Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Targeting SHP2 for Cancer Treatment: Advances and Prospects

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology

Abstract

Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2), encoded by the PTPN11, is a non-receptor protein tyrosine phosphatase that expressed in cytoplasmic. Served as an important hub, SHP2 provide crosstalk for several intracellular pathways such as Ras-Raf-MEK-ERK, PI3K-AKT-mTOR, JAK-STAT, and PD-1/PD L-1 pathways in either growth factor-dependent or immune-dependent manner. Both the classical phosphatase-dependent and -independent roles of SHP2 are involved in the pathologic process of several diseases, making SHP2 a promising drug target. PTPN11 mutations, including gain-of-function (GOF) mutation and loss-of-function (LOF) mutation, are frequently observed in numerous diseases. These mutations are characterized by structural rearrangement and electric potential change, leading to the alteration of enzyme activity and binding affinity toward phosphotyrosine peptide. The dynamic conformational transition of SHP2 under either physiological or pathological conditions provides directions for the drug discovery targeting SHP2. SHP2-targeted inhibitors, proteolysis-targeting chimera (PROTAC)-based degraders, and activators have shown therapeutic promise against numerous diseases. To date, nine allosteric inhibitors are undergoing clinical assessment as mono- or combined therapy for treating solid tumors or adaptive resistant cancers. In this chapter, we comprehensively summarize the multifaceted functions of SHP2 and the structural basis of SHP2 under different conditions. Additionally, the challenges and prospects of SHP2-targeted drug discovery are also discussed. This chapter will not only facilitate the underlying pathological mechanisms of SHP2-associated diseases but also provide a landscape for the advances of SHP2-targeted drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • An H, Zhao W, Hou J et al (2006) SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity 25(6):919–928

    Article  CAS  Google Scholar 

  • Bentires-Alj M, Paez JG, David FS et al (2004) Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res 64(24):8816–8820

    Article  CAS  Google Scholar 

  • Breitkopf SB, Yang X, Begley MJ et al (2016) A cross-species study of PI3K protein-protein interactions reveals the direct interaction of P85 and SHP2. Sci Rep 6:20471

    Article  CAS  Google Scholar 

  • Chan G, Kalaitzidis D, Usenko T et al (2009) Leukemogenic Ptpn11 causes fatal myeloproliferative disorder via cell-autonomous effects on multiple stages of hematopoiesis. Blood 113(18):4414–4424

    Article  CAS  Google Scholar 

  • Dance M, Montagner A, Salles JP et al (2008) The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cell Signal 20(3):453–459

    Article  CAS  Google Scholar 

  • Denu JM, Lohse DL, Vijayalakshmi J et al (1996a) Visualization of intermediate and transition-state structures in protein-tyrosine phosphatase catalysis. Proc Natl Acad Sci U S A 93(6):2493–2498

    Article  CAS  Google Scholar 

  • Denu JM, Stuckey JA, Saper MA et al (1996b) Form and function in protein dephosphorylation. Cell 87(3):361–364

    Article  CAS  Google Scholar 

  • Fragale A, Tartaglia M, Wu J et al (2004) Noonan syndrome-associated SHP2/PTPN11 mutants cause EGF-dependent prolonged GAB1 binding and sustained ERK2/MAPK1 activation. Hum Mutat 23(3):267–277

    Article  CAS  Google Scholar 

  • Grossmann KS, Rosário M, Birchmeier C (2010) The tyrosine phosphatase Shp2 in development and cancer. Adv Cancer Res 106:53–89

    Article  CAS  Google Scholar 

  • Guo W, Xu Q (2020) Phosphatase-independent functions of SHP2 and its regulation by small molecule compounds. J Pharmacol Sci 144(3):139–146

    Article  CAS  Google Scholar 

  • Halliday PR, Blakely CM, Bivona TG (2019) Emerging targeted therapies for the treatment of non-small cell lung cancer. Curr Oncol Rep 21(3):21

    Article  Google Scholar 

  • Hof P, Pluskey S, Dhe-Paganon S et al (1998) Crystal structure of the tyrosine phosphatase SHP-2. Cell 92(4):441–450

    Article  CAS  Google Scholar 

  • Hui E, Cheung J, Zhu J et al (2017) T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355(6332):1428–1433

    Article  CAS  Google Scholar 

  • Hyun S, Shin D (2021) Small-molecule inhibitors and degraders targeting KRAS-driven cancers. Int J Mol Sci 22(22):12142

    Article  CAS  Google Scholar 

  • Imaide S, Riching KM, Makukhin N et al (2021) Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity. Nat Chem Biol 17(11):1157–1167

    Article  CAS  Google Scholar 

  • LaRochelle JR, Fodor M, Xu X et al (2016) Structural and functional consequences of three cancer-associated mutations of the oncogenic phosphatase SHP2. Biochemistry 55(15):2269–2277

    Article  CAS  Google Scholar 

  • LaRochelle JR, Fodor M, Ellegast JM et al (2017) Identification of an allosteric benzothiazolopyrimidone inhibitor of the oncogenic protein tyrosine phosphatase SHP2. Bioorg Med Chem 25(24):6479–6485

    Article  CAS  Google Scholar 

  • Li L, Modi H, McDonald T et al (2011) A critical role for SHP2 in STAT5 activation and growth factor-mediated proliferation, survival, and differentiation of human CD34+ cells. Blood 118(6):1504–1515

    Article  CAS  Google Scholar 

  • Liu Q, Qu J, Zhao M et al (2020) Targeting SHP2 as a promising strategy for cancer immunotherapy. Pharmacol Res 152:104595

    Article  CAS  Google Scholar 

  • Liu Y, Yang X, Wang Y et al (2021) Targeting SHP2 as a therapeutic strategy for inflammatory diseases. Eur J Med Chem 214:113264

    Article  CAS  Google Scholar 

  • Martinelli S, Torreri P, Tinti M et al (2008) Diverse driving forces underlie the invariant occurrence of the T42A, E139D, I282V and T468M SHP2 amino acid substitutions causing Noonan and LEOPARD syndromes. Hum Mol Genet 17(13):2018–2029

    Article  CAS  Google Scholar 

  • Mohi MG, Neel BG (2007) The role of Shp2 (PTPN11) in cancer. Curr Opin Genet Dev 17(1):23–30

    Article  CAS  Google Scholar 

  • Ohtani T, Ishihara K, Atsumi T et al (2000) Dissection of signaling cascades through gp130 in vivo: reciprocal roles for STAT3- and SHP2-mediated signals in immune responses. Immunity 12(1):95–105

    Article  CAS  Google Scholar 

  • Ostman A, Hellberg C, Böhmer FD (2006) Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6(4):307–320

    Article  Google Scholar 

  • Pádua RAP, Sun Y, Marko I et al (2018) Mechanism of activating mutations and allosteric drug inhibition of the phosphatase SHP2. Nat Commun 9(1):4507

    Article  Google Scholar 

  • Qiu W, Wang X, Romanov V et al (2014) Structural insights into Noonan/LEOPARD syndrome-related mutants of protein-tyrosine phosphatase SHP2 (PTPN11). BMC Struct Biol 14:10

    Article  Google Scholar 

  • Rehman AU, Rahman MU, Khan MT et al (2018) The landscape of protein tyrosine phosphatase (Shp2) and cancer. Curr Pharm Des 24(32):3767–3777

    Article  CAS  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Dhand R et al (1994) Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370(6490):527–532

    Article  CAS  Google Scholar 

  • Schneeberger VE, Luetteke N, Ren Y et al (2014) SHP2E76K mutant promotes lung tumorigenesis in transgenic mice. Carcinogenesis 35(8):1717–1725

    Article  CAS  Google Scholar 

  • Sheppard KA, Fitz LJ, Lee JM et al (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574(1–3):37–41

    Article  CAS  Google Scholar 

  • Song Z, Wang M, Ge Y et al (2021a) Tyrosine phosphatase SHP2 inhibitors in tumor-targeted therapies. Acta Pharm Sin B 11(1):13–29

    Article  CAS  Google Scholar 

  • Song Y, Zhao M, Wu Y et al (2021b) A multifunctional cross-validation high-throughput screening protocol enabling the discovery of new SHP2 inhibitors. Acta Pharm Sin B 11(3):750–762

    Article  CAS  Google Scholar 

  • Song Y, Zhao M, Zhang H et al (2022a) Double-edged roles of protein tyrosine phosphatase SHP2 in cancer and its inhibitors in clinical trials. Pharmacol Ther 230:107966

    Article  CAS  Google Scholar 

  • Song Y, Wang S, Zhao M et al (2022b) Strategies targeting protein tyrosine phosphatase SHP2 for cancer therapy. J Med Chem 65(4):3066–3079

    Article  CAS  Google Scholar 

  • Song Y, Yang XY, Wang S, Zhao M, Yu B (2022c) Crystallographic landscape of SHP2 provides molecular insights for SHP2 targeted drug discovery. Med Res Rev 42(5):1781–1821

    Article  CAS  Google Scholar 

  • Song Y, Yang X, Yu B (2022d) KRAS Q61H mutation confers cancer cells with acquired resistance to SHP2 inhibition. Pharmaceutic Fronts 04(01):e40–e42

    Article  Google Scholar 

  • Tang K, Jia YN, Yu B et al (2020) Medicinal chemistry strategies for the development of protein tyrosine phosphatase SHP2 inhibitors and PROTAC degraders. Eur J Med Chem 204:112657

    Article  CAS  Google Scholar 

  • Tartaglia M, Mehler EL, Goldberg R et al (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29(4):465–468

    Article  CAS  Google Scholar 

  • Tartaglia M, Niemeyer CM, Fragale A et al (2003) Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and_ acute myeloid leukemia. Nat Genet 34(2):148–150

    Article  CAS  Google Scholar 

  • Tartaglia M, Martinelli S, Cazzaniga G et al (2004) Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood 104(2):307–313

    Article  CAS  Google Scholar 

  • Tautz L, Critton DA, Grotegut S (2013) Protein tyrosine phosphatases: structure, function, and implication in human disease. Methods Mol Biol 1053:179–221

    Article  CAS  Google Scholar 

  • Tsutsumi R, Ran H, Neel BG (2018) Off-target inhibition by active site-targeting SHP2 inhibitors. FEBS Open Bio 8(9):1405–1411

    Article  CAS  Google Scholar 

  • Wang RR, Liu WS, Zhou L et al (2020) Probing the acting mode and advantages of RMC-4550 as an Src-homology 2 domain-containing protein tyrosine phosphatase (SHP2) inhibitor at molecular level through molecular docking and molecular dynamics. J Biomol Struct Dyn 38(5):1525–1538

    Article  CAS  Google Scholar 

  • Wu X, Guo W, Wu L et al (2012) Selective sequestration of STAT1 in the cytoplasm via phosphorylated SHP-2 ameliorates murine experimental colitis. J Immunol 189(7):3497–3507

    Article  CAS  Google Scholar 

  • Xie J, Si X, Gu S et al (2017) Allosteric inhibitors of SHP2 with therapeutic potential for cancer treatment. J Med Chem 60(24):10205–10219

    Article  CAS  Google Scholar 

  • Yang X, Wang Z, Pei Y et al (2021) Discovery of thalidomide-based PROTAC small molecules as the highly efficient SHP2 degraders. Eur J Med Chem 218:113341

    Article  CAS  Google Scholar 

  • Yangchun M, WenYu Y, Liang Z et al (2022) Exploring the cause of the dual allosteric targeted inhibition attaching to allosteric sites enhancing SHP2 inhibition. Mol Divers 26(3):1567–1580

    Article  CAS  Google Scholar 

  • Yu WM, Hawley TS, Hawley RG et al (2003) Catalytic-dependent and -independent roles of SHP-2 tyrosine phosphatase in interleukin-3 signaling. Oncogene 22(38):5995–6004

    Article  CAS  Google Scholar 

  • Yu J, Deng R, Zhu HH et al (2013a) Modulation of fatty acid synthase degradation by concerted action of p38 MAP kinase, E3 ligase COP1, and SH2-tyrosine phosphatase Shp2. J Biol Chem 288(6):3823–3830

    Article  CAS  Google Scholar 

  • Yu ZH, Xu J, Walls CD et al (2013b) Structural and mechanistic insights into LEOPARD syndrome-associated SHP2 mutations. J Biol Chem 288(15):10472–10482

    Article  CAS  Google Scholar 

  • Yu ZH, Zhang RY, Walls CD et al (2014) Molecular basis of gain-of-function LEOPARD syndrome-associated SHP2 mutations. Biochemistry 53(25):4136–4151

    Article  CAS  Google Scholar 

  • Yu K, Yin Y, Ma D et al (2020) Shp2 activation in bone marrow microenvironment mediates the drug resistance of B-cell acute lymphoblastic leukemia through enhancing the role of VCAM-1/VLA-4. Int Immunopharmacol 80:106008

    Article  CAS  Google Scholar 

  • Zhang SQ, Tsiaras WG, Araki T et al (2002) Receptor-specific regulation of phosphatidylinositol 3′-kinase activation by the protein tyrosine phosphatase Shp2. Mol Cell Biol 22(12):4062–4072

    Article  CAS  Google Scholar 

  • Zhang RY, Yu ZH, Chen L et al (2020) Mechanistic insights explain the transforming potential of the T507K substitution in the protein tyrosine phosphatase SHP2. J Biol Chem 295(18):6187–6201

    Article  CAS  Google Scholar 

  • Zhang H, Yang X, Song Y, Yu B (2022) Combining EGFR inhibitors with SHP2 or LSD1 inhibitors to overcome multidrug resistance in cancer. Future Med Chem 14(8):527–529

    Article  CAS  Google Scholar 

  • Zheng M, Liu Y, Wu C et al (2021a) Novel PROTACs for degradation of SHP2 protein. Bioorg Chem 110:104788

    Article  CAS  Google Scholar 

  • Zheng M, Huo J, Gu X et al (2021b) Rational design and synthesis of novel dual PROTACs for simultaneous degradation of EGFR and PARP. J Med Chem 64(11):7839–7852

    Article  CAS  Google Scholar 

  • Zhu G, Xie J, Kong W et al (2020) Phase separation of disease-associated SHP2 mutants underlies MAPK hyperactivation. Cell 183(2):490–502

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Song, Y., Yu, B. (2023). Targeting SHP2 for Cancer Treatment: Advances and Prospects. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_256-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_256-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics