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Determinism and the Mystery of
the Missing Physics
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ABSTRACT

This article surveys the difficulties in establishing determinism for classical physics within
the context of several distinct foundational approaches to the discipline. It explains that
such problems commonly emerge due to a deeper problem of ‘missing physics’.

1 The Problems of Formalism
2 Norton’s Example
3 Three Species of Classical Mechanics

3.1 Mass point physics
3.2 The physics of perfect constraints
3.3 Continuum mechanics

4 Conclusion

The physicist, as his theories develop, often finds himself forced by the
results of his experiments to make new hypotheses, while he depends, with
respect to the compatibility of the new hypotheses with the old axioms,
solely upon these experiments or upon a certain physical intuition, a prac-
tice which in the rigorously logical building up of theory is not admissible.

David Hilbert ([1976])

1 The Problems of Formalism

For the reasons Hilbert indicates, ‘classical mechanics’ resembles a stool con-
structed of six or seven legs of unequal lengths: if we unwisely place too much
weight in the wrong place while it perches primarily upon legs 1, 3, and 5, it’s
liable to rock over to legs 2, 3, and 6 in response, perhaps depositing us upon
the floor in the process (Figure 1). Throughout our educations, we have been
encouraged to speak of ‘classical mechanics’ as if it represented a unitary and
well-understood doctrine. ‘Tain’t so, but, for many purposes, this little fiction
creates no difficulties simply because the speaker may have intended to draw
a mathematical contrast whose content is completely clear from the context,
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Figure 1. Stool.

as usually occurs when, e.g., one compares ‘quantum and classical statistical
mechanics’. But, for many of the questions that philosophers pose, such easy
disambiguation is not available and such inquiries can become seriously con-
fused unless the wobbly architecture hidden behind the implacable facade of
‘classical mechanics’ is adequately recognized. For example, much contempo-
rary commentary on philosophical theories of matter in the eighteenth and
nineteenth centuries strikes me as greatly compromised by its inclination to
assume that phrases such as ‘classical mechanics’ or ‘the Newtonian picture’
capture surgically precise meanings, when, in fact, such terminology can be
readily applied to deeply incompatible doctrines.

Philosophers of science often select some specific mathematical formalism
(sometimes only implicitly) to represent ‘classical physics’ in their argumenta-
tion despite the fact that the formalism selected is often incapable of bearing the
doctrinal weight expected of it. As a common case in point, many writers begin
their investigations by blithely stating ‘I here adopt Lagrangian formalism as a
suitable embodiment of Newtonian theory’ without apparently recognizing the
serious descriptive holes to which that specific formalism is heir. Indeed, I freely
confess to have fallen into this error in my callow years (I began to study ‘clas-
sical mechanics’ more critically because I dimly recognized that there had to be
something fishy in what I had claimed). In point of fact, classical Lagrangian
mechanics, under its normal interpretation, tolerates rather pronounced lapses
in its scope of coverage and, in applied engineering practice, one is commonly
forced to say, ‘Oh, those tools simply won’t work in this case; you need to utilize
formalism X instead’ (I’ll supply some examples later). A failure to recognize
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Determinism and the Mystery of the Missing Physics 175

these descriptive gaps often vitiates the plausibility of whatever lesson it was
that our unwitting author had hoped to extract.

Unfortunately—and this is the chief moral of the essay—we’re unlikely to
find any wholly stable X upon which the phrase ‘classical mechanics’ can
permanently and happily rest. The reason for this is simple: classical mechanics
represents a set of doctrines admirably suited to macroscopic experience and,
in consequence of this large-scale mission, must inevitably compress swatches
of very complicated physical behavior into simplified rules of thumb. In this
essay, we shall be especially concerned with some of the popular recipes that
classical modelers utilize to conveniently patch over the complicated manners
in which extended solids contact one another. Much of the multi-leggedness
we witness in the classical stool traces to the fact that such ‘rules of thumb’
for contact action exist in a variety of flavors that are not compatible with one
another from a foundational point of view, yet possess equal bragging rights
to qualify as ‘the classical approach’ to the contact between solids.

2 Norton’s Example

To demonstrate how dramatically such seemingly technical issues affect mat-
ters of philosophical concern, let us examine how the question ‘Is Newtonian
mechanics deterministic?’ turns upon these issues. Recently John Norton1 has
described a situation involving a ball sliding down a peculiarly shaped dome,
which looks, at first appearance, as if it must prove indeterministic from a clas-
sical point of view. However, the conceptual situation is not as straightforward
as first appears, for foundational multi-leggedness complicates the discussion
in hidden yet quite significant ways. An examination of Norton’s example can
thus serve as an excellent illustration of the unstable gappiness that represents
the natural price classical mechanics must pay to achieve the extraordinary
successes it achieves on the macroscopic level (this is a chief theme in Wilson
[2006]; in this essay, I’ll be able to identify some of the gaps, but not adequately
defend their virtues).

Norton’s example represents an improved recasting of a circumstance that
has been long familiar in the physical literature. He allows a ball of unit mass
to slide frictionlessly under terrestrial gravitation down a concave hillside track
with the resultant equation of motion d2r/dt2 = r1/2, where r is arc length
along the track. The lack of a Lipschitz bound upon the active force at the
apex creates a situation where this equation tolerates many possible solutions
for a ball situated at the crest with no initial velocity (it can stay put or slowly
start to roll down the track ad libitum with r(t) = (1/144)t4). The curvature

1 Norton ([2006]) calls his supporting structure a ‘dome’, but some unstated constraint allows
us to ignore the ball’s potential angular displacements, producing the net effect of a track-like
constraint. Hence I shall describe the situation as a ‘hillside track’ in this paper.
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Figure 2. Types of foundational object.

of the track ‘turns off’ the active part of the gravitational force acting on the
ball as the origin is approached, yet ‘turns it back on’ very rapidly as the ball
becomes displaced from the apex, allowing our moving-ball solutions to de-
celerate smoothly enough to display a limiting zero velocity as the origin is
approached. Given such a counterexample (many others can be easily con-
structed), why has Newtonian mechanics heretofore so often been described as
‘deterministic’? Norton presumes that he has shown that this familiar charac-
terization is simply wrong, but, in fact, various ‘six-legged stool’ considerations
concerning the phrase ‘Newtonian mechanics’ affect this example in substan-
tive ways, as we shall establish in the course of this review. For such reasons,
Norton’s case nicely illustrates the care we must observe as we ponder the
‘content’ of ‘Newtonian mechanics’.

3 Three Species of Classical Mechanics

To this end, we should distinguish three basic families of foundational approach
to ‘classical mechanics’ (they split into further subdivisions as further ques-
tions are pressed): (MP) mass point particle mechanics (the ‘classical physics’
usually taught to freshman physics majors), (PC) the physics of rigid bodies
and perfect constraints (commonly introduced as ‘analytical mechanics’ in that
same freshman course in a somewhat surreptitious manner) and (CM) contin-
uum mechanics (taught systematically only to theoretical engineers and applied
mathematicians nowadays) (Figure 2). The ‘objects’ basic to these formulations
are, respectively, (MP) unextended point-masses, (PC) extended yet perfectly
rigid geometrical shapes such as balls and curved tracks, and (CM) shapes
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Determinism and the Mystery of the Missing Physics 177

Figure 3. Ball on track.

that are thoroughly flexible at every size scale, such as distorting balls, pliable
tracks, wooden beams, and fluids. Probably class (CM) represents the most nat-
ural embodiment of the doctrines we traditionally expect to find in ‘classical
mechanics’ but articulating its operative mathematics precisely is rather tricky
and often reserved for specialists. For this reason, point-mass-like formulations
appear to be ‘foundational’ within historical textbooks such as Thompson and
Tait ([1867]) simply because a proper framework for articulating CM principles
directly lay beyond their technical reach. But their intended ‘world view’ was
one of continua, not point masses. In any case, our three basic approaches are
not, from a foundational point of view, strictly compatible with one another:
the modes of description favored as basic in one approach can only be treated as
convenient approximations within the others. Into which of these foundational
categories does Norton’s case fall?

His ball (really, a point mass) and track comprise objects of a fixed geometry
and hence represent a standard arrangement within PC. This approach typi-
cally makes two characteristic assumptions about cases like Norton’s (Figure 3).
(a) A particle bound to a constraining surface but free of all opposing forces
will follow a geodesic of the surface with a constant speed relative to the surface
(this venerable doctrine is commonly called ‘generalized inertia’).2 (b) Any total
force exerted against the system can be perfectly decomposed into two disjoint
components: the part that attempts to drive the particle unsuccessfully into the
surface and the piece able to affect its generalized inertial motion (Figure 4).
Forces in the first group are commonly dubbed ‘constraint forces’, ‘forces of
reaction’ or ‘forces that do no work’ and the latter, ‘active forces’ or ‘forces
that perform work’. In Norton’s example, the total applied force appears as
the constant downward directed gravitational force, which is then apportioned
into my two sub-categories in different amounts at different positions along
his dome. At the very top the gravitational force proves completely ineffectual

2 As such, generalized inertia captures a chief manner in which orthodox analytical mechanics
diverges from point mass mechanics. Norton’s particle is not ‘free’ in this sense, because some of
the applied gravitational force ‘performs work’ upon the particle, as well as supplying the ‘forces
of constraint’ that bind it to its track (if only the latter are active, the particle qualifies as ‘free’).
It might be noted that the resulting motion will represent neither a true sliding or rolling, either
of which can engender surprisingly divergent behaviors upon a two-dimensional hillside.
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Figure 4. Ball on hillside.

in its capacity ‘to perform work’. It operates entirely as a ‘constraint force’
there. However, as the particle moves away from the summit, some portion of
the impressed gravitational force begins to ‘turn on’ as an active force. Appor-
tioning ‘forces’ into these bifurcated categories is a very ancient practice—it
is implicit in Greek thinking about statics—and an average textbook evokes
the distinction without a murmur of apology (this ‘sneakiness’ then allows
analytical mechanics to creep on stage). Nonetheless, from the points of view
of our alternative foundational starting points, this kind of ‘active/constraint’
decomposition may prove strictly unwarranted and can only be justified as a
form of convenient approximation. Any friend of determinism should be cau-
tious about allowing forces to be glibly divided into ‘reactive’ and ‘constraint’
categories, for that’s how Norton’s loss of determinacy secretly enters the scene.

In orthodox mass point mechanics (MP), by contrast, its unextended par-
ticles obey strict First Law inertia: unaffected particles travel in straight lines
without change of velocity. Moreover, Newton’s Third Law, as it is commonly
understood in an MP context, rules out the possibility of true ‘constraint forces’
entirely: it can’t tolerate forces that strictly bind a particle to a fixed geomet-
rical constraint. At best, the particle will stay pretty near a geodesic on the
constraining surface while simultaneously displaying a lot of rapid wiggling. It
can then prove convenient to factor away the wiggling as a ‘fast motion’ that is
superimposed upon a ‘slow motion’ in the manner described in every textbook
on approximation theory, but this decomposition is to be tolerated only as an
approximation. In other words, orthodox MP mechanics rejects the assumption
that forces can be strictly apportioned into ‘active’ and ‘constraint’ classes: all
forces are wholly ‘active’.

To see this, observe that a standard textbook treatment of Newton’s Third
Law replaces its vague original ‘action = reaction’ formulation by three tacit
assumptions: that fundamental forces always arise in inter-particle pairs that
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Figure 5. Force of reaction.

are (1) central, (2) balanced, and (3) dependent only upon relative positions, not
velocities. These assumptions then allow the textbook to associate any particle
system with a potential energy function and to prove the conservation of energy
on that basis. Within rival foundational stories such as CM, the conservation
of energy is often adopted as an independent postulate, but the Third Law
derivation just sketched represents the usual way its status is approached within
freshman textbooks and in the more rigorous developments based squarely
upon the MP picture.

3.1 Mass point physics

Accordingly, let us now scrutinize the ‘constraint force’ that binds our particle
a to Norton’s track from the MP point of view. According to First Law inertia,
a should normally wish to whoosh ahead along a tangent running off the
surface but we have also assumed that the track’s matter supplies just enough
‘constraint force’ fa to pull a back to the surface with exactly the right velocity
to satisfy the expectations of generalized inertia (Figure 5). Okay, but let us
now run a particle b along the track that is exactly like a except that it scoots
a little faster along the path. Once again, the track’s ‘constraint force’ must
exert a binding force fb of the right magnitude to pull b down to its appointed,
generalized inertia rendezvous with the hillside.3 fb clearly needs to be different
from fa . But how can the constraining surface prove smart enough to exert
the exact degree of force required? Answer: the track must be able to ‘see’
the velocity difference between a and b and adjust its strength accordingly.
But permitting such a sensitivity to velocity is contrary to the Third Law and
the canonical ‘conservation of energy’ story sketched above. In fact, the MP
foundational framework can legitimately tolerate strong binding forces that can
only approximately drag a and b along similar ‘slow motion’ paths, with residual
differences showing up in the different ‘fast motion’ ways in which a and b wiggle

3 To articulate the situation more accurately, the gravitational force can convey the particle down-
ward, but the repulsive forces arising from the dome’s surface must be smart enough to halt its
descent in the right places with the correct tangential velocities.
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upon the hillside. This is the fundamental reason why the MP particle picture
can’t, strictly speaking, tolerate true ‘forces of constraint’. Indeed, with respect
to their fundamental qualities, ‘active forces’ and ‘constraint forces’ should be
regarded as quite different sorts of critter and the conceptual tensions they
engender stand at the root of many of the great historical disputes about the
nature of ‘force’.4

It is rather surprising that these elementary issues are rarely discussed clearly.
A notable exception can be found in Gallavotti ([1983]), which seems flabber-
gasted by the manner in which most textbooks sneak analytical mechanics on
stage through nothing more than inadequate ‘forces that do or don’t do work’
hand-waving:

However, the principle of the conservation of the difficulties makes it clear
that there must be some serious obstacle to the actual applications of such a
shining but simplistic vision. The true constraints are, in fact, generated by
forces that . . . generally are neither simple nor conservative . . . but depend
upon the velocities of the points as well as their positions. (Gallavotti
[1983], p. 155)5

He credits V. I. Arnold with first recognizing that appeals to constraints
should be properly approached within the framework of MP as a kind of
approximation theorem involving rapidly jittery motions superimposed upon
a slower trend.

The only significant comment I would add to Gallavotti’s discussion is that
we should remain aware of the fact that PC can also be approached profitably
from the continuum physics side of things (CM), where the alternative tale of
approximation we will then weave will look significantly different from the MP
story just sketched. In terms of predictive realism, the CM version of the story
is preferable because it provides better warnings of the many circumstances
where ‘analytical mechanics’ ( = PC) winds up treating real-life tracks, domes,
and balls quite poorly.6 We shall come back to the CM side of the ledger later.

What, then, should we say about the ‘determinism’ of MP particle physics?
Here we confront the basic phenomena of ‘missing physics’ that represents
my central theme in this essay. One can’t immediately produce a definitive
answer to the ‘determinism’ question simply because standard presentations

4 Heinrich Hertz ([1956]) struggled to resolve our dilemma by nominating the constraint forces as
primary while relegating the ‘active forces’ to the humbler status of ‘artifacts of an approximation
policy’.

5 Gallavotti ([1983]) also elects to tolerate velocity-dependent forces in his initial postulates, spe-
cializing to forces derived from a potential only later (p. 169).

6 In real life, ragged surfaces lubricated by an intervening fluid are required before any simulacrum
of frictionless sliding can be achieved (otherwise the ball binds tightly to its track). The ‘con-
straints’ favored in analytic mechanics model the contact between solids in a quite unrealistic
manner whereas continuum mechanics contains better resources for this purpose.
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Determinism and the Mystery of the Missing Physics 181

invariably weasel quite a bit with respect to foundational assumptions that must
be settled before a feature such as determinism can be coherently adjudicated. In
particular, we must know more than we are usually told about the exact kinds of
inter-particle forces that our MP physics will tolerate. To be sure, our textbook
will tell us about universal gravitation and Coulomb’s law, but what about the
strong local forces responsible for molecular binding and repulsion? In real-life
practice, molecular modelers evoke various inverse sixth and twelfth power
laws (such as the well-known Lennard–Jones potential) for these purposes, but
they are usually rather evasive about the classical validity of these ‘rules of
thumb’. Instead, they wax weasely: ‘I don’t really know any classical contender
for a short range force law that should be accepted as a canonical part of MP
physics, but my simple power law rules work pretty well as a stopgap.’7 Here
we witness a typical ‘missing physics’ gap within point mass mechanics where
practitioners commonly evoke fairly coarse rules of thumb to fill foundational
gaps that they will be happy to abandon if things don’t work out right.

Yet as long as such gaps remain unfilled, it becomes misleading to clas-
sify point particle physics as ‘deterministic’ or not—the question simply can’t
be adjudicated on a rational basis with such incomplete information. In the
breech, we will do better as philosophers, I think, to concentrate directly upon
the descriptive holes presently tolerated within assembled MP doctrine, rather
than focusing upon indeterminism per se. In 1962 Montague ([1974]) carefully
formalized the treatment of ‘point particle physics’ that had been provided
by Patrick Suppes and his group (McKinsey et al. [1953]) in hopes of rigor-
ously establishing traits like determinism and discovered, to his dismay, that
his collected materials were far too feeble to address this question in a remotely
interesting fashion. Indeed, McKinsey et al. ([1953]) had been so timid in their
formulations that they had omitted the Third Law altogether!8 In such a con-
text, asking ‘Is classical physics deterministic?’ resembles ‘Have you stopped
beating your wife?’: The question of why so many vital background presump-
tions are missing needs to addressed first.

However, if we are willing to follow current modeling practice and strengthen
our Third Law principles sufficiently to further demand that all inter-particle
interactions must obey some kind of power law principle, then we can guarantee
that only analytic functions (away from the collision singularities) will appear
in our governing ordinary differential equations. If so, then Cauchy’s original
local existence proof based upon power series expansions kicks in where the
uniqueness of trajectories comes along for free (we only need worry about
Lipschitz conditions and all that when some lapse of smoothness intrudes

7 In practice, such modelers often evoke square well potentials as an expedient, but this coarse rule
of thumb isn’t compatible with the smoothness presumed in Newton’s Second Law.

8 Cf. the critical remarks in (Truesdell [1984]).
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upon our starting set of equations). Under this supplementary assumption,
MP physics becomes provably deterministic.

Which is not to say that point mass physics is therefore left in descriptively
great shape, because it is notorious that its local trajectories are not always
globally extendible: its particles can either bump into one another or allow
some required quantity (such as position) to blow up into an intolerable infinity
within finite time (Saari [2005]). Such unpleasant failures of ‘global existence’
have prompted classical physicists to invent all sorts of excuse for papering over
these descriptive holes within their doctrines, a point to which I’ll soon return.
But it is as descriptive holes such issues should be addressed, not as failures of
determinism: perfectly harmless-looking point particle setups often engender
descriptive impossibilities after a time when left to their own devices.

I stress the advisability of looking at matters in this manner because John
Earman ([1986]) in his well-known book (and John Norton follows him in this)
artificially converts a classic ‘blow up’ phenomenon into an alleged ‘failure
of determinism’ through recasting the proper meaning of ‘initial condition’
in a manner that I regard as terminologically unfortunate and contrary to
well-established mathematical practice.9 The only motive I can discern for this
reclassification is that it allows one to inform other philosophers that ‘I have
discovered that classical particle mechanics isn’t really deterministic’ rather
than the more apt ‘I have discovered that classical particle mechanics sometimes
tolerates strange descriptive gaps.’ The former asseveration may sound more
thrilling, but I think the latter statement better captures the circumstances to
which we should pay closer attention as philosophers of science.

When asked about the collision and ‘blow up’ problems characteristic of
point particle mechanics, physicists commonly reply in one of two ways: (i)
they claim that some unspecified ‘missing physics’ will kick in to prevent the
blowup from occurring or (ii) they’ll suggest some relatively crude rule of
thumb to ‘continue’ trajectories past their apparent breakdown calamities. As
an example of the first reply, it is often suggested (see below for a citation) that
the celebrated Xia ([1992]) blow up in point particle gravitation will be ‘cured’
in real life by the repulsive mechanisms that supply planets with their real-life
‘size’, for such barriers should prevent the system from milking the infinite
potential wells tolerated within the unadulterated Xia setup. But, as we noted

9 Specifically, Earman and Norton argue that we should examine MP mechanics in a manner
that tolerates hypothetical ‘space invaders’ allowed to enter a regular MP scenario from spatial
infinity in finite time. If so, this tolerance should be described in terms of a novel ‘side condition at
infinity’ added to conventional MP rather than an ‘initial condition’ per se (following Hadamard,
mathematicians have performed a very valuable service in classifying the sundry kinds of natural
‘side condition’ pertinent to differential equations precisely and I believe we should not trample
upon their good terminological offices unduly). In view of its rather extensive foundational holes,
I am unpersuaded that such novel ‘side conditions’ represent the best way to highlight what is
troublesome in orthodox MP physics.
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Determinism and the Mystery of the Missing Physics 183

with the molecular modelers, the exact nature of these ‘repulsive mechanisms’
is left unspecified within canonical MP physics. A good example of the second
response is the rule that colliding particles should rebound elastically. Here we
simply plow past some of the problem’s singularities with a ‘fill-in rule’ of a
non-differential equation type.

Oftentimes, as John Norton implicitly observes, popular recipes for patch-
ing over the descriptive holes in the vein of (ii) carry the risk of introducing a
measure of certifiable indeterminacy in their wake. The classic illustration of
this circumstance (in a CM context) can be found in the Riemann–Hugoniot
recipe for repairing the shock wave blowups that otherwise commonly arise
with respect to the natural equations for a confined gas (Smoller [1983]). This
repair recommends that what are now called ‘weak solutions’ should be tol-
erated for these equations, but, without some further constraints, this new
allowance tolerates far too many new solutions of this generalized type, with
an attendant loss of solution uniqueness. To be sure, by evoking the celebrated
Lax conditions as additional rules of thumb, we can restore unique weak so-
lution developments within many one-dimensional applications, although it is
dubious that this repair will prove entirely adequate in three dimensions as well
(resolving these matters has proved enormously difficult; cf.Yudovich [2006]).
Generically, there are good reasons to doubt whether blow-up problems of
this ilk can be completely repaired by such adjoined ‘rules of thumb’, simply
because such principles rarely track the stage-by-stage evolution of the system
in the tight manner provided by a set of differential equations. Once again, the
central phenomenon to which we should pay the greatest attention is the ap-
pearance of the ‘missing physics’ descriptive holes engendered by the blowups:
the apparent failures of determinism enter largely as an artifact of the fact that
the ‘rules of thumb’ commonly cited in repair are often unable to plug the
descriptive holes thoroughly.

In any case, from a strict MP point of view that demands power law forces,
Norton’s hillside display of ‘indeterminism’ shouldn’t seem troubling at all, for
advocates of these foundations shouldn’t accept Norton’s proffered equation
of motion as an acceptable ‘slow variable’ decomposition for the situation at
hand. Indeed, the complications that Malament ([2006]) has discussed indicate
that, in any proper point particle modeling of the conditions near the top
of the track, the real motions are likely to prove so elaborate that no ‘fast
variable’/‘slow variable’ decomposition will prove admissible in that region at
all. Accordingly, a stout MP advocate can properly retort, ‘Norton appeals
to a perfectly rigid track in setting up his problem, but no such constraint
can be properly justified as an approximation within this setting, for the great
complexities of how the point mass comprising the “ball” will interact with
the point masses comprising the “track” have been improperly idealized away
through an unwarranted appeal to a “rigid track”’. Indeed, I augur that this
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MP response accurately captures the background thinking that explains why
few working physicists are likely to be swayed in their conviction that ‘classical
mechanics is deterministic’ by Norton’s example.10

Observe that these complications in our discussion all stem from the under-
lying factor that puzzled Richard Montague: ‘Why have practicing classical
physicists been so reluctant to complete the MP picture by embracing power
law supplements (or some other expedient) in a manner that would make “de-
terminism” a provable or refutable mathematical feature of the formalism?’
The proper rationale traces simply to the brute fact that, when we begin in-
specting smallish things at close range, Mother Nature stops supplying any
firm indication of any appropriate MP rules at all, but steers us in the direction
of quantum physics instead. As all molecular modelers know, their sixth and
twelfth power rules possess a first-order experimental accuracy at best and,
insofar as one can successfully model close interactions in a ‘classical’ vein at
all, one must seat the sources of intermolecular attraction and repulsion upon
some kind of extended blobs (some of the relevant experimental considera-
tions arguing against point mass foundations had become well known by the
mid-nineteenth century; cf. Maxwell [1952]). Because Mother Nature refuses
to supply suitable guidance with respect to possible short-range laws for point
particles, practitioners often dismiss Montague’s request to ‘fill in the missing
physics’ in MP by observing, ‘Oh, extended blobs actually become important at
that scale size, not true point particles.’ In much this same ‘mass points are not
our real concern’ spirit, Gallavotti ([1983], p. 30) appeals to the extended size
of planets when he dismisses the ‘physical relevance’ of the Xia-like collision
singularities arising within MP physics. When physicists offhandedly offer such
excuses, we tacitly witness the unstable stool of ‘classical mechanics’ slowly set-
tling upon other foundational legs: if ‘extended blobs’ become tolerated as our
‘fundamental classical entities’, we must shift the parameters of our discussion
of determinism into the realms of either PC or true CM. As we do this, we find
that distinct sets of considerations need to be canvassed in these arenas than
prove pertinent when we operate in strict MP mode.

And there is a basic methodological tension that complicates these issues
in real-life practice. Although from a modeling point of view we are inclined
to object to the appearance of singularities where some density or velocity
blows up to infinity, from a mathematical point of view we often greatly value
these same breakdowns; for, as Riemann and Cauchy demonstrated long ago,
the singularities of a problem commonly represent the precise features of the
mathematical landscape we should seek in our efforts to understand how the
qualitative mathematics of a set of equations unfolds. Insofar as the project of
achieving mathematical understanding goes, singularities frequently prove our

10 Arnold ([1997]) simply assumes determinism as an axiom!
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Determinism and the Mystery of the Missing Physics 185

best friends, not our enemies. Accordingly, if we have already decided that
our MP formulations overlook the missing physics pertinent to extended bod-
ies anyway, why should we gussy up the mathematical formalism of MP with
artificial assumptions concerning repulsion at close quarters? Such unwanted
supplements may only camouflage the very singularities that we need to un-
cover in our attempts to understand how our system behaves when no danger
of close contact looms. Once we recognize that MP can’t happily serve as a
foundational basis for everything that we would normally consider to be a
‘classical process’, we might as well allow its parochial singularities to emerge
in as nakedly transparent a manner as possible, for, from a mathematical point
of view, taming the singularities only impedes understanding, without provid-
ing any compensating gain in overall modeling accuracy. In short, once we
have decided that the point masses of MP cannot adequately serve as ‘founda-
tional entities’ for classical physics considered as a whole, we simultaneously
lose any motive for regarding MP’s sundry breakdowns as deficiencies. Plainly,
such methodological considerations will shape textbook presentations of MP
doctrine along considerably different axes than our naı̈ve ‘How does classical
mechanics describe the world?’ expectations anticipate. And this background
explains why the strange ‘gaps’ that Richard Montague noted within conven-
tional formalizations of MP physics aren’t really so surprising after all.

3.2 The physics of perfect constraints

Once we foundationally substitute extended objects for point masses, we have
shifted to a different framework (PC or CM) where the question of determinism
requires a considerably different discussion. In fact, Norton’s example nicely
indicates how this can happen, for its particulars suit the expectations native to
PC, where extended objects11 are allowed to frame perfectly rigid surfaces upon
which a suitable finite set12 of generalized coordinates can be installed and with

11 A related subtlety merits a passing remark, even if it does not touch upon determinism per se.
Strictly speaking, Norton’s example involves a dimensional mismatch between an extended and
an unextended object: a zero-dimensional point situated upon the two-dimensional surface of a
hillside. It is common practice to study examples of this sort, but should we really wish to accept
such mismatches as foundationally basic? A concrete experience with continua suggests otherwise.
The history of the subject is full of treatments where a three-dimensional system such as a plank
has been mathematically treated as a two-dimensional or one-dimensional array, often by appeal
to some apparent symmetry in its configuration. Nonetheless, it is now recognized that these
reduced treatments are hard to justify rigorously and that it is a mistake to apply fundamental
mechanical axioms to such lowered-dimensional systems directly. With respect to the dome case,
three-dimensional balls often act quite unexpectedly on frictionless planes and one should be
careful about presuming that Norton’s predicted motion will emerge in any reasonable limit
as a three-dimensional ball is reduced in size toward a point. However, this quibble, although
important for foundational work, does not affect Norton’s example in any material way, for we
can reproduce analogs of his circumstances in higher dimensions.

12 Historically, the great interest in Lagrangian mechanics and other forms of variational principle
lay in the hope that detailed hypotheses about local contact action could be evaded by such
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Figure 6. Ball on single track.

respect to which the principle of generalized inertia proves completely valid.
However, a number of fresh subtleties immediately intervene, the first of which
is that ‘analytical mechanics’ is rarely presented in a manner where its intended
scope is clearly specified. The most common frameworks for implementing this
flavor of physics utilize either a Lagrangian or a Hamiltonian operator upon
generalized coordinates in the context of holonomic constraints (although, as
we shall soon observe, this last requirement is strangely limiting). The basic
trouble is that most presentations are vague as to what should be tolerated
under the heading of a ‘generalized coordinate’ and this ambiguity makes it
hard to evaluate the precise pertinence of Norton’s example to PC in turn.
For example, consider a ball freely sliding along a tube with a sharp bend and
let the quality S(t) mark its increasing arc length displacements along its path
(Figure 6). Does this ball-and-tube system fall within the proper ambit of PC?
The answer depends upon whether S(t) qualifies as an acceptable ‘generalized
coordinate’ or not. But this issue looks as if it can be reasonably resolved
in three ways. Answer 1: No, because S(t) doesn’t possess completely smooth
derivatives with respect to regular Cartesian coordinates. Answer 2: Yes, because
the ball’s generalized inertial motion proves perfectly smooth relative to S(t)
itself (I’ll supply answer 3 shortly). However, if we accept this second answer,
shouldn’t we also allow a tube-and-ball system that splits both to the left and

means; cf. (Darrigol [2005], Chapter 1). The intended arena is continuum mechanics, with finite-
dimensional modelings emerging only as first-order approximations through ‘lumping’. The
notion that finite-dimensional ‘analytical mechanics’ might prove foundationally central emerged
only later, with no clear parent insofar as I am aware. But Norton’s example is troubling only if
we adopt such a point of view.
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Figure 7. Ball on split track.

right as an acceptable PC system as well, for S(t) still appears as if it can serve
as a suitable generalized coordinate for a ball rolling along a bifurcated tube
(Figure 7)? Granting S(t) this status, our split tube setup looks to be prima
facie indeterministic under the assumption that generalized inertia must carry
our ball along one tube or other past the forking. In fact, I have seen precisely
this case, with these same implicit assumptions, cited to prove that ‘classical
mechanics is indeterministic’ (Truesdell [1966]). However, we can reasonably
reject this possibility if we either retreat to answer 1 or (this is the delayed ‘answer
3’) we simply declare S(t) unacceptable as a ‘generalized coordinate’ in this case
simply because no complete set of admissible coordinates13 manages to fix the
ball’s state uniquely! In other words, answer 3 renders PC deterministic by fiat:
any appeal to ‘generalized coordinates’ for a system already presupposes that
the system enjoys a set of coordinates that certify its motions as deterministic.
In truth, split tube arrangements are usually not tolerated as ‘part of analytical
mechanics’ simply because no one really wants to bother with such outré
states of affair when systems are studied from this point of view. To those who
fancy that PC aspires to embrace ‘all of classical mechanics’, this exclusion
should seem arbitrary, but, in fact, ‘analytical mechanics’ has no business
pretending that it can successfully accommodate every intuitively expected
‘classical situation’ anyway (its credentials for this foundational office are much
worse, I think, than even those for MP). But once its inherent descriptive gaps
are cheerfully acknowledged, applied mathematicians can reasonably demand
that mathematical understanding should trump complete physical modeling when
they carve out a proper arena for ‘analytical mechanics’, for reasons similar to

13 To have a complete set of coordinates for the split tube case, we also need a variable to mark
lateral position within the tubes and this variable won’t normally prove smooth (although we can
improve matters by tricks like Norton’s).
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Figure 8. Locomotive wheel.

those that we canvassed in point mass circumstances. From this point of view,
answer 3 isn’t unreasonable at all.

Incidentally, if we adopt answer 1’s approach to ‘generalized coordinates’ and
add a few supplementary assumptions,14 we might save determinism in this case
by claiming that the unique ‘correct resolution’ to our divided tube problem
is one where the ball rebounds up the tube in a reverse direction (indeed, I
have often heard this response offered as a ‘solution’ to the indeterminism
problem). However, Norton’s example nicely demonstrates that this kind of
answer is not sufficiently general—the singularity at the tube’s bifurcation point
can be sufficiently smoothed to make the non-unique continuations appear
‘more normal’. To see how this can happen, let us consider another example,
which is often cited to demonstrate ‘classical non-determinism’ in the older
literature (Figure 8). Suppose we have a locomotive wheel and rod in the
configuration sketched, where some large motive thrust F is applied along
the piston rod (engineers call such configurations the ‘dead points’ of the
mechanism; their presence creates great headaches in real-life design work). In
which direction will the wheel turn under F’s influence? As matters presently
stand, F is perfectly matched by the ‘forces of constraint’ that arise within
the wheel, so the summed applied force ‘performs no work’ on the wheel.
However—and here is where the underlying parallels with Norton’s hillside
case become palpable—as soon as the piston becomes slightly inclined from
the horizontal, the altered geometry will allow some of the thrust F to ‘do work’
on the wheel and accelerate its turning motion. Sometimes it is objected that
‘Really the wheel can never move from its “dead spot” configuration because its
acceleration must display an unacceptable jump to do so,’ in the same vein as we
‘solved’ the tube indeterminacy. However, if our wheel happens to be shaped

14 In accepting the rebounding state of affairs as a ‘solution’, we tacitly tolerate a trajectory that falls
outside the usual requirements of analytic mechanics. An adequate investigation of ‘determinism’
relevant to such circumstances will require a more precise delineation of the range of ‘weak
solutions’ tolerated.
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like the top of Norton’s dome, then such ‘constrained force converting to
active force’ scenarios can be rendered smooth enough to bypass this standard
objection. In any case, it’s hard to remain consistently prissy about smooth
movements within the realm of mechanism, which frequently display impulsive
reversals in all sorts of natural contexts.

Such concerns represent but the tiny tip of a much larger iceberg of woes
that lurk within the PC universe. As soon as we admit rigid objects of a finite
geometry into ‘classical physics’, it comes hard to accommodate the full range
of expected setup variations within the framework of any fixed formalism. We
have just witnessed a basic prototype: if God can build a tube with a sharp bend
to the left, why can’t He also build one that splits in both directions? ‘Because
it doesn’t suit my formalism’ seems like a shabby answer. Nor are we likely to
look favorably upon physicists who claim that balls can’t roll and skaters can’t
glide down hillsides because such motions aren’t tolerated within their favored
form of PC. ‘Surely it’s much easier to build a ball or a skate than anything
that will “purely slide” in your fashion,’ we complain. ‘Surely you’ve omit-
ted much of the basic physics that governs classical contact interaction from
your formalism.’ Although careless readers often overlook the fact, the famil-
iar forms of ‘analytical mechanics’ found in most textbooks tacitly demand
‘holonomic constraints’, which can accommodate neither rolling nor skating.
And even after these significant lapses in coverage are corrected by adopting
a ‘virtual work’ framework for PC better suited to rolling and sliding, the re-
vised formalism will still prove unable to handle situations of over-constraint as
exemplified within a modification of Aristotle’s celebrated double-axled wheel,
where the two hubs are mounted on rails in rack-and-pinion fashion. PC lacks
any method for resolving how such a device will resolve the incompatible con-
straints restricting its free motion (Figure 9).15 Our immediate intuitive reaction
to this over-constraint is to note that the interior of the wheel must somehow
flex in response to these applied stresses: ‘Your analytical mechanics has left
out the physics of all that,’ we complain. Quite right, but to tolerate flexure is
ipso facto to depart the happy land of PC and instead take up foundational
residence within the realm of pure continua (CM) where perfectly rigid bodies
are normally rejected as impossible, strictly speaking. Once again, the specter
of ‘missing physics’ has caused the stool of ‘classical mechanics’ to rock over
to new foundational legs.

Before we briefly inspect the CM situation, let me comment upon a pecu-
liar feature of classical analytical mechanics’ present centrality within physics.
Although, rightly understood, it is hard to regard the formalism of analytical
mechanics as capturing ‘the full world of classical mechanics’ in any acceptable

15 Hertz’ system of rigid-body-based mechanics ([1956]) was often criticized for neglecting over-
constraint of this sort.
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Figure 9. Aristotle’s wheel.

Figure 10. Notched rod.

way, it nonetheless serves as an important guide, through standard quantiza-
tion procedures, as to how the laws of the quantum world behave. For whatever
reason, the symplectic structures etc. natural only to gliding but not rolling
balls seem just the ticket to success with respect to quantum foundations. But
we should not let this strange ‘success in guiding quantization’ trick us into
overlooking the descriptive gaps that analytic mechanics tolerates within its
originally intended classical home.

3.3 Continuum mechanics

Turning briefly to CM, we find that we can scarcely evade the problems caused
by finite geometries, although they now arise in more subtle ways (Figure 10).
‘If God can cut a rounded notch into a steel rod, why can’t He cut an en-
tirely sharp notch as well?’ we wonder. Yet, orthodox models for a sharply
notched rod demand a blowup singularity in the stress at the notch. Realisti-
cally, we know that steel will flow plastically or even fragment long before any
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extremely high stress is achieved, but our formalism has not demanded that the
physics needed to activate these processes be installed within our steel. Should
we require it to do this? Well, materials scientists have developed some fairly
good stories for plastic flow along this line, but they don’t regard any of them
as better than first-order approximations. So we again face an uncomfortable
dilemma much like our reluctance to embrace wholeheartedly the power law
repulsion rules utilized by the molecular modelers; we can tame our notch
anomaly through a ‘missing physics’ rule of thumb that we don’t particularly
trust. And even if we do this, certain natural geometries are apt to introduce
singularities within these revised models as well. In the meantime, the math-
ematicians continue to advise us, ‘Wait a minute! We like those singularities.
Don’t smooth them over with some crude rule of thumb that you don’t really
trust anyway.’ Accordingly, workers in CM have instead attempted to discover
pleasing but rather ad hoc compromises between restrictions upon the range
of setup geometries they tolerate and answers that accept certain singularities
within some specified flavor of generalized ‘solution’. Efforts along these lines
have forced the applied mathematician to consider very delicate flavors of func-
tion spaces, often adapted to different sorts of problem in different ways. So,
what do ‘classical mechanics’ foundational objects’ look like within CM in light
of these methodological subtleties? It becomes very hard to say. We might look
to Mother Nature for foundational guidance, but, when pressed about classical
physics, she only smiles disagreeably and points to quantum chemistry as the
correct story of what occurs at such scale lengths.

4 Conclusion

Accordingly, despite our philosophical wishes otherwise, it seems unlikely that
we’ll ever manage to get our classical stool to sit firmly at rest on solid legs,
simply because some flavor of ‘missing physics’ consideration seems always
ready to rock us off our present perch. We simply don’t know how to fill out
‘the world of classical physics’ in any consistent manner that doesn’t tolerate
strange gaps where some otherwise expected ‘classical situation’ becomes dis-
allowed on seemingly arbitrary grounds (indeed, often the circumstances that
stymie classical foundational story F can be nicely modeled within the frame-
work of some alternative classical story G and vice versa—a foundational
instability that I have elsewhere (Wilson [2006]) called ‘the lousy encyclopedia
phenomenon’). As long as such gaps persist, Norton-like indeterminacies may
sometimes creep in, largely as a consequence of having adopted some fill-in
‘rule of thumb’ (e.g., the constraint provided by Norton’s perfectly rigid track),
which we don’t believe truly ‘gets all of the classical physics of the real-life situ-
ation right.’ Accusations of ‘indeterminism’ rarely seem definitive in such cases,
simply because we’ve never really trusted the ‘rules of thumb’ upon which they
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trade in the first case. This is why ‘missing physics’ gaps of the sorts we have
surveyed represent a more central feature of classical mechanics’ peculiar cir-
cumstances than any of its potential indeterminacies. These basic foundational
considerations, it seems to me, supply the true explanation of why long ago
Richard Montague wasn’t able to locate enough ingredients to settle rigorously
whether ‘classical mechanics’ is deterministic or not.
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