_80484C0
.text:080484CD rep retn
.text:080484CD sum_of_a endp
.text:080484CD

...

.bss:0804A040 public a

.bss:0804A040 a dd 80h dup(?) ; DATA XREF: main:loc_8048338

.bss:0804A040 ; main+19

.bss:0804A040 _bss ends

.bss:0804A040
extern:0804A240 ;

===
extern:0804A240
extern:0804A240 ; Segment type: Externs
extern:0804A240 ; extern
extern:0804A240 extrn __libc_start_main@@GLIBC_2_0:near
extern:0804A240 ; DATA XREF: main+25
extern:0804A240 ; main+5D
extern:0804A244 extrn __printf_chk@@GLIBC_2_3_4:near
extern:0804A248 extrn __libc_start_main:near
extern:0804A248 ; CODE XREF: ___libc_start_main
extern:0804A248 ; DATA XREF: .got.plt:off_804A00C

What the heck is __libc_start_main@@GLIBC_2_0 at 0x080484C5? This is a label
just after end of a[] array. The function can be rewritten like this:
int sum_of_a_v2()
{

int *tmp=a;
int rt=0;

do
{

rt=rt+(*tmp);

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

783
tmp++;

}
while (tmp<(a+128));

return rt;
};

First version has i counter, and the address of each element of array is to be cal-
culated at each iteration. The second version is more optimized: the pointer to
each element of array is always ready and is sliding 4 bytes forward at each itera-
tion. How to check if the loop is ended? Just compare the pointer with the address
just behind array’s end, which is, in our case, is happens to be address of imported
__libc_start_main() function from Glibc 2.0. Sometimes code like this is confus-
ing, and this is very popular optimizing trick, so that’s why I made this example.
My second version is very close to what GCC did, and when I compile it, the code is
almost the same as in first version, but two first instructions are swapped:
.text:080484D0 public sum_of_a_v2
.text:080484D0 sum_of_a_v2 proc near
.text:080484D0 xor eax, eax
.text:080484D2 mov edx, offset a
.text:080484D7 mov esi, esi
.text:080484D9 lea edi, [edi+0]
.text:080484E0
.text:080484E0 loc_80484E0: ; CODE XREF: sum_of_a_v2+1B
.text:080484E0 add eax, [edx]
.text:080484E2 add edx, 4
.text:080484E5 cmp edx, offset ⤦

Ç __libc_start_main@@GLIBC_2_0
.text:080484EB jnz short loc_80484E0
.text:080484ED rep retn
.text:080484ED sum_of_a_v2 endp

Needless to say, this optimization is possible if the compiler can calculate address
of the end of array during compilation time. This happens if the array is global and
it’s size is fixed.
However, if the address of array is unknown during compilation, but size is fixed,
address of the label just behind array’s end can be calculated at the beginning of
the loop.

3.25 More about structures
3.25.1 Sometimes a C structure can be used instead of array
Arithmetic mean

#include <stdio.h>

int mean(int *a, int len)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

784
{

int sum=0;
for (int i=0; i<len; i++)

sum=sum+a[i];
return sum/len;

};

struct five_ints
{

int a0;
int a1;
int a2;
int a3;
int a4;

};

int main()
{

struct five_ints a;
a.a0=123;
a.a1=456;
a.a2=789;
a.a3=10;
a.a4=100;
printf ("%d\n", mean(&a, 5));
// test:

https://www.wolframalpha.com/input/?i=mean(123,456,789,10,100)
};

This works: mean() function will never access behind the end of five_ints structure,
because 5 is passed, meaning, only 5 integers will be accessed.

Putting string into structure

#include <stdio.h>

struct five_chars
{

char a0;
char a1;
char a2;
char a3;
char a4;

} __attribute__ ((aligned (1),packed));

int main()
{

struct five_chars a;
a.a0='h';
a.a1='i';
a.a2='!';
a.a3='\n';
a.a4=0;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

785
printf (&a); // prints "hi!"

};

((aligned (1),packed)) attribute must be used, because otherwise, each structure
field will be aligned on 4-byte or 8-byte boundary.

Summary

This is just another example of how structures and arrays are stored in memory.
Perhaps, no sane programmer will do something like in this example, except in case
of some specific hack. Or maybe in case of source code obfuscation?

3.25.2 Unsized array in C structure
In some win32 structures we can find ones with last field defined as an array of one
element:
typedef struct _SYMBOL_INFO {

ULONG SizeOfStruct;
ULONG TypeIndex;

...

ULONG MaxNameLen;
TCHAR Name[1];

} SYMBOL_INFO, *PSYMBOL_INFO;

(https://msdn.microsoft.com/en-us/library/windows/desktop/ms680686(v=
vs.85).aspx)
This is a hack, meaning, the last field is array of unknown size, which is to be calcu-
lated at the time of structure allocation.
Why: Name field may be short, so why to define it with some kind of MAX_NAME
constant which can be 128, 256, or even bigger?
Why not to use pointer instead? Then you have to allocate two blocks: one for
structure and the other one for string. This may be slower and may require larger
memory overhead. Also, you need dereference pointer (i.e., read address of the
string from the structure)—not a big deal, but some people say this is still surplus
cost.
This is also known as struct hack: http://c-faq.com/struct/structhack.html.
Example:
#include <stdio.h>

struct st
{

int a;
int b;
char s[];

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680686(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680686(v=vs.85).aspx
http://c-faq.com/struct/structhack.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

786
};

void f (struct st *s)
{

printf ("%d %d %s\n", s->a, s->b, s->s);
// f() can't replace s[] with bigger string - size of allocated block

is unknown at this point
};

int main()
{
#define STRING "Hello!"

struct st *s=malloc(sizeof(struct st)+strlen(STRING)+1); // incl.
terminating zero

s->a=1;
s->b=2;
strcpy (s->s, STRING);
f(s);

};

In short, it works because C has no array boundary checks. Any array is treated as
having infinite size.
Problem: after allocation, the whole size of allocated block for structure is unknown
(except for memory manager), so you can’t just replace string with larger string.
You would still be able to do so if the field would be declared as something like
s[MAX_NAME].
In other words, you have a structure plus an array (or string) fused together in the
single allocated memory block. Another problem is what you obviously can’t declare
two such arrays in single structure, or to declare another field after such array.
Older compilers require to declare array with at least one element: s[1], newer allows
to declare it as variable-sized array: s[]. This is also called flexible array member in
C99 standard.
Read more about it in GCC documentation48, MSDN documentation49.
Dennis Ritchie (one of C creators) called this trick “unwarranted chumminess with
the C implementation” (perhaps, acknowledging hackish nature of the trick).
Like it or not, use it or not: it is still another demonstration on how structures are
stored in memory, that’s why I write about it.

3.25.3 Version of C structure
Many Windows programmers have seen this in MSDN:
SizeOfStruct

The size of the structure, in bytes. This member must be set to sizeof(⤦
Ç SYMBOL_INFO).

48https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
49https://msdn.microsoft.com/en-us/library/b6fae073.aspx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
https://msdn.microsoft.com/en-us/library/b6fae073.aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

787
(https://msdn.microsoft.com/en-us/library/windows/desktop/ms680686(v=
vs.85).aspx)
Some structures like SYMBOL_INFO has started with this field indeed. Why? This is
some kind of structure version.
Imagine you have a function which draws circle. It takes a single argument—a
pointer to a structure with only three fields: X, Y and radius. And then color dis-
plays flooded a market, sometimes in 1980s. And you want to add color argument
to the function. But, let’s say, you cannot add another argument to it (a lot of soft-
ware use your API50 and cannot be recompiled). And if the old piece of software
uses your API with color display, let your function draw a circle in (default) black and
white colors.
Another day you add another feature: circle now can be filled, and brush type can
be set.
Here is one solution to the problem:
#include <stdio.h>

struct ver1
{

size_t SizeOfStruct;
int coord_X;
int coord_Y;
int radius;

};

struct ver2
{

size_t SizeOfStruct;
int coord_X;
int coord_Y;
int radius;
int color;

};

struct ver3
{

size_t SizeOfStruct;
int coord_X;
int coord_Y;
int radius;
int color;
int fill_brush_type; // 0 - do not fill circle

};

void draw_circle(struct ver3 *s) // latest struct version is used here
{

//
we presume SizeOfStruct, coord_X and coord_Y fields are always present

50Application Programming Interface

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680686(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680686(v=vs.85).aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

788
printf ("We are going to draw a circle at %d:%d\n", s->coord_X, s->⤦

Ç coord_Y);

if (s->SizeOfStruct>=sizeof(int)*5)
{

// this is at least ver2, color field is present
printf ("We are going to set color %d\n", s->color);

}

if (s->SizeOfStruct>=sizeof(int)*6)
{

// this is at least ver3, fill_brush_type field is present
printf ("We are going to fill it using brush type %d\n", s⤦

Ç ->fill_brush_type);
}

};

// early software version
void call_as_ver1()
{

struct ver1 s;
s.SizeOfStruct=sizeof(s);
s.coord_X=123;
s.coord_Y=456;
s.radius=10;
printf ("** %s()\n", __FUNCTION__);
draw_circle(&s);

};

// next software version
void call_as_ver2()
{

struct ver2 s;
s.SizeOfStruct=sizeof(s);
s.coord_X=123;
s.coord_Y=456;
s.radius=10;
s.color=1;
printf ("** %s()\n", __FUNCTION__);
draw_circle(&s);

};

// latest, the most extended version
void call_as_ver3()
{

struct ver3 s;
s.SizeOfStruct=sizeof(s);
s.coord_X=123;
s.coord_Y=456;
s.radius=10;
s.color=1;
s.fill_brush_type=3;
printf ("** %s()\n", __FUNCTION__);

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

789
draw_circle(&s);

};

int main()
{

call_as_ver1();
call_as_ver2();
call_as_ver3();

};

In other words, SizeOfStruct field takes a role of version of structure field. It could
be enumerate type (1, 2, 3, etc.), but to set SizeOfStruct field to sizeof(struct...) is
less prone to mistakes/bugs: we just write s.SizeOfStruct=sizeof(...) in caller’s code.
In C++, this problem is solved using inheritance (3.21.1 on page 690). You just
extend your base class (let’s call it Circle), and then you will have ColoredCircle and
then FilledColoredCircle, and so on. A current version of an object (or, more precisely,
current type) will be determined using C++ RTTI.
So when you see SizeOfStruct somewhere in MSDN—perhaps this structure was ex-
tended at least once in past.

3.25.4 High-score file in “Block out” game and primitive seri-
alization

Many videogames has high-score file, sometimes called “Hall of fame”. Ancient
“Block out”51 game (3D tetris from 1989) isn’t exception, here is what we see at the
end:

Figure 3.4: High score table
51http://www.bestoldgames.net/eng/old-games/blockout.php

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.bestoldgames.net/eng/old-games/blockout.php
https://yurichev.com/contact.html
https://yurichev.com/contact.html

790
Now we can see that the file has changed after we added our name is BLSCORE.DAT.
% xxd -g 1 BLSCORE.DAT

00000000: 0a 00 58 65 6e 69 61 2e 2e 2e 2e 2e 00 df 01 00 ..Xenia.........
00000010: 00 30 33 2d 32 37 2d 32 30 31 38 00 50 61 75 6c .03-27-2018.Paul
00000020: 2e 2e 2e 2e 2e 2e 00 61 01 00 00 30 33 2d 32 37a...03-27
00000030: 2d 32 30 31 38 00 4a 6f 68 6e 2e 2e 2e 2e 2e 2e -2018.John......
00000040: 00 46 01 00 00 30 33 2d 32 37 2d 32 30 31 38 00 .F...03-27-2018.
00000050: 4a 61 6d 65 73 2e 2e 2e 2e 2e 00 44 01 00 00 30 James......D...0
00000060: 33 2d 32 37 2d 32 30 31 38 00 43 68 61 72 6c 69 3-27-2018.Charli
00000070: 65 2e 2e 2e 00 ea 00 00 00 30 33 2d 32 37 2d 32 e........03-27-2
00000080: 30 31 38 00 4d 69 6b 65 2e 2e 2e 2e 2e 2e 00 b5 018.Mike........
00000090: 00 00 00 30 33 2d 32 37 2d 32 30 31 38 00 50 68 ...03-27-2018.Ph
000000a0: 69 6c 2e 2e 2e 2e 2e 2e 00 ac 00 00 00 30 33 2d il...........03-
000000b0: 32 37 2d 32 30 31 38 00 4d 61 72 79 2e 2e 2e 2e 27-2018.Mary....
000000c0: 2e 2e 00 7b 00 00 00 30 33 2d 32 37 2d 32 30 31 ...{...03-27-201
000000d0: 38 00 54 6f 6d 2e 2e 2e 2e 2e 2e 2e 00 77 00 00 8.Tom........w..
000000e0: 00 30 33 2d 32 37 2d 32 30 31 38 00 42 6f 62 2e .03-27-2018.Bob.
000000f0: 2e 2e 2e 2e 2e 2e 00 77 00 00 00 30 33 2d 32 37w...03-27
00000100: 2d 32 30 31 38 00 -2018.

All entries are clearly visible. The very first byte is probably number of entries. Sec-
ond is zero and, in fact, number of entries can be 16-bit value spanning over first
two bytes.
Next, after “Xenia” name we see 0xDF and 0x01 bytes. Xenia has score of 479, and
this is exactly 0x1DF in hexadecimal radix. So a high score value is probably 16-bit
integer, or maybe 32-bit integer: there are two more zero bytes after.
Now let’s think about the fact that both array elements and structure elements are
always placed in memory adjacently to each other. That enables us to write the
whole array/structure to the file using simple write() or fwrite() function, and then
restore it using read() or fread(), as simple as that. This is what is called serialization
nowadays.

Read

Now let’s write C program to read highscore file:
#include <assert.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>

struct entry
{

char name[11]; // incl. terminating zero
uint32_t score;
char date[11]; // incl. terminating zero

} __attribute__ ((aligned (1),packed));

struct highscore_file

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

791
{

uint8_t count;
uint8_t unknown;
struct entry entries[10];

} __attribute__ ((aligned (1), packed));

struct highscore_file file;

int main(int argc, char* argv[])
{

FILE* f=fopen(argv[1], "rb");
assert (f!=NULL);
size_t got=fread(&file, 1, sizeof(struct highscore_file), f);
assert (got==sizeof(struct highscore_file));
fclose(f);
for (int i=0; i<file.count; i++)
{

printf ("name=%s score=%d date=%s\n",
file.entries[i].name,
file.entries[i].score,
file.entries[i].date);

};
};

Weneed GCC ((aligned (1),packed)) attribute so that all structure fields will be packed
on 1-byte boundary.
Of course it works:
name=Xenia..... score=479 date=03-27-2018
name=Paul...... score=353 date=03-27-2018
name=John...... score=326 date=03-27-2018
name=James..... score=324 date=03-27-2018
name=Charlie... score=234 date=03-27-2018
name=Mike...... score=181 date=03-27-2018
name=Phil...... score=172 date=03-27-2018
name=Mary...... score=123 date=03-27-2018
name=Tom....... score=119 date=03-27-2018
name=Bob....... score=119 date=03-27-2018

(Needless to say, each name is padded with dots, both on screen and in the file,
perhaps, for æsthetical reasons.)

Write

Let’s check if we right about width of score value. Is it really has 32 bits?
int main(int argc, char* argv[])
{

FILE* f=fopen(argv[1], "rb");
assert (f!=NULL);
size_t got=fread(&file, 1, sizeof(struct highscore_file), f);
assert (got==sizeof(struct highscore_file));

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

792
fclose(f);

strcpy (file.entries[1].name, "Mallory...");
file.entries[1].score=12345678;
strcpy (file.entries[1].date, "08-12-2016");

f=fopen(argv[1], "wb");
assert (f!=NULL);
got=fwrite(&file, 1, sizeof(struct highscore_file), f);
assert (got==sizeof(struct highscore_file));
fclose(f);

};

Let’s run Blockout:

Figure 3.5: High score table

First two digits (1 and 2) are truncated: 12345678 becomes 345678. Perhaps, this is
formatting issues... but the number is almost correct. Now I’m changing it to 999999
and run again:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

793

Figure 3.6: High score table

Now it’s correct. Yes, high score value is 32-bit integer.

Is it serialization?

…almost. Serialization like this is highly popular in scientific and engineering soft-
ware, where efficiency and speed ismuchmore important than converting into XML52
or JSON53 and back.
One important thing is that you obviously cannot serialize pointers, because each
time you load the file into memory, all the structures may be allocated in different
places.
But: if you work on some kind of low-cost MCU with simple OS on it and you have
your structures allocated at always same places in memory, perhaps you can save
and restore pointers as well.

Random noise

When I prepared this example, I had to run “Block out” many times and played for
it a bit to fill high-score table with random names.
And when there were just 3 entries in the file, I saw this:
00000000: 03 00 54 6f 6d 61 73 2e 2e 2e 2e 2e 00 da 2a 00 ..Tomas.......*.
00000010: 00 30 38 2d 31 32 2d 32 30 31 36 00 43 68 61 72 .08-12-2016.Char
00000020: 6c 69 65 2e 2e 2e 00 8b 1e 00 00 30 38 2d 31 32 lie........08-12
00000030: 2d 32 30 31 36 00 4a 6f 68 6e 2e 2e 2e 2e 2e 2e -2016.John......
00000040: 00 80 00 00 00 30 38 2d 31 32 2d 32 30 31 36 0008-12-2016.
00000050: 00 00 57 c8 a2 01 06 01 ba f9 47 c7 05 00 f8 4f ..W.......G....O
00000060: 06 01 06 01 a6 32 00 00 00 00 00 00 00 00 00 002..........
00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

52Extensible Markup Language
53JavaScript Object Notation

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

794
00000080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000000a0: 00 00 00 00 00 00 00 00 00 00 93 c6 a2 01 46 72Fr
000000b0: 8c f9 f6 c5 05 00 f8 4f 00 02 06 01 a6 32 06 01O.....2..
000000c0: 00 00 98 f9 f2 c0 05 00 f8 4f 00 02 a6 32 a2 f9O...2..
000000d0: 80 c1 a6 32 a6 32 f4 4f aa f9 39 c1 a6 32 06 01 ...2.2.O..9..2..
000000e0: b4 f9 2b c5 a6 32 e1 4f c7 c8 a2 01 82 72 c6 f9 ..+..2.O.....r..
000000f0: 30 c0 05 00 00 00 00 00 00 00 a6 32 d4 f9 76 2d 0..........2..v-
00000100: a6 32 00 00 00 00 .2....

The first byte has value of 3, meaning there are 3 entries. And there are 3 entries
present. But then we see a random noise at the second half of file.
The noise is probably has its origins in uninitialized data. Perhaps, “Block out” allo-
cated memory for 10 entries somewhere in heap, where, obviously, some pseudo-
random noise (left from something else) was present. Then it set first/second byte,
fill 3 entries, and then it never touched 7 entries left, so they are written to the file
as is.
When “Block out” loads high score file at the next run, it reads number of entries
from the first/second byte (3) and then completely ignores what is after it.
This is common problem. Not a problem in strict sense: it’s not a bug, but information
can be exposed outwards.
Microsoft Word versions from 1990s has been often left pieces of previously edited
texts into the *.doc* files. It was some kind of amusement back then, to get a .doc
file from someone, then open it in a hexadecimal editor and read something else,
what has been edited on that computer before.
The problem can be even much more serious: Heartbleed bug in OpenSSL.

Homework

“Block out” has several polycubes (flat/basic/extended), size of pit can be configured,
etc. And it seems, for each configuration, “Block out” has its own high score table.
I’ve noticed that some information is probably stored in BLSCORE.IDX file. This can
be a homework for hardcore “Block out” fans—to understand its structure as well.
The “Block out” files are here: http://beginners.re/examples/blockout.zip (in-
cluding the binary high score files I’ve used in this example). You can use DosBox to
run it.

3.26 memmove() and memcpy()
The difference between these standard functions is that memcpy() blindly copies a
block to another place, while memmove() correctly handles overlapping blocks. For
example, you want to tug a string two bytes back:
`|.|.|h|e|l|l|o|...` -> `|h|e|l|l|o|...`

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://beginners.re/examples/blockout.zip
https://yurichev.com/contact.html
https://yurichev.com/contact.html

795
memcpy() which copies 32-bit or 64-bit words at once, or even SIMD, will obviously
fail here, a byte-wise copy routine must be used instead.
Now even more advanced example, insert two bytes in front of string:
`|h|e|l|l|o|...` -> `|.|.|h|e|l|l|o|...`

Now even byte-wise memory copy routine will fail, you have to copy bytes starting
at the end.
That’s a rare case where DF x86 flag is to be set before REP MOVSB instruction: DF
defines direction, and now we must move backwardly.
The typical memmove() routine works like this: 1) if source is below destination,
copy forward; 2) if source is above destination, copy backward.
This is memmove() from uClibc:
void *memmove(void *dest, const void *src, size_t n)
{

int eax, ecx, esi, edi;
__asm__ __volatile__(

" movl %%eax, %%edi\n"
" cmpl %%esi, %%eax\n"
" je 2f\n" /* (optional) src == dest -> NOP */
" jb 1f\n" /* src > dest -> simple copy */
" leal -1(%%esi,%%ecx), %%esi\n"
" leal -1(%%eax,%%ecx), %%edi\n"
" std\n"
"1: rep; movsb\n"
" cld\n"
"2:\n"
: "=&c" (ecx), "=&S" (esi), "=&a" (eax), "=&D" (edi)
: "0" (n), "1" (src), "2" (dest)
: "memory"

);
return (void*)eax;

}

In the first case, REP MOVSB is called with DF flag cleared. In the second, DF is set,
then cleared.
More complex algorithm has the following piece in it:
“if difference between source and destination is larger than width of word, copy using
words rather than bytes, and use byte-wise copy to copy unaligned parts”.
This how it happens in Glibc 2.24 in non-optimized C part.
Given all that, memmove() may be slower than memcpy(). But some people, in-
cluding Linus Torvalds, argue54 that memcpy() should be an alias (or synonym) of
memmove(), and the latter function must just check at start, if the buffers are over-
lapping or not, and then behave as memcpy() or memmove(). Nowadays, check for
overlapping buffers is very cheap, after all.
54https://bugzilla.redhat.com/show_bug.cgi?id=638477#c132

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://bugzilla.redhat.com/show_bug.cgi?id=638477#c132
https://yurichev.com/contact.html
https://yurichev.com/contact.html

796
3.26.1 Anti-debugging trick
I’ve heard about anti-debugging trick where all you need is just set DF to crash the
process: the very next memcpy() routine will lead to crash because it copies back-
wardly. But I can’t check this: it seems all memory copy routines clear/set DF as they
want to. On the other hand,memmove() from uClibc I cited here, has no explicit clear
of DF (it assumes DF is always clear?), so it can really crash.

3.27 setjmp/longjmp
setjmp/longjmp is a mechanism in C which is very similar to throw/catch mechanism
in C++ and other higher-level PLs. Here is an example from zlib:
...

/* return if bits() or decode() tries to read past available input */
if (setjmp(s.env) != 0) /* if came back here via longjmp(),⤦
Ç */

err = 2; /* then skip decomp(), return ⤦
Ç error */
else

err = decomp(&s); /* decompress */

...

/* load at least need bits into val */
val = s->bitbuf;
while (s->bitcnt < need) {

if (s->left == 0) {
s->left = s->infun(s->inhow, &(s->in));
if (s->left == 0) longjmp(s->env, 1); /* out of input */

...

if (s->left == 0) {
s->left = s->infun(s->inhow, &(s->in));
if (s->left == 0) longjmp(s->env, 1); /* out of input */

(zlib/contrib/blast/blast.c)
Call to setjmp() saves current PC, SP and other registers into env structure, then it
returns 0.
In case of error, longjmp() teleporting you into the point after right after setjmp()
call, as if setjmp() call returned non-null value (which was passed to longjmp()).
This reminds as fork() syscall in UNIX.
Now let’s take a look on distilled example:
#include <stdio.h>
#include <setjmp.h>

jmp_buf env;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

797

void f2()
{

printf ("%s() begin\n", __FUNCTION__);
// something odd happened here
longjmp (env, 1234);
printf ("%s() end\n", __FUNCTION__);

};

void f1()
{

printf ("%s() begin\n", __FUNCTION__);
f2();
printf ("%s() end\n", __FUNCTION__);

};

int main()
{

int err=setjmp(env);
if (err==0)
{

f1();
}
else
{

printf ("Error %d\n", err);
};

};

If we run it, we will see:
f1() begin
f2() begin
Error 1234

jmp_buf structure usually comes undocumented, to preserve forward compatibility.
Let’s see how setjmp() implemented in MSVC 2013 x64:

...

; RCX = address of jmp_buf

mov [rcx], rax
mov [rcx+8], rbx
mov [rcx+18h], rbp
mov [rcx+20h], rsi
mov [rcx+28h], rdi
mov [rcx+30h], r12
mov [rcx+38h], r13
mov [rcx+40h], r14
mov [rcx+48h], r15
lea r8, [rsp+arg_0]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

798
mov [rcx+10h], r8
mov r8, [rsp+0] ; get saved RA from stack
mov [rcx+50h], r8 ; save it
stmxcsr dword ptr [rcx+58h]
fnstcw word ptr [rcx+5Ch]
movdqa xmmword ptr [rcx+60h], xmm6
movdqa xmmword ptr [rcx+70h], xmm7
movdqa xmmword ptr [rcx+80h], xmm8
movdqa xmmword ptr [rcx+90h], xmm9
movdqa xmmword ptr [rcx+0A0h], xmm10
movdqa xmmword ptr [rcx+0B0h], xmm11
movdqa xmmword ptr [rcx+0C0h], xmm12
movdqa xmmword ptr [rcx+0D0h], xmm13
movdqa xmmword ptr [rcx+0E0h], xmm14
movdqa xmmword ptr [rcx+0F0h], xmm15
retn

It just populates jmp_buf structure with current values of almost all registers. Also,
current value of RA is taken from the stack and saved in jmp_buf: it will be used as
new value of PC in future.
Now longjmp():

...

; RCX = address of jmp_buf

mov rax, rdx
mov rbx, [rcx+8]
mov rsi, [rcx+20h]
mov rdi, [rcx+28h]
mov r12, [rcx+30h]
mov r13, [rcx+38h]
mov r14, [rcx+40h]
mov r15, [rcx+48h]
ldmxcsr dword ptr [rcx+58h]
fnclex
fldcw word ptr [rcx+5Ch]
movdqa xmm6, xmmword ptr [rcx+60h]
movdqa xmm7, xmmword ptr [rcx+70h]
movdqa xmm8, xmmword ptr [rcx+80h]
movdqa xmm9, xmmword ptr [rcx+90h]
movdqa xmm10, xmmword ptr [rcx+0A0h]
movdqa xmm11, xmmword ptr [rcx+0B0h]
movdqa xmm12, xmmword ptr [rcx+0C0h]
movdqa xmm13, xmmword ptr [rcx+0D0h]
movdqa xmm14, xmmword ptr [rcx+0E0h]
movdqa xmm15, xmmword ptr [rcx+0F0h]
mov rdx, [rcx+50h] ; get PC (RIP)
mov rbp, [rcx+18h]
mov rsp, [rcx+10h]
jmp rdx ; jump to saved PC

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

799
...

It just restores (almost) all registers, takes RA from structure and jumps there. This
effectively works as if setjmp() returned to caller. Also, RAX is set to be equal to the
second argument of longjmp(). This works as if setjmp() returned non-zero value at
first place.
As a side effect of SP restoration, all values in stack which has been set and used be-
tween setjmp() and longjmp() calls are just dropped. They will not be used anymore.
Hence, longjmp() usually jumps backwards 55.
This implies that, unlike in throw/catch mechanism in C++, no memory will be freed,
no destructors will be called, etc. Hence, this technique sometimes can be danger-
ous. Nevertheless, it’s still quite popular. It’s still used in Oracle RDBMS.
It also has unexpected side-effect: if some buffer has been overflown inside of a
function (maybe due to remote attack), and a function wants to report error, and it
calls longjmp(), overwritten stack part just gets unused.
As an exercise, you can try to understand, why not all registers are saved. Why
XMM0-XMM5 and other registers are skipped?

3.28 Other weird stack hacks
3.28.1 Accessing arguments/local variables of caller
From C/C++ basics we know that this is impossible for a function to access argu-
ments of caller function or its local variables.
Nevertheless, it’s possible using dirty hacks. For example:
#include <stdio.h>

void f(char *text)
{

// print stack
int *tmp=&text;
for (int i=0; i<20; i++)
{

printf ("0x%x\n", *tmp);
tmp++;

};
};

void draw_text(int X, int Y, char* text)
{

f(text);

printf ("We are going to draw [%s] at %d:%d\n", text, X, Y);

55However, there are some people who can use it for much more complicated things, imitating corou-
tines, etc: https://www.embeddedrelated.com/showarticle/455.php, http://fanf.livejournal.
com/105413.html

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://www.embeddedrelated.com/showarticle/455.php
http://fanf.livejournal.com/105413.html
http://fanf.livejournal.com/105413.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

800
};

int main()
{

printf ("address of main()=0x%x\n", &main);
printf ("address of draw_text()=0x%x\n", &draw_text);
draw_text(100, 200, "Hello!");

};

On 32-bit Ubuntu 16.04 and GCC 5.4.0, I got this:
address of main()=0x80484f8
address of draw_text()=0x80484cb
0x8048645 first argument to f()
0x8048628
0xbfd8ab98
0xb7634590
0xb779eddc
0xb77e4918
0xbfd8aba8
0x8048547 return address into the middle of main()
0x64 first argument to draw_text()
0xc8 second argument to draw_text()
0x8048645 third argument to draw_text()
0x8048581
0xb779d3dc
0xbfd8abc0
0x0
0xb7603637
0xb779d000
0xb779d000
0x0
0xb7603637

(Comments are mine.)
Since f() starting to enumerate stack elements at its first argument, the first stack
element is indeed a pointer to “Hello!” string. We see its address is also used as
third argument to draw_text() function.
In f()we could read all functions arguments and local variables if we know exact stack
layout, but it’s always changed, from compiler to compiler. Various optimization
levels affect stack layout greatly.
But if we can somehow detect information we need, we can use it and even modify
it. As an example, I’ll rework f() function:
void f(char *text)
{

...

// find 100, 200 values pair and modify the second on
tmp=&text;
for (int i=0; i<20; i++)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

801
{

if (*tmp==100 && *(tmp+1)==200)
{

printf ("found\n");
*(tmp+1)=210; // change 200 to 210
break;

};
tmp++;

};
};

Holy moly, it works:
found
We are going to draw [Hello!] at 100:210

Summary

It’s extremely dirty hack, intended to demonstrate stack internals. I never ever seen
or heard that anyone used this in a real code. But still, this is a good example.

Exercise

The example has been compiled without optimization on 32-bit Ubuntu using GCC
5.4.0 and it works. But when I turn on -O3 maximum optimization, it’s failed. Try to
find why.
Use your favorite compiler and OS, try various optimization levels, find if it works
and if it doesn’t, find why.

3.28.2 Returning string
This is classic bug from Brian W. Kernighan, Rob Pike, Practice of Programming,
(1999):
#include <stdio.h>

char* amsg(int n, char* s)
{

char buf[100];

sprintf (buf, "error %d: %s\n", n, s) ;

return buf;
};

int main()
{

printf ("%s\n", amsg (1234, "something wrong!"));
};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

802
It would crash. First, let’s understand, why.
This is a stack state before amsg() return:
(lower addresses)

...

[amsg(): 100 bytes]
[RA] <- current SP
[two amsg arguments]
[something else]
[main() local variables]

...

(upper addresses)

When amsg() returns control flow to main(), so far so good. But printf() is called
from main(), which is, in turn, use stack for its own needs, zapping 100-byte buffer.
A random garbage will be printed at the best.
Hard to believe, but I know how to fix this problem:
#include <stdio.h>

char* amsg(int n, char* s)
{

char buf[100];

sprintf (buf, "error %d: %s\n", n, s) ;

return buf;
};

char* interim (int n, char* s)
{

char large_buf[8000];
// make use of local array.
// it will be optimized away otherwise, as useless.
large_buf[0]=0;
return amsg (n, s);

};

int main()
{

printf ("%s\n", interim (1234, "something wrong!"));
};

It will work if compiled by MSVC 2013 with no optimizations and with /GS- option56.
MSVC will warn: “warning C4172: returning address of local variable or temporary”,
56Turn off buffer security check

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

803
but the code will run and message will be printed. Let’s see stack state at the mo-
ment when amsg() returns control to interim():
(lower addresses)

...

[amsg(): 100 bytes]
[RA] <- current SP
[two amsg() arguments]
[interim() stuff, incl. 8000 bytes]
[something else]
[main() local variables]

...

(upper addresses)

Now the stack state at the moment when interim() returns control to main():
(lower addresses)

...

[amsg(): 100 bytes]
[RA]
[two amsg() arguments]
[interim() stuff, incl. 8000 bytes]
[something else] <- current SP
[main() local variables]

...

(upper addresses)

So when main() calls printf(), it uses stack at the place where interim()’s buffer
was allocated, and doesn’t zap 100 bytes with error message inside, because 8000
bytes (or maybe much less) is just enough for everything printf() and other de-
scending functions do!
It may also work if there are many functions between, like: main() → f1() → f2() →
f3() ... → amsg(), and then the result of amsg() is used in main(). The distance
between SP in main() and address of buf[] must be long enough,
This is why bugs like these are dangerous: sometimes your code works (and bug can
be hiding unnoticed), sometimes not. Bugs like these are jokingly called heisenbugs
or schrödinbugs.

3.29 OpenMP
OpenMP is one of the simplest ways to parallelize simple algorithms.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

804
As an example, let’s try to build a program to compute a cryptographic nonce.
In my simplistic example, the nonce is a number added to the plain unencrypted
text in order to produce a hash with some specific features.
For example, at some step, the Bitcoin protocol requires to find such nonce so the
resulting hash contains a specific number of consecutive zeros. This is also called
proof of work (i.e., the system proves that it did some intensive calculations and
spent some time for it).
My example is not related to Bitcoin in any way, it will try to add numbers to the
“hello, world!_” string in order to find such number that when “hello, world!_<number>”
is hashed with the SHA512 algorithm, it will contain at least 3 zero bytes.
Let’s limit our brute-force to the interval in 0..INT32_MAX-1 (i.e., 0x7FFFFFFE or
2147483646).
The algorithm is pretty straightforward:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include "sha512.h"

int found=0;
int32_t checked=0;

int32_t* __min;
int32_t* __max;

time_t start;

#ifdef __GNUC__
#define min(X,Y) ((X) < (Y) ? (X) : (Y))
#define max(X,Y) ((X) > (Y) ? (X) : (Y))
#endif

void check_nonce (int32_t nonce)
{

uint8_t buf[32];
struct sha512_ctx ctx;
uint8_t res[64];

// update statistics
int t=omp_get_thread_num();

if (__min[t]==-1)
__min[t]=nonce;

if (__max[t]==-1)
__max[t]=nonce;

__min[t]=min(__min[t], nonce);
__max[t]=max(__max[t], nonce);

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

805
// idle if valid nonce found
if (found)

return;

memset (buf, 0, sizeof(buf));
sprintf (buf, "hello, world!_%d", nonce);

sha512_init_ctx (&ctx);
sha512_process_bytes (buf, strlen(buf), &ctx);
sha512_finish_ctx (&ctx, &res);
if (res[0]==0 && res[1]==0 && res[2]==0)
{

printf ("found (thread %d): [%s]. seconds spent=%d\n", t, ⤦
Ç buf, time(NULL)-start);

found=1;
};
#pragma omp atomic
checked++;

#pragma omp critical
if ((checked % 100000)==0)

printf ("checked=%d\n", checked);
};

int main()
{

int32_t i;
int threads=omp_get_max_threads();
printf ("threads=%d\n", threads);

__min=(int32_t*)malloc(threads*sizeof(int32_t));
__max=(int32_t*)malloc(threads*sizeof(int32_t));
for (i=0; i<threads; i++)

__min[i]=__max[i]=-1;

start=time(NULL);

#pragma omp parallel for
for (i=0; i<INT32_MAX; i++)

check_nonce (i);

for (i=0; i<threads; i++)
printf ("__min[%d]=0x%08x __max[%d]=0x%08x\n", i, __min[i],⤦

Ç i, __max[i]);

free(__min); free(__max);
};

The check_nonce() function just adds a number to the string, hashes it with the
SHA512 algorithm and checks for 3 zero bytes in the result.
A very important part of the code is:

#pragma omp parallel for

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

806
for (i=0; i<INT32_MAX; i++)

check_nonce (i);

Yes, that simple, without #pragma we just call check_nonce() for each number from
0 to INT32_MAX (0x7fffffff or 2147483647). With #pragma, the compiler adds
some special code which slices the loop interval into smaller ones, to run them on
all CPU cores available 57.
The example can be compiled 58 in MSVC 2012:
cl openmp_example.c sha512.obj /openmp /O1 /Zi /Faopenmp_example.asm

Or in GCC:
gcc -fopenmp 2.c sha512.c -S -masm=intel

3.29.1 MSVC
Now this is how MSVC 2012 generates the main loop:

Listing 3.125: MSVC 2012
push OFFSET _mainomp1
push 0
push 1
call __vcomp_fork
add esp, 16

All functions prefixed by vcomp are OpenMP-related and are stored in the vcomp*.dll
file. So here a group of threads is started.
Let’s take a look on _mainomp1:

Listing 3.126: MSVC 2012
$T1 = -8 ; size = 4
$T2 = -4 ; size = 4
_mainomp1 PROC

push ebp
mov ebp, esp
push ecx
push ecx
push esi
lea eax, DWORD PTR $T2[ebp]
push eax
lea eax, DWORD PTR $T1[ebp]
push eax
push 1
push 1

57N.B.: This is intentionally simplest possible example, but in practice, the usage of OpenMP can be
harder and more complex
58sha512.(c|h) and u64.h files can be taken from the OpenSSL library: http://www.openssl.org/

source/

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.openssl.org/source/
http://www.openssl.org/source/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

807
push 2147483646 ; 7ffffffeH
push 0
call __vcomp_for_static_simple_init
mov esi, DWORD PTR $T1[ebp]
add esp, 24
jmp SHORT $LN6@main$omp$1

$LL2@main$omp$1:
push esi
call _check_nonce
pop ecx
inc esi

$LN6@main$omp$1:
cmp esi, DWORD PTR $T2[ebp]
jle SHORT $LL2@main$omp$1
call __vcomp_for_static_end
pop esi
leave
ret 0

_mainomp1 ENDP

This function is to be started n times in parallel, where n is the number of CPU cores.
vcomp_for_static_simple_init() calculates the interval for the for() construct for
the current thread, depending on the current thread’s number.
The loop’s start and end values are stored in the $T1 and $T2 local variables. Youmay
also notice 7ffffffeh (or 2147483646) as an argument to the vcomp_for_static_simple_init()
function—this is the number of iterations for the whole loop, to be divided evenly.
Then we see a new loop with a call to the check_nonce() function, which does all
the work.
Let’s also add some code at the beginning of the check_nonce() function to gather
statistics about the arguments with which the function has been called.
This is what we see when we run it:
threads=4
...
checked=2800000
checked=3000000
checked=3200000
checked=3300000
found (thread 3): [hello, world!_1611446522]. seconds spent=3
__min[0]=0x00000000 __max[0]=0x1fffffff
__min[1]=0x20000000 __max[1]=0x3fffffff
__min[2]=0x40000000 __max[2]=0x5fffffff
__min[3]=0x60000000 __max[3]=0x7ffffffe

Yes, the result is correct, the first 3 bytes are zeros:
C:\...\sha512sum test
000000f4a8fac5a4ed38794da4c1e39f54279ad5d9bb3c5465cdf57adaf60403
df6e3fe6019f5764fc9975e505a7395fed780fee50eb38dd4c0279cb114672e2 *test

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

808
The running time is ≈ 2..3 seconds on 4-core Intel Xeon E3-1220 3.10 GHz. In the
task manager we see 5 threads: 1 main thread + 4 more. No further optimizations
are done to keep this example as small and clear as possible. But probably it can
be done much faster. My CPU has 4 cores, that is why OpenMP started exactly 4
threads.
By looking at the statistics table we can clearly see how the loop has been sliced
into 4 even parts. Oh well, almost even, if we don’t consider the last bit.
There are also pragmas for atomic operations.
Let’s see how this code is compiled:

#pragma omp atomic
checked++;

#pragma omp critical
if ((checked % 100000)==0)

printf ("checked=%d\n", checked);

Listing 3.127: MSVC 2012
push edi
push OFFSET _checked
call __vcomp_atomic_add_i4

; Line 55
push OFFSET _$vcomp$critsect$
call __vcomp_enter_critsect
add esp, 12

; Line 56
mov ecx, DWORD PTR _checked
mov eax, ecx
cdq
mov esi, 100000 ; 000186a0H
idiv esi
test edx, edx
jne SHORT $LN1@check_nonc

; Line 57
push ecx
push OFFSET ??_C@_0M@NPNHLIOO@checked?$DN?$CFd?6?$AA@
call _printf
pop ecx
pop ecx

$LN1@check_nonc:
push DWORD PTR _$vcomp$critsect$
call __vcomp_leave_critsect
pop ecx

As it turns out, the vcomp_atomic_add_i4() function in the vcomp*.dll is just a tiny
function with the LOCK XADD instruction59 in it.
59Read more about LOCK prefix: .1.6 on page 1297

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

809
vcomp_enter_critsect() eventually calling win32 API function
EnterCriticalSection() 60.

3.29.2 GCC
GCC 4.8.1 produces a program which shows exactly the same statistics table,
so, GCC’s implementation divides the loop in parts in the same fashion.

Listing 3.128: GCC 4.8.1
mov edi, OFFSET FLAT:main._omp_fn.0
call GOMP_parallel_start
mov edi, 0
call main._omp_fn.0
call GOMP_parallel_end

Unlike MSVC’s implementation, what GCC code does is to start 3 threads, and run
the fourth in the current thread. So there are 4 threads instead of the 5 in MSVC.
Here is the main._omp_fn.0 function:

Listing 3.129: GCC 4.8.1
main._omp_fn.0:

push rbp
mov rbp, rsp
push rbx
sub rsp, 40
mov QWORD PTR [rbp-40], rdi
call omp_get_num_threads
mov ebx, eax
call omp_get_thread_num
mov esi, eax
mov eax, 2147483647 ; 0x7FFFFFFF
cdq
idiv ebx
mov ecx, eax
mov eax, 2147483647 ; 0x7FFFFFFF
cdq
idiv ebx
mov eax, edx
cmp esi, eax
jl .L15

.L18:
imul esi, ecx
mov edx, esi
add eax, edx
lea ebx, [rax+rcx]
cmp eax, ebx
jge .L14
mov DWORD PTR [rbp-20], eax

.L17:

60You can read more about critical sections here: 6.5.4 on page 1002

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

810
mov eax, DWORD PTR [rbp-20]
mov edi, eax
call check_nonce
add DWORD PTR [rbp-20], 1
cmp DWORD PTR [rbp-20], ebx
jl .L17
jmp .L14

.L15:
mov eax, 0
add ecx, 1
jmp .L18

.L14:
add rsp, 40
pop rbx
pop rbp
ret

Here we see the division clearly: by calling
omp_get_num_threads() and omp_get_thread_num()
we get the number of threads running, and also the current thread’s number, and
then determine the loop’s interval. Then we run check_nonce().
GCC also inserted the LOCK ADD

instruction right in the code, unlike MSVC, which generated a call to a separate DLL
function:

Listing 3.130: GCC 4.8.1
lock add DWORD PTR checked[rip], 1
call GOMP_critical_start
mov ecx, DWORD PTR checked[rip]
mov edx, 351843721
mov eax, ecx
imul edx
sar edx, 13
mov eax, ecx
sar eax, 31
sub edx, eax
mov eax, edx
imul eax, eax, 100000
sub ecx, eax
mov eax, ecx
test eax, eax
jne .L7
mov eax, DWORD PTR checked[rip]
mov esi, eax
mov edi, OFFSET FLAT:.LC2 ; "checked=%d\n"
mov eax, 0
call printf

.L7:
call GOMP_critical_end

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

811
The functions prefixed with GOMP are from GNU OpenMP library. Unlike vcomp*.dll,
its source code is freely available: GitHub.

3.30 Signed division using shifts
Unsigned division by 2n numbers is easy, just use bit shift right by n. Signed division
by 2n is easy as well, but some correction needs to be done before or after shift
operation.
First, most CPU architectures support two right shift operations: logical and arith-
metical. During logical shift right, free bit(s) at left are set to zero bit(s). This is SHR
in x86. During arithmetical shift right, free bit(s) at left are set equal to the bit which
was at the same place. Thus, it preserves sign bit while shifting. This is SAR in x86.
Interesting to know, there is no special instruction for arithmetical shift left, because
it works just as logical shift left. So, SAL and SHL instructions in x86 are mapped to
the same opcode. Many disassemblers don’t even know about SAL instruction and
decode this opcode as SHL.
Hence, arithmetical shift right is used for signed numbers. For example, if you shift
-4 (11111100b) by 1 bit right, logical shift right operation will produce 01111110b,
which is 126. Arithmetical shift right will produce 11111110b, which is -2. So far so
good.
What if we need to divide -5 by 2? This is -2.5, or just -2 in integer arithmetic. -5
is 11111011b, by shifting this value by 1 bit right, we’ll get 11111101b, which is -3.
This is slightly incorrect.
Another example: −1

2
= −0.5 or just 0 in integer arithmetic. But -1 is 11111111b, and

11111111b » 1 = 11111111b, which is -1 again. This is also incorrect.
One solution is to add 1 to the input value if it’s negative.
That is why, if we compile x/2 expression, where x is signed int, GCC 4.8 will produce
something like that:

mov eax, edi
shr eax, 31 ; isolate leftmost bit, which is 1 if the number is

negative and 0 if positive
add eax, edi ; add 1 to the input value if it's negative, do

nothing otherwise
sar eax ; arithmetical shift right by one bit
ret

If you divide by 4, 3 needs to be added to the input value if it’s negative. So this is
what GCC 4.8 does for x/4:

lea eax, [rdi+3] ; prepare x+3 value ahead of time
test edi, edi

; if the sign is not negative (i.e., positive), move input value to
EAX

; if the sign is negative, x+3 value is left in EAX untouched
cmovns eax, edi

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://github.com/mirrors/gcc/tree/master/libgomp
https://yurichev.com/contact.html
https://yurichev.com/contact.html

812
; do arithmetical shift right by 2 bits
sar eax, 2
ret

If you divide by 8, 7 will be added to the input value, etc.
MSVC 2013 is slightly different. This is division by 2:

mov eax, DWORD PTR _a$[esp-4]
; sign-extend input value to 64-bit value into EDX:EAX
; effectively, that means EDX will be set to 0FFFFFFFFh if the input

value is negative
; ... or to 0 if positive
cdq
; subtract -1 from input value if it's negative
; this is the same as adding 1
sub eax, edx
; do arithmetical shift right
sar eax, 1
ret 0

Division by 4 in MSVC 2013 is little more complex:
mov eax, DWORD PTR _a$[esp-4]
cdq
; now EDX is 0FFFFFFFFh if input value is negative
; EDX is 0 if it's positive
and edx, 3
; now EDX is 3 if input is negative or 0 otherwise
; add 3 to input value if it's negative or do nothing otherwise:
add eax, edx
; do arithmetical shift
sar eax, 2
ret 0

Division by 8 in MSVC 2013 is similar, but 3 bits from EDX is taken instead of 2,
producing correction value of 7 instead of 3.
Sometimes, Hex-Rays 6.8 can’t handle such code correctly, and it may produce
something like this:
int v0;
...
__int64 v14
...

v14 = ...;
v0 = ((signed int)v14 - HIDWORD(v14)) >> 1;

... it can be safely rewritten to v0=v14/2.
Hex-Rays 6.8 can also handle signed division by 4 like that:
result = ((BYTE4(v25) & 3) + (signed int)v25) >> 2;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

813
... can be rewritten to v25 / 4.

Also, such correction code is used often when division is replaced by multiplication
by magic numbers: read Mathematical Recipes61about multiplicative inverse. And
sometimes, additional shifting is used after multiplication. For example, when GCC
optimizes x

10
, it can’t findmultiplicative inverse for 10, because diophantine equation

has no solutions. So it generates code for x
5
and then adds arithmetical shift right

operation by 1 bit, to divide the result by 2. Of course, this is true only for signed
integers.
So here is division by 10 by GCC 4.8:

mov eax, edi
mov edx, 1717986919 ; magic number
sar edi, 31 ; isolate leftmost bit (which reflects sign)
imul edx ; multiplication by magic number (calculate

x/5)
sar edx, 2 ; now calculate (x/5)/2

; subtract -1 (or add 1) if the input value is negative.
; do nothing otherwise:
sub edx, edi
mov eax, edx
ret

Summary: 2n−1must be added to input value before arithmetical shift, or 1 must be
added to the final result after shift. Both operations are equivalent to each other, so
compiler developers may choose what is more suitable to them. From the reverse
engineer’s point of view, this correction is a clear evidence that the value has signed
type.

3.31 Another heisenbug
Sometimes, array (or buffer) can overflow due to fencepost error:
#include <stdio.h>

int array1[128];
int important_var1;
int important_var2;
int important_var3;
int important_var4;
int important_var5;

int main()
{

important_var1=1;
important_var2=2;
important_var3=3;

61https://math.recipes

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://math.recipes
https://yurichev.com/contact.html
https://yurichev.com/contact.html

814
important_var4=4;
important_var5=5;

array1[0]=123;
array1[128]=456; // BUG

printf ("important_var1=%d\n", important_var1);
printf ("important_var2=%d\n", important_var2);
printf ("important_var3=%d\n", important_var3);
printf ("important_var4=%d\n", important_var4);
printf ("important_var5=%d\n", important_var5);

};

This is what this program printed in my case (non-optimized GCC 5.4 x86 on Linux):
important_var1=1
important_var2=456
important_var3=3
important_var4=4
important_var5=5

As it happens, important_var2 has been placed by compiler right after array1[]:

Listing 3.131: objdump -x
0804a040 g O .bss 00000200 array1
...
0804a240 g O .bss 00000004 important_var2
0804a244 g O .bss 00000004 important_var4
...
0804a248 g O .bss 00000004 important_var1
0804a24c g O .bss 00000004 important_var3
0804a250 g O .bss 00000004 important_var5

Another compiler can arrange variables in another order, and another variable would
be zapped. This is also heisenbug (3.28.2 on page 803)—bug may appear or may
left unnoticed depending on compiler version and optimization switches.
If all variables and arrays are allocated in local stack, stack protection may be trig-
gered, or may not. However, Valgrind can find bugs like these.
Related example in the book (Angband game): 1.27 on page 379.

3.32 The case of forgotten return
Let’s revisit the “attempt to use the result of a function returning void” part: 1.15.1
on page 137.
This is a bug I once hit.
And this is also yet another demonstration, how C/C++ places return value into
EAX/RAX register.
In the piece of code like that, I forgot to add return:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

815

#include <stdio.h>
#include <stdlib.h>

struct color
{

int R;
int G;
int B;

};

struct color* create_color (int R, int G, int B)
{

struct color* rt=(struct color*)malloc(sizeof(struct color));

rt->R=R;
rt->G=G;
rt->B=B;
// must be "return rt;" here

};

int main()
{

struct color* a=create_color(1,2,3);
printf ("%d %d %d\n", a->R, a->G, a->B);

};

Non-optimizing GCC 5.4 silently compiles this with no warnings. And the code works!
Let’s see, why:

Listing 3.132: Non-optimizing GCC 5.4
create_color:

push rbp
mov rbp, rsp
sub rsp, 32
mov DWORD PTR [rbp-20], edi
mov DWORD PTR [rbp-24], esi
mov DWORD PTR [rbp-28], edx
mov edi, 12
call malloc

; RAX = pointer to newly allocated buffer
; now fill it with R/G/B:

mov QWORD PTR [rbp-8], rax
mov rax, QWORD PTR [rbp-8]
mov edx, DWORD PTR [rbp-20]
mov DWORD PTR [rax], edx
mov rax, QWORD PTR [rbp-8]
mov edx, DWORD PTR [rbp-24]
mov DWORD PTR [rax+4], edx
mov rax, QWORD PTR [rbp-8]
mov edx, DWORD PTR [rbp-28]
mov DWORD PTR [rax+8], edx
nop

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

816
leave

; RAX hasn't been modified till that point!
ret

If I add return rt;, only one instruction is added at the end, which is redundant:

Listing 3.133: Non-optimizing GCC 5.4
create_color:

push rbp
mov rbp, rsp
sub rsp, 32
mov DWORD PTR [rbp-20], edi
mov DWORD PTR [rbp-24], esi
mov DWORD PTR [rbp-28], edx
mov edi, 12
call malloc

; RAX = pointer to buffer
mov QWORD PTR [rbp-8], rax
mov rax, QWORD PTR [rbp-8]
mov edx, DWORD PTR [rbp-20]
mov DWORD PTR [rax], edx
mov rax, QWORD PTR [rbp-8]
mov edx, DWORD PTR [rbp-24]
mov DWORD PTR [rax+4], edx
mov rax, QWORD PTR [rbp-8]
mov edx, DWORD PTR [rbp-28]
mov DWORD PTR [rax+8], edx

; reload pointer to buffer into RAX again, and this is redundant operation...
mov rax, QWORD PTR [rbp-8] ; new instruction
leave
ret

Bugs like that are very dangerous, sometimes they appear, sometimes hide. It’s like
Heisenbug.
Now I’m trying optimizing GCC:

Listing 3.134: Optimizing GCC 5.4
create_color:

rep ret

main:
xor eax, eax

; as if create_color() was called and returned 0
sub rsp, 8
mov r8d, DWORD PTR ds:8
mov ecx, DWORD PTR [rax+4]
mov edx, DWORD PTR [rax]
mov esi, OFFSET FLAT:.LC1
mov edi, 1
call __printf_chk
xor eax, eax
add rsp, 8

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

817
ret

Compiler deducing that nothing returns from the function, so it optimizes the whole
function away. And it assumes, that is returns 0 by default. The zero is then used as
an address to a structure in main().. Of course, this code crashes.
GCC in C++ mode silent about it as well.
Let’s try non-optimizing MSVC 2015 x86. It warns about the problem:
c:\tmp\3.c(19) : warning C4716: 'create_color': must return a value

And generates crashing code:

Listing 3.135: Non-optimizing MSVC 2015 x86
_rt$ = -4
_R$ = 8
_G$ = 12
_B$ = 16
_create_color PROC

push ebp
mov ebp, esp
push ecx
push 12
call _malloc

; EAX = pointer to buffer
add esp, 4
mov DWORD PTR _rt$[ebp], eax
mov eax, DWORD PTR _rt$[ebp]
mov ecx, DWORD PTR _R$[ebp]
mov DWORD PTR [eax], ecx
mov edx, DWORD PTR _rt$[ebp]
mov eax, DWORD PTR _G$[ebp]

; EAX is set to G argument:
mov DWORD PTR [edx+4], eax
mov ecx, DWORD PTR _rt$[ebp]
mov edx, DWORD PTR _B$[ebp]
mov DWORD PTR [ecx+8], edx
mov esp, ebp
pop ebp

; EAX = G at this point:
ret 0

_create_color ENDP

Now optimizing MSVC 2015 x86 generates crashing code as well, but for the different
reason:

Listing 3.136: Optimizing MSVC 2015 x86
_a$ = -4
_main PROC
; this is inlined optimized version of create_color():

push ecx
push 12

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

818
call _malloc
mov DWORD PTR [eax], 1
mov DWORD PTR [eax+4], 2
mov DWORD PTR [eax+8], 3

; EAX points to allocated buffer, and it's filled, OK
; now we reload pointer to buffer, hoping it's in "a" variable
; but inlined function didn't store pointer to "a" variable!

mov eax, DWORD PTR _a$[esp+8]
; EAX = some random garbage at this point

push DWORD PTR [eax+8]
push DWORD PTR [eax+4]
push DWORD PTR [eax]
push OFFSET $SG6074
call _printf
xor eax, eax
add esp, 24
ret 0

_main ENDP

_R$ = 8
_G$ = 12
_B$ = 16
_create_color PROC

push 12
call _malloc
mov ecx, DWORD PTR _R$[esp]
add esp, 4
mov DWORD PTR [eax], ecx
mov ecx, DWORD PTR _G$[esp-4]
mov DWORD PTR [eax+4], ecx
mov ecx, DWORD PTR _B$[esp-4]
mov DWORD PTR [eax+8], ecx

; EAX points to allocated buffer, OK
ret 0

_create_color ENDP

However, non-optimizing MSVC 2015 x64 generates working code:

Listing 3.137: Non-optimizing MSVC 2015 x64
rt$ = 32
R$ = 64
G$ = 72
B$ = 80
create_color PROC

mov DWORD PTR [rsp+24], r8d
mov DWORD PTR [rsp+16], edx
mov DWORD PTR [rsp+8], ecx
sub rsp, 56
mov ecx, 12
call malloc

; RAX = allocated buffer
mov QWORD PTR rt$[rsp], rax
mov rax, QWORD PTR rt$[rsp]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

819
mov ecx, DWORD PTR R$[rsp]
mov DWORD PTR [rax], ecx
mov rax, QWORD PTR rt$[rsp]
mov ecx, DWORD PTR G$[rsp]
mov DWORD PTR [rax+4], ecx
mov rax, QWORD PTR rt$[rsp]
mov ecx, DWORD PTR B$[rsp]
mov DWORD PTR [rax+8], ecx
add rsp, 56

; RAX didn't change down to this point
ret 0

create_color ENDP

Optimizing MSVC 2015 x64 also inlines the function, as in case of x86, and the re-
sulting code also crashes.

This is a real piece of code from my octothorpe library, that worked and all tests
passed. It was so, without return for quite a time...
uint32_t LPHM_u32_hash(void *key)
{

jenkins_one_at_a_time_hash_u32((uint32_t)key);
}

The moral of the story: warnings are very important, use -Wall, etc, etc... When
return statement is absent, compiler can just silently do nothing at that point.
Such a bug left unnoticed can ruin a day.
Also, shotgun debugging is bad, because again, such a bug can left unnoticed (“ev-
erything works now, so be it, let’s leave it as is”).
See also: discussion at Hacker News62 and archived blog post63.

3.33 Homework: more about function pointers and
unions

This code was copypasted from dwm64, probably, the smallest ever Linux window
manager.
The problem: keystrokes from user must be dispatched to various functions inside
of dwm. This is usually solved using a big switch().
Usually, this is an important problem to be solved by a programmer of any videogame.
Supposedly, dwm’s creators wanted to make the code neat and modifiable by users:
62https://news.ycombinator.com/item?id=18671609
63https://web.archive.org/web/20190317231721/https://yurichev.com/blog/no_return/
64https://dwm.suckless.org/

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://news.ycombinator.com/item?id=18671609
https://web.archive.org/web/20190317231721/https://yurichev.com/blog/no_return/
https://dwm.suckless.org/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

820

...

typedef union {
int i;
unsigned int ui;
float f;
const void *v;

} Arg;

...

typedef struct {
unsigned int mod;
KeySym keysym;
void (*func)(const Arg *);
const Arg arg;

} Key;

...

static Key keys[] = {
/* modifier key function argument */
{ MODKEY, XK_p, spawn, {.v = dmenucmd } },
{ MODKEY|ShiftMask, XK_Return, spawn, {.v = termcmd } },
{ MODKEY, XK_b, togglebar, {0} },
{ MODKEY, XK_j, focusstack, {.i = +1 } },
{ MODKEY, XK_k, focusstack, {.i = -1 } },
{ MODKEY, XK_i, incnmaster, {.i = +1 } },
{ MODKEY, XK_d, incnmaster, {.i = -1 } },
{ MODKEY, XK_h, setmfact, {.f = -0.05} },
{ MODKEY, XK_l, setmfact, {.f = +0.05} },
{ MODKEY, XK_Return, zoom, {0} },
{ MODKEY, XK_Tab, view, {0} },
{ MODKEY|ShiftMask, XK_c, killclient, {0} },
{ MODKEY, XK_t, setlayout, {.v = &layouts[0]} },
{ MODKEY, XK_f, setlayout, {.v = &layouts[1]} },
{ MODKEY, XK_m, setlayout, {.v = &layouts[2]} },

...

void
spawn(const Arg *arg)
{
...

void
focusstack(const Arg *arg)
{

...

For each keystroke (or shortcut) a function is defined. Even more: a parameters

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

821
(or arguments) to be passed to a function at each case. But parameters can have
various type. So union is used here. A value of needed type is filled in the table.
Each function takes what it needs.
As a homework, try to write a code like that, or get into dwm’s and see how union is
passed into functions and handled.

3.34 Windows 16-bit
16-bit Windows programs are rare nowadays, but can be used in the cases of retro-
computing or dongle hacking (8.8 on page 1055).
16-bit Windows versions were up to 3.11. 95/98/ME also support 16-bit code, as well
as the 32-bit versions of the Windows NT line. The 64-bit versions of Windows NT
line do not support 16-bit executable code at all.
The code resembles MS-DOS’s one.
Executable files are of type NE-type (so-called “new executable”).
All examples considered here were compiled by the OpenWatcom 1.9 compiler, using
these switches:
wcl.exe -i=C:/WATCOM/h/win/ -s -os -bt=windows -bcl=windows example.c

3.34.1 Example#1
#include <windows.h>

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
MessageBeep(MB_ICONEXCLAMATION);
return 0;

};

WinMain proc near
push bp
mov bp, sp
mov ax, 30h ; '0' ; MB_ICONEXCLAMATION constant
push ax
call MESSAGEBEEP
xor ax, ax ; return 0
pop bp
retn 0Ah

WinMain endp

Seems to be easy, so far.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

822
3.34.2 Example #2
#include <windows.h>

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
MessageBox (NULL, "hello, world", "caption", MB_YESNOCANCEL);
return 0;

};

WinMain proc near
push bp
mov bp, sp
xor ax, ax ; NULL
push ax
push ds
mov ax, offset aHelloWorld ; 0x18. "hello, world"
push ax
push ds
mov ax, offset aCaption ; 0x10. "caption"
push ax
mov ax, 3 ; MB_YESNOCANCEL
push ax
call MESSAGEBOX
xor ax, ax ; return 0
pop bp
retn 0Ah

WinMain endp

dseg02:0010 aCaption db 'caption',0
dseg02:0018 aHelloWorld db 'hello, world',0

Couple important things here: the PASCAL calling convention dictates passing the
first argument first (MB_YESNOCANCEL), and the last argument—last (NULL). This con-
vention also tells the callee to restore the stack pointer: hence the RETN instruction
has 0Ah as argument, which implies that the pointer has to be increased by 10 bytes
when the function exits. It is like stdcall (6.1.2 on page 932), but the arguments are
passed in “natural” order.
The pointers are passed in pairs: first the data segment is passed, then the pointer
inside the segment. There is only one segment in this example, so DS always points
to the data segment of the executable.

3.34.3 Example #3
#include <windows.h>

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

823
LPSTR lpCmdLine,
int nCmdShow)

{
int result=MessageBox (NULL, "hello, world", "caption", MB_YESNOCANCEL)⤦
Ç ;

if (result==IDCANCEL)
MessageBox (NULL, "you pressed cancel", "caption", MB_OK);

else if (result==IDYES)
MessageBox (NULL, "you pressed yes", "caption", MB_OK);

else if (result==IDNO)
MessageBox (NULL, "you pressed no", "caption", MB_OK);

return 0;
};

WinMain proc near
push bp
mov bp, sp
xor ax, ax ; NULL
push ax
push ds
mov ax, offset aHelloWorld ; "hello, world"
push ax
push ds
mov ax, offset aCaption ; "caption"
push ax
mov ax, 3 ; MB_YESNOCANCEL
push ax
call MESSAGEBOX
cmp ax, 2 ; IDCANCEL
jnz short loc_2F
xor ax, ax
push ax
push ds
mov ax, offset aYouPressedCanc ; "you pressed cancel"
jmp short loc_49

loc_2F:
cmp ax, 6 ; IDYES
jnz short loc_3D
xor ax, ax
push ax
push ds
mov ax, offset aYouPressedYes ; "you pressed yes"
jmp short loc_49

loc_3D:
cmp ax, 7 ; IDNO
jnz short loc_57
xor ax, ax
push ax
push ds
mov ax, offset aYouPressedNo ; "you pressed no"

loc_49:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

824
push ax
push ds
mov ax, offset aCaption ; "caption"
push ax
xor ax, ax
push ax
call MESSAGEBOX

loc_57:
xor ax, ax
pop bp
retn 0Ah

WinMain endp

Somewhat extended example from the previous section .

3.34.4 Example #4
#include <windows.h>

int PASCAL func1 (int a, int b, int c)
{

return a*b+c;
};

long PASCAL func2 (long a, long b, long c)
{

return a*b+c;
};

long PASCAL func3 (long a, long b, long c, int d)
{

return a*b+c-d;
};

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
func1 (123, 456, 789);
func2 (600000, 700000, 800000);
func3 (600000, 700000, 800000, 123);
return 0;

};

func1 proc near

c = word ptr 4
b = word ptr 6
a = word ptr 8

push bp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

825
mov bp, sp
mov ax, [bp+a]
imul [bp+b]
add ax, [bp+c]
pop bp
retn 6

func1 endp

func2 proc near

arg_0 = word ptr 4
arg_2 = word ptr 6
arg_4 = word ptr 8
arg_6 = word ptr 0Ah
arg_8 = word ptr 0Ch
arg_A = word ptr 0Eh

push bp
mov bp, sp
mov ax, [bp+arg_8]
mov dx, [bp+arg_A]
mov bx, [bp+arg_4]
mov cx, [bp+arg_6]
call sub_B2 ; long 32-bit multiplication
add ax, [bp+arg_0]
adc dx, [bp+arg_2]
pop bp
retn 12

func2 endp

func3 proc near

arg_0 = word ptr 4
arg_2 = word ptr 6
arg_4 = word ptr 8
arg_6 = word ptr 0Ah
arg_8 = word ptr 0Ch
arg_A = word ptr 0Eh
arg_C = word ptr 10h

push bp
mov bp, sp
mov ax, [bp+arg_A]
mov dx, [bp+arg_C]
mov bx, [bp+arg_6]
mov cx, [bp+arg_8]
call sub_B2 ; long 32-bit multiplication
mov cx, [bp+arg_2]
add cx, ax
mov bx, [bp+arg_4]
adc bx, dx ; BX=high part, CX=low part
mov ax, [bp+arg_0]
cwd ; AX=low part d, DX=high part d

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

826
sub cx, ax
mov ax, cx
sbb bx, dx
mov dx, bx
pop bp
retn 14

func3 endp

WinMain proc near
push bp
mov bp, sp
mov ax, 123
push ax
mov ax, 456
push ax
mov ax, 789
push ax
call func1
mov ax, 9 ; high part of 600000
push ax
mov ax, 27C0h ; low part of 600000
push ax
mov ax, 0Ah ; high part of 700000
push ax
mov ax, 0AE60h ; low part of 700000
push ax
mov ax, 0Ch ; high part of 800000
push ax
mov ax, 3500h ; low part of 800000
push ax
call func2
mov ax, 9 ; high part of 600000
push ax
mov ax, 27C0h ; low part of 600000
push ax
mov ax, 0Ah ; high part of 700000
push ax
mov ax, 0AE60h ; low part of 700000
push ax
mov ax, 0Ch ; high part of 800000
push ax
mov ax, 3500h ; low part of 800000
push ax
mov ax, 7Bh ; 123
push ax
call func3
xor ax, ax ; return 0
pop bp
retn 0Ah

WinMain endp

32-bit values (the long data type implies 32 bits, while int is 16-bit) in 16-bit code
(both MS-DOS and Win16) are passed in pairs. It is just like when 64-bit values are

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

827
used in a 32-bit environment (1.34 on page 497).
sub_B2 here is a library function written by the compiler’s developers that does
“long multiplication”, i.e., multiplies two 32-bit values. Other compiler functions
that do the same are listed here: .5 on page 1320, .4 on page 1320.
The ADD/ADC instruction pair is used for addition of compound values: ADD may
set/clear the CF flag, and ADC uses it after.
The SUB/SBB instruction pair is used for subtraction: SUB may set/clear the CF flag,
SBB uses it after.
32-bit values are returned from functions in the DX:AX register pair.
Constants are also passed in pairs in WinMain() here.
The int-typed 123 constant is first converted according to its sign into a 32-bit value
using the CWD instruction.

3.34.5 Example #5
#include <windows.h>

int PASCAL string_compare (char *s1, char *s2)
{

while (1)
{

if (*s1!=*s2)
return 0;

if (*s1==0 || *s2==0)
return 1; // end of string

s1++;
s2++;

};

};

int PASCAL string_compare_far (char far *s1, char far *s2)
{

while (1)
{

if (*s1!=*s2)
return 0;

if (*s1==0 || *s2==0)
return 1; // end of string

s1++;
s2++;

};

};

void PASCAL remove_digits (char *s)
{

while (*s)
{

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

828
if (*s>='0' && *s<='9')

*s='-';
s++;

};
};

char str[]="hello 1234 world";

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{
string_compare ("asd", "def");
string_compare_far ("asd", "def");
remove_digits (str);
MessageBox (NULL, str, "caption", MB_YESNOCANCEL);
return 0;

};

string_compare proc near

arg_0 = word ptr 4
arg_2 = word ptr 6

push bp
mov bp, sp
push si
mov si, [bp+arg_0]
mov bx, [bp+arg_2]

loc_12: ; CODE XREF: string_compare+21j
mov al, [bx]
cmp al, [si]
jz short loc_1C
xor ax, ax
jmp short loc_2B

loc_1C: ; CODE XREF: string_compare+Ej
test al, al
jz short loc_22
jnz short loc_27

loc_22: ; CODE XREF: string_compare+16j
mov ax, 1
jmp short loc_2B

loc_27: ; CODE XREF: string_compare+18j
inc bx
inc si
jmp short loc_12

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

829

loc_2B: ; CODE XREF: string_compare+12j
; string_compare+1Dj

pop si
pop bp
retn 4

string_compare endp

string_compare_far proc near ; CODE XREF: WinMain+18p

arg_0 = word ptr 4
arg_2 = word ptr 6
arg_4 = word ptr 8
arg_6 = word ptr 0Ah

push bp
mov bp, sp
push si
mov si, [bp+arg_0]
mov bx, [bp+arg_4]

loc_3A: ; CODE XREF: string_compare_far+35j
mov es, [bp+arg_6]
mov al, es:[bx]
mov es, [bp+arg_2]
cmp al, es:[si]
jz short loc_4C
xor ax, ax
jmp short loc_67

loc_4C: ; CODE XREF: string_compare_far+16j
mov es, [bp+arg_6]
cmp byte ptr es:[bx], 0
jz short loc_5E
mov es, [bp+arg_2]
cmp byte ptr es:[si], 0
jnz short loc_63

loc_5E: ; CODE XREF: string_compare_far+23j
mov ax, 1
jmp short loc_67

loc_63: ; CODE XREF: string_compare_far+2Cj
inc bx
inc si
jmp short loc_3A

loc_67: ; CODE XREF: string_compare_far+1Aj
; string_compare_far+31j

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

830
pop si
pop bp
retn 8

string_compare_far endp

remove_digits proc near ; CODE XREF: WinMain+1Fp

arg_0 = word ptr 4

push bp
mov bp, sp
mov bx, [bp+arg_0]

loc_72: ; CODE XREF: remove_digits+18j
mov al, [bx]
test al, al
jz short loc_86
cmp al, 30h ; '0'
jb short loc_83
cmp al, 39h ; '9'
ja short loc_83
mov byte ptr [bx], 2Dh ; '-'

loc_83: ; CODE XREF: remove_digits+Ej
; remove_digits+12j

inc bx
jmp short loc_72

loc_86: ; CODE XREF: remove_digits+Aj
pop bp
retn 2

remove_digits endp

WinMain proc near ; CODE XREF: start+EDp
push bp
mov bp, sp
mov ax, offset aAsd ; "asd"
push ax
mov ax, offset aDef ; "def"
push ax
call string_compare
push ds
mov ax, offset aAsd ; "asd"
push ax
push ds
mov ax, offset aDef ; "def"
push ax
call string_compare_far
mov ax, offset aHello1234World ; "hello 1234 world"
push ax
call remove_digits
xor ax, ax

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

831
push ax
push ds
mov ax, offset aHello1234World ; "hello 1234 world"
push ax
push ds
mov ax, offset aCaption ; "caption"
push ax
mov ax, 3 ; MB_YESNOCANCEL
push ax
call MESSAGEBOX
xor ax, ax
pop bp
retn 0Ah

WinMain endp

Here we see a difference between the so-called “near” pointers and the “far” point-
ers: another weird artifact of segmented memory in 16-bit 8086.
You can read more about it here: 11.7 on page 1264.
“near” pointers are those which point within the current data segment. Hence, the
string_compare() function takes only two 16-bit pointers, and accesses the data
from the segment that DS points to (The mov al, [bx] instruction actually works
like mov al, ds:[bx] — DS is implicit here).
“far” pointers are those which may point to data in another memory segment.
Hence string_compare_far() takes the 16-bit pair as a pointer, loads the high part
of it in the ES segment register and accesses the data through it
(mov al, es:[bx]). “far” pointers are also used in my
MessageBox() win16 example: 3.34.2 on page 822. Indeed, the Windows kernel is
not aware which data segment to use when accessing text strings, so it need the
complete information.
The reason for this distinction is that a compact programmay use just one 64kb data
segment, so it doesn’t need to pass the high part of the address, which is always
the same. A bigger program may use several 64kb data segments, so it needs to
specify the segment of the data each time.
It’s the same story for code segments. A compact programmay have all executable
code within one 64kb-segment, then all functions in it will be called using the CALL
NEAR instruction, and the code flow will be returned using RETN. But if there are
several code segments, then the address of the function is to be specified by a pair,
it is to be called using the CALL FAR instruction, and the code flow is to be returned
using RETF.
This is what is set in the compiler by specifying “memory model”.
The compilers targeting MS-DOS and Win16 have specific libraries for each memory
model: they differ by pointer types for code and data.

3.34.6 Example #6
#include <windows.h>

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

832
#include <time.h>
#include <stdio.h>

char strbuf[256];

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

{

struct tm *t;
time_t unix_time;

unix_time=time(NULL);

t=localtime (&unix_time);

sprintf (strbuf, "%04d-%02d-%02d %02d:%02d:%02d", t->tm_year+1900, ⤦
Ç t->tm_mon, t->tm_mday,

t->tm_hour, t->tm_min, t->tm_sec);

MessageBox (NULL, strbuf, "caption", MB_OK);
return 0;

};

WinMain proc near

var_4 = word ptr -4
var_2 = word ptr -2

push bp
mov bp, sp
push ax
push ax
xor ax, ax
call time_
mov [bp+var_4], ax ; low part of UNIX time
mov [bp+var_2], dx ; high part of UNIX time
lea ax, [bp+var_4] ; take a pointer of high part
call localtime_
mov bx, ax ; t
push word ptr [bx] ; second
push word ptr [bx+2] ; minute
push word ptr [bx+4] ; hour
push word ptr [bx+6] ; day
push word ptr [bx+8] ; month
mov ax, [bx+0Ah] ; year
add ax, 1900
push ax
mov ax, offset a04d02d02d02d02 ;

"%04d-%02d-%02d %02d:%02d:%02d"
push ax
mov ax, offset strbuf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

833
push ax
call sprintf_
add sp, 10h
xor ax, ax ; NULL
push ax
push ds
mov ax, offset strbuf
push ax
push ds
mov ax, offset aCaption ; "caption"
push ax
xor ax, ax ; MB_OK
push ax
call MESSAGEBOX
xor ax, ax
mov sp, bp
pop bp
retn 0Ah

WinMain endp

UNIX time is a 32-bit value, so it is returned in the DX:AX register pair and stored in
two local 16-bit variables. Then a pointer to the pair is passed to the localtime()
function. The localtime() function has a struct tm allocated somewhere in the
guts of the C library, so only a pointer to it is returned.
By the way, this also implies that the function cannot be called again until its results
are used.
For the time() and localtime() functions, a Watcom calling convention is used
here: the first four arguments are passed in the AX, DX, BX and CX, registers, and the
rest arguments are via the stack.
The functions using this convention are also marked by underscore at the end of
their name.
sprintf() does not use the PASCAL calling convention, nor the Watcom one,
so the arguments are passed in the normal cdecl way (6.1.1 on page 932).

Global variables

This is the same example, but now these variables are global:
#include <windows.h>
#include <time.h>
#include <stdio.h>

char strbuf[256];
struct tm *t;
time_t unix_time;

int PASCAL WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

834
{

unix_time=time(NULL);

t=localtime (&unix_time);

sprintf (strbuf, "%04d-%02d-%02d %02d:%02d:%02d", t->tm_year+1900, ⤦
Ç t->tm_mon, t->tm_mday,

t->tm_hour, t->tm_min, t->tm_sec);

MessageBox (NULL, strbuf, "caption", MB_OK);
return 0;

};

unix_time_low dw 0
unix_time_high dw 0
t dw 0

WinMain proc near
push bp
mov bp, sp
xor ax, ax
call time_
mov unix_time_low, ax
mov unix_time_high, dx
mov ax, offset unix_time_low
call localtime_
mov bx, ax
mov t, ax ; will not be used in future...
push word ptr [bx] ; seconds
push word ptr [bx+2] ; minutes
push word ptr [bx+4] ; hour
push word ptr [bx+6] ; day
push word ptr [bx+8] ; month
mov ax, [bx+0Ah] ; year
add ax, 1900
push ax
mov ax, offset a04d02d02d02d02 ;

"%04d-%02d-%02d %02d:%02d:%02d"
push ax
mov ax, offset strbuf
push ax
call sprintf_
add sp, 10h
xor ax, ax ; NULL
push ax
push ds
mov ax, offset strbuf
push ax
push ds
mov ax, offset aCaption ; "caption"
push ax
xor ax, ax ; MB_OK
push ax

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

835
call MESSAGEBOX
xor ax, ax ; return 0
pop bp
retn 0Ah

WinMain endp

t is not to be used, but the compiler emitted the code which stores the value.
Because it is not sure, maybe that value will eventually be used in some other mod-
ule.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

Chapter 4

Java

4.1 Java
4.1.1 Introduction
There are some well-known decompilers for Java (or JVM bytecode in general) 1.
The reason is the decompilation of JVM-bytecode is somewhat easier than for lower
level x86 code:
• There is much more information about the data types.
• The JVM memory model is much more rigorous and outlined.
• The Java compiler don’t do any optimizations (the JVM JIT2 does them at run-
time), so the bytecode in the class files is usually pretty readable.

When can the knowledge of JVM be useful?
• Quick-and-dirty patching tasks of class files without the need to recompile the
decompiler’s results.

• Analyzing obfuscated code.
• Analyzing of a code generated by newer Java compiler for which no updated
decompiler exists yet.

• Building your own obfuscator.
• Building a compiler codegenerator (back-end) targeting JVM (like Scala, Clojure,
etc. 3).

Let’s start with some simple pieces of code. JDK 1.7 is used everywhere, unless
mentioned otherwise.

1For example, JAD: http://varaneckas.com/jad/
2Just-In-Time compilation
3Full list: http://en.wikipedia.org/wiki/List_of_JVM_languages

836

http://varaneckas.com/jad/
http://en.wikipedia.org/wiki/List_of_JVM_languages

837
This is the command used to decompile class files everywhere:
javap -c -verbose.
This is the book I used while preparing all examples: [Tim Lindholm, Frank Yellin,
Gilad Bracha, Alex Buckley, The Java(R) Virtual Machine Specification / Java SE 7
Edition] 4.

4.1.2 Returning a value
Probably the simplest Java function is the one which returns some value.
Oh, and we must keep in mind that there are no “free” functions in Java in common
sense, they are “methods”.
Each method is related to some class, so it’s not possible to define a method outside
of a class.
But we’ll call them “functions” anyway, for simplicity.
public class ret
{

public static int main(String[] args)
{

return 0;
}

}

Let’s compile it:
javac ret.java

…and decompile it using the standard Java utility:
javap -c -verbose ret.class

And we get:

Listing 4.1: JDK 1.7 (excerpt)
public static int main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=1, locals=1, args_size=1
0: iconst_0
1: ireturn

The Java developers decided that 0 is one of the busiest constants in programming,
so there is a separate short one-byte iconst_0 instruction which pushes 0
5. There are also iconst_1 (which pushes 1), iconst_2, etc., up to iconst_5.

4Also available as https://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf; http://docs.
oracle.com/javase/specs/jvms/se7/html/

5Just like in MIPS, where a separate register for zero constant exists: 1.5.4 on page 35.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf
http://docs.oracle.com/javase/specs/jvms/se7/html/
http://docs.oracle.com/javase/specs/jvms/se7/html/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

838
There is also iconst_m1 which pushes -1.
The stack is used in JVM for passing data to called functions and also for return values.
So iconst_0 pushes 0 into the stack. ireturn returns an integer value (i in name
means integer) from the TOS6.
Let’s rewrite our example slightly, now we return 1234:
public class ret
{

public static int main(String[] args)
{

return 1234;
}

}

…we get:

Listing 4.2: JDK 1.7 (excerpt)
public static int main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=1, locals=1, args_size=1
0: sipush 1234
3: ireturn

sipush (short integer) pushes 1234 into the stack. short in name implies a 16-bit
value is to be pushed. The number 1234 indeed fits well in a 16-bit value.
What about larger values?
public class ret
{

public static int main(String[] args)
{

return 12345678;
}

}

Listing 4.3: Constant pool
...

#2 = Integer 12345678
...

public static int main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=1, locals=1, args_size=1
0: ldc #2 // int 12345678
2: ireturn

6Top of Stack

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

839
It’s not possible to encode a 32-bit number in a JVM instruction opcode, the develop-
ers didn’t leave such possibility.
So the 32-bit number 12345678 is stored in so called “constant pool” which is, let’s
say, the library of most used constants (including strings, objects, etc.).
This way of passing constants is not unique to JVM.
MIPS, ARM and other RISC CPUs also can’t encode a 32-bit number in a 32-bit opcode,
so the RISC CPU code (including MIPS and ARM) has to construct the value in several
steps, or to keep it in the data segment: 1.39.3 on page 556, 1.40.1 on page 561.
MIPS code also traditionally has a constant pool, named “literal pool”, the segments
are called “.lit4” (for 32-bit single precision floating point number constants) and
“.lit8” (for 64-bit double precision floating point number constants).
Let’s try some other data types!
Boolean:
public class ret
{

public static boolean main(String[] args)
{

return true;
}

}

public static boolean main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=1, locals=1, args_size=1
0: iconst_1
1: ireturn

This JVM bytecode is no different from one returning integer 1.
32-bit data slots in the stack are also used here for boolean values, like in C/C++.
But one could not use returned boolean value as integer or vice versa — type infor-
mation is stored in the class file and checked at runtime.
It’s the same story with a 16-bit short:
public class ret
{

public static short main(String[] args)
{

return 1234;
}

}

public static short main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=1, locals=1, args_size=1

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

840
0: sipush 1234
3: ireturn

…and char!
public class ret
{

public static char main(String[] args)
{

return 'A';
}

}

public static char main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=1, locals=1, args_size=1
0: bipush 65
2: ireturn

bipush means “push byte”. Needless to say that a char in Java is 16-bit UTF-16
character, and it’s equivalent to short, but the ASCII code of the “A” character is 65,
and it’s possible to use the instruction for pushing a byte in the stack.
Let’s also try a byte:
public class retc
{

public static byte main(String[] args)
{

return 123;
}

}

public static byte main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=1, locals=1, args_size=1
0: bipush 123
2: ireturn

One may ask, why bother with a 16-bit short data type which internally works as a
32-bit integer?
Why use a char data type if it is the same as a short data type?
The answer is simple: for data type control and source code readability.
A char may essentially be the same as a short, but we quickly grasp that it’s a
placeholder for an UTF-16 character, and not for some other integer value.
When using short, we show everyone that the variable’s range is limited by 16 bits.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

841
It’s a very good idea to use the boolean type where needed to, instead of the C-style
int.
There is also a 64-bit integer data type in Java:
public class ret3
{

public static long main(String[] args)
{

return 1234567890123456789L;
}

}

Listing 4.4: Constant pool
...

#2 = Long 1234567890123456789l
...

public static long main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=1, args_size=1
0: ldc2_w #2 // long 1234567890123456789l
3: lreturn

The 64-bit number is also stored in a constant pool, ldc2_w loads it and lreturn
(long return) returns it.
The ldc2_w instruction is also used to load double precision floating point numbers
(which also occupy 64 bits) from a constant pool:
public class ret
{

public static double main(String[] args)
{

return 123.456d;
}

}

Listing 4.5: Constant pool
...

#2 = Double 123.456d
...

public static double main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=1, args_size=1
0: ldc2_w #2 // double 123.456d
3: dreturn

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

842
dreturn stands for “return double”.
And finally, a single precision floating point number:
public class ret
{

public static float main(String[] args)
{

return 123.456f;
}

}

Listing 4.6: Constant pool
...

#2 = Float 123.456f
...

public static float main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=1, locals=1, args_size=1
0: ldc #2 // float 123.456f
2: freturn

The ldc instruction used here is the same one as for loading 32-bit integer numbers
from a constant pool.
freturn stands for “return float”.
Now what about function that return nothing?
public class ret
{

public static void main(String[] args)
{

return;
}

}

public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=0, locals=1, args_size=1
0: return

This means that the return instruction is used to return control without returning an
actual value.
Knowing all this, it’s very easy to deduce the function’s (or method’s) returning type
from the last instruction.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

843
4.1.3 Simple calculating functions
Let’s continue with a simple calculating functions.
public class calc
{

public static int half(int a)
{

return a/2;
}

}

Here’s the output when the iconst_2 instruction is used:
public static int half(int);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=1, args_size=1
0: iload_0
1: iconst_2
2: idiv
3: ireturn

iload_0 takes the zeroth function argument and pushes it to the stack.
iconst_2 pushes 2 in the stack. After the execution of these two instructions, this
is how stack looks like:

+---+
TOS ->| 2 |

+---+
| a |
+---+

idiv just takes the two values at the TOS, divides one by the other and leaves the
result at TOS:

+--------+
TOS ->| result |

+--------+

ireturn takes it and returns.
Let’s proceed with double precision floating point numbers:
public class calc
{

public static double half_double(double a)
{

return a/2.0;
}

}

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

844
Listing 4.7: Constant pool

...
#2 = Double 2.0d

...

public static double half_double(double);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=4, locals=2, args_size=1
0: dload_0
1: ldc2_w #2 // double 2.0d
4: ddiv
5: dreturn

It’s the same, but the ldc2_w instruction is used to load the constant 2.0 from the
constant pool.
Also, the other three instructions have the d prefix, meaning they work with double
data type values.
Let’s now use a function with two arguments:
public class calc
{

public static int sum(int a, int b)
{

return a+b;
}

}

public static int sum(int, int);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=2, args_size=2
0: iload_0
1: iload_1
2: iadd
3: ireturn

iload_0 loads the first function argument (a), iload_1—second (b).
Here is the stack after the execution of both instructions:

+---+
TOS ->| b |

+---+
| a |
+---+

iadd adds the two values and leaves the result at TOS:
+--------+

TOS ->| result |
+--------+

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

845
Let’s extend this example to the long data type:

public static long lsum(long a, long b)
{

return a+b;
}

…we got:
public static long lsum(long, long);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=4, locals=4, args_size=2
0: lload_0
1: lload_2
2: ladd
3: lreturn

The second lload instruction takes the second argument from the 2nd slot.
That’s because a 64-bit long value occupies exactly two 32-bit slots.
Slightly more advanced example:
public class calc
{

public static int mult_add(int a, int b, int c)
{

return a*b+c;
}

}

public static int mult_add(int, int, int);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=3, args_size=3
0: iload_0
1: iload_1
2: imul
3: iload_2
4: iadd
5: ireturn

The first step is multiplication. The product is left at the TOS:
+---------+

TOS ->| product |
+---------+

iload_2 loads the third argument (c) in the stack:
+---------+

TOS ->| c |
+---------+

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

846
| product |
+---------+

Now the iadd instruction can add the two values.

4.1.4 JVM memory model
x86 and other low-level environments use the stack for argument passing and as a
local variables storage.
JVM is slightly different.
It has:
• Local variable array (LVA7). Used as storage for incoming function arguments
and local variables.
Instructions like iload_0 load values from it.
istore stores values in it. At the beginning the function arguments are stored:
starting at 0 or at 1 (if the zeroth argument is occupied by this pointer).
Then the local variables are allocated.
Each slot has size of 32-bit.
Hence, values of long and double data types occupy two slots.

• Operand stack (or just “stack”). It’s used for computations and passing argu-
ments while calling other functions.
Unlike low-level environments like x86, it’s not possible to access the stack
without using instructions which explicitly pushes or pops values to/from it.

• Heap. It is used as storage for objects and arrays.
These 3 areas are isolated from each other.

4.1.5 Simple function calling
Math.random() returns a pseudorandom number in range of [0.0 …1.0], but let’s say
that for some reason we need to devise a function that returns a number in range
of [0.0 …0.5]:
public class HalfRandom
{

public static double f()
{

return Math.random()/2;
}

}

7(Java) Local Variable Array

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

847
Listing 4.8: Constant pool

...
#2 = Methodref #18.#19 // java/lang/Math.random:()D
#3 = Double 2.0d

...
#12 = Utf8 ()D

...
#18 = Class #22 // java/lang/Math
#19 = NameAndType #23:#12 // random:()D
#22 = Utf8 java/lang/Math
#23 = Utf8 random

public static double f();
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=4, locals=0, args_size=0
0: invokestatic #2 // Method java/lang/Math.random:()D
3: ldc2_w #3 // double 2.0d
6: ddiv
7: dreturn

invokestatic calls the Math.random() function and leaves the result at the TOS.
Then the result is divided by 2.0 and returned.
But how is the function name encoded?
It’s encoded in the constant pool using a Methodref expression.
It defines the class and method names.
The first field of Methodref points to a Class expression which, in turn, points to the
usual text string (“java/lang/Math”).
The second Methodref expression points to a NameAndType expression which also
has two links to the strings.
The first string is “random”, which is the name of the method.
The second string is “()D”, which encodes the function’s type. It means that it returns
a double value (hence the D in the string).
This is the way 1) JVM can check data for type correctness; 2) Java decompilers can
restore data types from a compiled class file.
Now let’s try the “Hello, world!” example:
public class HelloWorld
{

public static void main(String[] args)
{

System.out.println("Hello, World");
}

}

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

848
Listing 4.9: Constant pool

...
#2 = Fieldref #16.#17 // java/lang/System.out:Ljava/io⤦
Ç /PrintStream;
#3 = String #18 // Hello, World
#4 = Methodref #19.#20 // java/io/PrintStream.println:(⤦
Ç Ljava/lang/String;)V

...
#16 = Class #23 // java/lang/System
#17 = NameAndType #24:#25 // out:Ljava/io/PrintStream;
#18 = Utf8 Hello, World
#19 = Class #26 // java/io/PrintStream
#20 = NameAndType #27:#28 // println:(Ljava/lang/String;)V

...
#23 = Utf8 java/lang/System
#24 = Utf8 out
#25 = Utf8 Ljava/io/PrintStream;
#26 = Utf8 java/io/PrintStream
#27 = Utf8 println
#28 = Utf8 (Ljava/lang/String;)V

...

public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=1, args_size=1
0: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
3: ldc #3 // String Hello, World
5: invokevirtual #4 // Method java/io/PrintStream.println:(⤦

Ç Ljava/lang/String;)V
8: return

ldc at offset 3 takes a pointer to the “Hello, World” string in the constant pool and
pushes in the stack.
It’s called a reference in the Java world, but it’s rather a pointer, or an address
8.
The familiar invokevirtual instruction takes the information about the println
function (or method) from the constant pool and calls it.
As we may know, there are several println methods, one for each data type.
Our case is the version of println intended for the String data type.
But what about the first getstatic instruction?
This instruction takes a reference (or address of) a field of the object System.out
and pushes it in the stack.
This value is acts like the this pointer for the println method.

8About difference in pointers and reference’s in C++ see: 3.21.3 on page 705.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

849
Thus, internally, the println method takes two arguments for input: 1) this, i.e., a
pointer to an object; 2) the address of the “Hello, World” string.
Indeed, println() is called as a method within an initialized System.out object.
For convenience, the javap utility writes all this information in the comments.

4.1.6 Calling beep()
This is a simple calling of two functions without arguments:

public static void main(String[] args)
{

java.awt.Toolkit.getDefaultToolkit().beep();
};

public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=1, locals=1, args_size=1
0: invokestatic #2 // Method java/awt/Toolkit.⤦

Ç getDefaultToolkit:()Ljava/awt/Toolkit;
3: invokevirtual #3 // Method java/awt/Toolkit.beep:()V
6: return

First invokestatic at offset 0 calls
java.awt.Toolkit.getDefaultToolkit(), which returns a reference to an object
of class Toolkit.
The invokevirtual instruction at offset 3 calls the beep() method of this class.

4.1.7 Linear congruential PRNG
Let’s try a simple pseudorandom numbers generator, which we already considered
once in the book (1.29 on page 424):
public class LCG
{

public static int rand_state;

public void my_srand (int init)
{

rand_state=init;
}

public static int RNG_a=1664525;
public static int RNG_c=1013904223;

public int my_rand ()
{

rand_state=rand_state*RNG_a;
rand_state=rand_state+RNG_c;
return rand_state & 0x7fff;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

850
}

}

There are couple of class fields which are initialized at start.
But how? In javap output we can find the class constructor:

static {};
flags: ACC_STATIC
Code:

stack=1, locals=0, args_size=0
0: ldc #5 // int 1664525
2: putstatic #3 // Field RNG_a:I
5: ldc #6 // int 1013904223
7: putstatic #4 // Field RNG_c:I
10: return

That’s the way variables are initialized.
RNG_a occupies the 3rd slot in the class and RNG_c—4th, and putstatic puts the
constants there.
The my_srand() function just stores the input value in rand_state:

public void my_srand(int);
flags: ACC_PUBLIC
Code:

stack=1, locals=2, args_size=2
0: iload_1
1: putstatic #2 // Field rand_state:I
4: return

iload_1 takes the input value and pushes it into stack. But why not iload_0?
It’s because this function may use fields of the class, and so this is also passed to
the function as a zeroth argument.
The field rand_state occupies the 2nd slot in the class, so putstatic copies the
value from the TOS into the 2nd slot.
Now my_rand():

public int my_rand();
flags: ACC_PUBLIC
Code:

stack=2, locals=1, args_size=1
0: getstatic #2 // Field rand_state:I
3: getstatic #3 // Field RNG_a:I
6: imul
7: putstatic #2 // Field rand_state:I
10: getstatic #2 // Field rand_state:I
13: getstatic #4 // Field RNG_c:I
16: iadd
17: putstatic #2 // Field rand_state:I
20: getstatic #2 // Field rand_state:I

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

851
23: sipush 32767
26: iand
27: ireturn

It just loads all the values from the object’s fields, does the operations and updates
rand_state’s value using the putstatic instruction.
At offset 20, rand_state is reloaded again (because it has been dropped from the
stack before, by putstatic).
This looks like non-efficient code, but be sure, the JVM is usually good enough to
optimize such things really well.

4.1.8 Conditional jumps
Now let’s proceed to conditional jumps.
public class abs
{

public static int abs(int a)
{

if (a<0)
return -a;

return a;
}

}

public static int abs(int);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=1, locals=1, args_size=1
0: iload_0
1: ifge 7
4: iload_0
5: ineg
6: ireturn
7: iload_0
8: ireturn

ifge jumps to offset 7 if the value at TOS is greater or equal to 0.
Don’t forget, any ifXX instruction pops the value (to be compared) from the stack.
ineg just negates value at TOS.
Another example:

public static int min (int a, int b)
{

if (a>b)
return b;

return a;
}

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

852
We get:

public static int min(int, int);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=2, args_size=2
0: iload_0
1: iload_1
2: if_icmple 7
5: iload_1
6: ireturn
7: iload_0
8: ireturn

if_icmple pops two values and compares them. If the second one is lesser than (or
equal to) the first, a jump to offset 7 is performed.
When we define max() function …

public static int max (int a, int b)
{

if (a>b)
return a;

return b;
}

…the resulting code is the same, but the last two iload instructions (at offsets 5
and 7) are swapped:

public static int max(int, int);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=2, args_size=2
0: iload_0
1: iload_1
2: if_icmple 7
5: iload_0
6: ireturn
7: iload_1
8: ireturn

A more advanced example:
public class cond
{

public static void f(int i)
{

if (i<100)
System.out.print("<100");

if (i==100)
System.out.print("==100");

if (i>100)
System.out.print(">100");

if (i==0)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

853
System.out.print("==0");

}
}

public static void f(int);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=1, args_size=1
0: iload_0
1: bipush 100
3: if_icmpge 14
6: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
9: ldc #3 // String <100
11: invokevirtual #4 // Method java/io/PrintStream.print:(⤦

Ç Ljava/lang/String;)V
14: iload_0
15: bipush 100
17: if_icmpne 28
20: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
23: ldc #5 // String ==100
25: invokevirtual #4 // Method java/io/PrintStream.print:(⤦

Ç Ljava/lang/String;)V
28: iload_0
29: bipush 100
31: if_icmple 42
34: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
37: ldc #6 // String >100
39: invokevirtual #4 // Method java/io/PrintStream.print:(⤦

Ç Ljava/lang/String;)V
42: iload_0
43: ifne 54
46: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
49: ldc #7 // String ==0
51: invokevirtual #4 // Method java/io/PrintStream.print:(⤦

Ç Ljava/lang/String;)V
54: return

if_icmpge pops two values and compares them. If the second one is larger or equal
than the first, a jump to offset 14 is performed.
if_icmpne and if_icmple work just the same, but implement different conditions.
There is also a ifne instruction at offset 43.
Its name is misnomer, it would’ve be better to name it ifnz (jump if the value at
TOS is not zero).
And that is what it does: it jumps to offset 54 if the input value is not zero.
If zero,the execution flow proceeds to offset 46, where the “==0” string is printed.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

854
N.B.: JVM has no unsigned data types, so the comparison instructions operate only
on signed integer values.

4.1.9 Passing arguments
Let’s extend our min()/max() example:
public class minmax
{

public static int min (int a, int b)
{

if (a>b)
return b;

return a;
}

public static int max (int a, int b)
{

if (a>b)
return a;

return b;
}

public static void main(String[] args)
{

int a=123, b=456;
int max_value=max(a, b);
int min_value=min(a, b);
System.out.println(min_value);
System.out.println(max_value);

}
}

Here is main() function code:
public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=5, args_size=1
0: bipush 123
2: istore_1
3: sipush 456
6: istore_2
7: iload_1
8: iload_2
9: invokestatic #2 // Method max:(II)I
12: istore_3
13: iload_1
14: iload_2
15: invokestatic #3 // Method min:(II)I
18: istore 4
20: getstatic #4 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

855
23: iload 4
25: invokevirtual #5 // Method java/io/PrintStream.println:(I⤦

Ç)V
28: getstatic #4 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
31: iload_3
32: invokevirtual #5 // Method java/io/PrintStream.println:(I⤦

Ç)V
35: return

Arguments are passed to the other function in the stack, and the return value is left
on TOS.

4.1.10 Bitfields
All bit-wise operations work just like in any other ISA:

public static int set (int a, int b)
{

return a | 1<<b;
}

public static int clear (int a, int b)
{

return a & (~(1<<b));
}

public static int set(int, int);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=3, locals=2, args_size=2
0: iload_0
1: iconst_1
2: iload_1
3: ishl
4: ior
5: ireturn

public static int clear(int, int);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=3, locals=2, args_size=2
0: iload_0
1: iconst_1
2: iload_1
3: ishl
4: iconst_m1
5: ixor
6: iand
7: ireturn

iconst_m1 loads −1 in the stack, it’s the same as the 0xFFFFFFFF number.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

856
XORing with 0xFFFFFFFF has the same effect of inverting all bits.
Let’s extend all data types to 64-bit long:

public static long lset (long a, int b)
{

return a | 1<<b;
}

public static long lclear (long a, int b)
{

return a & (~(1<<b));
}

public static long lset(long, int);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=4, locals=3, args_size=2
0: lload_0
1: iconst_1
2: iload_2
3: ishl
4: i2l
5: lor
6: lreturn

public static long lclear(long, int);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=4, locals=3, args_size=2
0: lload_0
1: iconst_1
2: iload_2
3: ishl
4: iconst_m1
5: ixor
6: i2l
7: land
8: lreturn

The code is the same, but instructions with l prefix are used, which operate on 64-bit
values.
Also, the second argument type of the function is still int, and when the 32-bit value in
it needs to be promoted to 64-bit value the i2l instruction is used, which essentially
extend the value of an integer type to a long one.

4.1.11 Loops
public class Loop
{

public static void main(String[] args)
{

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

857
for (int i = 1; i <= 10; i++)
{

System.out.println(i);
}

}
}

public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=2, args_size=1
0: iconst_1
1: istore_1
2: iload_1
3: bipush 10
5: if_icmpgt 21
8: getstatic #2 // Field java/lang/System.out:Ljava/io⤦

Ç /PrintStream;
11: iload_1
12: invokevirtual #3 // Method java/io/PrintStream.println⤦

Ç :(I)V
15: iinc 1, 1
18: goto 2
21: return

iconst_1 loads 1 into TOS, istore_1 stores it in the LVA at slot 1.
Why not the zeroth slot? Because the main() function has one argument (array of
String) and a pointer to it (or reference) is now in the zeroth slot.
So, the i local variable will always be in 1st slot.
Instructions at offsets 3 and 5 compare i with 10.
If i is larger, execution flow passes to offset 21, where the function ends.
If it’s not, println is called.
i is then reloaded at offset 11, for println.
By the way, we call the println method for an integer, and we see this in the com-
ments: “(I)V” (I means integer and V means the return type is void).
When println finishes, i is incremented at offset 15.
The first operand of the instruction is the number of a slot (1), the second is the
number (1) to add to the variable.
goto is just GOTO, it jumps to the beginning of the loop’s body offset 2.
Let’s proceed with a more complex example:
public class Fibonacci
{

public static void main(String[] args)
{

int limit = 20, f = 0, g = 1;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

858

for (int i = 1; i <= limit; i++)
{

f = f + g;
g = f - g;
System.out.println(f);

}
}

}

public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=5, args_size=1
0: bipush 20
2: istore_1
3: iconst_0
4: istore_2
5: iconst_1
6: istore_3
7: iconst_1
8: istore 4
10: iload 4
12: iload_1
13: if_icmpgt 37
16: iload_2
17: iload_3
18: iadd
19: istore_2
20: iload_2
21: iload_3
22: isub
23: istore_3
24: getstatic #2 // Field java/lang/System.out:Ljava/io⤦

Ç /PrintStream;
27: iload_2
28: invokevirtual #3 // Method java/io/PrintStream.println⤦

Ç :(I)V
31: iinc 4, 1
34: goto 10
37: return

Here is a map of the LVA slots:
• 0 — the sole argument of main()
• 1 — limit, always contains 20
• 2 — f

• 3 — g

• 4 — i

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

859
We can see that the Java compiler allocates variables in LVA slots in the same order
they were declared in the source code.
There are separate istore instructions for accessing slots 0, 1, 2 and 3, but not for
4 and larger, so there is istore with an additional operand at offset 8 which takes
the slot number as an operand.
It’s the same with iload at offset 10.
But isn’t it dubious to allocate another slot for the limit variable, which always con-
tains 20 (so it’s a constant in essence), and reload its value so often?
JVM JIT compiler is usually good enough to optimize such things.
Manual intervention in the code is probably not worth it.

4.1.12 switch()
The switch() statement is implemented with the tableswitch instruction:

public static void f(int a)
{

switch (a)
{
case 0: System.out.println("zero"); break;
case 1: System.out.println("one\n"); break;
case 2: System.out.println("two\n"); break;
case 3: System.out.println("three\n"); break;
case 4: System.out.println("four\n"); break;
default: System.out.println("something unknown\n"); break;
};

}

As simple, as possible:
public static void f(int);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=1, args_size=1
0: iload_0
1: tableswitch { // 0 to 4

0: 36
1: 47
2: 58
3: 69
4: 80

default: 91
}

36: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦
Ç PrintStream;

39: ldc #3 // String zero
41: invokevirtual #4 // Method java/io/PrintStream.println:(⤦

Ç Ljava/lang/String;)V
44: goto 99

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

860
47: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
50: ldc #5 // String one\n
52: invokevirtual #4 // Method java/io/PrintStream.println:(⤦

Ç Ljava/lang/String;)V
55: goto 99
58: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
61: ldc #6 // String two\n
63: invokevirtual #4 // Method java/io/PrintStream.println:(⤦

Ç Ljava/lang/String;)V
66: goto 99
69: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
72: ldc #7 // String three\n
74: invokevirtual #4 // Method java/io/PrintStream.println:(⤦

Ç Ljava/lang/String;)V
77: goto 99
80: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
83: ldc #8 // String four\n
85: invokevirtual #4 // Method java/io/PrintStream.println:(⤦

Ç Ljava/lang/String;)V
88: goto 99
91: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
94: ldc #9 // String something unknown\n
96: invokevirtual #4 // Method java/io/PrintStream.println:(⤦

Ç Ljava/lang/String;)V
99: return

4.1.13 Arrays
Simple example

Let’s first create an array of 10 integers and fill it:
public static void main(String[] args)
{

int a[]=new int[10];
for (int i=0; i<10; i++)

a[i]=i;
dump (a);

}

public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=3, locals=3, args_size=1
0: bipush 10
2: newarray int
4: astore_1

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

861
5: iconst_0
6: istore_2
7: iload_2
8: bipush 10
10: if_icmpge 23
13: aload_1
14: iload_2
15: iload_2
16: iastore
17: iinc 2, 1
20: goto 7
23: aload_1
24: invokestatic #4 // Method dump:([I)V
27: return

The newarray instruction creates an array object of 10 int elements.
The array’s size is set with bipush and left at TOS.
The array’s type is set in newarray instruction’s operand.
After newarray’s execution, a reference (or pointer) to the newly created array in
the heap is left at the TOS.
astore_1 stores the reference to the 1st slot in LVA.
The second part of the main() function is the loop which stores i into the correspond-
ing array element.
aload_1 gets a reference of the array and places it in the stack.
iastore then stores the integer value from the stack in the array, reference of which
is currently in TOS.
The third part of the main() function calls the dump() function.
An argument for it is prepared by aload_1 (offset 23).
Now let’s proceed to the dump() function:

public static void dump(int a[])
{

for (int i=0; i<a.length; i++)
System.out.println(a[i]);

}

public static void dump(int[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=3, locals=2, args_size=1
0: iconst_0
1: istore_1
2: iload_1
3: aload_0
4: arraylength
5: if_icmpge 23

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

862
8: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
11: aload_0
12: iload_1
13: iaload
14: invokevirtual #3 // Method java/io/PrintStream.println:(I)⤦

Ç V
17: iinc 1, 1
20: goto 2
23: return

The incoming reference to the array is in the zeroth slot.
The a.length expression in the source code is converted to an arraylength instruc-
tion: it takes a reference to the array and leaves the array size at TOS.
iaload at offset 13 is used to load array elements, it requires an array reference to
be present in the stack (prepared by aload_0 at 11), and also an index (prepared by
iload_1 at offset 12).
Needless to say, instructions prefixed with a may be mistakenly comprehended as
array instructions.
It’s not correct. These instructions works with references to objects.
And arrays and strings are objects too.

Summing elements of array

Another example:
public class ArraySum
{

public static int f (int[] a)
{

int sum=0;
for (int i=0; i<a.length; i++)

sum=sum+a[i];
return sum;

}
}

public static int f(int[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=3, locals=3, args_size=1
0: iconst_0
1: istore_1
2: iconst_0
3: istore_2
4: iload_2
5: aload_0
6: arraylength
7: if_icmpge 22

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

863
10: iload_1
11: aload_0
12: iload_2
13: iaload
14: iadd
15: istore_1
16: iinc 2, 1
19: goto 4
22: iload_1
23: ireturn

LVA slot 0 contains a reference to the input array.
LVA slot 1 contains the local variable sum.

The only argument of the main() function is an array too

We’ll be using the only argument of the main() function, which is an array of strings:
public class UseArgument
{

public static void main(String[] args)
{

System.out.print("Hi, ");
System.out.print(args[1]);
System.out.println(". How are you?");

}
}

The zeroth argument is the program’s name (like in C/C++, etc.), so the 1st argument
supplied by the user is 1st.

public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=3, locals=1, args_size=1
0: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
3: ldc #3 // String Hi,
5: invokevirtual #4 // Method java/io/PrintStream.print:(⤦

Ç Ljava/lang/String;)V
8: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
11: aload_0
12: iconst_1
13: aaload
14: invokevirtual #4 // Method java/io/PrintStream.print:(⤦

Ç Ljava/lang/String;)V
17: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
20: ldc #5 // String . How are you?
22: invokevirtual #6 // Method java/io/PrintStream.println:(⤦

Ç Ljava/lang/String;)V

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

864
25: return

aload_0 at 11 loads a reference of the zeroth LVA slot (1st and only main() argu-
ment).
iconst_1 and aaload at 12 and 13 take a reference to the first (counting at 0) ele-
ment of array.
The reference to the string object is at TOS at offset 14, and it is taken from there
by println method.

Pre-initialized array of strings

class Month
{

public static String[] months =
{

"January",
"February",
"March",
"April",
"May",
"June",
"July",
"August",
"September",
"October",
"November",
"December"

};

public String get_month (int i)
{

return months[i];
};

}

The get_month() function is simple:
public java.lang.String get_month(int);
flags: ACC_PUBLIC
Code:

stack=2, locals=2, args_size=2
0: getstatic #2 // Field months:[Ljava/lang/String;
3: iload_1
4: aaload
5: areturn

aaload operates on an array of references.
Java String are objects, so the a-instructions are used to operate on them.
areturn returns a reference to a String object.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

865
How is the months[] array initialized?

static {};
flags: ACC_STATIC
Code:

stack=4, locals=0, args_size=0
0: bipush 12
2: anewarray #3 // class java/lang/String
5: dup
6: iconst_0
7: ldc #4 // String January
9: aastore
10: dup
11: iconst_1
12: ldc #5 // String February
14: aastore
15: dup
16: iconst_2
17: ldc #6 // String March
19: aastore
20: dup
21: iconst_3
22: ldc #7 // String April
24: aastore
25: dup
26: iconst_4
27: ldc #8 // String May
29: aastore
30: dup
31: iconst_5
32: ldc #9 // String June
34: aastore
35: dup
36: bipush 6
38: ldc #10 // String July
40: aastore
41: dup
42: bipush 7
44: ldc #11 // String August
46: aastore
47: dup
48: bipush 8
50: ldc #12 // String September
52: aastore
53: dup
54: bipush 9
56: ldc #13 // String October
58: aastore
59: dup
60: bipush 10
62: ldc #14 // String November
64: aastore
65: dup
66: bipush 11

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

866
68: ldc #15 // String December
70: aastore
71: putstatic #2 // Field months:[Ljava/lang/String;
74: return

anewarray creates a new array of references (hence a prefix).
The object’s type is defined in the anewarray’s operand, it is the
“java/lang/String” string.
The bipush 12 before anewarray sets the array’s size.
We see here a new instruction for us: dup.
It’s a standard instruction in stack computers (including the Forth programming lan-
guage) which just duplicates the value at TOS.
By the way, FPU 80x87 is also a stack computer and it has similar instruction – FDUP.
It is used here to duplicate a reference to an array, because the aastore instruction
pops the reference to array from the stack, but subsequent aastore will need it
again.
The Java compiler concluded that it’s better to generate a dup instead of generating
a getstatic instruction before each array store operation (i.e., 11 times).
aastore puts a reference (to string) into the array at an index which is taken from
TOS.
Finally, putstatic puts reference to the newly created array into the second field of
our object, i.e., months field.

Variadic functions

Variadic functions actually use arrays:
public static void f(int... values)
{

for (int i=0; i<values.length; i++)
System.out.println(values[i]);

}

public static void main(String[] args)
{

f (1,2,3,4,5);
}

public static void f(int...);
flags: ACC_PUBLIC, ACC_STATIC, ACC_VARARGS
Code:

stack=3, locals=2, args_size=1
0: iconst_0
1: istore_1
2: iload_1
3: aload_0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

867
4: arraylength
5: if_icmpge 23
8: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
11: aload_0
12: iload_1
13: iaload
14: invokevirtual #3 // Method java/io/PrintStream.println:(I⤦

Ç)V
17: iinc 1, 1
20: goto 2
23: return

f() just takes an array of integers using aload_0 at offset 3.
Then it gets the array’s size, etc.

public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=4, locals=1, args_size=1
0: iconst_5
1: newarray int
3: dup
4: iconst_0
5: iconst_1
6: iastore
7: dup
8: iconst_1
9: iconst_2
10: iastore
11: dup
12: iconst_2
13: iconst_3
14: iastore
15: dup
16: iconst_3
17: iconst_4
18: iastore
19: dup
20: iconst_4
21: iconst_5
22: iastore
23: invokestatic #4 // Method f:([I)V
26: return

The array is constructed in main() using the newarray instruction, then it’s filled,
and f() is called.
Oh, by the way, array object is not destroyed at the end of main().
There are no destructors in Java at all, because the JVM has a garbage collector which
does this automatically, when it feels it needs to.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

868
What about the format() method?
It takes two arguments at input: a string and an array of objects:

public PrintStream format(String format, Object... args)

(http://docs.oracle.com/javase/tutorial/java/data/numberformat.html)
Let’s see:

public static void main(String[] args)
{

int i=123;
double d=123.456;
System.out.format("int: %d double: %f.%n", i, d);

}

public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=7, locals=4, args_size=1
0: bipush 123
2: istore_1
3: ldc2_w #2 // double 123.456d
6: dstore_2
7: getstatic #4 // Field java/lang/System.out:Ljava/io⤦

Ç /PrintStream;
10: ldc #5 // String int: %d double: %f.%n
12: iconst_2
13: anewarray #6 // class java/lang/Object
16: dup
17: iconst_0
18: iload_1
19: invokestatic #7 // Method java/lang/Integer.valueOf:(I⤦

Ç)Ljava/lang/Integer;
22: aastore
23: dup
24: iconst_1
25: dload_2
26: invokestatic #8 // Method java/lang/Double.valueOf:(D)⤦

Ç Ljava/lang/Double;
29: aastore
30: invokevirtual #9 // Method java/io/PrintStream.format:(⤦

Ç Ljava/lang/String;[Ljava/lang/Object;)Ljava/io/PrintStream;
33: pop
34: return

So values of the int and double types are first promoted to Integer and Double
objects using the valueOf methods.
The format()method needs objects of type Object at input, and since the Integer
and Double classes are derived from the root Object class, they suitable for ele-
ments in the input array.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://docs.oracle.com/javase/tutorial/java/data/numberformat.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

869
On the other hand, an array is always homogeneous, i.e., it can’t hold elements of
different types, which makes it impossible to push int and double values in it.
An array of Object objects is created at offset 13, an Integer object is added to the
array at offset 22, and a Double object is added to the array at offset 29.
The penultimate pop instruction discards the element at TOS, so when return is
executed, the stack becomes empty (or balanced).

Two-dimensional arrays

Two-dimensional arrays in Java are just one-dimensional arrays of references to an-
other one-dimensional arrays.
Let’s create a two-dimensional array:

public static void main(String[] args)
{

int[][] a = new int[5][10];
a[1][2]=3;

}

public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=3, locals=2, args_size=1
0: iconst_5
1: bipush 10
3: multianewarray #2, 2 // class "[[I"
7: astore_1
8: aload_1
9: iconst_1
10: aaload
11: iconst_2
12: iconst_3
13: iastore
14: return

It’s created using the multianewarray instruction: the object’s type and dimension-
ality are passed as operands.
The array’s size (10*5) is left in stack (using the instructions iconst_5 and bipush).
A reference to row #1 is loaded at offset 10 (iconst_1 and aaload).
The column is chosen using iconst_2 at offset 11.
The value to be written is set at offset 12.
iastore at 13 writes the array’s element.
How it is an element accessed?

public static int get12 (int[][] in)
{

return in[1][2];

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

870
}

public static int get12(int[][]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=1, args_size=1
0: aload_0
1: iconst_1
2: aaload
3: iconst_2
4: iaload
5: ireturn

A Reference to the array’s row is loaded at offset 2, the column is set at offset 3,
then iaload loads the array’s element.

Three-dimensional arrays

Three-dimensional arrays are just one-dimensional arrays of references to one-dimensional
arrays of references to one-dimensional arrays.

public static void main(String[] args)
{

int[][][] a = new int[5][10][15];

a[1][2][3]=4;

get_elem(a);
}

public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=3, locals=2, args_size=1
0: iconst_5
1: bipush 10
3: bipush 15
5: multianewarray #2, 3 // class "[[[I"
9: astore_1
10: aload_1
11: iconst_1
12: aaload
13: iconst_2
14: aaload
15: iconst_3
16: iconst_4
17: iastore
18: aload_1
19: invokestatic #3 // Method get_elem:([[[I)I
22: pop
23: return

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

871
Now it takes two aaload instructions to find right reference:

public static int get_elem (int[][][] a)
{

return a[1][2][3];
}

public static int get_elem(int[][][]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=1, args_size=1
0: aload_0
1: iconst_1
2: aaload
3: iconst_2
4: aaload
5: iconst_3
6: iaload
7: ireturn

Summary

Is it possible to do a buffer overflow in Java?
No, because the array’s length is always present in an array object, array bounds
are controlled, and an exception is to be raised in case of out-of-bounds access.
There are no multi-dimensional arrays in Java in the C/C++ sense, so Java is not very
suited for fast scientific computations.

4.1.14 Strings
First example

Strings are objects and are constructed in the same way as other objects (and ar-
rays).

public static void main(String[] args)
{

System.out.println("What is your name?");
String input = System.console().readLine();
System.out.println("Hello, "+input);

}

public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=3, locals=2, args_size=1
0: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
3: ldc #3 // String What is your name?

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

872
5: invokevirtual #4 // Method java/io/PrintStream.println:(⤦

Ç Ljava/lang/String;)V
8: invokestatic #5 // Method java/lang/System.console:()⤦

Ç Ljava/io/Console;
11: invokevirtual #6 // Method java/io/Console.readLine:()⤦

Ç Ljava/lang/String;
14: astore_1
15: getstatic #2 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
18: new #7 // class java/lang/StringBuilder
21: dup
22: invokespecial #8 // Method java/lang/StringBuilder."<⤦

Ç init>":()V
25: ldc #9 // String Hello,
27: invokevirtual #10 // Method java/lang/StringBuilder.⤦

Ç append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
30: aload_1
31: invokevirtual #10 // Method java/lang/StringBuilder.⤦

Ç append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
34: invokevirtual #11 // Method java/lang/StringBuilder.⤦

Ç toString:()Ljava/lang/String;
37: invokevirtual #4 // Method java/io/PrintStream.println:(⤦

Ç Ljava/lang/String;)V
40: return

The readLine()method is called at offset 11, a reference to string (which is supplied
by the user) is then stored at TOS.
At offset 14 the reference to string is stored in slot 1 of LVA.
The string the user entered is reloaded at offset 30 and concatenated with the “Hello,
” string using the StringBuilder class.
The constructed string is then printed using println at offset 37.

Second example

Another example:
public class strings
{

public static char test (String a)
{

return a.charAt(3);
};

public static String concat (String a, String b)
{

return a+b;
}

}

public static char test(java.lang.String);

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

873
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=1, args_size=1
0: aload_0
1: iconst_3
2: invokevirtual #2 // Method java/lang/String.charAt:(I)C
5: ireturn

The string concatenation is performed using StringBuilder:
public static java.lang.String concat(java.lang.String, java.lang.String)⤦
Ç ;
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=2, args_size=2
0: new #3 // class java/lang/StringBuilder
3: dup
4: invokespecial #4 // Method java/lang/StringBuilder."<⤦

Ç init>":()V
7: aload_0
8: invokevirtual #5 // Method java/lang/StringBuilder.⤦

Ç append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
11: aload_1
12: invokevirtual #5 // Method java/lang/StringBuilder.⤦

Ç append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
15: invokevirtual #6 // Method java/lang/StringBuilder.⤦

Ç toString:()Ljava/lang/String;
18: areturn

Another example:
public static void main(String[] args)
{

String s="Hello!";
int n=123;
System.out.println("s=" + s + " n=" + n);

}

And again, the strings are constructed using the StringBuilder class and its append
method, then the constructed string is passed to println:

public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=3, locals=3, args_size=1
0: ldc #2 // String Hello!
2: astore_1
3: bipush 123
5: istore_2
6: getstatic #3 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
9: new #4 // class java/lang/StringBuilder
12: dup

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

874
13: invokespecial #5 // Method java/lang/StringBuilder."<⤦

Ç init>":()V
16: ldc #6 // String s=
18: invokevirtual #7 // Method java/lang/StringBuilder.⤦

Ç append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
21: aload_1
22: invokevirtual #7 // Method java/lang/StringBuilder.⤦

Ç append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
25: ldc #8 // String n=
27: invokevirtual #7 // Method java/lang/StringBuilder.⤦

Ç append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
30: iload_2
31: invokevirtual #9 // Method java/lang/StringBuilder.⤦

Ç append:(I)Ljava/lang/StringBuilder;
34: invokevirtual #10 // Method java/lang/StringBuilder.⤦

Ç toString:()Ljava/lang/String;
37: invokevirtual #11 // Method java/io/PrintStream.println:(⤦

Ç Ljava/lang/String;)V
40: return

4.1.15 Exceptions
Let’s rework our Month example (4.1.13 on page 864) a bit:

Listing 4.10: IncorrectMonthException.java
public class IncorrectMonthException extends Exception
{

private int index;

public IncorrectMonthException(int index)
{

this.index = index;
}
public int getIndex()
{

return index;
}

}

Listing 4.11: Month2.java
class Month2
{

public static String[] months =
{

"January",
"February",
"March",
"April",
"May",
"June",
"July",

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

875
"August",
"September",
"October",
"November",
"December"

};

public static String get_month (int i) throws ⤦
Ç IncorrectMonthException

{
if (i<0 || i>11)

throw new IncorrectMonthException(i);
return months[i];

};

public static void main (String[] args)
{

try
{

System.out.println(get_month(100));
}
catch(IncorrectMonthException e)
{

System.out.println("incorrect month index: "+ e.⤦
Ç getIndex());

e.printStackTrace();
}

};
}

Essentially, IncorrectMonthException.class has just an object constructor and
one getter method.
The IncorrectMonthException class is derived from Exception, so the IncorrectMonthException
constructor first calls the constructor of the Exception class, then it puts incoming
integer value into the sole IncorrectMonthException class field:

public IncorrectMonthException(int);
flags: ACC_PUBLIC
Code:

stack=2, locals=2, args_size=2
0: aload_0
1: invokespecial #1 // Method java/lang/Exception."<init⤦

Ç >":()V
4: aload_0
5: iload_1
6: putfield #2 // Field index:I
9: return

getIndex() is just a getter. A reference to IncorrectMonthException is passed in
the zeroth LVA slot (this), aload_0 takes it, getfield loads an integer value from
the object, ireturn returns it.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

876
public int getIndex();
flags: ACC_PUBLIC
Code:

stack=1, locals=1, args_size=1
0: aload_0
1: getfield #2 // Field index:I
4: ireturn

Now let’s take a look at get_month() in Month2.class:

Listing 4.12: Month2.class
public static java.lang.String get_month(int) throws ⤦
Ç IncorrectMonthException;
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=3, locals=1, args_size=1
0: iload_0
1: iflt 10
4: iload_0
5: bipush 11
7: if_icmple 19
10: new #2 // class IncorrectMonthException
13: dup
14: iload_0
15: invokespecial #3 // Method IncorrectMonthException."<⤦

Ç init>":(I)V
18: athrow
19: getstatic #4 // Field months:[Ljava/lang/String;
22: iload_0
23: aaload
24: areturn

iflt at offset 1 is if less than.
In case of invalid index, a new object is created using the new instruction at offset
10.
The object’s type is passed as an operand to the instruction (which is IncorrectMonthException).
Then its constructor is called, and index is passed via TOS (offset 15).
When the control flow is offset 18, the object is already constructed, so now the
athrow instruction takes a reference to the newly constructed object and signals to
JVM to find the appropriate exception handler.
The athrow instruction doesn’t return the control flow here, so at offset 19 there
is another basic block, not related to exceptions business, where we can get from
offset 7.
How do handlers work?
main() in Month2.class:

Listing 4.13: Month2.class

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

877
public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=3, locals=2, args_size=1
0: getstatic #5 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
3: bipush 100
5: invokestatic #6 // Method get_month:(I)Ljava/lang/⤦

Ç String;
8: invokevirtual #7 // Method java/io/PrintStream.println:(⤦

Ç Ljava/lang/String;)V
11: goto 47
14: astore_1
15: getstatic #5 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
18: new #8 // class java/lang/StringBuilder
21: dup
22: invokespecial #9 // Method java/lang/StringBuilder."<⤦

Ç init>":()V
25: ldc #10 // String incorrect month index:
27: invokevirtual #11 // Method java/lang/StringBuilder.⤦

Ç append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
30: aload_1
31: invokevirtual #12 // Method IncorrectMonthException.⤦

Ç getIndex:()I
34: invokevirtual #13 // Method java/lang/StringBuilder.⤦

Ç append:(I)Ljava/lang/StringBuilder;
37: invokevirtual #14 // Method java/lang/StringBuilder.⤦

Ç toString:()Ljava/lang/String;
40: invokevirtual #7 // Method java/io/PrintStream.println:(⤦

Ç Ljava/lang/String;)V
43: aload_1
44: invokevirtual #15 // Method IncorrectMonthException.⤦

Ç printStackTrace:()V
47: return

Exception table:
from to target type

0 11 14 Class IncorrectMonthException

Here is the Exception table, which defines that from offsets 0 to 11 (inclusive) an
exception
IncorrectMonthException may happen, and if it does, the control flow is to be
passed to offset 14.
Indeed, the main program ends at offset 11.
At offset 14 the handler starts. It’s not possible to get here, there are no condition-
al/unconditional jumps to this area.
But JVM will transfer the execution flow here in case of an exception.
The very first astore_1 (at 14) takes the incoming reference to the exception object
and stores it in LVA slot 1.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

878
Later, the getIndex() method (of this exception object) will be called at offset 31.
The reference to the current exception object is passed right before that (offset 30).
The rest of the code is does just string manipulation: first the integer value returned
by getIndex() is converted to string by the toString() method, then it’s concate-
nated with the “incorrect month index: ” text string (like we saw before), then
println() and printStackTrace() are called.
After printStackTrace() finishes, the exception is handled and we can continue
with the normal execution.
At offset 47 there is a return which finishes the main() function, but there could be
any other code which would execute as if no exceptions were raised.
Here is an example on how IDA shows exception ranges:

Listing 4.14: from some random .class file found on the author’s computer
.catch java/io/FileNotFoundException from met001_335 to met001_360\

using met001_360
.catch java/io/FileNotFoundException from met001_185 to met001_214\

using met001_214
.catch java/io/FileNotFoundException from met001_181 to met001_192\

using met001_195
.catch java/io/FileNotFoundException from met001_155 to met001_176\

using met001_176
.catch java/io/FileNotFoundException from met001_83 to met001_129 using⤦
Ç \

met001_129
.catch java/io/FileNotFoundException from met001_42 to met001_66 using ⤦
Ç \

met001_69
.catch java/io/FileNotFoundException from met001_begin to met001_37\

using met001_37

4.1.16 Classes
Simple class:

Listing 4.15: test.java
public class test
{

public static int a;
private static int b;

public test()
{

a=0;
b=0;

}
public static void set_a (int input)
{

a=input;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

879
}
public static int get_a ()
{

return a;
}
public static void set_b (int input)
{

b=input;
}
public static int get_b ()
{

return b;
}

}

The constructor just sets both fields to zero:
public test();
flags: ACC_PUBLIC
Code:

stack=1, locals=1, args_size=1
0: aload_0
1: invokespecial #1 // Method java/lang/Object."<init>":()⤦

Ç V
4: iconst_0
5: putstatic #2 // Field a:I
8: iconst_0
9: putstatic #3 // Field b:I
12: return

Setter of a:
public static void set_a(int);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=1, locals=1, args_size=1
0: iload_0
1: putstatic #2 // Field a:I
4: return

Getter of a:
public static int get_a();
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=1, locals=0, args_size=0
0: getstatic #2 // Field a:I
3: ireturn

Setter of b:
public static void set_b(int);
flags: ACC_PUBLIC, ACC_STATIC

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

880
Code:

stack=1, locals=1, args_size=1
0: iload_0
1: putstatic #3 // Field b:I
4: return

Getter of b:
public static int get_b();
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=1, locals=0, args_size=0
0: getstatic #3 // Field b:I
3: ireturn

There is no difference in the code which works with public and private fields.
But this type information is present in the .class file, and it’s not possible to access
private fields from everywhere.
Let’s create an object and call its method:

Listing 4.16: ex1.java
public class ex1
{

public static void main(String[] args)
{

test obj=new test();
obj.set_a (1234);
System.out.println(obj.a);

}
}

public static void main(java.lang.String[]);
flags: ACC_PUBLIC, ACC_STATIC
Code:

stack=2, locals=2, args_size=1
0: new #2 // class test
3: dup
4: invokespecial #3 // Method test."<init>":()V
7: astore_1
8: aload_1
9: pop
10: sipush 1234
13: invokestatic #4 // Method test.set_a:(I)V
16: getstatic #5 // Field java/lang/System.out:Ljava/io/⤦

Ç PrintStream;
19: aload_1
20: pop
21: getstatic #6 // Field test.a:I
24: invokevirtual #7 // Method java/io/PrintStream.println:(⤦

Ç I)V
27: return

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

881
The new instruction creates an object, but doesn’t call the constructor (it is called at
offset 4).
The set_a() method is called at offset 16.
The a field is accessed using the getstatic instruction at offset 21.

4.1.17 Simple patching
First example

Let’s proceed with a simple code patching task.
public class nag
{

public static void nag_screen()
{

System.out.println("This program is not registered");
};
public static void main(String[] args)
{

System.out.println("Greetings from the mega-software");
nag_screen();

}
}

How would we remove the printing of “This program is not registered” string?
Let’s load the .class file into IDA:

Figure 4.1: IDA

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

882
Let’s patch the first byte of the function to 177 (which is the return instruction’s
opcode):

Figure 4.2: IDA

But that doesn’t work (JRE 1.7):
Exception in thread "main" java.lang.VerifyError: Expecting a stack map ⤦

Ç frame
Exception Details:

Location:
nag.nag_screen()V @1: nop

Reason:
Error exists in the bytecode

Bytecode:
0000000: b100 0212 03b6 0004 b1

at java.lang.Class.getDeclaredMethods0(Native Method)
at java.lang.Class.privateGetDeclaredMethods(Class.java:2615)
at java.lang.Class.getMethod0(Class.java:2856)
at java.lang.Class.getMethod(Class.java:1668)
at sun.launcher.LauncherHelper.getMainMethod(LauncherHelper.java⤦

Ç :494)
at sun.launcher.LauncherHelper.checkAndLoadMain(LauncherHelper.java⤦

Ç :486)

Perhaps JVM has some other checks related to the stack maps.
OK, let’s patch it differently by removing the call to nag():

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

883

Figure 4.3: IDA

0 is the opcode for NOP.
Now that works!

Second example

Another simple crackme example:
public class password
{

public static void main(String[] args)
{

System.out.println("Please enter the password");
String input = System.console().readLine();
if (input.equals("secret"))

System.out.println("password is correct");
else

System.out.println("password is not correct");
}

}

Let’s load it in IDA:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

884

Figure 4.4: IDA

We see here the ifeq instruction which does the job.
Its name stands for if equal, and this is misnomer, a better name would be ifz (if
zero), i.e, if value at TOS is zero, then do the jump.
In our example, it jumps if the password is not correct (the equals method returns
False, which is 0).
The very first idea is to patch this instruction.
There are two bytes in ifeq opcode, which encode the jump offset.
To make this instruction a NOP, we must set the 3rd byte to the value of 3 (because
by adding 3 to the current address we will always jump to the next instruction, since
the ifeq instruction’s length is 3 bytes):

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

885

Figure 4.5: IDA

That doesn’t work (JRE 1.7):
Exception in thread "main" java.lang.VerifyError: Expecting a stackmap ⤦

Ç frame at branch target 24
Exception Details:

Location:
password.main([Ljava/lang/String;)V @21: ifeq

Reason:
Expected stackmap frame at this location.

Bytecode:
0000000: b200 0212 03b6 0004 b800 05b6 0006 4c2b
0000010: 1207 b600 0899 0003 b200 0212 09b6 0004
0000020: a700 0bb2 0002 120a b600 04b1

Stackmap Table:
append_frame(@35,Object[#20])
same_frame(@43)

at java.lang.Class.getDeclaredMethods0(Native Method)
at java.lang.Class.privateGetDeclaredMethods(Class.java:2615)
at java.lang.Class.getMethod0(Class.java:2856)
at java.lang.Class.getMethod(Class.java:1668)
at sun.launcher.LauncherHelper.getMainMethod(LauncherHelper.java⤦

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

886
Ç :494)

at sun.launcher.LauncherHelper.checkAndLoadMain(LauncherHelper.java⤦
Ç :486)

But it must be mentioned that it worked in JRE 1.6.
We can also try to replace to all 3 ifeq opcode bytes with zero bytes (NOP), and it
still won’t work.
Seems like there are more stack map checks in JRE 1.7.
OK, we’ll replace the whole call to the equalsmethod with the iconst_1 instruction
plus a pack of NOPs:

Figure 4.6: IDA

1 needs always to be in the TOS when the ifeq instruction is executed, so ifeq
would never jump.
This works.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

887
4.1.18 Summary
What is missing in Java in comparison to C/C++?
• Structures: use classes.
• Unions: use class hierarchies.
• Unsigned data types. By the way, this makes cryptographic algorithms some-
what harder to implement in Java.

• Function pointers.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

Chapter 5

Finding important/interesting
stuff in the code

Minimalism it is not a prominent feature of modern software.
But not because the programmers are writing a lot, but because a lot of libraries are
commonly linked statically to executable files. If all external libraries were shifted
into an external DLL files, the world would be different. (Another reason for C++ are
the STL and other template libraries.)
Thus, it is very important to determine the origin of a function, if it is from standard
library or well-known library (like Boost1, libpng2), or if it is related to what we are
trying to find in the code.
It is just absurd to rewrite all code in C/C++ to find what we’re looking for.
One of the primary tasks of a reverse engineer is to find quickly the code he/she
needs, and what is not that important.
The IDA disassembler allow us to search among text strings, byte sequences and
constants. It is even possible to export the code to .lst or .asm text files and then
use grep, awk, etc.
When you try to understand what some code is doing, this easily could be some open-
source library like libpng. So when you see some constants or text strings which look
familiar, it is always worth to google them. And if you find the opensource project
where they are used, then it’s enough just to compare the functions. It may solve
some part of the problem.
For example, if a program uses XML files, the first step may be determining which
XML library is used for processing, since the standard (or well-known) libraries are
usually used instead of self-made one.
For example, the author of these lines once tried to understand how the compres-
sion/decompression of network packets works in SAP 6.0. It is a huge software, but

1http://www.boost.org/
2http://www.libpng.org/pub/png/libpng.html

888

http://www.boost.org/
http://www.libpng.org/pub/png/libpng.html

889
a detailed .PDB with debugging information is present, and that is convenient. He
finally came to the idea that one of the functions, that was called CsDecomprLZC,
was doing the decompression of network packets. Immediately he tried to google
its name and he quickly found the function was used in MaxDB (it is an open-source
SAP project) 3.
http://www.google.com/search?q=CsDecomprLZC

Astoundingly, MaxDB and SAP 6.0 software shared likewise code for the compres-
sion/decompression of network packets.

5.1 Identification of executable files
5.1.1 Microsoft Visual C++
MSVC versions and DLLs that can be imported:

Marketing ver. Internal ver. CL.EXE ver. DLLs imported Release date
6 6.0 12.00 msvcrt.dll June 1998

msvcp60.dll
.NET (2002) 7.0 13.00 msvcr70.dll February 13, 2002

msvcp70.dll
.NET 2003 7.1 13.10 msvcr71.dll April 24, 2003

msvcp71.dll
2005 8.0 14.00 msvcr80.dll November 7, 2005

msvcp80.dll
2008 9.0 15.00 msvcr90.dll November 19, 2007

msvcp90.dll
2010 10.0 16.00 msvcr100.dll April 12, 2010

msvcp100.dll
2012 11.0 17.00 msvcr110.dll September 12, 2012

msvcp110.dll
2013 12.0 18.00 msvcr120.dll October 17, 2013

msvcp120.dll
msvcp*.dll has C++-related functions, so if it is imported, this is probably a C++
program.

Name mangling

The names usually start with the ? symbol.
You can read more about MSVC’s name mangling here: 3.21.1 on page 683.

5.1.2 GCC
Aside from *NIX targets, GCC is also present in the win32 environment, in the form
of Cygwin and MinGW.

3More about it in relevant section (8.12.1 on page 1112)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.google.com/search?q=CsDecomprLZC
https://yurichev.com/contact.html
https://yurichev.com/contact.html

890
Name mangling

Names usually start with the _Z symbols.
You can read more about GCC’s name mangling here: 3.21.1 on page 683.

Cygwin

cygwin1.dll is often imported.

MinGW

msvcrt.dll may be imported.

5.1.3 Intel Fortran
libifcoremd.dll, libifportmd.dll and libiomp5md.dll (OpenMP support) may be imported.
libifcoremd.dll has a lot of functions prefixed with for_, which means Fortran.

5.1.4 Watcom, OpenWatcom
Name mangling

Names usually start with the W symbol.
For example, that is how the method named “method” of the class “class” that does
not have any arguments and returns void is encoded:
W?method$_class$n__v

5.1.5 Borland
Here is an example of Borland Delphi’s and C++Builder’s name mangling:
@TApplication@IdleAction$qv
@TApplication@ProcessMDIAccels$qp6tagMSG
@TModule@$bctr$qpcpvt1
@TModule@$bdtr$qv
@TModule@ValidWindow$qp14TWindowsObject
@TrueColorTo8BitN$qpviiiiiit1iiiiii
@TrueColorTo16BitN$qpviiiiiit1iiiiii
@DIB24BitTo8BitBitmap$qpviiiiiit1iiiii
@TrueBitmap@$bctr$qpcl
@TrueBitmap@$bctr$qpvl
@TrueBitmap@$bctr$qiilll

The names always start with the @ symbol, then we have the class name came,
method name, and encoded the types of the arguments of the method.
These names can be in the .exe imports, .dll exports, debug data, etc.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

891
Borland Visual Component Libraries (VCL) are stored in .bpl files instead of .dll ones,
for example, vcl50.dll, rtl60.dll.
Another DLL that might be imported: BORLNDMM.DLL.

Delphi

Almost all Delphi executables has the “Boolean” text string at the beginning of the
code segment, along with other type names.
This is a very typical beginning of the CODE segment of a Delphi program, this block
came right after the win32 PE file header:
04 10 40 00 03 07 42 6f 6f 6c 65 61 6e 01 00 00 |..@...Boolean...|
00 00 01 00 00 00 00 10 40 00 05 46 61 6c 73 65 |........@..False|
04 54 72 75 65 8d 40 00 2c 10 40 00 09 08 57 69 |.True.@.,.@...Wi|
64 65 43 68 61 72 03 00 00 00 00 ff ff 00 00 90 |deChar..........|
44 10 40 00 02 04 43 68 61 72 01 00 00 00 00 ff |D.@...Char......|
00 00 00 90 58 10 40 00 01 08 53 6d 61 6c 6c 69 |....X.@...Smalli|
6e 74 02 00 80 ff ff ff 7f 00 00 90 70 10 40 00 |nt..........p.@.|
01 07 49 6e 74 65 67 65 72 04 00 00 00 80 ff ff |..Integer.......|
ff 7f 8b c0 88 10 40 00 01 04 42 79 74 65 01 00 |......@...Byte..|
00 00 00 ff 00 00 00 90 9c 10 40 00 01 04 57 6f |..........@...Wo|
72 64 03 00 00 00 00 ff ff 00 00 90 b0 10 40 00 |rd............@.|
01 08 43 61 72 64 69 6e 61 6c 05 00 00 00 00 ff |..Cardinal......|
ff ff ff 90 c8 10 40 00 10 05 49 6e 74 36 34 00 |......@...Int64.|
00 00 00 00 00 00 80 ff ff ff ff ff ff ff 7f 90 |................|
e4 10 40 00 04 08 45 78 74 65 6e 64 65 64 02 90 |..@...Extended..|
f4 10 40 00 04 06 44 6f 75 62 6c 65 01 8d 40 00 |..@...Double..@.|
04 11 40 00 04 08 43 75 72 72 65 6e 63 79 04 90 |..@...Currency..|
14 11 40 00 0a 06 73 74 72 69 6e 67 20 11 40 00 |..@...string .@.|
0b 0a 57 69 64 65 53 74 72 69 6e 67 30 11 40 00 |..WideString0.@.|
0c 07 56 61 72 69 61 6e 74 8d 40 00 40 11 40 00 |..Variant.@.@.@.|
0c 0a 4f 6c 65 56 61 72 69 61 6e 74 98 11 40 00 |..OleVariant..@.|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00 00 00 00 00 00 00 00 00 00 00 00 98 11 40 00 |..............@.|
04 00 00 00 00 00 00 00 18 4d 40 00 24 4d 40 00 |.........M@.$M@.|
28 4d 40 00 2c 4d 40 00 20 4d 40 00 68 4a 40 00 |(M@.,M@. M@.hJ@.|
84 4a 40 00 c0 4a 40 00 07 54 4f 62 6a 65 63 74 |.J@..J@..TObject|
a4 11 40 00 07 07 54 4f 62 6a 65 63 74 98 11 40 |..@...TObject..@|
00 00 00 00 00 00 00 06 53 79 73 74 65 6d 00 00 |........System..|
c4 11 40 00 0f 0a 49 49 6e 74 65 72 66 61 63 65 |..@...IInterface|
00 00 00 00 01 00 00 00 00 00 00 00 00 c0 00 00 |................|
00 00 00 00 46 06 53 79 73 74 65 6d 03 00 ff ff |....F.System....|
f4 11 40 00 0f 09 49 44 69 73 70 61 74 63 68 c0 |..@...IDispatch.|
11 40 00 01 00 04 02 00 00 00 00 00 c0 00 00 00 |.@..............|
00 00 00 46 06 53 79 73 74 65 6d 04 00 ff ff 90 |...F.System.....|
cc 83 44 24 04 f8 e9 51 6c 00 00 83 44 24 04 f8 |..D$...Ql...D$..|
e9 6f 6c 00 00 83 44 24 04 f8 e9 79 6c 00 00 cc |.ol...D$...yl...|
cc 21 12 40 00 2b 12 40 00 35 12 40 00 01 00 00 |.!.@.+.@.5.@....|
00 00 00 00 00 00 00 00 00 c0 00 00 00 00 00 00 |................|
46 41 12 40 00 08 00 00 00 00 00 00 00 8d 40 00 |FA.@..........@.|
bc 12 40 00 4d 12 40 00 00 00 00 00 00 00 00 00 |..@.M.@.........|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

892
bc 12 40 00 0c 00 00 00 4c 11 40 00 18 4d 40 00 |..@.....L.@..M@.|
50 7e 40 00 5c 7e 40 00 2c 4d 40 00 20 4d 40 00 |P~@.\~@.,M@. M@.|
6c 7e 40 00 84 4a 40 00 c0 4a 40 00 11 54 49 6e |l~@..J@..J@..TIn|
74 65 72 66 61 63 65 64 4f 62 6a 65 63 74 8b c0 |terfacedObject..|
d4 12 40 00 07 11 54 49 6e 74 65 72 66 61 63 65 |..@...TInterface|
64 4f 62 6a 65 63 74 bc 12 40 00 a0 11 40 00 00 |dObject..@...@..|
00 06 53 79 73 74 65 6d 00 00 8b c0 00 13 40 00 |..System......@.|
11 0b 54 42 6f 75 6e 64 41 72 72 61 79 04 00 00 |..TBoundArray...|
00 00 00 00 00 03 00 00 00 6c 10 40 00 06 53 79 |.........l.@..Sy|
73 74 65 6d 28 13 40 00 04 09 54 44 61 74 65 54 |stem(.@...TDateT|
69 6d 65 01 ff 25 48 e0 c4 00 8b c0 ff 25 44 e0 |ime..%H......%D.|

The first 4 bytes of the data segment (DATA) can be 00 00 00 00, 32 13 8B C0 or
FF FF FF FF.
This information can be useful when dealing with packed/encrypted Delphi executa-
bles.

5.1.6 Other known DLLs
• vcomp*.dll—Microsoft’s implementation of OpenMP.

5.2 Communicationwith outer world (function level)
It’s often advisable to track function arguments and return values in debugger or DBI.
For example, the author once tried to understand meaning of some obscure function,
which happens to be incorrectly implemented bubble sort4. (It worked correctly, but
slower.) Meanwhile, watching inputs and outputs of this function helps instantly to
understand what it does.
Often, when you see division by multiplication (3.12 on page 621), but forgot all
details about its mechanics, you can just observe input and output and quickly find
divisor.

5.3 Communication with the outer world (win32)
Sometimes it’s enough to observe some function’s inputs and outputs in order to
understand what it does. That way you can save time.
Files and registry access: for the very basic analysis, Process Monitor5 utility from
SysInternals can help.
For the basic analysis of network accesses, Wireshark6 can be useful.
But then you will have to look inside anyway.

4https://yurichev.com/blog/weird_sort_KLEE/
5http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
6http://www.wireshark.org/

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/blog/weird_sort_KLEE/
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://www.wireshark.org/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

893
The first thing to look for is which functions from the OS’s APIs and standard libraries
are used.
If the program is divided into a main executable file and a group of DLL files, some-
times the names of the functions in these DLLs can help.
If we are interested in exactly what can lead to a call to MessageBox() with specific
text, we can try to find this text in the data segment, find the references to it and
find the points from which the control may be passed to the MessageBox() call we’re
interested in.
If we are talking about a video game and we’re interested in which events are more
or less random in it, we may try to find the rand() function or its replacements
(like the Mersenne twister algorithm) and find the places from which those functions
are called, and more importantly, how are the results used. One example: 8.3 on
page 1018.
But if it is not a game, and rand() is still used, it is also interesting to know why.
There are cases of unexpected rand() usage in data compression algorithms (for
encryption imitation): blog.yurichev.com.

5.3.1 Often used functions in the Windows API
These functions may be among the imported. It is worth to note that not every
function might be used in the code that was written by the programmer. A lot of
functions might be called from library functions and CRT code.
Some functions may have the -A suffix for the ASCII version and -W for the Unicode
version.
• Registry access (advapi32.dll): RegEnumKeyEx, RegEnumValue, RegGetValue,
RegOpenKeyEx, RegQueryValueEx.

• Access to text .ini-files (kernel32.dll): GetPrivateProfileString.
• Dialog boxes (user32.dll): MessageBox, MessageBoxEx, CreateDialog, SetDl-
gItemText, GetDlgItemText.

• Resources access (6.5.2 on page 971): (user32.dll): LoadMenu.
• TCP/IP networking (ws2_32.dll): WSARecv, WSASend.
• File access (kernel32.dll): CreateFile, ReadFile, ReadFileEx, WriteFile, WriteFileEx.
• High-level access to the Internet (wininet.dll): WinHttpOpen.
• Checking the digital signature of an executable file (wintrust.dll): WinVerifyTrust.
• The standard MSVC library (if it’s linked dynamically) (msvcr*.dll): assert, itoa,
ltoa, open, printf, read, strcmp, atol, atoi, fopen, fread, fwrite, memcmp, rand,
strlen, strstr, strchr.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://blog.yurichev.com/node/44
https://yurichev.com/contact.html
https://yurichev.com/contact.html

894
5.3.2 Extending trial period
Registry access functions are frequent targets for those who try to crack trial period
of some software, which may save installation date/time into registry.
Another popular target are GetLocalTime() and GetSystemTime() functions: a trial
software, at each startup, must check current date/time somehow anyway.

5.3.3 Removing nag dialog box
A popular way to find out what causing popping nag dialog box is intercepting Mes-
sageBox(), CreateDialog() and CreateWindow() functions.

5.3.4 tracer: Intercepting all functions in specific module
There are INT3 breakpoints in the tracer, that are triggered only once, however, they
can be set for all functions in a specific DLL.
--one-time-INT3-bp:somedll.dll!.*

Or, let’s set INT3 breakpoints on all functions with the xml prefix in their name:
--one-time-INT3-bp:somedll.dll!xml.*

On the other side of the coin, such breakpoints are triggered only once. Tracer will
show the call of a function, if it happens, but only once. Another drawback—it is
impossible to see the function’s arguments.
Nevertheless, this feature is very useful when you know that the program uses a
DLL, but you do not know which functions are actually used. And there are a lot of
functions.
For example, let’s see, what does the uptime utility from cygwin use:
tracer -l:uptime.exe --one-time-INT3-bp:cygwin1.dll!.*

Thus we may see all that cygwin1.dll library functions that were called at least once,
and where from:
One-time INT3 breakpoint: cygwin1.dll!__main (called from uptime.exe!OEP+0⤦

Ç x6d (0x40106d))
One-time INT3 breakpoint: cygwin1.dll!_geteuid32 (called from uptime.exe!⤦

Ç OEP+0xba3 (0x401ba3))
One-time INT3 breakpoint: cygwin1.dll!_getuid32 (called from uptime.exe!OEP⤦

Ç +0xbaa (0x401baa))
One-time INT3 breakpoint: cygwin1.dll!_getegid32 (called from uptime.exe!⤦

Ç OEP+0xcb7 (0x401cb7))
One-time INT3 breakpoint: cygwin1.dll!_getgid32 (called from uptime.exe!OEP⤦

Ç +0xcbe (0x401cbe))
One-time INT3 breakpoint: cygwin1.dll!sysconf (called from uptime.exe!OEP+0⤦

Ç x735 (0x401735))
One-time INT3 breakpoint: cygwin1.dll!setlocale (called from uptime.exe!OEP⤦

Ç +0x7b2 (0x4017b2))

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

895
One-time INT3 breakpoint: cygwin1.dll!_open64 (called from uptime.exe!OEP+0⤦

Ç x994 (0x401994))
One-time INT3 breakpoint: cygwin1.dll!_lseek64 (called from uptime.exe!OEP⤦

Ç +0x7ea (0x4017ea))
One-time INT3 breakpoint: cygwin1.dll!read (called from uptime.exe!OEP+0⤦

Ç x809 (0x401809))
One-time INT3 breakpoint: cygwin1.dll!sscanf (called from uptime.exe!OEP+0⤦

Ç x839 (0x401839))
One-time INT3 breakpoint: cygwin1.dll!uname (called from uptime.exe!OEP+0⤦

Ç x139 (0x401139))
One-time INT3 breakpoint: cygwin1.dll!time (called from uptime.exe!OEP+0⤦

Ç x22e (0x40122e))
One-time INT3 breakpoint: cygwin1.dll!localtime (called from uptime.exe!OEP⤦

Ç +0x236 (0x401236))
One-time INT3 breakpoint: cygwin1.dll!sprintf (called from uptime.exe!OEP+0⤦

Ç x25a (0x40125a))
One-time INT3 breakpoint: cygwin1.dll!setutent (called from uptime.exe!OEP⤦

Ç +0x3b1 (0x4013b1))
One-time INT3 breakpoint: cygwin1.dll!getutent (called from uptime.exe!OEP⤦

Ç +0x3c5 (0x4013c5))
One-time INT3 breakpoint: cygwin1.dll!endutent (called from uptime.exe!OEP⤦

Ç +0x3e6 (0x4013e6))
One-time INT3 breakpoint: cygwin1.dll!puts (called from uptime.exe!OEP+0⤦

Ç x4c3 (0x4014c3))

5.4 Strings
5.4.1 Text strings
C/C++

The normal C strings are zero-terminated (ASCIIZ-strings).
The reason why the C string format is as it is (zero-terminated) is apparently histor-
ical. In [Dennis M. Ritchie, The Evolution of the Unix Time-sharing System, (1979)]
we read:

A minor difference was that the unit of I/O was the word, not the
byte, because the PDP-7 was a word-addressed machine. In practice
this meant merely that all programs dealing with character streams
ignored null characters, because null was used to pad a file to an even
number of characters.

In Hiew or FAR Manager these strings look like this:
int main()
{

printf ("Hello, world!\n");
};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

896

Figure 5.1: Hiew

Borland Delphi

The string in Pascal and Borland Delphi is preceded by an 8-bit or 32-bit string length.
For example:

Listing 5.1: Delphi
CODE:00518AC8 dd 19h
CODE:00518ACC aLoading___Plea db 'Loading... , please wait.',0

...

CODE:00518AFC dd 10h
CODE:00518B00 aPreparingRun__ db 'Preparing run...',0

Unicode

Often, what is called Unicode is a methods for encoding strings where each character
occupies 2 bytes or 16 bits. This is a common terminological mistake. Unicode is a
standard for assigning a number to each character in the many writing systems of
the world, but does not describe the encoding method.
The most popular encoding methods are: UTF-8 (is widespread in Internet and *NIX
systems) and UTF-16LE (is used in Windows).

UTF-8

UTF-8 is one of the most successful methods for encoding characters. All Latin sym-
bols are encoded just like in ASCII, and the symbols beyond the ASCII table are en-
coded using several bytes. 0 is encoded as before, so all standard C string functions
work with UTF-8 strings just like any other string.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

897
Let’s see how the symbols in various languages are encoded in UTF-8 and how it
looks like in FAR, using the 437 codepage7:

Figure 5.2: FAR: UTF-8

As you can see, the English language string looks the same as it is in ASCII.
The Hungarian language uses some Latin symbols plus symbols with diacritic marks.
These symbols are encoded using several bytes, these are underscored with red. It’s
the same story with the Icelandic and Polish languages.
There is also the “Euro” currency symbol at the start, which is encoded with 3 bytes.
The rest of the writing systems here have no connection with Latin.
At least in Russian, Arabic, Hebrew and Hindi we can see some recurring bytes, and
that is not surprise: all symbols from a writing system are usually located in the
same Unicode table, so their code begins with the same numbers.
At the beginning, before the “How much?” string we see 3 bytes, which are in fact
the BOM8. The BOM defines the encoding system to be used.

7The example and translations was taken from here: http://www.columbia.edu/~fdc/utf8/
8Byte Order Mark

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.columbia.edu/~fdc/utf8/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

898
UTF-16LE

Many win32 functions in Windows have the suffixes -A and -W. The first type of
functions works with normal strings, the other with UTF-16LE strings (wide).
In the second case, each symbol is usually stored in a 16-bit value of type short.
The Latin symbols in UTF-16 strings look in Hiew or FAR like they are interleaved with
zero byte:
int wmain()
{

wprintf (L"Hello, world!\n");
};

Figure 5.3: Hiew

We can see this often in Windows NT system files:

Figure 5.4: Hiew

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

899
Strings with characters that occupy exactly 2 bytes are called “Unicode” in IDA:
.data:0040E000 aHelloWorld:
.data:0040E000 unicode 0, <Hello, world!>
.data:0040E000 dw 0Ah, 0

Here is how the Russian language string is encoded in UTF-16LE:

Figure 5.5: Hiew: UTF-16LE

What we can easily spot is that the symbols are interleaved by the diamond character
(which has the ASCII code of 4). Indeed, the Cyrillic symbols are located in the
fourth Unicode plane. Hence, all Cyrillic symbols in UTF-16LE are located in the
0x400-0x4FF range.
Let’s go back to the example with the string written in multiple languages. Here is
how it looks like in UTF-16LE.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

900

Figure 5.6: FAR: UTF-16LE

Here we can also see the BOM at the beginning. All Latin characters are interleaved
with a zero byte.
Some characters with diacritic marks (Hungarian and Icelandic languages) are also
underscored in red.

Base64

The base64 encoding is highly popular for the cases when you have to transfer binary
data as a text string.
In essence, this algorithm encodes 3 binary bytes into 4 printable characters: all 26
Latin letters (both lower and upper case), digits, plus sign (“+”) and slash sign (“/”),
64 characters in total.
One distinctive feature of base64 strings is that they often (but not always) end with
1 or 2 padding equality symbol(s) (“=”), for example:
AVjbbVSVfcUMu1xvjaMgjNtueRwBbxnyJw8dpGnLW8ZW8aKG3v4Y0icuQT+qEJAp9lAOuWs=

WVjbbVSVfcUMu1xvjaMgjNtueRwBbxnyJw8dpGnLW8ZW8aKG3v4Y0icuQT+qEJAp9lAOuQ==

The equality sign (“=”) is never encounter in the middle of base64-encoded strings.
Now example of manual encoding. Let’s encode 0x00, 0x11, 0x22, 0x33 hexadeci-
mal bytes into base64 string:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

901

$ echo -n "\x00\x11\x22\x33" | base64
ABEiMw==

Let’s put all 4 bytes in binary form, then regroup them into 6-bit groups:
| 00 || 11 || 22 || 33 || || |
00000000000100010010001000110011????????????????
| A || B || E || i || M || w || = || = |

Three first bytes (0x00, 0x11, 0x22) can be encoded into 4 base64 characters (“ABEi”),
but the last one (0x33) — cannot be, so it’s encoded using two characters (“Mw”) and
padding symbol (“=”) is added twice to pad the last group to 4 characters. Hence,
length of all correct base64 strings are always divisible by 4.
Base64 is often used when binary data needs to be stored in XML. “Armored” (i.e.,
in text form) PGP keys and signatures are encoded using base64.
Some people tries to use base64 to obfuscate strings: http://blog.sec-consult.
com/2016/01/deliberately-hidden-backdoor-account-in.html 9.
There are utilities for scanning an arbitrary binary files for base64 strings. One such
utility is base64scanner10.
Another encoding system which was much more popular in UseNet and FidoNet is
Uuencoding. Binary files are still encoded in Uuencode format in Phrack magazine.
It offers mostly the same features, but is different from base64 in the sense that file
name is also stored in header.
By the way: there is also close sibling to base64: base32, alphabet of which has 10
digits and 26 Latin characters. One well-known usage of it is onion addresses 11,
like:
http://3g2upl4pq6kufc4m.onion/. URL can’t have mixed-case Latin characters,
so apparently, this is why Tor developers used base32.

5.4.2 Finding strings in binary

Actually, the best form of Unix
documentation is frequently running the
strings command over a program’s object
code. Using strings, you can get a complete
list of the program’s hard-coded file name,
environment variables, undocumented
options, obscure error messages, and so
forth.

The Unix-Haters Handbook

The standard UNIX strings utility is quick-n-dirty way to see strings in file. For exam-
ple, these are some strings from OpenSSH 7.2 sshd executable file:

9http://archive.is/nDCas
10https://github.com/DennisYurichev/base64scanner
11https://trac.torproject.org/projects/tor/wiki/doc/HiddenServiceNames

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://blog.sec-consult.com/2016/01/deliberately-hidden-backdoor-account-in.html
http://blog.sec-consult.com/2016/01/deliberately-hidden-backdoor-account-in.html
http://3g2upl4pq6kufc4m.onion/
http://archive.is/nDCas
https://github.com/DennisYurichev/base64scanner
https://trac.torproject.org/projects/tor/wiki/doc/HiddenServiceNames
https://yurichev.com/contact.html
https://yurichev.com/contact.html

902

...
0123
0123456789
0123456789abcdefABCDEF.:/
%02x
...
%.100s, line %lu: Bad permitopen specification <%.100s>
%.100s, line %lu: invalid criteria
%.100s, line %lu: invalid tun device
...
%.200s/.ssh/environment
...
2886173b9c9b6fdbdeda7a247cd636db38deaa.debug
$2a$06$r3.juUaHZDlIbQaO2dS9FuYxL1W9M81R1Tc92PoSNmzvpEqLkLGrK
...
3des-cbc
...
Bind to port %s on %s.
Bind to port %s on %s failed: %.200s.
/bin/login
/bin/sh
/bin/sh /etc/ssh/sshrc
...
D$4PQWR1
D$4PUj
D$4PV
D$4PVj
D$4PW
D$4PWj
D$4X
D$4XZj
D$4Y
...
diffie-hellman-group-exchange-sha1
diffie-hellman-group-exchange-sha256
digests
D$iPV
direct-streamlocal
direct-streamlocal@openssh.com
...
FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A6...
...

There are options, error messages, file paths, imported dynamic modules and func-
tions, some other strange strings (keys?) There is also unreadable noise—x86 code
sometimes has chunks consisting of printable ASCII characters, up to 8 characters.
Of course, OpenSSH is open-source program. But looking at readable strings inside
of some unknown binary is often a first step of analysis.
grep can be applied as well.
Hiew has the same capability (Alt-F6), as well as Sysinternals ProcessMonitor.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

903
5.4.3 Error/debug messages
Debugging messages are very helpful if present. In some sense, the debugging
messages are reporting what’s going on in the program right now. Often these are
printf()-like functions, which write to log-files, or sometimes do not writing any-
thing but the calls are still present since the build is not a debug one but release one.

If local or global variables are dumped in debug messages, it might be helpful as
well since it is possible to get at least the variable names. For example, one of such
function in Oracle RDBMS is ksdwrt().
Meaningful text strings are often helpful. The IDA disassemblermay show fromwhich
function and from which point this specific string is used. Funny cases sometimes
happen12.
The error messages may help us as well. In Oracle RDBMS, errors are reported using
a group of functions.
You can read more about them here: blog.yurichev.com.
It is possible to find quickly which functions report errors and in which conditions.
By the way, this is often the reason why copy-protection systems use inarticulate
cryptic error messages or just error numbers. No software author is happy if the
software cracker can quickly understands copy-protection’s inner workings judging
by error messages it can produce.
One example of encrypted error messages is here: 8.8.2 on page 1065.

5.4.4 Suspicious magic strings
Some magic strings which are usually used in backdoors look pretty suspicious.
For example, there was a backdoor in the TP-Link WR740 home router13. The back-
door can activated using the following URL:
http://192.168.0.1/userRpmNatDebugRpm26525557/start_art.html.

Indeed, the “userRpmNatDebugRpm26525557” string is present in the firmware.
This string was not googleable until the wide disclosure of information about the
backdoor.
You would not find this in any RFC14.
You would not find any computer science algorithm which uses such strange byte
sequences.
And it doesn’t look like an error or debugging message.
12blog.yurichev.com
13http://sekurak.pl/tp-link-httptftp-backdoor/
14Request for Comments

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://blog.yurichev.com/node/43
http://192.168.0.1/userRpmNatDebugRpm26525557/start_art.html
http://blog.yurichev.com/node/32
http://sekurak.pl/tp-link-httptftp-backdoor/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

904
So it’s a good idea to inspect the usage of such weird strings.

Sometimes, such strings are encoded using base64.
So it’s a good idea to decode them all and to scan them visually, even a glance
should be enough.

More precise, this method of hiding backdoors is called “security through obscu-
rity”.

5.5 Calls to assert()
Sometimes the presence of the assert()macro is useful too: commonly this macro
leaves source file name, line number and condition in the code.
The most useful information is contained in the assert’s condition, we can deduce
variable names or structure field names from it. Another useful piece of information
are the file names—we can try to deduce what type of code is there. Also it is possible
to recognize well-known open-source libraries by the file names.

Listing 5.2: Example of informative assert() calls
.text:107D4B29 mov dx, [ecx+42h]
.text:107D4B2D cmp edx, 1
.text:107D4B30 jz short loc_107D4B4A
.text:107D4B32 push 1ECh
.text:107D4B37 push offset aWrite_c ; "write.c"
.text:107D4B3C push offset aTdTd_planarcon ;

"td->td_planarconfig == PLANARCONFIG_CON"...
.text:107D4B41 call ds:_assert

...

.text:107D52CA mov edx, [ebp-4]

.text:107D52CD and edx, 3

.text:107D52D0 test edx, edx

.text:107D52D2 jz short loc_107D52E9

.text:107D52D4 push 58h

.text:107D52D6 push offset aDumpmode_c ; "dumpmode.c"

.text:107D52DB push offset aN30 ; "(n & 3) == 0"

.text:107D52E0 call ds:_assert

...

.text:107D6759 mov cx, [eax+6]

.text:107D675D cmp ecx, 0Ch

.text:107D6760 jle short loc_107D677A

.text:107D6762 push 2D8h

.text:107D6767 push offset aLzw_c ; "lzw.c"

.text:107D676C push offset aSpLzw_nbitsBit ; "sp->lzw_nbits <= BITS_MAX"

.text:107D6771 call ds:_assert

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

905
It is advisable to “google” both the conditions and file names, which can lead us to
an open-source library. For example, if we “google” “sp->lzw_nbits <= BITS_MAX”,
this predictably gives us some open-source code that’s related to the LZW compres-
sion.

5.6 Constants
Humans, including programmers, often use round numbers like 10, 100, 1000, in
real life as well as in the code.
The practicing reverse engineer usually know them well in hexadecimal representa-
tion: 10=0xA, 100=0x64, 1000=0x3E8, 10000=0x2710.
The constants 0xAAAAAAAA (0b10101010101010101010101010101010) and
0x55555555 (0b01010101010101010101010101010101) are also popular—those are
composed of alternating bits.
That may help to distinguish some signal from a signal where all bits are turned on
(0b1111 …) or off (0b0000 …). For example, the 0x55AA constant is used at least in
the boot sector, MBR15, and in the ROM of IBM-compatible extension cards.
Some algorithms, especially cryptographical ones use distinct constants, which are
easy to find in code using IDA.
For example, the MD5 algorithm initializes its own internal variables like this:
var int h0 := 0x67452301
var int h1 := 0xEFCDAB89
var int h2 := 0x98BADCFE
var int h3 := 0x10325476

If you find these four constants used in the code in a row, it is highly probable that
this function is related to MD5.
Another example are the CRC16/CRC32 algorithms, whose calculation algorithms
often use precomputed tables like this one:

Listing 5.3: linux/lib/crc16.c
/** CRC table for the CRC-16. The poly is 0x8005 (x^16 + x^15 + x^2 + 1) */
u16 const crc16_table[256] = {

0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
...

See also the precomputed table for CRC32: 3.8 on page 601.
In tableless CRC algorithmswell-known polynomials are used, for example, 0xEDB88320
for CRC32.
15Master Boot Record

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

906
5.6.1 Magic numbers
A lot of file formats define a standard file header where a magic number(s) is used,
single one or even several.
For example, all Win32 and MS-DOS executables start with the two characters “MZ”.
At the beginning of a MIDI file the “MThd” signature must be present. If we have a
program which uses MIDI files for something, it’s very likely that it must check the
file for validity by checking at least the first 4 bytes.
This could be done like this: (buf points to the beginning of the loaded file inmemory)
cmp [buf], 0x6468544D ; "MThd"
jnz _error_not_a_MIDI_file

…or by calling a function for comparing memory blocks like memcmp() or any other
equivalent code up to a CMPSB (.1.6 on page 1304) instruction.
When you find such point you already can say where the loading of the MIDI file
starts, also, we could see the location of the buffer with the contents of the MIDI file,
what is used from the buffer, and how.

Dates

Often, one may encounter number like 0x19870116, which is clearly looks like a date
(year 1987, 1th month (January), 16th day). This may be someone’s birthday date
(a programmer, his/her relative, child), or some other important date. The date may
also be written in a reverse order, like 0x16011987. American-style dates are also
popular, like 0x01161987.
Well-known example is 0x19540119 (magic number used in UFS2 superblock struc-
ture), which is a birthday date of Marshall Kirk McKusick, prominent FreeBSD contrib-
utor.
Stuxnet uses the number “19790509” (not as 32-bit number, but as string, though),
and this led to speculation that the malware is connected to Israel16.
Also, numbers like those are very popular in amateur-grade cryptography, for exam-
ple, excerpt from the secret function internals from HASP3 dongle 17:
void xor_pwd(void)
{

int i;

pwd^=0x09071966;
for(i=0;i<8;i++)
{

al_buf[i]= pwd & 7; pwd = pwd >> 3;
}

};

16This is a date of execution of Habib Elghanian, persian jew.
17https://web.archive.org/web/20160311231616/http://www.woodmann.com/fravia/bayu3.htm

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://web.archive.org/web/20160311231616/http://www.woodmann.com/fravia/bayu3.htm
https://yurichev.com/contact.html
https://yurichev.com/contact.html

907
void emulate_func2(unsigned short seed)
{

int i, j;
for(i=0;i<8;i++)
{

ch[i] = 0;

for(j=0;j<8;j++)
{

seed *= 0x1989;
seed += 5;
ch[i] |= (tab[(seed>>9)&0x3f]) << (7-j);

}
}

}

DHCP

This applies to network protocols as well. For example, the DHCP protocol’s network
packets contains the so-called magic cookie: 0x63538263. Any code that generates
DHCP packets somewhere must embed this constant into the packet. If we find it in
the code we may find where this happens and, not only that. Any program which can
receive DHCP packet must verify the magic cookie, comparing it with the constant.
For example, let’s take the dhcpcore.dll file from Windows 7 x64 and search for
the constant. And we can find it, twice: it seems that the constant is used in two
functions with descriptive names
DhcpExtractOptionsForValidation() and DhcpExtractFullOptions():

Listing 5.4: dhcpcore.dll (Windows 7 x64)
.rdata:000007FF6483CBE8 dword_7FF6483CBE8 dd 63538263h ; DATA XREF:

DhcpExtractOptionsForValidation+79
.rdata:000007FF6483CBEC dword_7FF6483CBEC dd 63538263h ; DATA XREF:

DhcpExtractFullOptions+97

And here are the places where these constants are accessed:

Listing 5.5: dhcpcore.dll (Windows 7 x64)
.text:000007FF6480875F mov eax, [rsi]
.text:000007FF64808761 cmp eax, cs:dword_7FF6483CBE8
.text:000007FF64808767 jnz loc_7FF64817179

And:

Listing 5.6: dhcpcore.dll (Windows 7 x64)
.text:000007FF648082C7 mov eax, [r12]
.text:000007FF648082CB cmp eax, cs:dword_7FF6483CBEC
.text:000007FF648082D1 jnz loc_7FF648173AF

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

908
5.6.2 Specific constants
Sometimes, there is a specific constant for some type of code. For example, the
author once dug into a code, where number 12 was encountered suspiciously often.
Size of many arrays is 12, or multiple of 12 (24, etc). As it turned out, that code
takes 12-channel audio file at input and process it.
And vice versa: for example, if a program works with text field which has length of
120 bytes, there has to be a constant 120 or 119 somewhere in the code. If UTF-16
is used, then 2 ⋅120. If a code works with network packets of fixed size, it’s good idea
to search for this constant in the code as well.
This is also true for amateur cryptography (license keys, etc). If encrypted block has
size of n bytes, you may want to try to find occurrences of this number throughout
the code. Also, if you see a piece of code which is been repeated n times in loop
during execution, this may be encryption/decryption routine.

5.6.3 Searching for constants
It is easy in IDA: Alt-B or Alt-I. And for searching for a constant in a big pile of files,
or for searching in non-executable files, there is a small utility called binary grep18.

5.7 Finding the right instructions
If the program is utilizing FPU instructions and there are very few of them in the code,
one can try to check each one manually with a debugger.
For example, we may be interested how Microsoft Excel calculates the formulae
entered by user. For example, the division operation.
If we load excel.exe (from Office 2010) version 14.0.4756.1000 into IDA, make a full
listing and to find every FDIV instruction (except the ones which use constants as a
second operand—obviously, they do not suit us):
cat EXCEL.lst | grep fdiv | grep -v dbl_ > EXCEL.fdiv

…then we see that there are 144 of them.
We can enter a string like =(1/3) in Excel and check each instruction.
By checking each instruction in a debugger or tracer (one may check 4 instruction
at a time), we get lucky and the sought-for instruction is just the 14th:
.text:3011E919 DC 33 fdiv qword ptr [ebx]

PID=13944|TID=28744|(0) 0x2f64e919 (Excel.exe!BASE+0x11e919)
EAX=0x02088006 EBX=0x02088018 ECX=0x00000001 EDX=0x00000001
ESI=0x02088000 EDI=0x00544804 EBP=0x0274FA3C ESP=0x0274F9F8
EIP=0x2F64E919
FLAGS=PF IF

18GitHub

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://github.com/yurichev/bgrep
https://yurichev.com/contact.html
https://yurichev.com/contact.html

909
FPU ControlWord=IC RC=NEAR PC=64bits PM UM OM ZM DM IM
FPU StatusWord=
FPU ST(0): 1.000000

ST(0) holds the first argument (1) and second one is in [EBX].

The instruction after FDIV (FSTP) writes the result in memory:

.text:3011E91B DD 1E fstp qword ptr [esi]

If we set a breakpoint on it, we can see the result:
PID=32852|TID=36488|(0) 0x2f40e91b (Excel.exe!BASE+0x11e91b)
EAX=0x00598006 EBX=0x00598018 ECX=0x00000001 EDX=0x00000001
ESI=0x00598000 EDI=0x00294804 EBP=0x026CF93C ESP=0x026CF8F8
EIP=0x2F40E91B
FLAGS=PF IF
FPU ControlWord=IC RC=NEAR PC=64bits PM UM OM ZM DM IM
FPU StatusWord=C1 P
FPU ST(0): 0.333333

Also as a practical joke, we can modify it on the fly:
tracer -l:excel.exe bpx=excel.exe!BASE+0x11E91B,set(st0,666)

PID=36540|TID=24056|(0) 0x2f40e91b (Excel.exe!BASE+0x11e91b)
EAX=0x00680006 EBX=0x00680018 ECX=0x00000001 EDX=0x00000001
ESI=0x00680000 EDI=0x00395404 EBP=0x0290FD9C ESP=0x0290FD58
EIP=0x2F40E91B
FLAGS=PF IF
FPU ControlWord=IC RC=NEAR PC=64bits PM UM OM ZM DM IM
FPU StatusWord=C1 P
FPU ST(0): 0.333333
Set ST0 register to 666.000000

Excel shows 666 in the cell, finally convincing us that we have found the right point.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

910

Figure 5.7: The practical joke worked

If we try the same Excel version, but in x64, we will find only 12 FDIV instructions
there, and the one we looking for is the third one.
tracer.exe -l:excel.exe bpx=excel.exe!BASE+0x1B7FCC,set(st0,666)

It seems that a lot of division operations of float and double types, were replaced by
the compiler with SSE instructions like DIVSD (DIVSD is present 268 times in total).

5.8 Suspicious code patterns
5.8.1 XOR instructions
Instructions like XOR op, op (for example, XOR EAX, EAX) are usually used for set-
ting the register value to zero, but if the operands are different, the “exclusive or”
operation is executed.
This operation is rare in common programming, but widespread in cryptography,
including amateur one. It’s especially suspicious if the second operand is a big num-
ber.
This may point to encrypting/decrypting, checksum computing, etc.

One exception to this observation worth noting is the “canary” (1.26.3 on page 348).
Its generation and checking are often done using the XOR instruction.

This AWK script can be used for processing IDA listing (.lst) files:
gawk -e '$2=="xor" { tmp=substr($3, 0, length($3)-1); if (tmp!=$4) if($4!="⤦

Ç esp") if ($4!="ebp") { print $1, $2, tmp, ",", $4 } }' filename.lst

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

911
It is also worth noting that this kind of script can also match incorrectly disassembled
code (5.11.1 on page 924).

5.8.2 Hand-written assembly code
Modern compilers do not emit the LOOP and RCL instructions. On the other hand,
these instructions are well-known to coders who like to code directly in assembly
language. If you spot these, it can be said that there is a high probability that this
fragment of code was hand-written. Such instructions are marked as (M) in the
instructions list in this appendix: .1.6 on page 1297.
Also the function prologue/epilogue are not commonly present in hand-written as-
sembly.
Commonly there is no fixed system for passing arguments to functions in the hand-
written code.
Example from the Windows 2003 kernel (ntoskrnl.exe file):
MultiplyTest proc near ; CODE XREF: Get386Stepping

xor cx, cx
loc_620555: ; CODE XREF: MultiplyTest+E

push cx
call Multiply
pop cx
jb short locret_620563
loop loc_620555
clc

locret_620563: ; CODE XREF: MultiplyTest+C
retn

MultiplyTest endp

Multiply proc near ; CODE XREF: MultiplyTest+5
mov ecx, 81h
mov eax, 417A000h
mul ecx
cmp edx, 2
stc
jnz short locret_62057F
cmp eax, 0FE7A000h
stc
jnz short locret_62057F
clc

locret_62057F: ; CODE XREF: Multiply+10
; Multiply+18

retn
Multiply endp

Indeed, if we look in the WRK19 v1.2 source code, this code can be found easily in
file
WRK-v1.2\base\ntos\ke\i386\cpu.asm.
19Windows Research Kernel

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

912
As of RCL instruction, I can find it in the ntoskrnl.exe file in Windows 2003 x86 (com-
piled with MS Visual C compiler). It is occurred only once there,
in RtlExtendedLargeIntegerDivide() function, and this might be inline assembler
code case.

5.9 Using magic numbers while tracing
Often, our main goal is to understand how the program uses a value that has been
either read from file or received via network. The manual tracing of a value is often
a very labor-intensive task. One of the simplest techniques for this (although not
100% reliable) is to use your own magic number.
This resembles X-ray computed tomography is some sense: a radiocontrast agent is
injected into the patient’s blood, which is then used to improve the visibility of the
patient’s internal structure in to the X-rays. It is well known how the blood of healthy
humans percolates in the kidneys and if the agent is in the blood, it can be easily
seen on tomography, how blood is percolating, and are there any stones or tumors.
We can take a 32-bit number like 0x0badf00d, or someone’s birth date like 0x11101979
and write this 4-byte number to some point in a file used by the program we inves-
tigate.
Then, while tracing this program with tracer in code coveragemode, with the help of
grep or just by searching in the text file (of tracing results), we can easily see where
the value has been used and how.
Example of grepable tracer results in cc mode:
0x150bf66 (_kziaia+0x14), e= 1 [MOV EBX, [EBP+8]] [EBP+8]=0xf59c934
0x150bf69 (_kziaia+0x17), e= 1 [MOV EDX, [69AEB08h]] [69AEB08h]=0
0x150bf6f (_kziaia+0x1d), e= 1 [FS: MOV EAX, [2Ch]]
0x150bf75 (_kziaia+0x23), e= 1 [MOV ECX, [EAX+EDX*4]] [EAX+EDX*4]=0⤦

Ç xf1ac360
0x150bf78 (_kziaia+0x26), e= 1 [MOV [EBP-4], ECX] ECX=0xf1ac360

This can be used for network packets as well. It is important for the magic number
to be unique and not to be present in the program’s code.
Aside of the tracer, DosBox (MS-DOS emulator) in heavydebug mode is able to write
information about all registers’ states for each executed instruction of the program
to a plain text file20, so this technique may be useful for DOS programs as well.

5.10 Loops
Whenever your program works with some kind of file, or buffer of some size, it has
to be some kind of decrypting/processing loop inside of the code.
This is a real example of tracer tool output. There was a code which loads some
kind of encrypted file of 258 bytes. I run it with the intention to get each instruction
20See also my blog post about this DosBox feature: blog.yurichev.com

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://blog.yurichev.com/node/55
https://yurichev.com/contact.html
https://yurichev.com/contact.html

913
counts (a DBI tool will serve much better these days). And I quickly found a piece of
code, which executed 259/258 times:
...

0x45a6b5 e= 1 [FS: MOV [0], EAX] EAX=0x218fb08
0x45a6bb e= 1 [MOV [EBP-254h], ECX] ECX=0x218fbd8
0x45a6c1 e= 1 [MOV EAX, [EBP-254h]] [EBP-254h]=0x218fbd8
0x45a6c7 e= 1 [CMP [EAX+14h], 0] [EAX+14h]=0x102
0x45a6cb e= 1 [JZ 45A9F2h] ZF=false
0x45a6d1 e= 1 [MOV [EBP-0Dh], 1]
0x45a6d5 e= 1 [XOR ECX, ECX] ECX=0x218fbd8
0x45a6d7 e= 1 [MOV [EBP-14h], CX] CX=0
0x45a6db e= 1 [MOV [EBP-18h], 0]
0x45a6e2 e= 1 [JMP 45A6EDh]
0x45a6e4 e= 258 [MOV EDX, [EBP-18h]] [EBP-18h]=0..5 (248 items skipped) 0⤦

Ç xfd..0x101
0x45a6e7 e= 258 [ADD EDX, 1] EDX=0..5 (248 items skipped) 0xfd..0x101
0x45a6ea e= 258 [MOV [EBP-18h], EDX] EDX=1..6 (248 items skipped) 0xfe..0⤦

Ç x102
0x45a6ed e= 259 [MOV EAX, [EBP-254h]] [EBP-254h]=0x218fbd8
0x45a6f3 e= 259 [MOV ECX, [EBP-18h]] [EBP-18h]=0..5 (249 items skipped) 0⤦

Ç xfe..0x102
0x45a6f6 e= 259 [CMP ECX, [EAX+14h]] ECX=0..5 (249 items skipped) 0xfe..0⤦

Ç x102 [EAX+14h]=0x102
0x45a6f9 e= 259 [JNB 45A727h] CF=false,true
0x45a6fb e= 258 [MOV EDX, [EBP-254h]] [EBP-254h]=0x218fbd8
0x45a701 e= 258 [MOV EAX, [EDX+10h]] [EDX+10h]=0x21ee4c8
0x45a704 e= 258 [MOV ECX, [EBP-18h]] [EBP-18h]=0..5 (248 items skipped) 0⤦

Ç xfd..0x101
0x45a707 e= 258 [ADD ECX, 1] ECX=0..5 (248 items skipped) 0xfd..0x101
0x45a70a e= 258 [IMUL ECX, ECX, 1Fh] ECX=1..6 (248 items skipped) 0xfe..0⤦

Ç x102
0x45a70d e= 258 [MOV EDX, [EBP-18h]] [EBP-18h]=0..5 (248 items skipped) 0⤦

Ç xfd..0x101
0x45a710 e= 258 [MOVZX EAX, [EAX+EDX]] [EAX+EDX]=1..6 (156 items skipped) 0⤦

Ç xf3, 0xf8, 0xf9, 0xfc, 0xfd
0x45a714 e= 258 [XOR EAX, ECX] EAX=1..6 (156 items skipped) 0xf3, 0xf8, 0⤦

Ç xf9, 0xfc, 0xfd ECX=0x1f, 0x3e, 0x5d, 0x7c, 0x9b (248 items skipped) ⤦
Ç 0x1ec2, 0x1ee1, 0x1f00, 0x1f1f, 0x1f3e

0x45a716 e= 258 [MOV ECX, [EBP-254h]] [EBP-254h]=0x218fbd8
0x45a71c e= 258 [MOV EDX, [ECX+10h]] [ECX+10h]=0x21ee4c8
0x45a71f e= 258 [MOV ECX, [EBP-18h]] [EBP-18h]=0..5 (248 items skipped) 0⤦

Ç xfd..0x101
0x45a722 e= 258 [MOV [EDX+ECX], AL] AL=0..5 (77 items skipped) 0xe2, 0xee, ⤦

Ç 0xef, 0xf7, 0xfc
0x45a725 e= 258 [JMP 45A6E4h]
0x45a727 e= 1 [PUSH 5]
0x45a729 e= 1 [MOV ECX, [EBP-254h]] [EBP-254h]=0x218fbd8
0x45a72f e= 1 [CALL 45B500h]
0x45a734 e= 1 [MOV ECX, EAX] EAX=0x218fbd8
0x45a736 e= 1 [CALL 45B710h]
0x45a73b e= 1 [CMP EAX, 5] EAX=5

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

914
...

As it turns out, this is the decrypting loop.

5.10.1 Some binary file patterns
All examples here were prepared on the Windows with active code page 437 in con-
sole. Binary files internally may look visually different if another code page is set.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

915
Arrays

Sometimes, we can clearly spot an array of 16/32/64-bit values visually, in hex editor.
Here is an example of array of 16-bit values. We see that the first byte in pair is 7 or
8, and the second looks random:

Figure 5.8: FAR: array of 16-bit values

I used a file containing 12-channel signal digitized using 16-bit ADC21.

21Analog-to-Digital Converter

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

916
And here is an example of very typical MIPS code.
As we may recall, every MIPS (and also ARM in ARM mode or ARM64) instruction has
size of 32 bits (or 4 bytes), so such code is array of 32-bit values.
By looking at this screenshot, we may see some kind of pattern.
Vertical red lines are added for clarity:

Figure 5.9: Hiew: very typical MIPS code

Another example of such pattern here is book: 9.5 on page 1224.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

917
Sparse files

This is sparse file with data scattered amidst almost empty file. Each space character
here is in fact zero byte (which is looks like space). This is a file to program FPGA
(Altera Stratix GX device). Of course, files like these can be compressed easily, but
formats like this one are very popular in scientific and engineering software where
efficient access is important while compactness is not.

Figure 5.10: FAR: Sparse file

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

918
Compressed file

This file is just some compressed archive. It has relatively high entropy and visually
looks just chaotic. This is how compressed and/or encrypted files looks like.

Figure 5.11: FAR: Compressed file

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

919
CDFS22

OS installations are usually distributed as ISO files which are copies of CD/DVD discs.
Filesystem used is named CDFS, here is you see file names mixed with some addi-
tional data. This can be file sizes, pointers to another directories, file attributes, etc.
This is how typical filesystems may look internally.

Figure 5.12: FAR: ISO file: Ubuntu 15 installation CD23

22Compact Disc File System

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

920
32-bit x86 executable code

This is how 32-bit x86 executable code looks like. It has not very high entropy,
because some bytes occurred more often than others.

Figure 5.13: FAR: Executable 32-bit x86 code

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

921
BMP graphics files

BMP files are not compressed, so each byte (or group of bytes) describes each pixel.
I’ve found this picture somewhere inside my installed Windows 8.1:

Figure 5.14: Example picture

You see that this picture has some pixels which unlikely can be compressed very
good (around center), but there are long one-color lines at top and bottom. Indeed,
lines like these also looks as lines during viewing the file:

Figure 5.15: BMP file fragment

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

922
5.10.2 Memory “snapshots” comparing
The technique of the straightforward comparison of two memory snapshots in order
to see changes was often used to hack 8-bit computer games and for hacking “high
score” files.
For example, if you had a loaded game on an 8-bit computer (there isn’t much mem-
ory on these, but the game usually consumes even less memory) and you know that
you have now, let’s say, 100 bullets, you can do a “snapshot” of all memory and
back it up to some place. Then shoot once, the bullet count goes to 99, do a second
“snapshot” and then compare both: it must be a byte somewhere which has been
100 at the beginning, and now it is 99.
Considering the fact that these 8-bit games were often written in assembly language
and such variables were global, it can be said for sure which address in memory has
holding the bullet count. If you searched for all references to the address in the
disassembled game code, it was not very hard to find a piece of code decrementing
the bullet count, then to write a NOP instruction there, or a couple of NOP-s, and
then have a game with 100 bullets forever. Games on these 8-bit computers were
commonly loaded at the constant address, also, there were not much different ver-
sions of each game (commonly just one version was popular for a long span of time),
so enthusiastic gamers knew which bytes must be overwritten (using the BASIC’s
instruction POKE) at which address in order to hack it. This led to “cheat” lists that
contained POKE instructions, published in magazines related to 8-bit games.
Likewise, it is easy to modify “high score” files, this does not work with just 8-bit
games. Notice your score count and back up the file somewhere. When the “high
score” count gets different, just compare the two files, it can even be done with the
DOS utility FC24 (“high score” files are often in binary form).
There will be a point where a couple of bytes are different and it is easy to see which
ones are holding the score number. However, game developers are fully aware of
such tricks and may defend the program against it.
Somewhat similar example in this book is: 9.3 on page 1210.

A real story from 1999

There was a time of ICQ messenger’s popularity, at least in ex-USSR countries. The
messenger had a peculiarity — some users didn’t want to share their online status
with everyone. And you had to ask an authorization from that user. That user could
allow you seeing his/her status, or maybe not.
This is what the author of these lines did:
• Added a user.
• A user appeared in a contact-list, in a “wait for authorization” section.
• Closed ICQ.
• Backed up the ICQ database.

24MS-DOS utility for comparing binary files

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

923
• Loaded ICQ again.
• User authorized.
• Closed ICQ and compared two databases.

It turned out: two database differed by only one byte. In the first version: RESU\x03,
in the second: RESU\x02. (“RESU”, presumably, means “USER”, i.e., a header of a
structure where all the information about user was stored.) That means the informa-
tion about authorization was stored not at the server, but at the client. Presumably,
2/3 value reflected authorization status.

Windows registry

It is also possible to compare the Windows registry before and after a program in-
stallation.
It is a very popular method of finding which registry elements are used by the pro-
gram. Perhaps, this is the reason why the “windows registry cleaner” shareware is
so popular.
By the way, this is how to dump Windows registry to text files:
reg export HKLM HKLM.reg
reg export HKCU HKCU.reg
reg export HKCR HKCR.reg
reg export HKU HKU.reg
reg export HKCC HKCC.reg

They can be compared using diff...

Engineering software, CADs, etc

If a software uses proprietary files, you can also investigate something here as well.
You save file. Then you add a dot or line or another primitive. Save file, compare.
Or move dot, save file, compare.

Blink-comparator

Comparison of files or memory snapshots remind us blink-comparator 25: a device
used by astronomers in past, intended to find moving celestial objects.
Blink-comparator allows to switch quickly between two photographies shot in differ-
ent time, so astronomer would spot the difference visually.
By the way, Pluto was discovered by blink-comparator in 1930.
25https://en.wikipedia.org/wiki/Blink_comparator

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://en.wikipedia.org/wiki/Blink_comparator
https://yurichev.com/contact.html
https://yurichev.com/contact.html

924
5.11 ISA detection
Often, you can deal with a binary file for an unknown ISA. Perhaps, easiest way to
detect ISA is to try various ones in IDA, objdump or another disassembler.
To achieve this, one should understand a difference between incorrectly disassem-
bled code and correctly one.

5.11.1 Incorrectly disassembled code
Practicing reverse engineers often have to deal with incorrectly disassembled code.

Disassembling from an incorrect start (x86)

Unlike ARM and MIPS (where any instruction has a length of 2 or 4 bytes), x86 in-
structions have variable size, so any disassembler that starts in the middle of a x86
instruction may produce incorrect results.
As an example:
add [ebp-31F7Bh], cl
dec dword ptr [ecx-3277Bh]
dec dword ptr [ebp-2CF7Bh]
inc dword ptr [ebx-7A76F33Ch]
fdiv st(4), st
db 0FFh
dec dword ptr [ecx-21F7Bh]
dec dword ptr [ecx-22373h]
dec dword ptr [ecx-2276Bh]
dec dword ptr [ecx-22B63h]
dec dword ptr [ecx-22F4Bh]
dec dword ptr [ecx-23343h]
jmp dword ptr [esi-74h]
xchg eax, ebp
clc
std
db 0FFh
db 0FFh
mov word ptr [ebp-214h], cs ; <- disassembler finally found right track

here
mov word ptr [ebp-238h], ds
mov word ptr [ebp-23Ch], es
mov word ptr [ebp-240h], fs
mov word ptr [ebp-244h], gs
pushf
pop dword ptr [ebp-210h]
mov eax, [ebp+4]
mov [ebp-218h], eax
lea eax, [ebp+4]
mov [ebp-20Ch], eax
mov dword ptr [ebp-2D0h], 10001h
mov eax, [eax-4]
mov [ebp-21Ch], eax

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

925
mov eax, [ebp+0Ch]
mov [ebp-320h], eax
mov eax, [ebp+10h]
mov [ebp-31Ch], eax
mov eax, [ebp+4]
mov [ebp-314h], eax
call ds:IsDebuggerPresent
mov edi, eax
lea eax, [ebp-328h]
push eax
call sub_407663
pop ecx
test eax, eax
jnz short loc_402D7B

There are incorrectly disassembled instructions at the beginning, but eventually the
disassembler gets on the right track.

How does random noise looks disassembled?

Common properties that can be spotted easily are:
• Unusually big instruction dispersion. The most frequent x86 instructions
are PUSH, MOV, CALL, but here we see instructions from all instruction groups:
FPU instructions, IN/OUT instructions, rare and system instructions, everything
mixed up in one single place.

• Big and random values, offsets and immediates.
• Jumps having incorrect offsets, often jumping in the middle of another instruc-
tions.

Listing 5.7: random noise (x86)
mov bl, 0Ch
mov ecx, 0D38558Dh
mov eax, ds:2C869A86h
db 67h
mov dl, 0CCh
insb
movsb
push eax
xor [edx-53h], ah
fcom qword ptr [edi-45A0EF72h]
pop esp
pop ss
in eax, dx
dec ebx
push esp
lds esp, [esi-41h]
retf
rcl dword ptr [eax], cl
mov cl, 9Ch
mov ch, 0DFh

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

926
push cs
insb
mov esi, 0D9C65E4Dh
imul ebp, [ecx], 66h
pushf
sal dword ptr [ebp-64h], cl
sub eax, 0AC433D64h
out 8Ch, eax
pop ss
sbb [eax], ebx
aas
xchg cl, [ebx+ebx*4+14B31Eh]
jecxz short near ptr loc_58+1
xor al, 0C6h
inc edx
db 36h
pusha
stosb
test [ebx], ebx
sub al, 0D3h ; 'L'
pop eax
stosb

loc_58: ; CODE XREF: seg000:0000004A
test [esi], eax
inc ebp
das
db 64h
pop ecx
das
hlt

pop edx
out 0B0h, al
lodsb
push ebx
cdq
out dx, al
sub al, 0Ah
sti
outsd
add dword ptr [edx], 96FCBE4Bh
and eax, 0E537EE4Fh
inc esp
stosd
cdq
push ecx
in al, 0CBh
mov ds:0D114C45Ch, al
mov esi, 659D1985h

Listing 5.8: random noise (x86-64)
lea esi, [rax+rdx*4+43558D29h]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

927

loc_AF3: ; CODE XREF: seg000:0000000000000B46
rcl byte ptr [rsi+rax*8+29BB423Ah], 1
lea ecx, cs:0FFFFFFFFB2A6780Fh
mov al, 96h
mov ah, 0CEh
push rsp
lods byte ptr [esi]

db 2Fh ; /

pop rsp
db 64h
retf 0E993h

cmp ah, [rax+4Ah]
movzx rsi, dword ptr [rbp-25h]
push 4Ah
movzx rdi, dword ptr [rdi+rdx*8]

db 9Ah

rcr byte ptr [rax+1Dh], cl
lodsd
xor [rbp+6CF20173h], edx
xor [rbp+66F8B593h], edx
push rbx
sbb ch, [rbx-0Fh]
stosd
int 87h
db 46h, 4Ch
out 33h, rax
xchg eax, ebp
test ecx, ebp
movsd
leave
push rsp

db 16h

xchg eax, esi
pop rdi

loc_B3D: ; CODE XREF: seg000:0000000000000B5F
mov ds:93CA685DF98A90F9h, eax
jnz short near ptr loc_AF3+6
out dx, eax
cwde
mov bh, 5Dh ; ']'
movsb
pop rbp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

928
Listing 5.9: random noise (ARM (ARM mode))

BLNE 0xFE16A9D8
BGE 0x1634D0C
SVCCS 0x450685
STRNVT R5, [PC],#-0x964
LDCGE p6, c14, [R0],#0x168
STCCSL p9, c9, [LR],#0x14C
CMNHIP PC, R10,LSL#22
FLDMIADNV LR!, {D4}
MCR p5, 2, R2,c15,c6, 4
BLGE 0x1139558
BLGT 0xFF9146E4
STRNEB R5, [R4],#0xCA2
STMNEIB R5, {R0,R4,R6,R7,R9-SP,PC}
STMIA R8, {R0,R2-R4,R7,R8,R10,SP,LR}^
STRB SP, [R8],PC,ROR#18
LDCCS p9, c13, [R6,#0x1BC]
LDRGE R8, [R9,#0x66E]
STRNEB R5, [R8],#-0x8C3
STCCSL p15, c9, [R7,#-0x84]
RSBLS LR, R2, R11,ASR LR
SVCGT 0x9B0362
SVCGT 0xA73173
STMNEDB R11!, {R0,R1,R4-R6,R8,R10,R11,SP}
STR R0, [R3],#-0xCE4
LDCGT p15, c8, [R1,#0x2CC]
LDRCCB R1, [R11],-R7,ROR#30
BLLT 0xFED9D58C
BL 0x13E60F4
LDMVSIB R3!, {R1,R4-R7}^
USATNE R10, #7, SP,LSL#11
LDRGEB LR, [R1],#0xE56
STRPLT R9, [LR],#0x567
LDRLT R11, [R1],#-0x29B
SVCNV 0x12DB29
MVNNVS R5, SP,LSL#25
LDCL p8, c14, [R12,#-0x288]
STCNEL p2, c6, [R6,#-0xBC]!
SVCNV 0x2E5A2F
BLX 0x1A8C97E
TEQGE R3, #0x1100000
STMLSIA R6, {R3,R6,R10,R11,SP}
BICPLS R12, R2, #0x5800
BNE 0x7CC408
TEQGE R2, R4,LSL#20
SUBS R1, R11, #0x28C
BICVS R3, R12, R7,ASR R0
LDRMI R7, [LR],R3,LSL#21
BLMI 0x1A79234
STMVCDB R6, {R0-R3,R6,R7,R10,R11}
EORMI R12, R6, #0xC5
MCRRCS p1, 0xF, R1,R3,c2

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

929
Listing 5.10: random noise (ARM (Thumb mode))

LSRS R3, R6, #0x12
LDRH R1, [R7,#0x2C]
SUBS R0, #0x55 ; 'U'
ADR R1, loc_3C
LDR R2, [SP,#0x218]
CMP R4, #0x86
SXTB R7, R4
LDR R4, [R1,#0x4C]
STR R4, [R4,R2]
STR R0, [R6,#0x20]
BGT 0xFFFFFF72
LDRH R7, [R2,#0x34]
LDRSH R0, [R2,R4]
LDRB R2, [R7,R2]

DCB 0x17
DCB 0xED

STRB R3, [R1,R1]
STR R5, [R0,#0x6C]
LDMIA R3, {R0-R5,R7}
ASRS R3, R2, #3
LDR R4, [SP,#0x2C4]
SVC 0xB5
LDR R6, [R1,#0x40]
LDR R5, =0xB2C5CA32
STMIA R6, {R1-R4,R6}
LDR R1, [R3,#0x3C]
STR R1, [R5,#0x60]
BCC 0xFFFFFF70
LDR R4, [SP,#0x1D4]
STR R5, [R5,#0x40]
ORRS R5, R7

loc_3C ; DATA XREF: ROM:00000006
B 0xFFFFFF98

Listing 5.11: random noise (MIPS little endian)
lw $t9, 0xCB3($t5)
sb $t5, 0x3855($t0)
sltiu $a2, $a0, -0x657A
ldr $t4, -0x4D99($a2)
daddi $s0, $s1, 0x50A4
lw $s7, -0x2353($s4)
bgtzl $a1, 0x17C5C

.byte 0x17

.byte 0xED

.byte 0x4B # K

.byte 0x54 # T

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

930
lwc2 $31, 0x66C5($sp)
lwu $s1, 0x10D3($a1)
ldr $t6, -0x204B($zero)
lwc1 $f30, 0x4DBE($s2)
daddiu $t1, $s1, 0x6BD9
lwu $s5, -0x2C64($v1)
cop0 0x13D642D
bne $gp, $t4, 0xFFFF9EF0
lh $ra, 0x1819($s1)
sdl $fp, -0x6474($t8)
jal 0x78C0050
ori $v0, $s2, 0xC634
blez $gp, 0xFFFEA9D4
swl $t8, -0x2CD4($s2)
sltiu $a1, $k0, 0x685
sdc1 $f15, 0x5964($at)
sw $s0, -0x19A6($a1)
sltiu $t6, $a3, -0x66AD
lb $t7, -0x4F6($t3)
sd $fp, 0x4B02($a1)

It is also important to keep in mind that cleverly constructed unpacking and decryp-
tion code (including self-modifying) may looks like noise as well, but still execute
correctly.

5.11.2 Correctly disassembled code
Each ISA has a dozen of a most used instructions, all the rest are used much less
often.
As of x86, it is interesting to know that the fact that function calls (PUSH/CALL/ADD)
and MOV instructions are the most frequently executed pieces of code in almost all
programs we use. In other words, CPU is very busy passing information between
levels of abstractions, or, it can be said, it’s very busy switching between these
levels. Regardless type of ISA. This is a cost of splitting problems into several levels
of abstractions (so humans could work with them easier).

5.12 Other things
5.12.1 General idea
A reverse engineer should try to be in programmer’s shoes as often as possible. To
take his/her viewpoint and ask himself, how would one solve some task the specific
case.

5.12.2 Order of functions in binary code
All functions located in a single .c or .cpp-file are compiled into corresponding object
(.o) file. Later, a linker puts all object files it needs together, not changing order of

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

931
functions in them. As a consequence, if you see two or more consecutive functions,
it means, that they were placed together in a single source code file (unless you’re
on border of two object files, of course.) This means these functions have something
in common, that they are from the same API level, from the same library, etc.
This is a real story from practice: once upon a time, the author searched for Twofish-
related functions in a program with CryptoPP library linked, especially encryption/de-
cryption functions.
I found the Twofish::Base::UncheckedSetKey() function, but not others. After
peeking into the twofish.cpp source code 26, it became clear that all functions are
located in one module (twofish.cpp).
So I tried all function that followed Twofish::Base::UncheckedSetKey()—as it hap-
pened,
one was Twofish::Enc::ProcessAndXorBlock(),
another—Twofish::Dec::ProcessAndXorBlock().

5.12.3 Tiny functions
Tiny functions like empty functions (1.3 on page 7) or function which returns just
“true” (1) or “false” (0) (1.4 on page 10) are very common, and almost all decent
compilers tend to put only one such function into resulting executable code even
if there were several similar functions in source code. So, whenever you see a tiny
function consisting just of mov eax, 1 / retwhich is referenced (and can be called)
from many places, which are seems unconnected to each other, this may be a result
of such optimization.

5.12.4 C++
RTTI (3.21.1 on page 703)-data may be also useful for C++ class identification.

5.12.5 Crash on purpose
Often you need to know, which function has been executed, and which is not. You
can use a debugger, but on exotic architectures there may not be the one, so easiest
way is to put there an invalid opcode, or something like INT3 (0xCC). The crash would
signal about the very fact this instruction has been executed.
Another example of crashing on purpose: 3.23.4 on page 770.

26https://github.com/weidai11/cryptopp/blob/b613522794a7633aa2bd81932a98a0b0a51bc04f/
twofish.cpp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://github.com/weidai11/cryptopp/blob/b613522794a7633aa2bd81932a98a0b0a51bc04f/twofish.cpp
https://github.com/weidai11/cryptopp/blob/b613522794a7633aa2bd81932a98a0b0a51bc04f/twofish.cpp
https://yurichev.com/contact.html
https://yurichev.com/contact.html

Chapter 6

OS-specific

6.1 Arguments passingmethods (calling conventions)
6.1.1 cdecl
This is the most popular method for passing arguments to functions in the C/C++
languages.
The glscaller also must return the value of the stack pointer (ESP) to its initial state
after the callee function exits.

Listing 6.1: cdecl
push arg3
push arg2
push arg1
call function
add esp, 12 ; returns ESP

6.1.2 stdcall
It’s almost the same as cdecl, with the exception that the callee must set ESP to the
initial state by executing the RET x instruction instead of RET,
where x = arguments number * sizeof(int)1. The caller is not adjusting the stack
pointer, there are no add esp, x instruction.

Listing 6.2: stdcall
push arg3
push arg2
push arg1
call function

function:

1The size of an int type variable is 4 in x86 systems and 8 in x64 systems

932

933
;... do something ...
ret 12

The method is ubiquitous in win32 standard libraries, but not in win64 (see below
about win64).
For example, we can take the function from 1.90 on page 125 and change it slightly
by adding the __stdcall modifier:
int __stdcall f2 (int a, int b, int c)
{

return a*b+c;
};

It is to be compiled in almost the same way as 1.91 on page 125, but you will see
RET 12 instead of RET. SP is not updated in the caller.
As a consequence, the number of function arguments can be easily deduced from
the RETN n instruction: just divide n by 4.

Listing 6.3: MSVC 2010
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_c$ = 16 ; size = 4
_f2@12 PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
imul eax, DWORD PTR _b$[ebp]
add eax, DWORD PTR _c$[ebp]
pop ebp
ret 12

_f2@12 ENDP

; ...
push 3
push 2
push 1
call _f2@12
push eax
push OFFSET $SG81369
call _printf
add esp, 8

Functions with variable number of arguments

printf()-like functions are, probably, the only case of functions with a variable
number of arguments in C/C++, but it is easy to illustrate an important difference
between cdecl and stdcall with their help. Let’s start with the idea that the compiler
knows the argument count of each printf() function call.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

934
However, the called printf(), which is already compiled and located in MSVCRT.DLL
(if we talk about Windows), does not have any information about how much argu-
ments were passed, however it can determine it from the format string.
Thus, if printf() would be a stdcall function and restored stack pointer to its initial
state by counting the number of arguments in the format string, this could be a
dangerous situation, when one programmer’s typo can provoke a sudden program
crash. Thus it is not suitable for such functions to use stdcall, cdecl is better.

6.1.3 fastcall
That’s the general naming for the method of passing some arguments via registers
and the rest via the stack. It worked faster than cdecl/stdcall on older CPUs (because
of smaller stack pressure). It may not help to gain any significant performance on
latest (much more complex) CPUs, however.
It is not standardized, so the various compilers can do it differently. It’s a well known
caveat: if you have two DLLs and the one uses another one, and they are built by
different compilers with different fastcall calling conventions, you can expect prob-
lems.
Both MSVC and GCC pass the first and second arguments via ECX and EDX and the
rest of the arguments via the stack.
The stack pointer must be restored to its initial state by the callee (like in stdcall).

Listing 6.4: fastcall
push arg3
mov edx, arg2
mov ecx, arg1
call function

function:
.. do something ..
ret 4

For example, we may take the function from 1.90 on page 125 and change it slightly
by adding a __fastcall modifier:
int __fastcall f3 (int a, int b, int c)
{

return a*b+c;
};

Here is how it is to be compiled:

Listing 6.5: Optimizing MSVC 2010 /Ob0
_c$ = 8 ; size = 4
@f3@12 PROC
; _a$ = ecx
; _b$ = edx

mov eax, ecx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

935
imul eax, edx
add eax, DWORD PTR _c$[esp-4]
ret 4

@f3@12 ENDP

; ...

mov edx, 2
push 3
lea ecx, DWORD PTR [edx-1]
call @f3@12
push eax
push OFFSET $SG81390
call _printf
add esp, 8

We see that the callee returns SP by using the RETN instruction with an operand.
Which implies that the number of arguments can be deduced easily here as well.

GCC regparm

It is the evolution of fastcall2 in some sense. With the -mregparm option it is possible
to set how many arguments are to be passed via registers (3 is the maximum). Thus,
the EAX, EDX and ECX registers are to be used.
Of course, if the number the of arguments is less than 3, not all 3 registers are to be
used.
The caller restores the stack pointer to its initial state.
For example, see (1.28.1 on page 384).

Watcom/OpenWatcom

Here it is called “register calling convention”. The first 4 arguments are passed via
the EAX, EDX, EBX and ECX registers. All the rest—via the stack.
These functions have an underscore appended to the function name in order to dis-
tinguish them from those having a different calling convention.

6.1.4 thiscall
This is passing the object’s this pointer to the function-method, in C++.
In MSVC, this is usually passed in the ECX register.
In GCC, the this pointer is passed as the first function-method argument. Thus it will
be visible that all functions in assembly code have an extra argument, in comparison
with the source code.
For an example, see (3.21.1 on page 683).

2http://www.ohse.de/uwe/articles/gcc-attributes.html#func-regparm

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.ohse.de/uwe/articles/gcc-attributes.html#func-regparm
https://yurichev.com/contact.html
https://yurichev.com/contact.html

936
6.1.5 x86-64
Windows x64

The method of for passing arguments in Win64 somewhat resembles fastcall. The
first 4 arguments are passed via RCX, RDX, R8 and R9, the rest—via the stack. The
caller also must prepare space for 32 bytes or 4 64-bit values, so then the callee can
save there the first 4 arguments. Short functions may use the arguments’ values
just from the registers, but larger ones may save their values for further use.
The caller also must return the stack pointer into its initial state.
This calling convention is also used in Windows x86-64 system DLLs (instead of std-
call in win32).
Example:
#include <stdio.h>

void f1(int a, int b, int c, int d, int e, int f, int g)
{

printf ("%d %d %d %d %d %d %d\n", a, b, c, d, e, f, g);
};

int main()
{

f1(1,2,3,4,5,6,7);
};

Listing 6.6: MSVC 2012 /0b
$SG2937 DB '%d %d %d %d %d %d %d', 0aH, 00H

main PROC
sub rsp, 72

mov DWORD PTR [rsp+48], 7
mov DWORD PTR [rsp+40], 6
mov DWORD PTR [rsp+32], 5
mov r9d, 4
mov r8d, 3
mov edx, 2
mov ecx, 1
call f1

xor eax, eax
add rsp, 72
ret 0

main ENDP

a$ = 80
b$ = 88
c$ = 96
d$ = 104
e$ = 112

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

937
f$ = 120
g$ = 128
f1 PROC
$LN3:

mov DWORD PTR [rsp+32], r9d
mov DWORD PTR [rsp+24], r8d
mov DWORD PTR [rsp+16], edx
mov DWORD PTR [rsp+8], ecx
sub rsp, 72

mov eax, DWORD PTR g$[rsp]
mov DWORD PTR [rsp+56], eax
mov eax, DWORD PTR f$[rsp]
mov DWORD PTR [rsp+48], eax
mov eax, DWORD PTR e$[rsp]
mov DWORD PTR [rsp+40], eax
mov eax, DWORD PTR d$[rsp]
mov DWORD PTR [rsp+32], eax
mov r9d, DWORD PTR c$[rsp]
mov r8d, DWORD PTR b$[rsp]
mov edx, DWORD PTR a$[rsp]
lea rcx, OFFSET FLAT:$SG2937
call printf

add rsp, 72
ret 0

f1 ENDP

Here we clearly see how 7 arguments are passed: 4 via registers and the remaining
3 via the stack.
The code of the f1() function’s prologue saves the arguments in the “scratch space”—
a space in the stack intended exactly for this purpose.
This is arranged so because the compiler cannot be sure that there will be enough
registers to use without these 4, which will otherwise be occupied by the arguments
until the function’s execution end.
The “scratch space” allocation in the stack is the caller’s duty.

Listing 6.7: Optimizing MSVC 2012 /0b
$SG2777 DB '%d %d %d %d %d %d %d', 0aH, 00H

a$ = 80
b$ = 88
c$ = 96
d$ = 104
e$ = 112
f$ = 120
g$ = 128
f1 PROC
$LN3:

sub rsp, 72

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

938
mov eax, DWORD PTR g$[rsp]
mov DWORD PTR [rsp+56], eax
mov eax, DWORD PTR f$[rsp]
mov DWORD PTR [rsp+48], eax
mov eax, DWORD PTR e$[rsp]
mov DWORD PTR [rsp+40], eax
mov DWORD PTR [rsp+32], r9d
mov r9d, r8d
mov r8d, edx
mov edx, ecx
lea rcx, OFFSET FLAT:$SG2777
call printf

add rsp, 72
ret 0

f1 ENDP

main PROC
sub rsp, 72

mov edx, 2
mov DWORD PTR [rsp+48], 7
mov DWORD PTR [rsp+40], 6
lea r9d, QWORD PTR [rdx+2]
lea r8d, QWORD PTR [rdx+1]
lea ecx, QWORD PTR [rdx-1]
mov DWORD PTR [rsp+32], 5
call f1

xor eax, eax
add rsp, 72
ret 0

main ENDP

If we compile the example with optimizations, it is to be almost the same, but the
“scratch space” will not be used, because it won’t be needed.
Also take a look on how MSVC 2012 optimizes the loading of primitive values into
registers by using LEA (.1.6 on page 1299). MOV would be 1 byte longer here (5
instead of 4).
Another example of such thing is: 8.2.1 on page 1017.

Windows x64: Passing this (C/C++)

The this pointer is passed in RCX, the first argument of the method is in RDX, etc. For
an example see: 3.21.1 on page 686.

Linux x64

The way arguments are passed in Linux for x86-64 is almost the same as in Windows,
but 6 registers are used instead of 4 (RDI, RSI, RDX, RCX, R8, R9) and there is no

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

939
“scratch space”, although the callee may save the register values in the stack, if it
needs/wants to.

Listing 6.8: Optimizing GCC 4.7.3
.LC0:

.string "%d %d %d %d %d %d %d\n"
f1:

sub rsp, 40
mov eax, DWORD PTR [rsp+48]
mov DWORD PTR [rsp+8], r9d
mov r9d, ecx
mov DWORD PTR [rsp], r8d
mov ecx, esi
mov r8d, edx
mov esi, OFFSET FLAT:.LC0
mov edx, edi
mov edi, 1
mov DWORD PTR [rsp+16], eax
xor eax, eax
call __printf_chk
add rsp, 40
ret

main:
sub rsp, 24
mov r9d, 6
mov r8d, 5
mov DWORD PTR [rsp], 7
mov ecx, 4
mov edx, 3
mov esi, 2
mov edi, 1
call f1
add rsp, 24
ret

N.B.: here the values are written into the 32-bit parts of the registers (e.g., EAX) but
not in the whole 64-bit register (RAX). This is because each write to the low 32-bit
part of a register automatically clears the high 32 bits. Supposedly, it was decided
in AMD to do so to simplify porting code to x86-64.

6.1.6 Return values of float and double type
In all conventions except in Win64, the values of type float or double are returned
via the FPU register ST(0).
In Win64, the values of float and double types are returned in the low 32 or 64 bits
of the XMM0 register.

6.1.7 Modifying arguments
Sometimes, C/C++ programmers (not limited to these PLs, though), may ask, what
can happen if they modify the arguments?

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

940
The answer is simple: the arguments are stored in the stack, that is where the mod-
ification takes place.
The calling functions is not using them after the callee’s exit (the author of these
lines has never seen any such case in his practice).
#include <stdio.h>

void f(int a, int b)
{

a=a+b;
printf ("%d\n", a);

};

Listing 6.9: MSVC 2012
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_f PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _a$[ebp]
add eax, DWORD PTR _b$[ebp]
mov DWORD PTR _a$[ebp], eax
mov ecx, DWORD PTR _a$[ebp]
push ecx
push OFFSET $SG2938 ; '%d', 0aH
call _printf
add esp, 8
pop ebp
ret 0

_f ENDP

So yes, one can modify the arguments easily. Of course, if it is not references in C++
(3.21.3 on page 705), and if you don’t modify data to which a pointer points to, then
the effect will not propagate outside the current function.
Theoretically, after the callee’s return, the caller could get the modified argument
and use it somehow. Maybe if it is written directly in assembly language.
For example, code like this will be generated by usual C/C++ compiler:

push 456 ; will be b
push 123 ; will be a
call f ; f() modifies its first argument
add esp, 2*4

We can rewrite this code like:
push 456 ; will be b
push 123 ; will be a
call f ; f() modifies its first argument
pop eax
add esp, 4
; EAX=1st argument of f() modified in f()

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

941
Hard to imagine, why anyone would need this, but this is possible in practice. Nev-
ertheless, the C/C++ languages standards don’t offer any way to do so.

6.1.8 Taking a pointer to function argument
…even more than that, it’s possible to take a pointer to the function’s argument and
pass it to another function:
#include <stdio.h>

// located in some other file
void modify_a (int *a);

void f (int a)
{

modify_a (&a);
printf ("%d\n", a);

};

It’s hard to understand how it works until we can see the code:

Listing 6.10: Optimizing MSVC 2010
$SG2796 DB '%d', 0aH, 00H

_a$ = 8
_f PROC

lea eax, DWORD PTR _a$[esp-4] ; just get the address of value in
local stack

push eax ; and pass it to modify_a()
call _modify_a
mov ecx, DWORD PTR _a$[esp] ; reload it from the local stack
push ecx ; and pass it to printf()
push OFFSET $SG2796 ; '%d'
call _printf
add esp, 12
ret 0

_f ENDP

The address of the place in the stack where a has been passed is just passed to
another function. It modifies the value addressed by the pointer and then printf()
prints the modified value.
The observant readermight ask, what about calling conventions where the function’s
arguments are passed in registers?
That’s a situation where the Shadow Space is used.
The input value is copied from the register to the Shadow Space in the local stack,
and then this address is passed to the other function:

Listing 6.11: Optimizing MSVC 2012 x64
$SG2994 DB '%d', 0aH, 00H

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

942
a$ = 48
f PROC

mov DWORD PTR [rsp+8], ecx ; save input value in Shadow Space
sub rsp, 40
lea rcx, QWORD PTR a$[rsp] ; get address of value and pass it

to modify_a()
call modify_a
mov edx, DWORD PTR a$[rsp] ; reload value from Shadow Space and

pass it to printf()
lea rcx, OFFSET FLAT:$SG2994 ; '%d'
call printf
add rsp, 40
ret 0

f ENDP

GCC also stores the input value in the local stack:

Listing 6.12: Optimizing GCC 4.9.1 x64
.LC0:

.string "%d\n"
f:

sub rsp, 24
mov DWORD PTR [rsp+12], edi ; store input value to the local

stack
lea rdi, [rsp+12] ; take an address of the value and

pass it to modify_a()
call modify_a
mov edx, DWORD PTR [rsp+12] ; reload value from the local stack

and pass it to printf()
mov esi, OFFSET FLAT:.LC0 ; '%d'
mov edi, 1
xor eax, eax
call __printf_chk
add rsp, 24
ret

GCC for ARM64 does the same, but this space is called Register Save Area here:

Listing 6.13: Optimizing GCC 4.9.1 ARM64
f:

stp x29, x30, [sp, -32]!
add x29, sp, 0 ; setup FP
add x1, x29, 32 ; calculate address of variable in

Register Save Area
str w0, [x1,-4]! ; store input value there
mov x0, x1 ; pass address of variable to the

modify_a()
bl modify_a
ldr w1, [x29,28] ; load value from the variable and pass it

to printf()
adrp x0, .LC0 ; '%d'
add x0, x0, :lo12:.LC0
bl printf ; call printf()
ldp x29, x30, [sp], 32

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

943
ret

.LC0:
.string "%d\n"

By the way, a similar usage of the Shadow Space is also considered here: 3.17.1 on
page 652.

6.1.9 Python ctypes problem (x86 assembly homework)
A Python ctypes module can call external functions in DLLs, .so’s, etc. But calling
convention (for 32-bit environment) must be specified explicitly:
"ctypes" exports the *cdll*, and on Windows *windll* and *oledll*
objects, for loading dynamic link libraries.

You load libraries by accessing them as attributes of these objects.
cdll loads libraries which export functions using the standard
"cdecl" calling convention, while *windll* libraries call functions
using the "stdcall" calling convention.

(https://docs.python.org/3/library/ctypes.html)
In fact, we can modify ctypes module (or any other caller code), so that it will suc-
cessfully call external cdecl or stdcall functions, without knowledge, which is where.
(Number of arguments, however, is to be specified).
This is possible to solve using maybe 5-10 x86 assembly instructions in caller. Try to
find out these.

6.1.10 Cdecl example: a DLL
Let’s back to the fact that this is not very important how to declare the main() func-
tion: 1.9.2 on page 44.
This is a real story: once upon a time I wanted to replace an original DLL file in some
software by mine. First I enumerated names of all DLL exports and made a function
in my own replacement DLL for each function in the original DLL, like:
void function1 ()
{

write_to_log ("function1() called\n");
};

I wanted to see, which functions are called during run, and when. However, I was in
hurry and had no time to deduce arguments count for each function, let alone data
types. So each function in my replacement DLL had no argument whatsoever. But
everything worked, because all functions had cdecl calling convention. (It wouldn’t
work if functions had stdcall calling convention.) It also worked for x64 version.
And then I did a next step: I deduced argument types for some functions. But I made
several mistakes, for example, the original function took 3 arguments, but I knew
only about 2, etc.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://docs.python.org/3/library/ctypes.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

944
Still, it worked. At the beginning, my replacement DLL just ignored all arguments.
Then, it ignored the 3rd argument.

6.2 Thread Local Storage
TLS is a data area, specific to each thread. Every thread can store what it needs
there. One well-known example is the C standard global variable errno.
Multiple threads may simultaneously call functions which return an error code in er-
rno, so a global variable will not work correctly here for multi-threaded programs, so
errno must be stored in the TLS.

In the C++11 standard, a new thread_localmodifier was added, showing that each
thread has its own version of the variable, it can be initialized, and it is located in
the TLS 3:

Listing 6.14: C++11
#include <iostream>
#include <thread>

thread_local int tmp=3;

int main()
{

std::cout << tmp << std::endl;
};

Compiled in MinGW GCC 4.8.1, but not in MSVC 2012.
If we talk about PE files, in the resulting executable file, the tmp variable is to be
allocated in the section devoted to the TLS.

6.2.1 Linear congruential generator revisited
The pseudorandom number generator we considered earlier 1.29 on page 424 has
a flaw: it’s not thread-safe, because it has an internal state variable which can be
read and/or modified in different threads simultaneously.

Win32

Uninitialized TLS data

One solution is to add __declspec(thread) modifier to the global variable, then
it will be allocated in the TLS (line 9):

1 #include <stdint.h>
2 #include <windows.h>
3 #include <winnt.h>

3 C11 also has thread support, optional though

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

945
4
5 // from the Numerical Recipes book:
6 #define RNG_a 1664525
7 #define RNG_c 1013904223
8
9 __declspec(thread) uint32_t rand_state;
10
11 void my_srand (uint32_t init)
12 {
13 rand_state=init;
14 }
15
16 int my_rand ()
17 {
18 rand_state=rand_state*RNG_a;
19 rand_state=rand_state+RNG_c;
20 return rand_state & 0x7fff;
21 }
22
23 int main()
24 {
25 my_srand(0x12345678);
26 printf ("%d\n", my_rand());
27 };

Hiew shows us that there is a new PE section in the executable file: .tls.

Listing 6.15: Optimizing MSVC 2013 x86
_TLS SEGMENT
_rand_state DD 01H DUP (?)
_TLS ENDS

_DATA SEGMENT
$SG84851 DB '%d', 0aH, 00H
_DATA ENDS
_TEXT SEGMENT

_init$ = 8 ; size = 4
_my_srand PROC
; FS:0=address of TIB

mov eax, DWORD PTR fs:__tls_array ; displayed in IDA as FS:2Ch
; EAX=address of TLS of process

mov ecx, DWORD PTR __tls_index
mov ecx, DWORD PTR [eax+ecx*4]

; ECX=current TLS segment
mov eax, DWORD PTR _init$[esp-4]
mov DWORD PTR _rand_state[ecx], eax
ret 0

_my_srand ENDP

_my_rand PROC
; FS:0=address of TIB

mov eax, DWORD PTR fs:__tls_array ; displayed in IDA as FS:2Ch

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

946
; EAX=address of TLS of process

mov ecx, DWORD PTR __tls_index
mov ecx, DWORD PTR [eax+ecx*4]

; ECX=current TLS segment
imul eax, DWORD PTR _rand_state[ecx], 1664525
add eax, 1013904223 ; 3c6ef35fH
mov DWORD PTR _rand_state[ecx], eax
and eax, 32767 ; 00007fffH
ret 0

_my_rand ENDP

_TEXT ENDS

rand_state is now in the TLS segment, and each thread has its own version of this
variable.
Here is how it’s accessed: load the address of the TIB from FS:2Ch, then add an
additional index (if needed), then calculate the address of the TLS segment.
Then it’s possible to access the rand_state variable through the ECX register, which
points to an unique area in each thread.
The FS: selector is familiar to every reverse engineer, it is specially used to always
point to TIB, so it would be fast to load the thread-specific data.
The GS: selector is used in Win64 and the address of the TLS is 0x58:

Listing 6.16: Optimizing MSVC 2013 x64
_TLS SEGMENT
rand_state DD 01H DUP (?)
_TLS ENDS

_DATA SEGMENT
$SG85451 DB '%d', 0aH, 00H
_DATA ENDS

_TEXT SEGMENT

init$ = 8
my_srand PROC

mov edx, DWORD PTR _tls_index
mov rax, QWORD PTR gs:88 ; 58h
mov r8d, OFFSET FLAT:rand_state
mov rax, QWORD PTR [rax+rdx*8]
mov DWORD PTR [r8+rax], ecx
ret 0

my_srand ENDP

my_rand PROC
mov rax, QWORD PTR gs:88 ; 58h
mov ecx, DWORD PTR _tls_index
mov edx, OFFSET FLAT:rand_state
mov rcx, QWORD PTR [rax+rcx*8]
imul eax, DWORD PTR [rcx+rdx], 1664525 ; 0019660dH

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

947
add eax, 1013904223 ; 3c6ef35fH
mov DWORD PTR [rcx+rdx], eax
and eax, 32767 ; 00007fffH
ret 0

my_rand ENDP

_TEXT ENDS

Initialized TLS data

Let’s say, we want to set some fixed value to rand_state, so in case the programmer
forgets to, the rand_state variable would be initialized to some constant anyway
(line 9):

1 #include <stdint.h>
2 #include <windows.h>
3 #include <winnt.h>
4
5 // from the Numerical Recipes book:
6 #define RNG_a 1664525
7 #define RNG_c 1013904223
8
9 __declspec(thread) uint32_t rand_state=1234;
10
11 void my_srand (uint32_t init)
12 {
13 rand_state=init;
14 }
15
16 int my_rand ()
17 {
18 rand_state=rand_state*RNG_a;
19 rand_state=rand_state+RNG_c;
20 return rand_state & 0x7fff;
21 }
22
23 int main()
24 {
25 printf ("%d\n", my_rand());
26 };

The code is not different from what we already saw, but in IDA we see:
.tls:00404000 ; Segment type: Pure data
.tls:00404000 ; Segment permissions: Read/Write
.tls:00404000 _tls segment para public 'DATA' use32
.tls:00404000 assume cs:_tls
.tls:00404000 ;org 404000h
.tls:00404000 TlsStart db 0 ; DATA XREF:

.rdata:TlsDirectory
.tls:00404001 db 0
.tls:00404002 db 0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

948
.tls:00404003 db 0
.tls:00404004 dd 1234
.tls:00404008 TlsEnd db 0 ; DATA XREF: .rdata:TlsEnd_ptr
...

1234 is there and every time a new thread starts, a new TLS is allocated for it, and
all this data, including 1234, will be copied there.
This is a typical scenario:
• Thread A is started. A TLS is created for it, 1234 is copied to rand_state.
• The my_rand() function is called several times in thread A.
rand_state is different from 1234.

• Thread B is started. A TLS is created for it, 1234 is copied to rand_state, while
thread A has a different value in the same variable.

TLS callbacks

But what if the variables in the TLS have to be filled with some data that must be
prepared in some unusual way?
Let’s say, we’ve got the following task: the programmer can forget to call the my_srand()
function to initialize the PRNG, but the generator has to be initialized at start with
something truly random, instead of 1234. This is a case in which TLS callbacks can
be used.
The following code is not very portable due to the hack, but nevertheless, you get
the idea.
What we do here is define a function (tls_callback()) which is to be called before
the process and/or thread start.
The function initializes the PRNG with the value returned by GetTickCount() func-
tion.
#include <stdint.h>
#include <windows.h>
#include <winnt.h>

// from the Numerical Recipes book:
#define RNG_a 1664525
#define RNG_c 1013904223

__declspec(thread) uint32_t rand_state;

void my_srand (uint32_t init)
{

rand_state=init;
}

void NTAPI tls_callback(PVOID a, DWORD dwReason, PVOID b)
{

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

949
my_srand (GetTickCount());

}

#pragma data_seg(".CRT$XLB")
PIMAGE_TLS_CALLBACK p_thread_callback = tls_callback;
#pragma data_seg()

int my_rand ()
{

rand_state=rand_state*RNG_a;
rand_state=rand_state+RNG_c;
return rand_state & 0x7fff;

}

int main()
{

// rand_state is already initialized at the moment (using
GetTickCount())

printf ("%d\n", my_rand());
};

Let’s see it in IDA:

Listing 6.17: Optimizing MSVC 2013
.text:00401020 TlsCallback_0 proc near ; DATA XREF:

.rdata:TlsCallbacks
.text:00401020 call ds:GetTickCount
.text:00401026 push eax
.text:00401027 call my_srand
.text:0040102C pop ecx
.text:0040102D retn 0Ch
.text:0040102D TlsCallback_0 endp

...

.rdata:004020C0 TlsCallbacks dd offset TlsCallback_0 ; DATA XREF:
.rdata:TlsCallbacks_ptr

...

.rdata:00402118 TlsDirectory dd offset TlsStart

.rdata:0040211C TlsEnd_ptr dd offset TlsEnd

.rdata:00402120 TlsIndex_ptr dd offset TlsIndex

.rdata:00402124 TlsCallbacks_ptr dd offset TlsCallbacks

.rdata:00402128 TlsSizeOfZeroFill dd 0

.rdata:0040212C TlsCharacteristics dd 300000h

TLS callback functions are sometimes used in unpacking routines to obscure their
processing.
Some people may be confused and be in the dark that some code executed right
before the OEP4.

4Original Entry Point

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

950
Linux

Here is how a thread-local global variable is declared in GCC:
__thread uint32_t rand_state=1234;

This is not the standard C/C++ modifier, but a rather GCC-specific one 5.
The GS: selector is also used to access the TLS, but in a somewhat different way:

Listing 6.18: Optimizing GCC 4.8.1 x86
.text:08048460 my_srand proc near
.text:08048460
.text:08048460 arg_0 = dword ptr 4
.text:08048460
.text:08048460 mov eax, [esp+arg_0]
.text:08048464 mov gs:0FFFFFFFCh, eax
.text:0804846A retn
.text:0804846A my_srand endp

.text:08048470 my_rand proc near

.text:08048470 imul eax, gs:0FFFFFFFCh, 19660Dh

.text:0804847B add eax, 3C6EF35Fh

.text:08048480 mov gs:0FFFFFFFCh, eax

.text:08048486 and eax, 7FFFh

.text:0804848B retn

.text:0804848B my_rand endp

More about it: [Ulrich Drepper, ELF Handling For Thread-Local Storage, (2013)]6.

6.3 System calls (syscall-s)
As we know, all running processes inside an OS are divided into two categories:
those having full access to the hardware (“kernel space”) and those that do not
(“user space”).
The OS kernel and usually the drivers are in the first category.
All applications are usually in the second category.
For example, Linux kernel is in kernel space, but Glibc in user space.
This separation is crucial for the safety of the OS: it is very important not to give to
any process the possibility to screw up something in other processes or even in the
OS kernel. On the other hand, a failing driver or error inside the OS’s kernel usually
leads to a kernel panic or BSOD7.
The protection in the x86 processors allows to separate everything into 4 levels of
protection (rings), but both in Linux and in Windows only two are used: ring0 (“kernel
space”) and ring3 (“user space”).

5https://gcc.gnu.org/onlinedocs/gcc-3.3/gcc/C99-Thread-Local-Edits.html
6Also available as http://www.akkadia.org/drepper/tls.pdf
7Blue Screen of Death

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://gcc.gnu.org/onlinedocs/gcc-3.3/gcc/C99-Thread-Local-Edits.html
http://www.akkadia.org/drepper/tls.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

951
System calls (syscall-s) are a point where these two areas are connected.
It can be said that this is the main API provided to applications.
As in Windows NT, the syscalls table resides in the SSDT8.
The usage of syscalls is very popular among shellcode and computer viruses authors,
because it is hard to determine the addresses of needed functions in the system
libraries, but it is easier to use syscalls. However, much more code has to be written
due to the lower level of abstraction of the API.
It is also worth noting that the syscall numbers may be different in various OS ver-
sions.

6.3.1 Linux
In Linux, a syscall is usually called via int 0x80. The call’s number is passed in the
EAX register, and any other parameters —in the other registers.

Listing 6.19: A simple example of the usage of two syscalls
section .text
global _start

_start:
mov edx,len ; buffer len
mov ecx,msg ; buffer
mov ebx,1 ; file descriptor. 1 is for stdout
mov eax,4 ; syscall number. 4 is for sys_write
int 0x80

mov eax,1 ; syscall number. 1 is for sys_exit
int 0x80

section .data

msg db 'Hello, world!',0xa
len equ $ - msg

Compilation:
nasm -f elf32 1.s
ld 1.o

The full list of syscalls in Linux: http://syscalls.kernelgrok.com/.
For system calls interception and tracing in Linux, strace(7.2.3 on page 1007) can
be used.

6.3.2 Windows
Here they are called via int 0x2e or using the special x86 instruction SYSENTER.

8System Service Dispatch Table

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://syscalls.kernelgrok.com/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

952
The full list of syscalls in Windows: http://j00ru.vexillium.org/ntapi/.
Further reading:
“Windows Syscall Shellcode” by Piotr Bania: http://www.symantec.com/connect/
articles/windows-syscall-shellcode.

6.4 Linux
6.4.1 Position-independent code
While analyzing Linux shared (.so) libraries, one may frequently spot this code pat-
tern:

Listing 6.20: libc-2.17.so x86
.text:0012D5E3 __x86_get_pc_thunk_bx proc near ; CODE XREF: sub_17350+3
.text:0012D5E3 ; sub_173CC+4 ...
.text:0012D5E3 mov ebx, [esp+0]
.text:0012D5E6 retn
.text:0012D5E6 __x86_get_pc_thunk_bx endp

...

.text:000576C0 sub_576C0 proc near ; CODE XREF: tmpfile+73

...

.text:000576C0 push ebp

.text:000576C1 mov ecx, large gs:0

.text:000576C8 push edi

.text:000576C9 push esi

.text:000576CA push ebx

.text:000576CB call __x86_get_pc_thunk_bx

.text:000576D0 add ebx, 157930h

.text:000576D6 sub esp, 9Ch

...

.text:000579F0 lea eax, (a__gen_tempname - 1AF000h)[ebx] ;
"__gen_tempname"

.text:000579F6 mov [esp+0ACh+var_A0], eax

.text:000579FA lea eax, (a__SysdepsPosix - 1AF000h)[ebx] ;
"../sysdeps/posix/tempname.c"

.text:00057A00 mov [esp+0ACh+var_A8], eax

.text:00057A04 lea eax, (aInvalidKindIn_ - 1AF000h)[ebx] ;
"! \"invalid KIND in __gen_tempname\""

.text:00057A0A mov [esp+0ACh+var_A4], 14Ah

.text:00057A12 mov [esp+0ACh+var_AC], eax

.text:00057A15 call __assert_fail

All pointers to strings are corrected by some constants and the value in EBX, which
is calculated at the beginning of each function.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://j00ru.vexillium.org/ntapi/
http://www.symantec.com/connect/articles/windows-syscall-shellcode
http://www.symantec.com/connect/articles/windows-syscall-shellcode
https://yurichev.com/contact.html
https://yurichev.com/contact.html

953
This is the so-called PIC, it is intended to be executable if placed at any random point
of memory, that is why it cannot contain any absolute memory addresses.
PIC was crucial in early computer systems and is still crucial today in embedded
systems without virtual memory support (where all processes are placed in a single
continuous memory block).
It is also still used in *NIX systems for shared libraries, since they are shared across
many processes while loaded in memory only once. But all these processes can map
the same shared library at different addresses, so that is why a shared library has
to work correctly without using any absolute addresses.
Let’s do a simple experiment:
#include <stdio.h>

int global_variable=123;

int f1(int var)
{

int rt=global_variable+var;
printf ("returning %d\n", rt);
return rt;

};

Let’s compile it in GCC 4.7.3 and see the resulting .so file in IDA:
gcc -fPIC -shared -O3 -o 1.so 1.c

Listing 6.21: GCC 4.7.3
.text:00000440 public __x86_get_pc_thunk_bx
.text:00000440 __x86_get_pc_thunk_bx proc near ;

CODE XREF: _init_proc+4
.text:00000440 ;

deregister_tm_clones+4 ...
.text:00000440 mov ebx, [esp+0]
.text:00000443 retn
.text:00000443 __x86_get_pc_thunk_bx endp

.text:00000570 public f1

.text:00000570 f1 proc near

.text:00000570

.text:00000570 var_1C = dword ptr -1Ch

.text:00000570 var_18 = dword ptr -18h

.text:00000570 var_14 = dword ptr -14h

.text:00000570 var_8 = dword ptr -8

.text:00000570 var_4 = dword ptr -4

.text:00000570 arg_0 = dword ptr 4

.text:00000570

.text:00000570 sub esp, 1Ch

.text:00000573 mov [esp+1Ch+var_8], ebx

.text:00000577 call __x86_get_pc_thunk_bx

.text:0000057C add ebx, 1A84h

.text:00000582 mov [esp+1Ch+var_4], esi

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

954
.text:00000586 mov eax, ds:(global_variable_ptr - 2000h⤦

Ç)[ebx]
.text:0000058C mov esi, [eax]
.text:0000058E lea eax, (aReturningD - 2000h)[ebx] ;

"returning %d\n"
.text:00000594 add esi, [esp+1Ch+arg_0]
.text:00000598 mov [esp+1Ch+var_18], eax
.text:0000059C mov [esp+1Ch+var_1C], 1
.text:000005A3 mov [esp+1Ch+var_14], esi
.text:000005A7 call ___printf_chk
.text:000005AC mov eax, esi
.text:000005AE mov ebx, [esp+1Ch+var_8]
.text:000005B2 mov esi, [esp+1Ch+var_4]
.text:000005B6 add esp, 1Ch
.text:000005B9 retn
.text:000005B9 f1 endp

That’s it: the pointers to «returning %d\n» and global_variable are to be corrected
at each function execution.
The __x86_get_pc_thunk_bx() function returns in EBX the address of the point after
a call to itself (0x57C here).
That’s a simple way to get the value of the program counter (EIP) at some point. The
0x1A84 constant is related to the difference between this function’s start and the so-
called Global Offset Table Procedure Linkage Table (GOT PLT), the section right after
the Global Offset Table (GOT), where the pointer to global_variable is. IDA shows
these offsets in their processed form to make them easier to understand, but in fact
the code is:
.text:00000577 call __x86_get_pc_thunk_bx
.text:0000057C add ebx, 1A84h
.text:00000582 mov [esp+1Ch+var_4], esi
.text:00000586 mov eax, [ebx-0Ch]
.text:0000058C mov esi, [eax]
.text:0000058E lea eax, [ebx-1A30h]

Here EBX points to the GOT PLT section and to calculate a pointer to global_variable
(which is stored in the GOT), 0xC must be subtracted.
To calculate pointer to the «returning %d\n» string, 0x1A30 must be subtracted.
By the way, that is the reason why the AMD64 instruction set supports RIP9-relative
addressing — to simplify PIC-code.
Let’s compile the same C code using the same GCC version, but for x64.
IDA would simplify the resulting code but would suppress the RIP-relative addressing
details, so we are going to use objdump instead of IDA to see everything:
0000000000000720 <f1>:
720: 48 8b 05 b9 08 20 00 mov rax,QWORD PTR [rip+0x2008b9] ⤦
Ç ;
200fe0 <_DYNAMIC+0x1d0>

9program counter in AMD64

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

955
727: 53 push rbx
728: 89 fb mov ebx,edi
72a: 48 8d 35 20 00 00 00 lea rsi,[rip+0x20] ;

751 <_fini+0x9>
731: bf 01 00 00 00 mov edi,0x1
736: 03 18 add ebx,DWORD PTR [rax]
738: 31 c0 xor eax,eax
73a: 89 da mov edx,ebx
73c: e8 df fe ff ff call 620 <__printf_chk@plt>
741: 89 d8 mov eax,ebx
743: 5b pop rbx
744: c3 ret

0x2008b9 is the difference between the address of the instruction at 0x720 and
global_variable, and 0x20 is the difference between the address of the instruction at
0x72A and the «returning %d\n» string.
As you might see, the need to recalculate addresses frequently makes execution
slower (it is better in x64, though).
So it is probably better to link statically if you care about performance [see: Agner
Fog, Optimizing software in C++ (2015)].

Windows

The PIC mechanism is not used in Windows DLLs. If the Windows loader needs to
load DLL on another base address, it “patches” the DLL in memory (at the FIXUP
places) in order to correct all addresses.
This implies that several Windows processes cannot share an once loaded DLL at
different addresses in different process’ memory blocks — since each instance that’s
loaded in memory is fixed to work only at these addresses..

6.4.2 LD_PRELOAD hack in Linux
This allows us to load our own dynamic libraries before others, even before system
ones, like libc.so.6.
This, in turn, allows us to “substitute” our written functions before the original ones
in the system libraries. For example, it is easy to intercept all calls to time(), read(),
write(), etc.

Let’s see if we can fool the uptime utility. As we know, it tells how long the com-
puter has been working. With the help of strace(7.2.3 on page 1007), it is possible
to see that the utility takes this information the /proc/uptime file:
$ strace uptime
...
open("/proc/uptime", O_RDONLY) = 3
lseek(3, 0, SEEK_SET) = 0
read(3, "416166.86 414629.38\n", 2047) = 20
...

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

956
It is not a real file on disk, it is a virtual one and its contents are generated on fly in
the Linux kernel. There are just two numbers:
$ cat /proc/uptime
416690.91 415152.03

What we can learn from Wikipedia 10:

The first number is the total number of seconds the system has
been up. The second number is how much of that time the machine
has spent idle, in seconds.

Let’s try to write our own dynamic library with the open(), read(), close() functions
working as we need.
At first, our open() will compare the name of the file to be opened with what we need
and if it is so, it will write down the descriptor of the file opened.
Second, read(), if called for this file descriptor, will substitute the output, and in the
rest of the cases will call the original read() from libc.so.6. And also close(), will note
if the file we are currently following is to be closed.
We are going to use the dlopen() and dlsym() functions to determine the original
function addresses in libc.so.6.
We need them because we must pass control to the “real” functions.
On the other hand, if we intercepted strcmp() and monitored each string compar-
isons in the program, then we would have to implement our version of strcmp(), and
not use the original function 11, that would be easier.
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdbool.h>
#include <unistd.h>
#include <dlfcn.h>
#include <string.h>

void *libc_handle = NULL;
int (*open_ptr)(const char *, int) = NULL;
int (*close_ptr)(int) = NULL;
ssize_t (*read_ptr)(int, void*, size_t) = NULL;

bool inited = false;

_Noreturn void die (const char * fmt, ...)
{

va_list va;
va_start (va, fmt);

10https://en.wikipedia.org/wiki/Uptime
11For example, here is how simple strcmp() interception works in this article 12 written by Yong Huang

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://en.wikipedia.org/wiki/Uptime
https://yurichev.com/contact.html
https://yurichev.com/contact.html

957
vprintf (fmt, va);
exit(0);

};

static void find_original_functions ()
{

if (inited)
return;

libc_handle = dlopen ("libc.so.6", RTLD_LAZY);
if (libc_handle==NULL)

die ("can't open libc.so.6\n");

open_ptr = dlsym (libc_handle, "open");
if (open_ptr==NULL)

die ("can't find open()\n");

close_ptr = dlsym (libc_handle, "close");
if (close_ptr==NULL)

die ("can't find close()\n");

read_ptr = dlsym (libc_handle, "read");
if (read_ptr==NULL)

die ("can't find read()\n");

inited = true;
}

static int opened_fd=0;

int open(const char *pathname, int flags)
{

find_original_functions();

int fd=(*open_ptr)(pathname, flags);
if (strcmp(pathname, "/proc/uptime")==0)

opened_fd=fd; // that's our file! record its file descriptor
else

opened_fd=0;
return fd;

};

int close(int fd)
{

find_original_functions();

if (fd==opened_fd)
opened_fd=0; // the file is not opened anymore

return (*close_ptr)(fd);
};

ssize_t read(int fd, void *buf, size_t count)
{

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

958
find_original_functions();

if (opened_fd!=0 && fd==opened_fd)
{

// that's our file!
return snprintf (buf, count, "%d %d", 0x7fffffff, 0⤦

Ç x7fffffff)+1;
};
// not our file, go to real read() function
return (*read_ptr)(fd, buf, count);

};

(Source code)
Let’s compile it as common dynamic library:
gcc -fpic -shared -Wall -o fool_uptime.so fool_uptime.c -ldl

Let’s run uptime while loading our library before the others:
LD_PRELOAD=`pwd`/fool_uptime.so uptime

And we see:
01:23:02 up 24855 days, 3:14, 3 users, load average: 0.00, 0.01, 0.05

If the LD_PRELOAD
environment variable always points to the filename and path of our library, it is to
be loaded for all starting programs.

More examples:
• Very simple interception of the strcmp() (Yong Huang) https://yurichev.com/
mirrors/LD_PRELOAD/Yong%20Huang%20LD_PRELOAD.txt

• Kevin Pulo—Fun with LD_PRELOAD. A lot of examples and ideas. yurichev.com
• File functions interception for compression/decompression files on fly (zlibc).
ftp://metalab.unc.edu/pub/Linux/libs/compression

6.5 Windows NT
6.5.1 CRT (win32)
Does the program execution start right at the main() function? No, it does not.
If we would open any executable file in IDA or HIEW, we can see OEP pointing to
some another code block.
This code is doing some maintenance and preparations before passing control flow
to our code. It is called startup-code or CRT code (C RunTime).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//OS/LD_PRELOAD/fool_uptime.c
https://yurichev.com/mirrors/LD_PRELOAD/Yong%20Huang%20LD_PRELOAD.txt
https://yurichev.com/mirrors/LD_PRELOAD/Yong%20Huang%20LD_PRELOAD.txt
http://yurichev.com/mirrors/LD_PRELOAD/lca2009.pdf
ftp://metalab.unc.edu/pub/Linux/libs/compression
https://yurichev.com/contact.html
https://yurichev.com/contact.html

959
The main() function takes an array of the arguments passed on the command line,
and also one with environment variables. But in fact a generic string is passed to
the program, the CRT code finds the spaces in it and cuts it in parts. The CRT code
also prepares the environment variables array envp.
As for GUI13 win32 applications, WinMain is used instead of main(), having its own
arguments:
int CALLBACK WinMain(

In HINSTANCE hInstance,
In HINSTANCE hPrevInstance,
In LPSTR lpCmdLine,
In int nCmdShow

);

The CRT code prepares them as well.
Also, the number returned by the main() function is the exit code.
It may be passed in CRT to the ExitProcess() function, which takes the exit code
as an argument.

Usually, each compiler has its own CRT code.

Here is a typical CRT code for MSVC 2008.
1 ___tmainCRTStartup proc near
2
3 var_24 = dword ptr -24h
4 var_20 = dword ptr -20h
5 var_1C = dword ptr -1Ch
6 ms_exc = CPPEH_RECORD ptr -18h
7
8 push 14h
9 push offset stru_4092D0
10 call __SEH_prolog4
11 mov eax, 5A4Dh
12 cmp ds:400000h, ax
13 jnz short loc_401096
14 mov eax, ds:40003Ch
15 cmp dword ptr [eax+400000h], 4550h
16 jnz short loc_401096
17 mov ecx, 10Bh
18 cmp [eax+400018h], cx
19 jnz short loc_401096
20 cmp dword ptr [eax+400074h], 0Eh
21 jbe short loc_401096
22 xor ecx, ecx
23 cmp [eax+4000E8h], ecx
24 setnz cl
25 mov [ebp+var_1C], ecx
26 jmp short loc_40109A

13Graphical User Interface

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

960
27
28
29 loc_401096: ; CODE XREF: ___tmainCRTStartup+18
30 ; ___tmainCRTStartup+29 ...
31 and [ebp+var_1C], 0
32
33 loc_40109A: ; CODE XREF: ___tmainCRTStartup+50
34 push 1
35 call __heap_init
36 pop ecx
37 test eax, eax
38 jnz short loc_4010AE
39 push 1Ch
40 call _fast_error_exit
41 pop ecx
42
43 loc_4010AE: ; CODE XREF: ___tmainCRTStartup+60
44 call __mtinit
45 test eax, eax
46 jnz short loc_4010BF
47 push 10h
48 call _fast_error_exit
49 pop ecx
50
51 loc_4010BF: ; CODE XREF: ___tmainCRTStartup+71
52 call sub_401F2B
53 and [ebp+ms_exc.disabled], 0
54 call __ioinit
55 test eax, eax
56 jge short loc_4010D9
57 push 1Bh
58 call __amsg_exit
59 pop ecx
60
61 loc_4010D9: ; CODE XREF: ___tmainCRTStartup+8B
62 call ds:GetCommandLineA
63 mov dword_40B7F8, eax
64 call ___crtGetEnvironmentStringsA
65 mov dword_40AC60, eax
66 call __setargv
67 test eax, eax
68 jge short loc_4010FF
69 push 8
70 call __amsg_exit
71 pop ecx
72
73 loc_4010FF: ; CODE XREF: ___tmainCRTStartup+B1
74 call __setenvp
75 test eax, eax
76 jge short loc_401110
77 push 9
78 call __amsg_exit
79 pop ecx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

961
80
81 loc_401110: ; CODE XREF: ___tmainCRTStartup+C2
82 push 1
83 call __cinit
84 pop ecx
85 test eax, eax
86 jz short loc_401123
87 push eax
88 call __amsg_exit
89 pop ecx
90
91 loc_401123: ; CODE XREF: ___tmainCRTStartup+D6
92 mov eax, envp
93 mov dword_40AC80, eax
94 push eax ; envp
95 push argv ; argv
96 push argc ; argc
97 call _main
98 add esp, 0Ch
99 mov [ebp+var_20], eax
100 cmp [ebp+var_1C], 0
101 jnz short $LN28
102 push eax ; uExitCode
103 call $LN32
104
105 $LN28: ; CODE XREF: ___tmainCRTStartup+105
106 call __cexit
107 jmp short loc_401186
108
109
110 $LN27: ; DATA XREF: .rdata:stru_4092D0
111 mov eax, [ebp+ms_exc.exc_ptr] ; Exception filter 0 for function

401044
112 mov ecx, [eax]
113 mov ecx, [ecx]
114 mov [ebp+var_24], ecx
115 push eax
116 push ecx
117 call __XcptFilter
118 pop ecx
119 pop ecx
120
121 $LN24:
122 retn
123
124
125 $LN14: ; DATA XREF: .rdata:stru_4092D0
126 mov esp, [ebp+ms_exc.old_esp] ; Exception handler 0 for function

401044
127 mov eax, [ebp+var_24]
128 mov [ebp+var_20], eax
129 cmp [ebp+var_1C], 0
130 jnz short $LN29
131 push eax ; int

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

962
132 call __exit
133
134
135 $LN29: ; CODE XREF: ___tmainCRTStartup+135
136 call __c_exit
137
138 loc_401186: ; CODE XREF: ___tmainCRTStartup+112
139 mov [ebp+ms_exc.disabled], 0FFFFFFFEh
140 mov eax, [ebp+var_20]
141 call __SEH_epilog4
142 retn

Here we can see calls to GetCommandLineA() (line 62), then to setargv() (line 66)
and setenvp() (line 74), which apparently fill the global variables argc, argv, envp.
Finally, main() is called with these arguments (line 97).
There are also calls to functions with self-describing names like heap_init() (line
35), ioinit() (line 54).
The heap is indeed initialized in the CRT. If you try to use malloc() in a program
without CRT, it will exit abnormally with the following error:
runtime error R6030
- CRT not initialized

Global object initializations in C++ is also occur in the CRT before the execution of
main(): 3.21.4 on page 712.
The value that main() returns is passed to cexit(), or in $LN32, which in turn calls
doexit().
Is it possible to get rid of the CRT? Yes, if you know what you are doing.
The MSVC’s linker has the /ENTRY option for setting an entry point.
#include <windows.h>

int main()
{

MessageBox (NULL, "hello, world", "caption", MB_OK);
};

Let’s compile it in MSVC 2008.
cl no_crt.c user32.lib /link /entry:main

We are getting a runnable .exe with size 2560 bytes, that has a PE header in it,
instructions calling MessageBox, two strings in the data segment, the MessageBox
function imported from user32.dll and nothing else.
This works, but you cannot write WinMain with its 4 arguments instead of main().
To be precise, you can, but the arguments are not prepared at the moment of exe-
cution.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

963
By the way, it is possible to make the .exe even shorter by aligning the PE sections
at less than the default 4096 bytes.
cl no_crt.c user32.lib /link /entry:main /align:16

Linker says:
LINK : warning LNK4108: /ALIGN specified without /DRIVER; image may not run

We get an .exe that’s 720 bytes. It can be executed in Windows 7 x86, but not in
x64 (an error message will be shown when you try to execute it).
With even more efforts, it is possible to make the executable even shorter, but as
you can see, compatibility problems arise quickly.

6.5.2 Win32 PE
PE is an executable file format used in Windows. The difference between .exe, .dll
and .sys is that .exe and .sys usually do not have exports, only imports.
A DLL14, just like any other PE-file, has an entry point (OEP) (the function DllMain() is
located there) but this function usually does nothing. .sys is usually a device driver.
As of drivers, Windows requires the checksum to be present in the PE file and for it
to be correct 15.
Starting at Windows Vista, a driver’s files must also be signed with a digital signature.
It will fail to load otherwise.
Every PE file begins with tiny DOS program that prints a message like “This program
cannot be run in DOS mode.”—if you run this program in DOS or Windows 3.1 (OS-es
which are not aware of the PE format), this message will be printed.

Terminology

• Module—a separate file, .exe or .dll.
• Process—a program loaded into memory and currently running. Commonly con-
sists of one .exe file and bunch of .dll files.

• Process memory—the memory a process works with. Each process has its own.
There usually are loaded modules, memory of the stack, heap(s), etc.

• VA16—an address which is to be used in program while runtime.
• Base address (of module)—the address within the process memory at which the
module is to be loaded. OS loader may change it, if the base address is already
occupied by another module just loaded before.

• RVA17—the VA-address minus the base address.
Many addresses in PE-file tables use RVA-addresses.

14Dynamic-Link Library
15For example, Hiew(7.1 on page 1005) can calculate it
16Virtual Address
17Relative Virtual Address

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

964
• IAT18—an array of addresses of imported symbols 19.
Sometimes, the IMAGE_DIRECTORY_ENTRY_IAT data directory points at the IAT.
It is worth noting that IDA (as of 6.1) may allocate a pseudo-section named
.idata for IAT, even if the IAT is a part of another section!

• INT20—an array of names of symbols to be imported21.

Base address

The problem is that several module authors can prepare DLL files for others to use
and it is not possible to reach an agreement which addresses is to be assigned to
whose modules.
So that is why if two necessary DLLs for a process have the same base address, one
of them will be loaded at this base address, and the other—at some other free space
in process memory, and each virtual addresses in the second DLL will be corrected.
With MSVC the linker often generates the .exe files with a base address of 0x400000
22, and with the code section starting at 0x401000. This means that the RVA of the
start of the code section is 0x1000.
DLLs are often generated by MSVC’s linker with a base address of 0x10000000 23.
There is also another reason to load modules at various base addresses, in this case
random ones. It is ASLR.
A shellcode trying to get executed on a compromised system must call system func-
tions, hence, know their addresses.
In older OS (in Windows NT line: before Windows Vista), system DLL (like kernel32.dll,
user32.dll) were always loaded at known addresses, and if we also recall that their
versions rarely changed, the addresses of functions were fixed and shellcode could
call them directly.
In order to avoid this, the ASLR method loads your program and all modules it needs
at random base addresses, different every time.
ASLR support is denoted in a PE file by setting the flag
IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE [see Mark Russinovich, Microsoft Win-
dows Internals].

Subsystem

There is also a subsystem field, usually it is:
• native24 (.sys-driver),
• console (console application) or

18Import Address Table
19Matt Pietrek, An In-Depth Look into the Win32 Portable Executable File Format, (2002)]
20Import Name Table
21Matt Pietrek, An In-Depth Look into the Win32 Portable Executable File Format, (2002)]
22The origin of this address choice is described here: MSDN
23This can be changed by the /BASE linker option
24Meaning, the module use Native API instead of Win32

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://blogs.msdn.com/b/oldnewthing/archive/2014/10/03/10562176.aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

965
• GUI (non-console).

OS version

A PE file also specifies the minimal Windows version it needs in order to be loadable.
The table of version numbers stored in the PE file and corresponding Windows code-
names is here25.
For example, MSVC 2005 compiles .exe files for running on Windows NT4 (version
4.00), but MSVC 2008 does not (the generated files have a version of 5.00, at least
Windows 2000 is needed to run them).
MSVC 2012 generates .exe files of version 6.00 by default, targeting at leastWindows
Vista. However, by changing the compiler’s options26, it is possible to force it to
compile for Windows XP.

Sections

Division in sections, as it seems, is present in all executable file formats.
It is devised in order to separate code from data, and data—from constant data.
• Either the IMAGE_SCN_CNT_CODE or IMAGE_SCN_MEM_EXECUTE flags will be
set on the code section—this is executable code.

• On data section—IMAGE_SCN_CNT_INITIALIZED_DATA,
IMAGE_SCN_MEM_READ and IMAGE_SCN_MEM_WRITE flags.

• On an empty section with uninitialized data—
IMAGE_SCN_CNT_UNINITIALIZED_DATA, IMAGE_SCN_MEM_READ and
IMAGE_SCN_MEM_WRITE.

• On a constant data section (one that’s protected from writing), the flags
IMAGE_SCN_CNT_INITIALIZED_DATA and IMAGE_SCN_MEM_READ can be set,
but not IMAGE_SCN_MEM_WRITE. A process going to crash if it tries to write to
this section.

Each section in PE-file may have a name, however, it is not very important. Often
(but not always) the code section is named .text, the data section—.data, the
constant data section — .rdata (readable data) (perhaps, .rdata means read-only-
data). Other popular section names are:
• .idata—imports section. IDA may create a pseudo-section named like this:
6.5.2 on the preceding page.

• .edata—exports section (rare)
• .pdata—section holding all information about exceptions in Windows NT for
MIPS, IA64 and x64: 6.5.3 on page 997

• .reloc—relocs section
25Wikipedia
26MSDN

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://en.wikipedia.org/wiki/Windows_NT#Releases
http://blogs.msdn.com/b/vcblog/archive/2012/10/08/10357555.aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

966
• .bss—uninitialized data (BSS)
• .tls—thread local storage (TLS)
• .rsrc—resources
• .CRT—may present in binary files compiled by ancient MSVC versions

PE file packers/encryptors often garble section names or replace the names with
their own.
MSVC allows you to declare data in arbitrarily named section 27.
Some compilers and linkers can add a section with debugging symbols and other
debugging information (MinGW for instance). However it is not so in latest versions
of MSVC (separate PDB files are used there for this purpose).

That is how a PE section is described in the file:
typedef struct _IMAGE_SECTION_HEADER {

BYTE Name[IMAGE_SIZEOF_SHORT_NAME];
union {
DWORD PhysicalAddress;
DWORD VirtualSize;

} Misc;
DWORD VirtualAddress;
DWORD SizeOfRawData;
DWORD PointerToRawData;
DWORD PointerToRelocations;
DWORD PointerToLinenumbers;
WORD NumberOfRelocations;
WORD NumberOfLinenumbers;
DWORD Characteristics;

} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

28

A word about terminology: PointerToRawData is called “Offset” in Hiew and Virtual-
Address is called “RVA” there.

Data section

Data section in file can be smaller than in memory. For example, some variables can
be initialized, some are not. Compiler and linker will collect them all into one section,
but the first part of it is initialized and allocated in file, while another is absent in file
(of course, to make it smaller). VirtualSize will be equal to the size of section in
memory, and SizeOfRawData — to size of section in file.
IDA can show the border between initialized and not initialized parts like that:
...

27MSDN
28MSDN

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/windows/desktop/cc307397.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680341(v=vs.85).aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

967
.data:10017FFA db 0
.data:10017FFB db 0
.data:10017FFC db 0
.data:10017FFD db 0
.data:10017FFE db 0
.data:10017FFF db 0
.data:10018000 db ? ;
.data:10018001 db ? ;
.data:10018002 db ? ;
.data:10018003 db ? ;
.data:10018004 db ? ;
.data:10018005 db ? ;

...

.rdata — read-only data section

Strings are usually located here (because they have const char* type), other vari-
ables marked as const, imported function names.
See also: 3.3 on page 582.

Relocations (relocs)

AKA FIXUP-s (at least in Hiew).
They are also present in almost all executable file formats 29. Exceptions are shared
dynamic libraries compiled with PIC, or any other PIC-code.
What are they for?
Obviously, modules can be loaded on various base addresses, but how to deal with
global variables, for example? They must be accessed by address. One solution is
position-independent code (6.4.1 on page 952). But it is not always convenient.
That is why a relocations table is present. There the addresses of points that must
be corrected are enumerated, in case of loading at a different base address.
For example, there is a global variable at address 0x410000 and this is how it is
accessed:
A1 00 00 41 00 mov eax,[000410000]

The base address of themodule is 0x400000, the RVA of the global variable is 0x10000.
If the module is loaded at base address 0x500000, the real address of the global
variable must be 0x510000.
As we can see, the address of variable is encoded in the instruction MOV, after the
byte 0xA1.
That is why the address of the 4 bytes after 0xA1, is written in the relocs table.
29Even in .exe files for MS-DOS

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

968
If the module is loaded at a different base address, the OS loader enumerates all
addresses in the table,
finds each 32-bit word the address points to, subtracts the original base address
from it (we get the RVA here), and adds the new base address to it.
If a module is loaded at its original base address, nothing happens.
All global variables can be treated like that.
Relocs may have various types, however, in Windows for x86 processors, the type
is usually
IMAGE_REL_BASED_HIGHLOW.
By the way, relocs are darkened in Hiew, for example: fig.1.21. (You have to circum-
vent these bytes during patching.)
OllyDbg underlines the places in memory to which relocs are to be applied, for ex-
ample: fig.1.52.

Exports and imports

As we all know, any executable program must use the OS’s services and other DLL-
libraries somehow.
It can be said that functions from onemodule (usually DLL) must be connected some-
how to the points of their calls in other modules (.exe-file or another DLL).
For this, each DLL has an “exports” table, which consists of functions plus their
addresses in a module.
And every .exe file or DLL has “imports”, a table of functions it needs for execution
including list of DLL filenames.
After loading the main .exe-file, the OS loader processes imports table: it loads the
additional DLL-files, finds function names among the DLL exports and writes their
addresses down in the IAT of the main .exe-module.
As we can see, during loading the loader must compare a lot of function names, but
string comparison is not a very fast procedure, so there is a support for “ordinals” or
“hints”, which are function numbers stored in the table, instead of their names.
That is how they can be located faster when loading a DLL. Ordinals are always
present in the “export” table.
For example, a program using the MFC30 library usually loads mfc*.dll by ordinals,
and in such programs there are no MFC function names in INT.
When loading such programs in IDA, it will ask for a path to the mfc*.dll files in order
to determine the function names.
If you don’t tell IDA the path to these DLLs, there will be mfc80_123 instead of func-
tion names.
30Microsoft Foundation Classes

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

969
Imports section

Often a separate section is allocated for the imports table and everything related to
it (with name like .idata), however, this is not a strict rule.
Imports are also a confusing subject because of the terminological mess. Let’s try
to collect all information in one place.

Figure 6.1: A scheme that unites all PE-file structures related to imports

The main structure is the array IMAGE_IMPORT_DESCRIPTOR. Each element for each
DLL being imported.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

970
Each element holds the RVA address of the text string (DLL name) (Name).
OriginalFirstThunk is the RVA address of the INT table. This is an array of RVA ad-
dresses, each of which points to a text string with a function name. Each string is
prefixed by a 16-bit integer (“hint”)—“ordinal” of function.
While loading, if it is possible to find a function by ordinal, then the strings compari-
son will not occur. The array is terminated by zero.
There is also a pointer to the IAT table named FirstThunk, it is just the RVA address
of the place where the loader writes the addresses of the resolved functions.
The points where the loader writes addresses aremarked by IDA like this: __imp_CreateFileA,
etc.
There are at least two ways to use the addresses written by the loader.
• The code will have instructions like call __imp_CreateFileA, and since the field
with the address of the imported function is a global variable in some sense, the
address of the call instruction (plus 1 or 2) is to be added to the relocs table,
for the case when the module is loaded at a different base address.
But, obviously, this may enlarge relocs table significantly.
Because there are might be a lot of calls to imported functions in the module.
Furthermore, large relocs table slows down the process of loading modules.

• For each imported function, there is only one jump allocated, using the JMP
instruction plus a reloc to it. Such points are also called “thunks”.
All calls to the imported functions are just CALL instructions to the corresponding
“thunk”. In this case, additional relocs are not necessary because these CALL-s
have relative addresses and do not need to be corrected.

These two methods can be combined.
Possible, the linker creates individual “thunk”s if there are too many calls to the func-
tion, but not done by default.

By the way, the array of function addresses to which FirstThunk is pointing is not
necessary to be located in the IAT section. For example, the author of these lines
once wrote the PE_add_import31 utility for adding imports to an existing .exe-file.
Some time earlier, in the previous versions of the utility, at the place of the function
you want to substitute with a call to another DLL, my utility wrote the following code:
MOV EAX, [yourdll.dll!function]
JMP EAX

FirstThunk points to the first instruction. In other words, when loading yourdll.dll,
the loader writes the address of the function function right in the code.
It also worth noting that a code section is usually write-protected, so my utility adds
the
31yurichev.com

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://yurichev.com/PE_add_imports.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

971
IMAGE_SCN_MEM_WRITE flag for code section. Otherwise, the program to crash
while loading with error code 5 (access denied).

One might ask: what if I supply a program with a set of DLL files which is not sup-
posed to change (including addresses of all DLL functions), is it possible to speed up
the loading process?
Yes, it is possible to write the addresses of the functions to be imported into the
FirstThunk arrays in advance.
The Timestamp field is present in the IMAGE_IMPORT_DESCRIPTOR structure.
If a value is present there, then the loader compares this value with the date-time
of the DLL file.
If the values are equal, then the loader does not do anything, and the loading of the
process can be faster. This is called “old-style binding” 32.
The BIND.EXE utility in Windows SDK is for this. For speeding up the loading of your
program, Matt Pietrek in Matt Pietrek, An In-Depth Look into the Win32 Portable Exe-
cutable File Format, (2002)]33, suggests to do the binding shortly after your program
installation on the computer of the end user.

PE-files packers/encryptors may also compress/encrypt imports table.
In this case, the Windows loader, of course, will not load all necessary DLLs.
Therefore, the packer/encryptor does this on its own, with the help of LoadLibrary()
and the GetProcAddress() functions.
That is why these two functions are often present in IAT in packed files.

In the standard DLLs from the Windows installation, IAT often is located right at the
beginning of the PE file. Supposedly, it is made so for optimization.
While loading, the .exe file is not loaded into memory as a whole (recall huge in-
stall programs which are started suspiciously fast), it is “mapped”, and loaded into
memory in parts as they are accessed.
Probably, Microsoft developers decided it will be faster.

Resources

Resources in a PE file are just a set of icons, pictures, text strings, dialog descriptions.
Perhaps they were separated from the main code, so all these things could be mul-
tilingual, and it would be simpler to pick text or picture for the language that is
currently set in the OS.

As a side effect, they can be edited easily and saved back to the executable file,
even if one does not have special knowledge, by using the ResHack editor, for ex-
ample (6.5.2 on the following page).
32MSDN. There is also the “new-style binding”.
33Also available as http://msdn.microsoft.com/en-us/magazine/bb985992.aspx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://blogs.msdn.com/b/oldnewthing/archive/2010/03/18/9980802.aspx
http://msdn.microsoft.com/en-us/magazine/bb985992.aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

972
.NET

.NET programs are not compiled into machine code but into a special bytecode.
Strictly speaking, there is bytecode instead of the usual x86 code in the .exe file,
however, the entry point (OEP) points to this tiny fragment of x86 code:
jmp mscoree.dll!_CorExeMain

The .NET loader is located in mscoree.dll, which processes the PE file.
It was so in all pre-Windows XP OSes. Starting from XP, the OS loader is able to
detect the .NET file and run it without executing that JMP instruction 34.

TLS

This section holds initialized data for the TLS(6.2 on page 944) (if needed). When a
new thread start, its TLS data is initialized using the data from this section.

Aside from that, the PE file specification also provides initialization of the TLS section,
the so-called TLS callbacks.
If they are present, they are to be called before the control is passed to the main
entry point (OEP).
This is used widely in the PE file packers/encryptors.

Tools

• objdump (present in cygwin) for dumping all PE-file structures.
• Hiew(7.1 on page 1005) as editor.
• pefile—Python-library for PE-file processing 35.
• ResHack AKA Resource Hacker—resources editor36.
• PE_add_import37— simple tool for adding symbol(s) to PE executable import
table.

• PE_patcher38—simple tool for patching PE executables.
• PE_search_str_refs39—simple tool for searching for a function in PE executables
which use some text string.

34MSDN
35https://code.google.com/p/pefile/
36https://code.google.com/p/pefile/
37http://yurichev.com/PE_add_imports.html
38yurichev.com
39yurichev.com

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/xh0859k0(v=vs.110).aspx
https://code.google.com/p/pefile/
https://code.google.com/p/pefile/
http://yurichev.com/PE_add_imports.html
http://yurichev.com/PE_patcher.html
http://yurichev.com/PE_search_str_refs.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

973
Further reading

• Daniel Pistelli—The .NET File Format 40

6.5.3 Windows SEH
Let’s forget about MSVC

In Windows, the SEH is intended for exceptions handling, nevertheless, it is language-
agnostic, not related to C++ or OOP in any way.
Here we are going to take a look at SEH in its isolated (from C++ and MSVC exten-
sions) form.
Each running process has a chain of SEH handlers, each TIB has the address of the
most recently defined handler.
When an exception occurs (division by zero, incorrect address access, user exception
triggered by calling the RaiseException() function), the OS finds the last handler
in the TIB and calls it, passing exception kind and all information about the CPU state
(register values, etc.) at the moment of the exception.
The exception handler considering the exception, does it see something familiar? If
so, it handles the exception.
If not, it signals to the OS that it cannot handle it and the OS calls the next handler
in the chain, until a handler which is able to handle the exception is be found.
At the very end of the chain there a standard handler that shows the well-known
dialog box, informing the user about a process crash, some technical information
about the CPU state at the time of the crash, and offering to collect all information
and send it to developers in Microsoft.

Figure 6.2: Windows XP
40http://www.codeproject.com/Articles/12585/The-NET-File-Format

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.codeproject.com/Articles/12585/The-NET-File-Format
https://yurichev.com/contact.html
https://yurichev.com/contact.html

974

Figure 6.3: Windows XP

Figure 6.4: Windows 7

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

975

Figure 6.5: Windows 8.1

Earlier, this handler was called Dr. Watson.
By the way, some developers make their own handler that sends information about
the program crash to themselves. It is registered with the help of SetUnhandledExceptionFilter()
and to be called if the OS does not have any other way to handle the exception. An
example is Oracle RDBMS—it saves huge dumps reporting all possible information
about the CPU and memory state.
Let’s write our own primitive exception handler. This example is based on the ex-
ample from [Matt Pietrek, A Crash Course on the Depths of Win32™ Structured
Exception Handling, (1997)]41. It must be compiled with the SAFESEH option: cl
seh1.cpp /link /safeseh:no. More about SAFESEH here: MSDN.
#include <windows.h>
#include <stdio.h>

DWORD new_value=1234;

EXCEPTION_DISPOSITION __cdecl except_handler(
struct _EXCEPTION_RECORD *ExceptionRecord,
void * EstablisherFrame,
struct _CONTEXT *ContextRecord,
void * DispatcherContext)

{
unsigned i;

printf ("%s\n", __FUNCTION__);
printf ("ExceptionRecord->ExceptionCode=0x%p\n", ExceptionRecord->⤦

Ç ExceptionCode);
printf ("ExceptionRecord->ExceptionFlags=0x%p\n", ExceptionRecord->⤦

Ç ExceptionFlags);
printf ("ExceptionRecord->ExceptionAddress=0x%p\n", ExceptionRecord⤦

Ç ->ExceptionAddress);

if (ExceptionRecord->ExceptionCode==0xE1223344)
{

printf ("That's for us\n");

41Also available as http://www.microsoft.com/msj/0197/Exception/Exception.aspx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/9a89h429.aspx
http://www.microsoft.com/msj/0197/Exception/Exception.aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

976
// yes, we "handled" the exception
return ExceptionContinueExecution;

}
else if (ExceptionRecord->ExceptionCode==EXCEPTION_ACCESS_VIOLATION⤦

Ç)
{

printf ("ContextRecord->Eax=0x%08X\n", ContextRecord->Eax);
// will it be possible to 'fix' it?
printf ("Trying to fix wrong pointer address\n");
ContextRecord->Eax=(DWORD)&new_value;
// yes, we "handled" the exception
return ExceptionContinueExecution;

}
else
{

printf ("We do not handle this\n");
// someone else's problem
return ExceptionContinueSearch;

};
}

int main()
{

DWORD handler = (DWORD)except_handler; // take a pointer to our
handler

// install exception handler
__asm
{ // make EXCEPTION_REGISTRATION

record:
push handler // address of handler function
push FS:[0] // address of previous handler
mov FS:[0],ESP // add new EXECEPTION_REGISTRATION

}

RaiseException (0xE1223344, 0, 0, NULL);

// now do something very bad
int* ptr=NULL;
int val=0;
val=*ptr;
printf ("val=%d\n", val);

// deinstall exception handler
__asm
{ // remove our EXECEPTION_REGISTRATION

record
mov eax,[ESP] // get pointer to previous record
mov FS:[0], EAX // install previous record
add esp, 8 // clean our EXECEPTION_REGISTRATION

off stack
}

return 0;
}

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

977
The FS: segment register is pointing to the TIB in win32.
The very first element in the TIB is a pointer to the last handler in the chain. We
save it in the stack and store the address of our handler there. The structure is
named _EXCEPTION_REGISTRATION, it is a simple singly-linked list and its elements
are stored right in the stack.

Listing 6.22: MSVC/VC/crt/src/exsup.inc
_EXCEPTION_REGISTRATION struc

prev dd ?
handler dd ?

_EXCEPTION_REGISTRATION ends

So each “handler” field points to a handler and an each “prev” field points to the
previous record in the chain of exception handlers. The last record has 0xFFFFFFFF
(-1) in the “prev” field.

FS:0 +0: __except_list

+4: …

+8: …

TIB

…

Prev=0xFFFFFFFF

Handle handler function

…

Prev

Handle handler function

…

Prev

Handle handler function

…

Stack

After our handler is installed, we call RaiseException() 42. This is an user ex-
ception. The handler checks the code. If the code is 0xE1223344, it returning
ExceptionContinueExecution, which means that handler corrected the CPU state
(it is usually a correction of the EIP/ESP registers) and the OS can resume the execu-
tion of the thread. If you alter slightly the code so the handler returns ExceptionContinueSearch,
then the OS will call the other handlers, and it’s unlikely that one who can handle it
will be found, since no one will have any information about it (rather about its code).
You will see the standard Windows dialog about a process crash.
What is the difference between a system exceptions and a user one? Here are the
system ones:
42MSDN

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/windows/desktop/ms680552(v=vs.85).aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

978

as defined in WinBase.h as defined in ntstatus.h value
EXCEPTION_ACCESS_VIOLATION STATUS_ACCESS_VIOLATION 0xC0000005
EXCEPTION_DATATYPE_MISALIGNMENT STATUS_DATATYPE_MISALIGNMENT 0x80000002
EXCEPTION_BREAKPOINT STATUS_BREAKPOINT 0x80000003
EXCEPTION_SINGLE_STEP STATUS_SINGLE_STEP 0x80000004
EXCEPTION_ARRAY_BOUNDS_EXCEEDED STATUS_ARRAY_BOUNDS_EXCEEDED 0xC000008C
EXCEPTION_FLT_DENORMAL_OPERAND STATUS_FLOAT_DENORMAL_OPERAND 0xC000008D
EXCEPTION_FLT_DIVIDE_BY_ZERO STATUS_FLOAT_DIVIDE_BY_ZERO 0xC000008E
EXCEPTION_FLT_INEXACT_RESULT STATUS_FLOAT_INEXACT_RESULT 0xC000008F
EXCEPTION_FLT_INVALID_OPERATION STATUS_FLOAT_INVALID_OPERATION 0xC0000090
EXCEPTION_FLT_OVERFLOW STATUS_FLOAT_OVERFLOW 0xC0000091
EXCEPTION_FLT_STACK_CHECK STATUS_FLOAT_STACK_CHECK 0xC0000092
EXCEPTION_FLT_UNDERFLOW STATUS_FLOAT_UNDERFLOW 0xC0000093
EXCEPTION_INT_DIVIDE_BY_ZERO STATUS_INTEGER_DIVIDE_BY_ZERO 0xC0000094
EXCEPTION_INT_OVERFLOW STATUS_INTEGER_OVERFLOW 0xC0000095
EXCEPTION_PRIV_INSTRUCTION STATUS_PRIVILEGED_INSTRUCTION 0xC0000096
EXCEPTION_IN_PAGE_ERROR STATUS_IN_PAGE_ERROR 0xC0000006
EXCEPTION_ILLEGAL_INSTRUCTION STATUS_ILLEGAL_INSTRUCTION 0xC000001D
EXCEPTION_NONCONTINUABLE_EXCEPTION STATUS_NONCONTINUABLE_EXCEPTION 0xC0000025
EXCEPTION_STACK_OVERFLOW STATUS_STACK_OVERFLOW 0xC00000FD
EXCEPTION_INVALID_DISPOSITION STATUS_INVALID_DISPOSITION 0xC0000026
EXCEPTION_GUARD_PAGE STATUS_GUARD_PAGE_VIOLATION 0x80000001
EXCEPTION_INVALID_HANDLE STATUS_INVALID_HANDLE 0xC0000008
EXCEPTION_POSSIBLE_DEADLOCK STATUS_POSSIBLE_DEADLOCK 0xC0000194
CONTROL_C_EXIT STATUS_CONTROL_C_EXIT 0xC000013A

That is how the code is defined:
31 29 28 27 16 15 0

S U 0 Facility code Error code

S is a basic status code: 11—error; 10—warning; 01—informational; 00—success.
U—whether the code is user code.
That is why we chose 0xE1223344—E16 (11102) 0xE (1110b) means that it is 1) user
exception; 2) error.
But to be honest, this example works fine without these high bits.
Then we try to read a value from memory at address 0.
Of course, there is nothing at this address in win32, so an exception is raised.
The very first handler is to be called—yours, and it will know about it first, by checking
the code if it’s equal to the EXCEPTION_ACCESS_VIOLATION constant.
The code that’s reading from memory at address 0 is looks like this:

Listing 6.23: MSVC 2010
...
xor eax, eax
mov eax, DWORD PTR [eax] ; exception will occur here
push eax
push OFFSET msg

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

979
call _printf
add esp, 8
...

Will it be possible to fix this error “on the fly” and to continue with program execution?
Yes, our exception handler can fix the EAX value and let the OS execute this instruc-
tion once again. So that is what we do. printf() prints 1234, because after the
execution of our handler EAX is not 0, but contains the address of the global variable
new_value. The execution will resume.
That is what is going on: the memory manager in the CPU signals about an error, the
CPU suspends the thread, finds the exception handler in the Windows kernel, which,
in turn, starts to call all handlers in the SEH chain, one by one.
We use MSVC 2010 here, but of course, there is no any guarantee that EAX will be
used for this pointer.
This address replacement trick is showy, and we considering it here as an illustration
of SEH’s internals. Nevertheless, it’s hard to recall any case where it is used for “on-
the-fly” error fixing.
Why SEH-related records are stored right in the stack instead of some other place?
Supposedly because the OS is not needing to care about freeing this information,
these records are simply disposed when the function finishes its execution. This is
somewhat like alloca(): (1.9.2 on page 47).

Now let’s get back to MSVC

Supposedly, Microsoft programmers needed exceptions in C, but not in C++ (for
use in Windows NT kernel, which is written in C), so they added a non-standard C
extension to MSVC43. It is not related to C++ PL exceptions.
__try
{

...
}
__except(filter code)
{

handler code
}

“Finally” block may be instead of handler code:
__try
{

...
}
__finally
{

...

43MSDN

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/swezty51.aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

980
}

The filter code is an expression, telling whether this handler code corresponds to the
exception raised.
If your code is too big and cannot fit into one expression, a separate filter function
can be defined.

There are a lot of such constructs in the Windows kernel. Here are a couple of exam-
ples from there (WRK):

Listing 6.24: WRK-v1.2/base/ntos/ob/obwait.c
try {

KeReleaseMutant((PKMUTANT)SignalObject,
MUTANT_INCREMENT,
FALSE,
TRUE);

} except((GetExceptionCode () == STATUS_ABANDONED ||
GetExceptionCode () == STATUS_MUTANT_NOT_OWNED)?

EXCEPTION_EXECUTE_HANDLER :
EXCEPTION_CONTINUE_SEARCH) {

Status = GetExceptionCode();

goto WaitExit;
}

Listing 6.25: WRK-v1.2/base/ntos/cache/cachesub.c
try {

RtlCopyBytes((PVOID)((PCHAR)CacheBuffer + PageOffset),
UserBuffer,
MorePages ?

(PAGE_SIZE - PageOffset) :
(ReceivedLength - PageOffset));

} except(CcCopyReadExceptionFilter(GetExceptionInformation(),
&Status)) {

Here is also a filter code example:

Listing 6.26: WRK-v1.2/base/ntos/cache/copysup.c
LONG
CcCopyReadExceptionFilter(

IN PEXCEPTION_POINTERS ExceptionPointer,
IN PNTSTATUS ExceptionCode
)

/*++

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

981
Routine Description:

This routine serves as an exception filter and has the special job of
extracting the "real" I/O error when Mm raises STATUS_IN_PAGE_ERROR
beneath us.

Arguments:

ExceptionPointer - A pointer to the exception record that contains
the real Io Status.

ExceptionCode - A pointer to an NTSTATUS that is to receive the real
status.

Return Value:

EXCEPTION_EXECUTE_HANDLER

--*/

{
*ExceptionCode = ExceptionPointer->ExceptionRecord->ExceptionCode;

if ((*ExceptionCode == STATUS_IN_PAGE_ERROR) &&
(ExceptionPointer->ExceptionRecord->NumberParameters >= 3)) {

*ExceptionCode = (NTSTATUS) ExceptionPointer->ExceptionRecord->⤦
Ç ExceptionInformation[2];
}

ASSERT(!NT_SUCCESS(*ExceptionCode));

return EXCEPTION_EXECUTE_HANDLER;
}

Internally, SEH is an extension of the OS-supported exceptions. But the handler
function is _except_handler3 (for SEH3) or _except_handler4 (for SEH4).
The code of this handler is MSVC-related, it is located in its libraries, or in msvcr*.dll.
It is very important to know that SEH is a MSVC thing.
Other win32-compilers may offer something completely different.

SEH3

SEH3 has _except_handler3 as a handler function, and extends the _EXCEPTION_REGISTRATION
table, adding a pointer to the scope table and previous try level variable. SEH4 ex-
tends the scope table by 4 values for buffer overflow protection.

The scope table is a table that consists of pointers to the filter and handler code
blocks, for each nested level of try/except.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

982

FS:0 +0: __except_list

+4: …

+8: …

TIB

…

Prev=0xFFFFFFFF

Handle

…

Prev

Handle

…

Prev

Handle

scope table

previous try level

EBP

handler function

handler function

_except_handler3

…

Stack

0xFFFFFFFF (-1)

filter function

handler/finally function

0

filter function

handler/finally function

1

filter function

handler/finally function

… more entries …

information about
first try/except
block

information about
second try/except
block

information about
third try/except
block

scope table

Again, it is very important to understand that the OS takes care only of the prev/han-
dle fields, and nothing more.
It is the job of the _except_handler3 function to read the other fields and scope
table, and decide which handler to execute and when.

The source code of the _except_handler3 function is closed.
However, Sanos OS, which has a win32 compatibility layer, has the same functions
reimplemented, which are somewhat equivalent to those in Windows 44. Another
reimplementation is present in Wine45 and ReactOS46.

If the filter pointer is NULL, the handler pointer is the pointer to the finally code
block.

44https://code.google.com/p/sanos/source/browse/src/win32/msvcrt/except.c
45GitHub
46http://doxygen.reactos.org/d4/df2/lib_2sdk_2crt_2except_2except_8c_source.html

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://code.google.com/p/sanos/source/browse/src/win32/msvcrt/except.c
https://github.com/mirrors/wine/blob/master/dlls/msvcrt/except_i386.c
http://doxygen.reactos.org/d4/df2/lib_2sdk_2crt_2except_2except_8c_source.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

983
During execution, the previous try level value in the stack changes, so _except_handler3
can get information about the current level of nestedness, in order to know which
scope table entry to use.

SEH3: one try/except block example

#include <stdio.h>
#include <windows.h>
#include <excpt.h>

int main()
{

int* p = NULL;
__try
{

printf("hello #1!\n");
*p = 13; // causes an access violation exception;
printf("hello #2!\n");

}
__except(GetExceptionCode()==EXCEPTION_ACCESS_VIOLATION ?

EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH)
{

printf("access violation, can't recover\n");
}

}

Listing 6.27: MSVC 2003
$SG74605 DB 'hello #1!', 0aH, 00H
$SG74606 DB 'hello #2!', 0aH, 00H
$SG74608 DB 'access violation, can''t recover', 0aH, 00H
_DATA ENDS

; scope table:
CONST SEGMENT
$T74622 DD 0ffffffffH ; previous try level

DD FLAT:$L74617 ; filter
DD FLAT:$L74618 ; handler

CONST ENDS
_TEXT SEGMENT
$T74621 = -32 ; size = 4
_p$ = -28 ; size = 4
__$SEHRec$ = -24 ; size = 24
_main PROC NEAR

push ebp
mov ebp, esp
push -1 ; previous try level
push OFFSET FLAT:$T74622 ; scope table
push OFFSET FLAT:__except_handler3 ; handler
mov eax, DWORD PTR fs:__except_list
push eax ; prev

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

984
mov DWORD PTR fs:__except_list, esp
add esp, -16

; 3 registers to be saved:
push ebx
push esi
push edi
mov DWORD PTR __$SEHRec$[ebp], esp
mov DWORD PTR _p$[ebp], 0
mov DWORD PTR __$SEHRec$[ebp+20], 0 ; previous try level
push OFFSET FLAT:$SG74605 ; 'hello #1!'
call _printf
add esp, 4
mov eax, DWORD PTR _p$[ebp]
mov DWORD PTR [eax], 13
push OFFSET FLAT:$SG74606 ; 'hello #2!'
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$[ebp+20], -1 ; previous try level
jmp SHORT $L74616

; filter code:
$L74617:
$L74627:

mov ecx, DWORD PTR __$SEHRec$[ebp+4]
mov edx, DWORD PTR [ecx]
mov eax, DWORD PTR [edx]
mov DWORD PTR $T74621[ebp], eax
mov eax, DWORD PTR $T74621[ebp]
sub eax, -1073741819; c0000005H
neg eax
sbb eax, eax
inc eax

$L74619:
$L74626:

ret 0

; handler code:
$L74618:

mov esp, DWORD PTR __$SEHRec$[ebp]
push OFFSET FLAT:$SG74608 ; 'access violation, can''t recover'
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$[ebp+20], -1 ; setting previous try level back
to -1

$L74616:
xor eax, eax
mov ecx, DWORD PTR __$SEHRec$[ebp+8]
mov DWORD PTR fs:__except_list, ecx
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
ret 0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

985
_main ENDP
_TEXT ENDS
END

Here we see how the SEH frame is constructed in the stack. The scope table is
located in the CONST segment—indeed, these fields are not to be changed. An in-
teresting thing is how the previous try level variable has changed. The initial value
is 0xFFFFFFFF (−1). The moment when the body of the try statement is opened is
marked with an instruction that writes 0 to the variable. The moment when the body
of the try statement is closed, −1 is written back to it. We also see the addresses of
filter and handler code.
Thus we can easily see the structure of the try/except constructs in the function.

Since the SEH setup code in the function prologue may be shared between many
functions, sometimes the compiler inserts a call to the SEH_prolog() function in the
prologue, which does just that.
The SEH cleanup code is in the SEH_epilog() function.

Let’s try to run this example in tracer:
tracer.exe -l:2.exe --dump-seh

Listing 6.28: tracer.exe output
EXCEPTION_ACCESS_VIOLATION at 2.exe!main+0x44 (0x401054) ⤦

Ç ExceptionInformation[0]=1
EAX=0x00000000 EBX=0x7efde000 ECX=0x0040cbc8 EDX=0x0008e3c8
ESI=0x00001db1 EDI=0x00000000 EBP=0x0018feac ESP=0x0018fe80
EIP=0x00401054
FLAGS=AF IF RF
* SEH frame at 0x18fe9c prev=0x18ff78 handler=0x401204 (2.exe!⤦

Ç _except_handler3)
SEH3 frame. previous trylevel=0
scopetable entry[0]. previous try level=-1, filter=0x401070 (2.exe!main+0⤦

Ç x60) handler=0x401088 (2.exe!main+0x78)
* SEH frame at 0x18ff78 prev=0x18ffc4 handler=0x401204 (2.exe!⤦

Ç _except_handler3)
SEH3 frame. previous trylevel=0
scopetable entry[0]. previous try level=-1, filter=0x401531 (2.exe!⤦

Ç mainCRTStartup+0x18d) handler=0x401545 (2.exe!mainCRTStartup+0x1a1)
* SEH frame at 0x18ffc4 prev=0x18ffe4 handler=0x771f71f5 (ntdll.dll!⤦

Ç __except_handler4)
SEH4 frame. previous trylevel=0
SEH4 header: GSCookieOffset=0xfffffffe GSCookieXOROffset=0x0

EHCookieOffset=0xffffffcc EHCookieXOROffset=0x0
scopetable entry[0]. previous try level=-2, filter=0x771f74d0 (ntdll.dll!⤦

Ç ___safe_se_handler_table+0x20) handler=0x771f90eb (ntdll.dll!⤦
Ç _TppTerminateProcess@4+0x43)

* SEH frame at 0x18ffe4 prev=0xffffffff handler=0x77247428 (ntdll.dll!⤦
Ç _FinalExceptionHandler@16)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

986
We see that the SEH chain consists of 4 handlers.

The first two are located in our example. Two? But we made only one? Yes, another
one has been set up in the CRT function _mainCRTStartup(), and as it seems that
it handles at least FPU exceptions. Its source code can be found in the MSVC instal-
lation: crt/src/winxfltr.c.

The third is the SEH4 one in ntdll.dll, and the fourth handler is not MSVC-related
and is located in ntdll.dll, and has a self-describing function name.

As you can see, there are 3 types of handlers in one chain:
one is not related to MSVC at all (the last one) and two MSVC-related: SEH3 and
SEH4.

SEH3: two try/except blocks example

#include <stdio.h>
#include <windows.h>
#include <excpt.h>

int filter_user_exceptions (unsigned int code, struct _EXCEPTION_POINTERS *⤦
Ç ep)

{
printf("in filter. code=0x%08X\n", code);
if (code == 0x112233)
{

printf("yes, that is our exception\n");
return EXCEPTION_EXECUTE_HANDLER;

}
else
{

printf("not our exception\n");
return EXCEPTION_CONTINUE_SEARCH;

};
}
int main()
{

int* p = NULL;
__try
{

__try
{

printf ("hello!\n");
RaiseException (0x112233, 0, 0, NULL);
printf ("0x112233 raised. now let's crash\n");
*p = 13; // causes an access violation exception;

}
__except(GetExceptionCode()==EXCEPTION_ACCESS_VIOLATION ?

EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH)
{

printf("access violation, can't recover\n");

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

987
}

}
__except(filter_user_exceptions(GetExceptionCode(), ⤦
Ç GetExceptionInformation()))
{

// the filter_user_exceptions() function answering to the question
// "is this exception belongs to this block?"
// if yes, do the follow:
printf("user exception caught\n");

}
}

Now there are two try blocks. So the scope table now has two entries, one for each
block. Previous try level changes as execution flow enters or exits the try block.

Listing 6.29: MSVC 2003
$SG74606 DB 'in filter. code=0x%08X', 0aH, 00H
$SG74608 DB 'yes, that is our exception', 0aH, 00H
$SG74610 DB 'not our exception', 0aH, 00H
$SG74617 DB 'hello!', 0aH, 00H
$SG74619 DB '0x112233 raised. now let''s crash', 0aH, 00H
$SG74621 DB 'access violation, can''t recover', 0aH, 00H
$SG74623 DB 'user exception caught', 0aH, 00H

_code$ = 8 ; size = 4
_ep$ = 12 ; size = 4
_filter_user_exceptions PROC NEAR

push ebp
mov ebp, esp
mov eax, DWORD PTR _code$[ebp]
push eax
push OFFSET FLAT:$SG74606 ; 'in filter. code=0x%08X'
call _printf
add esp, 8
cmp DWORD PTR _code$[ebp], 1122867; 00112233H
jne SHORT $L74607
push OFFSET FLAT:$SG74608 ; 'yes, that is our exception'
call _printf
add esp, 4
mov eax, 1
jmp SHORT $L74605

$L74607:
push OFFSET FLAT:$SG74610 ; 'not our exception'
call _printf
add esp, 4
xor eax, eax

$L74605:
pop ebp
ret 0

_filter_user_exceptions ENDP

; scope table:
CONST SEGMENT

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

988
$T74644 DD 0ffffffffH ; previous try level for outer block

DD FLAT:$L74634 ; outer block filter
DD FLAT:$L74635 ; outer block handler
DD 00H ; previous try level for inner block
DD FLAT:$L74638 ; inner block filter
DD FLAT:$L74639 ; inner block handler

CONST ENDS

$T74643 = -36 ; size = 4
$T74642 = -32 ; size = 4
_p$ = -28 ; size = 4
__$SEHRec$ = -24 ; size = 24
_main PROC NEAR

push ebp
mov ebp, esp
push -1 ; previous try level
push OFFSET FLAT:$T74644
push OFFSET FLAT:__except_handler3
mov eax, DWORD PTR fs:__except_list
push eax
mov DWORD PTR fs:__except_list, esp
add esp, -20
push ebx
push esi
push edi
mov DWORD PTR __$SEHRec$[ebp], esp
mov DWORD PTR _p$[ebp], 0
mov DWORD PTR __$SEHRec$[ebp+20], 0 ; outer try block entered. set
previous try level to 0
mov DWORD PTR __$SEHRec$[ebp+20], 1 ; inner try block entered. set
previous try level to 1
push OFFSET FLAT:$SG74617 ; 'hello!'
call _printf
add esp, 4
push 0
push 0
push 0
push 1122867 ; 00112233H
call DWORD PTR __imp__RaiseException@16
push OFFSET FLAT:$SG74619 ; '0x112233 raised. now let''s crash'
call _printf
add esp, 4
mov eax, DWORD PTR _p$[ebp]
mov DWORD PTR [eax], 13
mov DWORD PTR __$SEHRec$[ebp+20], 0 ; inner try block exited. set
previous try level back to 0
jmp SHORT $L74615

; inner block filter:
$L74638:
$L74650:

mov ecx, DWORD PTR __$SEHRec$[ebp+4]
mov edx, DWORD PTR [ecx]
mov eax, DWORD PTR [edx]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

989
mov DWORD PTR $T74643[ebp], eax
mov eax, DWORD PTR $T74643[ebp]
sub eax, -1073741819; c0000005H
neg eax
sbb eax, eax
inc eax

$L74640:
$L74648:

ret 0

; inner block handler:
$L74639:

mov esp, DWORD PTR __$SEHRec$[ebp]
push OFFSET FLAT:$SG74621 ; 'access violation, can''t recover'
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$[ebp+20], 0 ; inner try block exited. set
previous try level back to 0

$L74615:
mov DWORD PTR __$SEHRec$[ebp+20], -1 ; outer try block exited, set
previous try level back to -1
jmp SHORT $L74633

; outer block filter:
$L74634:
$L74651:

mov ecx, DWORD PTR __$SEHRec$[ebp+4]
mov edx, DWORD PTR [ecx]
mov eax, DWORD PTR [edx]
mov DWORD PTR $T74642[ebp], eax
mov ecx, DWORD PTR __$SEHRec$[ebp+4]
push ecx
mov edx, DWORD PTR $T74642[ebp]
push edx
call _filter_user_exceptions
add esp, 8

$L74636:
$L74649:

ret 0

; outer block handler:
$L74635:

mov esp, DWORD PTR __$SEHRec$[ebp]
push OFFSET FLAT:$SG74623 ; 'user exception caught'
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$[ebp+20], -1 ; both try blocks exited. set
previous try level back to -1

$L74633:
xor eax, eax
mov ecx, DWORD PTR __$SEHRec$[ebp+8]
mov DWORD PTR fs:__except_list, ecx
pop edi

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

990
pop esi
pop ebx
mov esp, ebp
pop ebp
ret 0

_main ENDP

If we set a breakpoint on the printf() function, which is called from the handler,
we can also see how yet another SEH handler is added.
Perhaps it’s another machinery inside the SEH handling process. Here we also see
our scope table consisting of 2 entries.
tracer.exe -l:3.exe bpx=3.exe!printf --dump-seh

Listing 6.30: tracer.exe output
(0) 3.exe!printf
EAX=0x0000001b EBX=0x00000000 ECX=0x0040cc58 EDX=0x0008e3c8
ESI=0x00000000 EDI=0x00000000 EBP=0x0018f840 ESP=0x0018f838
EIP=0x004011b6
FLAGS=PF ZF IF
* SEH frame at 0x18f88c prev=0x18fe9c handler=0x771db4ad (ntdll.dll!⤦

Ç ExecuteHandler2@20+0x3a)
* SEH frame at 0x18fe9c prev=0x18ff78 handler=0x4012e0 (3.exe!⤦

Ç _except_handler3)
SEH3 frame. previous trylevel=1
scopetable entry[0]. previous try level=-1, filter=0x401120 (3.exe!main+0⤦

Ç xb0) handler=0x40113b (3.exe!main+0xcb)
scopetable entry[1]. previous try level=0, filter=0x4010e8 (3.exe!main+0x78⤦

Ç) handler=0x401100 (3.exe!main+0x90)
* SEH frame at 0x18ff78 prev=0x18ffc4 handler=0x4012e0 (3.exe!⤦

Ç _except_handler3)
SEH3 frame. previous trylevel=0
scopetable entry[0]. previous try level=-1, filter=0x40160d (3.exe!⤦

Ç mainCRTStartup+0x18d) handler=0x401621 (3.exe!mainCRTStartup+0x1a1)
* SEH frame at 0x18ffc4 prev=0x18ffe4 handler=0x771f71f5 (ntdll.dll!⤦

Ç __except_handler4)
SEH4 frame. previous trylevel=0
SEH4 header: GSCookieOffset=0xfffffffe GSCookieXOROffset=0x0

EHCookieOffset=0xffffffcc EHCookieXOROffset=0x0
scopetable entry[0]. previous try level=-2, filter=0x771f74d0 (ntdll.dll!⤦

Ç ___safe_se_handler_table+0x20) handler=0x771f90eb (ntdll.dll!⤦
Ç _TppTerminateProcess@4+0x43)

* SEH frame at 0x18ffe4 prev=0xffffffff handler=0x77247428 (ntdll.dll!⤦
Ç _FinalExceptionHandler@16)

SEH4

During a buffer overflow (1.26.2 on page 340) attack, the address of the scope table
can be rewritten, so starting from MSVC 2005, SEH3 was upgraded to SEH4 in order

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

991
to have buffer overflow protection. The pointer to the scope table is now xored with
a security cookie. The scope table was extended to have a header consisting of two
pointers to security cookies.
Each element has an offset inside the stack of another value: the address of the
stack frame (EBP) xored with the security_cookie , placed in the stack.
This value will be read during exception handling and checked for correctness. The
security cookie in the stack is random each time, so hopefully a remote attacker
can’t predict it.

The initial previous try level is −2 in SEH4 instead of −1.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

992

FS:0 +0: __except_list

+4: …

+8: …

TIB

…

Prev=0xFFFFFFFF

Handle

…

Prev

Handle

…

Prev

Handle

scope table
⊕security_cookie

previous try level

EBP

…

EBP⊕security_cookie

…

handler function

handler function

_except_handler4

…

Stack

GS Cookie Offset

GS Cookie XOR Offset

EH Cookie Offset

EH Cookie XOR Offset

0xFFFFFFFF (-1)

filter function

handler/finally function

0

filter function

handler/finally function

1

filter function

handler/finally function

… more entries …

information about
first try/except
block

information about
second try/except
block

information about
third try/except
block

scope table

Here are both examples compiled in MSVC 2012 with SEH4:

Listing 6.31: MSVC 2012: one try block example
$SG85485 DB 'hello #1!', 0aH, 00H
$SG85486 DB 'hello #2!', 0aH, 00H
$SG85488 DB 'access violation, can''t recover', 0aH, 00H

; scope table:
xdata$x SEGMENT
__sehtable$_main DD 0fffffffeH ; GS Cookie Offset

DD 00H ; GS Cookie XOR Offset

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

993
DD 0ffffffccH ; EH Cookie Offset
DD 00H ; EH Cookie XOR Offset
DD 0fffffffeH ; previous try level
DD FLAT:$LN12@main ; filter
DD FLAT:$LN8@main ; handler

xdata$x ENDS

$T2 = -36 ; size = 4
_p$ = -32 ; size = 4
tv68 = -28 ; size = 4
__$SEHRec$ = -24 ; size = 24
_main PROC

push ebp
mov ebp, esp
push -2
push OFFSET __sehtable$_main
push OFFSET __except_handler4
mov eax, DWORD PTR fs:0
push eax
add esp, -20
push ebx
push esi
push edi
mov eax, DWORD PTR ___security_cookie
xor DWORD PTR __$SEHRec$[ebp+16], eax ; xored pointer to scope table
xor eax, ebp
push eax ; ebp ^ security_cookie
lea eax, DWORD PTR __$SEHRec$[ebp+8] ;
pointer to VC_EXCEPTION_REGISTRATION_RECORD
mov DWORD PTR fs:0, eax
mov DWORD PTR __$SEHRec$[ebp], esp
mov DWORD PTR _p$[ebp], 0
mov DWORD PTR __$SEHRec$[ebp+20], 0 ; previous try level
push OFFSET $SG85485 ; 'hello #1!'
call _printf
add esp, 4
mov eax, DWORD PTR _p$[ebp]
mov DWORD PTR [eax], 13
push OFFSET $SG85486 ; 'hello #2!'
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$[ebp+20], -2 ; previous try level
jmp SHORT $LN6@main

; filter:
$LN7@main:
$LN12@main:

mov ecx, DWORD PTR __$SEHRec$[ebp+4]
mov edx, DWORD PTR [ecx]
mov eax, DWORD PTR [edx]
mov DWORD PTR $T2[ebp], eax
cmp DWORD PTR $T2[ebp], -1073741819 ; c0000005H
jne SHORT $LN4@main
mov DWORD PTR tv68[ebp], 1

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

994
jmp SHORT $LN5@main

$LN4@main:
mov DWORD PTR tv68[ebp], 0

$LN5@main:
mov eax, DWORD PTR tv68[ebp]

$LN9@main:
$LN11@main:

ret 0

; handler:
$LN8@main:

mov esp, DWORD PTR __$SEHRec$[ebp]
push OFFSET $SG85488 ; 'access violation, can''t recover'
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$[ebp+20], -2 ; previous try level

$LN6@main:
xor eax, eax
mov ecx, DWORD PTR __$SEHRec$[ebp+8]
mov DWORD PTR fs:0, ecx
pop ecx
pop edi
pop esi
pop ebx
mov esp, ebp
pop ebp
ret 0

_main ENDP

Listing 6.32: MSVC 2012: two try blocks example
$SG85486 DB 'in filter. code=0x%08X', 0aH, 00H
$SG85488 DB 'yes, that is our exception', 0aH, 00H
$SG85490 DB 'not our exception', 0aH, 00H
$SG85497 DB 'hello!', 0aH, 00H
$SG85499 DB '0x112233 raised. now let''s crash', 0aH, 00H
$SG85501 DB 'access violation, can''t recover', 0aH, 00H
$SG85503 DB 'user exception caught', 0aH, 00H

xdata$x SEGMENT
__sehtable$_main DD 0fffffffeH ; GS Cookie Offset

DD 00H ; GS Cookie XOR Offset
DD 0ffffffc8H ; EH Cookie Offset
DD 00H ; EH Cookie Offset
DD 0fffffffeH ; previous try level for outer block
DD FLAT:$LN19@main ; outer block filter
DD FLAT:$LN9@main ; outer block handler
DD 00H ; previous try level for inner block
DD FLAT:$LN18@main ; inner block filter
DD FLAT:$LN13@main ; inner block handler

xdata$x ENDS

$T2 = -40 ; size = 4
$T3 = -36 ; size = 4

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

995
_p$ = -32 ; size = 4
tv72 = -28 ; size = 4
__$SEHRec$ = -24 ; size = 24
_main PROC

push ebp
mov ebp, esp
push -2 ; initial previous try level
push OFFSET __sehtable$_main
push OFFSET __except_handler4
mov eax, DWORD PTR fs:0
push eax ; prev
add esp, -24
push ebx
push esi
push edi
mov eax, DWORD PTR ___security_cookie
xor DWORD PTR __$SEHRec$[ebp+16], eax ; xored pointer to scope
table
xor eax, ebp ; ebp ^ security_cookie
push eax
lea eax, DWORD PTR __$SEHRec$[ebp+8] ;
pointer to VC_EXCEPTION_REGISTRATION_RECORD
mov DWORD PTR fs:0, eax
mov DWORD PTR __$SEHRec$[ebp], esp
mov DWORD PTR _p$[ebp], 0
mov DWORD PTR __$SEHRec$[ebp+20], 0 ; entering outer try block,
setting previous try level=0
mov DWORD PTR __$SEHRec$[ebp+20], 1 ; entering inner try block,
setting previous try level=1
push OFFSET $SG85497 ; 'hello!'
call _printf
add esp, 4
push 0
push 0
push 0
push 1122867 ; 00112233H
call DWORD PTR __imp__RaiseException@16
push OFFSET $SG85499 ; '0x112233 raised. now let''s crash'
call _printf
add esp, 4
mov eax, DWORD PTR _p$[ebp]
mov DWORD PTR [eax], 13
mov DWORD PTR __$SEHRec$[ebp+20], 0 ; exiting inner try block, set
previous try level back to 0
jmp SHORT $LN2@main

; inner block filter:
$LN12@main:
$LN18@main:

mov ecx, DWORD PTR __$SEHRec$[ebp+4]
mov edx, DWORD PTR [ecx]
mov eax, DWORD PTR [edx]
mov DWORD PTR $T3[ebp], eax
cmp DWORD PTR $T3[ebp], -1073741819 ; c0000005H
jne SHORT $LN5@main

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

996
mov DWORD PTR tv72[ebp], 1
jmp SHORT $LN6@main

$LN5@main:
mov DWORD PTR tv72[ebp], 0

$LN6@main:
mov eax, DWORD PTR tv72[ebp]

$LN14@main:
$LN16@main:

ret 0

; inner block handler:
$LN13@main:

mov esp, DWORD PTR __$SEHRec$[ebp]
push OFFSET $SG85501 ; 'access violation, can''t recover'
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$[ebp+20], 0 ; exiting inner try block, setting
previous try level back to 0

$LN2@main:
mov DWORD PTR __$SEHRec$[ebp+20], -2 ; exiting both blocks, setting
previous try level back to -2
jmp SHORT $LN7@main

; outer block filter:
$LN8@main:
$LN19@main:

mov ecx, DWORD PTR __$SEHRec$[ebp+4]
mov edx, DWORD PTR [ecx]
mov eax, DWORD PTR [edx]
mov DWORD PTR $T2[ebp], eax
mov ecx, DWORD PTR __$SEHRec$[ebp+4]
push ecx
mov edx, DWORD PTR $T2[ebp]
push edx
call _filter_user_exceptions
add esp, 8

$LN10@main:
$LN17@main:

ret 0

; outer block handler:
$LN9@main:

mov esp, DWORD PTR __$SEHRec$[ebp]
push OFFSET $SG85503 ; 'user exception caught'
call _printf
add esp, 4
mov DWORD PTR __$SEHRec$[ebp+20], -2 ; exiting both blocks, setting
previous try level back to -2

$LN7@main:
xor eax, eax
mov ecx, DWORD PTR __$SEHRec$[ebp+8]
mov DWORD PTR fs:0, ecx
pop ecx
pop edi

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

997
pop esi
pop ebx
mov esp, ebp
pop ebp
ret 0

_main ENDP

_code$ = 8 ; size = 4
_ep$ = 12 ; size = 4
_filter_user_exceptions PROC

push ebp
mov ebp, esp
mov eax, DWORD PTR _code$[ebp]
push eax
push OFFSET $SG85486 ; 'in filter. code=0x%08X'
call _printf
add esp, 8
cmp DWORD PTR _code$[ebp], 1122867 ; 00112233H
jne SHORT $LN2@filter_use
push OFFSET $SG85488 ; 'yes, that is our exception'
call _printf
add esp, 4
mov eax, 1
jmp SHORT $LN3@filter_use
jmp SHORT $LN3@filter_use

$LN2@filter_use:
push OFFSET $SG85490 ; 'not our exception'
call _printf
add esp, 4
xor eax, eax

$LN3@filter_use:
pop ebp
ret 0

_filter_user_exceptions ENDP

Here is the meaning of the cookies: Cookie Offset is the difference between the
address of the saved EBP value in the stack and the EBP ⊕ security_cookie value
in the stack. Cookie XOR Offset is an additional difference between the EBP ⊕
security_cookie value and what is stored in the stack.
If this equation is not true, the process is to halt due to stack corruption:

security_cookie⊕ (CookieXOROffset+ address_of_saved_EBP) ==
stack[address_of_saved_EBP +CookieOffset]

If Cookie Offset is −2, this implies that it is not present.

Windows x64

As you might think, it is not very fast to set up the SEH frame at each function
prologue. Another performance problem is changing the previous try level value
many times during the function’s execution.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

998
So things are changed completely in x64: now all pointers to try blocks, filter and
handler functions are stored in another PE segment .pdata, and from there the OS’s
exception handler takes all the information.
Here are the two examples from the previous section compiled for x64:

Listing 6.33: MSVC 2012
$SG86276 DB 'hello #1!', 0aH, 00H
$SG86277 DB 'hello #2!', 0aH, 00H
$SG86279 DB 'access violation, can''t recover', 0aH, 00H

pdata SEGMENT
$pdata$main DD imagerel $LN9

DD imagerel $LN9+61
DD imagerel $unwind$main

pdata ENDS
pdata SEGMENT
$pdata$main$filt$0 DD imagerel main$filt$0

DD imagerel main$filt$0+32
DD imagerel $unwind$main$filt$0

pdata ENDS
xdata SEGMENT
$unwind$main DD 020609H

DD 030023206H
DD imagerel __C_specific_handler
DD 01H
DD imagerel $LN9+8
DD imagerel $LN9+40
DD imagerel main$filt$0
DD imagerel $LN9+40

$unwind$main$filt$0 DD 020601H
DD 050023206H

xdata ENDS

_TEXT SEGMENT
main PROC
$LN9:

push rbx
sub rsp, 32
xor ebx, ebx
lea rcx, OFFSET FLAT:$SG86276 ; 'hello #1!'
call printf
mov DWORD PTR [rbx], 13
lea rcx, OFFSET FLAT:$SG86277 ; 'hello #2!'
call printf
jmp SHORT $LN8@main

$LN6@main:
lea rcx, OFFSET FLAT:$SG86279 ; 'access violation, can''t

recover'
call printf
npad 1 ; align next label

$LN8@main:
xor eax, eax
add rsp, 32

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

999
pop rbx
ret 0

main ENDP
_TEXT ENDS

text$x SEGMENT
main$filt$0 PROC

push rbp
sub rsp, 32
mov rbp, rdx

$LN5@main$filt$:
mov rax, QWORD PTR [rcx]
xor ecx, ecx
cmp DWORD PTR [rax], -1073741819; c0000005H
sete cl
mov eax, ecx

$LN7@main$filt$:
add rsp, 32
pop rbp
ret 0
int 3

main$filt$0 ENDP
text$x ENDS

Listing 6.34: MSVC 2012
$SG86277 DB 'in filter. code=0x%08X', 0aH, 00H
$SG86279 DB 'yes, that is our exception', 0aH, 00H
$SG86281 DB 'not our exception', 0aH, 00H
$SG86288 DB 'hello!', 0aH, 00H
$SG86290 DB '0x112233 raised. now let''s crash', 0aH, 00H
$SG86292 DB 'access violation, can''t recover', 0aH, 00H
$SG86294 DB 'user exception caught', 0aH, 00H

pdata SEGMENT
$pdata$filter_user_exceptions DD imagerel $LN6

DD imagerel $LN6+73
DD imagerel $unwind$filter_user_exceptions

$pdata$main DD imagerel $LN14
DD imagerel $LN14+95
DD imagerel $unwind$main

pdata ENDS
pdata SEGMENT
$pdata$main$filt$0 DD imagerel main$filt$0

DD imagerel main$filt$0+32
DD imagerel $unwind$main$filt$0

$pdata$main$filt$1 DD imagerel main$filt$1
DD imagerel main$filt$1+30
DD imagerel $unwind$main$filt$1

pdata ENDS

xdata SEGMENT
$unwind$filter_user_exceptions DD 020601H

DD 030023206H

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1000
$unwind$main DD 020609H

DD 030023206H
DD imagerel __C_specific_handler
DD 02H
DD imagerel $LN14+8
DD imagerel $LN14+59
DD imagerel main$filt$0
DD imagerel $LN14+59
DD imagerel $LN14+8
DD imagerel $LN14+74
DD imagerel main$filt$1
DD imagerel $LN14+74

$unwind$main$filt$0 DD 020601H
DD 050023206H

$unwind$main$filt$1 DD 020601H
DD 050023206H

xdata ENDS

_TEXT SEGMENT
main PROC
$LN14:

push rbx
sub rsp, 32
xor ebx, ebx
lea rcx, OFFSET FLAT:$SG86288 ; 'hello!'
call printf
xor r9d, r9d
xor r8d, r8d
xor edx, edx
mov ecx, 1122867 ; 00112233H
call QWORD PTR __imp_RaiseException
lea rcx, OFFSET FLAT:$SG86290 ; '0x112233 raised. now let''s

crash'
call printf
mov DWORD PTR [rbx], 13
jmp SHORT $LN13@main

$LN11@main:
lea rcx, OFFSET FLAT:$SG86292 ; 'access violation, can''t

recover'
call printf
npad 1 ; align next label

$LN13@main:
jmp SHORT $LN9@main

$LN7@main:
lea rcx, OFFSET FLAT:$SG86294 ; 'user exception caught'
call printf
npad 1 ; align next label

$LN9@main:
xor eax, eax
add rsp, 32
pop rbx
ret 0

main ENDP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1001
text$x SEGMENT
main$filt$0 PROC

push rbp
sub rsp, 32
mov rbp, rdx

$LN10@main$filt$:
mov rax, QWORD PTR [rcx]
xor ecx, ecx
cmp DWORD PTR [rax], -1073741819; c0000005H
sete cl
mov eax, ecx

$LN12@main$filt$:
add rsp, 32
pop rbp
ret 0
int 3

main$filt$0 ENDP

main$filt$1 PROC
push rbp
sub rsp, 32
mov rbp, rdx

$LN6@main$filt$:
mov rax, QWORD PTR [rcx]
mov rdx, rcx
mov ecx, DWORD PTR [rax]
call filter_user_exceptions
npad 1 ; align next label

$LN8@main$filt$:
add rsp, 32
pop rbp
ret 0
int 3

main$filt$1 ENDP
text$x ENDS

_TEXT SEGMENT
code$ = 48
ep$ = 56
filter_user_exceptions PROC
$LN6:

push rbx
sub rsp, 32
mov ebx, ecx
mov edx, ecx
lea rcx, OFFSET FLAT:$SG86277 ; 'in filter. code=0x%08X'
call printf
cmp ebx, 1122867; 00112233H
jne SHORT $LN2@filter_use
lea rcx, OFFSET FLAT:$SG86279 ; 'yes, that is our exception'
call printf
mov eax, 1
add rsp, 32

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1002
pop rbx
ret 0

$LN2@filter_use:
lea rcx, OFFSET FLAT:$SG86281 ; 'not our exception'
call printf
xor eax, eax
add rsp, 32
pop rbx
ret 0

filter_user_exceptions ENDP
_TEXT ENDS

Read [Igor Skochinsky, Compiler Internals: Exceptions and RTTI, (2012)] 47for more
detailed information about this.
Aside from exception information, .pdata is a section that contains the addresses
of almost all function starts and ends, hence it may be useful for a tools targeted at
automated analysis.

Read more about SEH

[Matt Pietrek, A Crash Course on the Depths of Win32™ Structured Exception Han-
dling, (1997)]48, [Igor Skochinsky, Compiler Internals: Exceptions and RTTI, (2012)]
49.

6.5.4 Windows NT: Critical section
Critical sections in any OS are very important in multithreaded environment, mostly
for giving a guarantee that only one thread can access some data in a single moment
of time, while blocking other threads and interrupts.
That is how a CRITICAL_SECTION structure is declared in Windows NT line OS:

Listing 6.35: (Windows Research Kernel v1.2) public/sdk/inc/nturtl.h
typedef struct _RTL_CRITICAL_SECTION {

PRTL_CRITICAL_SECTION_DEBUG DebugInfo;

//
// The following three fields control entering and exiting the critical
// section for the resource
//

LONG LockCount;
LONG RecursionCount;
HANDLE OwningThread; // from the thread's ClientId->UniqueThread
HANDLE LockSemaphore;

47Also available as http://yurichev.com/mirrors/RE/Recon-2012-Skochinsky-Compiler-Internals.
pdf
48Also available as http://www.microsoft.com/msj/0197/Exception/Exception.aspx
49Also available as http://yurichev.com/mirrors/RE/Recon-2012-Skochinsky-Compiler-Internals.

pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://yurichev.com/mirrors/RE/Recon-2012-Skochinsky-Compiler-Internals.pdf
http://yurichev.com/mirrors/RE/Recon-2012-Skochinsky-Compiler-Internals.pdf
http://www.microsoft.com/msj/0197/Exception/Exception.aspx
http://yurichev.com/mirrors/RE/Recon-2012-Skochinsky-Compiler-Internals.pdf
http://yurichev.com/mirrors/RE/Recon-2012-Skochinsky-Compiler-Internals.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1003
ULONG_PTR SpinCount; // force size on 64-bit systems when packed

} RTL_CRITICAL_SECTION, *PRTL_CRITICAL_SECTION;

That’s is how EnterCriticalSection() function works:

Listing 6.36: Windows 2008/ntdll.dll/x86 (begin)
_RtlEnterCriticalSection@4

var_C = dword ptr -0Ch
var_8 = dword ptr -8
var_4 = dword ptr -4
arg_0 = dword ptr 8

mov edi, edi
push ebp
mov ebp, esp
sub esp, 0Ch
push esi
push edi
mov edi, [ebp+arg_0]
lea esi, [edi+4] ; LockCount
mov eax, esi
lock btr dword ptr [eax], 0
jnb wait ; jump if CF=0

loc_7DE922DD:
mov eax, large fs:18h
mov ecx, [eax+24h]
mov [edi+0Ch], ecx
mov dword ptr [edi+8], 1
pop edi
xor eax, eax
pop esi
mov esp, ebp
pop ebp
retn 4

... skipped

The most important instruction in this code fragment is BTR (prefixed with LOCK):
the zeroth bit is stored in the CF flag and cleared in memory. This is an atomic
operation,
blocking all other CPUs’ access to this piece of memory (see the LOCK prefix before
the BTR instruction). If the bit at LockCount is 1,
fine, reset it and return from the function: we are in a critical section.
If not—the critical section is already occupied by other thread, so wait.
The wait is performed there using WaitForSingleObject().

And here is how the LeaveCriticalSection() function works:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1004
Listing 6.37: Windows 2008/ntdll.dll/x86 (begin)

_RtlLeaveCriticalSection@4 proc near

arg_0 = dword ptr 8

mov edi, edi
push ebp
mov ebp, esp
push esi
mov esi, [ebp+arg_0]
add dword ptr [esi+8], 0FFFFFFFFh ; RecursionCount
jnz short loc_7DE922B2
push ebx
push edi
lea edi, [esi+4] ; LockCount
mov dword ptr [esi+0Ch], 0
mov ebx, 1
mov eax, edi
lock xadd [eax], ebx
inc ebx
cmp ebx, 0FFFFFFFFh
jnz loc_7DEA8EB7

loc_7DE922B0:
pop edi
pop ebx

loc_7DE922B2:
xor eax, eax
pop esi
pop ebp
retn 4

... skipped

XADD is “exchange and add”.
In this case, it adds 1 to LockCount, meanwhile saves initial value of LockCount in
the EBX register. However, value in EBX is to incremented with a help of subsequent
INC EBX, and it also will be equal to the updated value of LockCount.
This operation is atomic since it is prefixed by LOCK as well, meaning that all other
CPUs or CPU cores in system are blocked from accessing this point in memory.
The LOCK prefix is very important:
without it two threads, each of which works on separate CPU or CPU core can try
to enter a critical section and to modify the value in memory, which will result in
non-deterministic behavior.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

Chapter 7

Tools

Now that Dennis Yurichev has made this book
free (libre), it is a contribution to the world of
free knowledge and free education. However,
for our freedom’s sake, we need free (libre)
reverse engineering tools to replace the
proprietary tools described in this book.

Richard M. Stallman

7.1 Binary analysis
Tools you use when you don’t run any process.
• (Free, open-source) ent1: entropy analyzing tool. Read more about entropy: 9.2
on page 1195.

• Hiew2: for small modifications of code in binary files. Has assembler/disassem-
bler.

• (Free, open-source) GHex3: simple hexadecimal editor for Linux.
• (Free, open-source) xxd and od: standard UNIX utilities for dumping.
• (Free, open-source) strings: *NIX tool for searching for ASCII strings in binary
files, including executable ones. Sysinternals has alternative4 supporting wide
char strings (UTF-16, widely used in Windows).

• (Free, open-source) Binwalk5: analyzing firmware images.
1http://www.fourmilab.ch/random/
2hiew.ru
3https://wiki.gnome.org/Apps/Ghex
4https://technet.microsoft.com/en-us/sysinternals/strings
5http://binwalk.org/

1005

http://www.fourmilab.ch/random/
http://www.hiew.ru/
https://wiki.gnome.org/Apps/Ghex
https://technet.microsoft.com/en-us/sysinternals/strings
http://binwalk.org/

1006
• (Free, open-source) binary grep: a small utility for searching any byte sequence
in a big pile of files, including non-executable ones: GitHub. There is also
rafind2 in rada.re for the same purpose.

7.1.1 Disassemblers
• IDA. An older freeware version is available for download 6. Hot-keys cheatsheet:
.6.1 on page 1321

• Ghidra7 — free alternative to IDA from NSA8.
• Binary Ninja9

• (Free, open-source) zynamics BinNavi10

• (Free, open-source) objdump: simple command-line utility for dumping and dis-
assembling.

• (Free, open-source) readelf11: dump information about ELF file.

7.1.2 Decompilers
The best known is Hex-Rays: http://hex-rays.com/products/decompiler/. Read
more about it: 11.9 on page 1267.
There is also a free alternative from NSA: Ghidra12.

7.1.3 Patch comparison/diffing
You may want to use it when you compare original version of some executable and
patched one, in order to find what has been patched and why.
• (Free) zynamics BinDiff13

• (Free, open-source) Diaphora14

7.2 Live analysis
Tools you use on a live system or during running of a process.

6hex-rays.com/products/ida/support/download_freeware.shtml
7https://ghidra-sre.org/
8National Security Agency
9http://binary.ninja/
10https://www.zynamics.com/binnavi.html
11https://sourceware.org/binutils/docs/binutils/readelf.html
12https://ghidra-sre.org/
13https://www.zynamics.com/software.html
14https://github.com/joxeankoret/diaphora

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://github.com/yurichev/bgrep
http://hex-rays.com/products/decompiler/
http://www.hex-rays.com/idapro/idadownfreeware.htm
https://ghidra-sre.org/
http://binary.ninja/
https://www.zynamics.com/binnavi.html
https://sourceware.org/binutils/docs/binutils/readelf.html
https://ghidra-sre.org/
https://www.zynamics.com/software.html
https://github.com/joxeankoret/diaphora
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1007
7.2.1 Debuggers
• (Free) OllyDbg. Very popular user-mode win32 debugger15. Hot-keys cheat-
sheet: .6.2 on page 1321

• (Free, open-source) GDB. Not quite popular debugger among reverse engineers,
because it’s intendedmostly for programmers. Some commands: .6.5 on page 1322.
There is a visual interface for GDB, “GDB dashboard”16.

• (Free, open-source) LLDB17.
• WinDbg18: kernel debugger for Windows.
• IDA has internal debugger.
• (Free, open-source) Radare AKA rada.re AKA r219. A GUI also exists: ragui20.
• (Free, open-source) tracer. The author often uses tracer 21 instead of a debug-
ger.
The author of these lines stopped using a debugger eventually, since all he
needs from it is to spot function arguments while executing, or registers state
at some point. Loading a debugger each time is too much, so a small utility
called tracer was born. It works from command line, allows intercepting func-
tion execution, setting breakpoints at arbitrary places, reading and changing
registers state, etc.
N.B.: the tracer isn’t evolving, because it was developed as a demonstration
tool for this book, not as everyday tool.

7.2.2 Library calls tracing
ltrace22.

7.2.3 System calls tracing
strace / dtruss

It shows which system calls (syscalls(6.3 on page 950)) are called by a process right
now.
For example:
strace df -h

...

15ollydbg.de
16https://github.com/cyrus-and/gdb-dashboard
17http://lldb.llvm.org/
18https://developer.microsoft.com/en-us/windows/hardware/windows-driver-kit
19http://rada.re/r/
20http://radare.org/ragui/
21yurichev.com
22http://www.ltrace.org/

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.ollydbg.de/
https://github.com/cyrus-and/gdb-dashboard
http://lldb.llvm.org/
https://developer.microsoft.com/en-us/windows/hardware/windows-driver-kit
http://rada.re/r/
http://radare.org/ragui/
http://yurichev.com/tracer-en.html
http://www.ltrace.org/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1008
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or ⤦

Ç directory)
open("/lib/i386-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF⤦

Ç \1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\220\232\1\0004\0\0\0"..., ⤦
Ç 512) = 512

fstat64(3, {st_mode=S_IFREG|0755, st_size=1770984, ...}) = 0
mmap2(NULL, 1780508, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) ⤦

Ç = 0xb75b3000

Mac OS X has dtruss for doing the same.
Cygwin also has strace, but as far as it’s known, it works only for .exe-files compiled
for the cygwin environment itself.

7.2.4 Network sniffing
Sniffing is intercepting some information you may be interested in.
(Free, open-source) Wireshark23 for network sniffing. It has also capability for USB
sniffing24.
Wireshark has a younger (or older) brother tcpdump25, simpler command-line tool.

7.2.5 Sysinternals
(Free) Sysinternals (developed by Mark Russinovich) 26. At least these tools are im-
portant and worth studying: Process Explorer, Handle, VMMap, TCPView, Process
Monitor.

7.2.6 Valgrind
(Free, open-source) a powerful tool for detecting memory leaks: http://valgrind.
org/. Due to its powerful JIT mechanism, Valgrind is used as a framework for other
tools.

7.2.7 Emulators
• (Free, open-source) QEMU27: emulator for various CPUs and architectures.
• (Free, open-source) DosBox28: MS-DOS emulator, mostly used for retrogaming.
• (Free, open-source) SimH29: emulator of ancient computers, mainframes, etc.

23https://www.wireshark.org/
24https://wiki.wireshark.org/CaptureSetup/USB
25http://www.tcpdump.org/
26https://technet.microsoft.com/en-us/sysinternals/bb842062
27http://qemu.org
28https://www.dosbox.com/
29http://simh.trailing-edge.com/

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://valgrind.org/
http://valgrind.org/
https://www.wireshark.org/
https://wiki.wireshark.org/CaptureSetup/USB
http://www.tcpdump.org/
https://technet.microsoft.com/en-us/sysinternals/bb842062
http://qemu.org
https://www.dosbox.com/
http://simh.trailing-edge.com/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1009
7.3 Other tools
Microsoft Visual Studio Express 30: Stripped-down free version of Visual Studio, con-
venient for simple experiments.
Some useful options: .6.3 on page 1322.
There is a website named “Compiler Explorer”, allowing to compile small code snip-
pets and see output in various GCC versions and architectures (at least x86, ARM,
MIPS): http://godbolt.org/—I would have used it myself for the book if I would
know about it!

7.3.1 SMT solvers
From the reverse engineer’s perspective, SMT solvers are used when dealing with
amateur cryptography, symbolic/concolic execution, ROP chains generation.
Formore information, read: https://yurichev.com/writings/SAT_SMT_by_example.
pdf.

7.3.2 Calculators
Good calculator for reverse engineer’s needs should support at least decimal, hex-
adecimal and binary bases, as well as many important operations like XOR and shifts.
• IDA has built-in calculator (“?”).
• rada.re has rax2.
• https://yurichev.com/progcalc/

• As a last resort, standard calculator in Windows has programmer’s mode.

7.4 Do You Think Something Is Missing Here?
If you know a great tool not listed here, please drop a note:
my emails.

30visualstudio.com/en-US/products/visual-studio-express-vs

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://godbolt.org/
https://yurichev.com/writings/SAT_SMT_by_example.pdf
https://yurichev.com/writings/SAT_SMT_by_example.pdf
https://yurichev.com/progcalc/
https://yurichev.com/contact.html
http://www.microsoft.com/express/Downloads/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

Chapter 8

Case studies

Instead of epigraph:

Peter Seibel: How do you tackle reading source code? Even read-
ing something in a programming language you already know is a tricky
problem.
Donald Knuth: But it’s really worth it for what it builds in your

brain. So how do I do it? There was a machine called the Bunker Ramo
300 and somebody told me that the Fortran compiler for this machine
was really amazingly fast, but nobody had any idea why it worked. I
got a copy of the source-code listing for it. I didn’t have a manual for
the machine, so I wasn’t even sure what the machine language was.
But I took it as an interesting challenge. I could figure out BEGIN

and then I would start to decode. The operation codes had some two-
letter mnemonics and so I could start to figure out “This probably was
a load instruction, this probably was a branch.” And I knew it was a
Fortran compiler, so at some point it looked at column seven of a card,
and that was where it would tell if it was a comment or not.
After three hours I had figured out a little bit about the machine.

Then I found these big, branching tables. So it was a puzzle and I kept
just making little charts like I’m working at a security agency trying to
decode a secret code. But I knew it worked and I knew it was a Fortran
compiler—it wasn’t encrypted in the sense that it was intentionally
obscure; it was only in code because I hadn’t gotten the manual for
the machine.
Eventually I was able to figure out why this compiler was so fast.

Unfortunately it wasn’t because the algorithms were brilliant; it was
just because they had used unstructured programming and hand opti-
mized the code to the hilt.
It was just basically the way you solve some kind of an unknown

puzzle— make tables and charts and get a little more information here
and make a hypothesis. In general when I’m reading a technical paper,
it’s the same challenge. I’m trying to get into the author’s mind, trying

1010

1011

to figure out what the concept is. The more you learn to read other
people’s stuff, the more able you are to invent your own in the future,
it seems to me.

(Peter Seibel — Coders at Work: Reflections on the Craft of Programming)

8.1 Mahjong solitaire prank (Windows 7)
Mahjong solitaire is a great game, but can we make it harder, by disabling the Hint
menu item?
In Windows 7, I can find Mahjong.dll and Mahjong.exe in:
C:\Windows\winsxs\
x86_microsoft-windows-s..inboxgames-shanghai_31bf3856ad364e35_6.1.7600.16385_none\
c07a51d9507d9398.
Also, the Mahjong.exe.mui file in:
C:\Windows\winsxs\
x86_microsoft-windows-s..-shanghai.resources_31bf3856ad364e35_6.1.7600.16385_en-us
_c430954533c66bf3

and in
C:\Windows\winsxs\
x86_microsoft-windows-s..-shanghai.resources_31bf3856ad364e35_6.1.7600.16385_ru-ru
_0d51acf984cb679a.
I’m using English Windows, but with Russian language support, so there are might be
resource files for two languages. By opening Mahjong.exe.mui in Resource Hacker,
there we can see a menu definition:

Listing 8.1: Menu resources in Mahjong.exe.mui
103 MENU
LANGUAGE LANG_ENGLISH, SUBLANG_ENGLISH_US
{

POPUP "&Game"
{
MENUITEM "&New Game\tF2", 40000
MENUITEM SEPARATOR
MENUITEM "&Undo\tCtrl+Z", 40001
MENUITEM "&Hint\tH", 40002
MENUITEM SEPARATOR
MENUITEM "&Statistics\tF4", 40003
MENUITEM "&Options\tF5", 40004
MENUITEM "Change &Appearance\tF7", 40005
MENUITEM SEPARATOR
MENUITEM "E&xit", 40006

}
POPUP "&Help"
{
MENUITEM "&View Help\tF1", 40015

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1012
MENUITEM "&About Mahjong Titans", 40016
MENUITEM SEPARATOR
MENUITEM "Get &More Games Online", 40020

}
}

The Hint submenu has the 40002 code. Now I’m opening Mahjong.exe in IDA and
find the 40002 value.
(I’m writing this in November 2019. Somehow, IDA can’t get PDBs from Microsoft
servers. Maybe Windows 7 is unsupported anymore? Anyway, I can’t get function
names...)

Listing 8.2: Mahjong.exe
.text:010205C8 6A 03 push 3
.text:010205CA 85 FF test edi, edi
.text:010205CC 5B pop ebx

...

.text:01020625 57 push edi ; uIDEnableItem

.text:01020626 FF 35 C8 97 08 01 push hmenu ; hMenu

.text:0102062C FF D6 call esi ; EnableMenuItem

.text:0102062E 83 7D 08 01 cmp [ebp+arg_0], 1

.text:01020632 BF 42 9C 00 00 mov edi, 40002

.text:01020637 75 18 jnz short loc_1020651 ; must jump
always

.text:01020639 6A 00 push 0 ; uEnable

.text:0102063B 57 push edi ; uIDEnableItem

.text:0102063C FF 35 B4 8B 08 01 push hMenu ; hMenu

.text:01020642 FF D6 call esi ; EnableMenuItem

.text:01020644 6A 00 push 0 ; uEnable

.text:01020646 57 push edi ; uIDEnableItem

.text:01020647 FF 35 C8 97 08 01 push hmenu ; hMenu

.text:0102064D FF D6 call esi ; EnableMenuItem

.text:0102064F EB 1A jmp short loc_102066B

.text:01020651

.text:01020651 loc_1020651: ; CODE XREF: sub_1020581+B6

.text:01020651 53 push ebx ; 3

.text:01020652 57 push edi ; uIDEnableItem

.text:01020653 FF 35 B4 8B 08 01 push hMenu ; hMenu

.text:01020659 FF D6 call esi ; EnableMenuItem

.text:0102065B 53 push ebx ; 3

.text:0102065C 57 push edi ; uIDEnableItem

.text:0102065D FF 35 C8 97 08 01 push hmenu ; hMenu

.text:01020663 FF D6 call esi ; EnableMenuItem

This piece of code enables or disables the Hint menu item.
And according to MSDN1:
MF_DISABLED | MF_GRAYED = 3 and MF_ENABLED = 0.

1https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-enablemenuitem

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-enablemenuitem
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1013
I think, this function enables or disables several menu items (Hint, Undo, etc), ac-
cording to the value in arg_0. Because at start, when a user choose solitaire type,
Hint and Undo items are disabled. They are enabled when the game has begun.
So I’m patching the Mahjong.exe file at 0x01020637 by replacing 0x75 with 0xEB
byte, making this JNZ jumpworking always. Effectively, this will make calling EnableMenuItem(..., ..., 3)
always. Now the Hint submenu is always disabled.
Also, somehow, the EnableMenuItem() function called twice, for hMenu and for hmenu.
Perhaps, the program has two menus, and maybe switching them?
As a homework, try to disable Undo menu item, to make the game even harder.

8.2 Task manager practical joke (Windows Vista)
Let’s see if it’s possible to hack Task Manager slightly so it would detect more CPU
cores.
Let us first think, how does the Task Manager know the number of cores?
There is the GetSystemInfo() win32 function present in win32 userspace which can
tell us this. But it’s not imported in taskmgr.exe.
There is, however, another one in NTAPI, NtQuerySystemInformation(), which is
used in taskmgr.exe in several places.
To get the number of cores, one has to call this function with the SystemBasicInformation
constant as a first argument (which is zero 2).
The second argument has to point to the buffer which is getting all the information.
So we have to find all calls to the
NtQuerySystemInformation(0, ?, ?, ?) function. Let’s open taskmgr.exe in
IDA.
What is always good about Microsoft executables is that IDA can download the cor-
responding PDB file for this executable and show all function names.
It is visible that Task Manager is written in C++ and some of the function names and
classes are really speaking for themselves. There are classes CAdapter, CNetPage,
CPerfPage, CProcInfo, CProcPage, CSvcPage, CTaskPage, CUserPage.
Apparently, each class corresponds to each tab in Task Manager.
Let’s visit each call and add comment with the value which is passed as the first
function argument. We will write “not zero” at some places, because the value there
was clearly not zero, but something really different (more about this in the second
part of this chapter).
And we are looking for zero passed as argument, after all.

2MSDN

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/windows/desktop/ms724509(v=vs.85).aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1014

Figure 8.1: IDA: cross references to NtQuerySystemInformation()

Yes, the names are really speaking for themselves.
When we closely investigate each place where
NtQuerySystemInformation(0, ?, ?, ?) is called, we quickly find what we need
in the InitPerfInfo() function:

Listing 8.3: taskmgr.exe (Windows Vista)
.text:10000B4B3 xor r9d, r9d
.text:10000B4B6 lea rdx, [rsp+0C78h+var_C58] ; buffer
.text:10000B4BB xor ecx, ecx
.text:10000B4BD lea ebp, [r9+40h]
.text:10000B4C1 mov r8d, ebp
.text:10000B4C4 call cs:__imp_NtQuerySystemInformation ; 0
.text:10000B4CA xor ebx, ebx
.text:10000B4CC cmp eax, ebx
.text:10000B4CE jge short loc_10000B4D7
.text:10000B4D0
.text:10000B4D0 loc_10000B4D0: ; CODE XREF:

InitPerfInfo(void)+97
.text:10000B4D0 ;

InitPerfInfo(void)+AF
.text:10000B4D0 xor al, al
.text:10000B4D2 jmp loc_10000B5EA
.text:10000B4D7 ;---
.text:10000B4D7
.text:10000B4D7 loc_10000B4D7: ; CODE XREF:

InitPerfInfo(void)+36
.text:10000B4D7 mov eax, [rsp+0C78h+var_C50]
.text:10000B4DB mov esi, ebx
.text:10000B4DD mov r12d, 3E80h
.text:10000B4E3 mov cs:?g_PageSize@@3KA, eax ; ulong g_PageSize

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1015
.text:10000B4E9 shr eax, 0Ah
.text:10000B4EC lea r13, __ImageBase
.text:10000B4F3 imul eax, [rsp+0C78h+var_C4C]
.text:10000B4F8 cmp [rsp+0C78h+var_C20], bpl
.text:10000B4FD mov cs:?g_MEMMax@@3_JA, rax ; __int64 g_MEMMax
.text:10000B504 movzx eax, [rsp+0C78h+var_C20] ; number of CPUs
.text:10000B509 cmova eax, ebp
.text:10000B50C cmp al, bl
.text:10000B50E mov cs:?g_cProcessors@@3EA, al ;

uchar g_cProcessors

g_cProcessors is a global variable, and this name has been assigned by IDA accord-
ing to the PDB loaded from Microsoft’s symbol server.
The byte is taken from var_C20. And var_C58 is passed to
NtQuerySystemInformation() as a pointer to the receiving buffer. The difference
between 0xC20 and 0xC58 is 0x38 (56).
Let’s take a look at format of the return structure, which we can find in MSDN:
typedef struct _SYSTEM_BASIC_INFORMATION {

BYTE Reserved1[24];
PVOID Reserved2[4];
CCHAR NumberOfProcessors;

} SYSTEM_BASIC_INFORMATION;

This is a x64 system, so each PVOID takes 8 bytes.
All reserved fields in the structure take 24 + 4 ∗ 8 = 56 bytes.
Oh yes, this implies that var_C20 is the local stack is exactly the NumberOfProcessors
field of the SYSTEM_BASIC_INFORMATION structure.
Let’s check our guess. Copy taskmgr.exe from C:\Windows\System32 to some
other folder (so the Windows Resource Protection will not try to restore the patched
taskmgr.exe).
Let’s open it in Hiew and find the place:

Figure 8.2: Hiew: find the place to be patched

Let’s replace the MOVZX instruction with ours. Let’s pretend we’ve got 64 CPU cores.
Add one additional NOP (because our instruction is shorter than the original one):

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1016

Figure 8.3: Hiew: patch it

And it works! Of course, the data in the graphs is not correct.
At times, Task Manager even shows an overall CPU load of more than 100%.

Figure 8.4: Fooled Windows Task Manager

The biggest number Task Manager does not crash with is 64.
Apparently, Task Manager in Windows Vista was not tested on computers with a large
number of cores.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1017
So there are probably some static data structure(s) inside it limited to 64 cores.

8.2.1 Using LEA to load values
Sometimes, LEA is used in taskmgr.exe instead of MOV to set the first argument of
NtQuerySystemInformation():

Listing 8.4: taskmgr.exe (Windows Vista)
xor r9d, r9d
div dword ptr [rsp+4C8h+WndClass.lpfnWndProc]
lea rdx, [rsp+4C8h+VersionInformation]
lea ecx, [r9+2] ; put 2 to ECX
mov r8d, 138h
mov ebx, eax

; ECX=SystemPerformanceInformation
call cs:__imp_NtQuerySystemInformation ; 2

...

mov r8d, 30h
lea r9, [rsp+298h+var_268]
lea rdx, [rsp+298h+var_258]
lea ecx, [r8-2Dh] ; put 3 to ECX

; ECX=SystemTimeOfDayInformation
call cs:__imp_NtQuerySystemInformation ; not zero

...

mov rbp, [rsi+8]
mov r8d, 20h
lea r9, [rsp+98h+arg_0]
lea rdx, [rsp+98h+var_78]
lea ecx, [r8+2Fh] ; put 0x4F to ECX
mov [rsp+98h+var_60], ebx
mov [rsp+98h+var_68], rbp

; ECX=SystemSuperfetchInformation
call cs:__imp_NtQuerySystemInformation ; not zero

Perhaps MSVC did so because machine code of LEA is shorter than MOV REG, 5
(would be 5 instead of 4).
LEA with offset in −128..127 range (offset will occupy 1 byte in opcode) with 32-bit
registers is even shorter (for lack of REX prefix)—3 bytes.
Another example of such thing is: 6.1.5 on page 938.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1018
8.3 Color Lines game practical joke
This is a very popular game with several implementations in existence. We can take
one of them, called BallTriX, from 1997, available freely at https://archive.org/
details/BallTriX_1020 3. Here is how it looks:

Figure 8.5: This is how the game is usually looks like

3Or at https://web.archive.org/web/20141110053442/http://www.download-central.ws/
Win32/Games/B/BallTriX/ or http://www.benya.com/balltrix/.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://archive.org/details/BallTriX_1020
https://archive.org/details/BallTriX_1020
https://web.archive.org/web/20141110053442/http://www.download-central.ws/Win32/Games/B/BallTriX/
https://web.archive.org/web/20141110053442/http://www.download-central.ws/Win32/Games/B/BallTriX/
http://www.benya.com/balltrix/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1019
So let’s see, is it be possible to find the random generator and do some trick with it.
IDA quickly recognize the standard _rand function in balltrix.exe at 0x00403DA0.
IDA also shows that it is called only from one place:
.text:00402C9C sub_402C9C proc near ;

CODE XREF: sub_402ACA+52
.text:00402C9C ; sub_402ACA+64 ...
.text:00402C9C
.text:00402C9C arg_0 = dword ptr 8
.text:00402C9C
.text:00402C9C push ebp
.text:00402C9D mov ebp, esp
.text:00402C9F push ebx
.text:00402CA0 push esi
.text:00402CA1 push edi
.text:00402CA2 mov eax, dword_40D430
.text:00402CA7 imul eax, dword_40D440
.text:00402CAE add eax, dword_40D5C8
.text:00402CB4 mov ecx, 32000
.text:00402CB9 cdq
.text:00402CBA idiv ecx
.text:00402CBC mov dword_40D440, edx
.text:00402CC2 call _rand
.text:00402CC7 cdq
.text:00402CC8 idiv [ebp+arg_0]
.text:00402CCB mov dword_40D430, edx
.text:00402CD1 mov eax, dword_40D430
.text:00402CD6 jmp $+5
.text:00402CDB pop edi
.text:00402CDC pop esi
.text:00402CDD pop ebx
.text:00402CDE leave
.text:00402CDF retn
.text:00402CDF sub_402C9C endp

We’ll call it “random”. Let’s not to dive into this function’s code yet.
This function is referred from 3 places.
Here are the first two:
.text:00402B16 mov eax, dword_40C03C ; 10 here
.text:00402B1B push eax
.text:00402B1C call random
.text:00402B21 add esp, 4
.text:00402B24 inc eax
.text:00402B25 mov [ebp+var_C], eax
.text:00402B28 mov eax, dword_40C040 ; 10 here
.text:00402B2D push eax
.text:00402B2E call random
.text:00402B33 add esp, 4

Here is the third one:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1020
.text:00402BBB mov eax, dword_40C058 ; 5 here
.text:00402BC0 push eax
.text:00402BC1 call random
.text:00402BC6 add esp, 4
.text:00402BC9 inc eax

So the function has only one argument.
10 is passed in first two cases and 5 in third. We can also notice that the board
has a size of 10*10 and there are 5 possible colors. This is it! The standard rand()
function returns a number in the 0..0x7FFF range and this is often inconvenient, so
many programmers implement their own random functions which returns a random
number in a specified range. In our case, the range is 0..n − 1 and n is passed as the
sole argument of the function. We can quickly check this in any debugger.
So let’s fix the third function call to always return zero. First, we will replace three
instructions (PUSH/CALL/ADD) by NOPs. Then we’ll add XOR EAX, EAX instruction, to
clear the EAX register.
.00402BB8: 83C410 add esp,010
.00402BBB: A158C04000 mov eax,[00040C058]
.00402BC0: 31C0 xor eax,eax
.00402BC2: 90 nop
.00402BC3: 90 nop
.00402BC4: 90 nop
.00402BC5: 90 nop
.00402BC6: 90 nop
.00402BC7: 90 nop
.00402BC8: 90 nop
.00402BC9: 40 inc eax
.00402BCA: 8B4DF8 mov ecx,[ebp][-8]
.00402BCD: 8D0C49 lea ecx,[ecx][ecx]*2
.00402BD0: 8B15F4D54000 mov edx,[00040D5F4]

So what we did is we replaced a call to the random() function by a code which always
returns zero.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1021
Let’s run it now:

Figure 8.6: Practical joke works

Oh yes, it works4.
But why are the arguments to the random() functions global variables? That’s just
because it’s possible to change the board size in the game’s settings, so these values
are not hardcoded. The 10 and 5 values are just defaults.

8.4 Minesweeper (Windows XP)
For those who are not very good at playing Minesweeper, we could try to reveal the
hidden mines in the debugger.
As we know, Minesweeper places mines randomly, so there has to be some kind of
random number generator or a call to the standard rand() C-function.
What is really cool about reversing Microsoft products is that there are PDB file with
symbols (function names, etc). When we load winmine.exe into IDA, it downloads
the PDB file exactly for this executable and shows all names.
So here it is, the only call to rand() is this function:
.text:01003940 ; __stdcall Rnd(x)
.text:01003940 _Rnd@4 proc near ; CODE XREF:

StartGame()+53
.text:01003940 ; StartGame()+61
.text:01003940
.text:01003940 arg_0 = dword ptr 4

4Author of this book once did this as a joke for his coworkers with the hope that they would stop playing.
They didn’t.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1022
.text:01003940
.text:01003940 call ds:__imp__rand
.text:01003946 cdq
.text:01003947 idiv [esp+arg_0]
.text:0100394B mov eax, edx
.text:0100394D retn 4
.text:0100394D _Rnd@4 endp

IDA named it so, and it was the name given to it by Minesweeper’s developers.
The function is very simple:
int Rnd(int limit)
{

return rand() % limit;
};

(There is no “limit” name in the PDB file; we manually named this argument like
this.)
So it returns a random value from 0 to a specified limit.
Rnd() is called only from one place, a function called StartGame(), and as it seems,
this is exactly the code which place the mines:
.text:010036C7 push _xBoxMac
.text:010036CD call _Rnd@4 ; Rnd(x)
.text:010036D2 push _yBoxMac
.text:010036D8 mov esi, eax
.text:010036DA inc esi
.text:010036DB call _Rnd@4 ; Rnd(x)
.text:010036E0 inc eax
.text:010036E1 mov ecx, eax
.text:010036E3 shl ecx, 5 ; ECX=ECX*32
.text:010036E6 test _rgBlk[ecx+esi], 80h
.text:010036EE jnz short loc_10036C7
.text:010036F0 shl eax, 5 ; EAX=EAX*32
.text:010036F3 lea eax, _rgBlk[eax+esi]
.text:010036FA or byte ptr [eax], 80h
.text:010036FD dec _cBombStart
.text:01003703 jnz short loc_10036C7

Minesweeper allows you to set the board size, so the X (xBoxMac) and Y (yBoxMac)
of the board are global variables. They are passed to Rnd() and random coordinates
are generated. A mine is placed by the OR instruction at 0x010036FA. And if it has
been placed before (it’s possible if the pair of Rnd() generates a coordinates pair
which has been already generated), then TEST and JNZ at 0x010036E6 jumps to the
generation routine again.
cBombStart is the global variable containing total number of mines. So this is loop.
The width of the array is 32 (we can conclude this by looking at the SHL instruction,
which multiplies one of the coordinates by 32).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1023
The size of the rgBlk global array can be easily determined by the difference be-
tween the rgBlk label in the data segment and the next known one. It is 0x360
(864):
.data:01005340 _rgBlk db 360h dup(?) ; DATA XREF:

MainWndProc(x,x,x,x)+574
.data:01005340 ; DisplayBlk(x,x)+23
.data:010056A0 _Preferences dd ? ; DATA XREF:

FixMenus()+2
...

864/32 = 27.
So the array size is 27∗32? It is close to what we know: when we try to set board size
to 100 ∗ 100 in Minesweeper settings, it fallbacks to a board of size 24 ∗ 30. So this is
the maximal board size here. And the array has a fixed size for any board size.
So let’s see all this in OllyDbg. We will ran Minesweeper, attaching OllyDbg to it and
now we can see the memory dump at the address of the rgBlk array (0x01005340)
5.
So we got this memory dump of the array:
Address Hex dump
01005340 10 10 10 10|10 10 10 10|10 10 10 0F|0F 0F 0F 0F|
01005350 0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|
01005360 10 0F 0F 0F|0F 0F 0F 0F|0F 0F 10 0F|0F 0F 0F 0F|
01005370 0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|
01005380 10 0F 0F 0F|0F 0F 0F 0F|0F 0F 10 0F|0F 0F 0F 0F|
01005390 0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|
010053A0 10 0F 0F 0F|0F 0F 0F 0F|8F 0F 10 0F|0F 0F 0F 0F|
010053B0 0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|
010053C0 10 0F 0F 0F|0F 0F 0F 0F|0F 0F 10 0F|0F 0F 0F 0F|
010053D0 0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|
010053E0 10 0F 0F 0F|0F 0F 0F 0F|0F 0F 10 0F|0F 0F 0F 0F|
010053F0 0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|
01005400 10 0F 0F 8F|0F 0F 8F 0F|0F 0F 10 0F|0F 0F 0F 0F|
01005410 0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|
01005420 10 8F 0F 0F|8F 0F 0F 0F|0F 0F 10 0F|0F 0F 0F 0F|
01005430 0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|
01005440 10 8F 0F 0F|0F 0F 8F 0F|0F 8F 10 0F|0F 0F 0F 0F|
01005450 0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|
01005460 10 0F 0F 0F|0F 8F 0F 0F|0F 8F 10 0F|0F 0F 0F 0F|
01005470 0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|
01005480 10 10 10 10|10 10 10 10|10 10 10 0F|0F 0F 0F 0F|
01005490 0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|
010054A0 0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|
010054B0 0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|
010054C0 0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|0F 0F 0F 0F|

OllyDbg, like any other hexadecimal editor, shows 16 bytes per line. So each 32-byte
array row occupies exactly 2 lines here.

5All addresses here are for Minesweeper for Windows XP SP3 English. They may differ for other service
packs.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1024
This is beginner level (9*9 board).
There is some square structure can be seen visually (0x10 bytes).
Wewill click “Run” in OllyDbg to unfreeze the Minesweeper process, then we’ll clicked
randomly at the Minesweeper window and trapped into mine, but now all mines are
visible:

Figure 8.7: Mines

By comparing the mine places and the dump, we can conclude that 0x10 stands for
border, 0x0F—empty block, 0x8F—mine. Perhaps, 0x10 is just a sentinel value.
Now we’ll add comments and also enclose all 0x8F bytes into square brackets:
border:
01005340 10 10 10 10 10 10 10 10 10 10 10 0F 0F 0F 0F 0F
01005350 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F
line #1:
01005360 10 0F 0F 0F 0F 0F 0F 0F 0F 0F 10 0F 0F 0F 0F 0F
01005370 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F
line #2:
01005380 10 0F 0F 0F 0F 0F 0F 0F 0F 0F 10 0F 0F 0F 0F 0F
01005390 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F
line #3:
010053A0 10 0F 0F 0F 0F 0F 0F 0F[8F]0F 10 0F 0F 0F 0F 0F
010053B0 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F
line #4:
010053C0 10 0F 0F 0F 0F 0F 0F 0F 0F 0F 10 0F 0F 0F 0F 0F
010053D0 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F
line #5:
010053E0 10 0F 0F 0F 0F 0F 0F 0F 0F 0F 10 0F 0F 0F 0F 0F
010053F0 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F
line #6:
01005400 10 0F 0F[8F]0F 0F[8F]0F 0F 0F 10 0F 0F 0F 0F 0F
01005410 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1025
line #7:
01005420 10[8F]0F 0F[8F]0F 0F 0F 0F 0F 10 0F 0F 0F 0F 0F
01005430 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F
line #8:
01005440 10[8F]0F 0F 0F 0F[8F]0F 0F[8F]10 0F 0F 0F 0F 0F
01005450 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F
line #9:
01005460 10 0F 0F 0F 0F[8F]0F 0F 0F[8F]10 0F 0F 0F 0F 0F
01005470 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F
border:
01005480 10 10 10 10 10 10 10 10 10 10 10 0F 0F 0F 0F 0F
01005490 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F 0F

Now we’ll remove all border bytes (0x10) and what’s beyond those:
0F 0F 0F 0F 0F 0F 0F 0F 0F
0F 0F 0F 0F 0F 0F 0F 0F 0F
0F 0F 0F 0F 0F 0F 0F[8F]0F
0F 0F 0F 0F 0F 0F 0F 0F 0F
0F 0F 0F 0F 0F 0F 0F 0F 0F
0F 0F[8F]0F 0F[8F]0F 0F 0F
[8F]0F 0F[8F]0F 0F 0F 0F 0F
[8F]0F 0F 0F 0F[8F]0F 0F[8F]
0F 0F 0F 0F[8F]0F 0F 0F[8F]

Yes, these are mines, now it can be clearly seen and compared with the screenshot.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1026
What is interesting is that we can modify the array right in OllyDbg. We can re-
move all mines by changing all 0x8F bytes by 0x0F, and here is what we’ll get in
Minesweeper:

Figure 8.8: All mines are removed in debugger

We can also move all of them to the first line:

Figure 8.9: Mines set in debugger

Well, the debugger is not very convenient for eavesdropping (which is our goal any-
way), so we’ll write a small utility to dump the contents of the board:
// Windows XP MineSweeper cheater
// written by dennis(a)yurichev.com for http://beginners.re/ book
#include <windows.h>

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1027
#include <assert.h>
#include <stdio.h>

int main (int argc, char * argv[])
{

int i, j;
HANDLE h;
DWORD PID, address, rd;
BYTE board[27][32];

if (argc!=3)
{

printf ("Usage: %s <PID> <address>\n", argv[0]);
return 0;

};

assert (argv[1]!=NULL);
assert (argv[2]!=NULL);

assert (sscanf (argv[1], "%d", &PID)==1);
assert (sscanf (argv[2], "%x", &address)==1);

h=OpenProcess (PROCESS_VM_OPERATION | PROCESS_VM_READ | ⤦
Ç PROCESS_VM_WRITE, FALSE, PID);

if (h==NULL)
{

DWORD e=GetLastError();
printf ("OpenProcess error: %08X\n", e);
return 0;

};

if (ReadProcessMemory (h, (LPVOID)address, board, sizeof(board), &⤦
Ç rd)!=TRUE)

{
printf ("ReadProcessMemory() failed\n");
return 0;

};

for (i=1; i<26; i++)
{

if (board[i][0]==0x10 && board[i][1]==0x10)
break; // end of board

for (j=1; j<31; j++)
{

if (board[i][j]==0x10)
break; // board border

if (board[i][j]==0x8F)
printf ("*");

else
printf (" ");

};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1028
printf ("\n");

};

CloseHandle (h);
};

Just set the PID6 7 and the address of the array (0x01005340 for Windows XP SP3
English) and it will dump it 8.
It attaches itself to a win32 process by PID and just reads process memory at the
address.

8.4.1 Finding grid automatically
This is kind of nuisance to set address each time when we run our utility. Also, various
Minesweeper versions may have the array on different address. Knowing the fact
that there is always a border (0x10 bytes), we can just find it in memory:

// find frame to determine the address
process_mem=(BYTE*)malloc(process_mem_size);
assert (process_mem!=NULL);

if (ReadProcessMemory (h, (LPVOID)start_addr, process_mem, ⤦
Ç process_mem_size, &rd)!=TRUE)

{
printf ("ReadProcessMemory() failed\n");
return 0;

};

// for 9*9 grid.
// FIXME: slow!
for (i=0; i<process_mem_size; i++)
{

if (memcmp(process_mem+i, "\x10\x10\x10\x10\x10\x10\x10\x10⤦
Ç \x10\x10\x10\x0F\x0F\x0F\x0F\x0F\x0F\x0F\x0F\x0F\x0F\x0F\x0F\x0F\x0F\⤦
Ç x0F\x0F\x0F\x0F\x0F\x0F\x0F\x10", 32)==0)

{
// found
address=start_addr+i;
break;

};
};
if (address==0)
{

printf ("Can't determine address of frame (and grid)\n");
return 0;

}
else
{

6Program/process ID
7PID it can be seen in Task Manager (enable it in “View → Select Columns”)
8The compiled executable is here: beginners.re

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://beginners.re/examples/minesweeper_WinXP/minesweeper_cheater.exe
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1029
printf ("Found frame and grid at 0x%x\n", address);

};

Full source code: https://beginners.re/paywall/RE4B-source/current-tree/
/examples/minesweeper/minesweeper_cheater2.c.

8.4.2 Exercises
• Why do the border bytes (or sentinel values) (0x10) exist in the array?
What they are for if they are not visible in Minesweeper’s interface? How could
it work without them?

• As it turns out, there are more values possible (for open blocks, for flagged by
user, etc). Try to find the meaning of each one.

• Modify my utility so it can remove all mines or set them in a fixed pattern that
you want in the Minesweeper process currently running.

8.5 Hacking Windows clock
Sometimes I do some kind of first April prank for my coworkers.
Let’s find, if we could do something with Windows clock? Can we force to go clock
hands backwards?
First of all, when you click on date/time in status bar,
a C:\WINDOWS\SYSTEM32\TIMEDATE.CPL module gets executed, which is usual ex-
ecutable PE-file.
Let’s see, how it draw hands? When I open the file (from Windows 7) in Resource
Hacker, there are clock faces, but with no hands:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//examples/minesweeper/minesweeper_cheater2.c
https://beginners.re/paywall/RE4B-source/current-tree//examples/minesweeper/minesweeper_cheater2.c
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1030

Figure 8.10: Resource Hacker

OK, what we know? How to draw a clock hand? All they are started at the middle
of circle, ending with its border. Hence, we must calculate coordinates of a point
on circle’s border. From school-level mathematics we may recall that we have to
use sine/cosine functions to draw circle, or at least square root. There are no such
things in TIMEDATE.CPL, at least at first glance. But, thanks to Microsoft debug-
ging PDB files, I can find a function named CAnalogClock::DrawHand(), which calls
Gdiplus::Graphics::DrawLine() at least twice.
Here is its code:
.text:6EB9DBC7 ; private: enum Gdiplus::Status __thiscall

CAnalogClock::_DrawHand(class Gdiplus::Graphics *, int, struct ClockHand
const &, class Gdiplus::Pen *)

.text:6EB9DBC7 ?_DrawHand@CAnalogClock@@AAE?⤦
Ç AW4Status@Gdiplus@@PAVGraphics@3@HABUClockHand@@PAVPen@3@@Z proc near

.text:6EB9DBC7 ; CODE XREF: CAnalogClock::_ClockPaint(HDC__ *)+163

.text:6EB9DBC7 ; CAnalogClock::_ClockPaint(HDC__ *)+18B

.text:6EB9DBC7

.text:6EB9DBC7 var_10 = dword ptr -10h

.text:6EB9DBC7 var_C = dword ptr -0Ch

.text:6EB9DBC7 var_8 = dword ptr -8

.text:6EB9DBC7 var_4 = dword ptr -4

.text:6EB9DBC7 arg_0 = dword ptr 8

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1031
.text:6EB9DBC7 arg_4 = dword ptr 0Ch
.text:6EB9DBC7 arg_8 = dword ptr 10h
.text:6EB9DBC7 arg_C = dword ptr 14h
.text:6EB9DBC7
.text:6EB9DBC7 mov edi, edi
.text:6EB9DBC9 push ebp
.text:6EB9DBCA mov ebp, esp
.text:6EB9DBCC sub esp, 10h
.text:6EB9DBCF mov eax, [ebp+arg_4]
.text:6EB9DBD2 push ebx
.text:6EB9DBD3 push esi
.text:6EB9DBD4 push edi
.text:6EB9DBD5 cdq
.text:6EB9DBD6 push 3Ch
.text:6EB9DBD8 mov esi, ecx
.text:6EB9DBDA pop ecx
.text:6EB9DBDB idiv ecx
.text:6EB9DBDD push 2
.text:6EB9DBDF lea ebx, table[edx*8]
.text:6EB9DBE6 lea eax, [edx+1Eh]
.text:6EB9DBE9 cdq
.text:6EB9DBEA idiv ecx
.text:6EB9DBEC mov ecx, [ebp+arg_0]
.text:6EB9DBEF mov [ebp+var_4], ebx
.text:6EB9DBF2 lea eax, table[edx*8]
.text:6EB9DBF9 mov [ebp+arg_4], eax
.text:6EB9DBFC call ?⤦

Ç SetInterpolationMode@Graphics@Gdiplus@@QAE?⤦
Ç AW4Status@2@W4InterpolationMode@2@@Z ;
Gdiplus::Graphics::SetInterpolationMode(Gdiplus::InterpolationMode)

.text:6EB9DC01 mov eax, [esi+70h]

.text:6EB9DC04 mov edi, [ebp+arg_8]

.text:6EB9DC07 mov [ebp+var_10], eax

.text:6EB9DC0A mov eax, [esi+74h]

.text:6EB9DC0D mov [ebp+var_C], eax

.text:6EB9DC10 mov eax, [edi]

.text:6EB9DC12 sub eax, [edi+8]

.text:6EB9DC15 push 8000 ; nDenominator

.text:6EB9DC1A push eax ; nNumerator

.text:6EB9DC1B push dword ptr [ebx+4] ; nNumber

.text:6EB9DC1E mov ebx, ds:__imp__MulDiv@12 ;
MulDiv(x,x,x)

.text:6EB9DC24 call ebx ; MulDiv(x,x,x) ; MulDiv(x,x,x)

.text:6EB9DC26 add eax, [esi+74h]

.text:6EB9DC29 push 8000 ; nDenominator

.text:6EB9DC2E mov [ebp+arg_8], eax

.text:6EB9DC31 mov eax, [edi]

.text:6EB9DC33 sub eax, [edi+8]

.text:6EB9DC36 push eax ; nNumerator

.text:6EB9DC37 mov eax, [ebp+var_4]

.text:6EB9DC3A push dword ptr [eax] ; nNumber

.text:6EB9DC3C call ebx ; MulDiv(x,x,x) ; MulDiv(x,x,x)

.text:6EB9DC3E add eax, [esi+70h]

.text:6EB9DC41 mov ecx, [ebp+arg_0]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1032
.text:6EB9DC44 mov [ebp+var_8], eax
.text:6EB9DC47 mov eax, [ebp+arg_8]
.text:6EB9DC4A mov [ebp+var_4], eax
.text:6EB9DC4D lea eax, [ebp+var_8]
.text:6EB9DC50 push eax
.text:6EB9DC51 lea eax, [ebp+var_10]
.text:6EB9DC54 push eax
.text:6EB9DC55 push [ebp+arg_C]
.text:6EB9DC58 call ?DrawLine@Graphics@Gdiplus@@QAE?⤦

Ç AW4Status@2@PBVPen@2@ABVPoint@2@1@Z ;
Gdiplus::Graphics::DrawLine(Gdiplus::Pen const *,Gdiplus::Point const
&,Gdiplus::Point const &)

.text:6EB9DC5D mov ecx, [edi+8]

.text:6EB9DC60 test ecx, ecx

.text:6EB9DC62 jbe short loc_6EB9DCAA

.text:6EB9DC64 test eax, eax

.text:6EB9DC66 jnz short loc_6EB9DCAA

.text:6EB9DC68 mov eax, [ebp+arg_4]

.text:6EB9DC6B push 8000 ; nDenominator

.text:6EB9DC70 push ecx ; nNumerator

.text:6EB9DC71 push dword ptr [eax+4] ; nNumber

.text:6EB9DC74 call ebx ; MulDiv(x,x,x) ; MulDiv(x,x,x)

.text:6EB9DC76 add eax, [esi+74h]

.text:6EB9DC79 push 8000 ; nDenominator

.text:6EB9DC7E push dword ptr [edi+8] ; nNumerator

.text:6EB9DC81 mov [ebp+arg_8], eax

.text:6EB9DC84 mov eax, [ebp+arg_4]

.text:6EB9DC87 push dword ptr [eax] ; nNumber

.text:6EB9DC89 call ebx ; MulDiv(x,x,x) ; MulDiv(x,x,x)

.text:6EB9DC8B add eax, [esi+70h]

.text:6EB9DC8E mov ecx, [ebp+arg_0]

.text:6EB9DC91 mov [ebp+var_8], eax

.text:6EB9DC94 mov eax, [ebp+arg_8]

.text:6EB9DC97 mov [ebp+var_4], eax

.text:6EB9DC9A lea eax, [ebp+var_8]

.text:6EB9DC9D push eax

.text:6EB9DC9E lea eax, [ebp+var_10]

.text:6EB9DCA1 push eax

.text:6EB9DCA2 push [ebp+arg_C]

.text:6EB9DCA5 call ?DrawLine@Graphics@Gdiplus@@QAE?⤦
Ç AW4Status@2@PBVPen@2@ABVPoint@2@1@Z ;
Gdiplus::Graphics::DrawLine(Gdiplus::Pen const *,Gdiplus::Point const
&,Gdiplus::Point const &)

.text:6EB9DCAA

.text:6EB9DCAA loc_6EB9DCAA: ; CODE XREF:
CAnalogClock::_DrawHand(Gdiplus::Graphics *,int,ClockHand const
&,Gdiplus::Pen *)+9B

.text:6EB9DCAA ; CAnalogClock::_DrawHand(Gdiplus::Graphics
*,int,ClockHand const &,Gdiplus::Pen *)+9F

.text:6EB9DCAA pop edi

.text:6EB9DCAB pop esi

.text:6EB9DCAC pop ebx

.text:6EB9DCAD leave

.text:6EB9DCAE retn 10h

.text:6EB9DCAE ?_DrawHand@CAnalogClock@@AAE?⤦

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1033
Ç AW4Status@Gdiplus@@PAVGraphics@3@HABUClockHand@@PAVPen@3@@Z endp

.text:6EB9DCAE

We can see that DrawLine() arguments are dependent on result of MulDiv() function
and a table[] table (name is mine), which has 8-byte elements (look at LEA’s second
operand).
What is inside of table[]?
.text:6EB87890 ; int table[]
.text:6EB87890 table dd 0
.text:6EB87894 dd 0FFFFE0C1h
.text:6EB87898 dd 344h
.text:6EB8789C dd 0FFFFE0ECh
.text:6EB878A0 dd 67Fh
.text:6EB878A4 dd 0FFFFE16Fh
.text:6EB878A8 dd 9A8h
.text:6EB878AC dd 0FFFFE248h
.text:6EB878B0 dd 0CB5h
.text:6EB878B4 dd 0FFFFE374h
.text:6EB878B8 dd 0F9Fh
.text:6EB878BC dd 0FFFFE4F0h
.text:6EB878C0 dd 125Eh
.text:6EB878C4 dd 0FFFFE6B8h
.text:6EB878C8 dd 14E9h

...

It’s referenced only from DrawHand() function. It has 120 32-bit words or 60 32-
bit pairs... wait, 60? Let’s take a closer look at these values. First of all, I’ll zap
6 pairs or 12 32-bit words with zeros, and then I’ll put patched TIMEDATE.CPL into
C:\WINDOWS\SYSTEM32. (You may need to set owner of the *TIMEDATE.CPL* file to
your primary user account (instead of TrustedInstaller), and also, boot in safe mode
with command prompt so you can copy the file, which is usually locked.)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1034

Figure 8.11: Attempt to run

Now when any hand is located at 0..5 seconds/minutes, it’s invisible! However, op-
posite (shorter) part of second hand is visible and moving. When any hand is outside
of this area, hand is visible as usual.
Let’s take even closer look at the table in Mathematica. I have copypasted table
from the TIMEDATE.CPL to a tbl file (480 bytes). We will take for granted the fact
that these are signed values, because half of elements are below zero (0FFFFE0C1h,
etc.). If these values would be unsigned, they would be suspiciously huge.
In[]:= tbl = BinaryReadList["~/.../tbl", "Integer32"]

Out[]= {0, -7999, 836, -7956, 1663, -7825, 2472, -7608, 3253, -7308, 3999, ⤦
Ç \

-6928, 4702, -6472, 5353, -5945, 5945, -5353, 6472, -4702, 6928, \
-4000, 7308, -3253, 7608, -2472, 7825, -1663, 7956, -836, 8000, 0, \
7956, 836, 7825, 1663, 7608, 2472, 7308, 3253, 6928, 4000, 6472, \
4702, 5945, 5353, 5353, 5945, 4702, 6472, 3999, 6928, 3253, 7308, \
2472, 7608, 1663, 7825, 836, 7956, 0, 7999, -836, 7956, -1663, 7825, \
-2472, 7608, -3253, 7308, -4000, 6928, -4702, 6472, -5353, 5945, \
-5945, 5353, -6472, 4702, -6928, 3999, -7308, 3253, -7608, 2472, \
-7825, 1663, -7956, 836, -7999, 0, -7956, -836, -7825, -1663, -7608, \
-2472, -7308, -3253, -6928, -4000, -6472, -4702, -5945, -5353, -5353, \
-5945, -4702, -6472, -3999, -6928, -3253, -7308, -2472, -7608, -1663, \
-7825, -836, -7956}

In[]:= Length[tbl]
Out[]= 120

Let’s treat two consecutive 32-bit values as pair:
In[]:= pairs = Partition[tbl, 2]
Out[]= {{0, -7999}, {836, -7956}, {1663, -7825}, {2472, -7608}, \
{3253, -7308}, {3999, -6928}, {4702, -6472}, {5353, -5945}, {5945, \
-5353}, {6472, -4702}, {6928, -4000}, {7308, -3253}, {7608, -2472}, \

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1035
{7825, -1663}, {7956, -836}, {8000, 0}, {7956, 836}, {7825,
1663}, {7608, 2472}, {7308, 3253}, {6928, 4000}, {6472,
4702}, {5945, 5353}, {5353, 5945}, {4702, 6472}, {3999,
6928}, {3253, 7308}, {2472, 7608}, {1663, 7825}, {836, 7956}, {0,
7999}, {-836, 7956}, {-1663, 7825}, {-2472, 7608}, {-3253,
7308}, {-4000, 6928}, {-4702, 6472}, {-5353, 5945}, {-5945,
5353}, {-6472, 4702}, {-6928, 3999}, {-7308, 3253}, {-7608,
2472}, {-7825, 1663}, {-7956, 836}, {-7999,
0}, {-7956, -836}, {-7825, -1663}, {-7608, -2472}, {-7308, -3253}, \
{-6928, -4000}, {-6472, -4702}, {-5945, -5353}, {-5353, -5945}, \
{-4702, -6472}, {-3999, -6928}, {-3253, -7308}, {-2472, -7608}, \
{-1663, -7825}, {-836, -7956}}

In[]:= Length[pairs]
Out[]= 60

Let’s try to treat each pair as X/Y coordinate and draw all 60 pairs, and also first 15
pairs:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1036

Figure 8.12: Mathematica

Now this is something! Each pair is just coordinate. First 15 pairs are coordinates
for 1

4
of circle.

Perhaps, Microsoft developers precalculated all coordinates and put them into ta-
ble. This is widespread, though somewhat old school practice – precalculated table
access is faster than calling relatively slow sine/cosine functions9. Sine/cosine oper-
ations are not that expensive anymore...
Now I can understand why when I zapped first 6 pairs, hands were invisible at that
area: in fact, hands were drawn, they just had zero length, because hand started at

9Today this is known as memoization

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1037
0:0 coordinate and ended there.

The prank (practical joke)

Given all that, how would we force hands to go counterclockwise? In fact, this is
simple, we need just to rotate the table, so each hand, instead of drawing at place
of zeroth second, would be drawing at place of 59th second.
I made the patcher a long time ago, at the very beginning of 2000s, for Windows
2000. Hard to believe, it still works for Windows 7, perhaps, the table hasn’t been
changed since then!
The patcher source code: https://beginners.re/paywall/RE4B-source/current-tree/
/examples/timedate/time_pt.c.
Now I can see all hands goes backwards:

Figure 8.13: Now it works

Well, there is no animation in this book, but if you look closer, you can see, that
hands are in fact shows correct time, but the whole clock face is rotated vertically,
like we see it from the inside of clock.

Windows 2000 leaked source code

So I did the patcher and then Windows 2000 source code has been leaked (I can’t
force you to trust me, though). Let’s take a look on source code if that function and
table.
The file is win2k/private/shell/cpls/utc/clock.c:
//
// Array containing the sine and cosine values for hand positions.
//
POINT rCircleTable[] =

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//examples/timedate/time_pt.c
https://beginners.re/paywall/RE4B-source/current-tree//examples/timedate/time_pt.c
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1038
{

{ 0, -7999},
{ 836, -7956},
{ 1663, -7825},
{ 2472, -7608},
{ 3253, -7308},

...
{ -4702, -6472},
{ -3999, -6928},
{ -3253, -7308},
{ -2472, -7608},
{ -1663, -7825},
{ -836 , -7956},

};

//
//
// DrawHand
//
// Draws the hands of the clock.
//
//

void DrawHand(
HDC hDC,
int pos,
HPEN hPen,
int scale,
int patMode,
PCLOCKSTR np)

{
LPPOINT lppt;
int radius;

MoveTo(hDC, np->clockCenter.x, np->clockCenter.y);
radius = MulDiv(np->clockRadius, scale, 100);
lppt = rCircleTable + pos;
SetROP2(hDC, patMode);
SelectObject(hDC, hPen);

LineTo(hDC,
np->clockCenter.x + MulDiv(lppt->x, radius, 8000),
np->clockCenter.y + MulDiv(lppt->y, radius, 8000));

}

Now it’s clear: coordinates has been precalculated as if clock face has height and
width of 2 ⋅ 8000, and then it’s rescaled to current clock face radius using MulDiv()
function.
POINT structure10 is a structure of two 32-bit values, first is x, second is y.
10https://msdn.microsoft.com/en-us/library/windows/desktop/dd162805(v=vs.85).aspx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://msdn.microsoft.com/en-us/library/windows/desktop/dd162805(v=vs.85).aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1039
8.6 (Windows 7) Solitaire: practical jokes
8.6.1 51 cards
This is a joke I did once for my coworkers who played a Solitaire game too much. I
was wondering, if it’s possible to remove some cards, or maybe add (duplicates).
I opened Solitaire.exe in IDA disassembler, which asked if to download PDB file for
it from Microsoft servers. This is usually a rule for many Windows executables and
DLLs. At least, PDB has all function names.
Then I tried to find a 52 number in all functions (because this card game uses 52
cards). As it turned out, only 2 functions has it.
The first is:
.text:00000001000393B4 ; __int64 __fastcall SolitaireGame::OnMoveComplete(⤦

Ç SolitaireGame *this)
.text:00000001000393B4 ?OnMoveComplete@SolitaireGame@@QEAAHXZ proc near

...

The second is the function with self-describing name (name pulled from PDB by IDA):
InitialDeal():
.text:00000001000365F8 ; void __fastcall SolitaireGame::InitialDeal(⤦

Ç SolitaireGame *__hidden this)
.text:00000001000365F8 ?InitialDeal@SolitaireGame@@QEAAXXZ proc near
.text:00000001000365F8
.text:00000001000365F8 var_58 = byte ptr -58h
.text:00000001000365F8 var_48 = qword ptr -48h
.text:00000001000365F8 var_40 = dword ptr -40h
.text:00000001000365F8 var_3C = dword ptr -3Ch
.text:00000001000365F8 var_38 = dword ptr -38h
.text:00000001000365F8 var_30 = qword ptr -30h
.text:00000001000365F8 var_28 = xmmword ptr -28h
.text:00000001000365F8 var_18 = byte ptr -18h
.text:00000001000365F8
.text:00000001000365F8 ; FUNCTION CHUNK AT .text:00000001000A55C2 SIZE ⤦

Ç 00000018 BYTES
.text:00000001000365F8
.text:00000001000365F8 ; __unwind { // __CxxFrameHandler3
.text:00000001000365F8 mov rax, rsp
.text:00000001000365FB push rdi
.text:00000001000365FC push r12
.text:00000001000365FE push r13
.text:0000000100036600 sub rsp, 60h
.text:0000000100036604 mov [rsp+78h+var_48], 0⤦

Ç FFFFFFFFFFFFFFFEh
.text:000000010003660D mov [rax+8], rbx
.text:0000000100036611 mov [rax+10h], rbp
.text:0000000100036615 mov [rax+18h], rsi
.text:0000000100036619 movaps xmmword ptr [rax-28h], xmm6
.text:000000010003661D mov rsi, rcx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1040
.text:0000000100036620 xor edx, edx ; struct ⤦

Ç Card *
.text:0000000100036622 call ?⤦

Ç SetSelectedCard@SolitaireGame@@QEAAXPEAVCard@@@Z ; SolitaireGame::⤦
Ç SetSelectedCard(Card *)

.text:0000000100036627 and qword ptr [rsi+0F0h], 0

.text:000000010003662F mov rax, cs:?⤦
Ç g_pSolitaireGame@@3PEAVSolitaireGame@@EA ; SolitaireGame * ⤦
Ç g_pSolitaireGame

.text:0000000100036636 mov rdx, [rax+48h]

.text:000000010003663A cmp byte ptr [rdx+51h], 0

.text:000000010003663E jz short loc_10003664E

.text:0000000100036640 xor r8d, r8d ; bool

.text:0000000100036643 mov dl, 1 ; int

.text:0000000100036645 lea ecx, [r8+3] ; this

.text:0000000100036649 call ?⤦
Ç PlaySoundProto@GameAudio@@YA_NH_NPEAI@Z ; GameAudio::PlaySoundProto(⤦
Ç int,bool,uint *)

.text:000000010003664E

.text:000000010003664E loc_10003664E: ; CODE XREF:⤦
Ç SolitaireGame::InitialDeal(void)+46

.text:000000010003664E mov rbx, [rsi+88h]

.text:0000000100036655 mov r8d, 4

.text:000000010003665B lea rdx, aCardstackCreat ; "⤦
Ç CardStack::CreateDeck()::uiNumSuits == "...

.text:0000000100036662 mov ebp, 10000h

.text:0000000100036667 mov ecx, ebp ; unsigned ⤦
Ç int

.text:0000000100036669 call ?Log@@YAXIPEBGZZ ; Log(uint,⤦
Ç ushort const *,...)

.text:000000010003666E mov r8d, 52 ; ---

.text:0000000100036674 lea rdx, aCardstackCreat_0 ; "⤦
Ç CardStack::CreateDeck()::uiNumCards == "...

.text:000000010003667B mov ecx, ebp ; unsigned ⤦
Ç int

.text:000000010003667D call ?Log@@YAXIPEBGZZ ; Log(uint,⤦
Ç ushort const *,...)

.text:0000000100036682 xor edi, edi

.text:0000000100036684 loc_100036684: ; CODE XREF:⤦
Ç SolitaireGame::InitialDeal(void)+C0

.text:0000000100036684 mov eax, 4EC4EC4Fh

.text:0000000100036689 mul edi

.text:000000010003668B mov r8d, edx

.text:000000010003668E shr r8d, 4 ; unsigned ⤦
Ç int

.text:0000000100036692 mov eax, r8d

.text:0000000100036695 imul eax, 52 ; ---

.text:0000000100036698 mov edx, edi

.text:000000010003669A sub edx, eax ; unsigned ⤦
Ç int

.text:000000010003669C mov rcx, [rbx+128h] ; this

.text:00000001000366A3 call ?⤦

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1041
Ç CreateCard@CardTable@@IEAAPEAVCard@@II@Z ; CardTable::CreateCard(uint⤦
Ç ,uint)

.text:00000001000366A8 mov rdx, rax ; struct ⤦
Ç Card *

.text:00000001000366AB mov rcx, rbx ; this

.text:00000001000366AE call ?⤦
Ç Push@CardStack@@QEAAXPEAVCard@@@Z ; CardStack::Push(Card *)

.text:00000001000366B3 inc edi

.text:00000001000366B5 cmp edi, 52 ; ---

.text:00000001000366B8 jb short loc_100036684

.text:00000001000366BA xor r8d, r8d ; bool

.text:00000001000366BD xor edx, edx ; bool

.text:00000001000366BF mov rcx, rbx ; this

.text:00000001000366C2 call ?⤦
Ç Arrange@CardStack@@QEAAX_N0@Z ; CardStack::Arrange(bool,bool)

.text:00000001000366C7 mov r13, [rsi+88h]

.text:00000001000366CE lea rdx, aCardstackShuff ; "⤦
Ç CardStack::Shuffle()"

.text:00000001000366D5 mov ecx, ebp ; unsigned ⤦
Ç int

.text:00000001000366D7 call ?Log@@YAXIPEBGZZ ; Log(uint,⤦
Ç ushort const *,...)

.text:00000001000366DC and [rsp+78h+var_40], 0

.text:00000001000366E1 and [rsp+78h+var_3C], 0

.text:00000001000366E6 mov [rsp+78h+var_38], 10h

.text:00000001000366EE xor ebx, ebx

.text:00000001000366F0 mov [rsp+78h+var_30], rbx

...

Anyway, we clearly see a loop of 52 iterations. A loop body has calls to CardTable()::CreateCard()
and CardStack::Push().
The CardTable::CreateCard() eventually calls Card::Init() with values in 0..51
range, as one of its arguments. This can be easily checked using debugger.
So I tried just to change the 52 (0x34) number to 51 (0x33) in the cmp edi, 52 in-
struction at 0x1000366B5 and run it. At first glance, nothing happened, but I noticed
that now it’s hard to solve the game. I spent almost an hour to reach this position:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1042

Ace of hearts is missing. Perhaps, internally, this card is numbered as 51th (if to
number them from zero).
In the other place I found all card names. Maybe names to be used to fetch card
graphics from resources?
.data:00000001000B6970 ?CARD_NAME@Card@@2PAPEBGA dq offset aTwoofclubs
.data:00000001000B6970 ; "⤦

Ç TwoOfClubs"
.data:00000001000B6978 dq offset aThreeofclubs ; "⤦

Ç ThreeOfClubs"
.data:00000001000B6980 dq offset aFourofclubs ; "⤦

Ç FourOfClubs"
.data:00000001000B6988 dq offset aFiveofclubs ; "⤦

Ç FiveOfClubs"
.data:00000001000B6990 dq offset aSixofclubs ; "⤦

Ç SixOfClubs"
.data:00000001000B6998 dq offset aSevenofclubs ; "⤦

Ç SevenOfClubs"
.data:00000001000B69A0 dq offset aEightofclubs ; "⤦

Ç EightOfClubs"
.data:00000001000B69A8 dq offset aNineofclubs ; "⤦

Ç NineOfClubs"
.data:00000001000B69B0 dq offset aTenofclubs ; "⤦

Ç TenOfClubs"

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1043
.data:00000001000B69B8 dq offset aJackofclubs ; "⤦

Ç JackOfClubs"
.data:00000001000B69C0 dq offset aQueenofclubs ; "⤦

Ç QueenOfClubs"
.data:00000001000B69C8 dq offset aKingofclubs ; "⤦

Ç KingOfClubs"
.data:00000001000B69D0 dq offset aAceofclubs ; "⤦

Ç AceOfClubs"
.data:00000001000B69D8 dq offset aTwoofdiamonds ; "⤦

Ç TwoOfDiamonds"
.data:00000001000B69E0 dq offset aThreeofdiamond ; "⤦

Ç ThreeOfDiamonds"
.data:00000001000B69E8 dq offset aFourofdiamonds ; "⤦

Ç FourOfDiamonds"
.data:00000001000B69F0 dq offset aFiveofdiamonds ; "⤦

Ç FiveOfDiamonds"
.data:00000001000B69F8 dq offset aSixofdiamonds ; "⤦

Ç SixOfDiamonds"
.data:00000001000B6A00 dq offset aSevenofdiamond ; "⤦

Ç SevenOfDiamonds"
.data:00000001000B6A08 dq offset aEightofdiamond ; "⤦

Ç EightOfDiamonds"
.data:00000001000B6A10 dq offset aNineofdiamonds ; "⤦

Ç NineOfDiamonds"
.data:00000001000B6A18 dq offset aTenofdiamonds ; "⤦

Ç TenOfDiamonds"
.data:00000001000B6A20 dq offset aJackofdiamonds ; "⤦

Ç JackOfDiamonds"
.data:00000001000B6A28 dq offset aQueenofdiamond ; "⤦

Ç QueenOfDiamonds"
.data:00000001000B6A30 dq offset aKingofdiamonds ; "⤦

Ç KingOfDiamonds"
.data:00000001000B6A38 dq offset aAceofdiamonds ; "⤦

Ç AceOfDiamonds"
.data:00000001000B6A40 dq offset aTwoofspades ; "⤦

Ç TwoOfSpades"
.data:00000001000B6A48 dq offset aThreeofspades ; "⤦

Ç ThreeOfSpades"
.data:00000001000B6A50 dq offset aFourofspades ; "⤦

Ç FourOfSpades"
.data:00000001000B6A58 dq offset aFiveofspades ; "⤦

Ç FiveOfSpades"
.data:00000001000B6A60 dq offset aSixofspades ; "⤦

Ç SixOfSpades"
.data:00000001000B6A68 dq offset aSevenofspades ; "⤦

Ç SevenOfSpades"
.data:00000001000B6A70 dq offset aEightofspades ; "⤦

Ç EightOfSpades"
.data:00000001000B6A78 dq offset aNineofspades ; "⤦

Ç NineOfSpades"
.data:00000001000B6A80 dq offset aTenofspades ; "⤦

Ç TenOfSpades"
.data:00000001000B6A88 dq offset aJackofspades ; "⤦

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1044
Ç JackOfSpades"

.data:00000001000B6A90 dq offset aQueenofspades ; "⤦
Ç QueenOfSpades"

.data:00000001000B6A98 dq offset aKingofspades ; "⤦
Ç KingOfSpades"

.data:00000001000B6AA0 dq offset aAceofspades ; "⤦
Ç AceOfSpades"

.data:00000001000B6AA8 dq offset aTwoofhearts ; "⤦
Ç TwoOfHearts"

.data:00000001000B6AB0 dq offset aThreeofhearts ; "⤦
Ç ThreeOfHearts"

.data:00000001000B6AB8 dq offset aFourofhearts ; "⤦
Ç FourOfHearts"

.data:00000001000B6AC0 dq offset aFiveofhearts ; "⤦
Ç FiveOfHearts"

.data:00000001000B6AC8 dq offset aSixofhearts ; "⤦
Ç SixOfHearts"

.data:00000001000B6AD0 dq offset aSevenofhearts ; "⤦
Ç SevenOfHearts"

.data:00000001000B6AD8 dq offset aEightofhearts ; "⤦
Ç EightOfHearts"

.data:00000001000B6AE0 dq offset aNineofhearts ; "⤦
Ç NineOfHearts"

.data:00000001000B6AE8 dq offset aTenofhearts ; "⤦
Ç TenOfHearts"

.data:00000001000B6AF0 dq offset aJackofhearts ; "⤦
Ç JackOfHearts"

.data:00000001000B6AF8 dq offset aQueenofhearts ; "⤦
Ç QueenOfHearts"

.data:00000001000B6B00 dq offset aKingofhearts ; "⤦
Ç KingOfHearts"

.data:00000001000B6B08 dq offset aAceofhearts ; "⤦
Ç AceOfHearts"

.data:00000001000B6B10 ; public: static unsigned short const * near * Card⤦
Ç ::CARD_HUMAN_NAME

.data:00000001000B6B10 ?CARD_HUMAN_NAME@Card@@2PAPEBGA dq offset ⤦
Ç a54639Cardnames

.data:00000001000B6B10 ; "|54639|⤦
Ç CardNames|Two Of Clubs"

.data:00000001000B6B18 dq offset a64833Cardnames ; "|64833|⤦
Ç CardNames|Three Of Clubs"

.data:00000001000B6B20 dq offset a62984Cardnames ; "|62984|⤦
Ç CardNames|Four Of Clubs"

.data:00000001000B6B28 dq offset a65200Cardnames ; "|65200|⤦
Ç CardNames|Five Of Clubs"

.data:00000001000B6B30 dq offset a52967Cardnames ; "|52967|⤦
Ç CardNames|Six Of Clubs"

.data:00000001000B6B38 dq offset a42781Cardnames ; "|42781|⤦
Ç CardNames|Seven Of Clubs"

.data:00000001000B6B40 dq offset a49217Cardnames ; "|49217|⤦
Ç CardNames|Eight Of Clubs"

.data:00000001000B6B48 dq offset a44682Cardnames ; "|44682|⤦

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1045
Ç CardNames|Nine Of Clubs"

.data:00000001000B6B50 dq offset a51853Cardnames ; "|51853|⤦
Ç CardNames|Ten Of Clubs"

.data:00000001000B6B58 dq offset a46368Cardnames ; "|46368|⤦
Ç CardNames|Jack Of Clubs"

.data:00000001000B6B60 dq offset a61344Cardnames ; "|61344|⤦
Ç CardNames|Queen Of Clubs"

.data:00000001000B6B68 dq offset a65017Cardnames ; "|65017|⤦
Ç CardNames|King Of Clubs"

.data:00000001000B6B70 dq offset a57807Cardnames ; "|57807|⤦
Ç CardNames|Ace Of Clubs"

.data:00000001000B6B78 dq offset a48455Cardnames ; "|48455|⤦
Ç CardNames|Two Of Diamonds"

.data:00000001000B6B80 dq offset a44156Cardnames ; "|44156|⤦
Ç CardNames|Three Of Diamonds"

.data:00000001000B6B88 dq offset a51672Cardnames ; "|51672|⤦
Ç CardNames|Four Of Diamonds"

.data:00000001000B6B90 dq offset a45972Cardnames ; "|45972|⤦
Ç CardNames|Five Of Diamonds"

.data:00000001000B6B98 dq offset a47206Cardnames ; "|47206|⤦
Ç CardNames|Six Of Diamonds"

.data:00000001000B6BA0 dq offset a48399Cardnames ; "|48399|⤦
Ç CardNames|Seven Of Diamonds"

.data:00000001000B6BA8 dq offset a47847Cardnames ; "|47847|⤦
Ç CardNames|Eight Of Diamonds"

.data:00000001000B6BB0 dq offset a48606Cardnames ; "|48606|⤦
Ç CardNames|Nine Of Diamonds"

.data:00000001000B6BB8 dq offset a61278Cardnames ; "|61278|⤦
Ç CardNames|Ten Of Diamonds"

.data:00000001000B6BC0 dq offset a52038Cardnames ; "|52038|⤦
Ç CardNames|Jack Of Diamonds"

.data:00000001000B6BC8 dq offset a54643Cardnames ; "|54643|⤦
Ç CardNames|Queen Of Diamonds"

.data:00000001000B6BD0 dq offset a48902Cardnames ; "|48902|⤦
Ç CardNames|King Of Diamonds"

.data:00000001000B6BD8 dq offset a46672Cardnames ; "|46672|⤦
Ç CardNames|Ace Of Diamonds"

.data:00000001000B6BE0 dq offset a41049Cardnames ; "|41049|⤦
Ç CardNames|Two Of Spades"

.data:00000001000B6BE8 dq offset a49327Cardnames ; "|49327|⤦
Ç CardNames|Three Of Spades"

.data:00000001000B6BF0 dq offset a51933Cardnames ; "|51933|⤦
Ç CardNames|Four Of Spades"

.data:00000001000B6BF8 dq offset a42651Cardnames ; "|42651|⤦
Ç CardNames|Five Of Spades"

.data:00000001000B6C00 dq offset a65342Cardnames ; "|65342|⤦
Ç CardNames|Six Of Spades"

.data:00000001000B6C08 dq offset a53644Cardnames ; "|53644|⤦
Ç CardNames|Seven Of Spades"

.data:00000001000B6C10 dq offset a54466Cardnames ; "|54466|⤦
Ç CardNames|Eight Of Spades"

.data:00000001000B6C18 dq offset a56874Cardnames ; "|56874|⤦
Ç CardNames|Nine Of Spades"

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1046
.data:00000001000B6C20 dq offset a46756Cardnames ; "|46756|⤦

Ç CardNames|Ten Of Spades"
.data:00000001000B6C28 dq offset a62876Cardnames ; "|62876|⤦

Ç CardNames|Jack Of Spades"
.data:00000001000B6C30 dq offset a64633Cardnames ; "|64633|⤦

Ç CardNames|Queen Of Spades"
.data:00000001000B6C38 dq offset a46215Cardnames ; "|46215|⤦

Ç CardNames|King Of Spades"
.data:00000001000B6C40 dq offset a60450Cardnames ; "|60450|⤦

Ç CardNames|Ace Of Spades"
.data:00000001000B6C48 dq offset a51010Cardnames ; "|51010|⤦

Ç CardNames|Two Of Hearts"
.data:00000001000B6C50 dq offset a64948Cardnames ; "|64948|⤦

Ç CardNames|Three Of Hearts"
.data:00000001000B6C58 dq offset a43079Cardnames ; "|43079|⤦

Ç CardNames|Four Of Hearts"
.data:00000001000B6C60 dq offset a57131Cardnames ; "|57131|⤦

Ç CardNames|Five Of Hearts"
.data:00000001000B6C68 dq offset a58953Cardnames ; "|58953|⤦

Ç CardNames|Six Of Hearts"
.data:00000001000B6C70 dq offset a45105Cardnames ; "|45105|⤦

Ç CardNames|Seven Of Hearts"
.data:00000001000B6C78 dq offset a47775Cardnames ; "|47775|⤦

Ç CardNames|Eight Of Hearts"
.data:00000001000B6C80 dq offset a41825Cardnames ; "|41825|⤦

Ç CardNames|Nine Of Hearts"
.data:00000001000B6C88 dq offset a41501Cardnames ; "|41501|⤦

Ç CardNames|Ten Of Hearts"
.data:00000001000B6C90 dq offset a47108Cardnames ; "|47108|⤦

Ç CardNames|Jack Of Hearts"
.data:00000001000B6C98 dq offset a55659Cardnames ; "|55659|⤦

Ç CardNames|Queen Of Hearts"
.data:00000001000B6CA0 dq offset a44572Cardnames ; "|44572|⤦

Ç CardNames|King Of Hearts"
.data:00000001000B6CA8 dq offset a44183Cardnames ; "|44183|⤦

Ç CardNames|Ace Of Hearts"

If you want to do this to someone, be sure his/her mental health is stable.
Aside of function names from PDB file, there are lots of Log() function calls that
can help significantly, because the Solitaire game reports about what it’s doing right
now.
Homework: try to remove several cards or two of clubs. And what if to swap card
names in arrays of strings?
I also tried to pass a numbers like 0, 0..50 to Card:Init() (so to have 2 zeroes in a
list of 52 numbers). Then I saw two two of clubs cards at one moment, but Solitaire
behaves erratically.
This is patched Windows 7 Solitare: Solitaire51.exe.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//examples/solitaire/51/Solitaire51.exe
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1047
8.6.2 53 cards
Now take a look on the first part of the loop:
.text:0000000100036684 loc_100036684: ; CODE XREF:⤦

Ç SolitaireGame::InitialDeal(void)+↓C0j
.text:0000000100036684 mov eax, 4EC4EC4Fh
.text:0000000100036689 mul edi
.text:000000010003668B mov r8d, edx
.text:000000010003668E shr r8d, 4 ; unsigned ⤦

Ç int
.text:0000000100036692 mov eax, r8d
.text:0000000100036695 imul eax, 52
.text:0000000100036698 mov edx, edi
.text:000000010003669A sub edx, eax ; unsigned ⤦

Ç int
.text:000000010003669C mov rcx, [rbx+128h] ; this
.text:00000001000366A3 call ?⤦

Ç CreateCard@CardTable@@IEAAPEAVCard@@II@Z ; CardTable::CreateCard(uint⤦
Ç ,uint)

.text:00000001000366A8 mov rdx, rax ; struct ⤦
Ç Card *

.text:00000001000366AB mov rcx, rbx ; this

.text:00000001000366AE call ?⤦
Ç Push@CardStack@@QEAAXPEAVCard@@@Z ; CardStack::Push(Card *)

.text:00000001000366B3 inc edi

.text:00000001000366B5 cmp edi, 52

.text:00000001000366B8 jb short loc_100036684

What is with multiplication by 4EC4EC4Fh? Surely, this is division by multiplication.
And what Hex-Rays can say:

v5 = 0;
do
{
v6 = CardTable::CreateCard(v4[37], v5 % 0x34, v5 / 0x34);
CardStack::Push((CardStack *)v4, v6);
++v5;

}
while (v5 < 0x34);

Somehow, CreateCard() functions takes two arguments: iterator divided by 52 and
a remainder of the division operation. Hard to say, why they did so. Solitaire can’t
allow more than 52 cards, so the last argument is senseless, it’s always zero.
But when I patch cmp edi, 52 instruction at 0x1000366B5 to be cmp edi, 53, I
found that there are now 53 cards. The last one is two of clubs, because it’s num-
bered as 0th card.
During the last iteration, 0x52 is divided by 0x52, remainder is zero, so 0th card is
added twice.
What a frustration, there are two two of clubs:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1048

This is patched Windows 7 Solitare: Solitaire53.

8.7 FreeCell prank (Windows 7)
This is a prank I once played for my coworkers who played FreeCell solitaire too much.
Can we make FreeCell always deal the same game each time? Like, you know, in
“Groundhog Day” movie?
(I’m writing this in November 2019. Somehow, IDA can’t get PDBs from Microsoft
servers. Maybe Windows 7 is unsupported anymore? Anyway, I can’t get function
names...)

8.7.1 Part I
So I loaded FreeCell.exe into IDA and found that both rand(), srand() and time() are
imported from msvcrt.dll. time() is indeed used as a seed for srand():
.text:01029612 sub_1029612 proc near ; CODE

XREF: sub_102615C+149
.text:01029612 ;

sub_1029DA6+67

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//examples/solitaire/53/Solitaire53.exe
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1049
.text:01029612 8B FF mov edi, edi
.text:01029614 56 push esi
.text:01029615 57 push edi
.text:01029616 6A 00 push 0 ; Time
.text:01029618 8B F9 mov edi, ecx
.text:0102961A FF 15 80 16 00+ call ds:time
.text:01029620 50 push eax ; Seed
.text:01029621 FF 15 84 16 00+ call ds:srand
.text:01029627 8B 35 AC 16 00+ mov esi, ds:rand
.text:0102962D 59 pop ecx
.text:0102962E 59 pop ecx
.text:0102962F FF D6 call esi ; rand
.text:01029631 FF D6 call esi ; rand
.text:01029633
.text:01029633 loc_1029633: ; CODE

XREF: sub_1029612+26
.text:01029633 ;

sub_1029612+2D
.text:01029633 FF D6 call esi ; rand
.text:01029635 83 F8 01 cmp eax, 1
.text:01029638 7C F9 jl short loc_1029633
.text:0102963A 3D 40 42 0F 00 cmp eax, 1000000
.text:0102963F 7F F2 jg short loc_1029633
.text:01029641 6A 01 push 1
.text:01029643 50 push eax
.text:01029644 8B CF mov ecx, edi
.text:01029646 E8 2D F8 FF FF call sub_1028E78
.text:0102964B 5F pop edi
.text:0102964C 5E pop esi
.text:0102964D C3 retn
.text:0102964D sub_1029612 endp

Several (redundant) calls to rand() are funny, that reminds me:
“In the morning you will send for a hansom, desiring your man to take neither the
first nor the second which may present itself.” (The Memoirs of Sherlock Holmes,
by Arthur Conan Doyle11)
There is another call of time() and srand() pair, but my tracer showed that this is the
point of our interest:
tracer.exe -l:FreeCell.exe bpf=msvcrt.dll!time bpf=msvcrt.dll!srand,args:1

...

TID=5340|(0) msvcrt.dll!time() (called from FreeCell.exe!BASE+0x29620 (0⤦
Ç x209620))

TID=5340|(0) msvcrt.dll!time() -> 0x5ddb68aa
TID=5340|(1) msvcrt.dll!srand(0x5ddb68aa) (called from FreeCell.exe!BASE+0⤦

Ç x29627 (0x209627))
TID=5340|(1) msvcrt.dll!srand() -> 0x5507e0
TID=5340|(1) msvcrt.dll!srand(0x399f) (called from FreeCell.exe!BASE+0⤦

Ç x27d3a (0x207d3a))

11http://www.gutenberg.org/files/834/834-0.txt

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.gutenberg.org/files/834/834-0.txt
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1050
TID=5340|(1) msvcrt.dll!srand() -> 0x5507e0

You see, the time() function returned 0x5ddb68aa and the very same value is used
as an argument for srand().
Let’s try to force time() to always return 0:
tracer.exe -l:FreeCell.exe bpf=msvcrt.dll!time,rt:0 bpf=msvcrt.dll!srand,⤦

Ç args:1

...

TID=2104|(0) msvcrt.dll!time() (called from FreeCell.exe!BASE+0x29620 (0⤦
Ç xb19620))

TID=2104|(0) msvcrt.dll!time() -> 0x5ddb68f6
TID=2104|(0) Modifying EAX register to 0x0
TID=2104|(1) msvcrt.dll!srand(0x0) (called from FreeCell.exe!BASE+0x29627 ⤦

Ç (0xb19627))
TID=2104|(1) msvcrt.dll!srand() -> 0x3707e0
TID=2104|(1) msvcrt.dll!srand(0x52f6) (called from FreeCell.exe!BASE+0⤦

Ç x27d3a (0xb17d3a))
TID=2104|(1) msvcrt.dll!srand() -> 0x3707e0

Now I’m seeing the same game each time I’m running FreeCell using tracer:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1051
Now how to patch the executable?
We want to pass 0 as an argument to srand() at 0x01029620. But there is a one-byte
instruction: PUSH EAX. PUSH 0 is two-byte instruction. How to squeeze it into?
What is in other registers at this moment? Using tracer I’m dumping all them:
tracer.exe -l:FreeCell.exe bpx=FreeCell.exe!0x01029620

...

TID=4448|(0) FreeCell.exe!0x1029620
EAX=0x5ddb6ac4 EBX=0x00000000 ECX=0x00000000 EDX=0x00000000
ESI=0x054732d0 EDI=0x054732d0 EBP=0x0020f2bc ESP=0x0020f298
EIP=0x00899620
FLAGS=PF ZF IF
TID=4448|(0) FreeCell.exe!0x1029620
EAX=0x5ddb6ac8 EBX=0x00000002 ECX=0x00000000 EDX=0x00000000
ESI=0xffffff11 EDI=0x054732d0 EBP=0x0020da78 ESP=0x0020d9d4
EIP=0x00899620
FLAGS=PF ZF IF
TID=4448|(0) FreeCell.exe!0x1029620
EAX=0x5ddb6aca EBX=0x00000002 ECX=0x00000000 EDX=0x00000000
ESI=0x7740c460 EDI=0x054732d0 EBP=0x0020da78 ESP=0x0020d9d4
EIP=0x00899620
FLAGS=PF ZF IF
...

No matter how often I restart the game, ECX and EDX are seems to be always 0. So I
patching PUSH EAX at 0x01029620 to PUSH EDX (also one-byte instruction), and now
FreeCell always shows the same game to the player.
However, other options could exist. As a matter of fact, we don’t need to pass 0 to
srand(). Rather, we want to pass a constant to srand() to make game the same each
time. As we can see, EDI’s value hasn’t been changing. Maybe we could try it as
well.
Now a bit harder patching. Let’s open FreeCell.exe in Hiew:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1052

We have no space to replace one-byte PUSH EAX with two-byte PUSH 0. And we can’t
simply fill CALL ds:time with NOPs, because there is a FIXUP (address of time()
function in msvcrt.dll). (Hiew marked these 4 bytes are gray bytes.) So what I’m
doing: patching first 2 bytes to EB 04. This is a JMP to bypass 4 FIXUP-ed bytes:

Then I replace PUSH EAX with NOP. So that srand() would have its zeroes arguments
from PUSH 0 above. Also, I patch one of POP ECX to NOP, because I removed one
PUSH.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1053

Now Windows loader will write 4-byte FIXUP at 0x0102961C, but we don’t care:
time()’s address will not be used anymore.

8.7.2 Part II: breaking the Select Game submenu
The user can still choose different game in the menu. Let’s see if srand() is still called.
I’m trying to enter 1/2/3 in ”Select Game” dialog box:
tracer.exe -l:FreeCell.exe bpf=msvcrt.dll!srand,args:1

...

TID=4936|(0) msvcrt.dll!srand(0x5ddb6df9) (called from FreeCell.exe!BASE+0⤦
Ç x29627 (0xb49627))

TID=4936|(0) msvcrt.dll!srand() -> 0x5907e0
TID=4936|(0) msvcrt.dll!srand(0x2b40) (called from FreeCell.exe!BASE+0⤦

Ç x27d3a (0xb47d3a))
TID=4936|(0) msvcrt.dll!srand() -> 0x5907e0
TID=4936|(0) msvcrt.dll!srand(0x1) (called from FreeCell.exe!BASE+0x27d3a ⤦

Ç (0xb47d3a))
TID=4936|(0) msvcrt.dll!srand() -> 0x5907e0
TID=4936|(0) msvcrt.dll!srand(0x2) (called from FreeCell.exe!BASE+0x27d3a ⤦

Ç (0xb47d3a))
TID=4936|(0) msvcrt.dll!srand() -> 0x5907e0
TID=4936|(0) msvcrt.dll!srand(0x3) (called from FreeCell.exe!BASE+0x27d3a ⤦

Ç (0xb47d3a))
TID=4936|(0) msvcrt.dll!srand() -> 0x5907e0

Yes, the number user enters is just an argument for srand(). Where it is called?
.text:01027CBA loc_1027CBA: ; ⤦

Ç CODE XREF: sub_1027AC6+179
.text:01027CBA 83 FF FC cmp edi, 0FFFFFFFCh
.text:01027CBD 75 74 jnz short loc_1027D33

...

.text:01027D33 loc_1027D33: ; ⤦
Ç CODE XREF: sub_1027AC6+1F7

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1054
.text:01027D33 57 push edi ; ⤦

Ç Seed
.text:01027D34 FF 15 84 16 00+ call ds:srand
.text:01027D3A 59 pop ecx
.text:01027D3B 6A 34 push 34h
.text:01027D3D 5B pop ebx
.text:01027D3E 33 C0 xor eax, eax

I couldn’t patch one-byte PUSH EDI to two-byte PUSH 0. But I see that there is only
one single jump to loc_1027D33 from the above.
I’m patching CMP EDI, ... to XOR EDI, EDI, padding the 3rd byte to NOP. I’m
patching also JNZ to JMP, so that jump will always occur.
Now FreeCell ignores the number user enters, but suddenly, there is also the same
game at start:

It seems that the code we patched in part I is somehow connected to a code after
0x01027CBD, that executes if EDI==0xFFFFFFFC. Anyway, our goal is accomplished
— the game is always the same at the start and the user can’t choose another using
the menu.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1055
8.8 Dongles
The author of these lines, occasionally did software copy-protection dongle replace-
ments, or “dongle emulators” and here are couple examples of how it’s happening.
About one of the cases about Rocket and Z3 that is not present here, you can read
here: http://yurichev.com/tmp/SAT_SMT_DRAFT.pdf.

8.8.1 Example #1: MacOS Classic and PowerPC
Here is an example of a program for MacOS Classic 12, for PowerPC. The company
who developed the software product has disappeared a long time ago, so the (legal)
customer was afraid of physical dongle damage.
While running without a dongle connected, a message box with the text ”Invalid
Security Device” appeared.
Luckily, this text string could easily be found in the executable binary file.
Let’s pretend we are not very familiar both with Mac OS Classic and PowerPC, but
will try anyway.
IDA opened the executable file smoothly, reported its type as ”PEF (Mac OS or Be
OS executable)” (indeed, it is a standard Mac OS Classic file format).
By searching for the text string with the error message, we’ve got into this code
fragment:
...

seg000:000C87FC 38 60 00 01 li %r3, 1
seg000:000C8800 48 03 93 41 bl check1
seg000:000C8804 60 00 00 00 nop
seg000:000C8808 54 60 06 3F clrlwi. %r0, %r3, 24
seg000:000C880C 40 82 00 40 bne OK
seg000:000C8810 80 62 9F D8 lwz %r3, TC_aInvalidSecurityDevice

...

Yes, this is PowerPC code.
The CPU is a very typical 32-bit RISC of 1990s era.
Each instruction occupies 4 bytes (just as in MIPS and ARM) and the names somewhat
resemble MIPS instruction names.
check1() is a function name we’ll give to it later. BL is Branch Link instruction, e.g.,
intended for calling subroutines.
The crucial point is the BNE instruction which jumps if the dongle protection check
passes or not if an error occurs: then the address of the text string gets loaded into
the r3 register for the subsequent passing into a message box routine.
12pre-UNIX MacOS

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://yurichev.com/tmp/SAT_SMT_DRAFT.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1056
From the [Steve Zucker, SunSoft and Kari Karhi, IBM, SYSTEM V APPLICATION BINARY
INTERFACE: PowerPC Processor Supplement, (1995)]13we will found out that the r3
register is used for return values (and r4, in case of 64-bit values).
Another yet unknown instruction is CLRLWI. From [PowerPC(tm) Microprocessor Fam-
ily: The Programming Environments for 32-Bit Microprocessors, (2000)]14we’ll learn
that this instruction does both clearing and loading. In our case, it clears the 24
high bits from the value in r3 and puts them in r0, so it is analogical to MOVZX in x86
(1.23.1 on page 255), but it also sets the flags, so BNE can check them afterwards.
Let’s take a look into the check1() function:
seg000:00101B40 check1: # CODE XREF: seg000:00063E7Cp
seg000:00101B40 # sub_64070+160p ...
seg000:00101B40
seg000:00101B40 .set arg_8, 8
seg000:00101B40
seg000:00101B40 7C 08 02 A6 mflr %r0
seg000:00101B44 90 01 00 08 stw %r0, arg_8(%sp)
seg000:00101B48 94 21 FF C0 stwu %sp, -0x40(%sp)
seg000:00101B4C 48 01 6B 39 bl check2
seg000:00101B50 60 00 00 00 nop
seg000:00101B54 80 01 00 48 lwz %r0, 0x40+arg_8(%sp)
seg000:00101B58 38 21 00 40 addi %sp, %sp, 0x40
seg000:00101B5C 7C 08 03 A6 mtlr %r0
seg000:00101B60 4E 80 00 20 blr
seg000:00101B60 # End of function check1

As you can see in IDA, that function is called from many places in the program, but
only the r3 register’s value is checked after each call.
All this function does is to call the other function, so it is a thunk function: there
are function prologue and epilogue, but the r3 register is not touched, so checkl()
returns what check2() returns.
BLR15 looks like the return from the function, but since IDA does the function layout,
we probably do not need to care about this.
Since it is a typical RISC, it seems that subroutines are called using a link register,
just like in ARM.
The check2() function is more complex:
seg000:00118684 check2: # CODE XREF: check1+Cp
seg000:00118684
seg000:00118684 .set var_18, -0x18
seg000:00118684 .set var_C, -0xC
seg000:00118684 .set var_8, -8
seg000:00118684 .set var_4, -4
seg000:00118684 .set arg_8, 8
seg000:00118684

13Also available as http://yurichev.com/mirrors/PowerPC/elfspec_ppc.pdf
14Also available as http://yurichev.com/mirrors/PowerPC/6xx_pem.pdf
15(PowerPC) Branch to Link Register

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://yurichev.com/mirrors/PowerPC/elfspec_ppc.pdf
http://yurichev.com/mirrors/PowerPC/6xx_pem.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1057
seg000:00118684 93 E1 FF FC stw %r31, var_4(%sp)
seg000:00118688 7C 08 02 A6 mflr %r0
seg000:0011868C 83 E2 95 A8 lwz %r31, off_1485E8 # dword_24B704
seg000:00118690 .using dword_24B704, %r31
seg000:00118690 93 C1 FF F8 stw %r30, var_8(%sp)
seg000:00118694 93 A1 FF F4 stw %r29, var_C(%sp)
seg000:00118698 7C 7D 1B 78 mr %r29, %r3
seg000:0011869C 90 01 00 08 stw %r0, arg_8(%sp)
seg000:001186A0 54 60 06 3E clrlwi %r0, %r3, 24
seg000:001186A4 28 00 00 01 cmplwi %r0, 1
seg000:001186A8 94 21 FF B0 stwu %sp, -0x50(%sp)
seg000:001186AC 40 82 00 0C bne loc_1186B8
seg000:001186B0 38 60 00 01 li %r3, 1
seg000:001186B4 48 00 00 6C b exit
seg000:001186B8
seg000:001186B8 loc_1186B8: # CODE XREF: check2+28j
seg000:001186B8 48 00 03 D5 bl sub_118A8C
seg000:001186BC 60 00 00 00 nop
seg000:001186C0 3B C0 00 00 li %r30, 0
seg000:001186C4
seg000:001186C4 skip: # CODE XREF: check2+94j
seg000:001186C4 57 C0 06 3F clrlwi. %r0, %r30, 24
seg000:001186C8 41 82 00 18 beq loc_1186E0
seg000:001186CC 38 61 00 38 addi %r3, %sp, 0x50+var_18
seg000:001186D0 80 9F 00 00 lwz %r4, dword_24B704
seg000:001186D4 48 00 C0 55 bl .RBEFINDNEXT
seg000:001186D8 60 00 00 00 nop
seg000:001186DC 48 00 00 1C b loc_1186F8
seg000:001186E0
seg000:001186E0 loc_1186E0: # CODE XREF: check2+44j
seg000:001186E0 80 BF 00 00 lwz %r5, dword_24B704
seg000:001186E4 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:001186E8 38 60 08 C2 li %r3, 0x1234
seg000:001186EC 48 00 BF 99 bl .RBEFINDFIRST
seg000:001186F0 60 00 00 00 nop
seg000:001186F4 3B C0 00 01 li %r30, 1
seg000:001186F8
seg000:001186F8 loc_1186F8: # CODE XREF: check2+58j
seg000:001186F8 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:001186FC 41 82 00 0C beq must_jump
seg000:00118700 38 60 00 00 li %r3, 0 # error
seg000:00118704 48 00 00 1C b exit
seg000:00118708
seg000:00118708 must_jump: # CODE XREF: check2+78j
seg000:00118708 7F A3 EB 78 mr %r3, %r29
seg000:0011870C 48 00 00 31 bl check3
seg000:00118710 60 00 00 00 nop
seg000:00118714 54 60 06 3F clrlwi. %r0, %r3, 24
seg000:00118718 41 82 FF AC beq skip
seg000:0011871C 38 60 00 01 li %r3, 1
seg000:00118720
seg000:00118720 exit: # CODE XREF: check2+30j
seg000:00118720 # check2+80j

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1058
seg000:00118720 80 01 00 58 lwz %r0, 0x50+arg_8(%sp)
seg000:00118724 38 21 00 50 addi %sp, %sp, 0x50
seg000:00118728 83 E1 FF FC lwz %r31, var_4(%sp)
seg000:0011872C 7C 08 03 A6 mtlr %r0
seg000:00118730 83 C1 FF F8 lwz %r30, var_8(%sp)
seg000:00118734 83 A1 FF F4 lwz %r29, var_C(%sp)
seg000:00118738 4E 80 00 20 blr
seg000:00118738 # End of function check2

We are lucky again: some function names are left in the executable (debug symbols
section?
Hard to say while we are not very familiar with the file format, maybe it is some kind
of PE exports? (6.5.2)),
like .RBEFINDNEXT() and .RBEFINDFIRST().
Eventually these functions call other functions with names like .GetNextDeviceViaUSB(),
.USBSendPKT(), so these are clearly dealing with an USB device.
There is even a function named .GetNextEve3Device()—sounds familiar, there was
a Sentinel Eve3 dongle for ADB port (present on Macs) in 1990s.
Let’s first take a look on how the r3 register is set before return, while ignoring
everything else.
We know that a “good” r3 value has to be non-zero, zero r3 leads the execution flow
to the message box with an error message.
There are two li %r3, 1 instructions present in the function and one li %r3, 0
(Load Immediate, i.e., loading a value into a register). The first instruction is at
0x001186B0—and frankly speaking, it’s hard to say what it means.
What we see next is, however, easier to understand: .RBEFINDFIRST() is called: if
it fails, 0 is written into r3 and we jump to exit, otherwise another function is called
(check3())—if it fails too, .RBEFINDNEXT() is called, probably in order to look for
another USB device.
N.B.: clrlwi. %r0, %r3, 16 it is analogical to what we already saw, but it clears
16 bits, i.e.,
.RBEFINDFIRST() probably returns a 16-bit value.
B (stands for branch) unconditional jump.
BEQ is the inverse instruction of BNE.
Let’s see check3():
seg000:0011873C check3: # CODE XREF: check2+88p
seg000:0011873C
seg000:0011873C .set var_18, -0x18
seg000:0011873C .set var_C, -0xC
seg000:0011873C .set var_8, -8
seg000:0011873C .set var_4, -4
seg000:0011873C .set arg_8, 8
seg000:0011873C
seg000:0011873C 93 E1 FF FC stw %r31, var_4(%sp)
seg000:00118740 7C 08 02 A6 mflr %r0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1059
seg000:00118744 38 A0 00 00 li %r5, 0
seg000:00118748 93 C1 FF F8 stw %r30, var_8(%sp)
seg000:0011874C 83 C2 95 A8 lwz %r30, off_1485E8 # dword_24B704
seg000:00118750 .using dword_24B704, %r30
seg000:00118750 93 A1 FF F4 stw %r29, var_C(%sp)
seg000:00118754 3B A3 00 00 addi %r29, %r3, 0
seg000:00118758 38 60 00 00 li %r3, 0
seg000:0011875C 90 01 00 08 stw %r0, arg_8(%sp)
seg000:00118760 94 21 FF B0 stwu %sp, -0x50(%sp)
seg000:00118764 80 DE 00 00 lwz %r6, dword_24B704
seg000:00118768 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:0011876C 48 00 C0 5D bl .RBEREAD
seg000:00118770 60 00 00 00 nop
seg000:00118774 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:00118778 41 82 00 0C beq loc_118784
seg000:0011877C 38 60 00 00 li %r3, 0
seg000:00118780 48 00 02 F0 b exit
seg000:00118784
seg000:00118784 loc_118784: # CODE XREF: check3+3Cj
seg000:00118784 A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:00118788 28 00 04 B2 cmplwi %r0, 0x1100
seg000:0011878C 41 82 00 0C beq loc_118798
seg000:00118790 38 60 00 00 li %r3, 0
seg000:00118794 48 00 02 DC b exit
seg000:00118798
seg000:00118798 loc_118798: # CODE XREF: check3+50j
seg000:00118798 80 DE 00 00 lwz %r6, dword_24B704
seg000:0011879C 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:001187A0 38 60 00 01 li %r3, 1
seg000:001187A4 38 A0 00 00 li %r5, 0
seg000:001187A8 48 00 C0 21 bl .RBEREAD
seg000:001187AC 60 00 00 00 nop
seg000:001187B0 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:001187B4 41 82 00 0C beq loc_1187C0
seg000:001187B8 38 60 00 00 li %r3, 0
seg000:001187BC 48 00 02 B4 b exit
seg000:001187C0
seg000:001187C0 loc_1187C0: # CODE XREF: check3+78j
seg000:001187C0 A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:001187C4 28 00 06 4B cmplwi %r0, 0x09AB
seg000:001187C8 41 82 00 0C beq loc_1187D4
seg000:001187CC 38 60 00 00 li %r3, 0
seg000:001187D0 48 00 02 A0 b exit
seg000:001187D4
seg000:001187D4 loc_1187D4: # CODE XREF: check3+8Cj
seg000:001187D4 4B F9 F3 D9 bl sub_B7BAC
seg000:001187D8 60 00 00 00 nop
seg000:001187DC 54 60 06 3E clrlwi %r0, %r3, 24
seg000:001187E0 2C 00 00 05 cmpwi %r0, 5
seg000:001187E4 41 82 01 00 beq loc_1188E4
seg000:001187E8 40 80 00 10 bge loc_1187F8
seg000:001187EC 2C 00 00 04 cmpwi %r0, 4
seg000:001187F0 40 80 00 58 bge loc_118848

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1060
seg000:001187F4 48 00 01 8C b loc_118980
seg000:001187F8
seg000:001187F8 loc_1187F8: # CODE XREF: check3+ACj
seg000:001187F8 2C 00 00 0B cmpwi %r0, 0xB
seg000:001187FC 41 82 00 08 beq loc_118804
seg000:00118800 48 00 01 80 b loc_118980
seg000:00118804
seg000:00118804 loc_118804: # CODE XREF: check3+C0j
seg000:00118804 80 DE 00 00 lwz %r6, dword_24B704
seg000:00118808 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:0011880C 38 60 00 08 li %r3, 8
seg000:00118810 38 A0 00 00 li %r5, 0
seg000:00118814 48 00 BF B5 bl .RBEREAD
seg000:00118818 60 00 00 00 nop
seg000:0011881C 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:00118820 41 82 00 0C beq loc_11882C
seg000:00118824 38 60 00 00 li %r3, 0
seg000:00118828 48 00 02 48 b exit
seg000:0011882C
seg000:0011882C loc_11882C: # CODE XREF: check3+E4j
seg000:0011882C A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:00118830 28 00 11 30 cmplwi %r0, 0xFEA0
seg000:00118834 41 82 00 0C beq loc_118840
seg000:00118838 38 60 00 00 li %r3, 0
seg000:0011883C 48 00 02 34 b exit
seg000:00118840
seg000:00118840 loc_118840: # CODE XREF: check3+F8j
seg000:00118840 38 60 00 01 li %r3, 1
seg000:00118844 48 00 02 2C b exit
seg000:00118848
seg000:00118848 loc_118848: # CODE XREF: check3+B4j
seg000:00118848 80 DE 00 00 lwz %r6, dword_24B704
seg000:0011884C 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:00118850 38 60 00 0A li %r3, 0xA
seg000:00118854 38 A0 00 00 li %r5, 0
seg000:00118858 48 00 BF 71 bl .RBEREAD
seg000:0011885C 60 00 00 00 nop
seg000:00118860 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:00118864 41 82 00 0C beq loc_118870
seg000:00118868 38 60 00 00 li %r3, 0
seg000:0011886C 48 00 02 04 b exit
seg000:00118870
seg000:00118870 loc_118870: # CODE XREF: check3+128j
seg000:00118870 A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:00118874 28 00 03 F3 cmplwi %r0, 0xA6E1
seg000:00118878 41 82 00 0C beq loc_118884
seg000:0011887C 38 60 00 00 li %r3, 0
seg000:00118880 48 00 01 F0 b exit
seg000:00118884
seg000:00118884 loc_118884: # CODE XREF: check3+13Cj
seg000:00118884 57 BF 06 3E clrlwi %r31, %r29, 24
seg000:00118888 28 1F 00 02 cmplwi %r31, 2
seg000:0011888C 40 82 00 0C bne loc_118898

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1061
seg000:00118890 38 60 00 01 li %r3, 1
seg000:00118894 48 00 01 DC b exit
seg000:00118898
seg000:00118898 loc_118898: # CODE XREF: check3+150j
seg000:00118898 80 DE 00 00 lwz %r6, dword_24B704
seg000:0011889C 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:001188A0 38 60 00 0B li %r3, 0xB
seg000:001188A4 38 A0 00 00 li %r5, 0
seg000:001188A8 48 00 BF 21 bl .RBEREAD
seg000:001188AC 60 00 00 00 nop
seg000:001188B0 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:001188B4 41 82 00 0C beq loc_1188C0
seg000:001188B8 38 60 00 00 li %r3, 0
seg000:001188BC 48 00 01 B4 b exit
seg000:001188C0
seg000:001188C0 loc_1188C0: # CODE XREF: check3+178j
seg000:001188C0 A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:001188C4 28 00 23 1C cmplwi %r0, 0x1C20
seg000:001188C8 41 82 00 0C beq loc_1188D4
seg000:001188CC 38 60 00 00 li %r3, 0
seg000:001188D0 48 00 01 A0 b exit
seg000:001188D4
seg000:001188D4 loc_1188D4: # CODE XREF: check3+18Cj
seg000:001188D4 28 1F 00 03 cmplwi %r31, 3
seg000:001188D8 40 82 01 94 bne error
seg000:001188DC 38 60 00 01 li %r3, 1
seg000:001188E0 48 00 01 90 b exit
seg000:001188E4
seg000:001188E4 loc_1188E4: # CODE XREF: check3+A8j
seg000:001188E4 80 DE 00 00 lwz %r6, dword_24B704
seg000:001188E8 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:001188EC 38 60 00 0C li %r3, 0xC
seg000:001188F0 38 A0 00 00 li %r5, 0
seg000:001188F4 48 00 BE D5 bl .RBEREAD
seg000:001188F8 60 00 00 00 nop
seg000:001188FC 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:00118900 41 82 00 0C beq loc_11890C
seg000:00118904 38 60 00 00 li %r3, 0
seg000:00118908 48 00 01 68 b exit
seg000:0011890C
seg000:0011890C loc_11890C: # CODE XREF: check3+1C4j
seg000:0011890C A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:00118910 28 00 1F 40 cmplwi %r0, 0x40FF
seg000:00118914 41 82 00 0C beq loc_118920
seg000:00118918 38 60 00 00 li %r3, 0
seg000:0011891C 48 00 01 54 b exit
seg000:00118920
seg000:00118920 loc_118920: # CODE XREF: check3+1D8j
seg000:00118920 57 BF 06 3E clrlwi %r31, %r29, 24
seg000:00118924 28 1F 00 02 cmplwi %r31, 2
seg000:00118928 40 82 00 0C bne loc_118934
seg000:0011892C 38 60 00 01 li %r3, 1
seg000:00118930 48 00 01 40 b exit

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1062
seg000:00118934
seg000:00118934 loc_118934: # CODE XREF: check3+1ECj
seg000:00118934 80 DE 00 00 lwz %r6, dword_24B704
seg000:00118938 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:0011893C 38 60 00 0D li %r3, 0xD
seg000:00118940 38 A0 00 00 li %r5, 0
seg000:00118944 48 00 BE 85 bl .RBEREAD
seg000:00118948 60 00 00 00 nop
seg000:0011894C 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:00118950 41 82 00 0C beq loc_11895C
seg000:00118954 38 60 00 00 li %r3, 0
seg000:00118958 48 00 01 18 b exit
seg000:0011895C
seg000:0011895C loc_11895C: # CODE XREF: check3+214j
seg000:0011895C A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:00118960 28 00 07 CF cmplwi %r0, 0xFC7
seg000:00118964 41 82 00 0C beq loc_118970
seg000:00118968 38 60 00 00 li %r3, 0
seg000:0011896C 48 00 01 04 b exit
seg000:00118970
seg000:00118970 loc_118970: # CODE XREF: check3+228j
seg000:00118970 28 1F 00 03 cmplwi %r31, 3
seg000:00118974 40 82 00 F8 bne error
seg000:00118978 38 60 00 01 li %r3, 1
seg000:0011897C 48 00 00 F4 b exit
seg000:00118980
seg000:00118980 loc_118980: # CODE XREF: check3+B8j
seg000:00118980 # check3+C4j
seg000:00118980 80 DE 00 00 lwz %r6, dword_24B704
seg000:00118984 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:00118988 3B E0 00 00 li %r31, 0
seg000:0011898C 38 60 00 04 li %r3, 4
seg000:00118990 38 A0 00 00 li %r5, 0
seg000:00118994 48 00 BE 35 bl .RBEREAD
seg000:00118998 60 00 00 00 nop
seg000:0011899C 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:001189A0 41 82 00 0C beq loc_1189AC
seg000:001189A4 38 60 00 00 li %r3, 0
seg000:001189A8 48 00 00 C8 b exit
seg000:001189AC
seg000:001189AC loc_1189AC: # CODE XREF: check3+264j
seg000:001189AC A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:001189B0 28 00 1D 6A cmplwi %r0, 0xAED0
seg000:001189B4 40 82 00 0C bne loc_1189C0
seg000:001189B8 3B E0 00 01 li %r31, 1
seg000:001189BC 48 00 00 14 b loc_1189D0
seg000:001189C0
seg000:001189C0 loc_1189C0: # CODE XREF: check3+278j
seg000:001189C0 28 00 18 28 cmplwi %r0, 0x2818
seg000:001189C4 41 82 00 0C beq loc_1189D0
seg000:001189C8 38 60 00 00 li %r3, 0
seg000:001189CC 48 00 00 A4 b exit
seg000:001189D0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1063
seg000:001189D0 loc_1189D0: # CODE XREF: check3+280j
seg000:001189D0 # check3+288j
seg000:001189D0 57 A0 06 3E clrlwi %r0, %r29, 24
seg000:001189D4 28 00 00 02 cmplwi %r0, 2
seg000:001189D8 40 82 00 20 bne loc_1189F8
seg000:001189DC 57 E0 06 3F clrlwi. %r0, %r31, 24
seg000:001189E0 41 82 00 10 beq good2
seg000:001189E4 48 00 4C 69 bl sub_11D64C
seg000:001189E8 60 00 00 00 nop
seg000:001189EC 48 00 00 84 b exit
seg000:001189F0
seg000:001189F0 good2: # CODE XREF: check3+2A4j
seg000:001189F0 38 60 00 01 li %r3, 1
seg000:001189F4 48 00 00 7C b exit
seg000:001189F8
seg000:001189F8 loc_1189F8: # CODE XREF: check3+29Cj
seg000:001189F8 80 DE 00 00 lwz %r6, dword_24B704
seg000:001189FC 38 81 00 38 addi %r4, %sp, 0x50+var_18
seg000:00118A00 38 60 00 05 li %r3, 5
seg000:00118A04 38 A0 00 00 li %r5, 0
seg000:00118A08 48 00 BD C1 bl .RBEREAD
seg000:00118A0C 60 00 00 00 nop
seg000:00118A10 54 60 04 3F clrlwi. %r0, %r3, 16
seg000:00118A14 41 82 00 0C beq loc_118A20
seg000:00118A18 38 60 00 00 li %r3, 0
seg000:00118A1C 48 00 00 54 b exit
seg000:00118A20
seg000:00118A20 loc_118A20: # CODE XREF: check3+2D8j
seg000:00118A20 A0 01 00 38 lhz %r0, 0x50+var_18(%sp)
seg000:00118A24 28 00 11 D3 cmplwi %r0, 0xD300
seg000:00118A28 40 82 00 0C bne loc_118A34
seg000:00118A2C 3B E0 00 01 li %r31, 1
seg000:00118A30 48 00 00 14 b good1
seg000:00118A34
seg000:00118A34 loc_118A34: # CODE XREF: check3+2ECj
seg000:00118A34 28 00 1A EB cmplwi %r0, 0xEBA1
seg000:00118A38 41 82 00 0C beq good1
seg000:00118A3C 38 60 00 00 li %r3, 0
seg000:00118A40 48 00 00 30 b exit
seg000:00118A44
seg000:00118A44 good1: # CODE XREF: check3+2F4j
seg000:00118A44 # check3+2FCj
seg000:00118A44 57 A0 06 3E clrlwi %r0, %r29, 24
seg000:00118A48 28 00 00 03 cmplwi %r0, 3
seg000:00118A4C 40 82 00 20 bne error
seg000:00118A50 57 E0 06 3F clrlwi. %r0, %r31, 24
seg000:00118A54 41 82 00 10 beq good
seg000:00118A58 48 00 4B F5 bl sub_11D64C
seg000:00118A5C 60 00 00 00 nop
seg000:00118A60 48 00 00 10 b exit
seg000:00118A64
seg000:00118A64 good: # CODE XREF: check3+318j
seg000:00118A64 38 60 00 01 li %r3, 1

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1064
seg000:00118A68 48 00 00 08 b exit
seg000:00118A6C
seg000:00118A6C error: # CODE XREF: check3+19Cj
seg000:00118A6C # check3+238j ...
seg000:00118A6C 38 60 00 00 li %r3, 0
seg000:00118A70
seg000:00118A70 exit: # CODE XREF: check3+44j
seg000:00118A70 # check3+58j ...
seg000:00118A70 80 01 00 58 lwz %r0, 0x50+arg_8(%sp)
seg000:00118A74 38 21 00 50 addi %sp, %sp, 0x50
seg000:00118A78 83 E1 FF FC lwz %r31, var_4(%sp)
seg000:00118A7C 7C 08 03 A6 mtlr %r0
seg000:00118A80 83 C1 FF F8 lwz %r30, var_8(%sp)
seg000:00118A84 83 A1 FF F4 lwz %r29, var_C(%sp)
seg000:00118A88 4E 80 00 20 blr
seg000:00118A88 # End of function check3

There are a lot of calls to .RBEREAD().
Perhaps, the function returns some values from the dongle, so they are compared
here with some hard-coded variables using CMPLWI.
We also see that the r3 register is also filled before each call to .RBEREAD() with one
of these values: 0, 1, 8, 0xA, 0xB, 0xC, 0xD, 4, 5. Probably a memory address or
something like that?
Yes, indeed, by googling these function names it is easy to find the Sentinel Eve3
dongle manual!
Perhaps we don’t even have to learn any other PowerPC instructions: all this function
does is just call .RBEREAD(), compare its results with the constants and returns 1 if
the comparisons are fine or 0 otherwise.
OK, all we’ve got is that check1() has always to return 1 or any other non-zero value.
But since we are not very confident in our knowledge of PowerPC instructions, we
are going to be careful: we will patch the jumps in check2() at 0x001186FC and
0x00118718.
At 0x001186FC we’ll write bytes 0x48 and 0 thus converting the BEQ instruction in
an B (unconditional jump): we can spot its opcode in the code without even referring
to [PowerPC(tm) Microprocessor Family: The Programming Environments for 32-Bit
Microprocessors, (2000)]16.
At 0x00118718 we’ll write 0x60 and 3 zero bytes, thus converting it to a NOP instruc-
tion: Its opcode we could spot in the code too.
And now it all works without a dongle connected.
In summary, such small modifications can be done with IDA and minimal assembly
language knowledge.
16Also available as http://yurichev.com/mirrors/PowerPC/6xx_pem.pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://yurichev.com/mirrors/PowerPC/6xx_pem.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1065
8.8.2 Example #2: SCO OpenServer
An ancient software for SCO OpenServer from 1997 developed by a company that
disappeared a long time ago.
There is a special dongle driver to be installed in the system, that contains the fol-
lowing text strings: “Copyright 1989, Rainbow Technologies, Inc., Irvine, CA” and
“Sentinel Integrated Driver Ver. 3.0 ”.
After the installation of the driver in SCO OpenServer, these device files appear in
the /dev filesystem:
/dev/rbsl8
/dev/rbsl9
/dev/rbsl10

The program reports an error without dongle connected, but the error string cannot
be found in the executables.
Thanks to IDA, it is easy to load the COFF executable used in SCO OpenServer.
Let’s also try to find “rbsl” string and indeed, found it in this code fragment:
.text:00022AB8 public SSQC
.text:00022AB8 SSQC proc near ; CODE XREF: SSQ+7p
.text:00022AB8
.text:00022AB8 var_44 = byte ptr -44h
.text:00022AB8 var_29 = byte ptr -29h
.text:00022AB8 arg_0 = dword ptr 8
.text:00022AB8
.text:00022AB8 push ebp
.text:00022AB9 mov ebp, esp
.text:00022ABB sub esp, 44h
.text:00022ABE push edi
.text:00022ABF mov edi, offset unk_4035D0
.text:00022AC4 push esi
.text:00022AC5 mov esi, [ebp+arg_0]
.text:00022AC8 push ebx
.text:00022AC9 push esi
.text:00022ACA call strlen
.text:00022ACF add esp, 4
.text:00022AD2 cmp eax, 2
.text:00022AD7 jnz loc_22BA4
.text:00022ADD inc esi
.text:00022ADE mov al, [esi-1]
.text:00022AE1 movsx eax, al
.text:00022AE4 cmp eax, '3'
.text:00022AE9 jz loc_22B84
.text:00022AEF cmp eax, '4'
.text:00022AF4 jz loc_22B94
.text:00022AFA cmp eax, '5'
.text:00022AFF jnz short loc_22B6B
.text:00022B01 movsx ebx, byte ptr [esi]
.text:00022B04 sub ebx, '0'
.text:00022B07 mov eax, 7

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1066
.text:00022B0C add eax, ebx
.text:00022B0E push eax
.text:00022B0F lea eax, [ebp+var_44]
.text:00022B12 push offset aDevSlD ; "/dev/sl%d"
.text:00022B17 push eax
.text:00022B18 call nl_sprintf
.text:00022B1D push 0 ; int
.text:00022B1F push offset aDevRbsl8 ; char *
.text:00022B24 call _access
.text:00022B29 add esp, 14h
.text:00022B2C cmp eax, 0FFFFFFFFh
.text:00022B31 jz short loc_22B48
.text:00022B33 lea eax, [ebx+7]
.text:00022B36 push eax
.text:00022B37 lea eax, [ebp+var_44]
.text:00022B3A push offset aDevRbslD ; "/dev/rbsl%d"
.text:00022B3F push eax
.text:00022B40 call nl_sprintf
.text:00022B45 add esp, 0Ch
.text:00022B48
.text:00022B48 loc_22B48: ; CODE XREF: SSQC+79j
.text:00022B48 mov edx, [edi]
.text:00022B4A test edx, edx
.text:00022B4C jle short loc_22B57
.text:00022B4E push edx ; int
.text:00022B4F call _close
.text:00022B54 add esp, 4
.text:00022B57
.text:00022B57 loc_22B57: ; CODE XREF: SSQC+94j
.text:00022B57 push 2 ; int
.text:00022B59 lea eax, [ebp+var_44]
.text:00022B5C push eax ; char *
.text:00022B5D call _open
.text:00022B62 add esp, 8
.text:00022B65 test eax, eax
.text:00022B67 mov [edi], eax
.text:00022B69 jge short loc_22B78
.text:00022B6B
.text:00022B6B loc_22B6B: ; CODE XREF: SSQC+47j
.text:00022B6B mov eax, 0FFFFFFFFh
.text:00022B70 pop ebx
.text:00022B71 pop esi
.text:00022B72 pop edi
.text:00022B73 mov esp, ebp
.text:00022B75 pop ebp
.text:00022B76 retn
.text:00022B78
.text:00022B78 loc_22B78: ; CODE XREF: SSQC+B1j
.text:00022B78 pop ebx
.text:00022B79 pop esi
.text:00022B7A pop edi
.text:00022B7B xor eax, eax
.text:00022B7D mov esp, ebp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1067
.text:00022B7F pop ebp
.text:00022B80 retn
.text:00022B84
.text:00022B84 loc_22B84: ; CODE XREF: SSQC+31j
.text:00022B84 mov al, [esi]
.text:00022B86 pop ebx
.text:00022B87 pop esi
.text:00022B88 pop edi
.text:00022B89 mov ds:byte_407224, al
.text:00022B8E mov esp, ebp
.text:00022B90 xor eax, eax
.text:00022B92 pop ebp
.text:00022B93 retn
.text:00022B94
.text:00022B94 loc_22B94: ; CODE XREF: SSQC+3Cj
.text:00022B94 mov al, [esi]
.text:00022B96 pop ebx
.text:00022B97 pop esi
.text:00022B98 pop edi
.text:00022B99 mov ds:byte_407225, al
.text:00022B9E mov esp, ebp
.text:00022BA0 xor eax, eax
.text:00022BA2 pop ebp
.text:00022BA3 retn
.text:00022BA4
.text:00022BA4 loc_22BA4: ; CODE XREF: SSQC+1Fj
.text:00022BA4 movsx eax, ds:byte_407225
.text:00022BAB push esi
.text:00022BAC push eax
.text:00022BAD movsx eax, ds:byte_407224
.text:00022BB4 push eax
.text:00022BB5 lea eax, [ebp+var_44]
.text:00022BB8 push offset a46CCS ; "46%c%c%s"
.text:00022BBD push eax
.text:00022BBE call nl_sprintf
.text:00022BC3 lea eax, [ebp+var_44]
.text:00022BC6 push eax
.text:00022BC7 call strlen
.text:00022BCC add esp, 18h
.text:00022BCF cmp eax, 1Bh
.text:00022BD4 jle short loc_22BDA
.text:00022BD6 mov [ebp+var_29], 0
.text:00022BDA
.text:00022BDA loc_22BDA: ; CODE XREF: SSQC+11Cj
.text:00022BDA lea eax, [ebp+var_44]
.text:00022BDD push eax
.text:00022BDE call strlen
.text:00022BE3 push eax ; unsigned int
.text:00022BE4 lea eax, [ebp+var_44]
.text:00022BE7 push eax ; void *
.text:00022BE8 mov eax, [edi]
.text:00022BEA push eax ; int
.text:00022BEB call _write

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1068
.text:00022BF0 add esp, 10h
.text:00022BF3 pop ebx
.text:00022BF4 pop esi
.text:00022BF5 pop edi
.text:00022BF6 mov esp, ebp
.text:00022BF8 pop ebp
.text:00022BF9 retn
.text:00022BFA db 0Eh dup(90h)
.text:00022BFA SSQC endp

Yes, indeed, the program needs to communicate with the driver somehow.
The only place where the SSQC() function is called is the thunk function:
.text:0000DBE8 public SSQ
.text:0000DBE8 SSQ proc near ; CODE XREF: sys_info+A9p
.text:0000DBE8 ; sys_info+CBp ...
.text:0000DBE8
.text:0000DBE8 arg_0 = dword ptr 8
.text:0000DBE8
.text:0000DBE8 push ebp
.text:0000DBE9 mov ebp, esp
.text:0000DBEB mov edx, [ebp+arg_0]
.text:0000DBEE push edx
.text:0000DBEF call SSQC
.text:0000DBF4 add esp, 4
.text:0000DBF7 mov esp, ebp
.text:0000DBF9 pop ebp
.text:0000DBFA retn
.text:0000DBFB SSQ endp

SSQ() can be called from at least 2 functions.
One of these is:
.data:0040169C _51_52_53 dd offset aPressAnyKeyT_0 ;

DATA XREF: init_sys+392r
.data:0040169C ; sys_info+A1r
.data:0040169C ; "PRESS ANY KEY TO

CONTINUE: "
.data:004016A0 dd offset a51 ; "51"
.data:004016A4 dd offset a52 ; "52"
.data:004016A8 dd offset a53 ; "53"

...

.data:004016B8 _3C_or_3E dd offset a3c ; DATA XREF:
sys_info:loc_D67Br

.data:004016B8 ; "3C"

.data:004016BC dd offset a3e ; "3E"

; these names we gave to the labels:
.data:004016C0 answers1 dd 6B05h ; DATA XREF:

sys_info+E7r
.data:004016C4 dd 3D87h

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1069
.data:004016C8 answers2 dd 3Ch ; DATA XREF:

sys_info+F2r
.data:004016CC dd 832h
.data:004016D0 _C_and_B db 0Ch ; DATA XREF:

sys_info+BAr
.data:004016D0 ; sys_info:OKr
.data:004016D1 byte_4016D1 db 0Bh ;

DATA XREF: sys_info+FDr
.data:004016D2 db 0

...

.text:0000D652 xor eax, eax

.text:0000D654 mov al, ds:ctl_port

.text:0000D659 mov ecx, _51_52_53[eax*4]

.text:0000D660 push ecx

.text:0000D661 call SSQ

.text:0000D666 add esp, 4

.text:0000D669 cmp eax, 0FFFFFFFFh

.text:0000D66E jz short loc_D6D1

.text:0000D670 xor ebx, ebx

.text:0000D672 mov al, _C_and_B

.text:0000D677 test al, al

.text:0000D679 jz short loc_D6C0

.text:0000D67B

.text:0000D67B loc_D67B: ; CODE XREF: sys_info+106j

.text:0000D67B mov eax, _3C_or_3E[ebx*4]

.text:0000D682 push eax

.text:0000D683 call SSQ

.text:0000D688 push offset a4g ; "4G"

.text:0000D68D call SSQ

.text:0000D692 push offset a0123456789 ; "0123456789"

.text:0000D697 call SSQ

.text:0000D69C add esp, 0Ch

.text:0000D69F mov edx, answers1[ebx*4]

.text:0000D6A6 cmp eax, edx

.text:0000D6A8 jz short OK

.text:0000D6AA mov ecx, answers2[ebx*4]

.text:0000D6B1 cmp eax, ecx

.text:0000D6B3 jz short OK

.text:0000D6B5 mov al, byte_4016D1[ebx]

.text:0000D6BB inc ebx

.text:0000D6BC test al, al

.text:0000D6BE jnz short loc_D67B

.text:0000D6C0

.text:0000D6C0 loc_D6C0: ; CODE XREF: sys_info+C1j

.text:0000D6C0 inc ds:ctl_port

.text:0000D6C6 xor eax, eax

.text:0000D6C8 mov al, ds:ctl_port

.text:0000D6CD cmp eax, edi

.text:0000D6CF jle short loc_D652

.text:0000D6D1

.text:0000D6D1 loc_D6D1: ; CODE XREF: sys_info+98j

.text:0000D6D1 ; sys_info+B6j

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1070
.text:0000D6D1 mov edx, [ebp+var_8]
.text:0000D6D4 inc edx
.text:0000D6D5 mov [ebp+var_8], edx
.text:0000D6D8 cmp edx, 3
.text:0000D6DB jle loc_D641
.text:0000D6E1
.text:0000D6E1 loc_D6E1: ; CODE XREF: sys_info+16j
.text:0000D6E1 ; sys_info+51j ...
.text:0000D6E1 pop ebx
.text:0000D6E2 pop edi
.text:0000D6E3 mov esp, ebp
.text:0000D6E5 pop ebp
.text:0000D6E6 retn
.text:0000D6E8 OK: ; CODE XREF: sys_info+F0j
.text:0000D6E8 ; sys_info+FBj
.text:0000D6E8 mov al, _C_and_B[ebx]
.text:0000D6EE pop ebx
.text:0000D6EF pop edi
.text:0000D6F0 mov ds:ctl_model, al
.text:0000D6F5 mov esp, ebp
.text:0000D6F7 pop ebp
.text:0000D6F8 retn
.text:0000D6F8 sys_info endp

“3C” and “3E” sound familiar: there was a Sentinel Pro dongle by Rainbow with no
memory, providing only one crypto-hashing secret function.
You can read a short description of what hash function is here: 2.5 on page 575.
But let’s get back to the program.
So the program can only check the presence or absence of a connected dongle.
No other information can be written to such dongle, as it has no memory. The two-
character codes are commands (we can see how the commands are handled in the
SSQC() function) and all other strings are hashed inside the dongle, being trans-
formed into a 16-bit number. The algorithm was secret, so it was not possible to
write a driver replacement or to remake the dongle hardware that would emulate it
perfectly.
However, it is always possible to intercept all accesses to it and to find what con-
stants the hash function results are compared to.
But we need to say that it is possible to build a robust software copy protection
scheme based on secret cryptographic hash-function: let it encrypt/decrypt the data
files your software uses.
But let’s get back to the code.
Codes 51/52/53 are used for LPT printer port selection. 3x/4x are used for “family”
selection (that’s how Sentinel Pro dongles are differentiated from each other: more
than one dongle can be connected to a LPT port).
The only non-2-character string passed to the hashing function is ”0123456789”.
Then, the result is compared against the set of valid results.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1071
If it is correct, 0xC or 0xB is to be written into the global variable ctl_model.
Another text string that gets passed is ”PRESS ANY KEY TO CONTINUE: ”, but the
result is not checked. Hard to say why, probably by mistake 17.
Let’s see where the value from the global variable ctl_model is used.
One such place is:
.text:0000D708 prep_sys proc near ; CODE XREF: init_sys+46Ap
.text:0000D708
.text:0000D708 var_14 = dword ptr -14h
.text:0000D708 var_10 = byte ptr -10h
.text:0000D708 var_8 = dword ptr -8
.text:0000D708 var_2 = word ptr -2
.text:0000D708
.text:0000D708 push ebp
.text:0000D709 mov eax, ds:net_env
.text:0000D70E mov ebp, esp
.text:0000D710 sub esp, 1Ch
.text:0000D713 test eax, eax
.text:0000D715 jnz short loc_D734
.text:0000D717 mov al, ds:ctl_model
.text:0000D71C test al, al
.text:0000D71E jnz short loc_D77E
.text:0000D720 mov [ebp+var_8], offset aIeCvulnvvOkgT_ ;

"Ie-cvulnvV\\\bOKG]T_"
.text:0000D727 mov edx, 7
.text:0000D72C jmp loc_D7E7

...

.text:0000D7E7 loc_D7E7: ; CODE XREF: prep_sys+24j

.text:0000D7E7 ; prep_sys+33j

.text:0000D7E7 push edx

.text:0000D7E8 mov edx, [ebp+var_8]

.text:0000D7EB push 20h

.text:0000D7ED push edx

.text:0000D7EE push 16h

.text:0000D7F0 call err_warn

.text:0000D7F5 push offset station_sem

.text:0000D7FA call ClosSem

.text:0000D7FF call startup_err

If it is 0, an encrypted error message is passed to a decryption routine and printed.
The error string decryption routine seems a simple xoring:
.text:0000A43C err_warn proc near ; CODE XREF:

prep_sys+E8p
.text:0000A43C ; prep_sys2+2Fp ...
.text:0000A43C
.text:0000A43C var_55 = byte ptr -55h
.text:0000A43C var_54 = byte ptr -54h

17What a strange feeling: to find bugs in such ancient software.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1072
.text:0000A43C arg_0 = dword ptr 8
.text:0000A43C arg_4 = dword ptr 0Ch
.text:0000A43C arg_8 = dword ptr 10h
.text:0000A43C arg_C = dword ptr 14h
.text:0000A43C
.text:0000A43C push ebp
.text:0000A43D mov ebp, esp
.text:0000A43F sub esp, 54h
.text:0000A442 push edi
.text:0000A443 mov ecx, [ebp+arg_8]
.text:0000A446 xor edi, edi
.text:0000A448 test ecx, ecx
.text:0000A44A push esi
.text:0000A44B jle short loc_A466
.text:0000A44D mov esi, [ebp+arg_C] ; key
.text:0000A450 mov edx, [ebp+arg_4] ; string
.text:0000A453
.text:0000A453 loc_A453: ; CODE XREF:

err_warn+28j
.text:0000A453 xor eax, eax
.text:0000A455 mov al, [edx+edi]
.text:0000A458 xor eax, esi
.text:0000A45A add esi, 3
.text:0000A45D inc edi
.text:0000A45E cmp edi, ecx
.text:0000A460 mov [ebp+edi+var_55], al
.text:0000A464 jl short loc_A453
.text:0000A466
.text:0000A466 loc_A466: ; CODE XREF:

err_warn+Fj
.text:0000A466 mov [ebp+edi+var_54], 0
.text:0000A46B mov eax, [ebp+arg_0]
.text:0000A46E cmp eax, 18h
.text:0000A473 jnz short loc_A49C
.text:0000A475 lea eax, [ebp+var_54]
.text:0000A478 push eax
.text:0000A479 call status_line
.text:0000A47E add esp, 4
.text:0000A481
.text:0000A481 loc_A481: ; CODE XREF:

err_warn+72j
.text:0000A481 push 50h
.text:0000A483 push 0
.text:0000A485 lea eax, [ebp+var_54]
.text:0000A488 push eax
.text:0000A489 call memset
.text:0000A48E call pcv_refresh
.text:0000A493 add esp, 0Ch
.text:0000A496 pop esi
.text:0000A497 pop edi
.text:0000A498 mov esp, ebp
.text:0000A49A pop ebp
.text:0000A49B retn
.text:0000A49C

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1073
.text:0000A49C loc_A49C: ; CODE XREF:

err_warn+37j
.text:0000A49C push 0
.text:0000A49E lea eax, [ebp+var_54]
.text:0000A4A1 mov edx, [ebp+arg_0]
.text:0000A4A4 push edx
.text:0000A4A5 push eax
.text:0000A4A6 call pcv_lputs
.text:0000A4AB add esp, 0Ch
.text:0000A4AE jmp short loc_A481
.text:0000A4AE err_warn endp

That’s why we were unable to find the error messages in the executable files, be-
cause they are encrypted (which is is popular practice).
Another call to the SSQ() hashing function passes the “offln” string to it and com-
pares the result with 0xFE81 and 0x12A9.
If they don’t match, it works with some timer() function (maybe waiting for a poorly
connected dongle to be reconnected and check again?) and then decrypts another
error message to dump.
.text:0000DA55 loc_DA55: ; CODE XREF:

sync_sys+24Cj
.text:0000DA55 push offset aOffln ; "offln"
.text:0000DA5A call SSQ
.text:0000DA5F add esp, 4
.text:0000DA62 mov dl, [ebx]
.text:0000DA64 mov esi, eax
.text:0000DA66 cmp dl, 0Bh
.text:0000DA69 jnz short loc_DA83
.text:0000DA6B cmp esi, 0FE81h
.text:0000DA71 jz OK
.text:0000DA77 cmp esi, 0FFFFF8EFh
.text:0000DA7D jz OK
.text:0000DA83
.text:0000DA83 loc_DA83: ; CODE XREF:

sync_sys+201j
.text:0000DA83 mov cl, [ebx]
.text:0000DA85 cmp cl, 0Ch
.text:0000DA88 jnz short loc_DA9F
.text:0000DA8A cmp esi, 12A9h
.text:0000DA90 jz OK
.text:0000DA96 cmp esi, 0FFFFFFF5h
.text:0000DA99 jz OK
.text:0000DA9F
.text:0000DA9F loc_DA9F: ; CODE XREF:

sync_sys+220j
.text:0000DA9F mov eax, [ebp+var_18]
.text:0000DAA2 test eax, eax
.text:0000DAA4 jz short loc_DAB0
.text:0000DAA6 push 24h
.text:0000DAA8 call timer
.text:0000DAAD add esp, 4
.text:0000DAB0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1074
.text:0000DAB0 loc_DAB0: ; CODE XREF:

sync_sys+23Cj
.text:0000DAB0 inc edi
.text:0000DAB1 cmp edi, 3
.text:0000DAB4 jle short loc_DA55
.text:0000DAB6 mov eax, ds:net_env
.text:0000DABB test eax, eax
.text:0000DABD jz short error

...

.text:0000DAF7 error: ; CODE XREF:
sync_sys+255j

.text:0000DAF7 ; sync_sys+274j ...

.text:0000DAF7 mov [ebp+var_8], offset ⤦
Ç encrypted_error_message2

.text:0000DAFE mov [ebp+var_C], 17h ; decrypting key

.text:0000DB05 jmp decrypt_end_print_message

...

; this name we gave to label:
.text:0000D9B6 decrypt_end_print_message: ; CODE XREF:

sync_sys+29Dj
.text:0000D9B6 ; sync_sys+2ABj
.text:0000D9B6 mov eax, [ebp+var_18]
.text:0000D9B9 test eax, eax
.text:0000D9BB jnz short loc_D9FB
.text:0000D9BD mov edx, [ebp+var_C] ; key
.text:0000D9C0 mov ecx, [ebp+var_8] ; string
.text:0000D9C3 push edx
.text:0000D9C4 push 20h
.text:0000D9C6 push ecx
.text:0000D9C7 push 18h
.text:0000D9C9 call err_warn
.text:0000D9CE push 0Fh
.text:0000D9D0 push 190h
.text:0000D9D5 call sound
.text:0000D9DA mov [ebp+var_18], 1
.text:0000D9E1 add esp, 18h
.text:0000D9E4 call pcv_kbhit
.text:0000D9E9 test eax, eax
.text:0000D9EB jz short loc_D9FB

...

; this name we gave to label:
.data:00401736 encrypted_error_message2 db 74h, 72h, 78h, 43h, 48h, 6, 5Ah,⤦

Ç 49h, 4Ch, 2 dup(47h)
.data:00401736 db 51h, 4Fh, 47h, 61h, 20h, 22h, 3Ch, 24h, ⤦

Ç 33h, 36h, 76h
.data:00401736 db 3Ah, 33h, 31h, 0Ch, 0, 0Bh, 1Fh, 7, 1Eh, ⤦

Ç 1Ah

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1075
Bypassing the dongle is pretty straightforward: just patch all jumps after the relevant
CMP instructions.
Another option is to write our own SCO OpenServer driver, containing a table of
questions and answers, all of those which present in the program.

Decrypting error messages

By the way, we can also try to decrypt all error messages. The algorithm that is
located in the err_warn() function is very simple, indeed:

Listing 8.5: Decryption function
.text:0000A44D mov esi, [ebp+arg_C] ; key
.text:0000A450 mov edx, [ebp+arg_4] ; string
.text:0000A453 loc_A453:
.text:0000A453 xor eax, eax
.text:0000A455 mov al, [edx+edi] ; load encrypted byte
.text:0000A458 xor eax, esi ; decrypt it
.text:0000A45A add esi, 3 ; change key for the

next byte
.text:0000A45D inc edi
.text:0000A45E cmp edi, ecx
.text:0000A460 mov [ebp+edi+var_55], al
.text:0000A464 jl short loc_A453

As we can see, not just string is supplied to the decryption function, but also the key:
.text:0000DAF7 error: ; CODE XREF:

sync_sys+255j
.text:0000DAF7 ; sync_sys+274j ...
.text:0000DAF7 mov [ebp+var_8], offset ⤦

Ç encrypted_error_message2
.text:0000DAFE mov [ebp+var_C], 17h ; decrypting key
.text:0000DB05 jmp decrypt_end_print_message

...

; this name we gave to label manually:
.text:0000D9B6 decrypt_end_print_message: ; CODE XREF:

sync_sys+29Dj
.text:0000D9B6 ; sync_sys+2ABj
.text:0000D9B6 mov eax, [ebp+var_18]
.text:0000D9B9 test eax, eax
.text:0000D9BB jnz short loc_D9FB
.text:0000D9BD mov edx, [ebp+var_C] ; key
.text:0000D9C0 mov ecx, [ebp+var_8] ; string
.text:0000D9C3 push edx
.text:0000D9C4 push 20h
.text:0000D9C6 push ecx
.text:0000D9C7 push 18h
.text:0000D9C9 call err_warn

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1076
The algorithm is a simple xoring: each byte is xored with a key, but the key is in-
creased by 3 after the processing of each byte.
We can write a simple Python script to check our hypothesis:

Listing 8.6: Python 3.x
#!/usr/bin/python
import sys

msg=[0x74, 0x72, 0x78, 0x43, 0x48, 0x6, 0x5A, 0x49, 0x4C, 0x47, 0x47,
0x51, 0x4F, 0x47, 0x61, 0x20, 0x22, 0x3C, 0x24, 0x33, 0x36, 0x76,
0x3A, 0x33, 0x31, 0x0C, 0x0, 0x0B, 0x1F, 0x7, 0x1E, 0x1A]

key=0x17
tmp=key
for i in msg:

sys.stdout.write ("%c" % (i^tmp))
tmp=tmp+3

sys.stdout.flush()

And it prints: “check security device connection”. So yes, this is the decrypted
message.
There are also other encrypted messages with their corresponding keys. But need-
less to say, it is possible to decrypt them without their keys. First, we can see that
the key is in fact a byte. It is because the core decryption instruction (XOR) works
on byte level. The key is located in the ESI register, but only one byte part of ESI is
used. Hence, a key may be greater than 255, but its value is always to be rounded.
As a consequence, we can just try brute-force, trying all possible keys in the 0..255
range. We are also going to skip the messages that has unprintable characters.

Listing 8.7: Python 3.x
#!/usr/bin/python
import sys, curses.ascii

msgs=[
[0x74, 0x72, 0x78, 0x43, 0x48, 0x6, 0x5A, 0x49, 0x4C, 0x47, 0x47,
0x51, 0x4F, 0x47, 0x61, 0x20, 0x22, 0x3C, 0x24, 0x33, 0x36, 0x76,
0x3A, 0x33, 0x31, 0x0C, 0x0, 0x0B, 0x1F, 0x7, 0x1E, 0x1A],

[0x49, 0x65, 0x2D, 0x63, 0x76, 0x75, 0x6C, 0x6E, 0x76, 0x56, 0x5C,
8, 0x4F, 0x4B, 0x47, 0x5D, 0x54, 0x5F, 0x1D, 0x26, 0x2C, 0x33,
0x27, 0x28, 0x6F, 0x72, 0x75, 0x78, 0x7B, 0x7E, 0x41, 0x44],

[0x45, 0x61, 0x31, 0x67, 0x72, 0x79, 0x68, 0x52, 0x4A, 0x52, 0x50,
0x0C, 0x4B, 0x57, 0x43, 0x51, 0x58, 0x5B, 0x61, 0x37, 0x33, 0x2B,
0x39, 0x39, 0x3C, 0x38, 0x79, 0x3A, 0x30, 0x17, 0x0B, 0x0C],

[0x40, 0x64, 0x79, 0x75, 0x7F, 0x6F, 0x0, 0x4C, 0x40, 0x9, 0x4D, 0x5A,
0x46, 0x5D, 0x57, 0x49, 0x57, 0x3B, 0x21, 0x23, 0x6A, 0x38, 0x23,
0x36, 0x24, 0x2A, 0x7C, 0x3A, 0x1A, 0x6, 0x0D, 0x0E, 0x0A, 0x14,
0x10],

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1077

[0x72, 0x7C, 0x72, 0x79, 0x76, 0x0,
0x50, 0x43, 0x4A, 0x59, 0x5D, 0x5B, 0x41, 0x41, 0x1B, 0x5A,
0x24, 0x32, 0x2E, 0x29, 0x28, 0x70, 0x20, 0x22, 0x38, 0x28, 0x36,
0x0D, 0x0B, 0x48, 0x4B, 0x4E]]

def is_string_printable(s):
return all(list(map(lambda x: curses.ascii.isprint(x), s)))

cnt=1
for msg in msgs:

print ("message #%d" % cnt)
for key in range(0,256):

result=[]
tmp=key
for i in msg:

result.append (i^tmp)
tmp=tmp+3

if is_string_printable (result):
print ("key=", key, "value=", "".join(list(map(chr,⤦

Ç result))))
cnt=cnt+1

And we get:

Listing 8.8: Results
message #1
key= 20 value= `eb^h%|``hudw|_af{n~f%ljmSbnwlpk
key= 21 value= ajc]i"}cawtgv{^bgto}g"millcmvkqh
key= 22 value= bkd\j#rbbvsfuz!cduh|d#bhomdlujni
key= 23 value= check security device connection
key= 24 value= lifbl!pd|tqhsx#ejwjbb!`nQofbshlo
message #2
key= 7 value= No security device found
key= 8 value= An#rbbvsVuz!cduhld#ghtme?!#!'!#!
message #3
key= 7 value= Bk<waoqNUpu$`yreoa\wpmpusj,bkIjh
key= 8 value= Mj?vfnrOjqv%gxqd``_vwlstlk/clHii
key= 9 value= Lm>ugasLkvw&fgpgag^uvcrwml.`mwhj
key= 10 value= Ol!td`tMhwx'efwfbf!tubuvnm!anvok
key= 11 value= No security device station found
key= 12 value= In#rjbvsnuz!{duhdd#r{`whho#gPtme
message #4
key= 14 value= Number of authorized users exceeded
key= 15 value= Ovlmdq!hg#`juknuhydk!vrbsp!Zy`dbefe
message #5
key= 17 value= check security device station
key= 18 value= `ijbh!td`tmhwx'efwfbf!tubuVnm!'!

There is some garbage, but we can quickly find the English-language messages!
By the way, since the algorithm is a simple xoring encryption, the very same function

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1078
can be used to encrypt messages. If needed, we can encrypt our ownmessages, and
patch the program by inserting them.

8.8.3 Example #3: MS-DOS
Another very old software for MS-DOS from 1995 also developed by a company that
disappeared a long time ago.
In the pre-DOS extenders era, all the software for MS-DOS mostly relied on 16-bit
8086 or 80286 CPUs, so the code was 16-bit en masse.
The 16-bit code is mostly same as you already saw in this book, but all registers are
16-bit and there are less instructions available.
The MS-DOS environment has no system drivers, and any program can deal with
the bare hardware via ports, so here you can see the OUT/IN instructions, which are
present in mostly in drivers in our times (it is impossible to access ports directly in
user mode on all modern OSes).
Given that, the MS-DOS program which works with a dongle has to access the LPT
printer port directly.
So we can just search for such instructions. And yes, here they are:
seg030:0034 out_port proc far ; CODE XREF: sent_pro+22p
seg030:0034 ; sent_pro+2Ap ...
seg030:0034
seg030:0034 arg_0 = byte ptr 6
seg030:0034
seg030:0034 55 push bp
seg030:0035 8B EC mov bp, sp
seg030:0037 8B 16 7E E7 mov dx, _out_port ; 0x378
seg030:003B 8A 46 06 mov al, [bp+arg_0]
seg030:003E EE out dx, al
seg030:003F 5D pop bp
seg030:0040 CB retf
seg030:0040 out_port endp

(All label names in this example were given by me).
out_port() is referenced only in one function:
seg030:0041 sent_pro proc far ; CODE XREF: check_dongle+34p
seg030:0041
seg030:0041 var_3 = byte ptr -3
seg030:0041 var_2 = word ptr -2
seg030:0041 arg_0 = dword ptr 6
seg030:0041
seg030:0041 C8 04 00 00 enter 4, 0
seg030:0045 56 push si
seg030:0046 57 push di
seg030:0047 8B 16 82 E7 mov dx, _in_port_1 ; 0x37A
seg030:004B EC in al, dx
seg030:004C 8A D8 mov bl, al
seg030:004E 80 E3 FE and bl, 0FEh

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1079
seg030:0051 80 CB 04 or bl, 4
seg030:0054 8A C3 mov al, bl
seg030:0056 88 46 FD mov [bp+var_3], al
seg030:0059 80 E3 1F and bl, 1Fh
seg030:005C 8A C3 mov al, bl
seg030:005E EE out dx, al
seg030:005F 68 FF 00 push 0FFh
seg030:0062 0E push cs
seg030:0063 E8 CE FF call near ptr out_port
seg030:0066 59 pop cx
seg030:0067 68 D3 00 push 0D3h
seg030:006A 0E push cs
seg030:006B E8 C6 FF call near ptr out_port
seg030:006E 59 pop cx
seg030:006F 33 F6 xor si, si
seg030:0071 EB 01 jmp short loc_359D4
seg030:0073
seg030:0073 loc_359D3: ; CODE XREF: sent_pro+37j
seg030:0073 46 inc si
seg030:0074
seg030:0074 loc_359D4: ; CODE XREF: sent_pro+30j
seg030:0074 81 FE 96 00 cmp si, 96h
seg030:0078 7C F9 jl short loc_359D3
seg030:007A 68 C3 00 push 0C3h
seg030:007D 0E push cs
seg030:007E E8 B3 FF call near ptr out_port
seg030:0081 59 pop cx
seg030:0082 68 C7 00 push 0C7h
seg030:0085 0E push cs
seg030:0086 E8 AB FF call near ptr out_port
seg030:0089 59 pop cx
seg030:008A 68 D3 00 push 0D3h
seg030:008D 0E push cs
seg030:008E E8 A3 FF call near ptr out_port
seg030:0091 59 pop cx
seg030:0092 68 C3 00 push 0C3h
seg030:0095 0E push cs
seg030:0096 E8 9B FF call near ptr out_port
seg030:0099 59 pop cx
seg030:009A 68 C7 00 push 0C7h
seg030:009D 0E push cs
seg030:009E E8 93 FF call near ptr out_port
seg030:00A1 59 pop cx
seg030:00A2 68 D3 00 push 0D3h
seg030:00A5 0E push cs
seg030:00A6 E8 8B FF call near ptr out_port
seg030:00A9 59 pop cx
seg030:00AA BF FF FF mov di, 0FFFFh
seg030:00AD EB 40 jmp short loc_35A4F
seg030:00AF
seg030:00AF loc_35A0F: ; CODE XREF: sent_pro+BDj
seg030:00AF BE 04 00 mov si, 4
seg030:00B2

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1080
seg030:00B2 loc_35A12: ; CODE XREF: sent_pro+ACj
seg030:00B2 D1 E7 shl di, 1
seg030:00B4 8B 16 80 E7 mov dx, _in_port_2 ; 0x379
seg030:00B8 EC in al, dx
seg030:00B9 A8 80 test al, 80h
seg030:00BB 75 03 jnz short loc_35A20
seg030:00BD 83 CF 01 or di, 1
seg030:00C0
seg030:00C0 loc_35A20: ; CODE XREF: sent_pro+7Aj
seg030:00C0 F7 46 FE 08+ test [bp+var_2], 8
seg030:00C5 74 05 jz short loc_35A2C
seg030:00C7 68 D7 00 push 0D7h ; '+'
seg030:00CA EB 0B jmp short loc_35A37
seg030:00CC
seg030:00CC loc_35A2C: ; CODE XREF: sent_pro+84j
seg030:00CC 68 C3 00 push 0C3h
seg030:00CF 0E push cs
seg030:00D0 E8 61 FF call near ptr out_port
seg030:00D3 59 pop cx
seg030:00D4 68 C7 00 push 0C7h
seg030:00D7
seg030:00D7 loc_35A37: ; CODE XREF: sent_pro+89j
seg030:00D7 0E push cs
seg030:00D8 E8 59 FF call near ptr out_port
seg030:00DB 59 pop cx
seg030:00DC 68 D3 00 push 0D3h
seg030:00DF 0E push cs
seg030:00E0 E8 51 FF call near ptr out_port
seg030:00E3 59 pop cx
seg030:00E4 8B 46 FE mov ax, [bp+var_2]
seg030:00E7 D1 E0 shl ax, 1
seg030:00E9 89 46 FE mov [bp+var_2], ax
seg030:00EC 4E dec si
seg030:00ED 75 C3 jnz short loc_35A12
seg030:00EF
seg030:00EF loc_35A4F: ; CODE XREF: sent_pro+6Cj
seg030:00EF C4 5E 06 les bx, [bp+arg_0]
seg030:00F2 FF 46 06 inc word ptr [bp+arg_0]
seg030:00F5 26 8A 07 mov al, es:[bx]
seg030:00F8 98 cbw
seg030:00F9 89 46 FE mov [bp+var_2], ax
seg030:00FC 0B C0 or ax, ax
seg030:00FE 75 AF jnz short loc_35A0F
seg030:0100 68 FF 00 push 0FFh
seg030:0103 0E push cs
seg030:0104 E8 2D FF call near ptr out_port
seg030:0107 59 pop cx
seg030:0108 8B 16 82 E7 mov dx, _in_port_1 ; 0x37A
seg030:010C EC in al, dx
seg030:010D 8A C8 mov cl, al
seg030:010F 80 E1 5F and cl, 5Fh
seg030:0112 8A C1 mov al, cl
seg030:0114 EE out dx, al

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1081
seg030:0115 EC in al, dx
seg030:0116 8A C8 mov cl, al
seg030:0118 F6 C1 20 test cl, 20h
seg030:011B 74 08 jz short loc_35A85
seg030:011D 8A 5E FD mov bl, [bp+var_3]
seg030:0120 80 E3 DF and bl, 0DFh
seg030:0123 EB 03 jmp short loc_35A88
seg030:0125
seg030:0125 loc_35A85: ; CODE XREF: sent_pro+DAj
seg030:0125 8A 5E FD mov bl, [bp+var_3]
seg030:0128
seg030:0128 loc_35A88: ; CODE XREF: sent_pro+E2j
seg030:0128 F6 C1 80 test cl, 80h
seg030:012B 74 03 jz short loc_35A90
seg030:012D 80 E3 7F and bl, 7Fh
seg030:0130
seg030:0130 loc_35A90: ; CODE XREF: sent_pro+EAj
seg030:0130 8B 16 82 E7 mov dx, _in_port_1 ; 0x37A
seg030:0134 8A C3 mov al, bl
seg030:0136 EE out dx, al
seg030:0137 8B C7 mov ax, di
seg030:0139 5F pop di
seg030:013A 5E pop si
seg030:013B C9 leave
seg030:013C CB retf
seg030:013C sent_pro endp

This is again a Sentinel Pro “hashing” dongle as in the previous example. It is notice-
ably because text strings are passed here, too, and 16 bit values are returned and
compared with others.
So that is how Sentinel Pro is accessed via ports.
The output port address is usually 0x378, i.e., the printer port, where the data to the
old printers in pre-USB era was passed to.
The port is uni-directional, because when it was developed, no one imagined that
someone will need to transfer information from the printer 18.
The only way to get information from the printer is a status register on port 0x379,
which contains such bits as “paper out”, “ack”, “busy”—thus the printer may signal
to the host computer if it is ready or not and if paper is present in it.
So the dongle returns information from one of these bits, one bit at each iteration.
_in_port_2 contains the address of the status word (0x379) and _in_port_1 con-
tains the control register address (0x37A).
It seems that the dongle returns information via the “busy” flag at seg030:00B9:
each bit is stored in the DI register, which is returned at the end of the function.
What do all these bytes sent to output port mean? Hard to say. Perhaps, commands
to the dongle.
18If we consider Centronics only. The following IEEE 1284 standard allows the transfer of information
from the printer.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1082
But generally speaking, it is not necessary to know: it is easy to solve our task
without that knowledge.
Here is the dongle checking routine:
00000000 struct_0 struc ; (sizeof=0x1B)
00000000 field_0 db 25 dup(?) ; string(C)
00000019 _A dw ?
0000001B struct_0 ends

dseg:3CBC 61 63 72 75+_Q struct_0 <'hello', 01122h>
dseg:3CBC 6E 00 00 00+ ; DATA XREF: check_dongle+2Eo

... skipped ...

dseg:3E00 63 6F 66 66+ struct_0 <'coffee', 7EB7h>
dseg:3E1B 64 6F 67 00+ struct_0 <'dog', 0FFADh>
dseg:3E36 63 61 74 00+ struct_0 <'cat', 0FF5Fh>
dseg:3E51 70 61 70 65+ struct_0 <'paper', 0FFDFh>
dseg:3E6C 63 6F 6B 65+ struct_0 <'coke', 0F568h>
dseg:3E87 63 6C 6F 63+ struct_0 <'clock', 55EAh>
dseg:3EA2 64 69 72 00+ struct_0 <'dir', 0FFAEh>
dseg:3EBD 63 6F 70 79+ struct_0 <'copy', 0F557h>

seg030:0145 check_dongle proc far ; CODE XREF: sub_3771D+3EP
seg030:0145
seg030:0145 var_6 = dword ptr -6
seg030:0145 var_2 = word ptr -2
seg030:0145
seg030:0145 C8 06 00 00 enter 6, 0
seg030:0149 56 push si
seg030:014A 66 6A 00 push large 0 ; newtime
seg030:014D 6A 00 push 0 ; cmd
seg030:014F 9A C1 18 00+ call _biostime
seg030:0154 52 push dx
seg030:0155 50 push ax
seg030:0156 66 58 pop eax
seg030:0158 83 C4 06 add sp, 6
seg030:015B 66 89 46 FA mov [bp+var_6], eax
seg030:015F 66 3B 06 D8+ cmp eax, _expiration
seg030:0164 7E 44 jle short loc_35B0A
seg030:0166 6A 14 push 14h
seg030:0168 90 nop
seg030:0169 0E push cs
seg030:016A E8 52 00 call near ptr get_rand
seg030:016D 59 pop cx
seg030:016E 8B F0 mov si, ax
seg030:0170 6B C0 1B imul ax, 1Bh
seg030:0173 05 BC 3C add ax, offset _Q
seg030:0176 1E push ds
seg030:0177 50 push ax
seg030:0178 0E push cs
seg030:0179 E8 C5 FE call near ptr sent_pro

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1083
seg030:017C 83 C4 04 add sp, 4
seg030:017F 89 46 FE mov [bp+var_2], ax
seg030:0182 8B C6 mov ax, si
seg030:0184 6B C0 12 imul ax, 18
seg030:0187 66 0F BF C0 movsx eax, ax
seg030:018B 66 8B 56 FA mov edx, [bp+var_6]
seg030:018F 66 03 D0 add edx, eax
seg030:0192 66 89 16 D8+ mov _expiration, edx
seg030:0197 8B DE mov bx, si
seg030:0199 6B DB 1B imul bx, 27
seg030:019C 8B 87 D5 3C mov ax, _Q._A[bx]
seg030:01A0 3B 46 FE cmp ax, [bp+var_2]
seg030:01A3 74 05 jz short loc_35B0A
seg030:01A5 B8 01 00 mov ax, 1
seg030:01A8 EB 02 jmp short loc_35B0C
seg030:01AA
seg030:01AA loc_35B0A: ; CODE XREF: check_dongle+1Fj
seg030:01AA ; check_dongle+5Ej
seg030:01AA 33 C0 xor ax, ax
seg030:01AC
seg030:01AC loc_35B0C: ; CODE XREF: check_dongle+63j
seg030:01AC 5E pop si
seg030:01AD C9 leave
seg030:01AE CB retf
seg030:01AE check_dongle endp

Since the routine can be called very frequently, e.g., before the execution of each
important software feature, and accessing the dongle is generally slow (because of
the slow printer port and also slow MCU in the dongle), they probably added a way to
skip some dongle checks, by checking the current time in the biostime() function.
The get_rand() function uses the standard C function:
seg030:01BF get_rand proc far ; CODE XREF: check_dongle+25p
seg030:01BF
seg030:01BF arg_0 = word ptr 6
seg030:01BF
seg030:01BF 55 push bp
seg030:01C0 8B EC mov bp, sp
seg030:01C2 9A 3D 21 00+ call _rand
seg030:01C7 66 0F BF C0 movsx eax, ax
seg030:01CB 66 0F BF 56+ movsx edx, [bp+arg_0]
seg030:01D0 66 0F AF C2 imul eax, edx
seg030:01D4 66 BB 00 80+ mov ebx, 8000h
seg030:01DA 66 99 cdq
seg030:01DC 66 F7 FB idiv ebx
seg030:01DF 5D pop bp
seg030:01E0 CB retf
seg030:01E0 get_rand endp

So the text string is selected randomly, passed into the dongle, and then the result
of the hashing is compared with the correct value.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1084
The text strings seem to be constructed randomly as well, during software develop-
ment.
And this is how the main dongle checking function is called:
seg033:087B 9A 45 01 96+ call check_dongle
seg033:0880 0B C0 or ax, ax
seg033:0882 74 62 jz short OK
seg033:0884 83 3E 60 42+ cmp word_620E0, 0
seg033:0889 75 5B jnz short OK
seg033:088B FF 06 60 42 inc word_620E0
seg033:088F 1E push ds
seg033:0890 68 22 44 push offset aTrupcRequiresA ;

"This Software Requires a Software Lock\n"
seg033:0893 1E push ds
seg033:0894 68 60 E9 push offset byte_6C7E0 ; dest
seg033:0897 9A 79 65 00+ call _strcpy
seg033:089C 83 C4 08 add sp, 8
seg033:089F 1E push ds
seg033:08A0 68 42 44 push offset aPleaseContactA ; "Please Contact

..."
seg033:08A3 1E push ds
seg033:08A4 68 60 E9 push offset byte_6C7E0 ; dest
seg033:08A7 9A CD 64 00+ call _strcat

Bypassing the dongle is easy, just force the check_dongle() function to always
return 0.
For example, by inserting this code at its beginning:
mov ax,0
retf

The observant reader might recall that the strcpy() C function usually requires two
pointers in its arguments, but we see that 4 values are passed:
seg033:088F 1E push ds
seg033:0890 68 22 44 push offset aTrupcRequiresA ;

"This Software Requires a Software Lock\n"
seg033:0893 1E push ds
seg033:0894 68 60 E9 push offset byte_6C7E0 ; dest
seg033:0897 9A 79 65 00+ call _strcpy
seg033:089C 83 C4 08 add sp, 8

This is related to MS-DOS’ memory model. You can read more about it here: 11.7 on
page 1264.
So as you may see, strcpy() and any other function that take pointer(s) in argu-
ments work with 16-bit pairs.
Let’s get back to our example. DS is currently set to the data segment located in the
executable, that is where the text string is stored.
In the sent_pro() function, each byte of the string is loaded at
seg030:00EF: the LES instruction loads the ES:BX pair simultaneously from the passed
argument.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1085
The MOV at seg030:00F5 loads the byte from the memory at which the ES:BX pair
points.

8.9 Encrypted database case #1
(This part has been first appeared in my blog at 26-Aug-2015. Some discussion:
https://news.ycombinator.com/item?id=10128684.)

8.9.1 Base64 and entropy
I’ve got the XML file containing some encrypted data. Perhaps, it’s related to some
orders and/or customers information.
<?xml version = "1.0" encoding = "UTF-8"?>
<Orders>

<Order>
<OrderID>1</OrderID>
<Data>yjmxhXUbhB/5MV45chPsXZWAJwIh1S0aD9lFn3XuJMSxJ3/E+⤦

Ç UE3hsnH</Data>
</Order>
<Order>

<OrderID>2</OrderID>
<Data>0KGe/wnypFBjsy+U0C2P9fC5nDZP3XDZLMPCRaiBw9OjIk6Tu5U⤦

Ç =</Data>
</Order>
<Order>

<OrderID>3</OrderID>
<Data>mqkXfdzvQKvEArdzh+zD9oETVGBFvcTBLs2ph1b5bYddExzp</⤦

Ç Data>
</Order>
<Order>

<OrderID>4</OrderID>
<Data>FCx6JhIDqnESyT3HAepyE1BJ3cJd7wCk+APCRUeuNtZdpCvQ2MR/7⤦

Ç kLXtfUHuA==</Data>
</Order>

...

The file is available here.
This is clearly base64-encoded data, because all strings consisting of Latin charac-
ters, digits, plus (+) and slash (/) symbols. There can be 1 or 2 padding symbols (=),
but they are never occurred in the middle of string. Keeping in mind these base64
properties, it’s very easy to recognize them.
Let’s decode them and calculate entropies (9.2 on page 1195) of these blocks in
Wolfram Mathematica:
In[]:= ListOfBase64Strings =

Map[First[#[[3]]] &, Cases[Import["encrypted.xml"], XMLElement["Data", _,⤦
Ç _], Infinity]];

In[]:= BinaryStrings =

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://news.ycombinator.com/item?id=10128684
https://beginners.re/paywall/RE4B-source/current-tree//examples/encrypted_DB1/encrypted.xml
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1086
Map[ImportString[#, {"Base64", "String"}] &, ListOfBase64Strings];

In[]:= Entropies = Map[N[Entropy[2, #]] &, BinaryStrings];

In[]:= Variance[Entropies]
Out[]= 0.0238614

Variance is low. This means the entropy values are not very different from each other.
This is visible on graph:
In[]:= ListPlot[Entropies]

Most values are between 5.0 and 5.4. This is a sign that the data is compressed
and/or encrypted.
To understand variance, let’s calculate entropies of all lines in Conan Doyle’s The
Hound of the Baskervilles book:
In[]:= BaskervillesLines = Import["http://www.gutenberg.org/cache/epub⤦

Ç /2852/pg2852.txt", "List"];

In[]:= EntropiesT = Map[N[Entropy[2, #]] &, BaskervillesLines];

In[]:= Variance[EntropiesT]
Out[]= 2.73883

In[]:= ListPlot[EntropiesT]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1087

Most values are gathered around value of 4, but there are also values which are
smaller, and they are influenced final variance value.
Perhaps, shortest strings has smaller entropy, let’s take short string from the Conan
Doyle’s book:
In[]:= Entropy[2, "Yes, sir."] // N
Out[]= 2.9477

Let’s try even shorter:
In[]:= Entropy[2, "Yes"] // N
Out[]= 1.58496

In[]:= Entropy[2, "No"] // N
Out[]= 1.

8.9.2 Is data compressed?
OK, so our data is compressed and/or encrypted. Is it compressed? Almost all data
compressors put some header at the start, signature, or something like that. As we
can see, there are no consistent data at the start of each block. It’s still possible
that this is a handmade data compressor, but they are very rare. On the other hand,
handmade cryptoalgorithms are much more popular, because it’s very easy to make
it work. Even primitive keyless cryptosystems like memfrob()19 and ROT13 works
19http://linux.die.net/man/3/memfrob

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://linux.die.net/man/3/memfrob
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1088
fine without errors. It’s a serious challenge to write data compressor from scratch
using only fantasy and imagination in a way so it will have no evident bugs. Some
programmers implements data compression functions by reading textbooks, but this
is also rare. The most popular two ways are: 1) just take open-source library like
zlib; 2) copy&paste something from somewhere. Open-source data compressions
algorithms usually puts some kind of header, and so do algorithms from sites like
http://www.codeproject.com/.

8.9.3 Is data encrypted?
Major data encryption algorithms process data in blocks. DES—8 bytes, AES—16
bytes. If the input buffer is not divided evenly by block size, it’s padded by zeroes
(or something else), so encrypted data will be aligned by cryptoalgorithm’s block
size. This is not our case.
Using Wolfram Mathematica, I analyzed block’s lengths:
In[]:= Counts[Map[StringLength[#] &, BinaryStrings]]
Out[]= <|42 -> 1858, 38 -> 1235, 36 -> 699, 46 -> 1151, 40 -> 1784,
44 -> 1558, 50 -> 366, 34 -> 291, 32 -> 74, 56 -> 15, 48 -> 716,
30 -> 13, 52 -> 156, 54 -> 71, 60 -> 3, 58 -> 6, 28 -> 4|>

1858 blocks has size of 42 bytes, 1235 blocks has size of 38 bytes, etc.
I made a graph:
ListPlot[Counts[Map[StringLength[#] &, BinaryStrings]]]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.codeproject.com/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1089
So, most blocks has size between ~36 and ~48. There is also another thing to notice:
all block sizes are even. No single block with odd size.
There are, however, stream ciphers which can operate on byte level or even on bit
level.

8.9.4 CryptoPP
The program which can browse this encrypted database is written C# and the .NET
code is heavily obfuscated. Nevertheless, there is DLL with x86 code, which, after
brief examination, has parts of the CryptoPP popular open-source library! (I just
spotted “CryptoPP” strings inside.) Now it’s very easy to find all functions inside of
DLL because CryptoPP library is open-source.
CryptoPP library has a lot of crypto-functions, including AES (AKA Rijndael). Newer
x86 CPUs has AES helper instructions like AESENC, AESDEC and AESKEYGENASSIST 20.
They are not performing encryption/decryption completely, but they do significant
amount of job. And newer CryptoPP versions use them. For example, here: 1, 2.
To my surprise, during decryption, AESENC gets executed, while AESDEC is not (I just
checked with my tracer utility, but any debugger can be used). I checked, if my CPU
really supports AES instructions. Some Intel i3 CPUs are not. And if not, CryptoPP
library falling back to AES functions implemented in old way 21. But my CPU supports
them. Why AESDEC is still not executed? Why the program use AES encryption in
order to decrypt database?
OK, it’s not a problem to find a function which encrypts block. It is called
CryptoPP::Rijndael::Enc::ProcessAndXorBlock: src, and it can call another function:
Rijndael::Enc::AdvancedProcessBlocks() src, which, in turn, can call two other func-
tions (AESNI_Enc_Block and AESNI_Enc_4_Blocks) which has AESENC instructions.
So, judging by CryptoPP internals,
CryptoPP::Rijndael::Enc::ProcessAndXorBlock() encrypts one 16-byte block. Let’s set
breakpoint on it and see, what happens during decryption. I use my simple tracer
tool again. The software must decrypt first data block now. Oh, by the way, here is
the first data block converted from base64 encoding to hexadecimal data, let’s have
it at hand:
00000000: CA 39 B1 85 75 1B 84 1F F9 31 5E 39 72 13 EC 5D .9..u....1^9r⤦

Ç ..]
00000010: 95 80 27 02 21 D5 2D 1A 0F D9 45 9F 75 EE 24 C4 ..'.!.-...E.u.$⤦

Ç .
00000020: B1 27 7F 84 FE 41 37 86 C9 C0 .'...A7...

These are also arguments of the function from CryptoPP source files:
size_t Rijndael::Enc::AdvancedProcessBlocks(const byte *inBlocks, const ⤦

Ç byte *xorBlocks, byte *outBlocks, size_t length, word32 flags);

So it has 5 arguments. Possible flags are:
20https://en.wikipedia.org/wiki/AES_instruction_set
21https://github.com/mmoss/cryptopp/blob/2772f7b57182b31a41659b48d5f35a7b6cedd34d/src/

rijndael.cpp#L355

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://github.com/mmoss/cryptopp/blob/2772f7b57182b31a41659b48d5f35a7b6cedd34d/src/rijndael.cpp#L1034
https://github.com/mmoss/cryptopp/blob/2772f7b57182b31a41659b48d5f35a7b6cedd34d/src/rijndael.cpp#L1000
https://github.com/mmoss/cryptopp/blob/2772f7b57182b31a41659b48d5f35a7b6cedd34d/src/rijndael.cpp#L349
https://github.com/mmoss/cryptopp/blob/2772f7b57182b31a41659b48d5f35a7b6cedd34d/src/rijndael.cpp#L1179
https://github.com/mmoss/cryptopp/blob/2772f7b57182b31a41659b48d5f35a7b6cedd34d/src/rijndael.cpp#L1000
https://github.com/mmoss/cryptopp/blob/2772f7b57182b31a41659b48d5f35a7b6cedd34d/src/rijndael.cpp#L1012
https://en.wikipedia.org/wiki/AES_instruction_set
https://github.com/mmoss/cryptopp/blob/2772f7b57182b31a41659b48d5f35a7b6cedd34d/src/rijndael.cpp#L355
https://github.com/mmoss/cryptopp/blob/2772f7b57182b31a41659b48d5f35a7b6cedd34d/src/rijndael.cpp#L355
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1090

enum {BT_InBlockIsCounter=1, BT_DontIncrementInOutPointers=2, BT_XorInput⤦
Ç =4, BT_ReverseDirection=8, BT_AllowParallel=16} ⤦
Ç FlagsForAdvancedProcessBlocks;

OK, run tracer on ProcessAndXorBlock() function:
... tracer.exe -l:filename.exe bpf=filename.exe!0x4339a0,args:5,dump_args:0⤦

Ç x10

Warning: no tracer.cfg file.
PID=1984|New process software.exe
no module registered with image base 0x77320000
no module registered with image base 0x76e20000
no module registered with image base 0x77320000
no module registered with image base 0x77220000
Warning: unknown (to us) INT3 breakpoint at ntdll.dll!⤦

Ç LdrVerifyImageMatchesChecksum+0x96c (0x776c103b)
(0) software.exe!0x4339a0(0x38b920, 0x0, 0x38b978, 0x10, 0x0) (called from ⤦

Ç software.exe!.text+0x33c0d (0x13e4c0d))
Argument 1/5
0038B920: 01 00 00 00 FF FF FF FF-79 C1 69 0B 67 C1 04 7D "........y.i.g⤦

Ç ..}"
Argument 3/5
0038B978: CD CD CD CD CD CD CD CD-CD CD CD CD CD CD CD CD ⤦

Ç "................"
(0) software.exe!0x4339a0() -> 0x0
Argument 3/5 difference
00000000: C7 39 4E 7B 33 1B D6 1F-B8 31 10 39 39 13 A5 5D ".9N⤦

Ç {3....1.99..]"
(0) software.exe!0x4339a0(0x38a828, 0x38a838, 0x38bb40, 0x0, 0x8) (called ⤦

Ç from software.exe!.text+0x3a407 (0x13eb407))
Argument 1/5
0038A828: 95 80 27 02 21 D5 2D 1A-0F D9 45 9F 75 EE 24 C4 "..'.!.-...E.u.$⤦

Ç ."
Argument 2/5
0038A838: B1 27 7F 84 FE 41 37 86-C9 C0 00 CD CD CD CD CD ".'...A7⤦

Ç"
Argument 3/5
0038BB40: CD CD CD CD CD CD CD CD-CD CD CD CD CD CD CD CD ⤦

Ç "................"
(0) software.exe!0x4339a0() -> 0x0
(0) software.exe!0x4339a0(0x38b920, 0x38a828, 0x38bb30, 0x10, 0x0) (called ⤦

Ç from software.exe!.text+0x33c0d (0x13e4c0d))
Argument 1/5
0038B920: CA 39 B1 85 75 1B 84 1F-F9 31 5E 39 72 13 EC 5D ".9..u....1^9r⤦

Ç ..]"
Argument 2/5
0038A828: 95 80 27 02 21 D5 2D 1A-0F D9 45 9F 75 EE 24 C4 "..'.!.-...E.u.$⤦

Ç ."
Argument 3/5
0038BB30: CD CD CD CD CD CD CD CD-CD CD CD CD CD CD CD CD ⤦

Ç "................"
(0) software.exe!0x4339a0() -> 0x0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1091
Argument 3/5 difference
00000000: 45 00 20 00 4A 00 4F 00-48 00 4E 00 53 00 00 00 "E. .J.O.H.N.S⤦

Ç ..."
(0) software.exe!0x4339a0(0x38b920, 0x0, 0x38b978, 0x10, 0x0) (called from ⤦

Ç software.exe!.text+0x33c0d (0x13e4c0d))
Argument 1/5
0038B920: 95 80 27 02 21 D5 2D 1A-0F D9 45 9F 75 EE 24 C4 "..'.!.-...E.u.$⤦

Ç ."
Argument 3/5
0038B978: 95 80 27 02 21 D5 2D 1A-0F D9 45 9F 75 EE 24 C4 "..'.!.-...E.u.$⤦

Ç ."
(0) software.exe!0x4339a0() -> 0x0
Argument 3/5 difference
00000000: B1 27 7F E4 9F 01 E3 81-CF C6 12 FB B9 7C F1 BC ⤦

Ç ".'...........|.."
PID=1984|Process software.exe exited. ExitCode=0 (0x0)

Here we can see inputs to the ProcessAndXorBlock() function, and outputs from it.
This is output from the function during first call:
00000000: C7 39 4E 7B 33 1B D6 1F-B8 31 10 39 39 13 A5 5D ".9N⤦

Ç {3....1.99..]"

Then the ProcessAndXorBlock() is called with zero-length block,
but with 8 flag (BT_ReverseDirection).
Second call:
00000000: 45 00 20 00 4A 00 4F 00-48 00 4E 00 53 00 00 00 "E. .J.O.H.N.S⤦

Ç ..."

Wow, there is some string familiar to us!
Third call:
00000000: B1 27 7F E4 9F 01 E3 81-CF C6 12 FB B9 7C F1 BC ⤦

Ç ".'...........|.."

The first output is very similar to the first 16 bytes of the encrypted buffer.
Output of the first call of ProcessAndXorBlock():
00000000: C7 39 4E 7B 33 1B D6 1F-B8 31 10 39 39 13 A5 5D ".9N⤦

Ç {3....1.99..]"

First 16 bytes of encrypted buffer:
00000000: CA 39 B1 85 75 1B 84 1F F9 31 5E 39 72 13 EC 5D .9..u....1^9r..]

There are toomuch equal bytes! How come AES encryption result can be very similar
to the encrypted buffer while this is not encryption but rather decryption?!

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1092
8.9.5 Cipher Feedback mode
The answer is CFB22: in this mode, AES algorithm used not as encryption algorithm,
but as a device which generates cryptographically secure random data. The actual
encryption is happening using simple XOR operation.
Here is encryption algorithm (images are taken from Wikipedia):

And decryption:

Now let’s see: AES encryption operation generates 16 bytes (or 128 bits) of random
data to be used while XOR-ing, who forces us to use all 16 bytes? If at the last itera-
tion we’ve got 1 byte of data, let’s xor 1 byte of data with 1 byte of generated random
data? This leads to important property of CFB mode: data can be not padded, data
of arbitrary size can be encrypted and decrypted.
22Cipher Feedback

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1093
Oh, that’s why all encrypted blocks are not padded. And that’s why AESDEC instruc-
tion is never called.
Let’s try to decrypt first block manually, using Python. CFB mode also use IV, as a
seed for CSPRNG23. In our case, IV is the block which is encrypted at first iteration:
0038B920: 01 00 00 00 FF FF FF FF-79 C1 69 0B 67 C1 04 7D "........y.i.g⤦

Ç ..}"

Oh, and we also have to recover encryption key. There is AESKEYGENASSIST is DLL,
and it is called, and it is used in the
Rijndael::Base::UncheckedSetKey() function: src. It’s easy to find it in IDA and set
breakpoint. Let’s see:
... tracer.exe -l:filename.exe bpf=filename.exe!0x435c30,args:3,dump_args:0⤦

Ç x10

Warning: no tracer.cfg file.
PID=2068|New process software.exe
no module registered with image base 0x77320000
no module registered with image base 0x76e20000
no module registered with image base 0x77320000
no module registered with image base 0x77220000
Warning: unknown (to us) INT3 breakpoint at ntdll.dll!⤦

Ç LdrVerifyImageMatchesChecksum+0x96c (0x776c103b)
(0) software.exe!0x435c30(0x15e8000, 0x10, 0x14f808) (called from software.⤦

Ç exe!.text+0x22fa1 (0x13d3fa1))
Argument 1/3
015E8000: CD C5 7E AD 28 5F 6D E1-CE 8F CC 29 B1 21 88 8E "..~.(_m....)⤦

Ç .!.."
Argument 3/3
0014F808: 38 82 58 01 C8 B9 46 00-01 D1 3C 01 00 F8 14 00 "8.X...F⤦

Ç ...<....."
Argument 3/3 +0x0: software.exe!.rdata+0x5238
Argument 3/3 +0x8: software.exe!.text+0x1c101
(0) software.exe!0x435c30() -> 0x13c2801
PID=2068|Process software.exe exited. ExitCode=0 (0x0)

So this is the key: CD C5 7E AD 28 5F 6D E1-CE 8F CC 29 B1 21 88 8E.
During manual decryption we’ve got this:
00000000: 0D 00 FF FE 46 00 52 00 41 00 4E 00 4B 00 49 00F.R.A.N.K.I⤦

Ç .
00000010: 45 00 20 00 4A 00 4F 00 48 00 4E 00 53 00 66 66 E. .J.O.H.N.S.⤦

Ç ff
00000020: 66 66 66 9E 61 40 D4 07 06 01 fff.a@....

Now this is something readable! And now we can see why there were so many equal
bytes at the first decryption iteration: because plaintext has so many zero bytes!
Let’s decrypt the second block:
23Cryptographically Secure Pseudorandom Number Generator

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://github.com/mmoss/cryptopp/blob/2772f7b57182b31a41659b48d5f35a7b6cedd34d/src/rijndael.cpp#L198
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1094

00000000: 17 98 D0 84 3A E9 72 4F DB 82 3F AD E9 3E 2A A8:.rO⤦
Ç ..?..>*.

00000010: 41 00 52 00 52 00 4F 00 4E 00 CD CC CC CC CC CC A.R.R.O.N⤦
Ç

00000020: 1B 40 D4 07 06 01 .@....

Third, fourth and fifth:
00000000: 5D 90 59 06 EF F4 96 B4 7C 33 A7 4A BE FF 66 AB].Y.....|3.J..f⤦

Ç .
00000010: 49 00 47 00 47 00 53 00 00 00 00 00 00 C0 65 40 I.G.G.S.......⤦

Ç e@
00000020: D4 07 06 01

00000000: D3 15 34 5D 21 18 7C 6E AA F8 2D FE 38 F9 D7 4E ..4]!.|n..-.8..⤦
Ç N

00000010: 41 00 20 00 44 00 4F 00 48 00 45 00 52 00 54 00 A. .D.O.H.E.R.T⤦
Ç .

00000020: 59 00 48 E1 7A 14 AE FF 68 40 D4 07 06 02 Y.H.z...h@....

00000000: 1E 8B 90 0A 17 7B C5 52 31 6C 4E 2F DE 1B 27 19{.R1lN⤦
Ç ...'.

00000010: 41 00 52 00 43 00 55 00 53 00 00 00 00 00 00 60 A.R.C.U.S⤦
Ç

00000020: 66 40 D4 07 06 03 f@....

All blocks decrypted seems correct except of first 16 bytes part.

8.9.6 Initializing Vector
What can affect first 16 bytes?
Let’s back to CFB decryption algorithm again: 8.9.5 on page 1092.
We can see that IV can affect to first block decryption operation, but not the second,
because during the second iteration, ciphertext from the first iteration is used, and
in case of decryption, it’s the same, no matter what IV has!
So probably, IV is different each time. Using my tracer, I’ll take a look at the first
input during decryption of the second block of XML file:
0038B920: 02 00 00 00 FE FF FF FF-79 C1 69 0B 67 C1 04 7D "........y.i.g⤦

Ç ..}"

…third:
0038B920: 03 00 00 00 FD FF FF FF-79 C1 69 0B 67 C1 04 7D "........y.i.g⤦

Ç ..}"

It seems, first and fifth byte are changed each time. I finally concluded that the first
32-bit integer is just OrderID from the XML file, and the second 32-bit integer is also

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1095
OrderID, but negated. All other 8 bytes are same for each operation. Now I have de-
crypted the whole database: https://beginners.re/paywall/RE4B-source/current-tree/
/examples/encrypted_DB1/decrypted.full.txt.
The Python script used for this is: https://beginners.re/paywall/RE4B-source/
current-tree//examples/encrypted_DB1/decrypt_blocks.py.
Perhaps, the author wanted each block encrypted differently, so he/she used OrderID
as part of key. It would be also possible to make different AES key instead of IV.
So now we know that IV only affects first block during decryption in CFB mode, this
is feature of it. All other blocks can be decrypted without knowledge IV, but using
the key.
OK, so why CFB mode? Apparently, because the very first AES example on CryptoPP
wiki uses CFBmode: http://www.cryptopp.com/wiki/Advanced_Encryption_Standard#
Encrypting_and_Decrypting_Using_AES. Supposedly, developer choose it for sim-
plicity: the example can encrypt/decrypt text strings with arbitrary lengths, without
padding.
It is very likely, program’s author(s) just copypasted the example from CryptoPP wiki
page. Many programmers do so.
The only difference that IV is chosen randomly in CryptoPP wiki example, while this
indeterminism wasn’t allowable to programmers of the software we are dissecting
now, so they choose to initialize IV using Order ID.
Now we can proceed to analyzing matter of each byte in the decrypted block.

8.9.7 Structure of the buffer
Let’s take first four decrypted blocks:
00000000: 0D 00 FF FE 46 00 52 00 41 00 4E 00 4B 00 49 00F.R.A.N.K.I⤦

Ç .
00000010: 45 00 20 00 4A 00 4F 00 48 00 4E 00 53 00 66 66 E. .J.O.H.N.S.⤦

Ç ff
00000020: 66 66 66 9E 61 40 D4 07 06 01 fff.a@....

00000000: 0B 00 FF FE 4C 00 4F 00 52 00 49 00 20 00 42 00L.O.R.I. .B⤦
Ç .

00000010: 41 00 52 00 52 00 4F 00 4E 00 CD CC CC CC CC CC A.R.R.O.N⤦
Ç

00000020: 1B 40 D4 07 06 01 .@....

00000000: 0A 00 FF FE 47 00 41 00 52 00 59 00 20 00 42 00G.A.R.Y. .B⤦
Ç .

00000010: 49 00 47 00 47 00 53 00 00 00 00 00 00 C0 65 40 I.G.G.S.......⤦
Ç e@

00000020: D4 07 06 01

00000000: 0F 00 FF FE 4D 00 45 00 4C 00 49 00 4E 00 44 00M.E.L.I.N.D⤦
Ç .

00000010: 41 00 20 00 44 00 4F 00 48 00 45 00 52 00 54 00 A. .D.O.H.E.R.T⤦
Ç .

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//examples/encrypted_DB1/decrypted.full.txt
https://beginners.re/paywall/RE4B-source/current-tree//examples/encrypted_DB1/decrypted.full.txt
https://beginners.re/paywall/RE4B-source/current-tree//examples/encrypted_DB1/decrypt_blocks.py
https://beginners.re/paywall/RE4B-source/current-tree//examples/encrypted_DB1/decrypt_blocks.py
http://www.cryptopp.com/wiki/Advanced_Encryption_Standard#Encrypting_and_Decrypting_Using_AES
http://www.cryptopp.com/wiki/Advanced_Encryption_Standard#Encrypting_and_Decrypting_Using_AES
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1096
00000020: 59 00 48 E1 7A 14 AE FF 68 40 D4 07 06 02 Y.H.z...h@....

UTF-16 encoded text strings are clearly visible, these are names and surnames. The
first byte (or 16-bit word) is seems string length, we can visually check it. FF FE is
seems Unicode BOM.
There are 12 more bytes after each string.
Using this script (https://beginners.re/paywall/RE4B-source/current-tree/
/examples/encrypted_DB1/dump_buffer_rest.py) I’ve got random selection of the
tails:
dennis@...:$ python decrypt.py encrypted.xml | shuf | head -20
00000000: 48 E1 7A 14 AE 5F 62 40 DD 07 05 08 H.z.._b@....
00000000: 00 00 00 00 00 40 5A 40 DC 07 08 18@Z@....
00000000: 00 00 00 00 00 80 56 40 D7 07 0B 04V@....
00000000: 00 00 00 00 00 60 61 40 D7 07 0C 1Ca@....
00000000: 00 00 00 00 00 20 63 40 D9 07 05 18 c@....
00000000: 3D 0A D7 A3 70 FD 34 40 D7 07 07 11 =...p.4@....
00000000: 00 00 00 00 00 A0 63 40 D5 07 05 19c@....
00000000: CD CC CC CC CC 3C 5C 40 D7 07 08 11@....
00000000: 66 66 66 66 66 FE 62 40 D4 07 06 05 fffff.b@....
00000000: 1F 85 EB 51 B8 FE 40 40 D6 07 09 1E ...Q..@@....
00000000: 00 00 00 00 00 40 5F 40 DC 07 02 18@_@....
00000000: 48 E1 7A 14 AE 9F 67 40 D8 07 05 12 H.z...g@....
00000000: CD CC CC CC CC 3C 5E 40 DC 07 01 07^@....
00000000: 00 00 00 00 00 00 67 40 D4 07 0B 0Eg@....
00000000: 00 00 00 00 00 40 51 40 DC 07 04 0B@Q@....
00000000: 00 00 00 00 00 40 56 40 D7 07 07 0A@V@....
00000000: 8F C2 F5 28 5C 7F 55 40 DB 07 01 16 ...(..U@....
00000000: 00 00 00 00 00 00 32 40 DB 07 06 092@....
00000000: 66 66 66 66 66 7E 66 40 D9 07 0A 06 fffff~f@....
00000000: 48 E1 7A 14 AE DF 68 40 D5 07 07 16 H.z...h@....

We first see the 0x40 and 0x07 bytes present in each tail. The very last byte s
always in 1..0x1F (1..31) range, I’ve checked. The penultimate byte is always in
1..0xC (1..12) range. Wow, that looks like a date! Year can be represented as 16-bit
value, and maybe last 4 bytes is date (16 bits for year, 8 bits for month and 8 more
for day)? 0x7DD is 2013, 0x7D5 is 2005, etc. Seems fine. This is a date. There are
8 more bytes. Judging by the fact this is database named orders, maybe some kind
of sum is present here? I made attempt to interpret it as double-precision IEEE 754
floating point and dump all values!
Some are:
71.0
134.0
51.95
53.0
121.99
96.95
98.95
15.95
85.95

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//examples/encrypted_DB1/dump_buffer_rest.py
https://beginners.re/paywall/RE4B-source/current-tree//examples/encrypted_DB1/dump_buffer_rest.py
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1097
184.99
94.95
29.95
85.0
36.0
130.99
115.95
87.99
127.95
114.0
150.95

Looks like real!
Now we can dump names, sums and dates.
plain:
00000000: 0D 00 FF FE 46 00 52 00 41 00 4E 00 4B 00 49 00F.R.A.N.K.I⤦

Ç .
00000010: 45 00 20 00 4A 00 4F 00 48 00 4E 00 53 00 66 66 E. .J.O.H.N.S.⤦

Ç ff
00000020: 66 66 66 9E 61 40 D4 07 06 01 fff.a@....
OrderID= 1 name= FRANKIE JOHNS sum= 140.95 date= 2004 / 6 / 1

plain:
00000000: 0B 00 FF FE 4C 00 4F 00 52 00 49 00 20 00 42 00L.O.R.I. .B⤦

Ç .
00000010: 41 00 52 00 52 00 4F 00 4E 00 CD CC CC CC CC CC A.R.R.O.N⤦

Ç
00000020: 1B 40 D4 07 06 01 .@....
OrderID= 2 name= LORI BARRON sum= 6.95 date= 2004 / 6 / 1

plain:
00000000: 0A 00 FF FE 47 00 41 00 52 00 59 00 20 00 42 00G.A.R.Y. .B⤦

Ç .
00000010: 49 00 47 00 47 00 53 00 00 00 00 00 00 C0 65 40 I.G.G.S.......⤦

Ç e@
00000020: D4 07 06 01
OrderID= 3 name= GARY BIGGS sum= 174.0 date= 2004 / 6 / 1

plain:
00000000: 0F 00 FF FE 4D 00 45 00 4C 00 49 00 4E 00 44 00M.E.L.I.N.D⤦

Ç .
00000010: 41 00 20 00 44 00 4F 00 48 00 45 00 52 00 54 00 A. .D.O.H.E.R.T⤦

Ç .
00000020: 59 00 48 E1 7A 14 AE FF 68 40 D4 07 06 02 Y.H.z...h@....
OrderID= 4 name= MELINDA DOHERTY sum= 199.99 date= 2004 / 6 / 2

plain:
00000000: 0B 00 FF FE 4C 00 45 00 4E 00 41 00 20 00 4D 00L.E.N.A. .M⤦

Ç .
00000010: 41 00 52 00 43 00 55 00 53 00 00 00 00 00 00 60 A.R.C.U.S⤦

Ç
00000020: 66 40 D4 07 06 03 f@....

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1098
OrderID= 5 name= LENA MARCUS sum= 179.0 date= 2004 / 6 / 3

Seemore: https://beginners.re/paywall/RE4B-source/current-tree//examples/
encrypted_DB1/decrypted.full.with_data.txt. Or filtered: https://beginners.
re/paywall/RE4B-source/current-tree//examples/encrypted_DB1/decrypted.short.
txt. Seems correct.
This is some kind of OOP serialization, i.e., packing differently typed values into
binary buffer for storing and/or transmitting.

8.9.8 Noise at the end
The only question remaining is that sometimes, tail is bigger:
00000000: 0E 00 FF FE 54 00 48 00 45 00 52 00 45 00 53 00T.H.E.R.E.S⤦

Ç .
00000010: 45 00 20 00 54 00 55 00 54 00 54 00 4C 00 45 00 E. .T.U.T.T.L.E⤦

Ç .
00000020: 66 66 66 66 66 1E 63 40 D4 07 07 1A 00 07 07 19 fffff.c@⤦

Ç
OrderID= 172 name= THERESE TUTTLE sum= 152.95 date= 2004 / 7 / 26

(00 07 07 19 bytes are not used and is ballast.)
00000000: 0C 00 FF FE 4D 00 45 00 4C 00 41 00 4E 00 49 00M.E.L.A.N.I⤦

Ç .
00000010: 45 00 20 00 4B 00 49 00 52 00 4B 00 00 00 00 00 E. .K.I.R.K⤦

Ç
00000020: 00 20 64 40 D4 07 09 02 00 02 . d@......
OrderID= 286 name= MELANIE KIRK sum= 161.0 date= 2004 / 9 / 2

(00 02 are not used.)
After close examination, we can see, that the noise at the end of tail is just left from
previous encryption!
Here are two subsequent buffers:
00000000: 10 00 FF FE 42 00 4F 00 4E 00 4E 00 49 00 45 00B.O.N.N.I.E⤦

Ç .
00000010: 20 00 47 00 4F 00 4C 00 44 00 53 00 54 00 45 00 .G.O.L.D.S.T.E⤦

Ç .
00000020: 49 00 4E 00 9A 99 99 99 99 79 46 40 D4 07 07 19 I.N......yF@⤦

Ç
OrderID= 171 name= BONNIE GOLDSTEIN sum= 44.95 date= 2004 / 7 / 25

00000000: 0E 00 FF FE 54 00 48 00 45 00 52 00 45 00 53 00T.H.E.R.E.S⤦
Ç .

00000010: 45 00 20 00 54 00 55 00 54 00 54 00 4C 00 45 00 E. .T.U.T.T.L.E⤦
Ç .

00000020: 66 66 66 66 66 1E 63 40 D4 07 07 1A 00 07 07 19 fffff.c@⤦
Ç

OrderID= 172 name= THERESE TUTTLE sum= 152.95 date= 2004 / 7 / 26

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//examples/encrypted_DB1/decrypted.full.with_data.txt
https://beginners.re/paywall/RE4B-source/current-tree//examples/encrypted_DB1/decrypted.full.with_data.txt
https://beginners.re/paywall/RE4B-source/current-tree//examples/encrypted_DB1/decrypted.short.txt
https://beginners.re/paywall/RE4B-source/current-tree//examples/encrypted_DB1/decrypted.short.txt
https://beginners.re/paywall/RE4B-source/current-tree//examples/encrypted_DB1/decrypted.short.txt
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1099
(The last 07 07 19 bytes are copied from the previous plaintext buffer.)
Another two subsequent buffers:
00000000: 0D 00 FF FE 4C 00 4F 00 52 00 45 00 4E 00 45 00L.O.R.E.N.E⤦

Ç .
00000010: 20 00 4F 00 54 00 4F 00 4F 00 4C 00 45 00 CD CC .O.T.O.O.L.E⤦

Ç ...
00000020: CC CC CC 3C 5E 40 D4 07 09 02 ...<^@....
OrderID= 285 name= LORENE OTOOLE sum= 120.95 date= 2004 / 9 / 2

00000000: 0C 00 FF FE 4D 00 45 00 4C 00 41 00 4E 00 49 00M.E.L.A.N.I⤦
Ç .

00000010: 45 00 20 00 4B 00 49 00 52 00 4B 00 00 00 00 00 E. .K.I.R.K⤦
Ç

00000020: 00 20 64 40 D4 07 09 02 00 02 . d@......
OrderID= 286 name= MELANIE KIRK sum= 161.0 date= 2004 / 9 / 2

The last 02 byte has been copied from the previous plaintext buffer.
It’s possible if the buffer used while encrypting is global and/or isn’t clearing before
each encryption. The final buffer size is also chaotic, nevertheless, the bug left
uncaught because it doesn’t affect decrypting process, which just ignores noise at
the end. This is common mistake. It’s been present in OpenSSL (Heartbleed bug).

8.9.9 Conclusion
Summary: every practicing reverse engineer should be familiar with major crypto
algorithms and also major cryptographical modes. Some books about it: 12.1.10 on
page 1283.
Encrypted database contents has been artificially constructed by me for the sake of
demonstration. I’ve got most popular USA names and surnames from there: http://
stackoverflow.com/questions/1803628/raw-list-of-person-names, and com-
bined them randomly. Dates and sums were also generated randomly.
All files used in this part are here: https://beginners.re/paywall/RE4B-source/
current-tree//examples/encrypted_DB1.
Nevertheless, many features like these I’ve observed in real-world software applica-
tions. This example is based on them.

8.9.10 Post Scriptum: brute-forcing IV
The case you have just seen has been artificially constructed, but is based on a real
application I’ve reverse engineered. When I’ve been working on it, I first noticed that
IV has been generating using some 32-bit number, and I wasn’t able to find a link
between this value and OrderID. So I prepared to use brute-force, which is indeed
possible here.
It’s not a problem to enumerate all 32-bit values and try each as a base for IV. Then
you decrypt the first 16-byte block and check for zero bytes, which are always at
fixed places.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://stackoverflow.com/questions/1803628/raw-list-of-person-names
http://stackoverflow.com/questions/1803628/raw-list-of-person-names
https://beginners.re/paywall/RE4B-source/current-tree//examples/encrypted_DB1
https://beginners.re/paywall/RE4B-source/current-tree//examples/encrypted_DB1
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1100
8.10 Overclocking Cointerra Bitcoin miner
There was Cointerra Bitcoin miner, looking like that:

Figure 8.14: Board

And there was also (possibly leaked) utility24 which can set clock rate for the board.
It runs on additional BeagleBone Linux ARM board (small board at bottom of the
picture).
And the author was once asked, is it possible to hack this utility to see, which fre-
quency can be set and which are not. And it is possible to tweak it?
The utility must be executed like that: ./cointool-overclock 0 0 900, where 900
is frequency in MHz. If the frequency is too high, utility will print “Error with argu-
ments” and exit.
This is a fragment of code around reference to “Error with arguments” text string:

24Can be downloaded here: https://beginners.re/paywall/RE4B-source/current-tree/
/examples/bitcoin_miner/files/cointool-overclock

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//examples/bitcoin_miner/files/cointool-overclock
https://beginners.re/paywall/RE4B-source/current-tree//examples/bitcoin_miner/files/cointool-overclock
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1101
...

.text:0000ABC4 STR R3, [R11,#var_28]

.text:0000ABC8 MOV R3, #optind

.text:0000ABD0 LDR R3, [R3]

.text:0000ABD4 ADD R3, R3, #1

.text:0000ABD8 MOV R3, R3,LSL#2

.text:0000ABDC LDR R2, [R11,#argv]

.text:0000ABE0 ADD R3, R2, R3

.text:0000ABE4 LDR R3, [R3]

.text:0000ABE8 MOV R0, R3 ; nptr

.text:0000ABEC MOV R1, #0 ; endptr

.text:0000ABF0 MOV R2, #0 ; base

.text:0000ABF4 BL strtoll

.text:0000ABF8 MOV R2, R0

.text:0000ABFC MOV R3, R1

.text:0000AC00 MOV R3, R2

.text:0000AC04 STR R3, [R11,#var_2C]

.text:0000AC08 MOV R3, #optind

.text:0000AC10 LDR R3, [R3]

.text:0000AC14 ADD R3, R3, #2

.text:0000AC18 MOV R3, R3,LSL#2

.text:0000AC1C LDR R2, [R11,#argv]

.text:0000AC20 ADD R3, R2, R3

.text:0000AC24 LDR R3, [R3]

.text:0000AC28 MOV R0, R3 ; nptr

.text:0000AC2C MOV R1, #0 ; endptr

.text:0000AC30 MOV R2, #0 ; base

.text:0000AC34 BL strtoll

.text:0000AC38 MOV R2, R0

.text:0000AC3C MOV R3, R1

.text:0000AC40 MOV R3, R2

.text:0000AC44 STR R3, [R11,#third_argument]

.text:0000AC48 LDR R3, [R11,#var_28]

.text:0000AC4C CMP R3, #0

.text:0000AC50 BLT errors_with_arguments

.text:0000AC54 LDR R3, [R11,#var_28]

.text:0000AC58 CMP R3, #1

.text:0000AC5C BGT errors_with_arguments

.text:0000AC60 LDR R3, [R11,#var_2C]

.text:0000AC64 CMP R3, #0

.text:0000AC68 BLT errors_with_arguments

.text:0000AC6C LDR R3, [R11,#var_2C]

.text:0000AC70 CMP R3, #3

.text:0000AC74 BGT errors_with_arguments

.text:0000AC78 LDR R3, [R11,#third_argument]

.text:0000AC7C CMP R3, #0x31

.text:0000AC80 BLE errors_with_arguments

.text:0000AC84 LDR R2, [R11,#third_argument]

.text:0000AC88 MOV R3, #950

.text:0000AC8C CMP R2, R3

.text:0000AC90 BGT errors_with_arguments

.text:0000AC94 LDR R2, [R11,#third_argument]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1102
.text:0000AC98 MOV R3, #0x51EB851F
.text:0000ACA0 SMULL R1, R3, R3, R2
.text:0000ACA4 MOV R1, R3,ASR#4
.text:0000ACA8 MOV R3, R2,ASR#31
.text:0000ACAC RSB R3, R3, R1
.text:0000ACB0 MOV R1, #50
.text:0000ACB4 MUL R3, R1, R3
.text:0000ACB8 RSB R3, R3, R2
.text:0000ACBC CMP R3, #0
.text:0000ACC0 BEQ loc_ACEC
.text:0000ACC4
.text:0000ACC4 errors_with_arguments
.text:0000ACC4
.text:0000ACC4 LDR R3, [R11,#argv]
.text:0000ACC8 LDR R3, [R3]
.text:0000ACCC MOV R0, R3 ; path
.text:0000ACD0 BL __xpg_basename
.text:0000ACD4 MOV R3, R0
.text:0000ACD8 MOV R0, #aSErrorWithArgu ; format
.text:0000ACE0 MOV R1, R3
.text:0000ACE4 BL printf
.text:0000ACE8 B loc_ADD4
.text:0000ACEC ; --
.text:0000ACEC
.text:0000ACEC loc_ACEC ; CODE XREF: main+66C
.text:0000ACEC LDR R2, [R11,#third_argument]
.text:0000ACF0 MOV R3, #499
.text:0000ACF4 CMP R2, R3
.text:0000ACF8 BGT loc_AD08
.text:0000ACFC MOV R3, #0x64
.text:0000AD00 STR R3, [R11,#unk_constant]
.text:0000AD04 B jump_to_write_power
.text:0000AD08 ; --
.text:0000AD08
.text:0000AD08 loc_AD08 ; CODE XREF: main+6A4
.text:0000AD08 LDR R2, [R11,#third_argument]
.text:0000AD0C MOV R3, #799
.text:0000AD10 CMP R2, R3
.text:0000AD14 BGT loc_AD24
.text:0000AD18 MOV R3, #0x5F
.text:0000AD1C STR R3, [R11,#unk_constant]
.text:0000AD20 B jump_to_write_power
.text:0000AD24 ; --
.text:0000AD24
.text:0000AD24 loc_AD24 ; CODE XREF: main+6C0
.text:0000AD24 LDR R2, [R11,#third_argument]
.text:0000AD28 MOV R3, #899
.text:0000AD2C CMP R2, R3
.text:0000AD30 BGT loc_AD40
.text:0000AD34 MOV R3, #0x5A
.text:0000AD38 STR R3, [R11,#unk_constant]
.text:0000AD3C B jump_to_write_power
.text:0000AD40 ; --

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1103
.text:0000AD40
.text:0000AD40 loc_AD40 ; CODE XREF: main+6DC
.text:0000AD40 LDR R2, [R11,#third_argument]
.text:0000AD44 MOV R3, #999
.text:0000AD48 CMP R2, R3
.text:0000AD4C BGT loc_AD5C
.text:0000AD50 MOV R3, #0x55
.text:0000AD54 STR R3, [R11,#unk_constant]
.text:0000AD58 B jump_to_write_power
.text:0000AD5C ; --
.text:0000AD5C
.text:0000AD5C loc_AD5C ; CODE XREF: main+6F8
.text:0000AD5C LDR R2, [R11,#third_argument]
.text:0000AD60 MOV R3, #1099
.text:0000AD64 CMP R2, R3
.text:0000AD68 BGT jump_to_write_power
.text:0000AD6C MOV R3, #0x50
.text:0000AD70 STR R3, [R11,#unk_constant]
.text:0000AD74
.text:0000AD74 jump_to_write_power ; CODE XREF: main+6B0
.text:0000AD74 ; main+6CC ...
.text:0000AD74 LDR R3, [R11,#var_28]
.text:0000AD78 UXTB R1, R3
.text:0000AD7C LDR R3, [R11,#var_2C]
.text:0000AD80 UXTB R2, R3
.text:0000AD84 LDR R3, [R11,#unk_constant]
.text:0000AD88 UXTB R3, R3
.text:0000AD8C LDR R0, [R11,#third_argument]
.text:0000AD90 UXTH R0, R0
.text:0000AD94 STR R0, [SP,#0x44+var_44]
.text:0000AD98 LDR R0, [R11,#var_24]
.text:0000AD9C BL write_power
.text:0000ADA0 LDR R0, [R11,#var_24]
.text:0000ADA4 MOV R1, #0x5A
.text:0000ADA8 BL read_loop
.text:0000ADAC B loc_ADD4

...

.rodata:0000B378 aSErrorWithArgu DCB "%s: Error with arguments",0xA,0 ; DATA
XREF: main+684

...

Function names were present in debugging information of the original binary, like
write_power, read_loop. But labels inside functions were named by me.
optind name looks familiar. It is from getopt *NIX library intended for command-line
parsing—well, this is exactly what happens inside. Then, the 3rd argument (where
frequency value is to be passed) is converted from a string to a number using a call
to strtoll() function.
The value is then checked against various constants. At 0xACEC, it’s checked, if it is
lesser or equal to 499, and if it is so, 0x64 is to be passed to write_power() function

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1104
(which sends a command through USB using send_msg()). If it is greater than 499,
jump to 0xAD08 is occurred.
At 0xAD08 it’s checked, if it’s lesser or equal to 799. 0x5F is then passed to write_power()
function in case of success.
There are more checks: for 899 at 0xAD24, for 0x999 at 0xAD40 and finally, for 1099
at 0xAD5C. If the input frequency is lesser or equal to 1099, 0x50 will be passed (at
0xAD6C) to write_power() function. And there is some kind of bug. If the value
is still greater than 1099, the value itself is passed into write_power() function.
Oh, it’s not a bug, because we can’t get here: value is checked first against 950 at
0xAC88, and if it is greater, error message will be displayed and the utility will finish.
Now the table between frequency in MHz and value passed to write_power() func-
tion:

MHz hexadecimal decimal
499MHz 0x64 100
799MHz 0x5f 95
899MHz 0x5a 90
999MHz 0x55 85
1099MHz 0x50 80

As it seems, a value passed to the board is gradually decreasing during frequency
increasing.
Now we see that value of 950MHz is a hardcoded limit, at least in this utility. Can we
trick it?
Let’s back to this piece of code:
.text:0000AC84 LDR R2, [R11,#third_argument]
.text:0000AC88 MOV R3, #950
.text:0000AC8C CMP R2, R3
.text:0000AC90 BGT errors_with_arguments ; I've patched here to 00

00 00 00

Wemust disable BGT branch instruction at 0xAC90 somehow. And this is ARM in ARM
mode, because, as we see, all addresses are increasing by 4, i.e., each instruction
has size of 4 bytes. NOP (no operation) instruction in ARM mode is just four zero
bytes: 00 00 00 00. So by writing four zeros at 0xAC90 address (or physical offset
in file 0x2C90) we can disable the check.
Now it’s possible to set frequencies up to 1050MHz. Even more is possible, but due
to the bug, if input value is greater than 1099, a value as is in MHz will be passed to
the board, which is incorrect.
I didn’t go further, but if I had to, I would try to decrease a value which is passed to
write_power() function.
Now the scary piece of code which I skipped at first:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1105

.text:0000AC94 LDR R2, [R11,#third_argument]

.text:0000AC98 MOV R3, #0x51EB851F

.text:0000ACA0 SMULL R1, R3, R3, R2 ; R3=3rg_arg/3.125

.text:0000ACA4 MOV R1, R3,ASR#4 ; R1=R3/16=3rg_arg/50

.text:0000ACA8 MOV R3, R2,ASR#31 ; R3=MSB(3rg_arg)

.text:0000ACAC RSB R3, R3, R1 ; R3=3rd_arg/50

.text:0000ACB0 MOV R1, #50

.text:0000ACB4 MUL R3, R1, R3 ; R3=50*(3rd_arg/50)

.text:0000ACB8 RSB R3, R3, R2

.text:0000ACBC CMP R3, #0

.text:0000ACC0 BEQ loc_ACEC

.text:0000ACC4

.text:0000ACC4 errors_with_arguments

Division via multiplication is used here, and constant is 0x51EB851F. I wrote a simple
programmer’s calculator25 for myself. And I have there a feature to calculate modulo
inverse.
modinv32(0x51EB851F)
Warning, result is not integer: 3.125000
(unsigned) dec: 3 hex: 0x3 bin: 11

That means that SMULL instruction at 0xACA0 is basically divides 3rd argument by
3.125. In fact, all modinv32() function in my calculator does, is this:

1
input
232

=
232

input

Then there are additional shifts and now we see than 3rg argument is just divided
by 50. And then it’s multiplied by 50 again. Why? This is simplest check, if the input
value is can be divided by 50 evenly. If the value of this expression is non-zero, x
can’t be divided by 50 evenly:

x − ((
x

50
) ⋅ 50)

This is in fact simple way to calculate remainder of division.
And then, if the remainder is non-zero, error message is displayed. So this utility
takes frequency values in form like 850, 900, 950, 1000, etc., but not 855 or 911.
That’s it! If you do something like that, please be warned that you may damage your
board, just as in case of overclocking other devices like CPUs, GPU26s, etc. If you
have a Cointerra board, do this on your own risk!
25https://yurichev.com/progcalc/
26Graphics Processing Unit

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/progcalc/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1106
8.11 Breaking simple executable code encryptor
We’ve got an executable file which is encrypted by relatively simple encryption. Here
is it (only executable section is left here).
First, all encryption function does is just adds number of position in buffer to the byte.
Here is how this can be encoded:

Listing 8.9: Python script
#!/usr/bin/env python
def e(i, k):

return chr ((ord(i)+k) % 256)

def encrypt(buf):
return e(buf[0], 0)+ e(buf[1], 1)+ e(buf[2], 2) + e(buf[3], 3)+ e(buf⤦
Ç [4], 4)+ e(buf[5], 5)+ e(buf[6], 6)+ e(buf[7], 7)+

e(buf[8], 8)+ e(buf[9], 9)+ e(buf[10], 10)+ e(buf[11], 11)+ e(⤦
Ç buf[12], 12)+ e(buf[13], 13)+ e(buf[14], 14)+ e(buf[15], 15)

Hence, if you encrypt buffer with 16 zeros, you’ll get 0, 1, 2, 3 ... 12, 13, 14, 15.
Propagating Cipher Block Chaining (PCBC) is also used, here is how it works:

Figure 8.15: Propagating Cipher Block Chaining encryption (image is taken from
Wikipedia article)

The problem is to recover IV. Brute-force is also not an option, because IV is too long
(16 bytes). Let’s see, if it’s possible to recover IV for arbitrary encrypted executable
file?
Let’s try simple frequency analysis. This is 32-bit x86 executable code, so let’s gather
statistics about most frequent bytes and opcodes. I tried huge oracle.exe file from
Oracle RDBMS version 11.2 for windows x86 and I’ve found that the most frequent
byte (no surprise) is zero (10%). The next most frequent byte is (again, no surprise)
0xFF (5%). The next is 0x8B (5%).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//examples/simple_exec_crypto/files/cipher.bin
https://beginners.re/paywall/RE4B-source/current-tree//examples/simple_exec_crypto/files/cipher.bin
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1107
0x8B is opcode for MOV, this is indeed one of the most busy x86 instructions. Now
what about popularity of zero byte? If compiler needs to encode value bigger than
127, it has to use 32-bit displacement instead of 8-bit one, but large values are very
rare (2.1.8 on page 570), so it is padded by zeros. This is at least in LEA, MOV, PUSH,
CALL.
For example:
8D B0 28 01 00 00 lea esi, [eax+128h]
8D BF 40 38 00 00 lea edi, [edi+3840h]

Displacements bigger than 127 are very popular, but they are rarely exceeds 0x10000
(indeed, such large memory buffers/structures are also rare).
Same story with MOV, large constants are rare, the most heavily used are 0, 1, 10,
100, 2n, and so on. Compiler has to pad small constants by zeros to represent them
as 32-bit values:
BF 02 00 00 00 mov edi, 2
BF 01 00 00 00 mov edi, 1

Now about 00 and 0xFF bytes combined: jumps (including conditional) and calls
can pass execution flow forward or backwards, but very often, within the limits of
the current executable module. If forward, displacement is not very big and also
padded with zeros. If backwards, displacement is represented as negative value, so
padded with 0xFF bytes. For example, transfer execution flow forward:
E8 43 0C 00 00 call _function1
E8 5C 00 00 00 call _function2
0F 84 F0 0A 00 00 jz loc_4F09A0
0F 84 EB 00 00 00 jz loc_4EFBB8

Backwards:
E8 79 0C FE FF call _function1
E8 F4 16 FF FF call _function2
0F 84 F8 FB FF FF jz loc_8212BC
0F 84 06 FD FF FF jz loc_FF1E7D

0xFF byte is also very often occurred in negative displacements like these:
8D 85 1E FF FF FF lea eax, [ebp-0E2h]
8D 95 F8 5C FF FF lea edx, [ebp-0A308h]

So far so good. Now we have to try various 16-byte keys, decrypt executable section
and measure how often 0, 0xFF and 0x8B bytes are occurred. Let’s also keep in sight
how PCBC decryption works:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1108

Figure 8.16: Propagating Cipher Block Chaining decryption (image is taken from
Wikipedia article)

The good news is that we don’t really have to decrypt whole piece of data, but only
slice by slice, this is exactly how I did in my previous example: 9.1.5 on page 1188.
Now I’m trying all possible bytes (0..255) for each byte in key and just pick the byte
producing maximal amount of 0/0xFF/0x8B bytes in a decrypted slice:
#!/usr/bin/env python
import sys, hexdump, array, string, operator

KEY_LEN=16

def chunks(l, n):
split n by l-byte chunks
https://stackoverflow.com/q/312443
n = max(1, n)
return [l[i:i + n] for i in range(0, len(l), n)]

def read_file(fname):
file=open(fname, mode='rb')
content=file.read()
file.close()
return content

def decrypt_byte (c, key):
return chr((ord(c)-key) % 256)

def XOR_PCBC_step (IV, buf, k):
prev=IV
rt=""
for c in buf:

new_c=decrypt_byte(c, k)
plain=chr(ord(new_c)^ord(prev))
prev=chr(ord(c)^ord(plain))

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1109
rt=rt+plain

return rt

each_Nth_byte=[""]*KEY_LEN

content=read_file(sys.argv[1])
split input by 16-byte chunks:
all_chunks=chunks(content, KEY_LEN)
for c in all_chunks:

for i in range(KEY_LEN):
each_Nth_byte[i]=each_Nth_byte[i] + c[i]

try each byte of key
for N in range(KEY_LEN):

print "N=", N
stat={}
for i in range(256):

tmp_key=chr(i)
tmp=XOR_PCBC_step(tmp_key,each_Nth_byte[N], N)
count 0, FFs and 8Bs in decrypted buffer:
important_bytes=tmp.count('\x00')+tmp.count('\xFF')+tmp.count('\x8B⤦

Ç ')
stat[i]=important_bytes

sorted_stat = sorted(stat.iteritems(), key=operator.itemgetter(1), ⤦
Ç reverse=True)
print sorted_stat[0]

(Source code can be downloaded here.)
I run it and here is a key for which 0/0xFF/0x8B bytes presence in decrypted buffer
is maximal:
N= 0
(147, 1224)
N= 1
(94, 1327)
N= 2
(252, 1223)
N= 3
(218, 1266)
N= 4
(38, 1209)
N= 5
(192, 1378)
N= 6
(199, 1204)
N= 7
(213, 1332)
N= 8
(225, 1251)
N= 9
(112, 1223)
N= 10
(143, 1177)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//examples/simple_exec_crypto/files/decrypt.py
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1110
N= 11
(108, 1286)
N= 12
(10, 1164)
N= 13
(3, 1271)
N= 14
(128, 1253)
N= 15
(232, 1330)

Let’s write decryption utility with the key we got:
#!/usr/bin/env python
import sys, hexdump, array

def xor_strings(s,t):
https://en.wikipedia.org/wiki/XOR_cipher#Example_implementation
"""xor two strings together"""
return "".join(chr(ord(a)^ord(b)) for a,b in zip(s,t))

IV=array.array('B', [147, 94, 252, 218, 38, 192, 199, 213, 225, 112, 143, ⤦
Ç 108, 10, 3, 128, 232]).tostring()

def chunks(l, n):
n = max(1, n)
return [l[i:i + n] for i in range(0, len(l), n)]

def read_file(fname):
file=open(fname, mode='rb')
content=file.read()
file.close()
return content

def decrypt_byte(i, k):
return chr ((ord(i)-k) % 256)

def decrypt(buf):
return "".join(decrypt_byte(buf[i], i) for i in range(16))

fout=open(sys.argv[2], mode='wb')

prev=IV
content=read_file(sys.argv[1])
tmp=chunks(content, 16)
for c in tmp:

new_c=decrypt(c)
p=xor_strings (new_c, prev)
prev=xor_strings(c, p)
fout.write(p)

fout.close()

(Source code can be downloaded here.)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//examples/simple_exec_crypto/files/decrypt2.py
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1111
Let’s check resulting file:
$ objdump -b binary -m i386 -D decrypted.bin

...

5: 8b ff mov %edi,%edi
7: 55 push %ebp
8: 8b ec mov %esp,%ebp
a: 51 push %ecx
b: 53 push %ebx
c: 33 db xor %ebx,%ebx
e: 43 inc %ebx
f: 84 1d a0 e2 05 01 test %bl,0x105e2a0
15: 75 09 jne 0x20
17: ff 75 08 pushl 0x8(%ebp)
1a: ff 15 b0 13 00 01 call *0x10013b0
20: 6a 6c push $0x6c
22: ff 35 54 d0 01 01 pushl 0x101d054
28: ff 15 b4 13 00 01 call *0x10013b4
2e: 89 45 fc mov %eax,-0x4(%ebp)
31: 85 c0 test %eax,%eax
33: 0f 84 d9 00 00 00 je 0x112
39: 56 push %esi
3a: 57 push %edi
3b: 6a 00 push $0x0
3d: 50 push %eax
3e: ff 15 b8 13 00 01 call *0x10013b8
44: 8b 35 bc 13 00 01 mov 0x10013bc,%esi
4a: 8b f8 mov %eax,%edi
4c: a1 e0 e2 05 01 mov 0x105e2e0,%eax
51: 3b 05 e4 e2 05 01 cmp 0x105e2e4,%eax
57: 75 12 jne 0x6b
59: 53 push %ebx
5a: 6a 03 push $0x3
5c: 57 push %edi
5d: ff d6 call *%esi

...

Yes, this is seems correctly disassembled piece of x86 code. The whole decrypted
file can be downloaded here.
In fact, this is text section from regedit.exe from Windows 7. But this example is
based on a real case I encountered, so just executable is different (and key), algo-
rithm is the same.

8.11.1 Other ideas to consider
What if I would fail with such simple frequency analysis? There are other ideas on
how to measure correctness of decrypted/decompressed x86 code:
• Many modern compilers aligns beginnings of functions at 16-byte border. So

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//examples/simple_exec_crypto/files/decrypted.bin
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1112
the space left before is filled with NOPs (0x90) or other NOP instructions with
known opcodes: .1.7 on page 1313. Or INT3 instructions (0xCC).

• Perhaps, the most frequent pattern in any assembly language is function call:
PUSH chain / CALL / ADD ESP, X. This sequence can easily detected and
found. I’ve even gathered statistics about average number of function argu-
ments: 11.3 on page 1257. (Hence, this is average length of PUSH instructions
chain.)

Read more about incorrectly/correctly disassembled code: 5.11 on page 924.

8.12 SAP
8.12.1 About SAP client network traffic compression
(This article first appeared in my blog, in 13-Jul-2010.)
(Tracing the connection between the TDW_NOCOMPRESS SAPGUI27 environment vari-
able and the pesky annoying pop-up window and the actual data compression rou-
tine.)
It is known that the network traffic between SAPGUI and SAP is not encrypted by
default, but compressed (see here28 and here29).
It is also known that by setting the environment variable TDW_NOCOMPRESS to 1, it
is possible to turn the network packet compression off.
But you will see an annoying pop-up window that cannot be closed:
27SAP GUI client
28http://blog.yurichev.com/node/44
29blog.yurichev.com

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://blog.yurichev.com/node/44
http://blog.yurichev.com/node/47
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1113

Figure 8.17: Screenshot

Let’s see if we can remove the window somehow.
But before this, let’s see what we already know.
First: we know that the environment variable TDW_NOCOMPRESS is checked some-
where inside the SAPGUI client.
Second: a string like “data compression switched off” must be present somewhere
in it.
With the help of the FAR file manager30we can found that both of these strings are
stored in the SAPguilib.dll file.
So let’s open SAPguilib.dll in IDA and search for the TDW_NOCOMPRESS string. Yes,
it is present and there is only one reference to it.
We see the following fragment of code (all file offsets are valid for SAPGUI 720 win32,
SAPguilib.dll file version 7200,1,0,9009):
.text:6440D51B lea eax, [ebp+2108h+var_211C]
.text:6440D51E push eax ; int
.text:6440D51F push offset aTdw_nocompress ;

"TDW_NOCOMPRESS"
.text:6440D524 mov byte ptr [edi+15h], 0
.text:6440D528 call chk_env
.text:6440D52D pop ecx

30http://www.farmanager.com/

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.farmanager.com/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1114
.text:6440D52E pop ecx
.text:6440D52F push offset byte_64443AF8
.text:6440D534 lea ecx, [ebp+2108h+var_211C]

; demangled name: int ATL::CStringT::Compare(char const *)const
.text:6440D537 call ds:mfc90_1603
.text:6440D53D test eax, eax
.text:6440D53F jz short loc_6440D55A
.text:6440D541 lea ecx, [ebp+2108h+var_211C]

; demangled name: const char* ATL::CSimpleStringT::operator PCXSTR
.text:6440D544 call ds:mfc90_910
.text:6440D54A push eax ; Str
.text:6440D54B call ds:atoi
.text:6440D551 test eax, eax
.text:6440D553 setnz al
.text:6440D556 pop ecx
.text:6440D557 mov [edi+15h], al

The string returned by chk_env() via its second argument is then handled by the
MFC string functions and then atoi()31 is called. After that, the numerical value is
stored in edi+15h.
Also take a look at the chk_env() function (we gave this name to it manually):
.text:64413F20 ; int __cdecl chk_env(char *VarName, int)
.text:64413F20 chk_env proc near
.text:64413F20
.text:64413F20 DstSize = dword ptr -0Ch
.text:64413F20 var_8 = dword ptr -8
.text:64413F20 DstBuf = dword ptr -4
.text:64413F20 VarName = dword ptr 8
.text:64413F20 arg_4 = dword ptr 0Ch
.text:64413F20
.text:64413F20 push ebp
.text:64413F21 mov ebp, esp
.text:64413F23 sub esp, 0Ch
.text:64413F26 mov [ebp+DstSize], 0
.text:64413F2D mov [ebp+DstBuf], 0
.text:64413F34 push offset unk_6444C88C
.text:64413F39 mov ecx, [ebp+arg_4]

; (demangled name) ATL::CStringT::operator=(char const *)
.text:64413F3C call ds:mfc90_820
.text:64413F42 mov eax, [ebp+VarName]
.text:64413F45 push eax ; VarName
.text:64413F46 mov ecx, [ebp+DstSize]
.text:64413F49 push ecx ; DstSize
.text:64413F4A mov edx, [ebp+DstBuf]
.text:64413F4D push edx ; DstBuf
.text:64413F4E lea eax, [ebp+DstSize]
.text:64413F51 push eax ; ReturnSize

31standard C library function that converts the digits in a string to a number

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1115
.text:64413F52 call ds:getenv_s
.text:64413F58 add esp, 10h
.text:64413F5B mov [ebp+var_8], eax
.text:64413F5E cmp [ebp+var_8], 0
.text:64413F62 jz short loc_64413F68
.text:64413F64 xor eax, eax
.text:64413F66 jmp short loc_64413FBC
.text:64413F68
.text:64413F68 loc_64413F68:
.text:64413F68 cmp [ebp+DstSize], 0
.text:64413F6C jnz short loc_64413F72
.text:64413F6E xor eax, eax
.text:64413F70 jmp short loc_64413FBC
.text:64413F72
.text:64413F72 loc_64413F72:
.text:64413F72 mov ecx, [ebp+DstSize]
.text:64413F75 push ecx
.text:64413F76 mov ecx, [ebp+arg_4]

; demangled name: ATL::CSimpleStringT<char, 1>::Preallocate(int)
.text:64413F79 call ds:mfc90_2691
.text:64413F7F mov [ebp+DstBuf], eax
.text:64413F82 mov edx, [ebp+VarName]
.text:64413F85 push edx ; VarName
.text:64413F86 mov eax, [ebp+DstSize]
.text:64413F89 push eax ; DstSize
.text:64413F8A mov ecx, [ebp+DstBuf]
.text:64413F8D push ecx ; DstBuf
.text:64413F8E lea edx, [ebp+DstSize]
.text:64413F91 push edx ; ReturnSize
.text:64413F92 call ds:getenv_s
.text:64413F98 add esp, 10h
.text:64413F9B mov [ebp+var_8], eax
.text:64413F9E push 0FFFFFFFFh
.text:64413FA0 mov ecx, [ebp+arg_4]

; demangled name: ATL::CSimpleStringT::ReleaseBuffer(int)
.text:64413FA3 call ds:mfc90_5835
.text:64413FA9 cmp [ebp+var_8], 0
.text:64413FAD jz short loc_64413FB3
.text:64413FAF xor eax, eax
.text:64413FB1 jmp short loc_64413FBC
.text:64413FB3
.text:64413FB3 loc_64413FB3:
.text:64413FB3 mov ecx, [ebp+arg_4]

; demangled name: const char* ATL::CSimpleStringT::operator PCXSTR
.text:64413FB6 call ds:mfc90_910
.text:64413FBC
.text:64413FBC loc_64413FBC:
.text:64413FBC
.text:64413FBC mov esp, ebp
.text:64413FBE pop ebp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1116
.text:64413FBF retn
.text:64413FBF chk_env endp

Yes. The getenv_s()32

function is a Microsoft security-enhanced version of getenv()33.
There are also some MFC string manipulations.
Lots of other environment variables are checked as well. Here is a list of all variables
that are being checked and what SAPGUI would write to its trace log when logging
is turned on:

DPTRACE “GUI-OPTION: Trace set to %d”
TDW_HEXDUMP “GUI-OPTION: Hexdump enabled”
TDW_WORKDIR “GUI-OPTION: working directory ‘%s’́’
TDW_SPLASHSRCEENOFF “GUI-OPTION: Splash Screen Off”

“GUI-OPTION: Splash Screen On”
TDW_REPLYTIMEOUT “GUI-OPTION: reply timeout %d milliseconds”
TDW_PLAYBACKTIMEOUT “GUI-OPTION: PlaybackTimeout set to %d milliseconds”
TDW_NOCOMPRESS “GUI-OPTION: no compression read”
TDW_EXPERT “GUI-OPTION: expert mode”
TDW_PLAYBACKPROGRESS “GUI-OPTION: PlaybackProgress”
TDW_PLAYBACKNETTRAFFIC “GUI-OPTION: PlaybackNetTraffic”
TDW_PLAYLOG “GUI-OPTION: /PlayLog is YES, file %s”
TDW_PLAYTIME “GUI-OPTION: /PlayTime set to %d milliseconds”
TDW_LOGFILE “GUI-OPTION: TDW_LOGFILE ‘%s’́’
TDW_WAN “GUI-OPTION: WAN - low speed connection enabled”
TDW_FULLMENU “GUI-OPTION: FullMenu enabled”
SAP_CP / SAP_CODEPAGE “GUI-OPTION: SAP_CODEPAGE ‘%d’́’
UPDOWNLOAD_CP “GUI-OPTION: UPDOWNLOAD_CP ‘%d’́’
SNC_PARTNERNAME “GUI-OPTION: SNC name ‘%s’́’
SNC_QOP “GUI-OPTION: SNC_QOP ‘%s’́’
SNC_LIB “GUI-OPTION: SNC is set to: %s”
SAPGUI_INPLACE “GUI-OPTION: environment variable SAPGUI_INPLACE is on”

The settings for each variable are written in the array via a pointer in the EDI register.
EDI is set before the function call:
.text:6440EE00 lea edi, [ebp+2884h+var_2884] ; options

here like +0x15...
.text:6440EE03 lea ecx, [esi+24h]
.text:6440EE06 call load_command_line
.text:6440EE0B mov edi, eax
.text:6440EE0D xor ebx, ebx
.text:6440EE0F cmp edi, ebx
.text:6440EE11 jz short loc_6440EE42
.text:6440EE13 push edi
.text:6440EE14 push offset aSapguiStoppedA ; "Sapgui

stopped after commandline interp"...
.text:6440EE19 push dword_644F93E8
.text:6440EE1F call FEWTraceError

32MSDN
33Standard C library returning environment variable

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/tb2sfw2z(VS.80).aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1117
Now, can we find the data record mode switched on string?
Yes, and the only reference is in
CDwsGui::PrepareInfoWindow().
How do we get know the class/method names? There are a lot of special debugging
calls that write to the log files, like:
.text:64405160 push dword ptr [esi+2854h]
.text:64405166 push offset aCdwsguiPrepare ;

"\nCDwsGui::PrepareInfoWindow: sapgui env"...
.text:6440516B push dword ptr [esi+2848h]
.text:64405171 call dbg
.text:64405176 add esp, 0Ch

…or:
.text:6440237A push eax
.text:6440237B push offset aCclientStart_6 ;

"CClient::Start: set shortcut user to '%"...
.text:64402380 push dword ptr [edi+4]
.text:64402383 call dbg
.text:64402388 add esp, 0Ch

It is very useful.
So let’s see the contents of this pesky annoying pop-up window’s function:
.text:64404F4F CDwsGui__PrepareInfoWindow proc near
.text:64404F4F
.text:64404F4F pvParam = byte ptr -3Ch
.text:64404F4F var_38 = dword ptr -38h
.text:64404F4F var_34 = dword ptr -34h
.text:64404F4F rc = tagRECT ptr -2Ch
.text:64404F4F cy = dword ptr -1Ch
.text:64404F4F h = dword ptr -18h
.text:64404F4F var_14 = dword ptr -14h
.text:64404F4F var_10 = dword ptr -10h
.text:64404F4F var_4 = dword ptr -4
.text:64404F4F
.text:64404F4F push 30h
.text:64404F51 mov eax, offset loc_64438E00
.text:64404F56 call __EH_prolog3
.text:64404F5B mov esi, ecx ; ECX is pointer to

object
.text:64404F5D xor ebx, ebx
.text:64404F5F lea ecx, [ebp+var_14]
.text:64404F62 mov [ebp+var_10], ebx

; demangled name: ATL::CStringT(void)
.text:64404F65 call ds:mfc90_316
.text:64404F6B mov [ebp+var_4], ebx
.text:64404F6E lea edi, [esi+2854h]
.text:64404F74 push offset aEnvironmentInf ;

"Environment information:\n"

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1118
.text:64404F79 mov ecx, edi

; demangled name: ATL::CStringT::operator=(char const *)
.text:64404F7B call ds:mfc90_820
.text:64404F81 cmp [esi+38h], ebx
.text:64404F84 mov ebx, ds:mfc90_2539
.text:64404F8A jbe short loc_64404FA9
.text:64404F8C push dword ptr [esi+34h]
.text:64404F8F lea eax, [ebp+var_14]
.text:64404F92 push offset aWorkingDirecto ;

"working directory: '%s'\n"
.text:64404F97 push eax

; demangled name: ATL::CStringT::Format(char const *,...)
.text:64404F98 call ebx ; mfc90_2539
.text:64404F9A add esp, 0Ch
.text:64404F9D lea eax, [ebp+var_14]
.text:64404FA0 push eax
.text:64404FA1 mov ecx, edi

;
demangled name: ATL::CStringT::operator+=(class ATL::CSimpleStringT<char, 1> const &)

.text:64404FA3 call ds:mfc90_941

.text:64404FA9

.text:64404FA9 loc_64404FA9:

.text:64404FA9 mov eax, [esi+38h]

.text:64404FAC test eax, eax

.text:64404FAE jbe short loc_64404FD3

.text:64404FB0 push eax

.text:64404FB1 lea eax, [ebp+var_14]

.text:64404FB4 push offset aTraceLevelDAct ;
"trace level %d activated\n"

.text:64404FB9 push eax

; demangled name: ATL::CStringT::Format(char const *,...)
.text:64404FBA call ebx ; mfc90_2539
.text:64404FBC add esp, 0Ch
.text:64404FBF lea eax, [ebp+var_14]
.text:64404FC2 push eax
.text:64404FC3 mov ecx, edi

;
demangled name: ATL::CStringT::operator+=(class ATL::CSimpleStringT<char, 1> const &)

.text:64404FC5 call ds:mfc90_941

.text:64404FCB xor ebx, ebx

.text:64404FCD inc ebx

.text:64404FCE mov [ebp+var_10], ebx

.text:64404FD1 jmp short loc_64404FD6

.text:64404FD3

.text:64404FD3 loc_64404FD3:

.text:64404FD3 xor ebx, ebx

.text:64404FD5 inc ebx

.text:64404FD6

.text:64404FD6 loc_64404FD6:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1119
.text:64404FD6 cmp [esi+38h], ebx
.text:64404FD9 jbe short loc_64404FF1
.text:64404FDB cmp dword ptr [esi+2978h], 0
.text:64404FE2 jz short loc_64404FF1
.text:64404FE4 push offset aHexdumpInTrace ;

"hexdump in trace activated\n"
.text:64404FE9 mov ecx, edi

; demangled name: ATL::CStringT::operator+=(char const *)
.text:64404FEB call ds:mfc90_945
.text:64404FF1
.text:64404FF1 loc_64404FF1:
.text:64404FF1
.text:64404FF1 cmp byte ptr [esi+78h], 0
.text:64404FF5 jz short loc_64405007
.text:64404FF7 push offset aLoggingActivat ;

"logging activated\n"
.text:64404FFC mov ecx, edi

; demangled name: ATL::CStringT::operator+=(char const *)
.text:64404FFE call ds:mfc90_945
.text:64405004 mov [ebp+var_10], ebx
.text:64405007
.text:64405007 loc_64405007:
.text:64405007 cmp byte ptr [esi+3Dh], 0
.text:6440500B jz short bypass
.text:6440500D push offset aDataCompressio ;

"data compression switched off\n"
.text:64405012 mov ecx, edi

; demangled name: ATL::CStringT::operator+=(char const *)
.text:64405014 call ds:mfc90_945
.text:6440501A mov [ebp+var_10], ebx
.text:6440501D
.text:6440501D bypass:
.text:6440501D mov eax, [esi+20h]
.text:64405020 test eax, eax
.text:64405022 jz short loc_6440503A
.text:64405024 cmp dword ptr [eax+28h], 0
.text:64405028 jz short loc_6440503A
.text:6440502A push offset aDataRecordMode ;

"data record mode switched on\n"
.text:6440502F mov ecx, edi

; demangled name: ATL::CStringT::operator+=(char const *)
.text:64405031 call ds:mfc90_945
.text:64405037 mov [ebp+var_10], ebx
.text:6440503A
.text:6440503A loc_6440503A:
.text:6440503A
.text:6440503A mov ecx, edi
.text:6440503C cmp [ebp+var_10], ebx
.text:6440503F jnz loc_64405142
.text:64405045 push offset aForMaximumData ;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1120
"\nFor maximum data security delete\nthe s"...

; demangled name: ATL::CStringT::operator+=(char const *)
.text:6440504A call ds:mfc90_945
.text:64405050 xor edi, edi
.text:64405052 push edi ; fWinIni
.text:64405053 lea eax, [ebp+pvParam]
.text:64405056 push eax ; pvParam
.text:64405057 push edi ; uiParam
.text:64405058 push 30h ; uiAction
.text:6440505A call ds:SystemParametersInfoA
.text:64405060 mov eax, [ebp+var_34]
.text:64405063 cmp eax, 1600
.text:64405068 jle short loc_64405072
.text:6440506A cdq
.text:6440506B sub eax, edx
.text:6440506D sar eax, 1
.text:6440506F mov [ebp+var_34], eax
.text:64405072
.text:64405072 loc_64405072:
.text:64405072 push edi ; hWnd
.text:64405073 mov [ebp+cy], 0A0h
.text:6440507A call ds:GetDC
.text:64405080 mov [ebp+var_10], eax
.text:64405083 mov ebx, 12Ch
.text:64405088 cmp eax, edi
.text:6440508A jz loc_64405113
.text:64405090 push 11h ; i
.text:64405092 call ds:GetStockObject
.text:64405098 mov edi, ds:SelectObject
.text:6440509E push eax ; h
.text:6440509F push [ebp+var_10] ; hdc
.text:644050A2 call edi ; SelectObject
.text:644050A4 and [ebp+rc.left], 0
.text:644050A8 and [ebp+rc.top], 0
.text:644050AC mov [ebp+h], eax
.text:644050AF push 401h ; format
.text:644050B4 lea eax, [ebp+rc]
.text:644050B7 push eax ; lprc
.text:644050B8 lea ecx, [esi+2854h]
.text:644050BE mov [ebp+rc.right], ebx
.text:644050C1 mov [ebp+rc.bottom], 0B4h

; demangled name: ATL::CSimpleStringT::GetLength(void)
.text:644050C8 call ds:mfc90_3178
.text:644050CE push eax ; cchText
.text:644050CF lea ecx, [esi+2854h]

; demangled name: const char* ATL::CSimpleStringT::operator PCXSTR
.text:644050D5 call ds:mfc90_910
.text:644050DB push eax ; lpchText
.text:644050DC push [ebp+var_10] ; hdc
.text:644050DF call ds:DrawTextA

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1121
.text:644050E5 push 4 ; nIndex
.text:644050E7 call ds:GetSystemMetrics
.text:644050ED mov ecx, [ebp+rc.bottom]
.text:644050F0 sub ecx, [ebp+rc.top]
.text:644050F3 cmp [ebp+h], 0
.text:644050F7 lea eax, [eax+ecx+28h]
.text:644050FB mov [ebp+cy], eax
.text:644050FE jz short loc_64405108
.text:64405100 push [ebp+h] ; h
.text:64405103 push [ebp+var_10] ; hdc
.text:64405106 call edi ; SelectObject
.text:64405108
.text:64405108 loc_64405108:
.text:64405108 push [ebp+var_10] ; hDC
.text:6440510B push 0 ; hWnd
.text:6440510D call ds:ReleaseDC
.text:64405113
.text:64405113 loc_64405113:
.text:64405113 mov eax, [ebp+var_38]
.text:64405116 push 80h ; uFlags
.text:6440511B push [ebp+cy] ; cy
.text:6440511E inc eax
.text:6440511F push ebx ; cx
.text:64405120 push eax ; Y
.text:64405121 mov eax, [ebp+var_34]
.text:64405124 add eax, 0FFFFFED4h
.text:64405129 cdq
.text:6440512A sub eax, edx
.text:6440512C sar eax, 1
.text:6440512E push eax ; X
.text:6440512F push 0 ; hWndInsertAfter
.text:64405131 push dword ptr [esi+285Ch] ; hWnd
.text:64405137 call ds:SetWindowPos
.text:6440513D xor ebx, ebx
.text:6440513F inc ebx
.text:64405140 jmp short loc_6440514D
.text:64405142
.text:64405142 loc_64405142:
.text:64405142 push offset byte_64443AF8

; demangled name: ATL::CStringT::operator=(char const *)
.text:64405147 call ds:mfc90_820
.text:6440514D
.text:6440514D loc_6440514D:
.text:6440514D cmp dword_6450B970, ebx
.text:64405153 jl short loc_64405188
.text:64405155 call sub_6441C910
.text:6440515A mov dword_644F858C, ebx
.text:64405160 push dword ptr [esi+2854h]
.text:64405166 push offset aCdwsguiPrepare ;

"\nCDwsGui::PrepareInfoWindow: sapgui env"...
.text:6440516B push dword ptr [esi+2848h]
.text:64405171 call dbg
.text:64405176 add esp, 0Ch

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1122
.text:64405179 mov dword_644F858C, 2
.text:64405183 call sub_6441C920
.text:64405188
.text:64405188 loc_64405188:
.text:64405188 or [ebp+var_4], 0FFFFFFFFh
.text:6440518C lea ecx, [ebp+var_14]

; demangled name: ATL::CStringT:: CStringT()
.text:6440518F call ds:mfc90_601
.text:64405195 call __EH_epilog3
.text:6440519A retn
.text:6440519A CDwsGui__PrepareInfoWindow endp

At the start of the function ECX has a pointer to the object (since it is a thiscall (3.21.1
on page 683)-type of function). In our case, the object obviously has class type of
CDwsGui. Depending on the option turned on in the object, a specific message part
is to be concatenated with the resulting message.
If the value at address this+0x3D is not zero, the compression is off:
.text:64405007 loc_64405007:
.text:64405007 cmp byte ptr [esi+3Dh], 0
.text:6440500B jz short bypass
.text:6440500D push offset aDataCompressio ;

"data compression switched off\n"
.text:64405012 mov ecx, edi

; demangled name: ATL::CStringT::operator+=(char const *)
.text:64405014 call ds:mfc90_945
.text:6440501A mov [ebp+var_10], ebx
.text:6440501D
.text:6440501D bypass:

It is interesting that finally the var_10 variable state defines whether the message
is to be shown at all:

.text:6440503C cmp [ebp+var_10], ebx

.text:6440503F jnz exit ; bypass drawing

; add strings "For maximum data security delete" / "the setting(s) as soon as
possible !":

.text:64405045 push offset aForMaximumData ;
"\nFor maximum data security delete\nthe s"...

.text:6440504A call ds:mfc90_945 ;
ATL::CStringT::operator+=(char const *)

.text:64405050 xor edi, edi

.text:64405052 push edi ; fWinIni

.text:64405053 lea eax, [ebp+pvParam]

.text:64405056 push eax ; pvParam

.text:64405057 push edi ; uiParam

.text:64405058 push 30h ; uiAction

.text:6440505A call ds:SystemParametersInfoA

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1123
.text:64405060 mov eax, [ebp+var_34]
.text:64405063 cmp eax, 1600
.text:64405068 jle short loc_64405072
.text:6440506A cdq
.text:6440506B sub eax, edx
.text:6440506D sar eax, 1
.text:6440506F mov [ebp+var_34], eax
.text:64405072
.text:64405072 loc_64405072:

start drawing:

.text:64405072 push edi ; hWnd

.text:64405073 mov [ebp+cy], 0A0h

.text:6440507A call ds:GetDC

Let’s check our theory on practice.
JNZ at this line …

.text:6440503F jnz exit ; bypass drawing

…replace it with just JMP, and we get SAPGUI working without the pesky annoying
pop-up window appearing!
Now let’s dig deeper and find a connection between the 0x15 offset in the load_command_line()
(we gave it this name) function and the this+0x3D variable in CDwsGui::PrepareInfoWindow.
Are we sure the value is the same?
We are starting to search for all occurrences of the 0x15 value in code. For a small
programs like SAPGUI, it sometimes works. Here is the first occurrence we’ve got:
.text:64404C19 sub_64404C19 proc near
.text:64404C19
.text:64404C19 arg_0 = dword ptr 4
.text:64404C19
.text:64404C19 push ebx
.text:64404C1A push ebp
.text:64404C1B push esi
.text:64404C1C push edi
.text:64404C1D mov edi, [esp+10h+arg_0]
.text:64404C21 mov eax, [edi]
.text:64404C23 mov esi, ecx ; ESI/ECX are pointers to

some unknown object.
.text:64404C25 mov [esi], eax
.text:64404C27 mov eax, [edi+4]
.text:64404C2A mov [esi+4], eax
.text:64404C2D mov eax, [edi+8]
.text:64404C30 mov [esi+8], eax
.text:64404C33 lea eax, [edi+0Ch]
.text:64404C36 push eax
.text:64404C37 lea ecx, [esi+0Ch]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1124
; demangled name: ATL::CStringT::operator=(class ATL::CStringT ... &)
.text:64404C3A call ds:mfc90_817
.text:64404C40 mov eax, [edi+10h]
.text:64404C43 mov [esi+10h], eax
.text:64404C46 mov al, [edi+14h]
.text:64404C49 mov [esi+14h], al
.text:64404C4C mov al, [edi+15h] ; copy byte from 0x15

offset
.text:64404C4F mov [esi+15h], al ; to 0x15 offset in

CDwsGui object

The function has been called from the function named CDwsGui::CopyOptions! And
thanks again for debugging information.
But the real answer is in CDwsGui::Init():
.text:6440B0BF loc_6440B0BF:
.text:6440B0BF mov eax, [ebp+arg_0]
.text:6440B0C2 push [ebp+arg_4]
.text:6440B0C5 mov [esi+2844h], eax
.text:6440B0CB lea eax, [esi+28h] ; ESI is pointer to

CDwsGui object
.text:6440B0CE push eax
.text:6440B0CF call CDwsGui__CopyOptions

Finally, we understand: the array filled in the load_command_line() function is actu-
ally placed in the CDwsGui class, but at address this+0x28. 0x15 + 0x28 is exactly
0x3D. OK, we found the point where the value is copied to.
Let’s also find the rest of the places where the 0x3D offset is used. Here is one of
them in the CDwsGui::SapguiRun function (again, thanks to the debugging calls):
.text:64409D58 cmp [esi+3Dh], bl ; ESI is pointer to

CDwsGui object
.text:64409D5B lea ecx, [esi+2B8h]
.text:64409D61 setz al
.text:64409D64 push eax ; arg_10 of

CConnectionContext::CreateNetwork
.text:64409D65 push dword ptr [esi+64h]

; demangled name: const char* ATL::CSimpleStringT::operator PCXSTR
.text:64409D68 call ds:mfc90_910
.text:64409D68 ; no arguments
.text:64409D6E push eax
.text:64409D6F lea ecx, [esi+2BCh]

; demangled name: const char* ATL::CSimpleStringT::operator PCXSTR
.text:64409D75 call ds:mfc90_910
.text:64409D75 ; no arguments
.text:64409D7B push eax
.text:64409D7C push esi
.text:64409D7D lea ecx, [esi+8]
.text:64409D80 call CConnectionContext__CreateNetwork

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1125
Let’s check our findings.
Replace the setz al here with the xor eax, eax / nop instructions, clear the TDW_NOCOMPRESS
environment variable and run SAPGUI. Wow! There pesky annoying window is no
more (just as expected, because the variable is not set) but in Wireshark we can see
that the network packets are not compressed anymore! Obviously, this is the point
where the compression flag is to be set in the CConnectionContext object.
So, the compression flag is passed in the 5th argument of CConnectionContext::CreateNetwork.
Inside the function, another one is called:
...
.text:64403476 push [ebp+compression]
.text:64403479 push [ebp+arg_C]
.text:6440347C push [ebp+arg_8]
.text:6440347F push [ebp+arg_4]
.text:64403482 push [ebp+arg_0]
.text:64403485 call CNetwork__CNetwork

The compression flag is passed here in the 5th argument to the CNetwork::CNetwork
constructor.
And here is how the CNetwork constructor sets the flag in the CNetwork object ac-
cording to its 5th argument and another variable which probably could also affect
network packets compression.
.text:64411DF1 cmp [ebp+compression], esi
.text:64411DF7 jz short set_EAX_to_0
.text:64411DF9 mov al, [ebx+78h] ; another value may

affect compression?
.text:64411DFC cmp al, '3'
.text:64411DFE jz short set_EAX_to_1
.text:64411E00 cmp al, '4'
.text:64411E02 jnz short set_EAX_to_0
.text:64411E04
.text:64411E04 set_EAX_to_1:
.text:64411E04 xor eax, eax
.text:64411E06 inc eax ; EAX -> 1
.text:64411E07 jmp short loc_64411E0B
.text:64411E09
.text:64411E09 set_EAX_to_0:
.text:64411E09
.text:64411E09 xor eax, eax ; EAX -> 0
.text:64411E0B
.text:64411E0B loc_64411E0B:
.text:64411E0B mov [ebx+3A4h], eax ; EBX is pointer to

CNetwork object

At this point we know the compression flag is stored in the CNetwork class at address
this+0x3A4.
Now let’s dig through SAPguilib.dll for the 0x3A4 value. And here is the second
occurrence in CDwsGui::OnClientMessageWrite (endless thanks for the debugging
information):

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1126

.text:64406F76 loc_64406F76:

.text:64406F76 mov ecx, [ebp+7728h+var_7794]

.text:64406F79 cmp dword ptr [ecx+3A4h], 1

.text:64406F80 jnz compression_flag_is_zero

.text:64406F86 mov byte ptr [ebx+7], 1

.text:64406F8A mov eax, [esi+18h]

.text:64406F8D mov ecx, eax

.text:64406F8F test eax, eax

.text:64406F91 ja short loc_64406FFF

.text:64406F93 mov ecx, [esi+14h]

.text:64406F96 mov eax, [esi+20h]

.text:64406F99

.text:64406F99 loc_64406F99:

.text:64406F99 push dword ptr [edi+2868h] ; int

.text:64406F9F lea edx, [ebp+7728h+var_77A4]

.text:64406FA2 push edx ; int

.text:64406FA3 push 30000 ; int

.text:64406FA8 lea edx, [ebp+7728h+Dst]

.text:64406FAB push edx ; Dst

.text:64406FAC push ecx ; int

.text:64406FAD push eax ; Src

.text:64406FAE push dword ptr [edi+28C0h] ; int

.text:64406FB4 call sub_644055C5 ; actual
compression routine

.text:64406FB9 add esp, 1Ch

.text:64406FBC cmp eax, 0FFFFFFF6h

.text:64406FBF jz short loc_64407004

.text:64406FC1 cmp eax, 1

.text:64406FC4 jz loc_6440708C

.text:64406FCA cmp eax, 2

.text:64406FCD jz short loc_64407004

.text:64406FCF push eax

.text:64406FD0 push offset aCompressionErr ;
"compression error [rc = %d]- program wi"...

.text:64406FD5 push offset aGui_err_compre ;
"GUI_ERR_COMPRESS"

.text:64406FDA push dword ptr [edi+28D0h]

.text:64406FE0 call SapPcTxtRead

Let’s take a look in sub_644055C5. In it we can only see the call to memcpy() and
another function named (by IDA) sub_64417440.
And, let’s take a look inside sub_64417440. What we see is:
.text:6441747C push offset aErrorCsrcompre ;

"\nERROR: CsRCompress: invalid handle"
.text:64417481 call eax ; dword_644F94C8
.text:64417483 add esp, 4

Voilà! We’ve found the function that actually compresses the data. As it was shown
in past 34,
34http://conus.info/utils/SAP_pkt_decompr.txt

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://conus.info/utils/SAP_pkt_decompr.txt
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1127
this function is used in SAP and also the open-source MaxDB project. So it is available
in source form.
Doing the last check here:
.text:64406F79 cmp dword ptr [ecx+3A4h], 1
.text:64406F80 jnz compression_flag_is_zero

Replace JNZ here for an unconditional JMP. Remove the environment variable TDW_NOCOMPRESS.
Voilà!
In Wireshark we see that the client messages are not compressed. The server re-
sponses, however, are compressed.
So we found exact connection between the environment variable and the point
where data compression routine can be called or bypassed.

8.12.2 SAP 6.0 password checking functions
One time when the author of this book have returned again to his SAP 6.0 IDES
installed in a VMware box, he figured out that he forgot the password for the SAP*
account, then he have recalled it, but then he got this error message «Password
logon no longer possible - too many failed attempts», since he’ve made all these
attempts in attempt to recall it.
The first extremely good news was that the full disp+work.pdb PDB file is supplied
with SAP, and it contain almost everything: function names, structures, types, local
variable and argument names, etc. What a lavish gift!
There is TYPEINFODUMP35 utility for converting PDB files into something readable
and grepable.
Here is an example of a function information + its arguments + its local variables:
FUNCTION ThVmcSysEvent

Address: 10143190 Size: 675 bytes Index: 60483 ⤦
Ç TypeIndex: 60484

Type: int NEAR_C ThVmcSysEvent (unsigned int, unsigned char, unsigned ⤦
Ç short*)

Flags: 0
PARAMETER events

Address: Reg335+288 Size: 4 bytes Index: 60488 TypeIndex: ⤦
Ç 60489

Type: unsigned int
Flags: d0
PARAMETER opcode

Address: Reg335+296 Size: 1 bytes Index: 60490 TypeIndex: ⤦
Ç 60491

Type: unsigned char
Flags: d0
PARAMETER serverName

Address: Reg335+304 Size: 8 bytes Index: 60492 TypeIndex: ⤦
Ç 60493

35http://www.debuginfo.com/tools/typeinfodump.html

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.debuginfo.com/tools/typeinfodump.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1128
Type: unsigned short*

Flags: d0
STATIC_LOCAL_VAR func

Address: 12274af0 Size: 8 bytes Index: 60495 ⤦
Ç TypeIndex: 60496

Type: wchar_t*
Flags: 80
LOCAL_VAR admhead

Address: Reg335+304 Size: 8 bytes Index: 60498 TypeIndex: ⤦
Ç 60499

Type: unsigned char*
Flags: 90
LOCAL_VAR record

Address: Reg335+64 Size: 204 bytes Index: 60501 TypeIndex: ⤦
Ç 60502

Type: AD_RECORD
Flags: 90
LOCAL_VAR adlen

Address: Reg335+296 Size: 4 bytes Index: 60508 TypeIndex: ⤦
Ç 60509

Type: int
Flags: 90

And here is an example of some structure:
STRUCT DBSL_STMTID
Size: 120 Variables: 4 Functions: 0 Base classes: 0
MEMBER moduletype

Type: DBSL_MODULETYPE
Offset: 0 Index: 3 TypeIndex: 38653

MEMBER module
Type: wchar_t module[40]
Offset: 4 Index: 3 TypeIndex: 831

MEMBER stmtnum
Type: long
Offset: 84 Index: 3 TypeIndex: 440

MEMBER timestamp
Type: wchar_t timestamp[15]
Offset: 88 Index: 3 TypeIndex: 6612

Wow!
Another good news: debugging calls (there are plenty of them) are very useful.
Here you can also notice the ct_level global variable36, that reflects the current trace
level.
There are a lot of debugging inserts in the disp+work.exe file:
cmp cs:ct_level, 1
jl short loc_1400375DA
call DpLock

36More about trace level: http://help.sap.com/saphelp_nwpi71/helpdata/en/46/
962416a5a613e8e10000000a155369/content.htm

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://help.sap.com/saphelp_nwpi71/helpdata/en/46/962416a5a613e8e10000000a155369/content.htm
http://help.sap.com/saphelp_nwpi71/helpdata/en/46/962416a5a613e8e10000000a155369/content.htm
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1129
lea rcx, aDpxxtool4_c ; "dpxxtool4.c"
mov edx, 4Eh ; line
call CTrcSaveLocation
mov r8, cs:func_48
mov rcx, cs:hdl ; hdl
lea rdx, aSDpreadmemvalu ; "%s: DpReadMemValue (%d)"
mov r9d, ebx
call DpTrcErr
call DpUnlock

If the current trace level is bigger or equal to threshold defined in the code here, a
debugging message is to be written to the log files like dev_w0, dev_disp, and other
dev* files.
Let’s try grepping in the file that we have got with the help of the TYPEINFODUMP
utility:
cat "disp+work.pdb.d" | grep FUNCTION | grep -i password

We have got:
FUNCTION rcui::AgiPassword::DiagISelection
FUNCTION ssf_password_encrypt
FUNCTION ssf_password_decrypt
FUNCTION password_logon_disabled
FUNCTION dySignSkipUserPassword
FUNCTION migrate_password_history
FUNCTION password_is_initial
FUNCTION rcui::AgiPassword::IsVisible
FUNCTION password_distance_ok
FUNCTION get_password_downwards_compatibility
FUNCTION dySignUnSkipUserPassword
FUNCTION rcui::AgiPassword::GetTypeName
FUNCTION `rcui::AgiPassword::AgiPassword'::`1'::dtor$2
FUNCTION `rcui::AgiPassword::AgiPassword'::`1'::dtor$0
FUNCTION `rcui::AgiPassword::AgiPassword'::`1'::dtor$1
FUNCTION usm_set_password
FUNCTION rcui::AgiPassword::TraceTo
FUNCTION days_since_last_password_change
FUNCTION rsecgrp_generate_random_password
FUNCTION rcui::AgiPassword::`scalar deleting destructor'
FUNCTION password_attempt_limit_exceeded
FUNCTION handle_incorrect_password
FUNCTION `rcui::AgiPassword::`scalar deleting destructor''::`1'::dtor$1
FUNCTION calculate_new_password_hash
FUNCTION shift_password_to_history
FUNCTION rcui::AgiPassword::GetType
FUNCTION found_password_in_history
FUNCTION `rcui::AgiPassword::`scalar deleting destructor''::`1'::dtor$0
FUNCTION rcui::AgiObj::IsaPassword
FUNCTION password_idle_check
FUNCTION SlicHwPasswordForDay
FUNCTION rcui::AgiPassword::IsaPassword
FUNCTION rcui::AgiPassword::AgiPassword

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1130
FUNCTION delete_user_password
FUNCTION usm_set_user_password
FUNCTION Password_API
FUNCTION get_password_change_for_SSO
FUNCTION password_in_USR40
FUNCTION rsec_agrp_abap_generate_random_password

Let’s also try to search for debug messages which contain the words «password»
and «locked». One of them is the string «user was locked by subsequently failed
password logon attempts» , referenced in
function password_attempt_limit_exceeded().
Other strings that this function can write to a log file are: «password logon attempt
will be rejected immediately (preventing dictionary attacks)», «failed-logon lock: ex-
pired (but not removed due to ’read-only’ operation)», «failed-logon lock: expired
=> removed».
After playing for a little with this function, we noticed that the problem is exactly in it.
It is called from the chckpass() function —one of the password checking functions.
First, we would like to make sure that we are at the correct point:
Run tracer:
tracer64.exe -a:disp+work.exe bpf=disp+work.exe!chckpass,args:3,unicode

PID=2236|TID=2248|(0) disp+work.exe!chckpass (0x202c770, L"Brewered1 ⤦
Ç ", 0x41) (called from 0x1402f1060 (disp+work.⤦
Ç exe!usrexist+0x3c0))

PID=2236|TID=2248|(0) disp+work.exe!chckpass -> 0x35

The call path is: syssigni() -> DyISigni() -> dychkusr() -> usrexist() -> chckpass().
The number 0x35 is an error returned in chckpass() at that point:
.text:00000001402ED567 loc_1402ED567: ; CODE XREF:

chckpass+B4
.text:00000001402ED567 mov rcx, rbx ; usr02
.text:00000001402ED56A call password_idle_check
.text:00000001402ED56F cmp eax, 33h
.text:00000001402ED572 jz loc_1402EDB4E
.text:00000001402ED578 cmp eax, 36h
.text:00000001402ED57B jz loc_1402EDB3D
.text:00000001402ED581 xor edx, edx ;

usr02_readonly
.text:00000001402ED583 mov rcx, rbx ; usr02
.text:00000001402ED586 call ⤦

Ç password_attempt_limit_exceeded
.text:00000001402ED58B test al, al
.text:00000001402ED58D jz short loc_1402ED5A0
.text:00000001402ED58F mov eax, 35h
.text:00000001402ED594 add rsp, 60h
.text:00000001402ED598 pop r14
.text:00000001402ED59A pop r12
.text:00000001402ED59C pop rdi

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1131
.text:00000001402ED59D pop rsi
.text:00000001402ED59E pop rbx
.text:00000001402ED59F retn

Fine, let’s check:
tracer64.exe -a:disp+work.exe bpf=disp+work.exe!⤦

Ç password_attempt_limit_exceeded,args:4,unicode,rt:0

PID=2744|TID=360|(0) disp+work.exe!password_attempt_limit_exceeded (0⤦
Ç x202c770, 0, 0x257758, 0) (called from 0x1402ed58b (disp+work.exe!⤦
Ç chckpass+0xeb))

PID=2744|TID=360|(0) disp+work.exe!password_attempt_limit_exceeded -> 1
PID=2744|TID=360|We modify return value (EAX/RAX) of this function to 0
PID=2744|TID=360|(0) disp+work.exe!password_attempt_limit_exceeded (0⤦

Ç x202c770, 0, 0, 0) (called from 0x1402e9794 (disp+work.exe!chngpass+0⤦
Ç xe4))

PID=2744|TID=360|(0) disp+work.exe!password_attempt_limit_exceeded -> 1
PID=2744|TID=360|We modify return value (EAX/RAX) of this function to 0

Excellent! We can successfully login now.
By the way, we can pretend we forgot the password, fixing the chckpass() function
to return a value of 0 is enough to bypass the check:
tracer64.exe -a:disp+work.exe bpf=disp+work.exe!chckpass,args:3,unicode,rt⤦

Ç :0

PID=2744|TID=360|(0) disp+work.exe!chckpass (0x202c770, L"bogus ⤦
Ç ", 0x41) (called from 0x1402f1060 (disp+work.⤦
Ç exe!usrexist+0x3c0))

PID=2744|TID=360|(0) disp+work.exe!chckpass -> 0x35
PID=2744|TID=360|We modify return value (EAX/RAX) of this function to 0

What also can be said while analyzing the
password_attempt_limit_exceeded() function is that at the very beginning of it, this
call can be seen:
lea rcx, aLoginFailed_us ; "login/failed_user_auto_unlock"
call sapgparam
test rax, rax
jz short loc_1402E19DE
movzx eax, word ptr [rax]
cmp ax, 'N'
jz short loc_1402E19D4
cmp ax, 'n'
jz short loc_1402E19D4
cmp ax, '0'
jnz short loc_1402E19DE

Obviously, function sapgparam() is used to query the value of some configuration
parameter. This function can be called from 1768 different places. It seems that

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1132
with the help of this information, we can easily find the places in code, the control
flow of which can be affected by specific configuration parameters.
It is really sweet. The function names are very clear, much clearer than in the Oracle
RDBMS.
It seems that the disp+work process is written in C++. Has it been rewritten some
time ago?

8.13 Oracle RDBMS
8.13.1 V$VERSION table in the Oracle RDBMS
Oracle RDBMS 11.2 is a huge program, its main module oracle.exe contain ap-
prox. 124,000 functions. For comparison, the Windows 7 x86 kernel (ntoskrnl.exe)
contains approx. 11,000 functions and the Linux 3.9.8 kernel (with default drivers
compiled)—31,000 functions.
Let’s start with an easy question. Where does Oracle RDBMS get all this information,
when we execute this simple statement in SQL*Plus:
SQL> select * from V$VERSION;

And we get:
BANNER
--

Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
PL/SQL Release 11.2.0.1.0 - Production
CORE 11.2.0.1.0 Production
TNS for 32-bit Windows: Version 11.2.0.1.0 - Production
NLSRTL Version 11.2.0.1.0 - Production

Let’s start. Where in the Oracle RDBMS can we find the string V$VERSION?
In the win32-version, oracle.exe file contains the string, it’s easy to see. But we
can also use the object (.o) files from the Linux version of Oracle RDBMS since, unlike
the win32 version oracle.exe, the function names (and global variables as well) are
preserved there.
So, the kqf.o file contains the V$VERSION string. The object file is in the main Oracle-
library libserver11.a.
A reference to this text string can find in the kqfviw table stored in the same file,
kqf.o:

Listing 8.10: kqf.o
.rodata:0800C4A0 kqfviw dd 0Bh ; DATA XREF: kqfchk:loc_8003A6D
.rodata:0800C4A0 ; kqfgbn+34
.rodata:0800C4A4 dd offset _2__STRING_10102_0 ; "GV$WAITSTAT"
.rodata:0800C4A8 dd 4
.rodata:0800C4AC dd offset _2__STRING_10103_0 ; "NULL"

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1133
.rodata:0800C4B0 dd 3
.rodata:0800C4B4 dd 0
.rodata:0800C4B8 dd 195h
.rodata:0800C4BC dd 4
.rodata:0800C4C0 dd 0
.rodata:0800C4C4 dd 0FFFFC1CBh
.rodata:0800C4C8 dd 3
.rodata:0800C4CC dd 0
.rodata:0800C4D0 dd 0Ah
.rodata:0800C4D4 dd offset _2__STRING_10104_0 ; "V$WAITSTAT"
.rodata:0800C4D8 dd 4
.rodata:0800C4DC dd offset _2__STRING_10103_0 ; "NULL"
.rodata:0800C4E0 dd 3
.rodata:0800C4E4 dd 0
.rodata:0800C4E8 dd 4Eh
.rodata:0800C4EC dd 3
.rodata:0800C4F0 dd 0
.rodata:0800C4F4 dd 0FFFFC003h
.rodata:0800C4F8 dd 4
.rodata:0800C4FC dd 0
.rodata:0800C500 dd 5
.rodata:0800C504 dd offset _2__STRING_10105_0 ; "GV$BH"
.rodata:0800C508 dd 4
.rodata:0800C50C dd offset _2__STRING_10103_0 ; "NULL"
.rodata:0800C510 dd 3
.rodata:0800C514 dd 0
.rodata:0800C518 dd 269h
.rodata:0800C51C dd 15h
.rodata:0800C520 dd 0
.rodata:0800C524 dd 0FFFFC1EDh
.rodata:0800C528 dd 8
.rodata:0800C52C dd 0
.rodata:0800C530 dd 4
.rodata:0800C534 dd offset _2__STRING_10106_0 ; "V$BH"
.rodata:0800C538 dd 4
.rodata:0800C53C dd offset _2__STRING_10103_0 ; "NULL"
.rodata:0800C540 dd 3
.rodata:0800C544 dd 0
.rodata:0800C548 dd 0F5h
.rodata:0800C54C dd 14h
.rodata:0800C550 dd 0
.rodata:0800C554 dd 0FFFFC1EEh
.rodata:0800C558 dd 5
.rodata:0800C55C dd 0

By the way, often, while analyzing Oracle RDBMS’s internals, you may ask yourself,
why are the names of the functions and global variable so weird.
Probably, because Oracle RDBMS is a very old product and was developed in C in
the 1980s.
And that was a time when the C standard guaranteed that the function names/vari-
ables can support only up to 6 characters inclusive: «6 significant initial characters

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1134
in an external identifier»37

Probably, the table kqfviw contains most (maybe even all) views prefixed with V$,
these are fixed views, present all the time. Superficially, by noticing the cyclic re-
currence of data, we can easily see that each kqfviw table element has 12 32-bit
fields. It is very simple to create a 12-elements structure in IDA and apply it to all
table elements. As of Oracle RDBMS version 11.2, there are 1023 table elements,
i.e., in it are described 1023 of all possible fixed views.
We are going to return to this number later.
As we can see, there is not much information in these numbers in the fields. The
first field is always equals to the name of the view (without the terminating zero).
This is correct for each element. But this information is not very useful.
We also know that the information about all fixed views can be retrieved from a
fixed view named V$FIXED_VIEW_DEFINITION (by the way, the information for this
view is also taken from the kqfviw and kqfvip tables.) Incidentally, there are 1023
elements in those too. Coincidence? No.
SQL> select * from V$FIXED_VIEW_DEFINITION where view_name='V$VERSION';

VIEW_NAME

VIEW_DEFINITION

V$VERSION
select BANNER from GV$VERSION where inst_id = USERENV('Instance')

So, V$VERSION is some kind of a thunk view for another view, named GV$VERSION,
which is, in turn:
SQL> select * from V$FIXED_VIEW_DEFINITION where view_name='GV$VERSION';

VIEW_NAME

VIEW_DEFINITION

GV$VERSION
select inst_id, banner from x$version

The tables prefixed with X$ in the Oracle RDBMS are service tables too, undocu-
mented, cannot be changed by the user and are refreshed dynamically.
If we search for the text

select BANNER from GV$VERSION where inst_id =
USERENV('Instance')

... in the kqf.o file, we find it in the kqfvip table:
37Draft ANSI C Standard (ANSI X3J11/88-090) (May 13, 1988) (yurichev.com)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/ref/Draft%20ANSI%20C%20Standard%20(ANSI%20X3J11-88-090)%20(May%2013,%201988).txt
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1135
Listing 8.11: kqf.o

.rodata:080185A0 kqfvip dd offset _2__STRING_11126_0 ; DATA XREF: kqfgvcn+18

.rodata:080185A0 ; kqfgvt+F

.rodata:080185A0 ;
"select inst_id,decode(indx,1,'data bloc"...

.rodata:080185A4 dd offset kqfv459_c_0

.rodata:080185A8 dd 0

.rodata:080185AC dd 0

...

.rodata:08019570 dd offset _2__STRING_11378_0 ;
"select BANNER from GV$VERSION where in"...

.rodata:08019574 dd offset kqfv133_c_0

.rodata:08019578 dd 0

.rodata:0801957C dd 0

.rodata:08019580 dd offset _2__STRING_11379_0 ;
"select inst_id,decode(bitand(cfflg,1),0"...

.rodata:08019584 dd offset kqfv403_c_0

.rodata:08019588 dd 0

.rodata:0801958C dd 0

.rodata:08019590 dd offset _2__STRING_11380_0 ;
"select STATUS , NAME, IS_RECOVERY_DEST"...

.rodata:08019594 dd offset kqfv199_c_0

The table appear to have 4 fields in each element. By the way, there are 1023
elements in it, again, the number we already know.
The second field points to another table that contains the table fields for this fixed
view. As for V$VERSION, this table has only two elements, the first is 6 and the second
is the BANNER string (the number 6 is this string’s length) and after, a terminating
element that contains 0 and a null C string:

Listing 8.12: kqf.o
.rodata:080BBAC4 kqfv133_c_0 dd 6 ; DATA XREF: .rodata:08019574
.rodata:080BBAC8 dd offset _2__STRING_5017_0 ; "BANNER"
.rodata:080BBACC dd 0
.rodata:080BBAD0 dd offset _2__STRING_0_0

By joining data from both kqfviw and kqfvip tables, we can get the SQL statements
which are executed when the user wants to query information from a specific fixed
view.
So we can write an oracle tables38 program, to gather all this information from Oracle
RDBMS for Linux’s object files. For V$VERSION, we find this:

Listing 8.13: Result of oracle tables
kqfviw_element.viewname: [V$VERSION] ?: 0x3 0x43 0x1 0xffffc085 0x4
kqfvip_element.statement: [select BANNER from GV$VERSION where inst_id = ⤦

Ç USERENV('Instance')]
kqfvip_element.params:

38yurichev.com

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://yurichev.com/oracle_tables.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1136
[BANNER]

And:

Listing 8.14: Result of oracle tables
kqfviw_element.viewname: [GV$VERSION] ?: 0x3 0x26 0x2 0xffffc192 0x1
kqfvip_element.statement: [select inst_id, banner from x$version]
kqfvip_element.params:
[INST_ID] [BANNER]

The GV$VERSION fixed view is different from V$VERSION only in that it has one more
field with the identifier instance.
Anyway, we are going to stick with the X$VERSION table. Just like any other X$-table,
it is undocumented, however, we can query it:
SQL> select * from x$version;

ADDR INDX INST_ID
-------- ---------- ----------
BANNER

0DBAF574 0 1
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production

...

This table has some additional fields, like ADDR and INDX.
While scrolling kqf.o in IDA we can spot another table that contains a pointer to the
X$VERSION string, this is kqftab:

Listing 8.15: kqf.o
.rodata:0803CAC0 dd 9 ; element number 0x1f6
.rodata:0803CAC4 dd offset _2__STRING_13113_0 ; "X$VERSION"
.rodata:0803CAC8 dd 4
.rodata:0803CACC dd offset _2__STRING_13114_0 ; "kqvt"
.rodata:0803CAD0 dd 4
.rodata:0803CAD4 dd 4
.rodata:0803CAD8 dd 0
.rodata:0803CADC dd 4
.rodata:0803CAE0 dd 0Ch
.rodata:0803CAE4 dd 0FFFFC075h
.rodata:0803CAE8 dd 3
.rodata:0803CAEC dd 0
.rodata:0803CAF0 dd 7
.rodata:0803CAF4 dd offset _2__STRING_13115_0 ; "X$KQFSZ"
.rodata:0803CAF8 dd 5
.rodata:0803CAFC dd offset _2__STRING_13116_0 ; "kqfsz"
.rodata:0803CB00 dd 1
.rodata:0803CB04 dd 38h
.rodata:0803CB08 dd 0

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1137
.rodata:0803CB0C dd 7
.rodata:0803CB10 dd 0
.rodata:0803CB14 dd 0FFFFC09Dh
.rodata:0803CB18 dd 2
.rodata:0803CB1C dd 0

There are a lot of references to the X$-table names, apparently, to all Oracle RDBMS
11.2 X$-tables. But again, we don’t have enough information.
It’s not clear what does the kqvt string stands for.
The kq prefix may mean kernel or query.
v apparently stands for version and t—type? Hard to say.
A table with a similar name can be found in kqf.o:

Listing 8.16: kqf.o
.rodata:0808C360 kqvt_c_0 kqftap_param <4, offset _2__STRING_19_0, 917h, 0,⤦

Ç 0, 0, 4, 0, 0>
.rodata:0808C360 ; DATA XREF:

.rodata:08042680
.rodata:0808C360 ; "ADDR"
.rodata:0808C384 kqftap_param <4, offset _2__STRING_20_0, 0B02h, ⤦

Ç 0, 0, 0, 4, 0, 0> ;
"INDX"

.rodata:0808C3A8 kqftap_param <7, offset _2__STRING_21_0, 0B02h, ⤦
Ç 0, 0, 0, 4, 0, 0> ;
"INST_ID"

.rodata:0808C3CC kqftap_param <6, offset _2__STRING_5017_0, 601h, ⤦
Ç 0, 0, 0, 50h, 0, 0> ;
"BANNER"

.rodata:0808C3F0 kqftap_param <0, offset _2__STRING_0_0, 0, 0, 0, ⤦
Ç 0, 0, 0, 0>

It contains information about all fields in the X$VERSION table. The only reference to
this table is in the kqftap table:

Listing 8.17: kqf.o
.rodata:08042680 kqftap_element <0, offset kqvt_c_0, offset⤦

Ç kqvrow, 0> ; element 0x1f6

It is interesting that this element here is 0x1f6th (502nd), just like the pointer to the
X$VERSION string in the kqftab table.
Probably, the kqftap and kqftab tables complement each other, just like kqfvip
and kqfviw.
We also see a pointer to the kqvrow() function. Finally, we got something useful!
So we will add these tables to our oracle tables39 utility too. For X$VERSION we get:
39yurichev.com

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://yurichev.com/oracle_tables.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1138
Listing 8.18: Result of oracle tables

kqftab_element.name: [X$VERSION] ?: [kqvt] 0x4 0x4 0x4 0xc 0xffffc075 0x3
kqftap_param.name=[ADDR] ?: 0x917 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[INDX] ?: 0xb02 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[INST_ID] ?: 0xb02 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[BANNER] ?: 0x601 0x0 0x0 0x0 0x50 0x0 0x0
kqftap_element.fn1=kqvrow
kqftap_element.fn2=NULL

With the help of tracer, it is easy to check that this function is called 6 times in row
(from the qerfxFetch() function) while querying the X$VERSION table.
Let’s run tracer in cc mode (it comments each executed instruction):
tracer -a:oracle.exe bpf=oracle.exe!_kqvrow,trace:cc

kqvrow proc near

var_7C = byte ptr -7Ch
var_18 = dword ptr -18h
var_14 = dword ptr -14h
Dest = dword ptr -10h
var_C = dword ptr -0Ch
var_8 = dword ptr -8
var_4 = dword ptr -4
arg_8 = dword ptr 10h
arg_C = dword ptr 14h
arg_14 = dword ptr 1Ch
arg_18 = dword ptr 20h

; FUNCTION CHUNK AT .text1:056C11A0 SIZE 00000049 BYTES

push ebp
mov ebp, esp
sub esp, 7Ch
mov eax, [ebp+arg_14] ; [EBP+1Ch]=1
mov ecx, TlsIndex ; [69AEB08h]=0
mov edx, large fs:2Ch
mov edx, [edx+ecx*4] ; [EDX+ECX*4]=0xc98c938
cmp eax, 2 ; EAX=1
mov eax, [ebp+arg_8] ; [EBP+10h]=0xcdfe554
jz loc_2CE1288
mov ecx, [eax] ; [EAX]=0..5
mov [ebp+var_4], edi ; EDI=0xc98c938

loc_2CE10F6: ; CODE XREF: _kqvrow_+10A
; _kqvrow_+1A9

cmp ecx, 5 ; ECX=0..5
ja loc_56C11C7
mov edi, [ebp+arg_18] ; [EBP+20h]=0
mov [ebp+var_14], edx ; EDX=0xc98c938
mov [ebp+var_8], ebx ; EBX=0
mov ebx, eax ; EAX=0xcdfe554

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1139
mov [ebp+var_C], esi ; ESI=0xcdfe248

loc_2CE110D: ; CODE XREF: _kqvrow_+29E00E6
mov edx, ds:off_628B09C[ecx*4] ; [ECX*4+628B09Ch]=0x2ce1116,

0x2ce11ac, 0x2ce11db, 0x2ce11f6, 0x2ce1236, 0x2ce127a
jmp edx ; EDX=0x2ce1116, 0x2ce11ac, 0x2ce11db,

0x2ce11f6, 0x2ce1236, 0x2ce127a

loc_2CE1116: ; DATA XREF: .rdata:off_628B09C
push offset aXKqvvsnBuffer ; "x$kqvvsn buffer"
mov ecx, [ebp+arg_C] ; [EBP+14h]=0x8a172b4
xor edx, edx
mov esi, [ebp+var_14] ; [EBP-14h]=0xc98c938
push edx ; EDX=0
push edx ; EDX=0
push 50h
push ecx ; ECX=0x8a172b4
push dword ptr [esi+10494h] ; [ESI+10494h]=0xc98cd58
call _kghalf ; tracing nested maximum level (1) reached,

skipping this CALL
mov esi, ds:__imp__vsnnum ; [59771A8h]=0x61bc49e0
mov [ebp+Dest], eax ; EAX=0xce2ffb0
mov [ebx+8], eax ; EAX=0xce2ffb0
mov [ebx+4], eax ; EAX=0xce2ffb0
mov edi, [esi] ; [ESI]=0xb200100
mov esi, ds:__imp__vsnstr ; [597D6D4h]=0x65852148, "-

Production"
push esi ; ESI=0x65852148, "- Production"
mov ebx, edi ; EDI=0xb200100
shr ebx, 18h ; EBX=0xb200100
mov ecx, edi ; EDI=0xb200100
shr ecx, 14h ; ECX=0xb200100
and ecx, 0Fh ; ECX=0xb2
mov edx, edi ; EDI=0xb200100
shr edx, 0Ch ; EDX=0xb200100
movzx edx, dl ; DL=0
mov eax, edi ; EDI=0xb200100
shr eax, 8 ; EAX=0xb200100
and eax, 0Fh ; EAX=0xb2001
and edi, 0FFh ; EDI=0xb200100
push edi ; EDI=0
mov edi, [ebp+arg_18] ; [EBP+20h]=0
push eax ; EAX=1
mov eax, ds:__imp__vsnban ;

[597D6D8h]=0x65852100, "Oracle Database 11g Enterprise Edition Release %d.%d.%d.%d.%d %s"
push edx ; EDX=0
push ecx ; ECX=2
push ebx ; EBX=0xb
mov ebx, [ebp+arg_8] ; [EBP+10h]=0xcdfe554
push eax ;

EAX=0x65852100, "Oracle Database 11g Enterprise Edition Release %d.%d.%d.%d.%d %s"
mov eax, [ebp+Dest] ; [EBP-10h]=0xce2ffb0
push eax ; EAX=0xce2ffb0
call ds:__imp__sprintf ; op1=MSVCR80.dll!sprintf tracing nested

maximum level (1) reached, skipping this CALL

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1140
add esp, 38h
mov dword ptr [ebx], 1

loc_2CE1192: ; CODE XREF: _kqvrow_+FB
; _kqvrow_+128 ...

test edi, edi ; EDI=0
jnz __VInfreq__kqvrow
mov esi, [ebp+var_C] ; [EBP-0Ch]=0xcdfe248
mov edi, [ebp+var_4] ; [EBP-4]=0xc98c938
mov eax, ebx ; EBX=0xcdfe554
mov ebx, [ebp+var_8] ; [EBP-8]=0
lea eax, [eax+4] ; [EAX+4]=0xce2ffb0, "NLSRTL Version

11.2.0.1.0 - Production", "Oracle Database 11g Enterprise Edition Release
11.2.0.1.0 - Production", "PL/SQL Release 11.2.0.1.0 - Production", "TNS
for 32-bit Windows: Version 11.2.0.1.0 - Production"

loc_2CE11A8: ; CODE XREF: _kqvrow_+29E00F6
mov esp, ebp
pop ebp
retn ; EAX=0xcdfe558

loc_2CE11AC: ; DATA XREF: .rdata:0628B0A0
mov edx, [ebx+8] ; [EBX+8]=0xce2ffb0, "Oracle Database 11g

Enterprise Edition Release 11.2.0.1.0 - Production"
mov dword ptr [ebx], 2
mov [ebx+4], edx ; EDX=0xce2ffb0, "Oracle Database 11g

Enterprise Edition Release 11.2.0.1.0 - Production"
push edx ; EDX=0xce2ffb0, "Oracle Database 11g

Enterprise Edition Release 11.2.0.1.0 - Production"
call _kkxvsn ; tracing nested maximum level (1) reached,

skipping this CALL
pop ecx
mov edx, [ebx+4] ; [EBX+4]=0xce2ffb0, "PL/SQL Release

11.2.0.1.0 - Production"
movzx ecx, byte ptr [edx] ; [EDX]=0x50
test ecx, ecx ; ECX=0x50
jnz short loc_2CE1192
mov edx, [ebp+var_14]
mov esi, [ebp+var_C]
mov eax, ebx
mov ebx, [ebp+var_8]
mov ecx, [eax]
jmp loc_2CE10F6

loc_2CE11DB: ; DATA XREF: .rdata:0628B0A4
push 0
push 50h
mov edx, [ebx+8] ; [EBX+8]=0xce2ffb0, "PL/SQL Release

11.2.0.1.0 - Production"
mov [ebx+4], edx ; EDX=0xce2ffb0, "PL/SQL Release 11.2.0.1.0

- Production"
push edx ; EDX=0xce2ffb0, "PL/SQL Release 11.2.0.1.0

- Production"
call _lmxver ; tracing nested maximum level (1) reached,

skipping this CALL
add esp, 0Ch
mov dword ptr [ebx], 3

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1141
jmp short loc_2CE1192

loc_2CE11F6: ; DATA XREF: .rdata:0628B0A8
mov edx, [ebx+8] ; [EBX+8]=0xce2ffb0
mov [ebp+var_18], 50h
mov [ebx+4], edx ; EDX=0xce2ffb0
push 0
call _npinli ; tracing nested maximum level (1) reached,

skipping this CALL
pop ecx
test eax, eax ; EAX=0
jnz loc_56C11DA
mov ecx, [ebp+var_14] ; [EBP-14h]=0xc98c938
lea edx, [ebp+var_18] ; [EBP-18h]=0x50
push edx ; EDX=0xd76c93c
push dword ptr [ebx+8] ; [EBX+8]=0xce2ffb0
push dword ptr [ecx+13278h] ; [ECX+13278h]=0xacce190
call _nrtnsvrs ; tracing nested maximum level (1) reached,

skipping this CALL
add esp, 0Ch

loc_2CE122B: ; CODE XREF: _kqvrow_+29E0118
mov dword ptr [ebx], 4
jmp loc_2CE1192

loc_2CE1236: ; DATA XREF: .rdata:0628B0AC
lea edx, [ebp+var_7C] ; [EBP-7Ch]=1
push edx ; EDX=0xd76c8d8
push 0
mov esi, [ebx+8] ; [EBX+8]=0xce2ffb0, "TNS for 32-bit

Windows: Version 11.2.0.1.0 - Production"
mov [ebx+4], esi ; ESI=0xce2ffb0, "TNS for 32-bit Windows:

Version 11.2.0.1.0 - Production"
mov ecx, 50h
mov [ebp+var_18], ecx ; ECX=0x50
push ecx ; ECX=0x50
push esi ; ESI=0xce2ffb0, "TNS for 32-bit Windows:

Version 11.2.0.1.0 - Production"
call _lxvers ; tracing nested maximum level (1) reached,

skipping this CALL
add esp, 10h
mov edx, [ebp+var_18] ; [EBP-18h]=0x50
mov dword ptr [ebx], 5
test edx, edx ; EDX=0x50
jnz loc_2CE1192
mov edx, [ebp+var_14]
mov esi, [ebp+var_C]
mov eax, ebx
mov ebx, [ebp+var_8]
mov ecx, 5
jmp loc_2CE10F6

loc_2CE127A: ; DATA XREF: .rdata:0628B0B0
mov edx, [ebp+var_14] ; [EBP-14h]=0xc98c938
mov esi, [ebp+var_C] ; [EBP-0Ch]=0xcdfe248

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1142
mov edi, [ebp+var_4] ; [EBP-4]=0xc98c938
mov eax, ebx ; EBX=0xcdfe554
mov ebx, [ebp+var_8] ; [EBP-8]=0

loc_2CE1288: ; CODE XREF: _kqvrow_+1F
mov eax, [eax+8] ; [EAX+8]=0xce2ffb0, "NLSRTL Version

11.2.0.1.0 - Production"
test eax, eax ; EAX=0xce2ffb0, "NLSRTL Version 11.2.0.1.0

- Production"
jz short loc_2CE12A7
push offset aXKqvvsnBuffer ; "x$kqvvsn buffer"
push eax ; EAX=0xce2ffb0, "NLSRTL Version 11.2.0.1.0

- Production"
mov eax, [ebp+arg_C] ; [EBP+14h]=0x8a172b4
push eax ; EAX=0x8a172b4
push dword ptr [edx+10494h] ; [EDX+10494h]=0xc98cd58
call _kghfrf ; tracing nested maximum level (1) reached,

skipping this CALL
add esp, 10h

loc_2CE12A7: ; CODE XREF: _kqvrow_+1C1
xor eax, eax
mov esp, ebp
pop ebp
retn ; EAX=0

kqvrow endp

Now it is easy to see that the row number is passed from outside. The function
returns the string, constructing it as follows:

String 1 Using vsnstr, vsnnum, vsnban global variables.
Calls sprintf().

String 2 Calls kkxvsn().
String 3 Calls lmxver().
String 4 Calls npinli(), nrtnsvrs().
String 5 Calls lxvers().

That’s how the corresponding functions are called for determining each module’s
version.

8.13.2 X$KSMLRU table in Oracle RDBMS
There is a mention of a special table in the Diagnosing and Resolving Error ORA-
04031 on the Shared Pool or Other Memory Pools [Video] [ID 146599.1] note:

There is a fixed table called X$KSMLRU that tracks allocations in
the shared pool that cause other objects in the shared pool to be aged
out. This fixed table can be used to identify what is causing the large
allocation.
If many objects are being periodically flushed from the shared pool

then this will cause response time problems and will likely cause library

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1143

cache latch contention problems when the objects are reloaded into
the shared pool.
One unusual thing about the X$KSMLRU fixed table is that the con-

tents of the fixed table are erased whenever someone selects from the
fixed table. This is done since the fixed table stores only the largest al-
locations that have occurred. The values are reset after being selected
so that subsequent large allocations can be noted even if they were
not quite as large as others that occurred previously. Because of this
resetting, the output of selecting from this table should be carefully
kept since it cannot be retrieved back after the query is issued.

However, as it can be easily checked, the contents of this table are cleared each
time it’s queried. Are we able to find why? Let’s get back to tables we already know:
kqftab and kqftap which were generated with oracle tables40’s help, that has all
information about the X$-tables. We can see here that the ksmlrs() function is
called to prepare this table’s elements:

Listing 8.19: Result of oracle tables
kqftab_element.name: [X$KSMLRU] ?: [ksmlr] 0x4 0x64 0x11 0xc 0xffffc0bb 0x5
kqftap_param.name=[ADDR] ?: 0x917 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[INDX] ?: 0xb02 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[INST_ID] ?: 0xb02 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[KSMLRIDX] ?: 0xb02 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[KSMLRDUR] ?: 0xb02 0x0 0x0 0x0 0x4 0x4 0x0
kqftap_param.name=[KSMLRSHRPOOL] ?: 0xb02 0x0 0x0 0x0 0x4 0x8 0x0
kqftap_param.name=[KSMLRCOM] ?: 0x501 0x0 0x0 0x0 0x14 0xc 0x0
kqftap_param.name=[KSMLRSIZ] ?: 0x2 0x0 0x0 0x0 0x4 0x20 0x0
kqftap_param.name=[KSMLRNUM] ?: 0x2 0x0 0x0 0x0 0x4 0x24 0x0
kqftap_param.name=[KSMLRHON] ?: 0x501 0x0 0x0 0x0 0x20 0x28 0x0
kqftap_param.name=[KSMLROHV] ?: 0xb02 0x0 0x0 0x0 0x4 0x48 0x0
kqftap_param.name=[KSMLRSES] ?: 0x17 0x0 0x0 0x0 0x4 0x4c 0x0
kqftap_param.name=[KSMLRADU] ?: 0x2 0x0 0x0 0x0 0x4 0x50 0x0
kqftap_param.name=[KSMLRNID] ?: 0x2 0x0 0x0 0x0 0x4 0x54 0x0
kqftap_param.name=[KSMLRNSD] ?: 0x2 0x0 0x0 0x0 0x4 0x58 0x0
kqftap_param.name=[KSMLRNCD] ?: 0x2 0x0 0x0 0x0 0x4 0x5c 0x0
kqftap_param.name=[KSMLRNED] ?: 0x2 0x0 0x0 0x0 0x4 0x60 0x0
kqftap_element.fn1=ksmlrs
kqftap_element.fn2=NULL

Indeed, with tracer’s help it is easy to see that this function is called each time we
query the X$KSMLRU table.
Here we see a references to the ksmsplu_sp() and ksmsplu_jp() functions, each
of them calls the ksmsplu() at the end. At the end of the ksmsplu() function we
see a call to memset():

Listing 8.20: ksm.o
...

40yurichev.com

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://yurichev.com/oracle_tables.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1144

.text:00434C50 loc_434C50: ; DATA XREF: .rdata:off_5E50EA8

.text:00434C50 mov edx, [ebp-4]

.text:00434C53 mov [eax], esi

.text:00434C55 mov esi, [edi]

.text:00434C57 mov [eax+4], esi

.text:00434C5A mov [edi], eax

.text:00434C5C add edx, 1

.text:00434C5F mov [ebp-4], edx

.text:00434C62 jnz loc_434B7D

.text:00434C68 mov ecx, [ebp+14h]

.text:00434C6B mov ebx, [ebp-10h]

.text:00434C6E mov esi, [ebp-0Ch]

.text:00434C71 mov edi, [ebp-8]

.text:00434C74 lea eax, [ecx+8Ch]

.text:00434C7A push 370h ; Size

.text:00434C7F push 0 ; Val

.text:00434C81 push eax ; Dst

.text:00434C82 call __intel_fast_memset

.text:00434C87 add esp, 0Ch

.text:00434C8A mov esp, ebp

.text:00434C8C pop ebp

.text:00434C8D retn

.text:00434C8D _ksmsplu endp

Constructions like memset (block, 0, size) are often used just to zero memory
block. What if we take a risk, block the memset() call and see what happens?
Let’s run tracer with the following options: set breakpoint at 0x434C7A (the point
where the arguments to memset() are to be passed), so that tracer will set program
counter EIP to the point where the arguments passed to memset() are to be cleared
(at 0x434C8A) It can be said that we just simulate an unconditional jump from address
0x434C7A to 0x434C8A.
tracer -a:oracle.exe bpx=oracle.exe!0x00434C7A,set(eip,0x00434C8A)

(Important: all these addresses are valid only for the win32 version of Oracle RDBMS
11.2)
Indeed, now we can query the X$KSMLRU table as many times as we want and it is
not being cleared anymore!
Just in case, do not try this on your production servers.
It is probably not a very useful or desired system behavior, but as an experiment for
locating a piece of code that we need, it perfectly suits our needs!

8.13.3 V$TIMER table in Oracle RDBMS
V$TIMER is another fixed view that reflects a rapidly changing value:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1145

V$TIMER displays the elapsed time in hundredths of a second. Time
is measured since the beginning of the epoch, which is operating sys-
tem specific, and wraps around to 0 again whenever the value over-
flows four bytes (roughly 497 days).

(From Oracle RDBMS documentation 41)
It is interesting that the periods are different for Oracle for win32 and for Linux. Will
we be able to find the function that generates this value?
As we can see, this information is finally taken from the X$KSUTM table.
SQL> select * from V$FIXED_VIEW_DEFINITION where view_name='V$TIMER';

VIEW_NAME

VIEW_DEFINITION

V$TIMER
select HSECS from GV$TIMER where inst_id = USERENV('Instance')

SQL> select * from V$FIXED_VIEW_DEFINITION where view_name='GV$TIMER';

VIEW_NAME

VIEW_DEFINITION

GV$TIMER
select inst_id,ksutmtim from x$ksutm

Now we are stuck in a small problem, there are no references to value generating
function(s) in the tables kqftab/kqftap:

Listing 8.21: Result of oracle tables
kqftab_element.name: [X$KSUTM] ?: [ksutm] 0x1 0x4 0x4 0x0 0xffffc09b 0x3
kqftap_param.name=[ADDR] ?: 0x10917 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[INDX] ?: 0x20b02 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[INST_ID] ?: 0xb02 0x0 0x0 0x0 0x4 0x0 0x0
kqftap_param.name=[KSUTMTIM] ?: 0x1302 0x0 0x0 0x0 0x4 0x0 0x1e
kqftap_element.fn1=NULL
kqftap_element.fn2=NULL

When we try to find the string KSUTMTIM, we see it in this function:
kqfd_DRN_ksutm_c proc near ; DATA XREF: .rodata:0805B4E8

arg_0 = dword ptr 8
arg_8 = dword ptr 10h

41http://docs.oracle.com/cd/B28359_01/server.111/b28320/dynviews_3104.htm

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://docs.oracle.com/cd/B28359_01/server.111/b28320/dynviews_3104.htm
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1146
arg_C = dword ptr 14h

push ebp
mov ebp, esp
push [ebp+arg_C]
push offset ksugtm
push offset _2__STRING_1263_0 ; "KSUTMTIM"
push [ebp+arg_8]
push [ebp+arg_0]
call kqfd_cfui_drain
add esp, 14h
mov esp, ebp
pop ebp
retn

kqfd_DRN_ksutm_c endp

The kqfd_DRN_ksutm_c() function is mentioned in the
kqfd_tab_registry_0 table:
dd offset _2__STRING_62_0 ; "X$KSUTM"
dd offset kqfd_OPN_ksutm_c
dd offset kqfd_tabl_fetch
dd 0
dd 0
dd offset kqfd_DRN_ksutm_c

There is a function ksugtm() referenced here. Let’s see what’s in it (Linux x86):

Listing 8.22: ksu.o
ksugtm proc near

var_1C = byte ptr -1Ch
arg_4 = dword ptr 0Ch

push ebp
mov ebp, esp
sub esp, 1Ch
lea eax, [ebp+var_1C]
push eax
call slgcs
pop ecx
mov edx, [ebp+arg_4]
mov [edx], eax
mov eax, 4
mov esp, ebp
pop ebp
retn

ksugtm endp

The code in the win32 version is almost the same.
Is this the function we are looking for? Let’s see:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1147

tracer -a:oracle.exe bpf=oracle.exe!_ksugtm,args:2,dump_args:0x4

Let’s try again:
SQL> select * from V$TIMER;

HSECS

27294929

SQL> select * from V$TIMER;

HSECS

27295006

SQL> select * from V$TIMER;

HSECS

27295167

Listing 8.23: tracer output
TID=2428|(0) oracle.exe!_ksugtm (0x0, 0xd76c5f0) (called from oracle.exe!⤦

Ç __VInfreq__qerfxFetch+0xfad (0x56bb6d5))
Argument 2/2
0D76C5F0: 38 C9 "8. ⤦

Ç "
TID=2428|(0) oracle.exe!_ksugtm () -> 0x4 (0x4)
Argument 2/2 difference
00000000: D1 7C A0 01 ".|.. ⤦

Ç "
TID=2428|(0) oracle.exe!_ksugtm (0x0, 0xd76c5f0) (called from oracle.exe!⤦

Ç __VInfreq__qerfxFetch+0xfad (0x56bb6d5))
Argument 2/2
0D76C5F0: 38 C9 "8. ⤦

Ç "
TID=2428|(0) oracle.exe!_ksugtm () -> 0x4 (0x4)
Argument 2/2 difference
00000000: 1E 7D A0 01 ".}.. ⤦

Ç "
TID=2428|(0) oracle.exe!_ksugtm (0x0, 0xd76c5f0) (called from oracle.exe!⤦

Ç __VInfreq__qerfxFetch+0xfad (0x56bb6d5))
Argument 2/2
0D76C5F0: 38 C9 "8. ⤦

Ç "
TID=2428|(0) oracle.exe!_ksugtm () -> 0x4 (0x4)
Argument 2/2 difference
00000000: BF 7D A0 01 ".}.. ⤦

Ç "

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1148
Indeed—the value is the same we see in SQL*Plus and it is returned via the second
argument.
Let’s see what is in slgcs() (Linux x86):
slgcs proc near

var_4 = dword ptr -4
arg_0 = dword ptr 8

push ebp
mov ebp, esp
push esi
mov [ebp+var_4], ebx
mov eax, [ebp+arg_0]
call $+5
pop ebx
nop ; PIC mode
mov ebx, offset _GLOBAL_OFFSET_TABLE_
mov dword ptr [eax], 0
call sltrgatime64 ; PIC mode
push 0
push 0Ah
push edx
push eax
call __udivdi3 ; PIC mode
mov ebx, [ebp+var_4]
add esp, 10h
mov esp, ebp
pop ebp
retn

slgcs endp

(it is just a call to sltrgatime64()
and division of its result by 10 (3.12 on page 621))
And win32-version:
_slgcs proc near ; CODE XREF: _dbgefgHtElResetCount+15

; _dbgerRunActions+1528
db 66h
nop
push ebp
mov ebp, esp
mov eax, [ebp+8]
mov dword ptr [eax], 0
call ds:__imp__GetTickCount@0 ; GetTickCount()
mov edx, eax
mov eax, 0CCCCCCCDh
mul edx
shr edx, 3
mov eax, edx
mov esp, ebp
pop ebp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1149
retn

_slgcs endp

It is just the result of GetTickCount() 42 divided by 10 (3.12 on page 621).
Voilà! That’s why the win32 version and the Linux x86 version show different results,
because they are generated by different OS functions.
Drain apparently implies connecting a specific table column to a specific function.
We will add support of the table kqfd_tab_registry_0 to oracle tables43, now we
can see how the table column’s variables are connected to a specific functions:
[X$KSUTM] [kqfd_OPN_ksutm_c] [kqfd_tabl_fetch] [NULL] [NULL] [⤦

Ç kqfd_DRN_ksutm_c]
[X$KSUSGIF] [kqfd_OPN_ksusg_c] [kqfd_tabl_fetch] [NULL] [NULL] [⤦

Ç kqfd_DRN_ksusg_c]

OPN, apparently stands for, open, and DRN, apparently, for drain.

8.14 Handwritten assembly code
8.14.1 EICAR test file
This .COM-file is intended for testing antivirus software, it is possible to run in in
MS-DOS and it prints this string: “EICAR-STANDARD-ANTIVIRUS-TEST-FILE!”.
Its important property is that it consists entirely of printable ASCII-symbols, which,
in turn, makes it possible to create it in any text editor:
X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

Let’s decompile it:
; initial conditions: SP=0FFFEh, SS:[SP]=0
0100 58 pop ax
; AX=0, SP=0
0101 35 4F 21 xor ax, 214Fh
; AX = 214Fh and SP = 0
0104 50 push ax
; AX = 214Fh, SP = FFFEh and SS:[FFFE] = 214Fh
0105 25 40 41 and ax, 4140h
; AX = 140h, SP = FFFEh and SS:[FFFE] = 214Fh
0108 50 push ax
; AX = 140h, SP = FFFCh, SS:[FFFC] = 140h and SS:[FFFE] = 214Fh
0109 5B pop bx
; AX = 140h, BX = 140h, SP = FFFEh and SS:[FFFE] = 214Fh
010A 34 5C xor al, 5Ch
; AX = 11Ch, BX = 140h, SP = FFFEh and SS:[FFFE] = 214Fh
010C 50 push ax

42MSDN
43yurichev.com

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/windows/desktop/ms724408(v=vs.85).aspx
http://yurichev.com/oracle_tables.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1150
010D 5A pop dx
; AX = 11Ch, BX = 140h, DX = 11Ch, SP = FFFEh and SS:[FFFE] = 214Fh
010E 58 pop ax
; AX = 214Fh, BX = 140h, DX = 11Ch and SP = 0
010F 35 34 28 xor ax, 2834h
; AX = 97Bh, BX = 140h, DX = 11Ch and SP = 0
0112 50 push ax
0113 5E pop si
; AX = 97Bh, BX = 140h, DX = 11Ch, SI = 97Bh and SP = 0
0114 29 37 sub [bx], si
0116 43 inc bx
0117 43 inc bx
0118 29 37 sub [bx], si
011A 7D 24 jge short near ptr word_10140
011C 45 49 43 ... db 'EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$'
0140 48 2B word_10140 dw 2B48h ; CD 21 (INT 21) will be here
0142 48 2A dw 2A48h ; CD 20 (INT 20) will be here
0144 0D db 0Dh
0145 0A db 0Ah

We will add comments about the registers and stack after each instruction.
Essentially, all these instructions are here only to execute this code:
B4 09 MOV AH, 9
BA 1C 01 MOV DX, 11Ch
CD 21 INT 21h
CD 20 INT 20h

INT 21h with 9th function (passed in AH) just prints a string, the address of which
is passed in DS:DX. By the way, the string has to be terminated with the ’$’ sign.
Apparently, it’s inherited from CP/M and this function was left in DOS for compatibility.
INT 20h exits to DOS.
But as we can see, these instruction’s opcodes are not strictly printable. So the main
part of EICAR file is:
• preparing the register (AH and DX) values that we need;
• preparing INT 21 and INT 20 opcodes in memory;
• executing INT 21 and INT 20.

By the way, this technique is widely used in shellcode construction, when one have
to pass x86 code in string form.
Here is also a list of all x86 instructions which have printable opcodes: .1.6 on
page 1311.

8.15 Demos
Demos (or demomaking) were an excellent exercise inmathematics, computer graph-
ics programming and very tight x86 hand coding.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1151
8.15.1 10 PRINT CHR$(205.5+RND(1)); : GOTO 10
All examples here are MS-DOS .COM files.
In [Nick Montfort et al, 10 PRINT CHR$(205.5+RND(1)); : GOTO 10, (TheMIT Press:2012)]
44

we can read about one of the most simple possible random maze generators.
It just prints a slash or backslash characters randomly and endlessly, resulting in
something like this:

There are a few known implementations for 16-bit x86.

Trixter’s 42 byte version

The listing was taken from his website45, but the comments are mine.
00000000: B001 mov al,1 ; set 40x25 video mode
00000002: CD10 int 010
00000004: 30FF xor bh,bh ; set video page for int 10h

call
00000006: B9D007 mov cx,007D0 ; 2000 characters to output
00000009: 31C0 xor ax,ax
0000000B: 9C pushf ; push flags
; get random value from timer chip
0000000C: FA cli ; disable interrupts
0000000D: E643 out 043,al ; write 0 to port 43h
; read 16-bit value from port 40h
0000000F: E440 in al,040

44Also available as http://trope-tank.mit.edu/10_PRINT_121114.pdf
45http://trixter.oldskool.org/2012/12/17/maze-generation-in-thirteen-bytes/

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://trope-tank.mit.edu/10_PRINT_121114.pdf
http://trixter.oldskool.org/2012/12/17/maze-generation-in-thirteen-bytes/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1152
00000011: 88C4 mov ah,al
00000013: E440 in al,040
00000015: 9D popf ; enable interrupts by

restoring IF flag
00000016: 86C4 xchg ah,al
; here we have 16-bit pseudorandom value
00000018: D1E8 shr ax,1
0000001A: D1E8 shr ax,1
; CF currently have second bit from the value
0000001C: B05C mov al,05C ;'́
; if CF=1, skip the next instruction
0000001E: 7202 jc 000000022
; if CF=0, reload AL register with another character
00000020: B02F mov al,02F ;'/'
; output character
00000022: B40E mov ah,00E
00000024: CD10 int 010
00000026: E2E1 loop 000000009 ; loop 2000 times
00000028: CD20 int 020 ; exit to DOS

The pseudo-random value here is in fact the time that has passed from the system’s
boot, taken from the 8253 time chip, the value increases by one 18.2 times per
second.
By writing zero to port 43h, we send the command “select counter 0”, ”counter
latch”, ”binary counter” (not a BCD value).
The interrupts are enabled back with the POPF instruction, which restores the IF flag
as well.
It is not possible to use the IN instruction with registers other than AL, hence the
shuffling.

My attempt to reduce Trixter’s version: 27 bytes

We can say that since we use the timer not to get a precise time value, but a pseudo-
random one, we do not need to spend time (and code) to disable the interrupts.
Another thing we can say is that we need only one bit from the low 8-bit part, so
let’s read only it.
We can reduced the code slightly and we’ve got 27 bytes:
00000000: B9D007 mov cx,007D0 ; limit output to 2000 characters
00000003: 31C0 xor ax,ax ; command to timer chip
00000005: E643 out 043,al
00000007: E440 in al,040 ; read 8-bit of timer
00000009: D1E8 shr ax,1 ; get second bit to CF flag
0000000B: D1E8 shr ax,1
0000000D: B05C mov al,05C ; prepare '\'
0000000F: 7202 jc 000000013
00000011: B02F mov al,02F ; prepare '/'
; output character to screen
00000013: B40E mov ah,00E

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1153
00000015: CD10 int 010
00000017: E2EA loop 000000003
; exit to DOS
00000019: CD20 int 020

Taking random memory garbage as a source of randomness

Since it is MS-DOS, there is no memory protection at all, we can read from whatever
address we want. Even more than that: a simple LODSB instruction reads a byte from
the DS:SI address, but it’s not a problem if the registers’ values are not set up, let
it read 1) random bytes; 2) from a random place in memory!
It is suggested in Trixter’s webpage46to use LODSB without any setup.
It is also suggested that the SCASB instruction can be used instead, because it sets
a flag according to the byte it reads.
Another idea to minimize the code is to use the INT 29h DOS syscall, which just
prints the character stored in the AL register.
That is what Peter Ferrie did 47:

Listing 8.24: Peter Ferrie: 10 bytes
; AL is random at this point
00000000: AE scasb
; CF is set according subtracting random memory byte from AL.
; so it is somewhat random at this point
00000001: D6 setalc
; AL is set to 0xFF if CF=1 or to 0 if otherwise
00000002: 242D and al,02D ;'-'
; AL here is 0x2D or 0
00000004: 042F add al,02F ;'/'
; AL here is 0x5C or 0x2F
00000006: CD29 int 029 ; output AL to screen
00000008: EBF6 jmps 000000000 ; loop endlessly

So it is possible to get rid of conditional jumps at all. The ASCII code of backslash
(“\”) is 0x5C and 0x2F for slash (“/”). So we have to convert one (pseudo-random)
bit in the CF flag to a value of 0x5C or 0x2F.
This is done easily: by AND-ing all bits in AL (where all 8 bits are set or cleared) with
0x2D we have just 0 or 0x2D.
By adding 0x2F to this value, we get 0x5C or 0x2F.
Then we just output it to the screen.

Conclusion

It is also worth mentioning that the result may be different in DOSBox, Windows NT
and even MS-DOS,
46http://trixter.oldskool.org/2012/12/17/maze-generation-in-thirteen-bytes/
47http://pferrie.host22.com/misc/10print.htm

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://trixter.oldskool.org/2012/12/17/maze-generation-in-thirteen-bytes/
http://pferrie.host22.com/misc/10print.htm
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1154
due to different conditions: the timer chip can be emulated differently and the initial
register contents may be different as well.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1155
8.15.2 Mandelbrot set
Mathematical Recipes48has some important notes about Mandelbrot set theory.
Here is a demo49 written by “Sir_Lagsalot” in 2009, that draws the Mandelbrot set,
which is just a x86 program with executable file size of only 64 bytes. There are only
30 16-bit x86 instructions.
Here it is what it draws:

Let’s try to understand how it works.
The demo, although very tiny (just 64 bytes or 30 instructions), implements the
common algorithm described here, but using some coding tricks.
The source code is easily downloadable, so here is it, but let’s also add comments:

Listing 8.25: Commented source code
1 ; X is column on screen
2 ; Y is row on screen
3
4
5 ; X=0, Y=0 X=319, Y=0
6 ; +------------------------------->
7 ; |

48https://math.recipes
49Download it here,

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://math.recipes
http://www.pouet.net/prod.php?which=53287
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1156
8 ; |
9 ; |
10 ; |
11 ; |
12 ; |
13 ; v
14 ; X=0, Y=199 X=319, Y=199
15
16
17 ; switch to VGA 320*200*256 graphics mode
18 mov al,13h
19 int 10h
20 ; initial BX is 0
21 ; initial DI is 0xFFFE
22 ; DS:BX (or DS:0) is pointing to Program Segment Prefix at this moment
23 ; ... first 4 bytes of which are CD 20 FF 9F
24 les ax,[bx]
25 ; ES:AX=9FFF:20CD
26
27 FillLoop:
28 ; set DX to 0. CWD works as: DX:AX = sign_extend(AX).
29 ; AX here 0x20CD (at startup) or less then 320 (when getting back after

loop),
30 ; so DX will always be 0.
31 cwd
32 mov ax,di
33 ; AX is current pointer within VGA buffer
34 ; divide current pointer by 320
35 mov cx,320
36 div cx
37 ; DX (start_X) - remainder (column: 0..319); AX - result (row: 0..199)
38 sub ax,100
39 ; AX=AX-100, so AX (start_Y) now is in range -100..99
40 ; DX is in range 0..319 or 0x0000..0x013F
41 dec dh
42 ; DX now is in range 0xFF00..0x003F (-256..63)
43
44 xor bx,bx
45 xor si,si
46 ; BX (temp_X)=0; SI (temp_Y)=0
47
48 ; get maximal number of iterations
49 ; CX is still 320 here, so this is also maximal number of iteration
50 MandelLoop:
51 mov bp,si ; BP = temp_Y
52 imul si,bx ; SI = temp_X*temp_Y
53 add si,si ; SI = SI*2 = (temp_X*temp_Y)*2
54 imul bx,bx ; BX = BX^2 = temp_X^2
55 jo MandelBreak ; overflow?
56 imul bp,bp ; BP = BP^2 = temp_Y^2
57 jo MandelBreak ; overflow?
58 add bx,bp ; BX = BX+BP = temp_X^2 + temp_Y^2
59 jo MandelBreak ; overflow?
60 sub bx,bp ; BX = BX-BP = temp_X^2 + temp_Y^2 - temp_Y^2 = temp_X^2

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1157
61 sub bx,bp ; BX = BX-BP = temp_X^2 - temp_Y^2
62
63 ; correct scale:
64 sar bx,6 ; BX=BX/64
65 add bx,dx ; BX=BX+start_X
66 ; now temp_X = temp_X^2 - temp_Y^2 + start_X
67 sar si,6 ; SI=SI/64
68 add si,ax ; SI=SI+start_Y
69 ; now temp_Y = (temp_X*temp_Y)*2 + start_Y
70
71 loop MandelLoop
72
73 MandelBreak:
74 ; CX=iterations
75 xchg ax,cx
76 ; AX=iterations. store AL to VGA buffer at ES:[DI]
77 stosb
78 ; stosb also increments DI, so DI now points to the next point in VGA buffer
79 ; jump always, so this is eternal loop here
80 jmp FillLoop

The algorithm:
• Switch to 320*200 VGA video mode, 256 colors. 320 ∗ 200 = 64000 (0xFA00).
Each pixel is encoded by one byte, so the buffer size is 0xFA00 bytes. It is
addressed using the ES:DI registers pair.
ES must be 0xA000 here, because this is the segment address of the VGA video
buffer, but storing 0xA000 to ES requires at least 4 bytes (PUSH 0A000h / POP
ES). You can read more about the 16-bit MS-DOS memory model here: 11.7 on
page 1264.
Assuming that BX is zero here, and the Program Segment Prefix is at the zeroth
address, the 2-byte LES AX,[BX] instruction stores 0x20CD to AX and 0x9FFF
to ES.
So the program starts to draw 16 pixels (or bytes) before the actual video buffer.
But this is MS-DOS,
there is no memory protection, so a write happens into the very end of conven-
tional memory, and usually, there is nothing important. That’s why you see a
red strip 16 pixels wide at the right side. The whole picture is shifted left by 16
pixels. This is the price of saving 2 bytes.

• An infinite loop processes each pixel.
Probably, the most common way to enumerate all pixels on the screen is with
two loops: one for the X coordinate, another for the Y coordinate. But then you’ll
need to multiply the coordinates to address a byte in the VGA video buffer.
The author of this demo decided to do it otherwise: enumerate all bytes in the
video buffer by using one single loop instead of two, and get the coordinates of
the current point using division. The resulting coordinates are: X in the range

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1158
of −256..63 and Y in the range of −100..99. You can see on the screenshot that the
picture is somewhat shifted to the right part of screen.
That’s because the biggest heart-shaped black hole usually appears on coordi-
nates 0,0 and these are shifted here to right. Could the author just subtract 160
from the value to get X in the range of −160..159? Yes, but the instruction SUB
DX, 160 takes 4 bytes, while DEC DH—2 bytes (which subtracts 0x100 (256)
from DX). So the whole picture is shifted for the cost of another 2 bytes of
saved space.
– Check, if the current point is inside the Mandelbrot set. The algorithm is
the one that has been described here.

– The loop is organized using the LOOP instruction, which uses the CX register
as counter.
The author could set the number of iterations to some specific number, but
he didn’t: 320 is already present in CX (has been set at line 35), and this is
good maximal iteration number anyway. We save here some space by not
the reloading CX register with another value.

– IMUL is used here instead of MUL, because wework with signed values: keep
in mind that the 0,0 coordinates has to be somewhere near the center of
the screen.
It’s the same with SAR (arithmetic shift for signed values): it’s used instead
of SHR.

– Another idea is to simplify the bounds check. We must check a coordinate
pair, i.e., two variables. What the author does is to checks thrice for over-
flow: two squaring operations and one addition.
Indeed, we use 16-bit registers, which hold signed values in the range of
-32768..32767, so if any of the coordinates is greater than 32767 during
the signed multiplication, this point is definitely out of bounds: we jump to
the MandelBreak label.

– There is also a division by 64 (SAR instruction). 64 sets scale.
Try to increase the value and you can get a closer look, or to decrease if
for a more distant look.

• We are at the MandelBreak label, there are two ways of getting here: the loop
ended with CX=0 (the point is inside the Mandelbrot set); or because an over-
flow has happened (CX still holds some value). Now we write the low 8-bit part
of CX (CL) to the video buffer.
The default palette is rough, nevertheless, 0 is black: hence we see black holes
in the places where the points are in the Mandelbrot set. The palette can be
initialized at the program’s start, but keep in mind, this is only a 64 bytes pro-
gram!

• The program runs in an infinite loop, because an additional check where to stop,
or any user interface will result in additional instructions.

Some other optimization tricks:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1159
• The 1-byte CWD is used here for clearing DX instead of the 2-byte XOR DX, DX
or even the 3-byte MOV DX, 0.

• The 1-byte XCHG AX, CX is used instead of the 2-byte MOV AX,CX. The current
value of AX is not needed here anyway.

• DI (position in video buffer) is not initialized, and it is 0xFFFE at the start 50.
That’s OK, because the program works for all DI in the range of 0..0xFFFF eter-
nally, and the user can’t notice that it is started off the screen (the last pixel of
a 320*200 video buffer is at address 0xF9FF). So some work is actually done
off the limits of the screen.
Otherwise, you’ll need an additional instructions to set DI to 0 and check for
the video buffer’s end.

My “fixed” version

Listing 8.26: My “fixed” version
1 org 100h
2 mov al,13h
3 int 10h
4
5 ; set palette
6 mov dx, 3c8h
7 mov al, 0
8 out dx, al
9 mov cx, 100h
10 inc dx
11 l00:
12 mov al, cl
13 shl ax, 2
14 out dx, al ; red
15 out dx, al ; green
16 out dx, al ; blue
17 loop l00
18
19 push 0a000h
20 pop es
21
22 xor di, di
23
24 FillLoop:
25 cwd
26 mov ax,di
27 mov cx,320
28 div cx
29 sub ax,100
30 sub dx,160
31
32 xor bx,bx

50More information about initial register values: https://code.google.com/p/corkami/wiki/
InitialValues#DOS

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://code.google.com/p/corkami/wiki/InitialValues#DOS
https://code.google.com/p/corkami/wiki/InitialValues#DOS
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1160
33 xor si,si
34
35 MandelLoop:
36 mov bp,si
37 imul si,bx
38 add si,si
39 imul bx,bx
40 jo MandelBreak
41 imul bp,bp
42 jo MandelBreak
43 add bx,bp
44 jo MandelBreak
45 sub bx,bp
46 sub bx,bp
47
48 sar bx,6
49 add bx,dx
50 sar si,6
51 add si,ax
52
53 loop MandelLoop
54
55 MandelBreak:
56 xchg ax,cx
57 stosb
58 cmp di, 0FA00h
59 jb FillLoop
60
61 ; wait for keypress
62 xor ax,ax
63 int 16h
64 ; set text video mode
65 mov ax, 3
66 int 10h
67 ; exit
68 int 20h

The author of these lines made an attempt to fix all these oddities: now the palette is
smooth grayscale, the video buffer is at the correct place (lines 19..20), the picture
is drawn on center of the screen (line 30), the program eventually ends and waits
for the user’s keypress (lines 58..68).
But now it’s much bigger: 105 bytes (or 54 instructions) 51.
51You can experiment by yourself: get DosBox and NASM and compile it as: nasm file.asm -fbin -o

file.com

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1161

Figure 8.18: My “fixed” version

See also: a small C program printing Mandelbrot set in ASCII: https://people.sc.
fsu.edu/~jburkardt/c_src/mandelbrot_ascii/mandelbrot_ascii.html
https://miyuki.github.io/2017/10/04/gcc-archaeology-1.html.

8.16 A nasty bug in MSVCRT.DLL
This is the bug that costed me several hours of debugging.
In 2013 I was using MinGW, my C project seems to be very unstable and I saw the
“Invalid parameter passed to C runtime function.” error message in debugger.
The error message was also visible using Sysinternals DebugView. And my project
has no such error messages or strings. So I started to search it in the whole Windows
and found in MSVCRT.DLL file. (Needless to say I was using Windows 7.)
So here it is, the error message in MSVCRT.DLL file supplied with Windows 7:
.text:6FFB69D0 OutputString db 'Invalid parameter passed to C runtime ⤦

Ç function.',0Ah,0
.text:6FFB69D0 ; DATA XREF:

sub_6FFB6930+83

Where it is referenced?

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://people.sc.fsu.edu/~jburkardt/c_src/mandelbrot_ascii/mandelbrot_ascii.html
https://people.sc.fsu.edu/~jburkardt/c_src/mandelbrot_ascii/mandelbrot_ascii.html
https://miyuki.github.io/2017/10/04/gcc-archaeology-1.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1162

.text:6FFB6930 sub_6FFB6930 proc near ;
CODE XREF: _wfindfirst64+203FC

.text:6FFB6930 ; sub_6FF62563+319AD

.text:6FFB6930

.text:6FFB6930 var_2D0 = dword ptr -2D0h

.text:6FFB6930 var_244 = word ptr -244h

.text:6FFB6930 var_240 = word ptr -240h

.text:6FFB6930 var_23C = word ptr -23Ch

.text:6FFB6930 var_238 = word ptr -238h

.text:6FFB6930 var_234 = dword ptr -234h

.text:6FFB6930 var_230 = dword ptr -230h

.text:6FFB6930 var_22C = dword ptr -22Ch

.text:6FFB6930 var_228 = dword ptr -228h

.text:6FFB6930 var_224 = dword ptr -224h

.text:6FFB6930 var_220 = dword ptr -220h

.text:6FFB6930 var_21C = dword ptr -21Ch

.text:6FFB6930 var_218 = dword ptr -218h

.text:6FFB6930 var_214 = word ptr -214h

.text:6FFB6930 var_210 = dword ptr -210h

.text:6FFB6930 var_20C = dword ptr -20Ch

.text:6FFB6930 var_208 = word ptr -208h

.text:6FFB6930 var_4 = dword ptr -4

.text:6FFB6930

.text:6FFB6930 mov edi, edi

.text:6FFB6932 push ebp

.text:6FFB6933 mov ebp, esp

.text:6FFB6935 sub esp, 2D0h

.text:6FFB693B mov eax, ___security_cookie

.text:6FFB6940 xor eax, ebp

.text:6FFB6942 mov [ebp+var_4], eax

.text:6FFB6945 mov [ebp+var_220], eax

.text:6FFB694B mov [ebp+var_224], ecx

.text:6FFB6951 mov [ebp+var_228], edx

.text:6FFB6957 mov [ebp+var_22C], ebx

.text:6FFB695D mov [ebp+var_230], esi

.text:6FFB6963 mov [ebp+var_234], edi

.text:6FFB6969 mov [ebp+var_208], ss

.text:6FFB696F mov [ebp+var_214], cs

.text:6FFB6975 mov [ebp+var_238], ds

.text:6FFB697B mov [ebp+var_23C], es

.text:6FFB6981 mov [ebp+var_240], fs

.text:6FFB6987 mov [ebp+var_244], gs

.text:6FFB698D pushf

.text:6FFB698E pop [ebp+var_210]

.text:6FFB6994 mov eax, [ebp+4]

.text:6FFB6997 mov [ebp+var_218], eax

.text:6FFB699D lea eax, [ebp+4]

.text:6FFB69A0 mov [ebp+var_2D0], 10001h

.text:6FFB69AA mov [ebp+var_20C], eax

.text:6FFB69B0 mov eax, [eax-4]

.text:6FFB69B3 push offset OutputString ; "Invalid
parameter passed to C runtime f"...

.text:6FFB69B8 mov [ebp+var_21C], eax

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1163
.text:6FFB69BE call ds:OutputDebugStringA
.text:6FFB69C4 mov ecx, [ebp+var_4]
.text:6FFB69C7 xor ecx, ebp
.text:6FFB69C9 call @__security_check_cookie@4 ;

__security_check_cookie(x)
.text:6FFB69CE leave
.text:6FFB69CF retn
.text:6FFB69CF sub_6FFB6930 endp

The string it reported into debugger or DebugView utility using the standard OutputDebugStringA()
function. How the sub_6FFB6930 can be called? IDA shows at least 280 references.
Using my tracer, I set a breakpoint at sub_6FFB6930 to see, when it’s called in my
case:
tracer.exe -l:1.exe bpf=msvcrt.dll!0x6FFB6930 -s

...

PID=3560|New process 1.exe
(0) msvcrt.dll!0x6ffb6930() (called from msvcrt.dll!_ftol2_sse_excpt+0⤦

Ç x1b467 (0x759ed222))
Call stack:
return address=0x401010 (1.exe!.text+0x10), arguments in stack: 0x12ff14, 0⤦

Ç x401010, 0x403010("asd"), 0x0, 0x12ff88, 0x4010f8
return address=0x4010f8 (1.exe!OEP+0xe3), arguments in stack: 0x12ff88, 0⤦

Ç x4010f8, 0x1, 0x2e0ea8, 0x2e1640, 0x403000
return address=0x75b6ef3c (KERNEL32.dll!BaseThreadInitThunk+0x12), ⤦

Ç arguments in stack: 0x12ff94, 0x75b6ef3c, 0x7ffdf000, 0x12ffd4, 0⤦
Ç x77523688, 0x7ffdf000

return address=0x77523688 (ntdll.dll!RtlInitializeExceptionChain+0xef), ⤦
Ç arguments in stack: 0x12ffd4, 0x77523688, 0x7ffdf000, 0x74117ec7, 0x0⤦
Ç , 0x0

return address=0x7752365b (ntdll.dll!RtlInitializeExceptionChain+0xc2), ⤦
Ç arguments in stack: 0x12ffec, 0x7752365b, 0x401015, 0x7ffdf000, 0x0, ⤦
Ç 0x0

(0) msvcrt.dll!0x6ffb6930() -> 0x12f94c
PID=3560|Process 1.exe exited. ExitCode=2147483647 (0x7fffffff)

I found that my code was calling stricmp() function with NULL as one argument. In
fact, I made up this example when writing this:
#include <stdio.h>
#include <string.h>

int main()
{

stricmp ("asd", NULL);
};

If this piece of code is compiled using old MinGW or old MSVC 6.0, it is linked against
MSVCRT.DLL file. Which, as of Windows 7, silently sends the “Invalid parameter

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1164
passed to C runtime function.” error message to the debugger and then does noth-
ing!
Let’s see how stricmp() is implemented in MSVCRT.DLL:
.text:6FF5DB38 ; Exported entry 855. _strcmpi
.text:6FF5DB38 ; Exported entry 863. _stricmp
.text:6FF5DB38
.text:6FF5DB38 ; =============== S U B R O U T I N E

=======================================
.text:6FF5DB38
.text:6FF5DB38 ; Attributes: bp-based frame
.text:6FF5DB38
.text:6FF5DB38 ; int __cdecl strcmpi(const char *, const char *)
.text:6FF5DB38 public _strcmpi
.text:6FF5DB38 _strcmpi proc near ; CODE XREF:

LocaleEnumProc-2B
.text:6FF5DB38 ; LocaleEnumProc+5E
.text:6FF5DB38
.text:6FF5DB38 arg_0 = dword ptr 8
.text:6FF5DB38 arg_4 = dword ptr 0Ch
.text:6FF5DB38
.text:6FF5DB38 ; FUNCTION CHUNK AT .text:6FF68CFD SIZE 00000012 BYTES
.text:6FF5DB38 ; FUNCTION CHUNK AT .text:6FF9D20D SIZE 00000022 BYTES
.text:6FF5DB38
.text:6FF5DB38 mov edi, edi ; _strcmpi
.text:6FF5DB3A push ebp
.text:6FF5DB3B mov ebp, esp
.text:6FF5DB3D push esi
.text:6FF5DB3E xor esi, esi
.text:6FF5DB40 cmp dword_6FFF0000, esi
.text:6FF5DB46 jnz loc_6FF68CFD
.text:6FF5DB4C cmp [ebp+arg_0], esi ; is arg_0==NULL?
.text:6FF5DB4F jz loc_6FF9D20D
.text:6FF5DB55 cmp [ebp+arg_4], esi ; is arg_0==NULL?
.text:6FF5DB58 jz loc_6FF9D20D
.text:6FF5DB5E pop esi
.text:6FF5DB5F pop ebp
.text:6FF5DB5F _strcmpi endp ; sp-analysis failed

Actual strings comparison here:
.text:6FF5DB60 sub_6FF5DB60 proc near ; CODE XREF:

_stricmp_l+16C7F
.text:6FF5DB60 ; sub_6FFD19CD+229
.text:6FF5DB60
.text:6FF5DB60 arg_0 = dword ptr 8
.text:6FF5DB60 arg_4 = dword ptr 0Ch
.text:6FF5DB60
.text:6FF5DB60 push ebp
.text:6FF5DB61 mov ebp, esp
.text:6FF5DB63 push edi
.text:6FF5DB64 push esi
.text:6FF5DB65 push ebx
.text:6FF5DB66 mov esi, [ebp+arg_4]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1165
.text:6FF5DB69 mov edi, [ebp+arg_0]
.text:6FF5DB6C mov al, 0FFh
.text:6FF5DB6E mov edi, edi
.text:6FF5DB70
.text:6FF5DB70 loc_6FF5DB70: ; CODE XREF:

sub_6FF5DB60+20
.text:6FF5DB70 ; sub_6FF5DB60+40
.text:6FF5DB70 or al, al
.text:6FF5DB72 jz short loc_6FF5DBA6
.text:6FF5DB74 mov al, [esi]
.text:6FF5DB76 add esi, 1
.text:6FF5DB79 mov ah, [edi]
.text:6FF5DB7B add edi, 1
.text:6FF5DB7E cmp ah, al
.text:6FF5DB80 jz short loc_6FF5DB70
.text:6FF5DB82 sub al, 41h
.text:6FF5DB84 cmp al, 1Ah
.text:6FF5DB86 sbb cl, cl
.text:6FF5DB88 and cl, 20h
.text:6FF5DB8B add al, cl
.text:6FF5DB8D add al, 41h
.text:6FF5DB8F xchg ah, al
.text:6FF5DB91 sub al, 41h
.text:6FF5DB93 cmp al, 1Ah
.text:6FF5DB95 sbb cl, cl
.text:6FF5DB97 and cl, 20h
.text:6FF5DB9A add al, cl
.text:6FF5DB9C add al, 41h
.text:6FF5DB9E cmp al, ah
.text:6FF5DBA0 jz short loc_6FF5DB70
.text:6FF5DBA2 sbb al, al
.text:6FF5DBA4 sbb al, 0FFh
.text:6FF5DBA6
.text:6FF5DBA6 loc_6FF5DBA6: ; CODE XREF:

sub_6FF5DB60+12
.text:6FF5DBA6 movsx eax, al
.text:6FF5DBA9 pop ebx
.text:6FF5DBAA pop esi
.text:6FF5DBAB pop edi
.text:6FF5DBAC leave
.text:6FF5DBAD retn
.text:6FF5DBAD sub_6FF5DB60 endp

.text:6FF68D0C loc_6FF68D0C: ; CODE XREF:
_strcmpi+3F6F2

.text:6FF68D0C pop esi

.text:6FF68D0D pop ebp

.text:6FF68D0E retn

.text:6FF9D20D loc_6FF9D20D: ; CODE XREF:
_strcmpi+17

.text:6FF9D20D ; _strcmpi+20

.text:6FF9D20D call near ptr _errno

.text:6FF9D212 push esi

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1166
.text:6FF9D213 push esi
.text:6FF9D214 push esi
.text:6FF9D215 push esi
.text:6FF9D216 push esi
.text:6FF9D217 mov dword ptr [eax], 16h
.text:6FF9D21D call _invalid_parameter
.text:6FF9D222 add esp, 14h
.text:6FF9D225 mov eax, 7FFFFFFFh
.text:6FF9D22A jmp loc_6FF68D0C

Now the invalid_parameter() function:
.text:6FFB6A06 public _invalid_parameter
.text:6FFB6A06 _invalid_parameter proc near ; CODE XREF:

sub_6FF5B494:loc_6FF5B618
.text:6FFB6A06 ;

sub_6FF5CCFD:loc_6FF5C8A2
.text:6FFB6A06 mov edi, edi
.text:6FFB6A08 push ebp
.text:6FFB6A09 mov ebp, esp
.text:6FFB6A0B pop ebp
.text:6FFB6A0C jmp sub_6FFB6930
.text:6FFB6A0C _invalid_parameter endp

The invalid_parameter() function eventually calls the function with OutputDebugStringA():
8.16 on page 1162.
You see, the stricmp() code is like:
int stricmp(const char *s1, const char *s2, size_t len)
{

if (s1==NULL || s2==NULL)
{

// print error message AND exit:
return 0x7FFFFFFFh;

};
// do comparison

};

How come this error is rare? Because newer MSVC versions links against MSVCR120.DLL
file, etc (where 120 is version number).
Let’s peek inside the newer MSVCR120.DLL from Windows 7:
.text:1002A0D4 public _stricmp_l
.text:1002A0D4 _stricmp_l proc near ; CODE XREF:

_stricmp+18
.text:1002A0D4 ; _mbsicmp_l+47
.text:1002A0D4 ; DATA XREF: ...
.text:1002A0D4
.text:1002A0D4 var_10 = dword ptr -10h
.text:1002A0D4 var_8 = dword ptr -8
.text:1002A0D4 var_4 = byte ptr -4
.text:1002A0D4 arg_0 = dword ptr 8

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1167
.text:1002A0D4 arg_4 = dword ptr 0Ch
.text:1002A0D4 arg_8 = dword ptr 10h
.text:1002A0D4
.text:1002A0D4 ; FUNCTION CHUNK AT .text:1005AA7B SIZE 0000002A BYTES
.text:1002A0D4
.text:1002A0D4 push ebp
.text:1002A0D5 mov ebp, esp
.text:1002A0D7 sub esp, 10h
.text:1002A0DA lea ecx, [ebp+var_10]
.text:1002A0DD push ebx
.text:1002A0DE push esi
.text:1002A0DF push edi
.text:1002A0E0 push [ebp+arg_8]
.text:1002A0E3 call sub_1000F764
.text:1002A0E8 mov edi, [ebp+arg_0] ; arg==NULL?
.text:1002A0EB test edi, edi
.text:1002A0ED jz loc_1005AA7B
.text:1002A0F3 mov ebx, [ebp+arg_4] ; arg==NULL?
.text:1002A0F6 test ebx, ebx
.text:1002A0F8 jz loc_1005AA7B
.text:1002A0FE mov eax, [ebp+var_10]
.text:1002A101 cmp dword ptr [eax+0A8h], 0
.text:1002A108 jz loc_1005AA95
.text:1002A10E sub edi, ebx

...

.text:1005AA7B loc_1005AA7B: ; CODE XREF:
_stricmp_l+19

.text:1005AA7B ; _stricmp_l+24

.text:1005AA7B call _errno

.text:1005AA80 mov dword ptr [eax], 16h

.text:1005AA86 call _invalid_parameter_noinfo

.text:1005AA8B mov esi, 7FFFFFFFh

.text:1005AA90 jmp loc_1002A13B

...

.text:100A4670 _invalid_parameter_noinfo proc near ; CODE XREF:
sub_10013BEC-10F

.text:100A4670 ; sub_10016C0F-10F

.text:100A4670 xor eax, eax

.text:100A4672 push eax

.text:100A4673 push eax

.text:100A4674 push eax

.text:100A4675 push eax

.text:100A4676 push eax

.text:100A4677 call _invalid_parameter

.text:100A467C add esp, 14h

.text:100A467F retn

.text:100A467F _invalid_parameter_noinfo endp

...

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1168
.text:100A4645 _invalid_parameter proc near ; CODE XREF:

_invalid_parameter(ushort const *,ushort const *,ushort const
*,uint,uint)

.text:100A4645 ;
_invalid_parameter_noinfo+7

.text:100A4645

.text:100A4645 arg_0 = dword ptr 8

.text:100A4645 arg_4 = dword ptr 0Ch

.text:100A4645 arg_8 = dword ptr 10h

.text:100A4645 arg_C = dword ptr 14h

.text:100A4645 arg_10 = dword ptr 18h

.text:100A4645

.text:100A4645 push ebp

.text:100A4646 mov ebp, esp

.text:100A4648 push dword_100E0ED8 ; Ptr

.text:100A464E call ds:DecodePointer

.text:100A4654 test eax, eax

.text:100A4656 jz short loc_100A465B

.text:100A4658 pop ebp

.text:100A4659 jmp eax

.text:100A465B ;---

.text:100A465B

.text:100A465B loc_100A465B: ; CODE XREF:
_invalid_parameter+11

.text:100A465B push [ebp+arg_10]

.text:100A465E push [ebp+arg_C]

.text:100A4661 push [ebp+arg_8]

.text:100A4664 push [ebp+arg_4]

.text:100A4667 push [ebp+arg_0]

.text:100A466A call _invoke_watson

.text:100A466F int 3 ; Trap to Debugger

.text:100A466F _invalid_parameter endp

.text:100A469B _invoke_watson proc near ; CODE XREF:
sub_1002CDB0+27068

.text:100A469B ; sub_10029704+2A792

.text:100A469B push 17h ; ProcessorFeature

.text:100A469D call IsProcessorFeaturePresent

.text:100A46A2 test eax, eax

.text:100A46A4 jz short loc_100A46AB

.text:100A46A6 push 5

.text:100A46A8 pop ecx

.text:100A46A9 int 29h ; Win8:
RtlFailFast(ecx)

.text:100A46AB ;---

.text:100A46AB

.text:100A46AB loc_100A46AB: ; CODE XREF:
_invoke_watson+9

.text:100A46AB push esi

.text:100A46AC push 1

.text:100A46AE mov esi, 0C0000417h

.text:100A46B3 push esi

.text:100A46B4 push 2

.text:100A46B6 call sub_100A4519

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1169
.text:100A46BB push esi ; uExitCode
.text:100A46BC call __crtTerminateProcess
.text:100A46C1 add esp, 10h
.text:100A46C4 pop esi
.text:100A46C5 retn
.text:100A46C5 _invoke_watson endp

Now the invalid_parameter() function is rewritten in newer MSVCR*.DLL version,
it shows the message box, if you want to kill the process or call debugger. Of course,
this is much better than silently return. Perhaps, Microsoft forgot to fix MSVCRT.DLL
since then.
But how it was working in the era of Windows XP? It wasn’t: MSVCRT.DLL from Win-
dows XP doesn’t check arguments against NULL. So underWindows XPmy stricmp ("asd", NULL)
code will crash, and this is good.
My hypothesis: Microsoft upgraded MSVCR*.DLL files (including MSVCRT.DLL) for
Windows 7 by adding sanitizing checks everywhere. However, since MSVCRT.DLL
wasn’t used much since MSVS .NET (year 2002), it wasn’t properly tested and the
bug left here. But compilers like MinGW can still use this DLL.
What would I do without my reverse engineering skills?
The MSVCRT.DLL from Windows 8.1 has the same bug.

8.17 Other examples
An example about Z3 and manual decompilation was here. It is moved there: https:
//sat-smt.codes.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://sat-smt.codes
https://sat-smt.codes
https://yurichev.com/contact.html
https://yurichev.com/contact.html

Chapter 9

Examples of reversing
proprietary file formats

9.1 Primitive XOR-encryption
9.1.1 Simplest ever XOR encryption
I once saw a software where all debugging messages has been encrypted using XOR
by value of 3. In other words, two lowest bits of each character has been flipped.
“Hello, world” would become “Kfool/#tlqog”:

Listing 9.1: Python
#!/usr/bin/python

msg="Hello, world!"

print "".join(map(lambda x: chr(ord(x)^3), msg))

This is quite interesting encryption (or rather obfuscation), because it has two im-
portant properties: 1) single function for encryption/decryption, just apply it again;
2) resulting characters are also printable, so the whole string can be used in source
code without escaping characters.
The second property exploits the fact that all printable characters organized in rows:
0x2x-0x7x, and when you flip two lowest bits, character moving 1 or 3 characters
left or right, but never moved to another (maybe non-printable) row:

1170

1171

Figure 9.1: 7-bit ASCII table in Emacs

…with a single exception of 0x7F character.
For example, let’s encrypt characters in A-Z range:
#!/usr/bin/python

msg="@ABCDEFGHIJKLMNO"

print "".join(map(lambda x: chr(ord(x)^3), msg))

Result: CBA@GFEDKJIHONML.
It’s like “@” and “C” characters has been swapped, and so are “B” and “a”.
Yet again, this is interesting example of exploiting XOR properties, rather than en-
cryption: the very same effect of preserving printableness can be achieved while
flipping any of lowest 4 bits, in any combination.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1172
9.1.2 Norton Guide: simplest possible 1-byte XOR encryption
Norton Guide was popular in the epoch of MS-DOS, it was a resident program that
worked as a hypertext reference manual.
Norton Guide’s databases are files with the extension .ng, the contents of which look
encrypted:

Figure 9.2: Very typical look

Why did we think that it’s encrypted but not compressed?
We see that the 0x1A byte (looking like “→”) occurs often, it would not be possible
in a compressed file.
We also see long parts that consist only of Latin letters, and they look like strings in
an unknown language.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1173
Since the 0x1A byte occurs so often, we can try to decrypt the file, assuming that
it’s encrypted by the simplest XOR-encryption.
If we apply XOR with the 0x1A constant to each byte in Hiew, we can see familiar
English text strings:

Figure 9.3: Hiew XORing with 0x1A

XOR encryption with one single constant byte is the simplest possible encryption
method, which is, nevertheless, encountered sometimes.
Now we understand why the 0x1A byte is occurring so often: because there are so
many zero bytes and they were replaced by 0x1A in encrypted form.
But the constant might be different. In this case, we could try every constant in the
0..255 range and look for something familiar in the decrypted file. 256 is not so
much.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1174
More about Norton Guide’s file format: http://www.davep.org/norton-guides/
file-format/.

Entropy

A very important property of such primitive encryption systems is that the informa-
tion entropy of the encrypted/decrypted block is the same.
Here is my analysis in Wolfram Mathematica 10.

Listing 9.2: Wolfram Mathematica 10
In[1]:= input = BinaryReadList["X86.NG"];

In[2]:= Entropy[2, input] // N
Out[2]= 5.62724

In[3]:= decrypted = Map[BitXor[#, 16^^1A] &, input];

In[4]:= Export["X86_decrypted.NG", decrypted, "Binary"];

In[5]:= Entropy[2, decrypted] // N
Out[5]= 5.62724

In[6]:= Entropy[2, ExampleData[{"Text", "ShakespearesSonnets"}]] // N
Out[6]= 4.42366

What we do here is load the file, get its entropy, decrypt it, save it and get the
entropy again (the same!).
Mathematica also offers some well-known English language texts for analysis.
So we also get the entropy of Shakespeare’s sonnets, and it is close to the entropy
of the file we just analyzed.
The file we analyzed consists of English language sentences, which are close to the
language of Shakespeare.
And the XOR-ed bitwise English language text has the same entropy.
However, this is not true when the file is XOR-ed with a pattern larger than one byte.
The file we analyzed can be downloaded here: http://beginners.re/examples/
norton_guide/X86.NG.

One more word about base of entropy

Wolfram Mathematica calculates entropy with base of e (base of the natural loga-
rithm), and the UNIX ent utility1uses base 2.
So we set base 2 explicitly in Entropy command, so Mathematica will give us the
same results as the ent utility.

1http://www.fourmilab.ch/random/

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.davep.org/norton-guides/file-format/
http://www.davep.org/norton-guides/file-format/
http://beginners.re/examples/norton_guide/X86.NG
http://beginners.re/examples/norton_guide/X86.NG
http://www.fourmilab.ch/random/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1175
9.1.3 Simplest possible 4-byte XOR encryption
If a longer pattern was used for XOR-encryption, for example a 4 byte pattern, it’s
easy to spot as well.
For example, here is the beginning of the kernel32.dll file (32-bit version from Win-
dows Server 2008):

Figure 9.4: Original file

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1176
Here it is “encrypted” with a 4-byte key:

Figure 9.5: “Encrypted” file

It’s very easy to spot the recurring 4 symbols.
Indeed, the header of a PE-file has a lot of long zero areas, which are the reason for
the key to become visible.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1177
Here is the beginning of a PE-header in hexadecimal form:

Figure 9.6: PE-header

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1178
Here it is “encrypted”:

Figure 9.7: “Encrypted” PE-header

It’s easy to spot that the key is the following 4 bytes: 8C 61 D2 63.
With this information, it’s easy to decrypt the whole file.
So it is important to keep in mind these properties of PE-files: 1) PE-header has many
zero-filled areas; 2) all PE-sections are padded with zeros at a page boundary (4096
bytes), so long zero areas are usually present after each section.
Some other file formats may contain long zero areas.
It’s typical for files used by scientific and engineering software.
For those who want to inspect these files on their own, they are downloadable here:
http://beginners.re/examples/XOR_4byte/.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://beginners.re/examples/XOR_4byte/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1179
Exercise

• http://challenges.re/50

9.1.4 Simple encryption using XOR mask
I’ve found an old interactive fiction game while diving deep into if-archive2:
The New Castle v3.5 - Text/Adventure Game
in the style of the original Infocom (tm)
type games, Zork, Collosal Cave (Adventure),
etc. Can you solve the mystery of the
abandoned castle?
Shareware from Software Customization.
Software Customization [ASP] Version 3.5 Feb. 2000

It’s downloadable here: https://beginners.re/paywall/RE4B-source/current-tree/
/ff/XOR/mask_1/files/newcastle.tgz.
There is a file inside (named castle.dbf) which is clearly encrypted, but not by a real
crypto algorithm, nor it’s compressed, this is something rather simpler. I wouldn’t
even measure entropy level (9.2 on page 1195) of the file, because I’m sure it’s low.
Here is how it looks like in Midnight Commander:

Figure 9.8: Encrypted file in Midnight Commander

The encrypted file can be downloaded here: https://beginners.re/paywall/RE4B-source/
current-tree//ff/XOR/mask_1/files/castle.dbf.bz2.

2http://www.ifarchive.org/

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://challenges.re/50
https://beginners.re/paywall/RE4B-source/current-tree//ff/XOR/mask_1/files/newcastle.tgz
https://beginners.re/paywall/RE4B-source/current-tree//ff/XOR/mask_1/files/newcastle.tgz
https://beginners.re/paywall/RE4B-source/current-tree//ff/XOR/mask_1/files/castle.dbf.bz2
https://beginners.re/paywall/RE4B-source/current-tree//ff/XOR/mask_1/files/castle.dbf.bz2
http://www.ifarchive.org/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1180
Will it be possible to decrypt it without accessing to the program, using just this file?
There is a clearly visible pattern of repeating string. If a simple encryption by XOR
mask was applied, such repeating strings is a prominent signature, because, prob-
ably, there were a long lacunas3 of zero bytes, which, in turn, are present in many
executable files as well as in binary data files.
Here I’ll dump the file’s beginning using xxd UNIX utility:
...

0000030: 09 61 0d 63 0f 77 14 69 75 62 67 76 01 7e 1d 61 .a.c.w.iubgv.~.a
0000040: 7a 11 0f 72 6e 03 05 7d 7d 63 7e 77 66 1e 7a 02 z..rn..}}c~wf.z.
0000050: 75 50 02 4a 31 71 31 33 5c 27 08 5c 51 74 3e 39 uP.J1q13\'.\Qt>9
0000060: 50 2e 28 72 24 4b 38 21 4c 09 37 38 3b 51 41 2d P.(r$K8!L.78;QA-
0000070: 1c 3c 37 5d 27 5a 1c 7c 6a 10 14 68 77 08 6d 1a .<7]'Z.|j..hw.m.

0000080: 6a 09 61 0d 63 0f 77 14 69 75 62 67 76 01 7e 1d j.a.c.w.iubgv.~.
0000090: 61 7a 11 0f 72 6e 03 05 7d 7d 63 7e 77 66 1e 7a az..rn..}}c~wf.z
00000a0: 02 75 50 64 02 74 71 66 76 19 63 08 13 17 74 7d .uPd.tqfv.c...t}
00000b0: 6b 19 63 6d 72 66 0e 79 73 1f 09 75 71 6f 05 04 k.cmrf.ys..uqo..
00000c0: 7f 1c 7a 65 08 6e 0e 12 7c 6a 10 14 68 77 08 6d ..ze.n..|j..hw.m

00000d0: 1a 6a 09 61 0d 63 0f 77 14 69 75 62 67 76 01 7e .j.a.c.w.iubgv.~
00000e0: 1d 61 7a 11 0f 72 6e 03 05 7d 7d 63 7e 77 66 1e .az..rn..}}c~wf.
00000f0: 7a 02 75 50 01 4a 3b 71 2d 38 56 34 5b 13 40 3c z.uP.J;q-8V4[.@<
0000100: 3c 3f 19 26 3b 3b 2a 0e 35 26 4d 42 26 71 26 4b <?.&;;*.5&MB&q&K
0000110: 04 2b 54 3f 65 40 2b 4f 40 28 39 10 5b 2e 77 45 .+T?e@+O@(9.[.wE

0000120: 28 54 75 09 61 0d 63 0f 77 14 69 75 62 67 76 01 (Tu.a.c.w.iubgv.
0000130: 7e 1d 61 7a 11 0f 72 6e 03 05 7d 7d 63 7e 77 66 ~.az..rn..}}c~wf
0000140: 1e 7a 02 75 50 02 4a 31 71 15 3e 58 27 47 44 17 .z.uP.J1q.>X'GD.
0000150: 3f 33 24 4e 30 6c 72 66 0e 79 73 1f 09 75 71 6f ?3$N0lrf.ys..uqo
0000160: 05 04 7f 1c 7a 65 08 6e 0e 12 7c 6a 10 14 68 77ze.n..|j..hw

...

Let’s stick at visible repeating iubgv string. By looking at this dump, we can clearly
see that the period of the string occurrence is 0x51 or 81. Probably, 81 is size of
block? The size of the file is 1658961, and it can be divided evenly by 81 (and there
are 20481 blocks then).
Now I’ll use Mathematica to analyze, are there repeating 81-byte blocks in the file?
I’ll split input file by 81-byte blocks and then I’ll use Tally[]4 function which just counts,
how many times some item has been occurred in the input list. Tally’s output is not
sorted, so I also add Sort[] function to sort it by number of occurrences in descending
order.
input = BinaryReadList["/home/dennis/.../castle.dbf"];

blocks = Partition[input, 81];

3As in https://en.wikipedia.org/wiki/Lacuna_(manuscripts)
4https://reference.wolfram.com/language/ref/Tally.html

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://en.wikipedia.org/wiki/Lacuna_(manuscripts)
https://reference.wolfram.com/language/ref/Tally.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1181

stat = Sort[Tally[blocks], #1[[2]] > #2[[2]] &]

And here is output:
{{{80, 103, 2, 116, 113, 102, 118, 25, 99, 8, 19, 23, 116, 125, 107,

25, 99, 109, 114, 102, 14, 121, 115, 31, 9, 117, 113, 111, 5, 4,
127, 28, 122, 101, 8, 110, 14, 18, 124, 106, 16, 20, 104, 119, 8,
109, 26, 106, 9, 97, 13, 99, 15, 119, 20, 105, 117, 98, 103, 118,
1, 126, 29, 97, 122, 17, 15, 114, 110, 3, 5, 125, 125, 99, 126,
119, 102, 30, 122, 2, 117}, 1739},

{{80, 100, 2, 116, 113, 102, 118, 25, 99, 8, 19, 23, 116,
125, 107, 25, 99, 109, 114, 102, 14, 121, 115, 31, 9, 117, 113,
111, 5, 4, 127, 28, 122, 101, 8, 110, 14, 18, 124, 106, 16, 20,
104, 119, 8, 109, 26, 106, 9, 97, 13, 99, 15, 119, 20, 105, 117,
98, 103, 118, 1, 126, 29, 97, 122, 17, 15, 114, 110, 3, 5, 125,
125, 99, 126, 119, 102, 30, 122, 2, 117}, 1422},

{{80, 101, 2, 116, 113, 102, 118, 25, 99, 8, 19, 23, 116,
125, 107, 25, 99, 109, 114, 102, 14, 121, 115, 31, 9, 117, 113,
111, 5, 4, 127, 28, 122, 101, 8, 110, 14, 18, 124, 106, 16, 20,
104, 119, 8, 109, 26, 106, 9, 97, 13, 99, 15, 119, 20, 105, 117,
98, 103, 118, 1, 126, 29, 97, 122, 17, 15, 114, 110, 3, 5, 125,
125, 99, 126, 119, 102, 30, 122, 2, 117}, 1012},

{{80, 120, 2, 116, 113, 102, 118, 25, 99, 8, 19, 23, 116,
125, 107, 25, 99, 109, 114, 102, 14, 121, 115, 31, 9, 117, 113,
111, 5, 4, 127, 28, 122, 101, 8, 110, 14, 18, 124, 106, 16, 20,
104, 119, 8, 109, 26, 106, 9, 97, 13, 99, 15, 119, 20, 105, 117,
98, 103, 118, 1, 126, 29, 97, 122, 17, 15, 114, 110, 3, 5, 125,
125, 99, 126, 119, 102, 30, 122, 2, 117}, 377},

...

{{80, 2, 74, 49, 113, 21, 62, 88, 39, 71, 68, 23, 63, 51, 36, 78, 48,
108, 114, 102, 14, 121, 115, 31, 9, 117, 113, 111, 5, 4, 127, 28,
122, 101, 8, 110, 14, 18, 124, 106, 16, 20, 104, 119, 8, 109, 26,
106, 9, 97, 13, 99, 15, 119, 20, 105, 117, 98, 103, 118, 1, 126,
29, 97, 122, 17, 15, 114, 110, 3, 5, 125, 125, 99, 126, 119, 102,
30, 122, 2, 117}, 1},

{{80, 1, 74, 59, 113, 45, 56, 86, 52, 91, 19, 64, 60, 60, 63,
25, 38, 59, 59, 42, 14, 53, 38, 77, 66, 38, 113, 38, 75, 4, 43, 84,
63, 101, 64, 43, 79, 64, 40, 57, 16, 91, 46, 119, 69, 40, 84, 117,
9, 97, 13, 99, 15, 119, 20, 105, 117, 98, 103, 118, 1, 126, 29,
97, 122, 17, 15, 114, 110, 3, 5, 125, 125, 99, 126, 119, 102, 30,
122, 2, 117}, 1},

{{80, 2, 74, 49, 113, 49, 51, 92, 39, 8, 92, 81, 116, 62, 57,
80, 46, 40, 114, 36, 75, 56, 33, 76, 9, 55, 56, 59, 81, 65, 45, 28,
60, 55, 93, 39, 90, 28, 124, 106, 16, 20, 104, 119, 8, 109, 26,
106, 9, 97, 13, 99, 15, 119, 20, 105, 117, 98, 103, 118, 1, 126,
29, 97, 122, 17, 15, 114, 110, 3, 5, 125, 125, 99, 126, 119, 102,
30, 122, 2, 117}, 1}}

Tally’s output is a list of pairs, each pair has 81-byte block and number of times it
has been occurred in the file. We see that the most frequent block is the first, it has

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1182
been occurred 1739 times. The second one has been occurred 1422 times. There
are others: 1012 times, 377 times, etc. 81-byte blocks which has been occurred just
once are at the end of output.
Let’s try to compare these blocks. The first and the second. Is there a function
in Mathematica which compares lists/arrays? Certainly is, but for educational pur-
poses, I’ll use XOR operation for comparison. Indeed: if bytes in two input arrays are
identical, XOR result is 0. If they are non-equal, result will be non-zero.
Let’s compare first block (occurred 1739 times) and the second (occurred 1422
times):
In[]:= BitXor[stat[[1]][[1]], stat[[2]][[1]]]
Out[]= {0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, \
0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

They are differ only in the second byte.
Let’s compare the second block (occurred 1422 times) and the third (occurred 1012
times):
In[]:= BitXor[stat[[2]][[1]], stat[[3]][[1]]]
Out[]= {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, \
0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

They are also differ only in the second byte.
Anyway, let’s try to use the most occurred block as a XOR key and try to decrypt
four first 81-byte blocks in the file:
In[]:= key = stat[[1]][[1]]
Out[]= {80, 103, 2, 116, 113, 102, 118, 25, 99, 8, 19, 23, 116, \
125, 107, 25, 99, 109, 114, 102, 14, 121, 115, 31, 9, 117, 113, 111, \
5, 4, 127, 28, 122, 101, 8, 110, 14, 18, 124, 106, 16, 20, 104, 119, \
8, 109, 26, 106, 9, 97, 13, 99, 15, 119, 20, 105, 117, 98, 103, 118, \
1, 126, 29, 97, 122, 17, 15, 114, 110, 3, 5, 125, 125, 99, 126, 119, \
102, 30, 122, 2, 117}

In[]:= ToASCII[val_] := If[val == 0, " ", FromCharacterCode[val, "⤦
Ç PrintableASCII"]]

In[]:= DecryptBlockASCII[blk_] := Map[ToASCII[#] &, BitXor[key, blk]]

In[]:= DecryptBlockASCII[blocks[[1]]]
Out[]= {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " \
", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " \
", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " \
", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " \
", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " \
", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " "}

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1183
In[]:= DecryptBlockASCII[blocks[[2]]]
Out[]= {" ", "e", "H", "E", " ", "W", "E", "E", "D", " ", "O", \
"F", " ", "C", "R", "I", "M", "E", " ", "B", "E", "A", "R", "S", " ", \
"B", "I", "T", "T", "E", "R", " ", "F", "R", "U", "I", "T", "?", \
" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", \
" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", \
" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", \
" "}

In[]:= DecryptBlockASCII[blocks[[3]]]
Out[]= {" ", "?", " ", " ", " ", " ", " ", " ", " ", " ", " \
", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " \
", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " \
", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " \
", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " \
", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " \
"}

In[]:= DecryptBlockASCII[blocks[[4]]]
Out[]= {" ", "f", "H", "O", " ", "K", "N", "O", "W", "S", " ", \
"W", "H", "A", "T", " ", "E", "V", "I", "L", " ", "L", "U", "R", "K", \
"S", " ", "I", "N", " ", "T", "H", "E", " ", "H", "E", "A", "R", "T", \
"S", " ", "O", "F", " ", "M", "E", "N", "?", " ", " ", " ", " ", \
" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", \
" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", " ", \
" "}

(I’ve replaced unprintable characters by “?”.)
So we see that the first and the third blocks are empty (or almost empty), but the
second and the fourth has clearly visible English language words/phrases. It seems
that our assumption about key is correct (at least partially). This means that the
most occurred 81-byte block in the file can be found at places of lacunas of zero
bytes or something like that.
Let’s try to decrypt the whole file:
DecryptBlock[blk_] := BitXor[key, blk]

decrypted = Map[DecryptBlock[#] &, blocks];

BinaryWrite["/home/dennis/.../tmp", Flatten[decrypted]]

Close["/home/dennis/.../tmp"]

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1184

Figure 9.9: Decrypted file in Midnight Commander, 1st attempt

Looks like some kind of English phrases from some game, but something wrong.
First of all, cases are inverted: phrases and some words are started with lowercase
characters, while other characters are in upper case. Also, some phrases started
with wrong letters. Take a look at the very first phrase: “eHE WEED OF CRIME BEARS
BITTER FRUIT”. What is “eHE”? Isn’t “tHE” have to be here? Is it possible that our
decryption key has wrong byte at this place?
Let’s look again at the second block in the file, at key and at decryption result:
In[]:= blocks[[2]]
Out[]= {80, 2, 74, 49, 113, 49, 51, 92, 39, 8, 92, 81, 116, 62, \
57, 80, 46, 40, 114, 36, 75, 56, 33, 76, 9, 55, 56, 59, 81, 65, 45, \
28, 60, 55, 93, 39, 90, 28, 124, 106, 16, 20, 104, 119, 8, 109, 26, \
106, 9, 97, 13, 99, 15, 119, 20, 105, 117, 98, 103, 118, 1, 126, 29, \
97, 122, 17, 15, 114, 110, 3, 5, 125, 125, 99, 126, 119, 102, 30, \
122, 2, 117}

In[]:= key
Out[]= {80, 103, 2, 116, 113, 102, 118, 25, 99, 8, 19, 23, 116, \
125, 107, 25, 99, 109, 114, 102, 14, 121, 115, 31, 9, 117, 113, 111, \
5, 4, 127, 28, 122, 101, 8, 110, 14, 18, 124, 106, 16, 20, 104, 119, \
8, 109, 26, 106, 9, 97, 13, 99, 15, 119, 20, 105, 117, 98, 103, 118, \

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1185
1, 126, 29, 97, 122, 17, 15, 114, 110, 3, 5, 125, 125, 99, 126, 119, \
102, 30, 122, 2, 117}

In[]:= BitXor[key, blocks[[2]]]
Out[]= {0, 101, 72, 69, 0, 87, 69, 69, 68, 0, 79, 70, 0, 67, 82, \
73, 77, 69, 0, 66, 69, 65, 82, 83, 0, 66, 73, 84, 84, 69, 82, 0, 70, \
82, 85, 73, 84, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, \
0, 0, 0, 0}

Encrypted byte is 2, the byte from the key is 103, 2⊕ 103 = 101 and 101 is ASCII code
for “e” character. What byte of a key must be equal to, so the resulting ASCII code
will be 116 (for “t” character)? 2⊕ 116 = 118, let’s put 118 in key at the second byte
…
key = {80, 118, 2, 116, 113, 102, 118, 25, 99, 8, 19, 23, 116, 125,

107, 25, 99, 109, 114, 102, 14, 121, 115, 31, 9, 117, 113, 111, 5,
4, 127, 28, 122, 101, 8, 110, 14, 18, 124, 106, 16, 20, 104, 119, 8,
109, 26, 106, 9, 97, 13, 99, 15, 119, 20, 105, 117, 98, 103, 118,
1, 126, 29, 97, 122, 17, 15, 114, 110, 3, 5, 125, 125, 99, 126, 119,
102, 30, 122, 2, 117}

…and decrypt the whole file again.

Figure 9.10: Decrypted file in Midnight Commander, 2nd attempt

Wow, now the grammar is correct, all phrases started with correct letters. But still,

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1186
case inversion is suspicious. Why would game’s developer write them in such a
manner? Maybe our key is still incorrect?
While observing ASCII table we can notice that uppercase and lowercase letter’s
ASCII codes are differ in just one bit (6th bit starting at 1st, 0b100000):

Figure 9.11: 7-bit ASCII table in Emacs

6th bit set in a zero byte has decimal form of 32. But 32 is ASCII code for space!
Indeed, one can switch case just by XOR-ing ASCII character code with 32 (more
about it: 3.19.3 on page 674).
It is possible that the empty lacunas in the file are not zero bytes, but rather spaces?
Let’s modify XOR key one more time (I’ll XOR each byte of key by 32):
(* "32" is scalar and "key" is vector, but that's OK *)

In[]:= key3 = BitXor[32, key]
Out[]= {112, 86, 34, 84, 81, 70, 86, 57, 67, 40, 51, 55, 84, 93, 75, \
57, 67, 77, 82, 70, 46, 89, 83, 63, 41, 85, 81, 79, 37, 36, 95, 60, \
90, 69, 40, 78, 46, 50, 92, 74, 48, 52, 72, 87, 40, 77, 58, 74, 41, \
65, 45, 67, 47, 87, 52, 73, 85, 66, 71, 86, 33, 94, 61, 65, 90, 49, \
47, 82, 78, 35, 37, 93, 93, 67, 94, 87, 70, 62, 90, 34, 85}

In[]:= DecryptBlock[blk_] := BitXor[key3, blk]

Let’s decrypt the input file again:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1187

Figure 9.12: Decrypted file in Midnight Commander, final attempt

(Decrypted file is available here: https://beginners.re/paywall/RE4B-source/
current-tree//ff/XOR/mask_1/files/decrypted.dat.bz2.)
This is undoubtedly a correct source file. Oh, and we see numbers at the start of each
block. It has to be a source of our erroneous XOR key. As it seems, the most occurred
81-byte block in the file is a block filled with spaces and containing “1” character
at the place of second byte. Indeed, somehow, many blocks here are interleaved
with this one. Maybe it’s some kind of padding for short phrases/messages? Other
frequently occurred 81-byte blocks are also space-filled blocks, but with different
digit, hence, they are differ only at the second byte.
That’s all! Now we can write an utility to encrypt the file back, and maybe modify it
before.
Mathematica notebook file is downloadable here:
https://beginners.re/paywall/RE4B-source/current-tree//ff/XOR/mask_1/files/
XOR_mask_1.nb.
Summary: XOR encryption like that is not robust at all. It has been intended by
game’s developer(s), probably, just to prevent gamer(s) to peek into internals of
game, nothing else more serious. Still, encryption like that is extremely popular due
to its simplicity and many reverse engineers are usually familiar with it.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//ff/XOR/mask_1/files/decrypted.dat.bz2
https://beginners.re/paywall/RE4B-source/current-tree//ff/XOR/mask_1/files/decrypted.dat.bz2
https://beginners.re/paywall/RE4B-source/current-tree//ff/XOR/mask_1/files/XOR_mask_1.nb
https://beginners.re/paywall/RE4B-source/current-tree//ff/XOR/mask_1/files/XOR_mask_1.nb
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1188
9.1.5 Simple encryption using XOR mask, case II
I’ve got another encrypted file, which is clearly encrypted by something simple, like
XOR-ing:

Figure 9.13: Encrypted file in Midnight Commander

The encrypted file can be downloaded here.
ent Linux utility reports about ~7.5 bits per byte, and this is high level of entropy
(9.2 on page 1195), close to compressed or properly encrypted file. But still, we
clearly see some pattern, there are some blocks with size of 17 bytes, and you can
see some kind of ladder, shifting by 1 byte at each 16-byte line.
It’s also known that the plain text is just English language text.
Now let’s assume that this piece of text is encrypted by simple XOR-ing with 17-byte
key.
I tried to find some repeating 17-byte blocks using Mathematica, like I did before in
my previous example (9.1.4 on page 1179):

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//ff/XOR/mask_2/files/cipher.txt
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1189
Listing 9.3: Mathematica

In[]:=input = BinaryReadList["/home/dennis/tmp/cipher.txt"];

In[]:=blocks = Partition[input, 17];

In[]:=Sort[Tally[blocks], #1[[2]] > #2[[2]] &]

Out[]:={{{248,128,88,63,58,175,159,154,232,226,161,50,97,127,3,217,80},1},
{{226,207,67,60,42,226,219,150,246,163,166,56,97,101,18,144,82},1},
{{228,128,79,49,59,250,137,154,165,236,169,118,53,122,31,217,65},1},
{{252,217,1,39,39,238,143,223,241,235,170,91,75,119,2,152,82},1},
{{244,204,88,112,59,234,151,147,165,238,170,118,49,126,27,144,95},1},
{{241,196,78,112,54,224,142,223,242,236,186,58,37,50,17,144,95},1},
{{176,201,71,112,56,230,143,151,234,246,187,118,44,125,8,156,17},1},
...
{{255,206,82,112,56,231,158,145,165,235,170,118,54,115,9,217,68},1},
{{249,206,71,34,42,254,142,154,235,247,239,57,34,113,27,138,88},1},
{{157,170,84,32,32,225,219,139,237,236,188,51,97,124,21,141,17},1},
{{248,197,1,61,32,253,149,150,235,228,188,122,97,97,27,143,84},1},
{{252,217,1,38,42,253,130,223,233,226,187,51,97,123,20,217,69},1},
{{245,211,13,112,56,231,148,223,242,226,188,118,52,97,15,152,93},1},
{{221,210,15,112,28,231,158,141,233,236,172,61,97,90,21,149,92},1}}

No luck, each 17-byte block is unique within the file and occurred only once. Perhaps,
there are no 17-byte zero lacunas, or lacunas containing only spaces. It is possible
indeed: such long space indentation and padding may be absent in tightly typeset
text.
The first idea is to try all possible 17-byte keys and find those, which will result in
readable text after decryption. Bruteforce is not an option, because there are 25617

possible keys (~1040), that’s too much. But there are good news: who said we have
to test 17-byte key as a whole, why can’t we test each byte of key separately? It is
possible indeed.
Now the algorithm is:
• try all 256 bytes for 1st byte of key;
• decrypt 1st byte of each 17-byte blocks in the file;
• are all decrypted bytes we got are printable? keep tabs on it;
• do so for all 17 bytes of key.

I’ve written the following Python script to check this idea:

Listing 9.4: Python script
each_Nth_byte=[""]*KEY_LEN

content=read_file(sys.argv[1])
split input by 17-byte chunks:
all_chunks=chunks(content, KEY_LEN)
for c in all_chunks:

for i in range(KEY_LEN):

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1190
each_Nth_byte[i]=each_Nth_byte[i] + c[i]

try each byte of key
for N in range(KEY_LEN):

print "N=", N
possible_keys=[]
for i in range(256):

tmp_key=chr(i)*len(each_Nth_byte[N])
tmp=xor_strings(tmp_key,each_Nth_byte[N])
are all characters in tmp[] are printable?
if is_string_printable(tmp)==False:

continue
possible_keys.append(i)

print possible_keys, "len=", len(possible_keys)

(Full version of the source code is here.)
Here is its output:
N= 0
[144, 145, 151] len= 3
N= 1
[160, 161] len= 2
N= 2
[32, 33, 38] len= 3
N= 3
[80, 81, 87] len= 3
N= 4
[78, 79] len= 2
N= 5
[142, 143] len= 2
N= 6
[250, 251] len= 2
N= 7
[254, 255] len= 2
N= 8
[130, 132, 133] len= 3
N= 9
[130, 131] len= 2
N= 10
[206, 207] len= 2
N= 11
[81, 86, 87] len= 3
N= 12
[64, 65] len= 2
N= 13
[18, 19] len= 2
N= 14
[122, 123] len= 2
N= 15
[248, 249] len= 2
N= 16
[48, 49] len= 2

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//ff/XOR/mask_2/files/decrypt2.py
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1191
So there are 2 or 3 possible bytes for each byte of 17-byte key. This is much better
than 256 possible bytes for each byte, but still too much. There are up to 1 million
of possible keys:

Listing 9.5: Mathematica
In[]:= 3*2*3*3*2*2*2*2*3*2*2*3*2*2*2*2*2
Out[]= 995328

It’s possible to check all of them, but then we must check visually, if the decrypted
text is looks like English language text.
Let’s also take into consideration the fact that we deal with 1) natural language;
2) English language. Natural languages has some prominent statistical features.
First of all, punctuation and word lengths. What is average word length in English
language? Let’s just count spaces in some well-known English language texts using
Mathematica.
Here is “The Complete Works of William Shakespeare” text file from Gutenberg Li-
brary:

Listing 9.6: Mathematica
In[]:= input = BinaryReadList["/home/dennis/tmp/pg100.txt"];

In[]:= Tally[input]
Out[]= {{239, 1}, {187, 1}, {191, 1}, {84, 39878}, {104,

218875}, {101, 406157}, {32, 1285884}, {80, 12038}, {114,
209907}, {111, 282560}, {106, 2788}, {99, 67194}, {116,
291243}, {71, 11261}, {117, 115225}, {110, 216805}, {98,
46768}, {103, 57328}, {69, 42703}, {66, 15450}, {107, 29345}, {102,
69103}, {67, 21526}, {109, 95890}, {112, 46849}, {108, 146532}, {87,
16508}, {115, 215605}, {105, 199130}, {97, 245509}, {83,
34082}, {44, 83315}, {121, 85549}, {13, 124787}, {10, 124787}, {119,
73155}, {100, 134216}, {118, 34077}, {46, 78216}, {89, 9128}, {45,
8150}, {76, 23919}, {42, 73}, {79, 33268}, {82, 29040}, {73,
55893}, {72, 18486}, {68, 15726}, {58, 1843}, {65, 44560}, {49,
982}, {50, 373}, {48, 325}, {91, 2076}, {35, 3}, {93, 2068}, {74,
2071}, {57, 966}, {52, 107}, {70, 11770}, {85, 14169}, {78,
27393}, {75, 6206}, {77, 15887}, {120, 4681}, {33, 8840}, {60,
468}, {86, 3587}, {51, 343}, {88, 608}, {40, 643}, {41, 644}, {62,
440}, {39, 31077}, {34, 488}, {59, 17199}, {126, 1}, {95, 71}, {113,
2414}, {81, 1179}, {63, 10476}, {47, 48}, {55, 45}, {54, 73}, {64,
3}, {53, 94}, {56, 47}, {122, 1098}, {90, 532}, {124, 33}, {38,
21}, {96, 1}, {125, 2}, {37, 1}, {36, 2}}

In[]:= Length[input]/1285884 // N
Out[]= 4.34712

There are 1285884 spaces in the whole file, and the frequency of space occurrence
is 1 space per ~4.3 characters.
Now here is Alice’s Adventures in Wonderland, by Lewis Carroll from the same library:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.gutenberg.org/cache/epub/100/pg100.txt
http://www.gutenberg.org/ebooks/11
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1192
Listing 9.7: Mathematica

In[]:= input = BinaryReadList["/home/dennis/tmp/pg11.txt"];

In[]:= Tally[input]
Out[]= {{239, 1}, {187, 1}, {191, 1}, {80, 172}, {114, 6398}, {111,

9243}, {106, 222}, {101, 15082}, {99, 2815}, {116, 11629}, {32,
27964}, {71, 193}, {117, 3867}, {110, 7869}, {98, 1621}, {103,
2750}, {39, 2885}, {115, 6980}, {65, 721}, {108, 5053}, {105,
7802}, {100, 5227}, {118, 911}, {87, 256}, {97, 9081}, {44,
2566}, {121, 2442}, {76, 158}, {119, 2696}, {67, 185}, {13,
3735}, {10, 3735}, {84, 571}, {104, 7580}, {66, 125}, {107,
1202}, {102, 2248}, {109, 2245}, {46, 1206}, {89, 142}, {112,
1796}, {45, 744}, {58, 255}, {68, 242}, {74, 13}, {50, 12}, {53,
13}, {48, 22}, {56, 10}, {91, 4}, {69, 313}, {35, 1}, {49, 68}, {93,
4}, {82, 212}, {77, 222}, {57, 11}, {52, 10}, {42, 88}, {83,
288}, {79, 234}, {70, 134}, {72, 309}, {73, 831}, {85, 111}, {78,
182}, {75, 88}, {86, 52}, {51, 13}, {63, 202}, {40, 76}, {41,
76}, {59, 194}, {33, 451}, {113, 135}, {120, 170}, {90, 1}, {122,
79}, {34, 135}, {95, 4}, {81, 85}, {88, 6}, {47, 24}, {55, 6}, {54,
7}, {37, 1}, {64, 2}, {36, 2}}

In[]:= Length[input]/27964 // N
Out[]= 5.99049

The result is different probably because of different formatting of these texts (maybe
indentation and/or padding).
OK, so let’s assume the average frequency of space in English language is 1 space
per 4..7 characters.
Now the good news again: we canmeasure frequency of spaces while decrypting our
file gradually. Now I count spaces in each slice and throw away 1-byte keys which
produce results with too small number of spaces (or too large, but this is almost
impossible given so short key):

Listing 9.8: Python script
each_Nth_byte=[""]*KEY_LEN

content=read_file(sys.argv[1])
split input by 17-byte chunks:
all_chunks=chunks(content, KEY_LEN)
for c in all_chunks:

for i in range(KEY_LEN):
each_Nth_byte[i]=each_Nth_byte[i] + c[i]

try each byte of key
for N in range(KEY_LEN):

print "N=", N
possible_keys=[]
for i in range(256):

tmp_key=chr(i)*len(each_Nth_byte[N])
tmp=xor_strings(tmp_key,each_Nth_byte[N])
are all characters in tmp[] are printable?

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1193
if is_string_printable(tmp)==False:

continue
count spaces in decrypted buffer:
spaces=tmp.count(' ')
if spaces==0:

continue
spaces_ratio=len(tmp)/spaces
if spaces_ratio<4:

continue
if spaces_ratio>7:

continue
possible_keys.append(i)

print possible_keys, "len=", len(possible_keys)

(Full version of the source code is here.)
This reports just one single possible byte for each byte of key:
N= 0
[144] len= 1
N= 1
[160] len= 1
N= 2
[33] len= 1
N= 3
[80] len= 1
N= 4
[79] len= 1
N= 5
[143] len= 1
N= 6
[251] len= 1
N= 7
[255] len= 1
N= 8
[133] len= 1
N= 9
[131] len= 1
N= 10
[207] len= 1
N= 11
[86] len= 1
N= 12
[65] len= 1
N= 13
[18] len= 1
N= 14
[122] len= 1
N= 15
[249] len= 1
N= 16
[49] len= 1

Let’s check this key in Mathematica:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//ff/XOR/mask_2/files/decrypt3.py
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1194
Listing 9.9: Mathematica

In[]:= input = BinaryReadList["/home/dennis/tmp/cipher.txt"];

In[]:= blocks = Partition[input, 17];

In[]:= key = {144, 160, 33, 80, 79, 143, 251, 255, 133, 131, 207, 86, 65, ⤦
Ç 18, 122, 249, 49};

In[]:= EncryptBlock[blk_] := BitXor[key, blk]

In[]:= encrypted = Map[EncryptBlock[#] &, blocks];

In[]:= BinaryWrite["/home/dennis/tmp/plain2.txt", Flatten[encrypted]]

In[]:= Close["/home/dennis/tmp/plain2.txt"]

And the plain text is:
Mr. Sherlock Holmes, who was usually very late in the mornings, save
upon those not infrequent occasions when he was up all night, was seated
at the breakfast table. I stood upon the hearth-rug and picked up the
stick which our visitor had left behind him the night before. It was a
fine, thick piece of wood, bulbous-headed, of the sort which is known as
a "Penang lawyer." Just under the head was a broad silver band nearly
an inch across. "To James Mortimer, M.R.C.S., from his friends of the
C.C.H.," was engraved upon it, with the date "1884." It was just such a
stick as the old-fashioned family practitioner used to carry--dignified,
solid, and reassuring.

"Well, Watson, what do you make of it?"

Holmes was sitting with his back to me, and I had given him no sign of
my occupation.

...

(Full version of the text is here.)
The text looks correct. Yes, I made up this example and choose well-known text of
Conan Doyle, but it’s very close to what I had in my practice some time ago.

Other ideas to consider

If we would fail with space counting, there are other ideas to try:
• Take into consideration the fact that lowercase letters are much more frequent
than uppercase ones.

• Frequency analysis.
• There is also a good technique to detect language of a text: trigrams. Each lan-
guage has some very frequent letter triplets, these may be “the” and “tha”
for English. Read more about it: N-Gram-Based Text Categorization, http:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//ff/XOR/mask_2/files/plain.txt
http://odur.let.rug.nl/~vannoord/TextCat/textcat.pdf
http://code.activestate.com/recipes/326576/
http://code.activestate.com/recipes/326576/

1195
//code.activestate.com/recipes/326576/. Interestingly enough, trigrams
detection can be used when you decrypt a ciphertext gradually, like in this ex-
ample (you just have to test 3 adjacent decrypted characters).
For non-Latin writing systems encoded in UTF-8, things may be easier. For ex-
ample, Russian text encoded in UTF-8 has each byte interleavedwith 0xD0/0xD1
byte. It is because Cyrillic characters are placed in 4th block of Unicode table.
Other writing systems has their own blocks.

9.1.6 Homework
An ancient text adventure for MS-DOS, developed in the end of 1980’s. To conceal
game information from player, data files, most likely, XOR-ed with something: https:
//beginners.re/homework/XOR_crypto_1/destiny.zip. Try to get into...

9.2 Information entropy

Entropy: The quantitative measure of
disorder, which in turn relates to the
thermodynamic functions, temperature, and
heat.

Dictionary of Applied Math for Engineers and
Scientists

For the sake of simplification, I would say, information entropy is a measure, how
tightly some piece of data can be compressed. For example, it is usually not pos-
sible to compress already compressed archive file, so it has high entropy. On the
other hand, 1MiB of zero bytes can be compressed to a tiny output file. Indeed, in
plain English language, one million of zeros can be described just as “resulting file
is one million zero bytes”. Compressed files are usually a list of instructions to de-
compressor, like this: “put 1000 zeros, then 0x23 byte, then 0x45 byte, then put a
block of size 10 bytes which we’ve seen 500 bytes back, etc.”
Texts written in natural languages are also can be compressed tightly, because nat-
ural languages has a lot of redundancy (otherwise, a tiny typo will always lead to
misunderstanding, like any toggled bit in compressed archive make decompression
nearly impossible), some words are used very often, etc. In everyday speech, it’s
possible to drop up to half of words and it still be recognizable.
Code for CPUs is also can be compressed, because some ISA instructions are used
much more often than others. In x86, most used instructions are MOV/PUSH/CALL
(5.11.2 on page 930).
Data compressors and ciphers tend to produce very high entropy results. Good PRNG
also produce data which cannot be compressed (it is possible tomeasure their quality
by this sign).
So, in other words, entropy is a measure which can help to probe contents of un-
known data block.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/homework/XOR_crypto_1/destiny.zip
https://beginners.re/homework/XOR_crypto_1/destiny.zip
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1196
9.2.1 Analyzing entropy in Mathematica
(This part has been first appeared in my blog at 13-May-2015. Some discussion:
https://news.ycombinator.com/item?id=9545276.)
It is possible to slice a file by blocks, calculate entropy of each and draw a graph. I
did this in Wolfram Mathematica for demonstration and here is a source code (Math-
ematica 10):
(* loading the file *)
input=BinaryReadList["file.bin"];

(* setting block sizes *)
BlockSize=4096;BlockSizeToShow=256;

(* slice blocks by 4k *)
blocks=Partition[input,BlockSize];

(* how many blocks we've got? *)
Length[blocks]

(* calculate entropy for each block. 2 in Entropy[] (base) is set with the ⤦
Ç intention so Entropy[]

function will produce the same results as Linux ent utility does *)
entropies=Map[N[Entropy[2,#]]&,blocks];

(* helper functions *)
fBlockToShow[input_,offset_]:=Take[input,{1+offset,1+offset+BlockSizeToShow⤦

Ç }]
fToASCII[val_]:=FromCharacterCode[val,"PrintableASCII"]
fToHex[val_]:=IntegerString[val,16]
fPutASCIIWindow[data_]:=Framed[Grid[Partition[Map[fToASCII,data],16]]]
fPutHexWindow[data_]:=Framed[Grid[Partition[Map[fToHex,data],16],Alignment⤦

Ç ->Right]]

(* that will be the main knob here *)
{Slider[Dynamic[offset],{0,Length[input]-BlockSize,BlockSize}],Dynamic[⤦

Ç BaseForm[offset,16]]}

(* main UI part *)
Dynamic[{ListLinePlot[entropies,GridLines->{{-1,offset/BlockSize,1}},⤦

Ç Filling->Axis,AxesLabel->{"offset","entropy"}],
CurrentBlock=fBlockToShow[input,offset];
fPutHexWindow[CurrentBlock],
fPutASCIIWindow[CurrentBlock]}]

GeoIP ISP database

Let’s start with the GeoIP file (which assigns ISP to the block of IP addresses). This
binary file GeoIPISP.dat has some tables (which are IP address ranges perhaps) plus
some text blob at the end of the file (containing ISP names).
When I load it to Mathematica, I see this:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://news.ycombinator.com/item?id=9545276
https://www.maxmind.com/en/geoip-demo
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1197

There are two parts in graph: first is somewhat chaotic, second is more steady.
0 in vertical axis in graph means lowest entropy (the data which can be compressed
very tightly, ordered in other words) and 8 is highest (cannot be compressed at all,
chaotic or random in other words). Why 0 and 8? 0 means 0 bits per byte (byte
as a container is not filled at all) and 8 means 8 bits per byte, i.e., the whole byte
container is filled with the information tightly.
So I put slider to point in the middle of the first block, and I clearly see some array of
32-bit integers. Now I put slider in the middle of the second block and I see English
text:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1198

Indeed, this are names of ISPs. So, entropy of English text is 4.5-5.5 bits per byte?
Yes, something like this. Wolfram Mathematica has some well-known English litera-
ture corpus embedded, and we can see entropy of Shakespeare’s sonnets:
In[]:= Entropy[2,ExampleData[{"Text","ShakespearesSonnets"}]]//N
Out[]= 4.42366

4.4 is close to what we’ve got (4.7-5.3). Of course, classic English literature texts
are somewhat different from ISP names and other English texts we can find in binary
files (debugging/logging/error messages), but this value is close.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1199
TP-Link WR941 firmware

Next example. I’ve got firmware for TP-Link WR941 router:

We see here 3 blocks with empty lacunas. Then the first block with high entropy
(started at address 0) is small, second (address somewhere at 0x22000) is bigger
and third (address 0x123000) is biggest. I can’t be sure about exact entropy of the
first block, but 2nd and 3rd has very high entropy, meaning that these blocks are
either compressed and/or encrypted.
I tried binwalk for this firmware file:
DECIMAL HEXADECIMAL DESCRIPTION
--⤦

Ç
0 0x0 TP-Link firmware header, firmware version: ⤦

Ç 0.-15221.3, image version: "", product ID: 0x0, product version: ⤦
Ç 155254789, kernel load address: 0x0, kernel entry point: 0x-7FFFE000,⤦
Ç kernel offset: 4063744, kernel length: 512, rootfs offset: 837431, ⤦
Ç rootfs length: 1048576, bootloader offset: 2883584, bootloader length⤦
Ç : 0

14832 0x39F0 U-Boot version string, "U-Boot 1.1.4 (Jun 27 ⤦
Ç 2014 - 14:56:49)"

14880 0x3A20 CRC32 polynomial table, big endian
16176 0x3F30 uImage header, header size: 64 bytes, header ⤦

Ç CRC: 0x3AC66E95, created: 2014-06-27 06:56:50, image size: 34587 ⤦
Ç bytes, Data Address: 0x80010000, Entry Point: 0x80010000, data CRC: 0⤦
Ç xDF2DBA0B, OS: Linux, CPU: MIPS, image type: Firmware Image, ⤦
Ç compression type: lzma, image name: "u-boot image"

16240 0x3F70 LZMA compressed data, properties: 0x5D, ⤦
Ç dictionary size: 33554432 bytes, uncompressed size: 90000 bytes

131584 0x20200 TP-Link firmware header, firmware version: ⤦
Ç 0.0.3, image version: "", product ID: 0x0, product version: ⤦

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://binwalk.org/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1200
Ç 155254789, kernel load address: 0x0, kernel entry point: 0x-7FFFE000,⤦
Ç kernel offset: 3932160, kernel length: 512, rootfs offset: 837431, ⤦
Ç rootfs length: 1048576, bootloader offset: 2883584, bootloader length⤦
Ç : 0

132096 0x20400 LZMA compressed data, properties: 0x5D, ⤦
Ç dictionary size: 33554432 bytes, uncompressed size: 2388212 bytes

1180160 0x120200 Squashfs filesystem, little endian, version ⤦
Ç 4.0, compression:lzma, size: 2548511 bytes, 536 inodes, blocksize: ⤦
Ç 131072 bytes, created: 2014-06-27 07:06:52

Indeed: there are some stuff at the beginning, but two large LZMA compressed
blocks are started at 0x20400 and 0x120200. These are roughly addresses we have
seen in Mathematica. Oh, and by the way, binwalk can show entropy information as
well (-E option):
DECIMAL HEXADECIMAL ENTROPY
--⤦

Ç
0 0x0 Falling entropy edge (0.419187)
16384 0x4000 Rising entropy edge (0.988639)
51200 0xC800 Falling entropy edge (0.000000)
133120 0x20800 Rising entropy edge (0.987596)
968704 0xEC800 Falling entropy edge (0.508720)
1181696 0x120800 Rising entropy edge (0.989615)
3727360 0x38E000 Falling entropy edge (0.732390)

Rising edges are corresponding to rising edges of block on our graph. Falling edges
are the points where empty lacunas are started.
Binwalk can also generate PNG graphs (-E -J):

What can we say about lacunas? By looking in hex editor, we see that these are just

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1201
filled with 0xFF bytes. Why developers put them? Perhaps, because they weren’t
able to calculate precise compressed blocks sizes, so they allocated space for them
with some reserve.

Notepad

Another example is notepad.exe I’ve picked in Windows 8.1:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1202
There is cavity at ≈ 0x19000 (absolute file offset). I’ve opened the executable file in
hex editor and found imports table there (which has lower entropy than x86-64 code
in the first half of graph).
There are also high entropy block started at ≈ 0x20000:

In hex editor I can see PNG file here, embedded in the PE file resource section (it is
a large image of notepad icon). PNG files are compressed, indeed.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1203
Unnamed dashcam

Now the most advanced example in this part is the firmware of some unnamed dash-
cam I’ve received from a friend:

The cavity at the very beginning is an English text: debugging messages. I checked
various ISAs and I found that the first third of the whole file (with the text segment
inside) is in fact MIPS (little-endian) code.
For instance, this is very distinctive MIPS function epilogue:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1204

ROM:000013B0 move $sp, $fp
ROM:000013B4 lw $ra, 0x1C($sp)
ROM:000013B8 lw $fp, 0x18($sp)
ROM:000013BC lw $s1, 0x14($sp)
ROM:000013C0 lw $s0, 0x10($sp)
ROM:000013C4 jr $ra
ROM:000013C8 addiu $sp, 0x20

From our graph we can see that MIPS code has entropy of 5-6 bits per byte. Indeed,
I once measured various ISAs entropy and I’ve got these values:
• x86: .text section of ntoskrnl.exe file from Windows 2003: 6.6
• x64: .text section of ntoskrnl.exe file from Windows 7 x64: 6.5
• ARM (thumb mode), Angry Birds Classic: 7.05
• ARM (ARM mode) Linux Kernel 3.8.0: 6.03
• MIPS (little endian), .text section of user32.dll from Windows NT 4: 6.09

So the entropy of executable code is higher than of English text, but still can be
compressed.
Now the second third is started at 0xF5000. I don’t know what this is. I tried different
ISAs but without success. The entropy of the block is looks even steadier than for
executable one. Maybe some kind of data?
There is also a spike at ≈ 0x213000. I checked it in hex editor and I found JPEG file
there (which, of course, compressed)! I also don’t know what is at the end. Let’s try
Binwalk for this file:
% binwalk FW96650A.bin

DECIMAL HEXADECIMAL DESCRIPTION
--⤦

Ç
167698 0x28F12 Unix path: /15/20/24/25/30/60/120/240fps can ⤦

Ç be served..
280286 0x446DE Copyright string: "Copyright (c) 2012 Novatek⤦

Ç Microelectronic Corp."
2169199 0x21196F JPEG image data, JFIF standard 1.01
2300847 0x231BAF MySQL MISAM compressed data file Version 3

% binwalk -E FW96650A.bin

DECIMAL HEXADECIMAL ENTROPY
--⤦

Ç
0 0x0 Falling entropy edge (0.579792)
2170880 0x212000 Rising entropy edge (0.967373)
2267136 0x229800 Falling entropy edge (0.802974)
2426880 0x250800 Falling entropy edge (0.846639)
2490368 0x260000 Falling entropy edge (0.849804)
2560000 0x271000 Rising entropy edge (0.974340)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1205
2574336 0x274800 Rising entropy edge (0.970958)
2588672 0x278000 Falling entropy edge (0.763507)
2592768 0x279000 Rising entropy edge (0.951883)
2596864 0x27A000 Falling entropy edge (0.712814)
2600960 0x27B000 Rising entropy edge (0.968167)
2607104 0x27C800 Rising entropy edge (0.958582)
2609152 0x27D000 Falling entropy edge (0.760989)
2654208 0x288000 Rising entropy edge (0.954127)
2670592 0x28C000 Rising entropy edge (0.967883)
2676736 0x28D800 Rising entropy edge (0.975779)
2684928 0x28F800 Falling entropy edge (0.744369)

Yes, it found JPEG file and even MySQL data! But I’m not sure if it’s true—I didn’t
check it yet.
It’s also interesting to try clusterization in Mathematica:

Here is an example of how Mathematica grouped various entropy values into distinc-
tive groups. Indeed, there is something credible. Blue dots in range of 5.0-5.5 are
supposedly related to English text. Yellow dots in 5.5-6 are MIPS code. A lot of green
dots in 6.0-6.5 is the unknown second third. Orange dots close to 8.0 are related to
compressed JPEG file. Other orange dots are supposedly related to the end of the
firmware (unknown to us data).

Links

Binary files used in this part:
https://beginners.re/paywall/RE4B-source/current-tree//ff/entropy/files/.
Wolfram Mathematica notebook file:
https://beginners.re/paywall/RE4B-source/current-tree//ff/entropy/files/

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//ff/entropy/files/
https://beginners.re/paywall/RE4B-source/current-tree//ff/entropy/files/binary_file_entropy.nb
https://beginners.re/paywall/RE4B-source/current-tree//ff/entropy/files/binary_file_entropy.nb

1206
binary_file_entropy.nb
(all cells must be evaluated to start things working).

9.2.2 Conclusion
Information entropy can be used as a quick-n-dirty method for inspecting unknown
binary files. In particular, it is a very quick way to find compressed/encrypted pieces
of data. Someone say it’s possible to find RSA5 (and other asymmetric cryptographic
algorithms) public/private keys in executable code (keys has high entropy as well),
but I didn’t try this myself.

9.2.3 Tools
Handy Linux ent utility to measure entropy of a file6.
There is a great online entropy visualizer made by Aldo Cortesi, which I tried to
mimic using Mathematica: http://binvis.io. His articles about entropy visualiza-
tion are worth reading: http://corte.si/posts/visualisation/entropy/index.
html, http://corte.si/posts/visualisation/malware/index.html, http://corte.
si/posts/visualisation/binvis/index.html.
radare2 framework has #entropy command for this.
A tool for IDA: IDAtropy7.

9.2.4 A word about primitive encryption like XORing
It’s interesting that simple XOR encryption doesn’t affect entropy of data. I’ve shown
this in Norton Guide example in the book (9.1.2 on page 1172).
Generalizing: encryption by substitution cipher also doesn’t affect entropy of data
(and XOR can be viewed as substitution cipher). The reason of that is because en-
tropy calculation algorithm view data on byte-level. On the other hand, the data
encrypted by 2 or 4-byte XOR pattern will result in another level of entropy.
Nevertheless, low entropy is usually a good sign of weak amateur cryptography
(which is also used in license keys/files, etc.).

9.2.5 More about entropy of executable code
It is quickly noticeable that probably a biggest source of high-entropy in executable
code are relative offsets encoded in opcodes. For example, these two consequent
instructions will have different relative offsets in their opcodes, while they are in fact
pointing to the same function:
function proc
...
function endp

5Rivest Shamir Adleman
6http://www.fourmilab.ch/random/
7https://github.com/danigargu/IDAtropy

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://binvis.io
http://corte.si/posts/visualisation/entropy/index.html
http://corte.si/posts/visualisation/entropy/index.html
http://corte.si/posts/visualisation/malware/index.html
http://corte.si/posts/visualisation/binvis/index.html
http://corte.si/posts/visualisation/binvis/index.html
http://www.fourmilab.ch/random/
https://github.com/danigargu/IDAtropy
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1207

...

CALL function
...
CALL function

Ideal executable code compressor would encode information like this: there is a
CALL to a “function” at address X and the same CALL at address Y without necessity
to encode address of the function twice.
To deal with this, executable compressors are sometimes able to reduce entropy
here. One example is UPX: http://sourceforge.net/p/upx/code/ci/default/
tree/doc/filter.txt.

9.2.6 PRNG
When I run GnuPG to generate new private (secret) key, it asking for some entropy
…
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.

Not enough random bytes available. Please do some other work to give
the OS a chance to collect more entropy! (Need 169 more bytes)

This means that good a PRNG produces long high-entropy results, and this is what
the secret asymmetrical cryptographical key needs. But CPRNG8 is tricky (because
computer is highly deterministic device itself), so the GnuPG asking for some addi-
tional randomness from the user.

9.2.7 More examples
Here is a case where I try to calculate entropy of some blocks with unknown contents:
8.9 on page 1085.

9.2.8 Entropy of various files
Entropy of random data is close to 8:
% dd bs=1M count=1 if=/dev/urandom | ent
Entropy = 7.999803 bits per byte.

This means, almost all available space inside of byte is filled with information.
256 bytes in range of 0..255 gives exact value of 8:

8Cryptographically secure PseudoRandom Number Generator

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://sourceforge.net/p/upx/code/ci/default/tree/doc/filter.txt
http://sourceforge.net/p/upx/code/ci/default/tree/doc/filter.txt
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1208

#!/usr/bin/env python
import sys

for i in range(256):
sys.stdout.write(chr(i))

% python 1.py | ent
Entropy = 8.000000 bits per byte.

Order of bytes doesn’t matter. This means, all available space inside of byte is filled.
Entropy of any block filled with zero bytes is 0:
% dd bs=1M count=1 if=/dev/zero | ent
Entropy = 0.000000 bits per byte.

Entropy of a string constisting of a single (any) byte is 0:
% echo -n "aaaaaaaaaaaaaaaaaaa" | ent
Entropy = 0.000000 bits per byte.

Entropy of base64 string is the same as entropy of source data, but multiplied by 3
4
.

This is because base64 encoding uses 64 symbols instead of 256.
% dd bs=1M count=1 if=/dev/urandom | base64 | ent
Entropy = 6.022068 bits per byte.

Perhaps, 6.02 is slightly bigger than 6 because padding symbols (=) spoils our statis-
tics for a little.
Uuencode also uses 64 symbols:
% dd bs=1M count=1 if=/dev/urandom | uuencode - | ent
Entropy = 6.013162 bits per byte.

This means, any base64 and Uuencode strings can be transmitted using 6-bit bytes
or characters.
Any random information in hexadecimal form has entropy of 4 bits per byte:
% openssl rand -hex $\$$((2**16)) | ent
Entropy = 4.000013 bits per byte.

Entropy of randomly picked English language text from Gutenberg library has en-
tropy ≈ 4.5. The reason of this is because English texts uses mostly 26 symbols, and
log2(26) =≈ 4.7, i.e., you would need 5-bit bytes to transmit uncompressed English
texts, that would be enough (it was indeed so in teletype era).
Randomly chosen Russian language text from http://lib.ru library is F.M.Dostoevsky
“Idiot”9, internally encoded in CP1251 encoding.

9http://az.lib.ru/d/dostoewskij_f_m/text_0070.shtml

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://lib.ru
http://az.lib.ru/d/dostoewskij_f_m/text_0070.shtml
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1209
And this file has entropy of ≈ 4.98. Russian language has 33 characters, and log2(33) =≈
5.04. But it has unpopular and rare “ё” character. And log2(32) = 5 (Russian alphabet
without this rare character)—now this close to what we’ve got.
However, the text we studying uses “ё” letter, but, probably, it’s still rarely used
there.
The very same file transcoded from CP1251 to UTF-8 gave entropy of ≈ 4.23. Each
Cyrillic character encoded in UTF-8 is usually encoded as a pair, and the first byte is
always one of: 0xD0 or 0xD1. Perhaps, this caused bias.
Let’s generate random bits and output them as “T” and “F” characters:
#!/usr/bin/env python
import random, sys

rt=""
for i in range(102400):

if random.randint(0,1)==1:
rt=rt+"T"

else:
rt=rt+"F"

print rt

Sample: ...TTTFTFTTTFFFTTTFTTTTTTFTTFFTTTFTFTTFTTFFFFFF....
Entropy is very close to 1 (i.e., 1 bit per byte).
Let’s generate random decimal digits:
#!/usr/bin/env python
import random, sys

rt=""
for i in range(102400):

rt=rt+"%d" % random.randint(0,9)
print rt

Sample: ...52203466119390328807552582367031963888032....
Entropy will be close to 3.32, indeed, this is log2(10).

9.2.9 Making lower level of entropy
The author of these lines once saw a software which stored each byte of encrypted
data in 3 bytes: each has ≈ byte

3 value, so reconstructing encrypted byte back in-
volving summing up 3 consecutive bytes. Looks absurdly.
But some people say this was done in order to conceal the very fact the data has
something encrypted inside: measuring entropy of such block will show much lower
level of it.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1210
9.3 Millenium game save file
The “Millenium Return to Earth” is an ancient DOS game (1991), that allows you to
mine resources, build ships, equip them and send them on other planets, and so
on10.
Like many other games, it allows you to save all game state into a file.
Let’s see if we can find something in it.

10It can be downloaded for free here

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://thehouseofgames.org/index.php?t=10&id=110
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1211
So there is a mine in the game. Mines at some planets work faster, or slower on
others. The set of resources is also different.
Here we can see what resources are mined at the time:

Figure 9.14: Mine: state 1

Let’s save a game state. This is a file of size 9538 bytes.
Let’s wait some “days” here in the game, and now we’ve got more resources from
the mine:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1212

Figure 9.15: Mine: state 2

Let’s save game state again.
Now let’s try to just do binary comparison of the save files using the simple DOS/Win-
dows FC utility:
...> FC /b 2200save.i.v1 2200SAVE.I.V2

Comparing files 2200save.i.v1 and 2200SAVE.I.V2
00000016: 0D 04
00000017: 03 04
0000001C: 1F 1E
00000146: 27 3B
00000BDA: 0E 16
00000BDC: 66 9B
00000BDE: 0E 16
00000BE0: 0E 16
00000BE6: DB 4C
00000BE7: 00 01
00000BE8: 99 E8
00000BEC: A1 F3
00000BEE: 83 C7
00000BFB: A8 28
00000BFD: 98 18
00000BFF: A8 28

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1213
00000C01: A8 28
00000C07: D8 58
00000C09: E4 A4
00000C0D: 38 B8
00000C0F: E8 68
...

The output is incomplete here, there are more differences, but we will cut result to
show the most interesting.
In the first state, we have 14 “units” of hydrogen and 102 “units” of oxygen.
We have 22 and 155 “units” respectively in the second state. If these values are
saved into the save file, we would see this in the difference. And indeed we do.
There is 0x0E (14) at position 0xBDA and this value is 0x16 (22) in the new version
of the file. This is probably hydrogen. There is 0x66 (102) at position 0xBDC in
the old version and 0x9B (155) in the new version of the file. This seems to be the
oxygen.
Both files are available on the website for those who wants to inspect them (or ex-
periment) more: beginners.re.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://beginners.re/examples/millenium_DOS_game/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1214
Here is the new version of file opened in Hiew, we marked the values related to the
resources mined in the game:

Figure 9.16: Hiew: state 1

Let’s check each of them.
These are clearly 16-bit values: not a strange thing for 16-bit DOS software where
the int type has 16-bit width.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1215
Let’s check our assumptions. We will write the 1234 (0x4D2) value at the first posi-
tion (this must be hydrogen):

Figure 9.17: Hiew: let’s write 1234 (0x4D2) there

Then we will load the changed file in the game and took a look at mine statistics:

Figure 9.18: Let’s check for hydrogen value

So yes, this is it.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1216
Now let’s try to finish the game as soon as possible, set the maximal values every-
where:

Figure 9.19: Hiew: let’s set maximal values

0xFFFF is 65535, so yes, we now have a lot of resources:

Figure 9.20: All resources are 65535 (0xFFFF) indeed

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1217
Let’s skip some “days” in the game and oops! We have a lower amount of some
resources:

Figure 9.21: Resource variables overflow

That’s just overflow.
The game’s developer supposedly didn’t think about such high amounts of resources,
so there are probably no overflow checks, but the mine is “working” in the game,
resources are added, hence the overflows. Apparently, it is a bad idea to be that
greedy.
There are probably a lot of more values saved in this file.
So this is very simple method of cheating in games. High score files often can be
easily patched like that.
More about files and memory snapshots comparing: 5.10.2 on page 922.

9.4 fortune program indexing file
(This part was first appeared in my blog at 25-Apr-2015.)
fortune is well-known UNIX program which shows random phrase from a collection.
Some geeks are often set up their system in such way, so fortune can be called after

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1218
logging on. fortune takes phrases from the text files laying in /usr/share/games/for-
tunes (as of Ubuntu Linux). Here is example (“fortunes” text file):
A day for firm decisions!!!!! Or is it?
%
A few hours grace before the madness begins again.
%
A gift of a flower will soon be made to you.
%
A long-forgotten loved one will appear soon.

Buy the negatives at any price.
%
A tall, dark stranger will have more fun than you.
%
...

So it is just phrases, sometimes multiline ones, divided by percent sign. The task
of fortune program is to find random phrase and to print it. In order to achieve this,
it must scan the whole text file, count phrases, choose random and print it. But
the text file can get bigger, and even on modern computers, this naive algorithm
is a bit uneconomical to computer resources. The straightforward way is to keep
binary index file containing offset of each phrase in text file. With index file, fortune
program can work much faster: just to choose random index element, take offset
from there, set offset in text file and read phrase from it. This is actually done in
fortune program. Let’s inspect what is in its index file inside (these are .dat files in
the same directory) in hexadecimal editor. This program is open-source of course,
but intentionally, I will not peek into its source code.
% od -t x1 --address-radix=x fortunes.dat
000000 00 00 00 02 00 00 01 af 00 00 00 bb 00 00 00 0f
000010 00 00 00 00 25 00 00 00 00 00 00 00 00 00 00 2b
000020 00 00 00 60 00 00 00 8f 00 00 00 df 00 00 01 14
000030 00 00 01 48 00 00 01 7c 00 00 01 ab 00 00 01 e6
000040 00 00 02 20 00 00 02 3b 00 00 02 7a 00 00 02 c5
000050 00 00 03 04 00 00 03 3d 00 00 03 68 00 00 03 a7
000060 00 00 03 e1 00 00 04 19 00 00 04 2d 00 00 04 7f
000070 00 00 04 ad 00 00 04 d5 00 00 05 05 00 00 05 3b
000080 00 00 05 64 00 00 05 82 00 00 05 ad 00 00 05 ce
000090 00 00 05 f7 00 00 06 1c 00 00 06 61 00 00 06 7a
0000a0 00 00 06 d1 00 00 07 0a 00 00 07 53 00 00 07 9a
0000b0 00 00 07 f8 00 00 08 27 00 00 08 59 00 00 08 8b
0000c0 00 00 08 a0 00 00 08 c4 00 00 08 e1 00 00 08 f9
0000d0 00 00 09 27 00 00 09 43 00 00 09 79 00 00 09 a3
0000e0 00 00 09 e3 00 00 0a 15 00 00 0a 4d 00 00 0a 5e
0000f0 00 00 0a 8a 00 00 0a a6 00 00 0a bf 00 00 0a ef
000100 00 00 0b 18 00 00 0b 43 00 00 0b 61 00 00 0b 8e
000110 00 00 0b cf 00 00 0b fa 00 00 0c 3b 00 00 0c 66
000120 00 00 0c 85 00 00 0c b9 00 00 0c d2 00 00 0d 02
000130 00 00 0d 3b 00 00 0d 67 00 00 0d ac 00 00 0d e0
000140 00 00 0e 1e 00 00 0e 67 00 00 0e a5 00 00 0e da
000150 00 00 0e ff 00 00 0f 43 00 00 0f 8a 00 00 0f bc
000160 00 00 0f e5 00 00 10 1e 00 00 10 63 00 00 10 9d

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1219
000170 00 00 10 e3 00 00 11 10 00 00 11 46 00 00 11 6c
000180 00 00 11 99 00 00 11 cb 00 00 11 f5 00 00 12 32
000190 00 00 12 61 00 00 12 8c 00 00 12 ca 00 00 13 87
0001a0 00 00 13 c4 00 00 13 fc 00 00 14 1a 00 00 14 6f
0001b0 00 00 14 ae 00 00 14 de 00 00 15 1b 00 00 15 55
0001c0 00 00 15 a6 00 00 15 d8 00 00 16 0f 00 00 16 4e
...

Without any special aid we could see that there are four 4-byte elements on each
16-byte line. Perhaps, it’s our index array. I’m trying to load the whole file in Wolfram
Mathematica as 32-bit integer array:
In[]:= BinaryReadList["c:/tmp1/fortunes.dat", "UnsignedInteger32"]

Out[]= {33554432, 2936078336, 3137339392, 251658240, 0, 37, 0, \
721420288, 1610612736, 2399141888, 3741319168, 335609856, 1208025088, \
2080440320, 2868969472, 3858825216, 537001984, 989986816, 2046951424, \
3305242624, 67305472, 1023606784, 1745027072, 2801991680, 3775070208, \
419692544, 755236864, 2130968576, 2902720512, 3573809152, 84213760, \
990183424, 1678049280, 2181365760, 2902786048, 3456434176, \
4144300032, 470155264, 1627783168, 2047213568, 3506831360, 168230912, \
1392967680, 2584150016, 4161208320, 654835712, 1493696512, \
2332557312, 2684878848, 3288858624, 3775397888, 4178051072, \
...

Nope, something wrong. Numbers are suspiciously big. But let’s back to od output:
each 4-byte element has two zero bytes and two non-zero bytes, so the offsets (at
least at the beginning of the file) are 16-bit at maximum. Probably different endian-
ness is used in the file? Default endiannes in Mathematica is little-endian, as used
in Intel CPUs. Now I’m changing it to big-endian:
In[]:= BinaryReadList["c:/tmp1/fortunes.dat", "UnsignedInteger32",
ByteOrdering -> 1]

Out[]= {2, 431, 187, 15, 0, 620756992, 0, 43, 96, 143, 223, 276, \
328, 380, 427, 486, 544, 571, 634, 709, 772, 829, 872, 935, 993, \
1049, 1069, 1151, 1197, 1237, 1285, 1339, 1380, 1410, 1453, 1486, \
1527, 1564, 1633, 1658, 1745, 1802, 1875, 1946, 2040, 2087, 2137, \
2187, 2208, 2244, 2273, 2297, 2343, 2371, 2425, 2467, 2531, 2581, \
2637, 2654, 2698, 2726, 2751, 2799, 2840, 2883, 2913, 2958, 3023, \
3066, 3131, 3174, 3205, 3257, 3282, 3330, 3387, 3431, 3500, 3552, \
...

Yes, this is something readable. I choose random element (3066) which is 0xBFA in
hexadecimal form. I’m opening ’fortunes’ text file in hex editor, I’m setting 0xBFA
as offset and I see this phrase:
% od -t x1 -c --skip-bytes=0xbfa --address-radix=x fortunes
000bfa 44 6f 20 77 68 61 74 20 63 6f 6d 65 73 20 6e 61

D o w h a t c o m e s n a
000c0a 74 75 72 61 6c 6c 79 2e 20 20 53 65 65 74 68 65

t u r a l l y . S e e t h e
000c1a 20 61 6e 64 20 66 75 6d 65 20 61 6e 64 20 74 68

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1220
a n d f u m e a n d t h

....

Or:
Do what comes naturally. Seethe and fume and throw a tantrum.
%

Other offset are also can be checked, yes, they are valid offsets.
I can also check in Mathematica that each subsequent element is bigger than pre-
vious. I.e., elements of array are ascending. In mathematics lingo, this is called
strictly increasing monotonic function.
In[]:= Differences[input]

Out[]= {429, -244, -172, -15, 620756992, -620756992, 43, 53, 47, \
80, 53, 52, 52, 47, 59, 58, 27, 63, 75, 63, 57, 43, 63, 58, 56, 20, \
82, 46, 40, 48, 54, 41, 30, 43, 33, 41, 37, 69, 25, 87, 57, 73, 71, \
94, 47, 50, 50, 21, 36, 29, 24, 46, 28, 54, 42, 64, 50, 56, 17, 44, \
28, 25, 48, 41, 43, 30, 45, 65, 43, 65, 43, 31, 52, 25, 48, 57, 44, \
69, 52, 62, 73, 62, 53, 37, 68, 71, 50, 41, 57, 69, 58, 70, 45, 54, \
38, 45, 50, 42, 61, 47, 43, 62, 189, 61, 56, 30, 85, 63, 48, 61, 58, \
81, 50, 55, 63, 83, 80, 49, 42, 94, 54, 67, 81, 52, 57, 68, 43, 28, \
120, 64, 53, 81, 33, 82, 88, 29, 61, 32, 75, 63, 70, 47, 101, 60, 79, \
33, 48, 65, 35, 59, 47, 55, 22, 43, 35, 102, 53, 80, 65, 45, 31, 29, \
69, 32, 25, 38, 34, 35, 49, 59, 39, 41, 18, 43, 41, 83, 37, 31, 34, \
59, 72, 72, 81, 77, 53, 53, 50, 51, 45, 53, 39, 70, 54, 103, 33, 70, \
51, 95, 67, 54, 55, 65, 61, 54, 54, 53, 45, 100, 63, 48, 65, 71, 23, \
28, 43, 51, 61, 101, 65, 39, 78, 66, 43, 36, 56, 40, 67, 92, 65, 61, \
31, 45, 52, 94, 82, 82, 91, 46, 76, 55, 19, 58, 68, 41, 75, 30, 67, \
92, 54, 52, 108, 60, 56, 76, 41, 79, 54, 65, 74, 112, 76, 47, 53, 61, \
66, 53, 28, 41, 81, 75, 69, 89, 63, 60, 18, 18, 50, 79, 92, 37, 63, \
88, 52, 81, 60, 80, 26, 46, 80, 64, 78, 70, 75, 46, 91, 22, 63, 46, \
34, 81, 75, 59, 62, 66, 74, 76, 111, 55, 73, 40, 61, 55, 38, 56, 47, \
78, 81, 62, 37, 41, 60, 68, 40, 33, 54, 34, 41, 36, 49, 44, 68, 51, \
50, 52, 36, 53, 66, 46, 41, 45, 51, 44, 44, 33, 72, 40, 71, 57, 55, \
39, 66, 40, 56, 68, 43, 88, 78, 30, 54, 64, 36, 55, 35, 88, 45, 56, \
76, 61, 66, 29, 76, 53, 96, 36, 46, 54, 28, 51, 82, 53, 60, 77, 21, \
84, 53, 43, 104, 85, 50, 47, 39, 66, 78, 81, 94, 70, 49, 67, 61, 37, \
51, 91, 99, 58, 51, 49, 46, 68, 72, 40, 56, 63, 65, 41, 62, 47, 41, \
43, 30, 43, 67, 78, 80, 101, 61, 73, 70, 41, 82, 69, 45, 65, 38, 41, \
57, 82, 66}

As we can see, except of the very first 6 values (which is probably belongs to index
file header), all numbers are in fact length of all text phrases (offset of the next
phrase minus offset of the current phrase is in fact length of the current phrase).
It’s very important to keep in mind that bit-endiannes can be confused with incorrect
array start. Indeed, from od output we see that each element started with two zeros.
But when shifted by two bytes in either side, we can interpret this array as little-
endian:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1221

% od -t x1 --address-radix=x --skip-bytes=0x32 fortunes.dat
000032 01 48 00 00 01 7c 00 00 01 ab 00 00 01 e6 00 00
000042 02 20 00 00 02 3b 00 00 02 7a 00 00 02 c5 00 00
000052 03 04 00 00 03 3d 00 00 03 68 00 00 03 a7 00 00
000062 03 e1 00 00 04 19 00 00 04 2d 00 00 04 7f 00 00
000072 04 ad 00 00 04 d5 00 00 05 05 00 00 05 3b 00 00
000082 05 64 00 00 05 82 00 00 05 ad 00 00 05 ce 00 00
000092 05 f7 00 00 06 1c 00 00 06 61 00 00 06 7a 00 00
0000a2 06 d1 00 00 07 0a 00 00 07 53 00 00 07 9a 00 00
0000b2 07 f8 00 00 08 27 00 00 08 59 00 00 08 8b 00 00
0000c2 08 a0 00 00 08 c4 00 00 08 e1 00 00 08 f9 00 00
0000d2 09 27 00 00 09 43 00 00 09 79 00 00 09 a3 00 00
0000e2 09 e3 00 00 0a 15 00 00 0a 4d 00 00 0a 5e 00 00
...

If we would interpret this array as little-endian, the first element is 0x4801, second
is 0x7C01, etc. High 8-bit part of each of these 16-bit values are seems random to
us, and the lowest 8-bit part is seems ascending.
But I’m sure that this is big-endian array, because the very last 32-bit element of
the file is big-endian (00 00 5f c4 here):
% od -t x1 --address-radix=x fortunes.dat
...
000660 00 00 59 0d 00 00 59 55 00 00 59 7d 00 00 59 b5
000670 00 00 59 f4 00 00 5a 35 00 00 5a 5e 00 00 5a 9c
000680 00 00 5a cb 00 00 5a f4 00 00 5b 1f 00 00 5b 3d
000690 00 00 5b 68 00 00 5b ab 00 00 5b f9 00 00 5c 49
0006a0 00 00 5c ae 00 00 5c eb 00 00 5d 34 00 00 5d 7a
0006b0 00 00 5d a3 00 00 5d f5 00 00 5e 3a 00 00 5e 67
0006c0 00 00 5e a8 00 00 5e ce 00 00 5e f7 00 00 5f 30
0006d0 00 00 5f 82 00 00 5f c4
0006d8

Perhaps, fortune programdeveloper had big-endian computer ormaybe it was ported
from something like it.
OK, so the array is big-endian, and, judging by common sense, the very first phrase
in the text file must be started at zeroth offset. So zero value should be present in
the array somewhere at the very beginning. We’ve got couple of zero elements at
the beginning. But the second is most appealing: 43 is going right after it and 43 is
valid offset to valid English phrase in the text file.
The last array element is 0x5FC4, and there are no such byte at this offset in the
text file. So the last array element is pointing behind the end of file. It’s supposedly
done because phrase length is calculated as difference between offset to the current
phrase and offset to the next phrase. This can be faster than traversing phrase string
for percent character. But this wouldn’t work for the last element. So the dummy
element is also added at the end of array.
So the first 6 32-bit integer values are supposedly some kind of header.
Oh, I forgot to count phrases in text file:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1222

% cat fortunes | grep % | wc -l
432

The number of phrases can be present in index, but may be not. In case of very
simple index files, number of elements can be easily deduced from index file size.
Anyway, there are 432 phrases in the text file. And we see something very familiar
at the second element (value 431). I’ve checked other files (literature.dat and rid-
dles.dat in Ubuntu Linux) and yes, the second 32-bit element is indeed number of
phrases minus 1. Why minus 1? Perhaps, this is not number of phrases, but rather
the number of the last phrase (starting at zero)?
And there are some other elements in the header. In Mathematica, I’m loading each
of three available files and I’m taking a look on the header:

I have no idea what other values mean, except the size of index file. Some fields are
the same for all files, some are not. From my own experience, there could be:
• file signature;
• file version;
• checksum;
• some flags;
• maybe even text language identifier;
• text file timestamp, so the fortune program will regenerate index file if a user
modified text file.

For example, Oracle .SYM files (9.5 on page 1224) which contain symbols table for
DLL files, also contain timestamp of corresponding DLL file, so to be sure it is still
valid.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1223
On the other hand, text file and index file timestamps can gone out of sync after
archiving/unarchiving/installing/deploying/etc.
But there are no timestamp, in my opinion. The most compact way of representing
date and time is UNIX time value, which is big 32-bit number. We don’t see any of
such here. Other ways of representation are even less compact.
So here is algorithm, how fortune supposedly works:
• take number of last phrase from the second element;
• generate random number in range of 0..number_of_last_phrase;
• find corresponding element in array of offsets, take also following offset;
• output to stdout all characters from the text file starting at the offset until the
next offset minus 2 (so to ignore terminating percent sign and character of the
following phrase).

9.4.1 Hacking
Let’s try to check some of our assumptions. I will create this text file under the path
and name /usr/share/games/fortunes/fortunes:
Phrase one.
%
Phrase two.
%

Then this fortunes.dat file. I take header from the original fortunes.dat, I changed
second field (count of all phrases) to zero and I left two elements in the array: 0 and
0x1c, because the whole length of the text fortunes file is 28 (0x1c) bytes:
% od -t x1 --address-radix=x fortunes.dat
000000 00 00 00 02 00 00 00 00 00 00 00 bb 00 00 00 0f
000010 00 00 00 00 25 00 00 00 00 00 00 00 00 00 00 1c

Now I run it:
% /usr/games/fortune
fortune: no fortune found

Something wrong. Let’s change the second field to 1:
% od -t x1 --address-radix=x fortunes.dat
000000 00 00 00 02 00 00 00 01 00 00 00 bb 00 00 00 0f
000010 00 00 00 00 25 00 00 00 00 00 00 00 00 00 00 1c

Now it works. It’s always shows only the first phrase:
% /usr/games/fortune
Phrase one.

Hmmm. Let’s leave only one element in array (0) without terminating one:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1224

% od -t x1 --address-radix=x fortunes.dat
000000 00 00 00 02 00 00 00 01 00 00 00 bb 00 00 00 0f
000010 00 00 00 00 25 00 00 00 00 00 00 00
00001c

Fortune program always shows only first phrase.
From this experiment we got to know that percent sign in text file is parsed and the
size is not calculated as I deduced before, perhaps, even terminal array element is
not used. However, it still can be used. And probably it was used in past?

9.4.2 The files
For the sake of demonstration, I still didn’t take a look in fortune source code. If you
want to try to understand meaning of other values in index file header, you may try
to achieve it without looking into source code as well. Files I took from Ubuntu Linux
14.04 are here: http://beginners.re/examples/fortune/, hacked files are also
here.
Oh, and I took the files from x64 version of Ubuntu, but array elements are still has
size of 32 bit. It is because fortune text files are probably never exceeds 4GiB11 size.
But if it will, all elements must have size of 64 bit so to be able to store offset to the
text file larger than 4GiB.
For impatient readers, the source code of fortune is here: https://launchpad.net/
ubuntu/+source/fortune-mod/1:1.99.1-3.1ubuntu4.

9.5 Oracle RDBMS: .SYM-files
When an Oracle RDBMS process experiences some kind of crash, it writes a lot of
information into log files, including stack trace, like this:
----- Call Stack Trace -----
calling call entry argument values in hex
location type point (? means dubious value)
-------------------- -------- -------------------- ⤦

Ç ----------------------------
_kqvrow() 00000000
_opifch2()+2729 CALLptr 00000000 23D4B914 E47F264 1F19AE2

EB1C8A8 1
_kpoal8()+2832 CALLrel _opifch2() 89 5 EB1CC74
_opiodr()+1248 CALLreg 00000000 5E 1C EB1F0A0
_ttcpip()+1051 CALLreg 00000000 5E 1C EB1F0A0 0
_opitsk()+1404 CALL??? 00000000 C96C040 5E EB1F0A0 0 ⤦

Ç EB1ED30
EB1F1CC 53E52E 0 EB1F1F8

_opiino()+980 CALLrel _opitsk() 0 0
_opiodr()+1248 CALLreg 00000000 3C 4 EB1FBF4
_opidrv()+1201 CALLrel _opiodr() 3C 4 EB1FBF4 0

11Gibibyte

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://beginners.re/examples/fortune/
https://launchpad.net/ubuntu/+source/fortune-mod/1:1.99.1-3.1ubuntu4
https://launchpad.net/ubuntu/+source/fortune-mod/1:1.99.1-3.1ubuntu4
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1225
_sou2o()+55 CALLrel _opidrv() 3C 4 EB1FBF4
_opimai_real()+124 CALLrel _sou2o() EB1FC04 3C 4 EB1FBF4
_opimai()+125 CALLrel _opimai_real() 2 EB1FC2C
_OracleThreadStart@ CALLrel _opimai() 2 EB1FF6C 7C88A7F4 ⤦

Ç EB1FC34 0
4()+830 EB1FD04
77E6481C CALLreg 00000000 E41FF9C 0 0 E41FF9C 0 ⤦

Ç EB1FFC4
00000000 CALL??? 00000000

But of course, Oracle RDBMS’s executables must have some kind of debug informa-
tion or map files with symbol information included or something like that.
Windows NT Oracle RDBMS has symbol information in files with .SYM extension, but
the format is proprietary. (Plain text files are good, but needs additional parsing,
hence offer slower access.)
Let’s see if we can understand its format.
We will pick the shortest orawtc8.sym file that comes with the orawtc8.dll file in
Oracle 8.1.7 12.

12We can chose an ancient Oracle RDBMS version intentionally due to the smaller size of its modules

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1226
Here is the file opened in Hiew:

Figure 9.22: The whole file in Hiew

By comparing the file with other .SYM files, we can quickly see that OSYM is always
header (and footer), so this is maybe the file’s signature.
We also see that basically, the file format is: OSYM + some binary data + zero de-
limited text strings + OSYM. The strings are, obviously, function and global variable
names.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1227
We will mark the OSYM signatures and strings here:

Figure 9.23: OSYM signature and text strings

Well, let’s see. In Hiew, we will mark the whole strings block (except the trailing
OSYM signatures) and put it into a separate file. Then we run UNIX strings and wc
utilities to count the text strings:
strings strings_block | wc -l
66

So there are 66 text strings. Please note that number.
We can say, in general, as a rule, the number of anything is often stored separately
in binary files.
It’s indeed so, we can find the 66 value (0x42) at the file’s start, right after the OSYM
signature:
$ hexdump -C orawtc8.sym
00000000 4f 53 59 4d 42 00 00 00 00 10 00 10 80 10 00 10 |OSYMB⤦

Ç|
00000010 f0 10 00 10 50 11 00 10 60 11 00 10 c0 11 00 10 |....P⤦

Ç ...`.......|

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1228
00000020 d0 11 00 10 70 13 00 10 40 15 00 10 50 15 00 10 |....p...@...P⤦

Ç ...|
00000030 60 15 00 10 80 15 00 10 a0 15 00 10 a6 15 00 10 ⤦

Ç |`...............|
....

Of course, 0x42 here is not a byte, but most likely a 32-bit value packed as little-
endian, hence we see 0x42 and then at least 3 zero bytes.
Why do we believe it’s 32-bit? Because, Oracle RDBMS’s symbol files may be pretty
big.
The oracle.sym file for the main oracle.exe (version 10.2.0.4) executable contains
0x3A38E (238478) symbols. A 16-bit value isn’t enough here.
We can check other .SYM files like this and it proves our guess: the value after the
32-bit OSYM signature always reflects the number of text strings in the file.
It’s a general feature of almost all binary files: a header with a signature plus some
other information about the file.
Now let’s investigate closer what this binary block is.
Using Hiew again, we put the block starting at address 8 (i.e., after the 32-bit count
value) ending at the strings block, into a separate binary file.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1229
Let’s see the binary block in Hiew:

Figure 9.24: Binary block

There is a clear pattern in it.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1230
We will add red lines to divide the block:

Figure 9.25: Binary block patterns

Hiew, like almost any other hexadecimal editor, shows 16 bytes per line. So the
pattern is clearly visible: there are 4 32-bit values per line.
The pattern is visually visible because some values here (till address 0x104) are
always in 0x1000xxxx form, started with 0x10 and zero bytes.
Other values (starting at 0x108) are in 0x0000xxxx form, so always started with two
zero bytes.
Let’s dump the block as an array of 32-bit values:

Listing 9.10: first column is address
$ od -v -t x4 binary_block
0000000 10001000 10001080 100010f0 10001150

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1231
0000020 10001160 100011c0 100011d0 10001370
0000040 10001540 10001550 10001560 10001580
0000060 100015a0 100015a6 100015ac 100015b2
0000100 100015b8 100015be 100015c4 100015ca
0000120 100015d0 100015e0 100016b0 10001760
0000140 10001766 1000176c 10001780 100017b0
0000160 100017d0 100017e0 10001810 10001816
0000200 10002000 10002004 10002008 1000200c
0000220 10002010 10002014 10002018 1000201c
0000240 10002020 10002024 10002028 1000202c
0000260 10002030 10002034 10002038 1000203c
0000300 10002040 10002044 10002048 1000204c
0000320 10002050 100020d0 100020e4 100020f8
0000340 1000210c 10002120 10003000 10003004
0000360 10003008 1000300c 10003098 1000309c
0000400 100030a0 100030a4 00000000 00000008
0000420 00000012 0000001b 00000025 0000002e
0000440 00000038 00000040 00000048 00000051
0000460 0000005a 00000064 0000006e 0000007a
0000500 00000088 00000096 000000a4 000000ae
0000520 000000b6 000000c0 000000d2 000000e2
0000540 000000f0 00000107 00000110 00000116
0000560 00000121 0000012a 00000132 0000013a
0000600 00000146 00000153 00000170 00000186
0000620 000001a9 000001c1 000001de 000001ed
0000640 000001fb 00000207 0000021b 0000022a
0000660 0000023d 0000024e 00000269 00000277
0000700 00000287 00000297 000002b6 000002ca
0000720 000002dc 000002f0 00000304 00000321
0000740 0000033e 0000035d 0000037a 00000395
0000760 000003ae 000003b6 000003be 000003c6
0001000 000003ce 000003dc 000003e9 000003f8
0001020

There are 132 values, that’s 66*2. Probably, there are two 32-bit values for each
symbol, but maybe there are two arrays? Let’s see.
Values starting with 0x1000 may be addresses.
This is a .SYM file for a DLL after all, and the default base address of win32 DLLs is
0x10000000, and the code usually starts at 0x10001000.
When we open the orawtc8.dll file in IDA, the base address is different, but never-
theless, the first function is:
.text:60351000 sub_60351000 proc near
.text:60351000
.text:60351000 arg_0 = dword ptr 8
.text:60351000 arg_4 = dword ptr 0Ch
.text:60351000 arg_8 = dword ptr 10h
.text:60351000
.text:60351000 push ebp
.text:60351001 mov ebp, esp
.text:60351003 mov eax, dword_60353014

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1232
.text:60351008 cmp eax, 0FFFFFFFFh
.text:6035100B jnz short loc_6035104F
.text:6035100D mov ecx, hModule
.text:60351013 xor eax, eax
.text:60351015 cmp ecx, 0FFFFFFFFh
.text:60351018 mov dword_60353014, eax
.text:6035101D jnz short loc_60351031
.text:6035101F call sub_603510F0
.text:60351024 mov ecx, eax
.text:60351026 mov eax, dword_60353014
.text:6035102B mov hModule, ecx
.text:60351031
.text:60351031 loc_60351031: ; CODE XREF: sub_60351000+1D
.text:60351031 test ecx, ecx
.text:60351033 jbe short loc_6035104F
.text:60351035 push offset ProcName ; "ax_reg"
.text:6035103A push ecx ; hModule
.text:6035103B call ds:GetProcAddress
...

Wow, “ax_reg” string sounds familiar.
It’s indeed the first string in the strings block! So the name of this function seems
to be “ax_reg”.
The second function is:
.text:60351080 sub_60351080 proc near
.text:60351080
.text:60351080 arg_0 = dword ptr 8
.text:60351080 arg_4 = dword ptr 0Ch
.text:60351080
.text:60351080 push ebp
.text:60351081 mov ebp, esp
.text:60351083 mov eax, dword_60353018
.text:60351088 cmp eax, 0FFFFFFFFh
.text:6035108B jnz short loc_603510CF
.text:6035108D mov ecx, hModule
.text:60351093 xor eax, eax
.text:60351095 cmp ecx, 0FFFFFFFFh
.text:60351098 mov dword_60353018, eax
.text:6035109D jnz short loc_603510B1
.text:6035109F call sub_603510F0
.text:603510A4 mov ecx, eax
.text:603510A6 mov eax, dword_60353018
.text:603510AB mov hModule, ecx
.text:603510B1
.text:603510B1 loc_603510B1: ; CODE XREF: sub_60351080+1D
.text:603510B1 test ecx, ecx
.text:603510B3 jbe short loc_603510CF
.text:603510B5 push offset aAx_unreg ; "ax_unreg"
.text:603510BA push ecx ; hModule
.text:603510BB call ds:GetProcAddress
...

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1233
The “ax_unreg” string is also the second string in the strings block!
The starting address of the second function is 0x60351080, and the second value in
the binary block is 10001080. So this is the address, but for a DLL with the default
base address.
We can quickly check and be sure that the first 66 values in the array (i.e., the
first half of the array) are just function addresses in the DLL, including some labels,
etc. Well, what’s the other part of array then? The other 66 values that start with
0x0000? These seem to be in range [0...0x3F8]. And they do not look like bitfields:
the series of numbers is increasing.
The last hexadecimal digit seems to be random, so, it’s unlikely the address of some-
thing (it would be divisible by 4 or maybe 8 or 0x10 otherwise).
Let’s ask ourselves: what else Oracle RDBMS’s developers would save here, in this
file?
Quick wild guess: it could be the address of the text string (function name).
It can be quickly checked, and yes, each number is just the position of the first
character in the strings block.
This is it! All done.
We will write an utility to convert these .SYM files into IDA script, so we can load the
.idc script and it sets the function names:
#include <stdio.h>
#include <stdint.h>
#include <io.h>
#include <assert.h>
#include <malloc.h>
#include <fcntl.h>
#include <string.h>

int main (int argc, char *argv[])
{

uint32_t sig, cnt, offset;
uint32_t *d1, *d2;
int h, i, remain, file_len;
char *d3;
uint32_t array_size_in_bytes;

assert (argv[1]); // file name
assert (argv[2]); // additional offset (if needed)

// additional offset
assert (sscanf (argv[2], "%X", &offset)==1);

// get file length
assert ((h=open (argv[1], _O_RDONLY | _O_BINARY, 0))!=-1);
assert ((file_len=lseek (h, 0, SEEK_END))!=-1);
assert (lseek (h, 0, SEEK_SET)!=-1);

// read signature

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1234
assert (read (h, &sig, 4)==4);
// read count
assert (read (h, &cnt, 4)==4);

assert (sig==0x4D59534F); // OSYM

// skip timedatestamp (for 11g)
//_lseek (h, 4, 1);

array_size_in_bytes=cnt*sizeof(uint32_t);

// load symbol addresses array
d1=(uint32_t*)malloc (array_size_in_bytes);
assert (d1);
assert (read (h, d1, array_size_in_bytes)==array_size_in_bytes);

// load string offsets array
d2=(uint32_t*)malloc (array_size_in_bytes);
assert (d2);
assert (read (h, d2, array_size_in_bytes)==array_size_in_bytes);

// calculate strings block size
remain=file_len-(8+4)-(cnt*8);

// load strings block
assert (d3=(char*)malloc (remain));
assert (read (h, d3, remain)==remain);

printf ("#include <idc.idc>\n\n");
printf ("static main() {\n");

for (i=0; i<cnt; i++)
printf ("\tMakeName(0x%08X, \"%s\");\n", offset + d1[i], &⤦

Ç d3[d2[i]]);

printf ("}\n");

close (h);
free (d1); free (d2); free (d3);

};

Here is an example of its work:
#include <idc.idc>

static main() {
MakeName(0x60351000, "_ax_reg");
MakeName(0x60351080, "_ax_unreg");
MakeName(0x603510F0, "_loaddll");
MakeName(0x60351150, "_wtcsrin0");
MakeName(0x60351160, "_wtcsrin");
MakeName(0x603511C0, "_wtcsrfre");
MakeName(0x603511D0, "_wtclkm");
MakeName(0x60351370, "_wtcstu");

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1235
...
}

The example files were used in this example are here: beginners.re.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://beginners.re/examples/oracle/SYM/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1236
Oh, let’s also try Oracle RDBMS for win64. There has to be 64-bit addresses instead,
right?
The 8-byte pattern is visible even easier here:

Figure 9.26: .SYM-file example from Oracle RDBMS for win64

So yes, all tables now have 64-bit elements, even string offsets!
The signature is now OSYMAM64, to distinguish the target platform, apparently.
This is it!
Here is also library which has functions to access Oracle RDBMS.SYM-files: GitHub.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://github.com/DennisYurichev/porg/blob/master/lib/oracle_sym.c
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1237
9.6 Oracle RDBMS: .MSB-files

When working toward the solution of a
problem, it always helps if you know the
answer.

Murphy’s Laws, Rule of Accuracy

This is a binary file that contains error messages with their corresponding numbers.
Let’s try to understand its format and find a way to unpack it.
There are Oracle RDBMS error message files in text form, so we can compare the
text and packed binary files 13.
This is the beginning of the ORAUS.MSG text file with some irrelevant comments
stripped:

Listing 9.11: Beginning of ORAUS.MSG file without comments
00000, 00000, "normal, successful completion"
00001, 00000, "unique constraint (%s.%s) violated"
00017, 00000, "session requested to set trace event"
00018, 00000, "maximum number of sessions exceeded"
00019, 00000, "maximum number of session licenses exceeded"
00020, 00000, "maximum number of processes (%s) exceeded"
00021, 00000, "session attached to some other process; cannot switch ⤦

Ç session"
00022, 00000, "invalid session ID; access denied"
00023, 00000, "session references process private memory; cannot detach ⤦

Ç session"
00024, 00000, "logins from more than one process not allowed in single-⤦

Ç process mode"
00025, 00000, "failed to allocate %s"
00026, 00000, "missing or invalid session ID"
00027, 00000, "cannot kill current session"
00028, 00000, "your session has been killed"
00029, 00000, "session is not a user session"
00030, 00000, "User session ID does not exist."
00031, 00000, "session marked for kill"
...

The first number is the error code. The second is perhaps maybe some additional
flags.

13Open-source text files don’t exist in Oracle RDBMS for every .MSB file, so that’s why we will work on
their file format

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1238
Now let’s open the ORAUS.MSB binary file and find these text strings. And there are:

Figure 9.27: Hiew: first block

We see the text strings (including those from the beginning of the ORAUS.MSG file)
interleaved with some binary values. By quick investigation, we can see that main
part of the binary file is divided by blocks of size 0x200 (512) bytes.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1239
Let’s see the contents of the first block:

Figure 9.28: Hiew: first block

Here we see the texts of the first messages errors. What we also see is that there
are no zero bytes between the error messages. This implies that these are not null-
terminated C strings. As a consequence, the length of each error message must be
encoded somehow. Let’s also try to find the error numbers. The ORAUS.MSG files
starts with these: 0, 1, 17 (0x11), 18 (0x12), 19 (0x13), 20 (0x14), 21 (0x15), 22
(0x16), 23 (0x17), 24 (0x18)... We will find these numbers at the beginning of the
block and mark them with red lines. The period between error codes is 6 bytes.
This implies that there are probably 6 bytes of information allocated for each error
message.
The first 16-bit value (0xA here or 10) means the number of messages in each block:
this can be checked by investigating other blocks. Indeed: the error messages have

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1240
arbitrary size. Some are longer, some are shorter. But block size is always fixed,
hence, you never know how many text messages can be packed in each block.
As we already noted, since these are not null-terminated C strings, their size must be
encoded somewhere. The size of the first string “normal, successful completion” is
29 (0x1D) bytes. The size of the second string “unique constraint (%s.%s) violated”
is 34 (0x22) bytes. We can’t find these values (0x1D or/and 0x22) in the block.
There is also another thing. Oracle RDBMS has to determine the position of the string
it needs to load in the block, right? The first string “normal, successful completion”
starts at position 0x1444 (if we count starting at the beginning of the file) or at
0x44 (from the block’s start). The second string “unique constraint (%s.%s) violated”
starts at position 0x1461 (from the file’s start) or at 0x61 (from the at the block’s
start). These numbers (0x44 and 0x61) are familiar somehow! We can clearly see
them at the start of the block.
So, each 6-byte block is:
• 16-bit error number;
• 16-bit zero (maybe additional flags);
• 16-bit starting position of the text string within the current block.

We can quickly check the other values and be sure our guess is correct. And there
is also the last “dummy” 6-byte block with an error number of zero and starting
position beyond the last error message’s last character. Probably that’s how text
message length is determined? We just enumerate 6-byte blocks to find the error
number we need, then we get the text string’s position, then we get the position
of the text string by looking at the next 6-byte block! This way we determine the
string’s boundaries! This method allows to save some space by not saving the text
string’s size in the file!
It’s not possible to say it saves a lot of space, but it’s a clever trick.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1241
Let’s back to the header of .MSB-file:

Figure 9.29: Hiew: file header

Now we can quickly find the number of blocks in the file (marked by red). We can
checked other .MSB-files and we see that it’s true for all of them.
There are a lot of other values, but we will not investigate them, since our job (an
unpacking utility) is done.
If we have to write a .MSB file packer, we would probably have to understand the
meaning of the other values.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1242
There is also a table that came after the header which probably contains 16-bit val-
ues:

Figure 9.30: Hiew: last_errnos table

Their size can be determined visually (red lines are drawn here).
While dumping these values, we have found that each 16-bit number is the last error
code for each block.
So that’s how Oracle RDBMS quickly finds the error message:
• load a table we will call last_errnos (that contains the last error number for each
block);

• find a block that contains the error code we need, assuming all error codes
increase across each block and across the file as well;

• load the specific block;

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1243
• enumerate the 6-byte structures until the specific error number is found;
• get the position of the first character from the current 6-byte block;
• get the position of the last character from the next 6-byte block;
• load all characters of the message in this range.

This is C program that we wrote which unpacks .MSB-files: beginners.re.
There are also the two files which were used in the example (Oracle RDBMS 11.1.0.6):
beginners.re, beginners.re.

9.6.1 Summary
The method is probably too old-school for modern computers. Supposedly, this file
format was developed in the mid-80’s by someone who also coded for big iron with
memory/disk space economy in mind. Nevertheless, it has been an interesting and
yet easy task to understand a proprietary file format without looking into Oracle
RDBMS’s code.

9.7 Exercises
Try to reverse engineer of any binary files of your favorite game, including high-score
files, resources, etc.
There are also binary files with known structure: utmp/wtmp files, try to understand
its structure without documentation.
The EXIF header in JPEG file is documented, but you can try to understand its struc-
ture without help, just shoot photos at various date/time, places, and try to find
date/time and GPS location in EXIF. Try to patch GPS location, upload JPEG file to
Facebook and see, how it will put your picture on the map.
Try to patch any information in MP3 file and see how your favorite MP3-player will
react.

9.8 Further reading
Pierre Capillon – Black-box cryptanalysis of home-made encryption algorithms: a
practical case study.
How to Hack an Expensive Camera and Not Get Killed by Your Wife.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://beginners.re/examples/oracle/MSB/oracle_msb.c
http://beginners.re/examples/oracle/MSB/oraus.msb
http://beginners.re/examples/oracle/MSB/oraus.msg
https://yurichev.com/mirrors/SSTIC2016-Article-cryptanalyse_en_boite_noire_de_chiffrement_proprietaire-capillon.pdf
https://yurichev.com/mirrors/SSTIC2016-Article-cryptanalyse_en_boite_noire_de_chiffrement_proprietaire-capillon.pdf
https://alexhude.github.io/2019/01/24/hacking-leica-m240.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

Chapter 10

Dynamic binary
instrumentation

DBI tools can be viewed as highly advanced and fast debuggers.

10.1 Using PIN DBI for XOR interception
PIN from Intel is a DBI tool. That means, it takes compiled binary and inserts your
instructions in it, where you want.
Let’s try to intercept all XOR instructions. These are heavily used in cryptography,
and we can try to run WinRAR archiver in encryption mode with a hope that some
XOR instruction is indeed is used while encryption.
Here is the source code ofmy PIN tool: https://beginners.re/paywall/RE4B-source/
current-tree//DBI/XOR/files//XOR_ins.cpp.
The code is almost self-explanatory: it scans input executable file for all XOR/PXOR
instructions and inserts a call to our function before each. log_info() function first
checks, if operands are different (since XOR is often used just to clear register, like
XOR EAX, EAX), and if they are different, it increments a counter at this EIP/RIP, so
the statistics will be gathered.
I have prepared two files for test: test1.bin (30720 bytes) and test2.bin (5547752
bytes), I’ll compress them by RAR with password and see difference in statistics.
You’ll also need to turn off ASLR 1, so the PIN tool will report the same RIPs as in RAR
executable.
Now let’s run it:
c:\pin-3.2-81205-msvc-windows\pin.exe -t XOR_ins.dll -- rar a -⤦

Ç pLongPassword tmp.rar test1.bin

1https://stackoverflow.com/q/9560993

1244

https://beginners.re/paywall/RE4B-source/current-tree//DBI/XOR/files//XOR_ins.cpp
https://beginners.re/paywall/RE4B-source/current-tree//DBI/XOR/files//XOR_ins.cpp
https://stackoverflow.com/q/9560993

1245
c:\pin-3.2-81205-msvc-windows\pin.exe -t XOR_ins.dll -- rar a -⤦

Ç pLongPassword tmp.rar test2.bin

Now here is statistics for the test1.bin:
https://beginners.re/paywall/RE4B-source/current-tree//DBI/XOR/files//XOR_
ins.out.test1. ... and for test2.bin:
https://beginners.re/paywall/RE4B-source/current-tree//DBI/XOR/files//XOR_
ins.out.test2. So far, you can ignore all addresses other than ip=0x1400xxxxx,
which are in other DLLs.
Now let’s see a difference: https://beginners.re/paywall/RE4B-source/current-tree/
/DBI/XOR/files//XOR_ins.diff.
Some XOR instructions are executed more often for test2.bin (which is bigger) than
for test1.bin (which is smaller). So these are clearly related to file size!
The first block of differences is:
< ip=0x140017b21 count=0xd84
< ip=0x140017b48 count=0x81f
< ip=0x140017b59 count=0x858
< ip=0x140017b6a count=0xc13
< ip=0x140017b7b count=0xefc
< ip=0x140017b8a count=0xefd
< ip=0x140017b92 count=0xb86
< ip=0x140017ba1 count=0xf01

> ip=0x140017b21 count=0x9eab5
> ip=0x140017b48 count=0x79863
> ip=0x140017b59 count=0x862e8
> ip=0x140017b6a count=0x99495
> ip=0x140017b7b count=0xa891c
> ip=0x140017b8a count=0xa89f4
> ip=0x140017b92 count=0x8ed72
> ip=0x140017ba1 count=0xa8a8a

This is indeed some kind of loop inside of RAR.EXE:
.text:0000000140017B21 loc_140017B21:
.text:0000000140017B21 xor r11d, [rbx]
.text:0000000140017B24 mov r9d, [rbx+4]
.text:0000000140017B28 add rbx, 8
.text:0000000140017B2C mov eax, r9d
.text:0000000140017B2F shr eax, 18h
.text:0000000140017B32 movzx edx, al
.text:0000000140017B35 mov eax, r9d
.text:0000000140017B38 shr eax, 10h
.text:0000000140017B3B movzx ecx, al
.text:0000000140017B3E mov eax, r9d
.text:0000000140017B41 shr eax, 8
.text:0000000140017B44 mov r8d, [rsi+rdx*4]
.text:0000000140017B48 xor r8d, [rsi+rcx*4+400h]
.text:0000000140017B50 movzx ecx, al
.text:0000000140017B53 mov eax, r11d

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//DBI/XOR/files//XOR_ins.out.test1
https://beginners.re/paywall/RE4B-source/current-tree//DBI/XOR/files//XOR_ins.out.test1
https://beginners.re/paywall/RE4B-source/current-tree//DBI/XOR/files//XOR_ins.out.test2
https://beginners.re/paywall/RE4B-source/current-tree//DBI/XOR/files//XOR_ins.out.test2
https://beginners.re/paywall/RE4B-source/current-tree//DBI/XOR/files//XOR_ins.diff
https://beginners.re/paywall/RE4B-source/current-tree//DBI/XOR/files//XOR_ins.diff
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1246
.text:0000000140017B56 shr eax, 18h
.text:0000000140017B59 xor r8d, [rsi+rcx*4+800h]
.text:0000000140017B61 movzx ecx, al
.text:0000000140017B64 mov eax, r11d
.text:0000000140017B67 shr eax, 10h
.text:0000000140017B6A xor r8d, [rsi+rcx*4+1000h]
.text:0000000140017B72 movzx ecx, al
.text:0000000140017B75 mov eax, r11d
.text:0000000140017B78 shr eax, 8
.text:0000000140017B7B xor r8d, [rsi+rcx*4+1400h]
.text:0000000140017B83 movzx ecx, al
.text:0000000140017B86 movzx eax, r9b
.text:0000000140017B8A xor r8d, [rsi+rcx*4+1800h]
.text:0000000140017B92 xor r8d, [rsi+rax*4+0C00h]
.text:0000000140017B9A movzx eax, r11b
.text:0000000140017B9E mov r11d, r8d
.text:0000000140017BA1 xor r11d, [rsi+rax*4+1C00h]
.text:0000000140017BA9 sub rdi, 1
.text:0000000140017BAD jnz loc_140017B21

What does it do? No idea yet.
The next:
< ip=0x14002c4f1 count=0x4fce

> ip=0x14002c4f1 count=0x4463be

0x4fce is 20430, which is close to size of test1.bin (30720 bytes). 0x4463be is
4481982 which is close to size of test2.bin (5547752 bytes). Not equal, but close.
This is a piece of code with that XOR instruction:
.text:000000014002C4EA loc_14002C4EA:
.text:000000014002C4EA movzx eax, byte ptr [r8]
.text:000000014002C4EE shl ecx, 5
.text:000000014002C4F1 xor ecx, eax
.text:000000014002C4F3 and ecx, 7FFFh
.text:000000014002C4F9 cmp [r11+rcx*4], esi
.text:000000014002C4FD jb short loc_14002C507
.text:000000014002C4FF cmp [r11+rcx*4], r10d
.text:000000014002C503 ja short loc_14002C507
.text:000000014002C505 inc ebx

Loop body can be written as:
state = input_byte ^ (state<<5) & 0x7FFF}.

state is then used as index in some table. Is this some kind of CRC2? I don’t know,
but this could be a checksumming routine. Or maybe optimized CRC routine? Any
ideas?
The next block:

2Cyclic redundancy check

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1247

< ip=0x14004104a count=0x367
< ip=0x140041057 count=0x367

> ip=0x14004104a count=0x24193
> ip=0x140041057 count=0x24193

.text:0000000140041039 loc_140041039:

.text:0000000140041039 mov rax, r10

.text:000000014004103C add r10, 10h

.text:0000000140041040 cmp byte ptr [rcx+1], 0

.text:0000000140041044 movdqu xmm0, xmmword ptr [rax]

.text:0000000140041048 jz short loc_14004104E

.text:000000014004104A pxor xmm0, xmm1

.text:000000014004104E

.text:000000014004104E loc_14004104E:

.text:000000014004104E movdqu xmm1, xmmword ptr [rcx+18h]

.text:0000000140041053 movsxd r8, dword ptr [rcx+4]

.text:0000000140041057 pxor xmm1, xmm0

.text:000000014004105B cmp r8d, 1

.text:000000014004105F jle short loc_14004107C

.text:0000000140041061 lea rdx, [rcx+28h]

.text:0000000140041065 lea r9d, [r8-1]

.text:0000000140041069

.text:0000000140041069 loc_140041069:

.text:0000000140041069 movdqu xmm0, xmmword ptr [rdx]

.text:000000014004106D lea rdx, [rdx+10h]

.text:0000000140041071 aesenc xmm1, xmm0

.text:0000000140041076 sub r9, 1

.text:000000014004107A jnz short loc_140041069

.text:000000014004107C

This piece has both PXOR and AESENC instructions (the last is AES3 encryption in-
struction). So yes, we found encryption function, RAR uses AES.
There is also another big block of almost contiguous XOR instructions:
< ip=0x140043e10 count=0x23006

> ip=0x140043e10 count=0x23004
499c510
< ip=0x140043e56 count=0x22ffd

> ip=0x140043e56 count=0x23002

But, its count is not very different during compressing/encrypting test1.bin/test2.bin.
What is on these addresses?
.text:0000000140043E07 xor ecx, r9d
.text:0000000140043E0A mov r11d, eax
.text:0000000140043E0D and ecx, r10d
.text:0000000140043E10 xor ecx, r8d

3Advanced Encryption Standard

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1248
.text:0000000140043E13 rol eax, 8
.text:0000000140043E16 and eax, esi
.text:0000000140043E18 ror r11d, 8
.text:0000000140043E1C add edx, 5A827999h
.text:0000000140043E22 ror r10d, 2
.text:0000000140043E26 add r8d, 5A827999h
.text:0000000140043E2D and r11d, r12d
.text:0000000140043E30 or r11d, eax
.text:0000000140043E33 mov eax, ebx

Let’s google 5A827999h constant... this looks like SHA-1! But why would RAR use
SHA-1 during encryption?
Here is the answer:
In comparison, WinRAR uses its own key derivation scheme that requires (⤦

Ç password length * 2 + 11)*4096 SHA-1 transformations. ’Thats why it ⤦
Ç takes longer to brute-force attack encrypted WinRAR archives.

(http://www.tomshardware.com/reviews/password-recovery-gpu,2945-8.html
)
This is key scheduling: input password hashed many times and the hash is then used
as AES key. This is why we see the count of XOR instruction is almost unchanged
during we switched to bigger test file.
This is it, it took couple of hours for me to write this tool and to get at least 3 points: 1)
probably checksumming; 2) AES encryption; 3) SHA-1 calculation. The first function
is still unknown for me.
Still, this is impressive, because I didn’t dig into RAR code (which is proprietary, of
course). I didn’t even peek into UnRAR source code (which is available).
The files, including test files and RAR executable I’ve used (win64, 5.40):
https://beginners.re/paywall/RE4B-source/current-tree//DBI/XOR/files/.

10.2 Cracking Minesweeper with PIN
In this book, I wrote about cracking Minesweeper for Windows XP: 8.4 on page 1021.
The Minesweeper in Windows Vista and 7 is different: probably it was (re)written to
C++, and a cell information is now stored not in global array, but rather in malloc’ed
heap blocks.
This is a case when we can try PIN DBI tool.

10.2.1 Intercepting all rand() calls
First, since Minesweeper places mines randomly, it has to call rand() or similar func-
tion. Let’s intercept all rand() calls: https://beginners.re/paywall/RE4B-source/
current-tree//DBI/minesweeper/minesweeper1.cpp.
Now we can run it:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.tomshardware.com/reviews/password-recovery-gpu,2945-8.html
https://beginners.re/paywall/RE4B-source/current-tree//DBI/XOR/files/
https://beginners.re/paywall/RE4B-source/current-tree//DBI/minesweeper/minesweeper1.cpp
https://beginners.re/paywall/RE4B-source/current-tree//DBI/minesweeper/minesweeper1.cpp
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1249

c:\pin-3.2-81205-msvc-windows\pin.exe -t minesweeper1.dll -- C:\PATH\TO\⤦
Ç MineSweeper.exe

During startup, PIN searches for all calls to rand() function and adds a hook right after
each call. The hook is the RandAfter() function we defined: it is logging about return
value and also about return address. Here is a log I got during run of standard 9*9
configuration (10mines): https://beginners.re/paywall/RE4B-source/current-tree/
/DBI/minesweeper/minesweeper1.out.10mines. The rand() function was called
many times from several places, but was called from 0x10002770d just 10 times.
I switched Minesweeper to 16*16 configuration (40 mines) and rand() was called
from 0x10002770d 40 times. So yes, this is our point. When I load minesweeper.exe
(from Windows 7) into IDA and PDB from Microsoft website is fetched, the function
which calls rand() at 0x10002770d called Board::placeMines().

10.2.2 Replacing rand() calls with our function
Let’s now try to replace rand() function with our version, let it always return zero:
https://beginners.re/paywall/RE4B-source/current-tree//DBI/minesweeper/
minesweeper2.cpp. During startup, PIN replaces all calls to rand() to calls to our
function, which writes to log and returns zero. OK, I run it, and clicked on leftmost/-
topmost cell:

Yes, unlike Minesweeper from Windows XP, mines are places randomly after user’s
click on cell, so to guarantee there is no mine at the cell user first clicked. So
Minesweeper placed mines on cells other than leftmost/topmost (where I clicked).
Now I clicked on rightmost/topmost cell:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//DBI/minesweeper/minesweeper1.out.10mines
https://beginners.re/paywall/RE4B-source/current-tree//DBI/minesweeper/minesweeper1.out.10mines
https://beginners.re/paywall/RE4B-source/current-tree//DBI/minesweeper/minesweeper2.cpp
https://beginners.re/paywall/RE4B-source/current-tree//DBI/minesweeper/minesweeper2.cpp
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1250

This can be some kind of practical joke? I don’t know.
I clicked on 5th cell (right at the middle) at the 1st row:

This is nice, because Minesweeper can do some correct placement even with such
a broken PRNG!

10.2.3 Peeking into placement of mines
How can we get information about where mines are placed? rand()’s result is seems
to be useless: it returned zero all the time, but Minesweeper somehow managed to
place mines in different cells, though, lined up.
This Minesweeper also written in C++ tradition, so it has no global arrays.
Let us put ourselves in the position of programmer. It has to be loop like:
for (int i; i<mines_total; i++)
{

// get coordinates using rand()
// put a cell: in other words, modify a block allocated in heap

};

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1251
How can we get information about heap block which gets modified at the 2nd step?
What we need to do: 1) track all heap allocations by interceptingmalloc()/realloc()/free().
2) track all memory writes (slow). 3) intercept calls to rand().
Now the algorithm: 1) mark all heap blocks gets modified between 1st and 2nd call
to rand() from 0x10002770d; 2) whenever heap block gets freed, dump its contents.
Tracking all memory writes is slow, but after 2nd call to rand(), we don’t need to
track it (since we’ve got already a list of blocks of interest at this point), so we turn
it off.
Now the code: https://beginners.re/paywall/RE4B-source/current-tree//DBI/
minesweeper/minesweeper3.cpp.
As it turns out, only 4 heap blocks gets modified between first two rand() calls, this
is how they looks like:
free(0x20aa6360)
free(): we have this block in our records, size=0x28
0x20AA6360: 36 00 00 00 4E 00 00 00-2D 00 00 00 29 00 00 00 "6...N...-...)⤦

Ç ..."
0x20AA6370: 06 00 00 00 37 00 00 00-35 00 00 00 19 00 00 00 ⤦

Ç "....7...5......."
0x20AA6380: 46 00 00 00 0B 00 00 00- "F....... ⤦

Ç "

...

free(0x20af9d10)
free(): we have this block in our records, size=0x18
0x20AF9D10: 0A 00 00 00 0A 00 00 00-0A 00 00 00 00 00 00 00 ⤦

Ç "................"
0x20AF9D20: 60 63 AA 20 00 00 00 00- "`c. ⤦

Ç "

...

free(0x20b28b20)
free(): we have this block in our records, size=0x140
0x20B28B20: 02 00 00 00 03 00 00 00-04 00 00 00 05 00 00 00 ⤦

Ç "................"
0x20B28B30: 07 00 00 00 08 00 00 00-0C 00 00 00 0D 00 00 00 ⤦

Ç "................"
0x20B28B40: 0E 00 00 00 0F 00 00 00-10 00 00 00 11 00 00 00 ⤦

Ç "................"
0x20B28B50: 12 00 00 00 13 00 00 00-14 00 00 00 15 00 00 00 ⤦

Ç "................"
0x20B28B60: 16 00 00 00 17 00 00 00-18 00 00 00 1A 00 00 00 ⤦

Ç "................"
0x20B28B70: 1B 00 00 00 1C 00 00 00-1D 00 00 00 1E 00 00 00 ⤦

Ç "................"
0x20B28B80: 1F 00 00 00 20 00 00 00-21 00 00 00 22 00 00 00 ".... ⤦

Ç ...!..."..."
0x20B28B90: 23 00 00 00 24 00 00 00-25 00 00 00 26 00 00 00 "#...$⤦

Ç ...%...&..."

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//DBI/minesweeper/minesweeper3.cpp
https://beginners.re/paywall/RE4B-source/current-tree//DBI/minesweeper/minesweeper3.cpp
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1252
0x20B28BA0: 27 00 00 00 28 00 00 00-2A 00 00 00 2B 00 00 00 ⤦

Ç "'...(...*...+..."
0x20B28BB0: 2C 00 00 00 2E 00 00 00-2F 00 00 00 30 00 00 00 ⤦

Ç ",......./...0..."
0x20B28BC0: 31 00 00 00 32 00 00 00-33 00 00 00 34 00 00 00 ⤦

Ç "1...2...3...4..."
0x20B28BD0: 38 00 00 00 39 00 00 00-3A 00 00 00 3B 00 00 00 ⤦

Ç "8...9...:...;..."
0x20B28BE0: 3C 00 00 00 3D 00 00 00-3E 00 00 00 3F 00 00 00 ⤦

Ç "<...=...>...?..."
0x20B28BF0: 40 00 00 00 41 00 00 00-42 00 00 00 43 00 00 00 "@...A...B...C⤦

Ç ..."
0x20B28C00: 44 00 00 00 45 00 00 00-47 00 00 00 48 00 00 00 "D...E...G...H⤦

Ç ..."
0x20B28C10: 49 00 00 00 4A 00 00 00-4B 00 00 00 4C 00 00 00 "I...J...K...L⤦

Ç ..."
0x20B28C20: 4D 00 00 00 4F 00 00 00-50 00 00 00 50 00 00 00 "M...O...P...P⤦

Ç ..."
0x20B28C30: 50 00 00 00 50 00 00 00-50 00 00 00 50 00 00 00 "P...P...P...P⤦

Ç ..."
0x20B28C40: 50 00 00 00 50 00 00 00-50 00 00 00 50 00 00 00 "P...P...P...P⤦

Ç ..."
0x20B28C50: 50 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 "P⤦

Ç"

...

free(0x20af9cf0)
free(): we have this block in our records, size=0x18
0x20AF9CF0: 43 00 00 00 50 00 00 00-10 00 00 00 20 00 74 00 "C...P....... .⤦

Ç t."
0x20AF9D00: 20 8B B2 20 00 00 00 00- " ⤦

Ç "

We can easily see that the biggest blocks (with size 0x28 and 0x140) are just arrays
of values up to ≈ 0x50. Wait... 0x50 is 80 in decimal representation. And 9*9=81
(standard minesweeper configuration).
After quick investigation, I’ve found that each 32-bit element is indeed cell coordi-
nate. A cell is represented using a single number, it’s a number inside of 2D-array.
Row and column of each mine is decoded like that: row=n / WIDTH; col=n % HEIGHT;
So when I tried to decode these two biggest blocks, I’ve got these cell maps:
try_to_dump_cells(). unique elements=0xa
......*..
..*......
.......*.
.........
.....*...
.......
**.......
.......*.
......*..

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1253

...

try_to_dump_cells(). unique elements=0x44
*.****.**
...******
*******.*

*****.***
.*******.
..*******
*******.*
******.**

It seems that the first block is just a list of mines placed, while the second block is
a list of free cells, but, the second is somewhat out of sync with the first one, and
it’s negative version of the first one coincides only partially. Nevertheless, the first
map is correct - we can peek into it in log file when Minesweeper is still loaded and
almost all cells are hidden, and click safely on cells marked as dots here.
So it seems, when user first clicked somewhere, Minesweeper places 10 mines, than
destroys the block with a list of it (perhaps, it copies all the data to another block
before?), so we can see it during free() call.
Another fact: the method Array<NodeType>::Add(NodeType) modifies blocks we ob-
served, and is called from various places, including Board::placeMines(). But what
is cool: I never got into its details, everything has been resolved using just PIN.
The files: https://beginners.re/paywall/RE4B-source/current-tree//DBI/minesweeper.

10.2.4 Exercise
Try to understand how rand()’s result being converted into coordinate(s). As a prac-
tical joke, make rand() to output such results, so mines will be placed in shape of
some symbol or figure.

10.3 Building Intel Pin
Building Intel Pin for Windows may be tricky. This is my working recipe.
• Unpack the latest Intel Pin to, say, C:\pin-3.20\
• Install latest Cygwin, to, say, c:\cygwin64
• Install MSVC 2015 or newer.
• (If needed) in C:\pin-3.20\source\tools\SimpleExamples\makefile.rules,
add your pintool to the TEST_TOOL_ROOTS list.

• Open ”VS2015 x86 Native Tools Command Prompt”. Type:
set PATH=%PATH%;c:\cygwin64/bin
cd c:\pin-3.20\source\tools

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//DBI/minesweeper
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1254
make all TARGET=ia32

(It will require many UNIX utilities, which are available under c:\cygwin64\bin
path. Hence the PATH variable is to be modified.)
Now pintools are now in c:\pin-3.20\source\tools\...\obj-ia32

• For winx64, use ”x64 Native Tools Command Prompt” and run:
make all TARGET=intel64

• Run a pintool:
c:\pin-3.20\pin.exe -t C:\pin-3.20\source\tools\SimpleExamples\obj-ia32⤦

Ç \XOR_ins.dll -- program.exe arguments

Intel Pin 3.20 require at least Windows 10. On Windows 7 you may got an error like:
A: source\pincrt\injector_w\maincrt_windows.cpp: LEVEL_BASE::RootMain: 139:⤦

Ç assertion failed: NT_SUCCESS(ntStatus)

NO STACK TRACE AVAILABLE

It also works in Windows Sever 2012.

10.4 Why “instrumentation”?
Perhaps, this is a term of code profiling. There are at least two methods: 1) ”sam-
pling”: you break into running code as many times as possible (hundreds per sec-
ond), and see, where it is executed at the moment; 2) ”instrumentation”: compiled
code is interleaved with other code, which can increment counters, etc.
Perhaps, DBI tools inherited the term?

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

Chapter 11

Other things

11.1 Using IMUL over MUL
Example like listing.3.23.2 where two unsigned values are multiplied compiles into
listing.3.23.2 where IMUL is used instead of MUL.
This is important property of both MUL and IMUL instructions. First of all, they both
produce 64-bit value if two 32-bit values are multiplied, or 128-bit value if two 64-bit
values are multiplied (biggest possible product in 32-bit environment is
0xffffffff*0xffffffff=0xfffffffe00000001). But C/C++ standards have noway
to access higher half of result, and a product always has the same size as multipli-
cands. And both MUL and IMUL instructions works in the same way if higher half is
ignored, i.e., they both generate the same lower half. This is important property of
“two’s complement” way of representing signed numbers.
So C/C++ compiler can use any of these instructions.
But IMUL is more versatile than MUL because it can take any register(s) as source,
while MUL requires one of multiplicands stored in AX/EAX/RAX register. Evenmore than
that: MUL stores result in EDX:EAX pair in 32-bit environment, or RDX:RAX in 64-bit
one, so it always calculates the whole result. On contrary, it’s possible to set a single
destination register while using IMUL instead of pair, and then CPU will calculate
only lower half, which works faster [see Torborn Granlund, Instruction latencies and
throughput for AMD and Intel x86 processors1).
Given that, C/C++ compilers may generate IMUL instruction more often then MUL.
Nevertheless, using compiler intrinsic, it’s still possible to do unsigned multiplication
and get full result. This is sometimes called extended multiplication. MSVC has
intrinsic for this called __emul2 and another one: _umul1283. GCC offer __int128
data type, and if 64-bit multiplicands are first promoted to 128-bit ones, then a

1http://yurichev.com/mirrors/x86-timing.pdf]
2https://msdn.microsoft.com/en-us/library/d2s81xt0(v=vs.80).aspx
3https://msdn.microsoft.com/library/3dayytw9%28v=vs.100%29.aspx

1255

http://yurichev.com/mirrors/x86-timing.pdf
https://msdn.microsoft.com/en-us/library/d2s81xt0(v=vs.80).aspx
https://msdn.microsoft.com/library/3dayytw9%28v=vs.100%29.aspx

1256
product is stored into another __int128 value, then result is shifted by 64 bits right,
you’ll get higher half of result4.

11.1.1 MulDiv() function in Windows
Windows has MulDiv() function 5, fused multiply/divide function, it multiplies two
32-bit integers into intermediate 64-bit value and then divides it by a third 32-bit
integer. It is easier than to use two compiler intrinsic, so Microsoft developers made
a special function for it. And it seems, this is busy function, judging by its usage.

11.2 Executable files patching
11.2.1 x86 code
Frequent patching tasks are:
• One of the most frequent jobs is to disable some instruction. It is often done by
filling it using byte 0x90 (NOP).

• Conditional jumps, which have an opcode like 74 xx (JZ), can be filled with two
NOPs.
It is also possible to disable a conditional jump by writing 0 at the second byte
(jump offset).

• Another frequent job is to make a conditional jump to always trigger: this can
be done by writing 0xEB instead of the opcode, which stands for JMP.

• A function’s execution can be disabled by writing RETN (0xC3) at its beginning.
This is true for all functions excluding stdcall (6.1.2 on page 932). While patch-
ing stdcall functions, one has to determine the number of arguments (for ex-
ample, by finding RETN in this function), and use RETN with a 16-bit argument
(0xC2).

• Sometimes, a disabled functions has to return 0 or 1. This can be done by MOV
EAX, 0 or MOV EAX, 1, but it’s slightly verbose.
A better way is XOR EAX, EAX (2 bytes 0x31 0xC0) or XOR EAX, EAX / INC
EAX (3 bytes 0x31 0xC0 0x40).

A software may be protected against modifications.
This protection is often done by reading the executable code and calculating a check-
sum. Therefore, the code must be read before protection is triggered.
This can be determined by setting a breakpoint on reading memory.
tracer has the BPM option for this.
PE executable file relocs (6.5.2 on page 967) must not to be touched while patching,
because the Windows loader may overwrite your new code. (They are grayed in
Hiew, for example: fig.1.21).

4Example: http://stackoverflow.com/a/13187798
5https://msdn.microsoft.com/en-us/library/windows/desktop/aa383718(v=vs.85).aspx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://stackoverflow.com/a/13187798
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383718(v=vs.85).aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1257
As a last resort, it is possible to write jumps that circumvent the relocs, or you will
have to edit the relocs table.

11.3 Function arguments number statistics
I’ve always been interesting in what is average number of function arguments.
I’ve analyzed many Windows 7 32-bit DLLs
(crypt32.dll, mfc71.dll, msvcr100.dll, shell32.dll, user32.dll, d3d11.dll, mshtml.dll,
msxml6.dll, sqlncli11.dll, wininet.dll, mfc120.dll, msvbvm60.dll, ole32.dll, themeui.dll,
wmp.dll) (because they use stdcall convention, and so it is easy to grep disassembly
output just by RETN X).
• no arguments: ≈ 29%
• 1 argument: ≈ 23%
• 2 arguments: ≈ 20%
• 3 arguments: ≈ 11%
• 4 arguments: ≈ 7%
• 5 arguments: ≈ 3%
• 6 arguments: ≈ 2%
• 7 arguments: ≈ 1%

Figure 11.1: Function arguments number statistics

This is heavily dependent on programming style and may be very different for other
software products.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1258
11.4 Compiler intrinsic
A function specific to a compiler which is not an usual library function. The compiler
generates a specific machine code instead of a call to it. It is often a pseudofunction
for specific CPU instruction.

For example, there are no cyclic shift operations in C/C++ languages, but they are
present in most CPUs. For programmer’s convenience, at least MSVC has pseud-
ofunctions _rotl() and _rotr()6 which are translated by the compiler directly to the
ROL/ROR x86 instructions.

Another example are functions to generate SSE-instructions right in the code.
Full list of MSVC intrinsics: MSDN.

11.5 Compiler’s anomalies
11.5.1 Oracle RDBMS 11.2 and Intel C++ 10.1
Intel C++ 10.1, which was used for Oracle RDBMS 11.2 Linux86 compilation, may
emit two JZ in row, and there are no references to the second JZ. The second JZ is
thus meaningless.

Listing 11.1: kdli.o from libserver11.a
.text:08114CF1 loc_8114CF1: ;

CODE XREF: __PGOSF539_kdlimemSer+89A
.text:08114CF1 ; __PGOSF539_kdlimemSer+3994
.text:08114CF1 8B 45 08 mov eax, [ebp+arg_0]
.text:08114CF4 0F B6 50 14 movzx edx, byte ptr [eax+14h]
.text:08114CF8 F6 C2 01 test dl, 1
.text:08114CFB 0F 85 17 08 00 00 jnz loc_8115518
.text:08114D01 85 C9 test ecx, ecx
.text:08114D03 0F 84 8A 00 00 00 jz loc_8114D93
.text:08114D09 0F 84 09 08 00 00 jz loc_8115518
.text:08114D0F 8B 53 08 mov edx, [ebx+8]
.text:08114D12 89 55 FC mov [ebp+var_4], edx
.text:08114D15 31 C0 xor eax, eax
.text:08114D17 89 45 F4 mov [ebp+var_C], eax
.text:08114D1A 50 push eax
.text:08114D1B 52 push edx
.text:08114D1C E8 03 54 00 00 call len2nbytes
.text:08114D21 83 C4 08 add esp, 8

Listing 11.2: from the same code
.text:0811A2A5 loc_811A2A5: ; CODE XREF: kdliSerLengths+11C
.text:0811A2A5 ; kdliSerLengths+1C1
.text:0811A2A5 8B 7D 08 mov edi, [ebp+arg_0]
.text:0811A2A8 8B 7F 10 mov edi, [edi+10h]

6MSDN

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/26td21ds.aspx
http://msdn.microsoft.com/en-us/library/5cc576c4.aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1259
.text:0811A2AB 0F B6 57 14 movzx edx, byte ptr [edi+14h]
.text:0811A2AF F6 C2 01 test dl, 1
.text:0811A2B2 75 3E jnz short loc_811A2F2
.text:0811A2B4 83 E0 01 and eax, 1
.text:0811A2B7 74 1F jz short loc_811A2D8
.text:0811A2B9 74 37 jz short loc_811A2F2
.text:0811A2BB 6A 00 push 0
.text:0811A2BD FF 71 08 push dword ptr [ecx+8]
.text:0811A2C0 E8 5F FE FF FF call len2nbytes

It is supposedly a code generator bug that was not found by tests, because resulting
code works correctly anyway.
Another example from Oracle RDBMS 11.1.0.6.0 for win32.
.text:0051FBF8 85 C0 test eax, eax
.text:0051FBFA 0F 84 8F 00 00 00 jz loc_51FC8F
.text:0051FC00 74 1D jz short loc_51FC1F

11.5.2 MSVC 6.0
Just found in some old code:

fabs
fild [esp+50h+var_34]
fabs
fxch st(1) ; first instruction
fxch st(1) ; second instruction
faddp st(1), st
fcomp [esp+50h+var_3C]
fnstsw ax
test ah, 41h
jz short loc_100040B7

The first FXCH instruction swaps ST(0) and ST(1), the second do the same, so both
do nothing. This is a program uses MFC42.dll, so it could be MSVC 6.0, 5.0 or maybe
even MSVC 4.2 from 1990s.
This pair do nothing, so it probably wasn’t caught by MSVC compiler tests. Or maybe
I wrong?

11.5.3 ftol2() in MSVC 2012
Just found this in ftol2() standard C/C++ library function (float-to-long conversion
routine) in Microsoft Visual Studio 2012.

public __ftol2
__ftol2 proc near

push ebp
mov ebp, esp
sub esp, 20h
and esp, 0FFFFFFF0h

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1260
fld st
fst dword ptr [esp+18h]
fistp qword ptr [esp+10h]
fild qword ptr [esp+10h]
mov edx, [esp+18h]
mov eax, [esp+10h]
test eax, eax
jz short integer_QnaN_or_zero

arg_is_not_integer_QnaN:
fsubp st(1), st
test edx, edx
jns short positive
fstp dword ptr [esp]
mov ecx, [esp]
xor ecx, 80000000h
add ecx, 7FFFFFFFh
adc eax, 0
mov edx, [esp+14h]
adc edx, 0
jmp short localexit

positive:
fstp dword ptr [esp]
mov ecx, [esp]
add ecx, 7FFFFFFFh
sbb eax, 0
mov edx, [esp+14h]
sbb edx, 0
jmp short localexit

integer_QnaN_or_zero:
mov edx, [esp+14h]
test edx, 7FFFFFFFh
jnz short arg_is_not_integer_QnaN
fstp dword ptr [esp+18h] ; first
fstp dword ptr [esp+18h] ; second

localexit:
leave
retn

__ftol2 endp

Note two identical FSTP-s (float store with pop) at the end. First I thought it was
compiler anomaly (I’m collecting such cases just as someone do with butterflies),
but it seems, it’s handwritten assembler piece, in msvcrt.lib there is an object file
with this function in it, and we can find this string in it:
f:\dd\vctools\crt_bld\SELF_X86\crt\prebuild\tran\i386\ftol2.asm — that
was probably a path to the file on developer’s computer where msvcrt.lib was built.
So, bug, text editor-induced typo, or it was done by intent? The code working cor-
rectly, anyway.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1261
11.5.4 Summary
Other compiler anomalies here in this book: 1.28.2 on page 395, 3.10.3 on page 616,
3.18.7 on page 667, 1.26.7 on page 376, 1.18.4 on page 185, 1.28.5 on page 416.
Such cases are demonstrated here in this book, to show that such compilers errors
are possible and sometimes one should not to rack one’s brain while thinking why
did the compiler generate such strange code.

11.6 Itanium
Although almost failed, Intel Itanium (IA64) is a very interesting architecture.
While OOE CPUs decides how to rearrange their instructions and execute them in
parallel, EPIC7 was an attempt to shift these decisions to the compiler: to let it group
the instructions at the compile stage.
This resulted in notoriously complex compilers.
Here is one sample of IA64 code: simple cryptographic algorithm from the Linux
kernel:

Listing 11.3: Linux kernel 3.2.0.4
#define TEA_ROUNDS 32
#define TEA_DELTA 0x9e3779b9

static void tea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{

u32 y, z, n, sum = 0;
u32 k0, k1, k2, k3;
struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
const __le32 *in = (const __le32 *)src;
__le32 *out = (__le32 *)dst;

y = le32_to_cpu(in[0]);
z = le32_to_cpu(in[1]);

k0 = ctx->KEY[0];
k1 = ctx->KEY[1];
k2 = ctx->KEY[2];
k3 = ctx->KEY[3];

n = TEA_ROUNDS;

while (n-- > 0) {
sum += TEA_DELTA;
y += ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);

}

out[0] = cpu_to_le32(y);

7Explicitly Parallel Instruction Computing

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1262
out[1] = cpu_to_le32(z);

}

Here is how it was compiled:

Listing 11.4: Linux Kernel 3.2.0.4 for Itanium 2 (McKinley)
0090| tea_encrypt:
0090|08 80 80 41 00 21 adds r16 = 96, r32 // ptr to ctx->⤦

Ç KEY[2]
0096|80 C0 82 00 42 00 adds r8 = 88, r32 // ptr to ctx->⤦

Ç KEY[0]
009C|00 00 04 00 nop.i 0
00A0|09 18 70 41 00 21 adds r3 = 92, r32 // ptr to ctx->⤦

Ç KEY[1]
00A6|F0 20 88 20 28 00 ld4 r15 = [r34], 4 // load z
00AC|44 06 01 84 adds r32 = 100, r32;; // ptr to ctx->⤦

Ç KEY[3]
00B0|08 98 00 20 10 10 ld4 r19 = [r16] // r19=k2
00B6|00 01 00 00 42 40 mov r16 = r0 // r0 always ⤦

Ç contain zero
00BC|00 08 CA 00 mov.i r2 = ar.lc // save lc ⤦

Ç register
00C0|05 70 00 44 10 10

9E FF FF FF 7F 20 ld4 r14 = [r34] // load y
00CC|92 F3 CE 6B movl r17 = 0xFFFFFFFF9E3779B9;; // TEA_DELTA
00D0|08 00 00 00 01 00 nop.m 0
00D6|50 01 20 20 20 00 ld4 r21 = [r8] // r21=k0
00DC|F0 09 2A 00 mov.i ar.lc = 31 // TEA_ROUNDS ⤦

Ç is 32
00E0|0A A0 00 06 10 10 ld4 r20 = [r3];; // r20=k1
00E6|20 01 80 20 20 00 ld4 r18 = [r32] // r18=k3
00EC|00 00 04 00 nop.i 0
00F0|
00F0| loc_F0:
00F0|09 80 40 22 00 20 add r16 = r16, r17 // r16=sum, r17⤦

Ç =TEA_DELTA
00F6|D0 71 54 26 40 80 shladd r29 = r14, 4, r21 // r14=y, r21=⤦

Ç k0
00FC|A3 70 68 52 extr.u r28 = r14, 5, 27;;
0100|03 F0 40 1C 00 20 add r30 = r16, r14
0106|B0 E1 50 00 40 40 add r27 = r28, r20;; // r20=k1
010C|D3 F1 3C 80 xor r26 = r29, r30;;
0110|0B C8 6C 34 0F 20 xor r25 = r27, r26;;
0116|F0 78 64 00 40 00 add r15 = r15, r25 // r15=z
011C|00 00 04 00 nop.i 0;;
0120|00 00 00 00 01 00 nop.m 0
0126|80 51 3C 34 29 60 extr.u r24 = r15, 5, 27
012C|F1 98 4C 80 shladd r11 = r15, 4, r19 // r19=k2
0130|0B B8 3C 20 00 20 add r23 = r15, r16;;
0136|A0 C0 48 00 40 00 add r10 = r24, r18 // r18=k3
013C|00 00 04 00 nop.i 0;;
0140|0B 48 28 16 0F 20 xor r9 = r10, r11;;
0146|60 B9 24 1E 40 00 xor r22 = r23, r9

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1263
014C|00 00 04 00 nop.i 0;;
0150|11 00 00 00 01 00 nop.m 0
0156|E0 70 58 00 40 A0 add r14 = r14, r22
015C|A0 FF FF 48 br.cloop.sptk.few loc_F0;;
0160|09 20 3C 42 90 15 st4 [r33] = r15, 4 // store z
0166|00 00 00 02 00 00 nop.m 0
016C|20 08 AA 00 mov.i ar.lc = r2;; // restore lc ⤦

Ç register
0170|11 00 38 42 90 11 st4 [r33] = r14 // store y
0176|00 00 00 02 00 80 nop.i 0
017C|08 00 84 00 br.ret.sptk.many b0;;

First of all, all IA64 instructions are grouped into 3-instruction bundles.
Each bundle has a size of 16 bytes (128 bits) and consists of template code (5 bits)
+ 3 instructions (41 bits for each).
IDA shows the bundles as 6+6+4 bytes —you can easily spot the pattern.
All 3 instructions from each bundle usually executes simultaneously, unless one of
instructions has a “stop bit”.
Supposedly, Intel and HP engineers gathered statistics on most frequent instruction
patterns and decided to bring bundle types (AKA “templates”): a bundle code defines
the instruction types in the bundle. There are 12 of them.
For example, the zeroth bundle type is MII, which implies the first instruction is
Memory (load or store), the second and third ones are I (integer instructions).
Another example is the bundle of type 0x1d: MFB: the first instruction is Memory
(load or store), the second one is Float (FPU instruction), and the third is Branch
(branch instruction).
If the compiler cannot pick a suitable instruction for the relevant bundle slot, it may
insert a NOP: you can see here the nop.i instructions (NOP at the place where the
integer instruction might be) or nop.m (a memory instruction might be at this slot).
NOPs are inserted automatically when one uses assembly language manually.
And that is not all. Bundles are also grouped.
Each bundle may have a “stop bit”, so all the consecutive bundles with a terminating
bundle which has the “stop bit” can be executed simultaneously.
In practice, Itanium 2 can execute 2 bundles at once, resulting in the execution of 6
instructions at once.
So all instructions inside a bundle and a bundle group cannot interfere with each
other (i.e., must not have data hazards).
If they do, the results are to be undefined.
Each stop bit is marked in assembly language as two semicolons (;;) after the in-
struction.
So, the instructions at [90-ac] may be executed simultaneously: they do not interfere.
The next group is [b0-cc].

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1264
We also see a stop bit at 10c. The next instruction at 110 has a stop bit too.
This implies that these instructions must be executed isolated from all others (as in
CISC).
Indeed: the next instruction at 110 uses the result from the previous one (the value
in register r26), so they cannot be executed at the same time.
Apparently, the compiler was not able to find a better way to parallelize the instruc-
tions, in other words, to load CPU as much as possible, hence too much stop bits and
NOPs.
Manual assembly programming is a tedious job as well: the programmer has to group
the instructions manually.
The programmer is still able to add stop bits to each instructions, but this will degrade
the performance that Itanium was made for.
An interesting examples of manual IA64 assembly code can be found in the Linux
kernel’s sources:
http://lxr.free-electrons.com/source/arch/ia64/lib/.
Another introductory paper on Itanium assembly: [Mike Burrell, Writing Efficient Ita-
nium 2 Assembly Code (2010)]8, [papasutra of haquebright, WRITING SHELLCODE
FOR IA-64 (2001)]9.
Another very interesting Itanium feature is the speculative execution and the NaT
(“not a thing”) bit, somewhat resembling NaN numbers:
MSDN.

11.7 8086 memory model
When dealing with 16-bit programs for MS-DOS or Win16 (8.8.3 on page 1078 or
3.34.5 on page 827), we can see that the pointers consist of two 16-bit values. What
do they mean? Oh yes, that is another weird MS-DOS and 8086 artifact.
8086/8088 was a 16-bit CPU, but was able to address 20-bit address in RAM (thus
being able to access 1MB of external memory).
The external memory address space was divided between RAM (640KB max), ROM,
windows for video memory, EMS cards, etc.
Let’s also recall that 8086/8088 was in fact an inheritor of the 8-bit 8080 CPU.
The 8080 has a 16-bit memory space, i.e., it was able to address only 64KB.
And probably because of reason of old software porting10, 8086 can support many
64KB windows simultaneously, placed within the 1MB address space.
This is some kind of a toy-level virtualization.

8Also available as http://yurichev.com/mirrors/RE/itanium.pdf
9Also available as http://phrack.org/issues/57/5.html
10The author is not 100% sure here

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://lxr.free-electrons.com/source/arch/ia64/lib/
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/19/60162.aspx
http://yurichev.com/mirrors/RE/itanium.pdf
http://phrack.org/issues/57/5.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1265
All 8086 registers are 16-bit, so to address more, special segment registers (CS, DS,
ES, SS) were introduced.
Each 20-bit pointer is calculated using the values from a segment register and an
address register pair (e.g. DS:BX) as follows:

real_address = (segment_register ≪ 4) + address_register
For example, the graphics (EGA11, VGA12) video RAMwindow on old IBM PC-compatibles
has a size of 64KB.
To access it, a value of 0xA000 has to be stored in one of the segment registers, e.g.
into DS.
Then DS:0 will address the first byte of video RAM and DS:0xFFFF — the last byte of
RAM.
The real address on the 20-bit address bus, however, will range from 0xA0000 to
0xAFFFF.
The program may contain hard-coded addresses like 0x1234, but the OS may need
to load the program at arbitrary addresses, so it recalculates the segment register
values in a way that the program does not have to care where it’s placed in the RAM.
So, any pointer in the old MS-DOS environment in fact consisted of the segment
address and the address inside segment, i.e., two 16-bit values. 20-bit was enough
for that, though, but we needed to recalculate the addresses very often: passing
more information on the stack seemed a better space/convenience balance.
By the way, because of all this it was not possible to allocate a memory block larger
than 64KB.
The segment registers were reused at 80286 as selectors, serving a different func-
tion.
When the 80386 CPU and computers with bigger RAM were introduced, MS-DOS
was still popular, so the DOS extenders emerged: these were in fact a step toward
a “serious” OS, switching the CPU in protected mode and providing much better
memory APIs for the programs which still needed to run under MS-DOS.
Widely popular examples include DOS/4GW (the DOOM video game was compiled
for it), Phar Lap, PMODE.
By the way, the same way of addressing memory was used in the 16-bit line of
Windows 3.x, before Win32.

11.8 Basic blocks reordering
11.8.1 Profile-guided optimization
This optimization method can move some basic blocks to another section of the
executable binary file.
11Enhanced Graphics Adapter
12Video Graphics Array

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1266
Obviously, there are parts of a function which are executed more frequently (e.g.,
loop bodies) and less often (e.g., error reporting code, exception handlers).
The compiler adds instrumentation code into the executable, then the developer
runs it with a lot of tests to collect statistics.
Then the compiler, with the help of the statistics gathered, prepares final the exe-
cutable file with all infrequently executed code moved into another section.
As a result, all frequently executed function code is compacted, and that is very
important for execution speed and cache usage.
An example from Oracle RDBMS code, which was compiled with Intel C++:

Listing 11.5: orageneric11.dll (win32)
public _skgfsync

_skgfsync proc near

; address 0x6030D86A

db 66h
nop
push ebp
mov ebp, esp
mov edx, [ebp+0Ch]
test edx, edx
jz short loc_6030D884
mov eax, [edx+30h]
test eax, 400h
jnz __VInfreq__skgfsync ; write to log

continue:
mov eax, [ebp+8]
mov edx, [ebp+10h]
mov dword ptr [eax], 0
lea eax, [edx+0Fh]
and eax, 0FFFFFFFCh
mov ecx, [eax]
cmp ecx, 45726963h
jnz error ; exit with error
mov esp, ebp
pop ebp
retn

_skgfsync endp

...

; address 0x60B953F0

__VInfreq__skgfsync:
mov eax, [edx]
test eax, eax
jz continue
mov ecx, [ebp+10h]
push ecx

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1267
mov ecx, [ebp+8]
push edx
push ecx
push offset ... ;

"skgfsync(se=0x%x, ctx=0x%x, iov=0x%x)\n"
push dword ptr [edx+4]
call dword ptr [eax] ; write to log
add esp, 14h
jmp continue

error:
mov edx, [ebp+8]
mov dword ptr [edx], 69AAh ; 27050 "function called with

invalid FIB/IOV structure"
mov eax, [eax]
mov [edx+4], eax
mov dword ptr [edx+8], 0FA4h ; 4004
mov esp, ebp
pop ebp
retn

; END OF FUNCTION CHUNK FOR _skgfsync

The distance of addresses between these two code fragments is almost 9 MB.
All infrequently executed code was placed at the end of the code section of the DLL
file, among all function parts.
This part of the function was marked by the Intel C++ compiler with the VInfreq
prefix.
Here we see that a part of the function that writes to a log file (presumably in case
of error or warning or something like that) which was probably not executed very
often when Oracle’s developers gathered statistics (if it was executed at all).
The writing to log basic block eventually returns the control flow to the “hot” part of
the function.
Another “infrequent” part is the basic block returning error code 27050.
In Linux ELF files, all infrequently executed code is moved by Intel C++ into the
separate text.unlikely section, leaving all “hot” code in the text.hot section.
From a reverse engineer’s perspective, this informationmay help to split the function
into its core and error handling parts.

11.9 My experience with Hex-Rays 2.2.0
11.9.1 Bugs
There are couple of bugs.
First of all, Hex-Rays is getting lost when FPU instructions are interleaved (by com-
piler codegenerator) with others.
For example, this:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1268

f proc near

lea eax, [esp+4]
fild dword ptr [eax]
lea eax, [esp+8]
fild dword ptr [eax]
fabs
fcompp
fnstsw ax
test ah, 1
jz l01

mov eax, 1
retn

l01:
mov eax, 2
retn

f endp

…will be correctly decompiled to:
signed int __cdecl f(signed int a1, signed int a2)
{

signed int result; // eax@2

if (fabs((double)a2) >= (double)a1)
result = 2;

else
result = 1;

return result;
}

But let’s comment one of the instructions at the end:
...
l01:

;mov eax, 2
retn

...

…we getting an obvious bug:
void __cdecl f(char a1, char a2)
{

fabs((double)a2);
}

This is another bug:
extrn f1:dword
extrn f2:dword

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1269
f proc near

fld dword ptr [esp+4]
fadd dword ptr [esp+8]
fst dword ptr [esp+12]
fcomp ds:const_100
fld dword ptr [esp+16] ; comment this instruction

and it will be OK
fnstsw ax
test ah, 1

jnz short l01

call f1
retn

l01:
call f2
retn

f endp

...

const_100 dd 42C80000h ; 100.0

Result:
int __cdecl f(float a1, float a2, float a3, float a4)
{

double v5; // st7@1
char v6; // c0@1
int result; // eax@2

v5 = a4;
if (v6)
result = f2(v5);

else
result = f1(v5);

return result;
}

v6 variable has char type and if you’ll try to compile this code, compiler will warn
you about variable usage before assignment.
Another bug: FPATAN instruction is correctly decompiled into atan2(), but arguments
are swapped.

11.9.2 Odd peculiarities
Hex-Rays too often promotes 32-bit int to 64-bit one. Here is example:
f proc near

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1270
mov eax, [esp+4]
cdq
xor eax, edx
sub eax, edx
; EAX=abs(a1)

sub eax, [esp+8]
; EAX=EAX-a2

; EAX at this point somehow gets promoted to 64-bit (RAX)

cdq
xor eax, edx
sub eax, edx
; EAX=abs(abs(a1)-a2)

retn

f endp

Result:
int __cdecl f(int a1, int a2)
{

__int64 v2; // rax@1

v2 = abs(a1) - a2;
return (HIDWORD(v2) ^ v2) - HIDWORD(v2);

}

Perhaps, this is result of CDQ instruction? I’m not sure. Anyway, whenever you see
__int64 type in 32-bit code, pay attention.
This is also weird:
f proc near

mov esi, [esp+4]

lea ebx, [esi+10h]
cmp esi, ebx
jge short l00

cmp esi, 1000
jg short l00

mov eax, 2
retn

l00:
mov eax, 1
retn

f endp

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1271
Result:
signed int __cdecl f(signed int a1)
{

signed int result; // eax@3

if (__OFSUB__(a1, a1 + 16) ^ 1 && a1 <= 1000)
result = 2;

else
result = 1;

return result;
}

The code is correct, but needs manual intervention.
Sometimes, Hex-Rays doesn’t fold (or reduce) division by multiplication code:
f proc near

mov eax, [esp+4]
mov edx, 2AAAAAABh
imul edx
mov eax, edx

retn

f endp

Result:
int __cdecl f(int a1)
{

return (unsigned __int64)(715827883i64 * a1) >> 32;
}

This can be folded (rewritten) manually.
Many of these peculiarities can be solved by manual reordering of instructions, re-
compiling assembly code, and then feeding it to Hex-Rays again.

11.9.3 Silence
extrn some_func:dword

f proc near

mov ecx, [esp+4]
mov eax, [esp+8]
push eax
call some_func
add esp, 4

; use ECX

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1272
mov eax, ecx

retn

f endp

Result:
int __cdecl f(int a1, int a2)
{

int v2; // ecx@1

some_func(a2);
return v2;

}

v2 variable (from ECX) is lost …Yes, this code is incorrect (ECX value doesn’t saved
during call to another function), but it would be good for Hex-Rays to give a warning.
Another one:
extrn some_func:dword

f proc near

call some_func
jnz l01

mov eax, 1
retn

l01:
mov eax, 2
retn

f endp

Result:
signed int f()
{

char v0; // zf@1
signed int result; // eax@2

some_func();
if (v0)
result = 1;

else
result = 2;

return result;
}

Again, warning would be great.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1273
Anyway, whenever you see variable of char type, or variable which is used with-
out initialization, this is clear sign that something went wrong and needs manual
intervention.

11.9.4 Comma
Comma in C/C++ has a bad fame, because it can lead to a confusing code.
Quick quiz, what does this C/C++ function return?
int f()
{

return 1, 2;
};

It’s 2: when compiler encounters comma-expression, it generates code which exe-
cutes all sub-expressions, and returns value of the last sub-expression.
I’ve seen something like that in production code:
if (cond)

return global_var=123, 456; // 456 is returned
else

return global_var=789, 321; // 321 is returned

Apparently, programmer wanted to make code slightly shorter without additional
curly brackets. In other words, comma allows to pack couple of expressions into
one, without forming statement/code block inside of curly brackets.
Comma in C/C++ is close to begin in Scheme/Racket: https://docs.racket-lang.
org/guide/begin.html.
Perhaps, the only widely accepted usage of comma is in for() statements:
char *s="hello, world";
for(int i=0; *s; s++, i++);
// i = string length

Both s++ and i++ are executed at each loop iteration.
Read more: https://stackoverflow.com/q/52550.
I’m writing all this because Hex-Rays produces (at least in my case) code which is
rich with both commas and short-circuit expressions. For example, this is real output
from Hex-Rays:
if (a >= b || (c = a, (d[a] - e) >> 2 > f))

{
...

This is correct, it compiles and works, and let god help you to understand it. Here is
it rewritten:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://docs.racket-lang.org/guide/begin.html
https://docs.racket-lang.org/guide/begin.html
https://stackoverflow.com/q/52550
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1274

if (cond1 || (comma_expr, cond2))
{

...

Short-circuit is effective here: first cond1 is checked, if it’s true, if() body is executed,
the rest of if() expression is ignored completely. If cond1 is false, comma_expr is
executed (in the previous example, a gets copied to c), then cond2 is checked. If
cond2 is true, if() body gets executed, or not. In other words, if() body gets executed
if cond1 is true or cond2 is true, but if the latter is true, comma_expr is also executed.
Now you can see why comma is so notorious.
A word about short-circuit. A common beginner’s misconception is that sub-
conditions are checked in some unspecified order, which is not true. In a | b | c
expression, a, b and c gets evaluated in unspecified order, so that is why || has also
been added to C/C++, to apply short-circuit explicitly.

11.9.5 Data types
Data types is a problem for decompilers.
Hex-Rays can be blind to arrays in local stack, if they weren’t set correctly before
decompilation. Same story about global arrays.
Another problem is too big functions, where a single slot in local stack can be used
by several variables across function’s execution. It’s not a rare case when a slot
is used for int-variable, then for pointer, then for float-variable. Hex-Rays correctly
decompiles it: it creates a variable with some type, then cast it to another type in
various parts of functions. This problem has been solved by me by manual splitting
big function into several smaller. Just make local variables as global ones, etc, etc.
And don’t forget about tests.

11.9.6 Long and messed expressions
Sometimes, during rewriting, you can end up with long and hard to understand ex-
pressions in if() constructs, like:
if ((! (v38 && v30 <= 5 && v27 != -1)) && ((! (v38 && v30 <= 5) && v27 != ⤦

Ç -1) || (v24 >= 5 || v26)) && v25)
{
...
}

Wolfram Mathematica can minimize some of them, using BooleanMinimize[] func-
tion:
In[1]:= BooleanMinimize[(! (v38 && v30 <= 5 && v27 != -1)) && v38 && v30 <=⤦

Ç 5 && v25 == 0]

Out[1]:= v38 && v25 == 0 && v27 == -1 && v30 <= 5

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1275
There is even better way, to find common subexpressions:
In[2]:= Experimental`OptimizeExpression[(! (v38 && v30 <= 5 &&

v27 != -1)) && ((! (v38 && v30 <= 5) &&
v27 != -1) || (v24 >= 5 || v26)) && v25]

Out[2]= Experimental`OptimizedExpression[
Block[{Compile`$1, Compile`$2}, Compile`$1 = v30 <= 5;
Compile`$2 =
v27 != -1; ! (v38 && Compile`$1 &&

Compile`$2) && ((! (v38 && Compile`$1) && Compile`$2) ||
v24 >= 5 || v26) && v25]]

Mathematica has added two new variables: Compile`$1 and Compile`$2, values
of which are to be used several times in expression. So we can add two additional
variables.

11.9.7 De Morgan’s laws and decompilation
Sometimes a compiler’s optimizer can use De Morgan’s laws to make code shorter/-
faster.
For example, this:
void f(int a, int b, int c, int d)
{

if (a>0 && b>0)
printf ("both a and b are positive\n");

else if (c>0 && d>0)
printf ("both c and d are positive\n");

else
printf ("something else\n");

};

... looks pretty innocent, when compiled by optimizing GCC 5.4.0 x64:
; int __fastcall f(int a, int b, int c, int d)

public f
f proc near

test edi, edi
jle short loc_8
test esi, esi
jg short loc_30

loc_8:
test edx, edx
jle short loc_20
test ecx, ecx
jle short loc_20
mov edi, offset s ; "both c and d are positive"
jmp puts

loc_20:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1276
mov edi, offset aSomethingElse ; "something else"
jmp puts

loc_30:
mov edi, offset aAAndBPositive ; "both a and b are

positive"

loc_35:
jmp puts

f endp

... also looks innocent, but Hex-Rays 2.2.0 cannot clearly see that both AND opera-
tions were actually used in the source code:
int __fastcall f(int a, int b, int c, int d)
{

int result;

if (a > 0 && b > 0)
{
result = puts("both a and b are positive");

}
else if (c <= 0 || d <= 0)
{
result = puts("something else");

}
else
{
result = puts("both c and d are positive");

}
return result;

}

The c <= 0 || d <= 0 expression is inversion of c>0 && d>0 since A ∪B = A ∩ B
and A ∩B = A ∪B, in other words, !(cond1 || cond2) == !cond1 && !cond2 and
!(cond1 && cond2) == !cond1 || !cond2.
These rules are worth to be kept in mind, since this compiler optimization is used
heavily almost everywhere.
Sometimes it’s good idea to invert a condition, in order to understand a code better.
This is a piece of a real code decompiled by Hex-Rays:

for (int i=0; i<12; i++)
{

if (v1[i-12] != 0.0 || v1[i] != 0.0)
{

v108=min(v108, (float)v0[i*24 -2]);
v113=max(v113, (float)v0[i*24]);

};
}

... it can be rewritten like:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1277

for (int i=0; i<12; i++)
{

if (v1[i-12] == 0.0 && v1[i] == 0.0)
continue;

v108=min(v108, (float)v0[i*24 -2]);
v113=max(v113, (float)v0[i*24]);

}

Which is better? I don’t know yet, but for better understanding, it’s good to take a
look on both versions.

11.9.8 My plan
• Split big functions (and don’t forget about tests). Sometimes it’s very helpful
to form new functions out of big loop bodies.

• Check/set data type of variables, arrays, etc.
• If you see odd result, dangling variable (which used before initialization), try to
swap instructions manually, recompile it and feed to Hex-Rays again.

11.9.9 Summary
Nevertheless, quality of Hex-Rays 2.2.0 is very, very good. It makes life way easier.

11.10 Cyclomatic complexity
The term is used to measure complexity of a function. Complex functions are usually
evil, because they are hard to maintain, hard to test, etc.
There are several heuristics to measure it.
For example, we can find in Linux kernel coding style13:

Now, some people will claim that having 8-character indentations
makes the code move too far to the right, and makes it hard to read
on a 80-character terminal screen. The answer to that is that if you
need more than 3 levels of indentation, you’re screwed anyway, and
should fix your program.
...
Functions should be short and sweet, and do just one thing. They

should fit on one or two screenfuls of text (the ISO/ANSI screen size is
80x24, as we all know), and do one thing and do that well.
The maximum length of a function is inversely proportional to the

complexity and indentation level of that function. So, if you have a

13https://www.kernel.org/doc/html/v4.10/process/coding-style.html

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://www.kernel.org/doc/html/v4.10/process/coding-style.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1278

conceptually simple function that is just one long (but simple) case-
statement, where you have to do lots of small things for a lot of differ-
ent cases, it’s OK to have a longer function.
However, if you have a complex function, and you suspect that a

less-than-gifted first-year high-school student might not even under-
stand what the function is all about, you should adhere to the max-
imum limits all the more closely. Use helper functions with descrip-
tive names (you can ask the compiler to in-line them if you think it’s
performance-critical, and it will probably do a better job of it than you
would have done).
Another measure of the function is the number of local variables.

They shouldn’t exceed 5-10, or you’re doing something wrong. Re-
think the function, and split it into smaller pieces. A human brain can
generally easily keep track of about 7 different things, anything more
and it gets confused. You know you’re brilliant, but maybe you’d like
to understand what you did 2 weeks from now.

In JPL Institutional Coding Standard for the C Programming Language 14:

Functions should be no longer than 60 lines of text and define no
more than 6 parameters.
A function should not be longer than what can be printed on a single

sheet of paper in a standard reference format with one line per state-
ment and one line per declaration. Typically, this means no more than
about 60 lines of code per function. Long lists of function parameters
similarly compromise code clarity and should be avoided.
Each function should be a logical unit in the code that is under-

standable and verifiable as a unit. It is much harder to understand a
logical unit that spans multiple screens on a computer display or mul-
tiple pages when printed. Excessively long functions are often a sign
of poorly structured code.

Now let’s back to cyclomatic complexity.
Without diving deep into graph theory: there are basic blocks and links between
them. For example, this is how IDA shows BB15s and links (as arrows). Just click
space and you’ll see this: 1.18 on page 115. Each BB is also called vertex or node
in graph theory. Each link - edge.
There are at least two popular ways to calculate cyclomatic complexity: 1) edges -
nodes + 2 2) edges - nodes + number of exits (RET instructions)
As of IDA example below, there are 4 BBs, so that is 4 nodes. But there are also 4
links and 1 return instruction. By 1st rule, this is 2, by the second: 1.
The bigger the number, the more complex your function and things go from bad to
14https://yurichev.com/mirrors/C/JPL_Coding_Standard_C.pdf
15Basic Block

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/mirrors/C/JPL_Coding_Standard_C.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1279
worse. As you can see, additional exit (return instructions) make things even worse,
as well as additional links between nodes (including additional goto’s).
I wrote the simple IDAPython script (https://beginners.re/paywall/RE4B-source/
current-tree//other/cyclomatic/cyclomatic.py) to measure it. Here is result
for Linux kernel 4.11 (most complex functions in it):
1829c0 do_check edges=937 nodes=574 rets=1 E-N+2=365 E-N+rets=364
2effe0 ext4_fill_super edges=862 nodes=568 rets=1 E-N+2=296 E-N+rets=295
5d92e0 wm5110_readable_register edges=661 nodes=369 rets=2 E-N+2=294 E-N+⤦

Ç rets=294
277650 do_blockdev_direct_IO edges=771 nodes=507 rets=1 E-N+2=266 E-N+rets⤦

Ç =265
10f7c0 load_module edges=711 nodes=465 rets=1 E-N+2=248 E-N+rets=247
787730 dev_ethtool edges=559 nodes=315 rets=1 E-N+2=246 E-N+rets=245
84e440 do_ipv6_setsockopt edges=468 nodes=237 rets=1 E-N+2=233 E-N+rets=232
72c3c0 mmc_init_card edges=593 nodes=365 rets=1 E-N+2=230 E-N+rets=229
...

(Full list: https://beginners.re/paywall/RE4B-source/current-tree//other/
cyclomatic/linux_4.11_sorted.txt)
This is source code of some of them: do_check(), ext4_fill_super(), do_blockdev_direct_IO(),
do_jit().
Most complex functions in Windows 7 ntoskrnl.exe file:
140569400 sub_140569400 edges=3070 nodes=1889 rets=1 E-N+2=1183 E-N+rets⤦

Ç =1182
14007c640 MmAccessFault edges=2256 nodes=1424 rets=1 E-N+2=834 E-N+rets=833
1401a0410 FsRtlMdlReadCompleteDevEx edges=1241 nodes=752 rets=1 E-N+2=491 E⤦

Ç -N+rets=490
14008c190 MmProbeAndLockPages edges=983 nodes=623 rets=1 E-N+2=362 E-N+rets⤦

Ç =361
14037fd10 ExpQuerySystemInformation edges=995 nodes=671 rets=1 E-N+2=326 E-⤦

Ç N+rets=325
140197260 MmProbeAndLockSelectedPages edges=875 nodes=551 rets=1 E-N+2=326 ⤦

Ç E-N+rets=325
140362a50 NtSetInformationProcess edges=880 nodes=586 rets=1 E-N+2=296 E-N+⤦

Ç rets=295
....

(Full list: https://beginners.re/paywall/RE4B-source/current-tree//other/
cyclomatic/win7_ntoskrnl_sorted.txt)
From a bug hunter’s standpoint, complex functions are prone to have bugs, so an
attention should be paid to them.
Read more about it: https://en.wikipedia.org/wiki/Cyclomatic_complexity,
http://wiki.c2.com/?CyclomaticComplexityMetric.
Measuring cyclomatic complexity in MSVS (C#): https://blogs.msdn.microsoft.
com/zainnab/2011/05/17/code-metrics-cyclomatic-complexity/.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://beginners.re/paywall/RE4B-source/current-tree//other/cyclomatic/cyclomatic.py
https://beginners.re/paywall/RE4B-source/current-tree//other/cyclomatic/cyclomatic.py
https://beginners.re/paywall/RE4B-source/current-tree//other/cyclomatic/linux_4.11_sorted.txt
https://beginners.re/paywall/RE4B-source/current-tree//other/cyclomatic/linux_4.11_sorted.txt
https://github.com/torvalds/linux/blob/56868a460b83c0f93d339256a81064d89aadae8e/kernel/bpf/verifier.c#L2811
https://github.com/torvalds/linux/blob/0fcc3ab23d7395f58e8ab0834e7913e2e4314a83/fs/ext4/super.c#L3358
https://github.com/torvalds/linux/blob/86292b33d4b79ee03e2f43ea0381ef85f077c760/fs/direct-io.c#L1107
https://github.com/torvalds/linux/blob/bf5f89463f5b3109a72ed13ca62b57e90213387d/arch/x86/net/bpf_jit_comp.c#L351
https://beginners.re/paywall/RE4B-source/current-tree//other/cyclomatic/win7_ntoskrnl_sorted.txt
https://beginners.re/paywall/RE4B-source/current-tree//other/cyclomatic/win7_ntoskrnl_sorted.txt
https://en.wikipedia.org/wiki/Cyclomatic_complexity
http://wiki.c2.com/?CyclomaticComplexityMetric
https://blogs.msdn.microsoft.com/zainnab/2011/05/17/code-metrics-cyclomatic-complexity/
https://blogs.msdn.microsoft.com/zainnab/2011/05/17/code-metrics-cyclomatic-complexity/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1280
Couple of other Python scripts for measuring cyclomatic complexity in IDA: http://
www.openrce.org/articles/full_view/11, https://github.com/mxmssh/IDAmetrics
(incl. other metrics).
GCC plugin: https://github.com/ephox-gcc-plugins/cyclomatic_complexity.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.openrce.org/articles/full_view/11
http://www.openrce.org/articles/full_view/11
https://github.com/mxmssh/IDAmetrics
https://github.com/ephox-gcc-plugins/cyclomatic_complexity
https://yurichev.com/contact.html
https://yurichev.com/contact.html

Chapter 12

Books/blogs worth reading

12.1 Books and other materials
12.1.1 Reverse Engineering
• Eldad Eilam, Reversing: Secrets of Reverse Engineering, (2005)
• Bruce Dang, Alexandre Gazet, Elias Bachaalany, Sebastien Josse, Practical Re-
verse Engineering: x86, x64, ARM, Windows Kernel, Reversing Tools, and Ob-
fuscation, (2014)

• Michael Sikorski, AndrewHonig, Practical Malware Analysis: The Hands-On Guide
to Dissecting Malicious Software, (2012)

• Chris Eagle, IDA Pro Book, (2011)
• Reginald Wong, Mastering Reverse Engineering: Re-engineer your ethical hack-
ing skills, (2018)

(Outdated, but still interesting) Pavol Cerven, Crackproof Your Software: Protect Your
Software Against Crackers, (2002).
Also, Kris Kaspersky’s books.

12.1.2 Windows
• Mark Russinovich, Microsoft Windows Internals
• Peter Ferrie – The “Ultimate” Anti-Debugging Reference1

Blogs:
• Microsoft: Raymond Chen
• nynaeve.net
1http://pferrie.host22.com/papers/antidebug.pdf

1281

http://blogs.msdn.com/oldnewthing/
http://www.nynaeve.net/

1282
12.1.3 C/C++
• Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language, 2ed,
(1988)

• ISO/IEC 9899:TC3 (C C99 standard), (2007)2

• Bjarne Stroustrup, The C++ Programming Language, 4th Edition, (2013)
• C++11 standard3

• Agner Fog, Optimizing software in C++ (2015)4

• Marshall Cline, C++ FAQ5

• Dennis Yurichev, C/C++ programming language notes6

• JPL Institutional Coding Standard for the C Programming Language7

12.1.4 x86 / x86-64
• Intel manuals8

• AMD manuals9

• Agner Fog, The microarchitecture of Intel, AMD and VIA CPUs, (2016)10

• Agner Fog, Calling conventions (2015)11

• Intel® 64 and IA-32 Architectures Optimization Reference Manual, (2014)
• Software Optimization Guide for AMD Family 16h Processors, (2013)

Somewhat outdated, but still interesting to read:
Michael Abrash, Graphics Programming Black Book, 199712 (he is known for his work
on low-level optimization for such projects as Windows NT 3.1 and id Quake).

12.1.5 ARM
• ARM manuals13

• ARM(R) Architecture Reference Manual, ARMv7-A and ARMv7-R edition, (2012)
2Also available as http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
3Also available as http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3690.pdf.
4Also available as http://agner.org/optimize/optimizing_cpp.pdf.
5Also available as http://www.parashift.com/c++-faq-lite/index.html
6Also available as http://yurichev.com/C-book.html
7Also available as https://yurichev.com/mirrors/C/JPL_Coding_Standard_C.pdf
8Also available as http://www.intel.com/content/www/us/en/processors/

architectures-software-developer-manuals.html
9Also available as http://developer.amd.com/resources/developer-guides-manuals/
10Also available as http://agner.org/optimize/microarchitecture.pdf
11Also available as http://www.agner.org/optimize/calling_conventions.pdf
12Also available as https://github.com/jagregory/abrash-black-book
13Also available as http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.

architecture.reference/index.html

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3690.pdf
http://agner.org/optimize/optimizing_cpp.pdf
http://www.parashift.com/c++-faq-lite/index.html
http://yurichev.com/C-book.html
https://yurichev.com/mirrors/C/JPL_Coding_Standard_C.pdf
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://developer.amd.com/resources/developer-guides-manuals/
http://agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/calling_conventions.pdf
https://github.com/jagregory/abrash-black-book
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.architecture.reference/index.html
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1283
• [ARM Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile,
(2013)]14

• Advanced RISC Machines Ltd, The ARM Cookbook, (1994)15

12.1.6 Assembly language
Richard Blum — Professional Assembly Language.

12.1.7 Java
[Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley, The Java(R) Virtual Machine
Specification / Java SE 7 Edition] 16.

12.1.8 UNIX
Eric S. Raymond, The Art of UNIX Programming, (2003)

12.1.9 Programming in general
• Brian W. Kernighan, Rob Pike, Practice of Programming, (1999)
• Henry S. Warren, Hacker’s Delight, (2002). Some people say tricks and hacks
from the book are not relevant today because they were good only for RISC
CPUs, where branching instructions are expensive. Nevertheless, these can
help immensely to understand boolean algebra and what all the mathematics
near it.

12.1.10 Cryptography
• Bruce Schneier, Applied Cryptography, (John Wiley & Sons, 1994)
• (Free) lvh, Crypto 10117

• (Free) Dan Boneh, Victor Shoup, A Graduate Course in Applied Cryptography18.

12.1.11 Something even easier
For those who find this book too hard and technical, this is even gentler introduc-
tion to low-level internals of computing devices: “Code: The Hidden Language of
Computer Hardware and Software” by Charles Petzold.
Another is a comic book (from 1983) for kids19, devoted to 6502 and Z80 CPUs.
14Also available as http://yurichev.com/mirrors/ARMv8-A_Architecture_Reference_Manual_

(Issue_A.a).pdf
15Also available as https://yurichev.com/ref/ARM%20Cookbook%20(1994)/
16Also available as https://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf; http://docs.

oracle.com/javase/specs/jvms/se7/html/
17Also available as https://www.crypto101.io/
18Also available as https://crypto.stanford.edu/~dabo/cryptobook/
19https://yurichev.com/mirrors/machine-code-for-beginners.pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://yurichev.com/mirrors/ARMv8-A_Architecture_Reference_Manual_(Issue_A.a).pdf
http://yurichev.com/mirrors/ARMv8-A_Architecture_Reference_Manual_(Issue_A.a).pdf
https://yurichev.com/ref/ARM%20Cookbook%20(1994)/
https://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf
http://docs.oracle.com/javase/specs/jvms/se7/html/
http://docs.oracle.com/javase/specs/jvms/se7/html/
https://www.crypto101.io/
https://crypto.stanford.edu/~dabo/cryptobook/
https://yurichev.com/mirrors/machine-code-for-beginners.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

Chapter 13

Communities

There are two excellent RE1-related subreddits on reddit.com:
reddit.com/r/ReverseEngineering/ and reddit.com/r/remath (on the topics for the in-
tersection of RE and mathematics).
There is also a RE part of the Stack Exchange website:
reverseengineering.stackexchange.com.
On IRC there are ##re and ##asm channels on Libera.

1Reverse Engineering

1284

http://www.reddit.com/r/ReverseEngineering/
http://www.reddit.com/r/remath
http://reverseengineering.stackexchange.com/

Afterword

1285

1286
13.1 Questions?
Do not hesitate to mail any questions to the author:
my emails. Do you have any suggestion on new content for to the book? Please do
not hesitate to send any corrections (including grammar (you see how horrible my
English is?)), etc.
The author is working on the book a lot, so the page and listing numbers, etc., are
changing very rapidly. Please do not refer to page and listing numbers in your emails
tome. There is amuch simpler method: make a screenshot of the page, in a graphics
editor underline the place where you see the error, and send it to the author. He’ll
fix it much faster. And if you familiar with git and LATEX you can fix the error right in
the source code:
https://beginners.re/src/.
Do not worry to bother me while writing me about any petty mistakes you found,
even if you are not very confident. I’m writing for beginners, after all, so beginners’
opinions and comments are crucial for my job.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://beginners.re/src/
https://yurichev.com/contact.html
https://yurichev.com/contact.html

Appendix

1287

1288
.1 x86
.1.1 Terminology
Common for 16-bit (8086/80286), 32-bit (80386, etc.), 64-bit.
byte 8-bit. The DB assembly directive is used for defining variables and arrays of

bytes. Bytes are passed in the 8-bit part of registers: AL/BL/CL/DL/AH/BH/CH/DH/SIL/DIL/R*L.
word 16-bit. DW assembly directive —”—. Words are passed in the 16-bit part of

the registers:
AX/BX/CX/DX/SI/DI/R*W.

double word (“dword”) 32-bit. DD assembly directive —”—. Double words are
passed in registers (x86) or in the 32-bit part of registers (x64). In 16-bit code,
double words are passed in 16-bit register pairs.

quad word (“qword”) 64-bit. DQ assembly directive —”—. In 32-bit environment,
quad words are passed in 32-bit register pairs.

tbyte (10 bytes) 80-bit or 10 bytes (used for IEEE 754 FPU registers).
paragraph (16 bytes)—term was popular in MS-DOS environment.
Data types of the same width (BYTE, WORD, DWORD) are also the same in Windows
API.

.1.2 General purpose registers
It is possible to access many registers by byte or 16-bit word parts.
It is all inheritance from older Intel CPUs (up to the 8-bit 8080) still supported for
backward compatibility. Older 8-bit CPUs (8080) had 16-bit registers divided by two.
Programs written for 8080 could access the low byte part of 16-bit registers, high
byte part or the whole 16-bit register.
Perhaps, this feature was left in 8086 as a helper for easier porting.
This feature is usually not present in RISC CPUs.
Registers prefixed with R- appeared in x86-64, and those prefixed with E-—in 80386.
Thus, R-registers are 64-bit, and E-registers—32-bit.
8 more GPR’s were added in x86-86: R8-R15.
N.B.: In the Intel manuals the byte parts of these registers are prefixed by L, e.g.:
R8L, but IDA names these registers by adding the B suffix, e.g.: R8B.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1289
RAX/EAX/AX/AL

Byte number:
7th 6th 5th 4th 3rd 2nd 1st 0th

RAXx64
EAX

AX
AH AL

AKA accumulator. The result of a function is usually returned via this register.

RBX/EBX/BX/BL
Byte number:

7th 6th 5th 4th 3rd 2nd 1st 0th
RBXx64

EBX
BX

BH BL

RCX/ECX/CX/CL
Byte number:

7th 6th 5th 4th 3rd 2nd 1st 0th
RCXx64

ECX
CX

CH CL
AKA counter: in this role it is used in REP prefixed instructions and also in shift
instructions (SHL/SHR/RxL/RxR).

RDX/EDX/DX/DL
Byte number:

7th 6th 5th 4th 3rd 2nd 1st 0th
RDXx64

EDX
DX

DH DL

RSI/ESI/SI/SIL
Byte number:

7th 6th 5th 4th 3rd 2nd 1st 0th
RSIx64

ESI
SI
SILx64

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1290
AKA “source index”. Used as source in the instructions REP MOVSx, REP CMPSx.

RDI/EDI/DI/DIL
Byte number:

7th 6th 5th 4th 3rd 2nd 1st 0th
RDIx64

EDI
DI
DILx64

AKA “destination index”. Used as a pointer to the destination in the instructions REP
MOVSx, REP STOSx.

R8/R8D/R8W/R8L
Byte number:

7th 6th 5th 4th 3rd 2nd 1st 0th
R8

R8D
R8W
R8L

R9/R9D/R9W/R9L
Byte number:

7th 6th 5th 4th 3rd 2nd 1st 0th
R9

R9D
R9W
R9L

R10/R10D/R10W/R10L
Byte number:

7th 6th 5th 4th 3rd 2nd 1st 0th
R10

R10D
R10W
R10L

R11/R11D/R11W/R11L
Byte number:

7th 6th 5th 4th 3rd 2nd 1st 0th
R11

R11D
R11W
R11L

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1291
R12/R12D/R12W/R12L

Byte number:
7th 6th 5th 4th 3rd 2nd 1st 0th

R12
R12D

R12W
R12L

R13/R13D/R13W/R13L
Byte number:

7th 6th 5th 4th 3rd 2nd 1st 0th
R13

R13D
R13W
R13L

R14/R14D/R14W/R14L
Byte number:

7th 6th 5th 4th 3rd 2nd 1st 0th
R14

R14D
R14W
R14L

R15/R15D/R15W/R15L
Byte number:

7th 6th 5th 4th 3rd 2nd 1st 0th
R15

R15D
R15W
R15L

RSP/ESP/SP/SPL
Byte number:

7th 6th 5th 4th 3rd 2nd 1st 0th
RSP

ESP
SP
SPL

AKA stack pointer. Usually points to the current stack except in those cases when it
is not yet initialized.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1292
RBP/EBP/BP/BPL

Byte number:
7th 6th 5th 4th 3rd 2nd 1st 0th

RBP
EBP

BP
BPL

AKA frame pointer. Usually used for local variables and accessing the arguments of
the function. More about it: (1.12.1 on page 89).

RIP/EIP/IP
Byte number:

7th 6th 5th 4th 3rd 2nd 1st 0th
RIPx64

EIP
IP

AKA “instruction pointer” 2. Usually always points to the instruction to be executed
right now. Cannot bemodified, however, it is possible to do this (which is equivalent):
MOV EAX, ...
JMP EAX

Or:
PUSH value
RET

CS/DS/ES/SS/FS/GS

16-bit registers containing code selector (CS), data selector (DS), stack selector (SS).

FS in win32 points to TLS, GS took this role in Linux. It is made so for faster ac-
cess to the TLS and other structures like the TIB.
In the past, these registers were used as segment registers (11.7 on page 1264).

Flags register

AKA EFLAGS.
2Sometimes also called “program counter”

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1293

Bit (mask) Abbreviation (meaning) Description
0 (1) CF (Carry) The CLC/STC/CMC instructions are used

for setting/resetting/toggling this flag
2 (4) PF (Parity) (1.25.7 on page 293).
4 (0x10) AF (Adjust) Exist solely for work with BCD-numbers
6 (0x40) ZF (Zero) Setting to 0

if the last operation’s result is equal to 0.
7 (0x80) SF (Sign)
8 (0x100) TF (Trap) Used for debugging.

If turned on, an exception is to be
generated after each instruction’s execution.

9 (0x200) IF (Interrupt enable) Are interrupts enabled.
The CLI/STI instructions are used
for setting/resetting the flag

10 (0x400) DF (Direction) A direction is set for the
REP MOVSx/CMPSx/LODSx/SCASx instructions.
The CLD/STD instructions are used
for setting/resetting the flag
See also: 3.26 on page 794.

11 (0x800) OF (Overflow) Overflow flag
12, 13 (0x3000) IOPL (I/O privilege level)i286
14 (0x4000) NT (Nested task)i286
16 (0x10000) RF (Resume)i386 Used for debugging.

The CPU ignores the hardware
breakpoint in DRx if the flag is set.

17 (0x20000) VM (Virtual 8086 mode)i386
18 (0x40000) AC (Alignment check)i486
19 (0x80000) VIF (Virtual interrupt)i586
20 (0x100000) VIP (Virtual interrupt pending)i586
21 (0x200000) ID (Identification)i586

All the rest flags are reserved.

.1.3 FPU registers
8 80-bit registers working as a stack: ST(0)-ST(7). N.B.: IDA calls ST(0) as just ST.
Numbers are stored in the IEEE 754 format.
long double value format:

06263647879

S exponent I mantissa or fraction

(S — sign, I — integer part)

Control Word

Register controlling the behavior of the FPU.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1294

Bit Abbreviation (meaning) Description
0 IM (Invalid operation Mask)
1 DM (Denormalized operand Mask)
2 ZM (Zero divide Mask)
3 OM (Overflow Mask)
4 UM (Underflow Mask)
5 PM (Precision Mask)
7 IEM (Interrupt Enable Mask) Exceptions enabling, 1 by default (disabled)
8, 9 PC (Precision Control)

00 — 24 bits (REAL4)
10 — 53 bits (REAL8)
11 — 64 bits (REAL10)

10, 11 RC (Rounding Control)
00 — (by default) round to nearest
01 — round toward −∞
10 — round toward +∞
11 — round toward 0

12 IC (Infinity Control) 0 — (by default) treat +∞ and −∞ as unsigned
1 — respect both +∞ and −∞

The PM, UM, OM, ZM, DM, IM flags define if to generate exception in the case of a
corresponding error.

Status Word

Read-only register.
Bit Abbreviation (meaning) Description
15 B (Busy) Is FPU do something (1) or results are ready (0)
14 C3
13, 12, 11 TOP points to the currently zeroth register
10 C2
9 C1
8 C0
7 IR (Interrupt Request)
6 SF (Stack Fault)
5 P (Precision)
4 U (Underflow)
3 O (Overflow)
2 Z (Zero)
1 D (Denormalized)
0 I (Invalid operation)

The SF, P, U, O, Z, D, I bits signal about exceptions.
About the C3, C2, C1, C0 you can read more here: (1.25.7 on page 292).
N.B.: When ST(x) is used, the FPU adds x to TOP (by modulo 8) and that is how it
gets the internal register’s number.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1295
Tag Word

The register has current information about the usage of numbers registers.
Bit Abbreviation (meaning)
15, 14 Tag(7)
13, 12 Tag(6)
11, 10 Tag(5)
9, 8 Tag(4)
7, 6 Tag(3)
5, 4 Tag(2)
3, 2 Tag(1)
1, 0 Tag(0)

Each tag contains information about a physical FPU register (R(x)), not logical (ST(x)).
For each tag:
• 00 — The register contains a non-zero value
• 01 — The register contains 0
• 10 — The register contains a special value (NAN3, ∞, or denormal)
• 11 — The register is empty

.1.4 SIMD registers
MMX registers

8 64-bit registers: MM0..MM7.

SSE and AVX registers

SSE: 8 128-bit registers: XMM0..XMM7. In the x86-64 8 more registers were added:
XMM8..XMM15.
AVX is the extension of all these registers to 256 bits.

.1.5 Debugging registers
Used for hardware breakpoints control.
• DR0 — address of breakpoint #1
• DR1 — address of breakpoint #2
• DR2 — address of breakpoint #3
• DR3 — address of breakpoint #4
• DR6 — a cause of break is reflected here
• DR7 — breakpoint types are set here
3Not a Number

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1296
DR6

Bit (mask) Description
0 (1) B0 — breakpoint #1 has been triggered
1 (2) B1 — breakpoint #2 has been triggered
2 (4) B2 — breakpoint #3 has been triggered
3 (8) B3 — breakpoint #4 has been triggered
13 (0x2000) BD — modification attempt of one of the DRx registers.

may be raised if GD is enabled
14 (0x4000) BS — single step breakpoint (TF flag has been set in EFLAGS).

Highest priority. Other bits may also be set.
15 (0x8000) BT (task switch flag)

N.B. A single step breakpoint is a breakpoint which occurs after each instruction. It
can be enabled by setting TF in EFLAGS (.1.2 on page 1292).

DR7

Breakpoint types are set here.
Bit (mask) Description
0 (1) L0 — enable breakpoint #1 for the current task
1 (2) G0 — enable breakpoint #1 for all tasks
2 (4) L1 — enable breakpoint #2 for the current task
3 (8) G1 — enable breakpoint #2 for all tasks
4 (0x10) L2 — enable breakpoint #3 for the current task
5 (0x20) G2 — enable breakpoint #3 for all tasks
6 (0x40) L3 — enable breakpoint #4 for the current task
7 (0x80) G3 — enable breakpoint #4 for all tasks
8 (0x100) LE — not supported since P6
9 (0x200) GE — not supported since P6
13 (0x2000) GD — exception is to be raised if any MOV instruction

tries to modify one of the DRx registers
16,17 (0x30000) breakpoint #1: R/W — type
18,19 (0xC0000) breakpoint #1: LEN — length
20,21 (0x300000) breakpoint #2: R/W — type
22,23 (0xC00000) breakpoint #2: LEN — length
24,25 (0x3000000) breakpoint #3: R/W — type
26,27 (0xC000000) breakpoint #3: LEN — length
28,29 (0x30000000) breakpoint #4: R/W — type
30,31 (0xC0000000) breakpoint #4: LEN — length

The breakpoint type is to be set as follows (R/W):
• 00 — instruction execution
• 01 — data writes
• 10 — I/O reads or writes (not available in user-mode)
• 11 — on data reads or writes

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1297
N.B.: breakpoint type for data reads is absent, indeed.

Breakpoint length is to be set as follows (LEN):
• 00 — one-byte
• 01 — two-byte
• 10 — undefined for 32-bit mode, eight-byte in 64-bit mode
• 11 — four-byte

.1.6 Instructions
Instructions marked as (M) are not usually generated by the compiler: if you see one
of them, it is probably a hand-written piece of assembly code, or a compiler intrinsic
(11.4 on page 1258).
Only the most frequently used instructions are listed here. You can read 12.1.4 on
page 1282 for a full documentation.
Do you have to know all instruction’s opcodes by heart? No, only those which are
used for code patching (11.2.1 on page 1256). All the rest of the opcodes don’t need
to be memorized.

Prefixes

LOCK forces CPU to make exclusive access to the RAM in multiprocessor environ-
ment. For the sake of simplification, it can be said that when an instruction with
this prefix is executed, all other CPUs in a multiprocessor system are stopped.
Most often it is used for critical sections, semaphores, mutexes. Commonly
used with ADD, AND, BTR, BTS, CMPXCHG, OR, XADD, XOR. You can read more
about critical sections here (6.5.4 on page 1002).

REP is used with the MOVSx and STOSx instructions: execute the instruction in
a loop, the counter is located in the CX/ECX/RCX register. For a detailed de-
scription, read more about the MOVSx (.1.6 on page 1300) and STOSx (.1.6 on
page 1303) instructions.
The instructions prefixed by REP are sensitive to the DF flag, which is used to
set the direction.

REPE/REPNE (AKA REPZ/REPNZ) used with CMPSx and SCASx instructions: execute
the last instruction in a loop, the count is set in the CX/ECX/RCX register. It
terminates prematurely if ZF is 0 (REPE) or if ZF is 1 (REPNE).
For a detailed description, you can readmore about the CMPSx (.1.6 on page 1304)
and SCASx (.1.6 on page 1302) instructions.
Instructions prefixed by REPE/REPNE are sensitive to the DF flag, which is used
to set the direction.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1298
Most frequently used instructions

These can be memorized in the first place.
ADC (add with carry) add values, increment the result if the CF flag is set. ADC is

often used for the addition of large values, for example, to add two 64-bit values
in a 32-bit environment using two ADD and ADC instructions. For example:
; work with 64-bit values: add val1 to val2.
; .lo means lowest 32 bits, .hi means highest.
ADD val1.lo, val2.lo
ADC val1.hi, val2.hi ; use CF that was set or cleared at the previous

instruction

One more example: 1.34 on page 497.
ADD add two values
AND logical “and”
CALL call another function:

PUSH address_after_CALL_instruction; JMP label

CMP compare values and set flags, the same as SUB but without writing the result

DEC decrement. Unlike other arithmetic instructions, DEC doesn’t modify CF flag.
IMUL signed multiply IMUL often used instead of MUL, read more about it: 11.1 on

page 1255.
INC increment. Unlike other arithmetic instructions, INC doesn’t modify CF flag.
JCXZ, JECXZ, JRCXZ (M) jump if CX/ECX/RCX=0
JMP jump to another address. The opcode has a jump offset.
Jcc (where cc — condition code)

A lot of these instructions have synonyms (denoted with AKA), this was done
for convenience. Synonymous instructions are translated into the same opcode.
The opcode has a jump offset.
JAE AKA JNC: jump if above or equal (unsigned): CF=0
JA AKA JNBE: jump if greater (unsigned): CF=0 and ZF=0
JBE jump if lesser or equal (unsigned): CF=1 or ZF=1
JB AKA JC: jump if below (unsigned): CF=1
JC AKA JB: jump if CF=1
JE AKA JZ: jump if equal or zero: ZF=1
JGE jump if greater or equal (signed): SF=OF
JG jump if greater (signed): ZF=0 and SF=OF
JLE jump if lesser or equal (signed): ZF=1 or SF≠OF

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1299
JL jump if lesser (signed): SF≠OF
JNAE AKA JC: jump if not above or equal (unsigned) CF=1
JNA jump if not above (unsigned) CF=1 and ZF=1
JNBE jump if not below or equal (unsigned): CF=0 and ZF=0
JNB AKA JNC: jump if not below (unsigned): CF=0
JNC AKA JAE: jump CF=0 synonymous to JNB.
JNE AKA JNZ: jump if not equal or not zero: ZF=0
JNGE jump if not greater or equal (signed): SF≠OF
JNG jump if not greater (signed): ZF=1 or SF≠OF
JNLE jump if not lesser (signed): ZF=0 and SF=OF
JNL jump if not lesser (signed): SF=OF
JNO jump if not overflow: OF=0
JNS jump if SF flag is cleared
JNZ AKA JNE: jump if not equal or not zero: ZF=0
JO jump if overflow: OF=1
JPO jump if PF flag is cleared (Jump Parity Odd)
JP AKA JPE: jump if PF flag is set
JS jump if SF flag is set
JZ AKA JE: jump if equal or zero: ZF=1

LAHF copy some flag bits to AH:
7 6 4 2 0

SFZF AF PF CF

This instruction is often used in FPU-related code.
LEAVE equivalent of the MOV ESP, EBP and POP EBP instruction pair — in other

words, this instruction sets the stack pointer (ESP) back and restores the EBP
register to its initial state.

LEA (Load Effective Address) form an address
This instruction was intended not for summing values and multiplication but
for forming an address, e.g., for calculating the address of an array element by
adding the array address, element index, with multiplication of element size4.
So, the difference between MOV and LEA is that MOV forms a memory address
and loads a value frommemory or stores it there, but LEA just forms an address.
But nevertheless, it is can be used for any other calculations.

4See also: wikipedia

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://en.wikipedia.org/wiki/Addressing_mode
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1300
LEA is convenient because the computations performed by it does not alter
CPU flags. This may be very important for OOE processors (to create less data
dependencies).
Aside from this, starting at least at Pentium, LEA instruction is executed in 1
cycle.
int f(int a, int b)
{

return a*8+b;
};

Listing 1: Optimizing MSVC 2010
_a$ = 8 ; size = 4
_b$ = 12 ; size = 4
_f PROC

mov eax, DWORD PTR _b$[esp-4]
mov ecx, DWORD PTR _a$[esp-4]
lea eax, DWORD PTR [eax+ecx*8]
ret 0

_f ENDP

Intel C++ uses LEA even more:
int f1(int a)
{

return a*13;
};

Listing 2: Intel C++ 2011
_f1 PROC NEAR

mov ecx, DWORD PTR [4+esp] ; ecx = a
lea edx, DWORD PTR [ecx+ecx*8] ; edx = a*9
lea eax, DWORD PTR [edx+ecx*4] ; eax = a*9 + a*4 = a*13
ret

These two instructions performs faster than one IMUL.
MOVSB/MOVSW/MOVSD/MOVSQ copy byte/ 16-bit word/ 32-bit word/ 64-bit word

from the address which is in SI/ESI/RSI into the address which is in DI/EDI/RDI.
Together with the REP prefix, it is to be repeated in a loop, the count is to be
stored in the CX/ECX/RCX register: it works like memcpy() in C. If the block size
is known to the compiler in the compile stage, memcpy() is often inlined into a
short code fragment using REP MOVSx, sometimes even as several instructions.
The memcpy(EDI, ESI, 15) equivalent is:
; copy 15 bytes from ESI to EDI
CLD ; set direction to forward
MOV ECX, 3
REP MOVSD ; copy 12 bytes

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1301
MOVSW ; copy 2 more bytes
MOVSB ; copy remaining byte

(Supposedly, it works faster than copying 15 bytes using just one REP MOVSB).
MOVSX load with sign extension see also: (1.23.1 on page 254)
MOVZX load and clear all other bitsi see also: (1.23.1 on page 255)
MOV load value. this instruction name is misnomer, resulting in some confusion

(data is not moved but copied), in other architectures the same instructions is
usually named “LOAD” and/or “STORE” or something like that.
One important thing: if you set the low 16-bit part of a 32-bit register in 32-bit
mode, the high 16 bits remains as they were. But if you modify the low 32-
bit part of the register in 64-bit mode, the high 32 bits of the register will be
cleared.
Supposedly, it was done to simplify porting code to x86-64.

MUL unsigned multiply. IMUL often used instead of MUL, read more about it: 11.1
on page 1255.

NEG negation: op = −op Same as NOT op / ADD op, 1.
NOP NOP. Its opcode is 0x90, it is in fact the XCHG EAX,EAX idle instruction. This

implies that x86 does not have a dedicated NOP instruction (as in many RISC).
This book has at least one listing where GDB shows NOP as 16-bit XCHG instruc-
tion: 1.11.1 on page 63.
More examples of such operations: (.1.7 on page 1313).
NOP may be generated by the compiler for aligning labels on a 16-byte bound-
ary. Another very popular usage of NOP is to replace manually (patch) some
instruction like a conditional jump to NOP in order to disable its execution.

NOT op1: op1 = ¬op1. logical inversion Important feature—the instruction doesn’t
change flags.

OR logical “or”
POP get a value from the stack: value=SS:[ESP]; ESP=ESP+4 (or 8)

PUSH push a value into the stack: ESP=ESP-4 (or 8); SS:[ESP]=value

RET return from subroutine: POP tmp; JMP tmp.
In fact, RET is an assembly language macro, in Windows and *NIX environment
it is translated into RETN (“return near”) or, in MS-DOS times, where the mem-
ory was addressed differently (11.7 on page 1264), into RETF (“return far”).
RET can have an operand. Then it works like this:
POP tmp; ADD ESP op1; JMP tmp. RET with an operand usually ends func-
tions in the stdcall calling convention, see also: 6.1.2 on page 932.

SAHF copy bits from AH to CPU flags:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

13027 6 4 2 0

SFZF AF PF CF

This instruction is often used in FPU-related code.
SBB (subtraction with borrow) subtract values, decrement the result if the CF flag is

set. SBB is often used for subtraction of large values, for example, to subtract
two 64-bit values in 32-bit environment using two SUB and SBB instructions.
For example:
; work with 64-bit values: subtract val2 from val1.
; .lo means lowest 32 bits, .hi means highest.
SUB val1.lo, val2.lo
SBB val1.hi, val2.hi ; use CF that was set or cleared at the previous

instruction

One more example: 1.34 on page 497.
SCASB/SCASW/SCASD/SCASQ (M) compare byte/ 16-bit word/ 32-bit word/ 64-bit

word that’s stored in AX/EAX/RAX with a variable whose address is in DI/EDI/RDI.
Set flags as CMP does.
This instruction is often used with the REPNE prefix: continue to scan the buffer
until a special value stored in AX/EAX/RAX is found. Hence “NE” in REPNE:
continue to scan while the compared values are not equal and stop when equal.
It is often used like the strlen() C standard function, to determine an ASCIIZ
string’s length:
Example:
lea edi, string
mov ecx, 0FFFFFFFFh ; scan 232 − 1 bytes, i.e., almost infinitely
xor eax, eax ; 0 is the terminator
repne scasb
add edi, 0FFFFFFFFh ; correct it

; now EDI points to the last character of the ASCIIZ string.

; lets determine string length
; current ECX = -1-strlen

not ecx
dec ecx

; now ECX contain string length

If we use a different AX/EAX/RAX value, the function acts like the memchr()
standard C function, i.e., it finds a specific byte.

SHL shift value left
SHR shift value right:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1303
7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0CF 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 00 CF

These instructions are frequently used for multiplication and division by 2n. An-
other very frequent application is processing bit fields: 1.28 on page 382.

SHRD op1, op2, op3: shift value in op2 right by op3 bits, taking bits from op1.
Example: 1.34 on page 497.

STOSB/STOSW/STOSD/STOSQ store byte/ 16-bit word/ 32-bit word/ 64-bit word
from AX/EAX/RAX into the address which is in DI/EDI/RDI.
Together with the REP prefix, it is to be repeated in a loop, the counter is in the
CX/ECX/RCX register: it works like memset() in C. If the block size is known
to the compiler on compile stage, memset() is often inlined into a short code
fragment using REP MOVSx, sometimes even as several instructions.
memset(EDI, 0xAA, 15) equivalent is:
; store 15 0xAA bytes to EDI
CLD ; set direction to forward
MOV EAX, 0AAAAAAAAh
MOV ECX, 3
REP STOSD ; write 12 bytes
STOSW ; write 2 more bytes
STOSB ; write remaining byte

(Supposedly, it works faster than storing 15 bytes using just one REP STOSB).
SUB subtract values. A frequently occurring pattern is SUB reg,reg, which implies

zeroing of reg.
TEST same as AND but without saving the result, see also: 1.28 on page 382
XOR op1, op2: XOR5 values. op1 = op1 ⊕ op2. A frequently occurring pattern is XOR

reg,reg, which implies zeroing of reg.

Less frequently used instructions

BSF bit scan forward, see also: 1.36.2 on page 531
BSR bit scan reverse

BSWAP (byte swap), change value endianness.
5eXclusive OR

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1304
BTC bit test and complement
BTR bit test and reset
BTS bit test and set
BT bit test
CBW/CWD/CWDE/CDQ/CDQE Sign-extend value:

CBW convert byte in AL to word in AX
CWD convert word in AX to doubleword in DX:AX
CWDE convert word in AX to doubleword in EAX
CDQ convert doubleword in EAX to quadword in EDX:EAX
CDQE (x64) convert doubleword in EAX to quadword in RAX
These instructions consider the value’s sign, extending it to high part of the
newly constructed value. See also: 1.34.5 on page 508.
Interestingly to know these instructions was initially named as SEX (Sign EX-
tend), as Stephen P. Morse (one of Intel 8086 CPU designers) wrote in [Stephen
P. Morse, The 8086 Primer, (1980)]6:

The process of stretching numbers by extending the sign bit is
called sign extension. The 8086 provides instructions (Fig. 3.29)
to facilitate the task of sign extension. These instructions were
initially named SEX (sign extend) but were later renamed to the
more conservative CBW (convert byte to word) and CWD (convert
word to double word).

CLD clear DF flag.
CLI (M) clear IF flag.
CLC (M) clear CF flag
CMC (M) toggle CF flag
CMOVcc conditional MOV: load if the condition is true. The condition codes are the

same as in the Jcc instructions (.1.6 on page 1298).
CMPSB/CMPSW/CMPSD/CMPSQ (M) compare byte/ 16-bit word/ 32-bit word/ 64-

bit word from the address which is in SI/ESI/RSI with the variable at the address
stored in DI/EDI/RDI. Set flags as CMP does.
Together with the REP prefix, it is to be repeated in a loop, the counter is stored
in the CX/ECX/RCX register, the process will run until the ZF flag is zero (e.g.,
until the compared values are equal to each other, hence “E” in REPE).
It works like memcmp() in C.
Example from the Windows NT kernel (WRK v1.2):

6Also available as https://archive.org/details/The8086Primer

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://archive.org/details/The8086Primer
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1305
Listing 3: base\ntos\rtl\i386\movemem.asm

; ULONG
; RtlCompareMemory (
; IN PVOID Source1,
; IN PVOID Source2,
; IN ULONG Length
;)
;
; Routine Description:
;
; This function compares two blocks of memory and returns the number
; of bytes that compared equal.
;
; Arguments:
;
; Source1 (esp+4) - Supplies a pointer to the first block of memory to
; compare.
;
; Source2 (esp+8) - Supplies a pointer to the second block of memory to
; compare.
;
; Length (esp+12) - Supplies the Length, in bytes, of the memory to be
; compared.
;
; Return Value:
;
; The number of bytes that compared equal is returned as the function
; value. If all bytes compared equal, then the length of the original
; block of memory is returned.
;
;--

RcmSource1 equ [esp+12]
RcmSource2 equ [esp+16]
RcmLength equ [esp+20]

CODE_ALIGNMENT
cPublicProc _RtlCompareMemory,3
cPublicFpo 3,0

push esi ; save registers
push edi ;
cld ; clear direction
mov esi,RcmSource1 ; (esi) -> first block to

compare
mov edi,RcmSource2 ; (edi) -> second block to

compare

;
; Compare dwords, if any.
;

rcm10: mov ecx,RcmLength ; (ecx) = length in bytes
shr ecx,2 ; (ecx) = length in dwords

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1306
jz rcm20 ; no dwords, try bytes
repe cmpsd ; compare dwords
jnz rcm40 ; mismatch, go find byte

;
; Compare residual bytes, if any.
;

rcm20: mov ecx,RcmLength ; (ecx) = length in bytes
and ecx,3 ; (ecx) = length mod 4
jz rcm30 ; 0 odd bytes, go do dwords
repe cmpsb ; compare odd bytes
jnz rcm50 ; mismatch, go report how far we

got

;
; All bytes in the block match.
;

rcm30: mov eax,RcmLength ; set number of matching bytes
pop edi ; restore registers
pop esi ;
stdRET _RtlCompareMemory

;
; When we come to rcm40, esi (and edi) points to the dword after the
; one which caused the mismatch. Back up 1 dword and find the byte.
; Since we know the dword didn't match, we can assume one byte won't.
;

rcm40: sub esi,4 ; back up
sub edi,4 ; back up
mov ecx,5 ; ensure that ecx doesn't count

out
repe cmpsb ; find mismatch byte

;
; When we come to rcm50, esi points to the byte after the one that
; did not match, which is TWO after the last byte that did match.
;

rcm50: dec esi ; back up
sub esi,RcmSource1 ; compute bytes that matched
mov eax,esi ;
pop edi ; restore registers
pop esi ;
stdRET _RtlCompareMemory

stdENDP _RtlCompareMemory

N.B.: this function uses a 32-bit word comparison (CMPSD) if the block size is
a multiple of 4, or per-byte comparison (CMPSB) otherwise.

CPUID get information about the CPU’s features. see also: (1.30.6 on page 463).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1307
DIV unsigned division
IDIV signed division
INT (M): INT x is analogous to PUSHF; CALL dword ptr [x*4] in 16-bit environ-

ment. It was widely used in MS-DOS, functioning as a syscall vector. The
registers AX/BX/CX/DX/SI/DI were filled with the arguments and then the flow
jumped to the address in the Interrupt Vector Table (located at the beginning of
the address space). It was popular because INT has a short opcode (2 bytes)
and the program which needs some MS-DOS services is not bother to deter-
mine the address of the service’s entry point. The interrupt handler returns the
control flow to caller using the IRET instruction.
The most busy MS-DOS interrupt number was 0x21, serving a huge part of its
API. See also: [Ralf Brown Ralf Brown’s Interrupt List], for the most compre-
hensive interrupt lists and other MS-DOS information.
In the post-MS-DOS era, this instruction was still used as syscall both in Linux
and Windows (6.3 on page 950), but was later replaced by the SYSENTER or
SYSCALL instructions.

INT 3 (M): this instruction is somewhat close to INT, it has its own 1-byte opcode
(0xCC), and is actively used while debugging. Often, the debuggers just write
the 0xCC byte at the address of the breakpoint to be set, and when an exception
is raised, the original byte is restored and the original instruction at this address
is re-executed.
As of Windows NT, an EXCEPTION_BREAKPOINT exception is to be raised when
the CPU executes this instruction. This debugging event may be intercepted
and handled by a host debugger, if one is loaded. If it is not loaded, Windows
offers to run one of the registered system debuggers. If MSVS7 is installed, its
debugger may be loaded and connected to the process. In order to protect
from reverse engineering, a lot of anti-debugging methods check integrity of
the loaded code.
MSVC has compiler intrinsic for the instruction: __debugbreak()8.
There is also a win32 function in kernel32.dll named DebugBreak()9, which also
executes INT 3.

IN (M) input data from port. The instruction usually can be seen in OS drivers or in
old MS-DOS code, for example (8.8.3 on page 1078).

IRET : was used in the MS-DOS environment for returning from an interrupt handler
after it was called by the INT instruction. Equivalent to POP tmp; POPF; JMP
tmp.

LOOP (M) decrement CX/ECX/RCX, jump if it is still not zero.
LOOP instruction was often used in DOS-code which works with external devices.
To add small delay, this was done:

7Microsoft Visual Studio
8MSDN
9MSDN

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/f408b4et.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms679297(v=vs.85).aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1308

MOV CX, nnnn
LABEL: LOOP LABEL

Drawback is obvious: length of delay depends on CPU speed.
OUT (M) output data to port. The instruction usually can be seen in OS drivers or in

old MS-DOS code, for example (8.8.3 on page 1078).
POPA (M) restores values of (R|E)DI, (R|E)SI, (R|E)BP, (R|E)BX, (R|E)DX, (R|E)CX,

(R|E)AX registers from the stack.
POPCNT population count. Counts the number of 1 bits in the value.
POPF restore flags from the stack (AKA EFLAGS register)
PUSHA (M) pushes the values of the (R|E)AX, (R|E)CX, (R|E)DX, (R|E)BX, (R|E)BP,

(R|E)SI, (R|E)DI registers to the stack.
PUSHF push flags (AKA EFLAGS register)
RCL (M) rotate left via CF flag:

7 6 5 4 3 2 1 0 CF

CF 7 6 5 4 3 2 1 0

RCR (M) rotate right via CF flag:

CF 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 CF

ROL/ROR (M) cyclic shift
ROL: rotate left:

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0CF

ROR: rotate right:

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 CF

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1309
Despite the fact that almost all CPUs have these instructions, there are no cor-
responding operations in C/C++, so the compilers of these PLs usually do not
generate these instructions.
For the programmer’s convenience, at least MSVC has the pseudofunctions
(compiler intrinsics) _rotl() and _rotr()10, which are translated by the compiler
directly to these instructions.

SAL Arithmetic shift left, synonymous to SHL
SAR Arithmetic shift right

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 CF

Hence, the sign bit always stays at the place of the MSB.
SETcc op: load 1 to operand (byte only) if the condition is true or zero otherwise.

The condition codes are the same as in the Jcc instructions (.1.6 on page 1298).
STC (M) set CF flag
STD (M) set DF flag. This instruction is not generated by compilers and generally

rare. For example, it can be found in the ntoskrnl.exe Windows kernel file, in
the hand-written memory copy routines.

STI (M) set IF flag
SYSCALL (AMD) call syscall (6.3 on page 950)
SYSENTER (Intel) call syscall (6.3 on page 950)
UD2 (M) undefined instruction, raises exception. Used for testing.
XCHG (M) exchange the values in the operands

This instruction is rare: compilers don’t generate it, because starting at Pen-
tium, XCHG with address in memory in operand executes as if it has LOCK
prefix ([Michael Abrash, Graphics Programming Black Book, 1997chapter 19]).
Perhaps, Intel engineers did so for compatibility with synchronizing primitives.
Hence, XCHG starting at Pentium can be slow. On the other hand, XCHG was
very popular in assembly language programmers. So if you see XCHG in code,
it can be a sign that this piece of code is written manually. However, at least
Borland Delphi compiler generates this instruction.

FPU instructions

-R suffix in the mnemonic usually implies that the operands are reversed, -P suffix
implies that one element is popped from the stack after the instruction’s execution,
-PP suffix implies that two elements are popped.
10MSDN

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://msdn.microsoft.com/en-us/library/5cc576c4.aspx
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1310
-P instructions are often useful when we do not need the value in the FPU stack to
be present anymore after the operation.
FABS replace value in ST(0) by absolute value in ST(0)
FADD op: ST(0)=op+ST(0)
FADD ST(0), ST(i): ST(0)=ST(0)+ST(i)
FADDP ST(1)=ST(0)+ST(1); pop one element from the stack, i.e., the values in the

stack are replaced by their sum
FCHS ST(0)=-ST(0)
FCOM compare ST(0) with ST(1)
FCOM op: compare ST(0) with op
FCOMP compare ST(0) with ST(1); pop one element from the stack
FCOMPP compare ST(0) with ST(1); pop two elements from the stack
FDIVR op: ST(0)=op/ST(0)
FDIVR ST(i), ST(j): ST(i)=ST(j)/ST(i)
FDIVRP op: ST(0)=op/ST(0); pop one element from the stack
FDIVRP ST(i), ST(j): ST(i)=ST(j)/ST(i); pop one element from the stack
FDIV op: ST(0)=ST(0)/op
FDIV ST(i), ST(j): ST(i)=ST(i)/ST(j)
FDIVP ST(1)=ST(0)/ST(1); pop one element from the stack, i.e., the dividend and

divisor values in the stack are replaced by quotient
FILD op: convert integer and push it to the stack.
FIST op: convert ST(0) to integer op
FISTP op: convert ST(0) to integer op; pop one element from the stack
FLD1 push 1 to stack
FLDCW op: load FPU control word (.1.3 on page 1293) from 16-bit op.
FLDZ push zero to stack
FLD op: push op to the stack.
FMUL op: ST(0)=ST(0)*op
FMUL ST(i), ST(j): ST(i)=ST(i)*ST(j)
FMULP op: ST(0)=ST(0)*op; pop one element from the stack
FMULP ST(i), ST(j): ST(i)=ST(i)*ST(j); pop one element from the stack
FSINCOS : tmp=ST(0); ST(1)=sin(tmp); ST(0)=cos(tmp)
FSQRT : ST (0) =

√
ST (0)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1311
FSTCW op: store FPU control word (.1.3 on page 1293) into 16-bit op after checking

for pending exceptions.
FNSTCW op: store FPU control word (.1.3 on page 1293) into 16-bit op.
FSTSW op: store FPU status word (.1.3 on page 1294) into 16-bit op after checking

for pending exceptions.
FNSTSW op: store FPU status word (.1.3 on page 1294) into 16-bit op.
FST op: copy ST(0) to op
FSTP op: copy ST(0) to op; pop one element from the stack
FSUBR op: ST(0)=op-ST(0)
FSUBR ST(0), ST(i): ST(0)=ST(i)-ST(0)
FSUBRP ST(1)=ST(0)-ST(1); pop one element from the stack, i.e., the value in the

stack is replaced by the difference
FSUB op: ST(0)=ST(0)-op
FSUB ST(0), ST(i): ST(0)=ST(0)-ST(i)
FSUBP ST(1)=ST(1)-ST(0); pop one element from the stack, i.e., the value in the

stack is replaced by the difference
FUCOM ST(i): compare ST(0) and ST(i)
FUCOM compare ST(0) and ST(1)
FUCOMP compare ST(0) and ST(1); pop one element from stack.
FUCOMPP compare ST(0) and ST(1); pop two elements from stack.

The instructions perform just like FCOM, but an exception is raised only if one
of the operands is SNaN, while QNaN numbers are processed smoothly.

FXCH ST(i) exchange values in ST(0) and ST(i)
FXCH exchange values in ST(0) and ST(1)

Instructions having printable ASCII opcode

(In 32-bit mode.)
These can be suitable for shellcode construction. See also: 8.14.1 on page 1149.

ASCII character hexadecimal code x86 instruction
0 30 XOR
1 31 XOR
2 32 XOR
3 33 XOR
4 34 XOR
5 35 XOR
7 37 AAA
8 38 CMP

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1312
9 39 CMP
: 3a CMP
; 3b CMP
< 3c CMP
= 3d CMP
? 3f AAS
@ 40 INC
A 41 INC
B 42 INC
C 43 INC
D 44 INC
E 45 INC
F 46 INC
G 47 INC
H 48 DEC
I 49 DEC
J 4a DEC
K 4b DEC
L 4c DEC
M 4d DEC
N 4e DEC
O 4f DEC
P 50 PUSH
Q 51 PUSH
R 52 PUSH
S 53 PUSH
T 54 PUSH
U 55 PUSH
V 56 PUSH
W 57 PUSH
X 58 POP
Y 59 POP
Z 5a POP
[5b POP
\ 5c POP
] 5d POP
^ 5e POP
_ 5f POP
` 60 PUSHA
a 61 POPA
h 68 PUSH
i 69 IMUL
j 6a PUSH
k 6b IMUL
p 70 JO
q 71 JNO
r 72 JB
s 73 JAE
t 74 JE

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1313
u 75 JNE
v 76 JBE
w 77 JA
x 78 JS
y 79 JNS
z 7a JP

Also:

ASCII character hexadecimal code x86 instruction
f 66 (in 32-bit mode) switch to

16-bit operand size
g 67 in 32-bit mode) switch to

16-bit address size

In summary: AAA, AAS, CMP, DEC, IMUL, INC, JA, JAE, JB, JBE, JE, JNE, JNO, JNS, JO, JP,
JS, POP, POPA, PUSH, PUSHA, XOR.

.1.7 npad
It is an assembly language macro for aligning labels on a specific boundary.
That’s often needed for the busy labels to where the control flow is often passed, e.g.,
loop body starts. So the CPU can load the data or code from the memory effectively,
through the memory bus, cache lines, etc.
Taken from listing.inc (MSVC):
By the way, it is a curious example of the different NOP variations. All these instruc-
tions have no effects whatsoever, but have a different size.
Having a single idle instruction instead of couple of NOP-s, is accepted to be better
for CPU performance.
;; LISTING.INC
;;
;; This file contains assembler macros and is included by the files created
;; with the -FA compiler switch to be assembled by MASM (Microsoft Macro
;; Assembler).
;;
;; Copyright (c) 1993-2003, Microsoft Corporation. All rights reserved.

;; non destructive nops
npad macro size
if size eq 1

nop
else
if size eq 2

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1314
mov edi, edi

else
if size eq 3
; lea ecx, [ecx+00]
DB 8DH, 49H, 00H

else
if size eq 4

; lea esp, [esp+00]
DB 8DH, 64H, 24H, 00H

else
if size eq 5

add eax, DWORD PTR 0
else
if size eq 6

; lea ebx, [ebx+00000000]
DB 8DH, 9BH, 00H, 00H, 00H, 00H

else
if size eq 7
; lea esp, [esp+00000000]
DB 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H

else
if size eq 8
; jmp .+8; .npad 6
DB 0EBH, 06H, 8DH, 9BH, 00H, 00H, 00H, 00H
else
if size eq 9
; jmp .+9; .npad 7
DB 0EBH, 07H, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H
else
if size eq 10
; jmp .+A; .npad 7; .npad 1
DB 0EBH, 08H, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 90H
else
if size eq 11
; jmp .+B; .npad 7; .npad 2
DB 0EBH, 09H, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 8BH, 0FFH

else
if size eq 12
; jmp .+C; .npad 7; .npad 3
DB 0EBH, 0AH, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 8DH, 49H, 00H
else
if size eq 13
; jmp .+D; .npad 7; .npad 4
DB 0EBH, 0BH, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 8DH, 64H, 24⤦

Ç H, 00H
else
if size eq 14
; jmp .+E; .npad 7; .npad 5
DB 0EBH, 0CH, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 05H, 00H, ⤦

Ç 00H, 00H, 00H
else
if size eq 15
; jmp .+F; .npad 7; .npad 6

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1315
DB 0EBH, 0DH, 8DH, 0A4H, 24H, 00H, 00H, 00H, 00H, 8DH, 9BH, ⤦

Ç 00H, 00H, 00H, 00H
else
%out error: unsupported npad size
.err
endif
endif
endif
endif

endif
endif
endif
endif
endif

endif
endif
endif
endif

endif
endif
endm

.2 ARM

.2.1 Terminology
ARM was initially developed as 32-bit CPU, so that’s why a word here, unlike x86, is
32-bit.
byte 8-bit. The DB assembly directive is used for defining variables and arrays of

bytes.
halfword 16-bit. DCW assembly directive —”—.
word 32-bit. DCD assembly directive —”—.
doubleword 64-bit.
quadword 128-bit.

.2.2 Versions
• ARMv4: Thumb mode introduced.
• ARMv6: used in iPhone 1st gen., iPhone 3G (Samsung 32-bit RISC ARM 1176JZ(F)-
S that supports Thumb-2)

• ARMv7: Thumb-2 was added (2003). was used in iPhone 3GS, iPhone 4, iPad
1st gen. (ARM Cortex-A8), iPad 2 (Cortex-A9), iPad 3rd gen.

• ARMv7s: New instructions added. iPhone 5, iPhone 5c, iPad 4th gen. (Apple
A6).

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1316
• ARMv8: 64-bit CPU, AKA ARM64 AKA AArch64. Was used in iPhone 5S, iPad
Air (Apple A7). There is no Thumb mode in 64-bit mode, only ARM (4-byte
instructions).

.2.3 32-bit ARM (AArch32)
General purpose registers

• R0 — function result is usually returned using R0
• R1...R12 — GPRs
• R13 — AKA SP (stack pointer)
• R14 — AKA LR (link register)
• R15 — AKA PC (program counter)

R0-R3 are also called “scratch registers”: the function’s arguments are usually passed
in them, and the values in them are not required to be restored upon the function’s
exit.

Current Program Status Register (CPSR)

Bit Description
0..4 M — processor mode
5 T — Thumb state
6 F — FIQ disable
7 I — IRQ disable
8 A — imprecise data abort disable
9 E — data endianness
10..15, 25, 26 IT — if-then state
16..19 GE — greater-than-or-equal-to
20..23 DNM — do not modify
24 J — Java state
27 Q — sticky overflow
28 V — overflow
29 C — carry/borrow/extend
30 Z — zero bit
31 N — negative/less than

VFP (floating point) and NEON registers

0..31bits 32..64 65..96 97..127
Q0128 bits

D064 bits D1
S032 bits S1 S2 S3

S-registers are 32-bit, used for the storage of single precision numbers.
D-registers are 64-bit ones, used for the storage of double precision numbers.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1317
D- and S-registers share the same physical space in the CPU—it is possible to access
a D-register via the S-registers (it is senseless though).
Likewise, the NEON Q-registers are 128-bit ones and share the same physical space
in the CPU with the other floating point registers.
In VFP 32 S-registers are present: S0..S31.
In VFPv2 there 16 D-registers are added, which in fact occupy the same space as
S0..S31.
In VFPv3 (NEON or “Advanced SIMD”) there are 16 more D-registers, D0..D31, but
the D16..D31 registers are not sharing space with any other S-registers.
In NEON or “Advanced SIMD” another 16 128-bit Q-registers were added, which share
the same space as D0..D31.

.2.4 64-bit ARM (AArch64)
General purpose registers

The number of registers has been doubled since AArch32.
• X0 — function result is usually returned using X0
• X0...X7 — Function arguments are passed here.
• X8
• X9...X15 — are temporary registers, the callee function can use and not restore
them.

• X16
• X17
• X18
• X19...X29 — callee function can use them, but must restore them upon exit.
• X29 — used as FP (at least GCC)
• X30 — “Procedure Link Register” AKA LR (link register).
• X31—register always contains zero AKA XZR or “Zero Register”. It’s 32-bit part
is called WZR.

• SP, not a general purpose register anymore.
See also: [Procedure Call Standard for the ARM 64-bit Architecture (AArch64), (2013)]11.
The 32-bit part of each X-register is also accessible via W-registers (W0, W1, etc.).

High 32-bit part low 32-bit part
X0

W0
11Also available as http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055b/IHI0055B_

aapcs64.pdf

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055b/IHI0055B_aapcs64.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055b/IHI0055B_aapcs64.pdf
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1318
.2.5 Instructions
There is a -S suffix for some instructions in ARM, indicating that the instruction sets
the flags according to the result. Instructions which lacks this suffix are not modify
flags. For example ADD unlike ADDS will add two numbers, but the flags will not be
touched. Such instructions are convenient to use between CMP where the flags are
set and, e.g. conditional jumps, where the flags are used. They are also better in
terms of data dependency analysis (because less number of registers are modified
during execution).

Conditional codes table

Code Description Flags
EQ Equal Z == 1
NE Not equal Z == 0
CS AKA HS (Higher or Same) Carry set / Unsigned, Greater than, equal C == 1
CC AKA LO (LOwer) Carry clear / Unsigned, Less than C == 0
MI Minus, negative / Less than N == 1
PL Plus, positive or zero / Greater than, equal N == 0
VS Overflow V == 1
VC No overflow V == 0
HI Unsigned higher / Greater than C == 1 and

Z == 0
LS Unsigned lower or same / Less than or equal C == 0 or

Z == 1
GE Signed greater than or equal / Greater than or equal N == V
LT Signed less than / Less than N != V
GT Signed greater than / Greater than Z == 0 and

N == V
LE Signed less than or equal / Less than, equal Z == 1 or

N != V
None / AL Always Any

.3 MIPS

.3.1 Registers
(O32 calling convention)

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1319
General purpose registers (GPR)

Number Pseudoname Description
$0 $ZERO Always zero. Writing to this register is like NOP.
$1 $AT Used as a temporary register

for assembly macros and pseudo instructions.
$2 …$3 $V0 …$V1 Function result is returned here.
$4 …$7 $A0 …$A3 Function arguments.
$8 …$15 $T0 …$T7 Used for temporary data.
$16 …$23 $S0 …$S7 Used for temporary data∗.
$24 …$25 $T8 …$T9 Used for temporary data.
$26 …$27 $K0 …$K1 Reserved for OS kernel.
$28 $GP Global Pointer∗∗.
$29 $SP SP∗.
$30 $FP FP∗.
$31 $RA RA.
n/a PC PC.
n/a HI high 32 bit of multiplication or division remainder∗∗∗.
n/a LO low 32 bit of multiplication and division remainder∗∗∗.

Floating-point registers

Name Description
$F0..$F1 Function result returned here.
$F2..$F3 Not used.
$F4..$F11 Used for temporary data.
$F12..$F15 First two function arguments.
$F16..$F19 Used for temporary data.
$F20..$F31 Used for temporary data∗.

∗ — Callee must preserve the value.
∗∗ — Callee must preserve the value (except in PIC code).
∗∗∗ — accessible using the MFHI and MFLO instructions.

.3.2 Instructions
There are 3 kinds of instructions:
• R-type: those which have 3 registers. R-instruction usually have the following
form:
instruction destination, source1, source2

One important thing to keep in mind is that when the first and second register
are the same, IDA may show the instruction in its shorter form:
instruction destination/source1, source2

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1320
That somewhat reminds us of the Intel syntax for x86 assembly language.

• I-type: those which have 2 registers and a 16-bit immediate value.
• J-type: jump/branch instructions, have 26 bits for encoding the offset.

Jump instructions

What is the difference between B-instructions (BEQ, B, etc.) and J- ones (JAL, JALR,
etc.)?
The B-instructions have an I-type, hence, the B-instructions’ offset is encoded as a
16-bit immediate. JR and JALR are R-type and jump to an absolute address specified
in a register. J and JAL are J-type, hence the offset is encoded as a 26-bit immediate.
In short, B-instructions can encode a condition (B is in fact pseudo instruction for BEQ
$ZERO, $ZERO, LABEL), while J-instructions can’t.

.4 Some GCC library functions
name meaning
__divdi3 signed division
__moddi3 getting remainder (modulo) of signed division
__udivdi3 unsigned division
__umoddi3 getting remainder (modulo) of unsigned division

.5 Some MSVC library functions
ll in function name stands for “long long”, e.g., a 64-bit data type.

name meaning
__alldiv signed division
__allmul multiplication
__allrem remainder of signed division
__allshl shift left
__allshr signed shift right
__aulldiv unsigned division
__aullrem remainder of unsigned division
__aullshr unsigned shift right

Multiplication and shift left procedures are the same for both signed and unsigned
numbers, hence there is only one function for each operation here .

The source code of these function can be found in the installedMSVS, in VC/crt/src/intel/*.asm.

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1321
.6 Cheatsheets
.6.1 IDA
Hot-keys cheatsheet:

key meaning
Space switch listing and graph view
C convert to code
D convert to data
A convert to string
* convert to array
U undefine
O make offset of operand
H make decimal number
R make char
B make binary number
Q make hexadecimal number
N rename identifier
? calculator
G jump to address
: add comment
Ctrl-X show references to the current function, label, variable

(incl. in local stack)
X show references to the function, label, variable, etc.
Alt-I search for constant
Ctrl-I search for the next occurrence of constant
Alt-B search for byte sequence
Ctrl-B search for the next occurrence of byte sequence
Alt-T search for text (including instructions, etc.)
Ctrl-T search for the next occurrence of text
Alt-P edit current function
Enter jump to function, variable, etc.
Esc get back
Num - fold function or selected area
Num + unhide function or area

Function/area folding may be useful for hiding function parts when you realize what
they do. this is used in myscript12 for hiding some often used patterns of inline code.

.6.2 OllyDbg
Hot-keys cheatsheet:

hot-key meaning
F7 trace into
F8 step over
F9 run
Ctrl-F2 restart

12GitHub

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://github.com/yurichev/IDA_scripts
https://yurichev.com/contact.html
https://yurichev.com/contact.html

1322
.6.3 MSVC
Some useful options which were used through this book. .

option meaning
/O1 minimize space
/Ob0 no inline expansion
/Ox maximum optimizations
/GS- disable security checks (buffer overflows)
/Fa(file) generate assembly listing
/Zi enable debugging information
/Zp(n) pack structs on n-byte boundary
/MD produced executable will use MSVCR*.DLL

Some information about MSVC versions: 5.1.1 on page 889.

.6.4 GCC
Some useful options which were used through this book.

option meaning
-Os code size optimization
-O3 maximum optimization
-regparm= how many arguments are to be passed in registers
-o file set name of output file
-g produce debugging information in resulting executable
-S generate assembly listing file
-masm=intel produce listing in Intel syntax
-fno-inline do not inline functions

.6.5 GDB
Some of commands we used in this book:

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1323
option meaning
break filename.c:number set a breakpoint on line number in source code
break function set a breakpoint on function
break *address set a breakpoint on address
b —”—
p variable print value of variable
run run
r —”—
cont continue execution
c —”—
bt print stack
set disassembly-flavor intel set Intel syntax
disas disassemble current function
disas function disassemble function
disas function,+50 disassemble portion
disas $eip,+0x10 —”—
disas/r disassemble with opcodes
info registers print all registers
info float print FPU-registers
info locals dump local variables (if known)
x/w ... dump memory as 32-bit word
x/w $rdi dump memory as 32-bit word

at address in RDI
x/10w ... dump 10 memory words
x/s ... dump memory as string
x/i ... dump memory as code
x/10c ... dump 10 characters
x/b ... dump bytes
x/h ... dump 16-bit halfwords
x/g ... dump giant (64-bit) words
finish execute till the end of function
next next instruction (don’t dive into functions)
step next instruction (dive into functions)
set step-mode on do not use line number information while stepping
frame n switch stack frame
info break list of breakpoints
del n delete breakpoint
set args ... set command-line arguments

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

Acronyms Used

1324

1325
OS Operating System . xix

OOP Object-Oriented Programming . 683

PL Programming Language . xvi

PRNG Pseudorandom Number Generator . x

ROM Read-Only Memory . 105

ALU Arithmetic Logic Unit . 35

PID Program/process ID . 1028

LF Line Feed (10 or ’\n’ in C/C++) . 659

CR Carriage Return (13 or ’\r’ in C/C++) . 659

LIFO Last In First Out . 40

MSB Most Significant Bit . 397

LSB Least Significant Bit

NSA National Security Agency . 1006

CFB Cipher Feedback . 1092

CSPRNG Cryptographically Secure Pseudorandom Number Generator 1093

ABI Application Binary Interface . 21

PC Program Counter. IP/EIP/RIP in x86/64. PC in ARM. 25

SP stack pointer. SP/ESP/RSP in x86/x64. SP in ARM. 25

RA Return Address . 29

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1326
PE Portable Executable . 7

DLL Dynamic-Link Library . 963

LR Link Register . 9

IDA Interactive Disassembler and Debugger developed by Hex-Rays 8

IAT Import Address Table . 964

INT Import Name Table . 964

RVA Relative Virtual Address . 963

VA Virtual Address . 963

OEP Original Entry Point . 949

MSVC Microsoft Visual C++

MSVS Microsoft Visual Studio . 1307

ASLR Address Space Layout Randomization . 772

MFC Microsoft Foundation Classes . 968

TLS Thread Local Storage . 351

AKA Also Known As . 40

CRT C Runtime library . 14

CPU Central Processing Unit . xix

GPU Graphics Processing Unit . 1105

FPU Floating-Point Unit . v

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1327
CISC Complex Instruction Set Computing . 26

RISC Reduced Instruction Set Computing . 3

GUI Graphical User Interface . 959

RTTI Run-Time Type Information . 703

BSS Block Started by Symbol . 33

SIMD Single Instruction, Multiple Data . 246

BSOD Blue Screen of Death . 950

DBMS Database Management Systems . xvi

ISA Instruction Set Architecture . xi

HPC High-Performance Computing . 648

SEH Structured Exception Handling . 50

ELF Executable and Linkable Format: Executable File format widely used in *NIX
systems including Linux . 103

TIB Thread Information Block . 351

PIC Position Independent Code . 676

NAN Not a Number . 1295

NOP No Operation . 9

BEQ (PowerPC, ARM) Branch if Equal . 122

BNE (PowerPC, ARM) Branch if Not Equal . 263

BLR (PowerPC) Branch to Link Register . 1056

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1328
XOR eXclusive OR . 1303

MCU Microcontroller Unit . 619

RAM Random-Access Memory . 105

GCC GNU Compiler Collection . 5

EGA Enhanced Graphics Adapter . 1265

VGA Video Graphics Array . 1265

API Application Programming Interface . 787

ASCII American Standard Code for Information Interchange 363

ASCIIZ ASCII Zero (null-terminated ASCII string) 119

IA64 Intel Architecture 64 (Itanium) . 573

EPIC Explicitly Parallel Instruction Computing . 1261

OOE Out-of-Order Execution . 575

MSDN Microsoft Developer Network . 777

STL (C++) Standard Template Library . 712

PODT (C++) Plain Old Data Type . 728

HDD Hard Disk Drive . 744

VM Virtual Memory

WRK Windows Research Kernel . 911

GPR General Purpose Registers . 2

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1329
SSDT System Service Dispatch Table . 951

RE Reverse Engineering . 1284

BCD Binary-Coded Decimal . 565

BOM Byte Order Mark . 897

GDB GNU Debugger . 63

FP Frame Pointer . 32

MBR Master Boot Record . 905

JPE Jump Parity Even (x86 instruction) . 298

CIDR Classless Inter-Domain Routing . 605

STMFD Store Multiple Full Descending (ARM instruction)

LDMFD Load Multiple Full Descending (ARM instruction)

STMED Store Multiple Empty Descending (ARM instruction) 41

LDMED Load Multiple Empty Descending (ARM instruction) 41

STMFA Store Multiple Full Ascending (ARM instruction) 41

LDMFA Load Multiple Full Ascending (ARM instruction) 41

STMEA Store Multiple Empty Ascending (ARM instruction) 41

LDMEA Load Multiple Empty Ascending (ARM instruction) 41

APSR (ARM) Application Program Status Register 323

FPSCR (ARM) Floating-Point Status and Control Register 323

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1330
RFC Request for Comments . 903

TOS Top of Stack . 838

LVA (Java) Local Variable Array . 846

JVM Java Virtual Machine . x

JIT Just-In-Time compilation . 836

CDFS Compact Disc File System . 919

CD Compact Disc

ADC Analog-to-Digital Converter . 915

EOF End of File . 111

DIY Do It Yourself . 781

MMU Memory Management Unit . 769

DES Data Encryption Standard . 566

MIME Multipurpose Internet Mail Extensions . 566

DBI Dynamic Binary Instrumentation . 657

XML Extensible Markup Language . 793

JSON JavaScript Object Notation . 793

URL Uniform Resource Locator . 5

IV Initialization Vector . xii

RSA Rivest Shamir Adleman . 1206

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1331
CPRNG Cryptographically secure PseudoRandom Number Generator 1207

GiB Gibibyte . 1224

CRC Cyclic redundancy check . 1246

AES Advanced Encryption Standard . 1247

GC Garbage Collector . 779

IDE Integrated development environment . 473

BB Basic Block . 1278

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

Glossary

anti-pattern Generally considered as bad practice. 43, 100, 573
arithmetic mean a sum of all values divided by their count. 649
atomic operation “ατoµoς” stands for “indivisible” in Greek, so an atomic opera-

tion is guaranteed not to be interrupted by other threads. 807, 1002

basic block a group of instructions that do not have jump/branch instructions, and
also don’t have jumps inside the block from the outside. In IDA it looks just like
as a list of instructions without empty lines. 875, 1264, 1266

callee A function being called by another. 44, 61, 88, 112, 125, 128, 131, 531, 573,
685, 821, 931, 933–935, 938, 939, 1318

caller A function calling another. 8, 10, 11, 14, 39, 61, 112, 125, 126, 130, 139,
198, 531, 585, 685, 931, 932, 934, 935, 939

compiler intrinsic A function specific to a compiler which is not an usual library
function. The compiler generates a specific machine code instead of a call to
it. Often, it’s a pseudofunction for a specific CPU instruction. Read more: (11.4
on page 1258). 1306

CP/M Control Program for Microcomputers: a very basic disk OS used before MS-
DOS. 1149

decrement Decrease by 1. 25, 231, 232, 255, 555, 921, 1297, 1300, 1306
dongle Dongle is a small piece of hardware connected to LPT printer port (in past)

or to USB. 1054

endianness Byte order. 29, 102, 432, 1302

GiB Gibibyte: 230 or 1024 mebibytes or 1073741824 bytes. 21

heap usually, a big chunk of memory provided by the OS so that applications can
divide it by themselves as they wish. malloc()/free() work with the heap. 41,
434, 706, 709, 710, 727, 729, 750, 751, 793, 961, 962

1332

1333
increment Increase by 1. 22, 26, 232, 236, 255, 261, 408, 411, 555, 1297
integral data type usual numbers, but not a real ones. may be used for passing

variables of boolean data type and enumerations. 290

jump offset a part of the JMP or Jcc instruction’s opcode, to be added to the ad-
dress of the next instruction, and this is how the new PC is calculated. May be
negative as well. 120, 166, 167, 1297

kernel mode A restrictions-free CPU mode in which the OS kernel and drivers exe-
cute. cf. user mode. 1327

leaf function A function which does not call any other function. 38, 43
link register (RISC) A register where the return address is usually stored. This

makes it possible to call leaf functions without using the stack, i.e., faster. 43,
1055, 1315, 1316

loop unwinding It is when a compiler, instead of generating loop code for n it-
erations, generates just n copies of the loop body, in order to get rid of the
instructions for loop maintenance. 235

name mangling used at least in C++, where the compiler needs to encode the
name of class, method and argument types in one string, which will become
the internal name of the function. You can read more about it here: 3.21.1 on
page 683. 682, 888, 889

NaN not a number: a special cases for floating point numbers, usually signaling
about errors. 293, 315, 1263

NEON AKA “Advanced SIMD”—SIMD from ARM. 1315, 1316
NOP “no operation”, idle instruction. 921
NTAPI API available only in the Windows NT line. Largely not documented by Mi-

crosoft. 1012

padding Padding in English languagemeans to stuff a pillow with something to give
it a desired (bigger) form. In computer science, padding means to add more
bytes to a block so it will have desired size, like 2n bytes.. 899, 900

PDB (Win32) Debugging information file, usually just function names, but some-
times also function arguments and local variables names. 888, 965, 1012,
1014, 1020, 1021, 1126

POKE BASIC language instruction for writing a byte at a specific address. 921
product Multiplication result. 126, 281, 285, 514, 545, 1254, 1255

quotient Division result. 273, 276, 279, 280, 285, 544, 620, 651

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1334
real number numbers which may contain a dot. this is float and double in C/C++.

273
register allocator The part of the compiler that assigns CPU registers to local vari-

ables. 253, 384, 531
reverse engineering act of understanding how the thing works, sometimes in or-

der to clone it. iv, 1306

security cookie A random value, different at each execution. You can read more
about it here: 1.26.3 on page 348. 990

stack frame A part of the stack that contains information specific to the current
function: local variables, function arguments, RA, etc.. 89, 126, 595, 596, 990

stack pointer A register pointing to a place in the stack. 13, 15, 26, 41, 47, 57, 71,
73, 96, 128, 685, 821, 931, 933–935, 1290, 1298, 1315

stdout standard output. 28, 48, 198

tail call It is when the compiler (or interpreter) transforms the recursion (tail recur-
sion) into an iteration for efficiency. 600

thunk function Tiny function with a single role: call another function. 30, 56, 491,
1055, 1067

tracer My own simple debugging tool. You can read more about it here: 7.2.1 on
page 1007. 237–239, 680, 775, 893, 907, 911, 984, 1048–1050, 1129, 1137,
1142, 1143, 1146, 1162, 1255

user mode A restricted CPU mode in which it all application software code is exe-
cuted. cf. kernel mode. 1077, 1326

Windows NT Windows NT, 2000, XP, Vista, 7, 8, 10. 361, 528, 820, 897, 950, 963,
1001, 1152, 1306

word data type fitting in GPR. In the computers older than PCs, the memory size
was often measured in words rather than bytes.. 563, 565–568, 714, 794

xoring often used in the English language, which implying applying the XOR opera-
tion. 990, 1070, 1075

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

Index

.NET, 971
0x0BADF00D, 99
0xCCCCCCCC, 99

Ada, 136
AES, 1088
Alpha AXP, 3
AMD, 938
Angband, 378
Angry Birds, 323, 324
Apollo Guidance Computer, 265
ARM, 261, 926, 1054, 1314

Addressing modes, 554
ARM mode, 3
ARM1, 568
armel, 285
armhf, 285
Condition codes, 170
D-registers, 284, 1315
Data processing instructions, 623
DCB, 26
hard float, 285
if-then block, 323
Instructions
ADC, 500
ADD, 28, 135, 170, 240, 401, 416,
623, 1316

ADDAL, 170
ADDCC, 219
ADDS, 133, 500, 1316
ADR, 25, 170
ADRcc, 170, 171, 206, 207, 574
ADRP/ADD pair, 32, 72, 107, 357,
376, 558

ANDcc, 672
ASR, 420
ASRS, 394, 623
B, 71, 170, 172
Bcc, 123, 124, 186

BCS, 172, 325
BEQ, 122, 207
BGE, 172
BIC, 393, 394, 400, 422
BL, 25, 27, 29, 30, 32, 171, 559
BLcc, 171
BLE, 172
BLS, 172
BLT, 240
BLX, 29
BNE, 172
BX, 133, 221
CMP, 122, 123, 170, 207, 219, 240,
416, 1316

CSEL, 183, 189, 191, 417
EOR, 400
FCMPE, 326
FCSEL, 326
FMOV, 557
FMRS, 401
IT, 192, 323, 352
LDMccFD, 171
LDMEA, 41
LDMED, 41
LDMFA, 41
LDMFD, 26, 41, 171
LDP, 33
LDR, 74, 96, 105, 335, 356, 554
LDRB, 457
LDRB.W, 262
LDRSB, 261
LEA, 574
LSL, 416, 420
LSL.W, 416
LSLR, 672
LSLS, 336, 400, 672
LSR, 420
LSRS, 400

1335

1336
MADD, 133
MLA, 132, 133
MOV, 10, 26, 27, 416, 623
MOVcc, 186, 191
MOVK, 557
MOVT, 28, 623
MOVT.W, 29
MOVW, 29
MUL, 135
MULS, 133
MVNS, 262
NEG, 632
ORR, 393
POP, 25–27, 40, 43
PUSH, 27, 40, 43
RET, 33
RSB, 178, 370, 416, 632
SBC, 500
SMMUL, 623
STMEA, 41
STMED, 41
STMFA, 41, 75
STMFD, 25, 41
STMIA, 73
STMIB, 75
STP, 31, 72
STR, 73, 335
SUB, 73, 370, 416
SUBcc, 672
SUBEQ, 263
SUBS, 500
SXTB, 457
SXTW, 376
TEST, 253
TST, 386, 416
VADD, 285
VDIV, 285
VLDR, 284
VMOV, 284, 322
VMOVGT, 322
VMRS, 322
VMUL, 285
XOR, 179, 401

Leaf function, 43
Mode switching, 133, 221
mode switching, 29
Optional operators
ASR, 416, 623
LSL, 335, 370, 416, 557

LSR, 416, 623
ROR, 416
RRX, 416

Pipeline, 219
Registers
APSR, 322
FPSCR, 322
Link Register, 25, 26, 43, 71, 221,
1315

R0, 137, 1314
scratch registers, 262, 1315
X0, 1316
Z, 122, 1315

S-registers, 284, 1315
soft float, 285
Thumb mode, 3, 172, 221
Thumb-2 mode, 3, 221, 323, 324

ARM64
lo12, 72

ASLR, 963
AT&T syntax, 16, 49
AWK, 909

Base address, 962
base32, 900
Base64, 899
base64, 903, 1084, 1207
base64scanner, 900
bash, 138
BASIC

POKE, 921
BeagleBone, 1099
binary grep, 907, 1004
Binary Ninja, 1005
Binary tree, 736
BIND.EXE, 970
BinNavi, 1005
binutils, 476
Binwalk, 1198
Bitcoin, 802, 1099
Boehm garbage collector, 778
Boolector, 55
Booth’s multiplication algorithm, 272
Borland C++, 766
Borland C++Builder, 889
Borland Delphi, 19, 889, 895, 1308
BSoD, 949
BSS, 964
Buffer Overflow, 339, 346, 989

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1337
C language elements

C99, 140
bool, 381
restrict, 644
variable length arrays, 352

Comma, 1272
const, 12, 106, 581
for, 232, 602
if, 156, 197
Pointers, 87, 96, 141, 482, 530, 755
Post-decrement, 554
Post-increment, 554
Pre-decrement, 554
Pre-increment, 554
ptrdiff_t, 779
return, 13, 112, 139
Short-circuit, 658, 662, 1272
switch, 195, 197, 206
while, 252

C standard library
alloca(), 47, 352, 573, 978
assert(), 360, 903
atexit(), 713
atoi(), 624, 1113
close(), 955
exit(), 585
fread(), 789
free(), 573, 751
fwrite(), 789
getenv(), 1115
localtime(), 832
localtime_r(), 444
longjmp, 795
longjmp(), 198
malloc(), 435, 573, 751
memchr(), 1301
memcmp(), 571, 642, 905, 1303
memcpy(), 16, 88, 639, 793, 1299
memmove(), 793
memset(), 328, 638, 1142, 1302
open(), 955
pow(), 287
puts(), 28
qsort(), 482, 585
rand(), 423, 892, 1018, 1020, 1047,

1082
read(), 789, 955
realloc(), 573
scanf(), 87

setjmp, 795
srand(), 1047
strcat(), 643
strcmp(), 571, 585, 634, 955
strcpy(), 16, 637, 1083
strlen(), 252, 526, 637, 660, 1301
strstr(), 584
strtok, 266
time(), 832, 1047
toupper(), 669
va_arg, 650
va_list, 654
vprintf, 654
write(), 789

C++, 1131
C++11, 727, 943
exceptions, 978
ostream, 702
References, 704
RTTI, 702
STL, 887
std::forward_list, 726
std::list, 714
std::map, 736
std::set, 736
std::string, 705
std::vector, 727

C11, 943
Callbacks, 482
Canary, 347
cdecl, 57, 931
Cipher Feedback mode, 1091
clusterization, 1204
COFF, 1064
column-major order, 363
Compiler intrinsic, 48, 1254, 1257
Compiler’s anomalies, 185, 375, 394, 415,

615, 666, 1257
Core dump, 769
Cray, 513, 568
CRC32, 574, 600
CRT, 957, 985
CryptoMiniSat, 540
CryptoPP, 930, 1088
Cygwin, 889, 893, 971, 1007

Data general Nova, 272
De Morgan’s laws, 1274
DEC Alpha, 511

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1338
DES, 513, 531
dlopen(), 955
dlsym(), 955
dmalloc, 769
Donald E. Knuth, 567
DOSBox, 1152
DosBox, 911
double, 275, 938
Doubly linked list, 714
dtruss, 1006
Duff’s device, 616
Dynamically loaded libraries, 29

Edsger W. Dijkstra, 752
EICAR, 1148
ELF, 103
Entropy, 1173, 1194
Error messages, 902

fastcall, 19, 45, 87, 383, 933
fetchmail, 565
FidoNet, 900
FILETIME, 509
FIXUP, 1051
float, 275, 938
Forth, 865
FORTRAN, 31
Fortran, 363, 644, 752, 889
FreeBSD, 905
Function epilogue, 39, 71, 74, 171, 457,

910
Function prologue, 14, 39, 43, 73, 347,

910
Fused multiply–add, 133
Fuzzing, 633

Garbage collector, 778, 866
GCC, 888, 1319, 1321
GDB, 38, 63, 67, 347, 492, 493, 1005,

1321
GeoIP, 1195
GHex, 1004
Glibc, 492, 794, 949
Global variables, 100
GNU Scientific Library, 449
GnuPG, 1206
GraphViz, 777
grep usage, 239, 324, 887, 907, 911, 1128

Hash functions, 574

HASP, 905
Heartbleed, 793, 1098
Heisenbug, 802, 813
Hex-Rays, 138, 249, 371, 377, 779, 811,

1266
Hiew, 119, 166, 195, 894, 901, 965, 967,

971, 1004, 1255
Honeywell 6070, 565

ICQ, 921
IDA, 113, 195, 476, 644, 880, 898, 1005,

1232, 1319
var_?, 73, 96

IEEE 754, 274, 396, 473, 540, 1287
Inline code, 241, 393, 633, 690, 732
Integer overflow, 136
Intel

8080, 261
8086, 261, 392, 1077
Memory model, 830, 1263

8253, 1151
80286, 1077, 1264
80386, 392, 1264
80486, 274
FPU, 274

Intel 4004, 564
Intel C++, 13, 514, 1257, 1264, 1299
Intel syntax, 16, 24
iPod/iPhone/iPad, 24
Itanium, 511, 1260

JAD, 6
Java, 566, 835
John Carmack, 657
JPEG, 1203
jumptable, 212, 221

Keil, 24
kernel panic, 949
kernel space, 949

LAPACK, 31
LARGE_INTEGER, 508
LD_PRELOAD, 954
Linker, 105, 682
Linux, 384, 951, 1131

libc.so.6, 383, 491
LISP, 760
LLDB, 1005
LLVM, 24

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1339
long double, 275
Loop unwinding, 235
LZMA, 1199

Mac OS Classic, 1054
Mac OS X, 1007
Mathematica, 752, 1033
MD5, 574, 904
memfrob(), 1086
Memoization, 1035
MFC, 967, 1115
Microsoft, 508
Microsoft Word, 793
MIDI, 905
MinGW, 889, 1160
minifloat, 557
MIPS, 3, 915, 928, 964, 1054, 1202

Branch delay slot, 11
Global Pointer, 33, 370
Instructions
ADD, 136
ADDIU, 34, 110, 111
ADDU, 136
AND, 395
BC1F, 328
BC1T, 328
BEQ, 124, 174
BLTZ, 179
BNE, 174
BNEZ, 223
BREAK, 624
C.LT.D, 328
J, 8, 11, 35
JAL, 137
JALR, 34, 137
JR, 210
LB, 248
LBU, 248
LI, 560
LUI, 34, 110, 111, 399, 560
LW, 34, 97, 111, 210, 561
MFHI, 136, 624, 1318
MFLO, 136, 624, 1318
MTC1, 479
MULT, 136
NOR, 265
OR, 38
ORI, 395, 560
SB, 248

SLL, 223, 268, 419
SLLV, 419
SLT, 174
SLTIU, 223
SLTU, 174, 176, 223
SRL, 273
SUBU, 179
SW, 81

Load delay slot, 210
O32, 81, 86, 87, 1317
Pseudoinstructions
B, 244
BEQZ, 176
LA, 37
LI, 11
MOVE, 35, 109
NEGU, 179
NOP, 38, 109
NOT, 265

Registers
FCCR, 328
HI, 624
LO, 624

MS-DOS, 19, 45, 350, 766, 825, 905, 911,
921, 962, 1077, 1148, 1150, 1209,
1263, 1287, 1300, 1305, 1306

DOS extenders, 1264
MSVC, 1319, 1320
MSVCRT.DLL, 1160

Name mangling, 682
Native API, 963
Non-a-numbers (NaNs), 315
Notepad, 1200

objdump, 476, 953, 971, 1005
octet, 565
OEP, 962, 971
OllyDbg, 59, 91, 102, 126, 142, 160, 213,

236, 256, 278, 294, 305, 332, 341,
344, 364, 406, 432, 455, 456, 462,
466, 486, 967, 1005, 1320

OOP
Polymorphism, 682

opaque predicate, 677
OpenMP, 802, 891
OpenSSL, 793, 1098
OpenWatcom, 889, 934

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1340
Oracle RDBMS, 13, 513, 902, 974, 1131,

1141, 1143, 1223, 1236, 1257,
1264

Page (memory), 528
Pascal, 895
PDP-11, 555
PGP, 900
Phrack, 900
Pin, 656
PNG, 1201
position-independent code, 25, 951
PowerPC, 3, 33, 1054
Propagating Cipher Block Chaining, 1105
Punched card, 329
puts() instead of printf(), 28, 94, 138, 168
Python, 656, 751

ctypes, 942

Qt, 19
Quake, 657
Quake III Arena, 482

Racket, 1272
rada.re, 17
Radare, 1005
radare2, 1205
rafind2, 1004
RAM, 105
Raspberry Pi, 24
ReactOS, 981
Recursion, 40, 42, 599

Tail recursion, 600
Register allocation, 531
Relocation, 29
Resource Hacker, 1010
Reverse Polish notation, 329
RISC pipeline, 171
ROM, 105, 106
ROT13, 1086
row-major order, 363
RSA, 7
RVA, 962

SAP, 887, 1126
Scheme, 1272
SCO OpenServer, 1064
Scratch space, 936
Security cookie, 347, 989
Security through obscurity, 903

SHA1, 574
SHA512, 803
Shadow space, 129, 131, 542
Shellcode, 675, 950, 963, 1149, 1310
Signed numbers, 158
SIMD, 540, 642
Software cracking, 18, 192, 774
SQLite, 776
SSE, 540
SSE2, 540
Stack, 40, 125, 198

Stack frame, 89
Stack overflow, 42

stdcall, 931, 1255
strace, 954, 1006
strtoll(), 1103
Stuxnet, 905
Syntactic Sugar, 197
syscall, 383, 949, 1006
Sysinternals, 901, 1007

Tagged pointers, 760
TCP/IP, 572
thiscall, 682, 685, 934
Thumb-2 mode, 29
thunk-functions, 30, 969, 1055, 1067
TLS, 350, 943, 964, 971, 1291

Callbacks, 947, 971
Tor, 900
tracer, 237, 488, 490, 893, 907, 911, 984,

1005, 1088, 1129, 1137, 1142,
1143, 1145, 1255

Turbo C++, 766

uClibc, 794
UCS-2, 566
UFS2, 905
Unicode, 895
UNIX

chmod, 6
diff, 922
fork, 795
getopt, 1103
grep, 901, 1256
mmap(), 766
od, 1004
strings, 900, 1004
xxd, 1004, 1179

Unrolled loop, 241, 352, 616, 620, 638
uptime, 954

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1341
UPX, 1206
USB, 1057
UseNet, 900
user space, 949
user32.dll, 194
UTF-16, 566
UTF-16LE, 895, 897
UTF-8, 895, 1208
Uuencode, 1207
Uuencoding, 900

VA, 962
Valgrind, 813
Variance, 1085

Watcom, 889
win32

FindResource(), 760
GetOpenFileName, 265
GetProcAddress(), 775
HINSTANCE, 776
HMODULE, 776
LoadLibrary(), 775
MAKEINTRESOURCE(), 760

WinDbg, 1005
Windows, 1001

API, 1287
EnableMenuItem, 1011
IAT, 962
INT, 962
KERNEL32.DLL, 382
MSVCR80.DLL, 484
NTAPI, 1012
ntoskrnl.exe, 1131
PDB, 887, 965, 1012, 1020, 1126
Structured Exception Handling, 50, 972
TIB, 350, 972, 1291
Win32, 381, 897, 954, 962, 1264
GetProcAddress, 970
LoadLibrary, 970
MulDiv(), 1032, 1255
Ordinal, 967
RaiseException(), 972
SetUnhandledExceptionFilter(), 974

Windows 2000, 964
Windows 3.x, 820, 1264
Windows NT4, 964
Windows Vista, 962, 1012
Windows XP, 964, 971, 1020

Windows 2000, 510
Windows 98, 194
Windows File Protection, 194
Windows Research Kernel, 511
Wine, 981
Wolfram Mathematica, 1173

x86
AVX, 513
Flags
CF, 46, 1296, 1297, 1300, 1303, 1307,
1308

DF, 1303, 1308
IF, 1303, 1308

FPU, 1292
Instructions
AAA, 1312
AAS, 1312
ADC, 498, 826, 1296
ADD, 13, 57, 126, 626, 826, 1297
ADDSD, 541
ADDSS, 554
ADRcc, 181
AESDEC, 1088
AESENC, 1088
AESKEYGENASSIST, 1092
AND, 14, 382, 387, 404, 421, 465,
1297, 1302

BSF, 530, 1302
BSR, 1302
BSWAP, 572, 1302
BT, 1302
BTC, 398, 1302
BTR, 398, 1002, 1302
BTS, 398, 1302
CALL, 13, 42, 924, 969, 1106, 1194,
1297

CBW, 1303
CDQ, 508, 1303
CDQE, 1303
CLC, 1303
CLD, 1303
CLI, 1303
CMC, 1303
CMOVcc, 171, 181, 183, 186, 191,
574, 1303

CMP, 112, 113, 585, 1297, 1312
CMPSB, 905, 1303
CMPSD, 1303

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1342
CMPSQ, 1303
CMPSW, 1303
COMISD, 550
COMISS, 554
CPUID, 462, 1305
CWD, 826, 1157, 1303
CWDE, 1303
DEC, 255, 1297, 1312
DIV, 1305
DIVSD, 541, 909
FABS, 1308
FADD, 1308
FADDP, 276, 283, 1308
FATRET, 414, 415
FCHS, 1309
FCMOVcc, 318
FCOM, 304, 315, 1309
FCOMP, 291, 1309
FCOMPP, 1309
FDIV, 276, 907, 908, 1309
FDIVP, 276, 1309
FDIVR, 283, 1309
FDIVRP, 1309
FDUP, 865
FILD, 1309
FIST, 1309
FISTP, 1309
FLD, 288, 291, 1309
FLD1, 1309
FLDCW, 1309
FLDZ, 1309
FMUL, 276, 1309
FMULP, 1309
FNSTCW, 1309
FNSTSW, 292, 316, 1309
FSCALE, 479
FSINCOS, 1309
FSQRT, 1309
FST, 1310
FSTCW, 1309
FSTP, 288, 1310
FSTSW, 1309
FSUB, 1310
FSUBP, 1310
FSUBR, 1310
FSUBRP, 1310
FUCOM, 315, 1310
FUCOMI, 318
FUCOMP, 1310

FUCOMPP, 315, 1310
FWAIT, 274
FXCH, 1258, 1310
IDIV, 620, 1305
IMUL, 126, 374, 760, 1254, 1297,
1312

IN, 924, 1077, 1151, 1306
INC, 255, 1255, 1297, 1312
INT, 45, 1149, 1305
INT3, 893
IRET, 1306
JA, 158, 317, 1297, 1312
JAE, 158, 1297, 1312
JB, 158, 1297, 1312
JBE, 158, 1297, 1312
JC, 1297
Jcc, 124, 185
JCXZ, 1297
JE, 197, 1297, 1312
JECXZ, 1297
JG, 158, 1297
JGE, 157, 1297
JL, 158, 1297
JLE, 157, 1297
JMP, 42, 55, 71, 969, 1255, 1297
JNA, 1297
JNAE, 1297
JNB, 1297
JNBE, 316, 1297
JNC, 1297
JNE, 112, 113, 157, 1297, 1312
JNG, 1297
JNGE, 1297
JNL, 1297
JNLE, 1297
JNO, 1297, 1312
JNS, 1297, 1312
JNZ, 1297
JO, 1297, 1312
JP, 292, 1297, 1312
JPO, 1297
JRCXZ, 1297
JS, 1297, 1312
JZ, 122, 197, 1257, 1297
LAHF, 1298
LEA, 90, 129, 438, 587, 604, 626,
937, 1016, 1106, 1298

LEAVE, 15, 1298
LES, 1083, 1156

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1343
LOCK, 1002
LODSB, 1152
LOOP, 231, 251, 910, 1157, 1306
MAXSD, 550
MOV, 10, 14, 16, 638, 639, 924, 966,
1106, 1194, 1255, 1300

MOVDQA, 517
MOVDQU, 517
MOVSB, 1299
MOVSD, 548, 640, 1299
MOVSDX, 548
MOVSQ, 1299
MOVSS, 554
MOVSW, 1299
MOVSX, 253, 261, 455, 457, 1299
MOVSXD, 354
MOVZX, 254, 435, 1055, 1299
MUL, 760, 1254, 1300
MULSD, 541
NEG, 631, 1300
NOP, 604, 1255, 1300, 1312
NOT, 260, 262, 1300
OR, 387, 660, 1300
OUT, 924, 1077, 1306
PADDD, 517
PCMPEQB, 529
PLMULHW, 513
PLMULLD, 513
PMOVMSKB, 529
POP, 13, 40, 42, 1300, 1312
POPA, 1307, 1312
POPCNT, 1307
POPF, 1151, 1307
PUSH, 13, 14, 40, 42, 89, 924, 1106,
1194, 1300, 1312

PUSHA, 1307, 1312
PUSHF, 1307
PXOR, 529
RCL, 910, 1307
RCR, 1307
RET, 8, 10, 14, 42, 347, 684, 821,
1255, 1300

ROL, 414, 1257, 1307
ROR, 1257, 1307
SAHF, 315, 1300
SAL, 810, 1308
SAR, 420, 648, 810, 1157, 1308
SBB, 498, 1300
SCASB, 1152, 1301

SCASD, 1301
SCASQ, 1301
SCASW, 1301
SET, 580
SETcc, 174, 254, 316, 1308
SHL, 267, 331, 420, 810, 1301
SHR, 273, 420, 465, 810, 1301
SHRD, 506, 1302
STC, 1308
STD, 1308
STI, 1308
STOSB, 619, 1302
STOSD, 1302
STOSQ, 639, 1302
STOSW, 1302
SUB, 14, 113, 197, 585, 626, 1297,
1302

SYSCALL, 1306, 1308
SYSENTER, 950, 1306, 1308
TEST, 253, 382, 386, 421, 1302
UD2, 1308
XADD, 1003
XCHG, 1300, 1308
XOR, 13, 112, 260, 648, 909, 1070,
1255, 1302, 1312

MMX, 512
Prefixes
LOCK, 1002, 1296
REP, 1296, 1299, 1302
REPE/REPNE, 1296
REPNE, 1301

Registers
AF, 564
AH, 1298, 1300
CS, 1263
DF, 794
DR6, 1295
DR7, 1295
DS, 1263
EAX, 112, 137
EBP, 89, 126
ECX, 682
ES, 1156, 1263
ESP, 57, 89
Flags, 113, 160, 1291
FS, 945
GS, 349, 945, 949
JMP, 217
RIP, 953

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

1344
SS, 1263
ZF, 113, 382

SSE, 513
SSE2, 513

x86-64, 19, 20, 66, 88, 94, 121, 128, 530,
540, 925, 935, 953, 1287, 1294

Xcode, 24
XML, 900, 1084
XOR, 1091

Z80, 565
zlib, 795, 1087

If you noticed a typo, error or have any suggestions, do not hesitate to drop me a note: my
emails. Thanks!

https://yurichev.com/contact.html
https://yurichev.com/contact.html

	Code Patterns
	The method
	Some basics
	A short introduction to the CPU
	Numeral Systems
	Converting From One Radix To Another

	An Empty Function
	x86
	ARM
	MIPS
	Empty Functions in Practice

	Returning Values
	x86
	ARM
	MIPS

	Hello, world!
	x86
	x86-64
	ARM
	MIPS
	Conclusion
	Exercises

	Function prologue and epilogue
	Recursion

	An Empty Function: redux
	Returning Values: redux
	Stack
	Why does the stack grow backwards?
	What is the stack used for?
	A typical stack layout
	Noise in stack
	Exercises

	Almost empty function
	printf() with several arguments
	x86
	ARM
	MIPS
	Conclusion
	By the way

	scanf()
	Simple example
	The classic mistake
	Global variables
	scanf()
	Exercise

	Worth noting: global vs. local variables
	Accessing passed arguments
	x86
	x64
	ARM
	MIPS

	More about results returning
	Attempt to use the result of a function returning void
	What if we do not use the function result?
	Returning a structure

	Pointers
	Returning values
	Swap input values

	GOTO operator
	Dead code
	Exercise

	Conditional jumps
	Simple example
	Calculating absolute value
	Ternary conditional operator
	Getting minimal and maximal values
	Conclusion
	Exercise

	Software cracking
	Impossible shutdown practical joke (Windows 7)
	switch()/case/default
	Small number of cases
	A lot of cases
	When there are several case statements in one block
	Fall-through
	Exercises

	Loops
	Simple example
	Memory blocks copying routine
	Condition check
	Conclusion
	Exercises

	More about strings
	strlen()
	Boundaries of strings

	Replacing arithmetic instructions to other ones
	Multiplication
	Division
	Exercise

	Floating-point unit
	IEEE 754
	x86
	ARM, MIPS, x86/x64 SIMD
	C/C++
	Simple example
	Passing floating point numbers via arguments
	Comparison example
	Some constants
	Copying
	Stack, calculators and reverse Polish notation
	80 bits?
	x64
	Exercises

	Arrays
	Simple example
	Buffer overflow
	Buffer overflow protection methods
	One more word about arrays
	Array of pointers to strings
	Multidimensional arrays
	Pack of strings as a two-dimensional array
	Conclusion
	Exercises

	Example: a bug in Angband
	Manipulating specific bit(s)
	Specific bit checking
	Setting and clearing specific bits
	Shifts
	Setting and clearing specific bits: FPU example
	Counting bits set to 1
	Conclusion
	Exercises

	Linear congruential generator
	x86
	x64
	32-bit ARM
	MIPS
	Thread-safe version of the example

	Structures
	MSVC: SYSTEMTIME example
	Let's allocate space for a structure using malloc()
	UNIX: struct tm
	Fields packing in structure
	Nested structures
	Bit fields in a structure
	Exercises

	The classic struct bug
	Unions
	Pseudo-random number generator example
	Calculating machine epsilon
	FSCALE instruction replacement
	Fast square root calculation

	Pointers to functions
	MSVC
	GCC
	Danger of pointers to functions

	64-bit values in 32-bit environment
	Returning of 64-bit value
	Arguments passing, addition, subtraction
	Multiplication, division
	Shifting right
	Converting 32-bit value into 64-bit one

	LARGE_INTEGER structure case
	SIMD
	Vectorization
	SIMD strlen() implementation

	64 bits
	x86-64
	ARM
	Float point numbers
	64-bit architecture criticism

	Working with floating point numbers using SIMD
	Simple example
	Passing floating point number via arguments
	Comparison example
	Calculating machine epsilon: x64 and SIMD
	Pseudo-random number generator example revisited
	Summary

	ARM-specific details
	Number sign (#) before number
	Addressing modes
	Loading a constant into a register
	Relocs in ARM64

	MIPS-specific details
	Loading a 32-bit constant into register
	Further reading about MIPS

	Important fundamentals
	Integral datatypes
	Bit
	Nibble AKA nybble
	Byte
	Wide char
	Signed integer vs unsigned
	Word
	Address register
	Numbers
	AND/OR/XOR as MOV

	Endianness
	Big-endian
	Little-endian
	Example
	Bi-endian
	Converting data

	Memory
	CPU
	Branch predictors
	Data dependencies

	Hash functions
	How do one-way functions work?

	Slightly more advanced examples
	Zero register
	Double negation
	const correctness
	Overlapping const strings

	strstr() example
	qsort() revisited
	Temperature converting
	Integer values
	Floating-point values

	Fibonacci numbers
	Example #1
	Example #2
	Summary

	CRC32 calculation example
	Network address calculation example
	calc_network_address()
	form_IP()
	print_as_IP()
	form_netmask() and set_bit()
	Summary

	Loops: several iterators
	Three iterators
	Two iterators
	Intel C++ 2011 case

	Duff's device
	Should one use unrolled loops?

	Division using multiplication
	x86
	How it works
	ARM
	MIPS
	Exercise

	String to number conversion (atoi())
	Simple example
	A slightly advanced example
	Exercise

	Inline functions
	Strings and memory functions

	C99 restrict
	Branchless abs() function
	Optimizing GCC 4.9.1 x64
	Optimizing GCC 4.9 ARM64

	Variadic functions
	Computing arithmetic mean
	vprintf() function case
	Pin case
	Format string exploit

	Strings trimming
	x64: Optimizing MSVC 2013
	x64: Non-optimizing GCC 4.9.1
	x64: Optimizing GCC 4.9.1
	ARM64: Non-optimizing GCC (Linaro) 4.9
	ARM64: Optimizing GCC (Linaro) 4.9
	ARM: Optimizing Keil 6/2013 (ARM mode)
	ARM: Optimizing Keil 6/2013 (Thumb mode)
	MIPS

	toupper() function
	x64
	ARM
	Using bit operations
	Summary

	Obfuscation
	Text strings
	Executable code
	Virtual machine / pseudo-code
	Other things to mention
	Exercise

	C++
	Classes
	ostream
	References
	STL
	Memory

	Negative array indices
	Addressing string from the end
	Addressing some kind of block from the end
	Arrays started at 1

	More about pointers
	Working with addresses instead of pointers
	Passing values as pointers; tagged unions
	Pointers abuse in Windows kernel
	Null pointers
	Array as function argument
	Pointer to a function
	Pointer to a function: copy protection
	Pointer to a function: a common bug (or typo)
	Pointer as object identificator
	Oracle RDBMS and a simple garbage collector for C/C++

	Loop optimizations
	Weird loop optimization
	Another loop optimization

	More about structures
	Sometimes a C structure can be used instead of array
	Unsized array in C structure
	Version of C structure
	High-score file in "Block out" game and primitive serialization

	memmove() and memcpy()
	Anti-debugging trick

	setjmp/longjmp
	Other weird stack hacks
	Accessing arguments/local variables of caller
	Returning string

	OpenMP
	MSVC
	GCC

	Signed division using shifts
	Another heisenbug
	The case of forgotten return
	Homework: more about function pointers and unions
	Windows 16-bit
	Example#1
	Example #2
	Example #3
	Example #4
	Example #5
	Example #6

	Java
	Java
	Introduction
	Returning a value
	Simple calculating functions
	JVM memory model
	Simple function calling
	Calling beep()
	Linear congruential PRNG
	Conditional jumps
	Passing arguments
	Bitfields
	Loops
	switch()
	Arrays
	Strings
	Exceptions
	Classes
	Simple patching
	Summary

	Finding important/interesting stuff in the code
	Identification of executable files
	Microsoft Visual C++
	GCC
	Intel Fortran
	Watcom, OpenWatcom
	Borland
	Other known DLLs

	Communication with outer world (function level)
	Communication with the outer world (win32)
	Often used functions in the Windows API
	Extending trial period
	Removing nag dialog box
	tracer: Intercepting all functions in specific module

	Strings
	Text strings
	Finding strings in binary
	Error/debug messages
	Suspicious magic strings

	Calls to assert()
	Constants
	Magic numbers
	Specific constants
	Searching for constants

	Finding the right instructions
	Suspicious code patterns
	XOR instructions
	Hand-written assembly code

	Using magic numbers while tracing
	Loops
	Some binary file patterns
	Memory "snapshots" comparing

	ISA detection
	Incorrectly disassembled code
	Correctly disassembled code

	Other things
	General idea
	Order of functions in binary code
	Tiny functions
	C++
	Crash on purpose

	OS-specific
	Arguments passing methods (calling conventions)
	cdecl
	stdcall
	fastcall
	thiscall
	x86-64
	Return values of float and double type
	Modifying arguments
	Taking a pointer to function argument
	Python ctypes problem (x86 assembly homework)
	Cdecl example: a DLL

	Thread Local Storage
	Linear congruential generator revisited

	System calls (syscall-s)
	Linux
	Windows

	Linux
	Position-independent code
	LD_PRELOAD hack in Linux

	Windows NT
	CRT (win32)
	Win32 PE
	Windows SEH
	Windows NT: Critical section

	Tools
	Binary analysis
	Disassemblers
	Decompilers
	Patch comparison/diffing

	Live analysis
	Debuggers
	Library calls tracing
	System calls tracing
	Network sniffing
	Sysinternals
	Valgrind
	Emulators

	Other tools
	SMT solvers
	Calculators

	Do You Think Something Is Missing Here?

	Case studies
	Mahjong solitaire prank (Windows 7)
	Task manager practical joke (Windows Vista)
	Using LEA to load values

	Color Lines game practical joke
	Minesweeper (Windows XP)
	Finding grid automatically
	Exercises

	Hacking Windows clock
	(Windows 7) Solitaire: practical jokes
	51 cards
	53 cards

	FreeCell prank (Windows 7)
	Part I
	Part II: breaking the Select Game submenu

	Dongles
	Example #1: MacOS Classic and PowerPC
	Example #2: SCO OpenServer
	Example #3: MS-DOS

	Encrypted database case #1
	Base64 and entropy
	Is data compressed?
	Is data encrypted?
	CryptoPP
	Cipher Feedback mode
	Initializing Vector
	Structure of the buffer
	Noise at the end
	Conclusion
	Post Scriptum: brute-forcing IV

	Overclocking Cointerra Bitcoin miner
	Breaking simple executable code encryptor
	Other ideas to consider

	SAP
	About SAP client network traffic compression
	SAP 6.0 password checking functions

	Oracle RDBMS
	V$VERSION table in the Oracle RDBMS
	X$KSMLRU table in Oracle RDBMS
	V$TIMER table in Oracle RDBMS

	Handwritten assembly code
	 EICAR test file

	Demos
	10 PRINT CHR$(205.5+RND(1)); : GOTO 10
	Mandelbrot set

	A nasty bug in MSVCRT.DLL
	Other examples

	Examples of reversing proprietary file formats
	Primitive XOR-encryption
	Simplest ever XOR encryption
	Norton Guide: simplest possible 1-byte XOR encryption
	Simplest possible 4-byte XOR encryption
	Simple encryption using XOR mask
	Simple encryption using XOR mask, case II
	Homework

	Information entropy
	Analyzing entropy in Mathematica
	Conclusion
	Tools
	A word about primitive encryption like XORing
	More about entropy of executable code
	PRNG
	More examples
	Entropy of various files
	Making lower level of entropy

	Millenium game save file
	fortune program indexing file
	Hacking
	The files

	Oracle RDBMS: .SYM-files
	Oracle RDBMS: .MSB-files
	Summary

	Exercises
	Further reading

	Dynamic binary instrumentation
	Using PIN DBI for XOR interception
	Cracking Minesweeper with PIN
	Intercepting all rand() calls
	Replacing rand() calls with our function
	Peeking into placement of mines
	Exercise

	Building Intel Pin
	Why ``instrumentation''?

	Other things
	Using IMUL over MUL
	MulDiv() function in Windows

	Executable files patching
	x86 code

	Function arguments number statistics
	Compiler intrinsic
	Compiler's anomalies
	Oracle RDBMS 11.2 and Intel C++ 10.1
	MSVC 6.0
	ftol2() in MSVC 2012
	Summary

	Itanium
	8086 memory model
	Basic blocks reordering
	Profile-guided optimization

	My experience with Hex-Rays 2.2.0
	Bugs
	Odd peculiarities
	Silence
	Comma
	Data types
	Long and messed expressions
	De Morgan's laws and decompilation
	My plan
	Summary

	Cyclomatic complexity

	Books/blogs worth reading
	Books and other materials
	Reverse Engineering
	Windows
	C/C++
	x86 / x86-64
	ARM
	Assembly language
	Java
	UNIX
	Programming in general
	Cryptography
	Something even easier

	Communities
	Afterword
	Questions?

	Appendix
	x86
	Terminology
	General purpose registers
	FPU registers
	SIMD registers
	Debugging registers
	Instructions
	npad

	ARM
	Terminology
	Versions
	32-bit ARM (AArch32)
	64-bit ARM (AArch64)
	Instructions

	MIPS
	Registers
	Instructions

	Some GCC library functions
	Some MSVC library functions
	Cheatsheets
	IDA
	OllyDbg
	MSVC
	GCC
	GDB

	Acronyms Used
	Glossary
	Index

