

Beyond the Worst-Case Analysis of Algorithms

There are no silver bullets in algorithm design, and no single algorithmic idea is
powerful and flexible enough to solve every computational problem. Nor are there
silver bullets in algorithm analysis, as the most enlightening method for analyzing
an algorithm often depends on the problem and the application. However, typical
algorithms courses rely almost entirely on a single analysis framework, that of worst-
case analysis, wherein an algorithm is assessed by its worst performance on any input
of a given size.

The purpose of this book is to popularize several alternatives to worst-case
analysis and their most notable algorithmic applications, from clustering to linear
programming to neural network training. Forty leading researchers have contributed
introductions to different facets of this field, emphasizing the most important models
and results, many of which can be taught in lectures to beginning graduate students
in theoretical computer science and machine learning.

Tim Roughgarden is a professor of computer science at Columbia University.
For his research, he has been awarded the ACM Grace Murray Hopper Award,
the Presidential Early Career Award for Scientists and Engineers (PECASE), the
Kalai Prize in Computer Science and Game Theory, the Social Choice and Welfare
Prize, the Mathematical Programming Society’s Tucker Prize, and the EATCS-
SIGACT Gödel Prize. He was an invited speaker at the 2006 International Congress
of Mathematicians, the Shapley Lecturer at the 2008 World Congress of the Game
Theory Society, and a Guggenheim Fellow in 2017. His other books include Twenty
Lectures on Algorithmic Game Theory (2016) and the Algorithms Illuminated book
series (2017–2020).

Beyond the Worst-Case Analysis
of Algorithms

Edited by

Tim Roughgarden
Columbia University, New York

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108494311

DOI: 10.1017/9781108637435

© Cambridge University Press 2021

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2021

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-49431-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of
URLs for external or third-party internet websites referred to in this publication

and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

www.cambridge.org
www.cambridge.org/9781108494311
http://dx.doi.org/10.1017/9781108637435

Contents

Preface page xiii
List of Contributors xv

1 Introduction 1
Tim Roughgarden
1.1 The Worst-Case Analysis of Algorithms 1
1.2 Famous Failures and the Need for Alternatives 3
1.3 Example: Parameterized Bounds in Online Paging 8
1.4 Overview of the Book 12
1.5 Notes 20

PART ONE REFINEMENTS OF WORST-CASE ANALYSIS

2 Parameterized Algorithms 27
Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi
2.1 Introduction 27
2.2 Randomization 31
2.3 Structural Parameterizations 34
2.4 Kernelization 35
2.5 Hardness and Optimality 39
2.6 Outlook: New Paradigms and Application Domains 42
2.7 The Big Picture 46
2.8 Notes 47

3 From Adaptive Analysis to Instance Optimality 52
Jérémy Barbay
3.1 Case Study 1: Maxima Sets 52
3.2 Case Study 2: Instance-Optimal Aggregation Algorithms 60
3.3 Survey of Additional Results and Techniques 64
3.4 Discussion 65
3.5 Selected Open Problems 66
3.6 Key Takeaways 67
3.7 Notes 68

v

CONTENTS

4 Resource Augmentation 72
Tim Roughgarden
4.1 Online Paging Revisited 72
4.2 Discussion 75
4.3 Selfish Routing 77
4.4 Speed Scaling in Scheduling 81
4.5 Loosely Competitive Algorithms 86
4.6 Notes 89

PART TWO DETERMINISTIC MODELS OF DATA

5 Perturbation Resilience 95
Konstantin Makarychev and Yury Makarychev
5.1 Introduction 95
5.2 Combinatorial Optimization Problems 98
5.3 Designing Certified Algorithms 101
5.4 Examples of Certified Algorithms 106
5.5 Perturbation-Resilient Clustering Problems 108
5.6 Algorithm for 2-Perturbation-Resilient Instances 111
5.7 (3 + ε)-Certified Local Search Algorithm for k-Medians 113
5.8 Notes 115

6 Approximation Stability and Proxy Objectives 120
Avrim Blum
6.1 Introduction and Motivation 120
6.2 Definitions and Discussion 121
6.3 The k-Median Problem 125
6.4 k-Means, Min-Sum, and Other Clustering Objectives 132
6.5 Clustering Applications 133
6.6 Nash Equilibria 134
6.7 The Big Picture 135
6.8 Open Questions 136
6.9 Relaxations 137
6.10 Notes 137

7 Sparse Recovery 140
Eric Price
7.1 Sparse Recovery 140
7.2 A Simple Insertion-Only Streaming Algorithm 142
7.3 Handling Deletions: Linear Sketching Algorithms 143
7.4 Uniform Algorithms 148
7.5 Lower Bound 154
7.6 Different Measurement Models 155
7.7 Matrix Recovery 158
7.8 Notes 160

vi

CONTENTS

PART THREE SEMIRANDOM MODELS

8 Distributional Analysis 167
Tim Roughgarden
8.1 Introduction 167
8.2 Average-Case Justifications of Classical Algorithms 171
8.3 Good-on-Average Algorithms for Euclidean Problems 175
8.4 Random Graphs and Planted Models 179
8.5 Robust Distributional Analysis 183
8.6 Notes 184

9 Introduction to Semirandom Models 189
Uriel Feige
9.1 Introduction 189
9.2 Why Study Semirandom Models? 192
9.3 Some Representative Work 196
9.4 Open Problems 209

10 Semirandom Stochastic Block Models 212
Ankur Moitra
10.1 Introduction 212
10.2 Recovery via Semidefinite Programming 215
10.3 Robustness Against a Monotone Adversary 218
10.4 Information Theoretic Limits of Exact Recovery 219
10.5 Partial Recovery and Belief Propagation 221
10.6 Random versus Semirandom Separations 223
10.7 Above Average-Case Analysis 226
10.8 Semirandom Mixture Models 230

11 Random-Order Models 234
Anupam Gupta and Sahil Singla
11.1 Motivation: Picking a Large Element 234
11.2 The Secretary Problem 237
11.3 Multiple-Secretary and Other Maximization Problems 238
11.4 Minimization Problems 247
11.5 Related Models and Extensions 250
11.6 Notes 254

12 Self-Improving Algorithms 259
C. Seshadhri
12.1 Introduction 259
12.2 Information Theory Basics 263
12.3 The Self-Improving Sorter 266
12.4 Self-Improving Algorithms for 2D Maxima 272
12.5 More Self-Improving Algorithms 277
12.6 Critique of the Self-Improving Model 278

vii

CONTENTS

PART FOUR SMOOTHED ANALYSIS

13 Smoothed Analysis of Local Search 285
Bodo Manthey
13.1 Introduction 285
13.2 Smoothed Analysis of the Running Time 286
13.3 Smoothed Analysis of the Approximation Ratio 301
13.4 Discussion and Open Problems 304
13.5 Notes 305

14 Smoothed Analysis of the Simplex Method 309
Daniel Dadush and Sophie Huiberts
14.1 Introduction 309
14.2 The Shadow Vertex Simplex Method 310
14.3 The Successive Shortest Path Algorithm 315
14.4 LPs with Gaussian Constraints 319
14.5 Discussion 329
14.6 Notes 330

15 Smoothed Analysis of Pareto Curves in Multiobjective Optimization 334
Heiko Röglin
15.1 Algorithms for Computing Pareto Curves 334
15.2 Number of Pareto-optimal Solutions 342
15.3 Smoothed Complexity of Binary Optimization Problems 352
15.4 Conclusions 354
15.5 Notes 355

PART FIVE APPLICATIONS IN MACHINE LEARNING
AND STATISTICS

16 Noise in Classification 361
Maria-Florina Balcan and Nika Haghtalab
16.1 Introduction 361
16.2 Model 362
16.3 The Best Case and the Worst Case 363
16.4 Benefits of Assumptions on the Marginal Distribution 365
16.5 Benefits of Assumptions on the Noise 374
16.6 Final Remarks and Current Research Directions 378

17 Robust High-Dimensional Statistics 382
Ilias Diakonikolas and Daniel M. Kane
17.1 Introduction 382
17.2 Robust Mean Estimation 384
17.3 Beyond Robust Mean Estimation 396
17.4 Notes 399

viii

CONTENTS

18 Nearest Neighbor Classification and Search 403
Sanjoy Dasgupta and Samory Kpotufe
18.1 Introduction 403
18.2 The Algorithmic Problem of Nearest Neighbor Search 403
18.3 Statistical Complexity of k-Nearest Neighbor Classification 411
18.4 Notes 419

19 Efficient Tensor Decompositions 424
Aravindan Vijayaraghavan
19.1 Introduction to Tensors 424
19.2 Applications to Learning Latent Variable Models 426
19.3 Efficient Algorithms in the Full-Rank Setting 430
19.4 Smoothed Analysis and the Overcomplete Setting 433
19.5 Other Algorithms for Tensor Decompositions 440
19.6 Discussion and Open Questions 441

20 Topic Models and Nonnegative Matrix Factorization 445
Rong Ge and Ankur Moitra
20.1 Introduction 445
20.2 Nonnegative Matrix Factorization 448
20.3 Topic Models 454
20.4 Epilogue: Word Embeddings and Beyond 461

21 Why Do Local Methods Solve Nonconvex Problems? 465
Tengyu Ma
21.1 Introduction 465
21.2 Analysis Technique: Characterization of the Landscape 466
21.3 Generalized Linear Models 468
21.4 Matrix Factorization Problems 471
21.5 Landscape of Tensor Decomposition 476
21.6 Survey and Outlook: Optimization of Neural Networks 478
21.7 Notes 482

22 Generalization in Overparameterized Models 486
Moritz Hardt
22.1 Background and Motivation 486
22.2 Tools to Reason About Generalization 488
22.3 Overparameterization: Empirical Phenomena 493
22.4 Generalization Bounds for Overparameterized Models 497
22.5 Empirical Checks and Holdout Estimates 500
22.6 Looking Ahead 502
22.7 Notes 502

ix

CONTENTS

23 Instance Optimal Distribution Testing and Learning 506
Gregory Valiant and Paul Valiant
23.1 Testing and Learning Discrete Distributions 506
23.2 Instance Optimal Distribution Learning 507
23.3 Identity Testing 516
23.4 Digression: An Automatic Inequality Prover 519
23.5 Beyond Worst-Case Analysis for Other Testing Problems 522
23.6 Notes 523

PART SIX FURTHER APPLICATIONS

24 Beyond Competitive Analysis 529
Anna R. Karlin and Elias Koutsoupias
24.1 Introduction 529
24.2 The Access Graph Model 530
24.3 The Diffuse Adversary Model 534
24.4 Stochastic Models 537
24.5 Direct Comparison of Online Algorithms 540
24.6 Where Do We Go from Here? 541
24.7 Notes 542

25 On the Unreasonable Effectiveness of SAT Solvers 547
Vijay Ganesh and Moshe Y. Vardi
25.1 Introduction: The Boolean SAT Problem and Solvers 547
25.2 Conflict-Driven Clause Learning SAT Solvers 550
25.3 Proof Complexity of SAT Solvers 554
25.4 Proof Search, Automatizability, and CDCL SAT Solvers 557
25.5 Parameteric Understanding of Boolean Formulas 558
25.6 Proof Complexity, Machine Learning, and Solver Design 562
25.7 Conclusions and Future Directions 563

26 When Simple Hash Functions Suffice 567
Kai-Min Chung, Michael Mitzenmacher, and Salil Vadhan
26.1 Introduction 567
26.2 Preliminaries 571
26.3 Hashing Block Sources 575
26.4 Application: Chained Hashing 576
26.5 Optimizing Block Source Extraction 577
26.6 Application: Linear Probing 578
26.7 Other Applications 580
26.8 Notes 581

27 Prior-Independent Auctions 586
Inbal Talgam-Cohen
27.1 Introduction 586
27.2 A Crash Course in Revenue-Maximizing Auctions 587

x

CONTENTS

27.3 Defining Prior-Independence 591
27.4 Sample-Based Approach: Single Item 593
27.5 Competition-Based Approach: Multiple Items 598
27.6 Summary 602
27.7 Notes 603

28 Distribution-Free Models of Social Networks 606
Tim Roughgarden and C. Seshadhri
28.1 Introduction 606
28.2 Cliques of c-Closed Graphs 607
28.3 The Structure of Triangle-Dense Graphs 612
28.4 Power-Law Bounded Networks 615
28.5 The BCT Model 619
28.6 Discussion 621
28.7 Notes 623

29 Data-Driven Algorithm Design 626
Maria-Florina Balcan
29.1 Motivation and Context 626
29.2 Data-Driven Algorithm Design via Statistical Learning 628
29.3 Data-Driven Algorithm Design via Online Learning 639
29.4 Summary and Discussion 644

30 Algorithms with Predictions 646
Michael Mitzenmacher and Sergei Vassilvitskii
30.1 Introduction 646
30.2 Counting Sketches 649
30.3 Learned Bloom Filters 650
30.4 Caching with Predictions 652
30.5 Scheduling with Predictions 655
30.6 Notes 660

Index 663

xi

Preface

There are no silver bullets in algorithm design – no one algorithmic idea is powerful
and flexible enough to solve every computational problem of interest. The emphasis
of an undergraduate algorithms course is accordingly on the next-best thing: a small
number of general algorithm design paradigms (such as dynamic programming,
divide-and-conquer, and greedy algorithms), each applicable to a range of problems
that span multiple application domains.

Nor are there silver bullets in algorithm analysis, as the most enlightening method
for analyzing an algorithm often depends on the details of the problem and moti-
vating application. However, the focus of a typical algorithms course rests almost
entirely on a single analysis framework, that of worst-case analysis, wherein an
algorithm is assessed by its worst performance on any input of a given size. The
goal of this book is to redress the imbalance and popularize several alternatives to
worst-case analysis, developed largely in the theoretical computer science literature
over the past 20 years, and their most notable algorithmic applications. Forty leading
researchers have contributed introductions to different facets of this field, and
the introductory Chapter 1 includes a chapter-by-chapter summary of the book’s
contents.

This book’s roots lie in a graduate course that I developed and taught several
times at Stanford University.1 While the project has expanded in scope far beyond
what can be taught in a one-term (or even one-year) course, subsets of the book
can form the basis of a wide variety of graduate courses. Authors were requested to
avoid comprehensive surveys and focus instead on a small number of key models and
results that could be taught in lectures to second-year graduate students in theoretical
computer science and theoretical machine learning. Most of the chapters conclude
with open research directions as well as exercises suitable for classroom use. A free
electronic copy of this book is available from the URL https://www.cambridge.org/
9781108494311#resources (with the password ‘BWCA_CUP’).

Producing a collection of this size is impossible without the hard work of many
people. First and foremost, I thank the authors for their dedication and timeliness in
writing their own chapters and for providing feedback on preliminary drafts of other
chapters. I thank Avrim Blum, Moses Charikar, Lauren Cowles, Anupam Gupta,

1 Lecture notes and videos from this course, covering several of the topics in this book, are available from
my home page (www.timroughgarden.org).

xiii

https://www.cambridge.org/9781108494311#resources
https://www.cambridge.org/9781108494311#resources
www.timroughgarden.org

PREFACE

Ankur Moitra, and Greg Valiant for their enthusiasm and excellent advice when this
project was in its embryonic stages. I am also grateful to all the Stanford students who
took my CS264 and CS369N courses, and especially to my teaching assistants Rishi
Gupta, Joshua Wang, and Qiqi Yan. The cover art is by Max Greenleaf Miller. The
editing of this book was supported in part by NSF award CCF-1813188 and ARO
award W911NF1910294.

xiv

Contributors

Maria-Florina Balcan
Carnegie Mellon University

Jérémy Barbay
University of Chile

Avrim Blum
Toyota Technological Institute at Chicago

Kai-Min Chung
Institute of Information Science, Academia Sinica

Daniel Dadush
Centrum Wiskunde Informatica

Sanjoy Dasgupta
University of California at San Diego

Ilias Diakonikolas
University of Wisconsin-Madison

Uriel Feige
The Weizman Institute

Fedor Fomin
University of Bergen

Vijay Ganesh
University of Waterloo

Rong Ge
Duke University

xv

LIST OF CONTRIBUTORS

Anupam Gupta
Carnegie Mellon University

Nika Haghtalab
Cornell University

Moritz Hardt
University of California at Berkeley

Sophie Huiberts
Centrum Wiskunde Informatica

Daniel Kane
University of California at San Diego

Anna R. Karlin
University of Washington at Seattle

Elias Koutsoupias
University of Oxford

Samory Kpotufe
Columbia University

Daniel Lokshtanov
University of California at Santa Barbara

Tengyu Ma
Stanford University

Konstantin Makarychev
Northwestern University

Yury Makarychev
Toyota Technological Institute at Chicago

Bodo Manthey
University of Twente

Michael Mitzenmacher
Harvard University

Ankur Moitra
Massachusetts Institute of Technology

xvi

LIST OF CONTRIBUTORS

Eric Price
The University of Texas at Austin

Heiko Röglin
University of Bonn

Tim Roughgarden
Columbia University

Saket Saurabh
Institute of Mathematical Sciences

C. Seshadhri
University of California at Santa Cruz

Sahil Singla
Princeton University

Inbal Talgam-Cohen
Technion–Israel Institute of Technology

Salil Vadhan
Harvard University

Gregory Valiant
Stanford University

Paul Valiant
Brown University

Moshe Vardi
Rice University

Sergei Vassilvitskii
Google, Inc.

Aravindan Vijayaraghavan
Northwestern University

Meirav Zehavi
Ben-Gurion University of the Negev

xvii

CHAPTER ONE

Introduction
Tim Roughgarden

Abstract: One of the primary goals of the mathematical analysis of
algorithms is to provide guidance about which algorithm is the “best”
for solving a given computational problem. Worst-case analysis
summarizes the performance profile of an algorithm by its worst
performance on any input of a given size, implicitly advocating for
the algorithm with the best-possible worst-case performance. Strong
worst-case guarantees are the holy grail of algorithm design, provid-
ing an application-agnostic certification of an algorithm’s robustly
good performance. However, for many fundamental problems and
performance measures, such guarantees are impossible and a more
nuanced analysis approach is called for. This chapter surveys several
alternatives to worst-case analysis that are discussed in detail later in
the book.

1.1 The Worst-Case Analysis of Algorithms

1.1.1 Comparing Incomparable Algorithms

Comparing different algorithms is hard. For almost any pair of algorithms and
measure of algorithm performance, each algorithm will perform better than the other
on some inputs. For example, the MergeSort algorithm takes �(n log n) time to sort
length-n arrays, whether the input is already sorted or not, while the running time of
the InsertionSort algorithm is �(n) on already-sorted arrays but �(n2) in general.1

The difficulty is not specific to running time analysis. In general, consider a com-
putational problem � and a performance measure PERF, with PERF(A,z) quantifying
the “performance” of an algorithm A for � on an input z ∈ �. For example, � could
be the Traveling Salesman Problem (TSP), A could be a polynomial-time heuristic for
the problem, and PERF(A,z) could be the approximation ratio of A – i.e., the ratio
of the lengths of A’s output tour and an optimal tour – on the TSP instance z.2

1 A quick reminder about asymptotic notation in the analysis of algorithms: for nonnegative real-valued
functions T(n) and f (n) defined on the natural numbers, we write T(n) = O(f (n)) if there are positive constants c
and n0 such that T(n) ≤ c · f (n) for all n ≥ n0; T(n) = �(f (n)) if there exist positive c and n0 with T(n) ≥ c · f (n)
for all n ≥ n0; and T(n) = �(f (n)) if T(n) is both O(f (n)) and �(f (n)).

2 In the Traveling Salesman Problem, the input is a complete undirected graph (V,E) with a nonnegative
cost c(v,w) for each edge (v,w) ∈ E, and the goal is to compute an ordering v1,v2, . . . ,vn of the vertices V that
minimizes the length

∑n
i=1 c(vi,vi+1) of the corresponding tour (with vn+1 interpreted as v1).

1

T. ROUGHGARDEN

Or � could be the problem of testing primality, A a randomized polynomial-
time primality-testing algorithm, and PERF(A,z) the probability (over A’s internal
randomness) that the algorithm correctly decides if the positive integer z is prime. In
general, when two algorithms have incomparable performance, how can we deem one
of them “better than” the other?

Worst-case analysis is a specific modeling choice in the analysis of algorithms,
in which the performance profile {PERF(A,z)}z∈� of an algorithm is summarized
by its worst performance on any input of a given size (i.e., minz : |z|=n PERF(A,z) or
maxz : |z|=n PERF(A,z), depending on the measure, where |z| denotes the size of the
input z). The “better”algorithm is then the one with superior worst-case performance.
MergeSort, with its worst-case asymptotic running time of �(n log n) for length-n
arrays, is better in this sense than InsertionSort, which has a worst-case running time
of �(n2).

1.1.2 Benefits of Worst-Case Analysis

While crude, worst-case analysis can be tremendously useful and, for several reasons,
it has been the dominant paradigm for algorithm analysis in theoretical computer
science.

1. A good worst-case guarantee is the best-case scenario for an algorithm, certifying
its general-purpose utility and absolving its users from understanding which inputs
are most relevant to their applications. Thus worst-case analysis is particularly
well suited for “general-purpose” algorithms that are expected to work well
across a range of application domains (such as the default sorting routine of a
programming language).

2. Worst-case analysis is often more analytically tractable to carry out than its
alternatives, such as average-case analysis with respect to a probability distribution
over inputs.

3. For a remarkable number of fundamental computational problems, there are
algorithms with excellent worst-case performance guarantees. For example, the
lion’s share of an undergraduate algorithms course comprises algorithms that run
in linear or near-linear time in the worst case.3

1.1.3 Goals of the Analysis of Algorithms

Before critiquing the worst-case analysis approach, it’s worth taking a step back to
clarify why we want rigorous methods to reason about algorithm performance. There
are at least three possible goals:

1. Performance prediction. The first goal is to explain or predict the empirical perfor-
mance of algorithms. In some cases, the analyst acts as a natural scientist, taking
an observed phenomenon such as “the simplex method for linear programming is
fast” as ground truth, and seeking a transparent mathematical model that explains
it. In others, the analyst plays the role of an engineer, seeking a theory that

3 Worst-case analysis is also the dominant paradigm in complexity theory, where it has led to the develop-
ment of NP-completeness and many other fundamental concepts.

2

INTRODUCTION

gives accurate advice about whether or not an algorithm will perform well in an
application of interest.

2. Identify optimal algorithms. The second goal is to rank different algorithms accord-
ing to their performance, and ideally to single out one algorithm as “optimal.” At
the very least, given two algorithms A and B for the same problem, a method for
algorithmic analysis should offer an opinion about which one is “better.”

3. Develop new algorithms. The third goal is to provide a well-defined framework in
which to brainstorm new algorithms. Once a measure of algorithm performance
has been declared, the Pavlovian response of most computer scientists is to
seek out new algorithms that improve on the state-of-the-art with respect to
this measure. The focusing effect catalyzed by such yardsticks should not be
underestimated.

When proving or interpreting results in algorithm design and analysis, it’s impor-
tant to be clear in one’s mind about which of these goals the work is trying to
achieve.

What’s the report card for worst-case analysis with respect to these three goals?

1. Worst-case analysis gives an accurate performance prediction only for algorithms
that exhibit little variation in performance across inputs of a given size. This is
the case for many of the greatest hits of algorithms covered in an undergraduate
course, including the running times of near-linear-time algorithms and of many
canonical dynamic programming algorithms. For many more complex prob-
lems, however, the predictions of worst-case analysis are overly pessimistic (see
Section 1.2).

2. For the second goal, worst-case analysis earns a middling grade – it gives good
advice about which algorithm to use for some important problems (such as many
of those in an undergraduate course) and bad advice for others (see Section 1.2).

3. Worst-case analysis has served as a tremendously useful brainstorming organizer.
For more than a half-century, researchers striving to optimize worst-case algo-
rithm performance have been led to thousands of new algorithms, many of them
practically useful.

1.2 Famous Failures and the Need for Alternatives

For many problems a bit beyond the scope of an undergraduate course, the
downside of worst-case analysis rears its ugly head. This section reviews four
famous examples in which worst-case analysis gives misleading or useless advice
about how to solve a problem. These examples motivate the alternatives to worst-
case analysis that are surveyed in Section 1.4 and described in detail in later chapters
of the book.

1.2.1 The Simplex Method for Linear Programming

Perhaps the most famous failure of worst-case analysis concerns linear programming,
the problem of optimizing a linear function subject to linear constraints (Figure 1.1).
Dantzig proposed in the 1940s an algorithm for solving linear programs called
the simplex method. The simplex method solves linear programs using greedy local

3

T. ROUGHGARDEN

Figure 1.1 A two-dimensional linear programming problem.

search on the vertices of the solution set boundary, and variants of it remain
in wide use to this day. The enduring appeal of the simplex method stems from
its consistently superb performance in practice. Its running time typically scales
modestly with the input size, and it routinely solves linear programs with millions of
decision variables and constraints. This robust empirical performance suggested that
the simplex method might well solve every linear program in a polynomial amount
of time.

Klee and Minty (1972) showed by example that there are contrived linear programs
that force the simplex method to run in time exponential in the number of decision
variables (for all of the common “pivot rules” for choosing the next vertex). This
illustrates the first potential pitfall of worst-case analysis: overly pessimistic perfor-
mance predictions that cannot be taken at face value. The running time of the simplex
method is polynomial for all practical purposes, despite the exponential prediction of
worst-case analysis.

To add insult to injury, the first worst-case polynomial-time algorithm for linear
programming, the ellipsoid method, is not competitive with the simplex method in
practice.4 Taken at face value, worst-case analysis recommends the ellipsoid method
over the empirically superior simplex method. One framework for narrowing the gap
between these theoretical predictions and empirical observations is smoothed analysis,
the subject of Part Four of this book; see Section 1.4.4 for an overview.

1.2.2 Clustering and NP-Hard Optimization Problems

Clustering is a form of unsupervised learning (finding patterns in unlabeled data),
where the informal goal is to partition a set of points into “coherent groups”
(Figure 1.2). One popular way to coax this goal into a well-defined computational
problem is to posit a numerical objective function over clusterings of the point set,
and then seek the clustering with the best objective function value. For example, the
goal could be to choose k cluster centers to minimize the sum of the distances between
points and their nearest centers (the k-median objective) or the sum of the squared

4 Interior-point methods, developed five years later, led to algorithms that both run in worst-case polynomial
time and are competitive with the simplex method in practice.

4

INTRODUCTION

Figure 1.2 A sensible clustering of a set of points.

such distances (the k-means objective). Almost all natural optimization problems that
are defined over clusterings are NP-hard.5

In practice, clustering is not viewed as a particularly difficult problem. Lightweight
clustering algorithms, such as Lloyd’s algorithm for k-means and its variants, regu-
larly return the intuitively “correct” clusterings of real-world point sets. How can
we reconcile the worst-case intractability of clustering problems with the empirical
success of relatively simple algorithms?6

One possible explanation is that clustering is hard only when it doesn’t matter.
For example, if the difficult instances of an NP-hard clustering problem look like
a bunch of random unstructured points, who cares? The common use case for a
clustering algorithm is for points that represent images, or documents, or proteins, or
some other objects where a “meaningful clustering” is likely to exist. Could instances
with a meaningful clustering be easier than worst-case instances? Part Three of this
book covers recent theoretical developments that support an affirmative answer; see
Section 1.4.2 for an overview.

1.2.3 The Unreasonable Effectiveness of Machine Learning

The unreasonable effectiveness of modern machine learning algorithms has thrown
the gauntlet down to researchers in algorithm analysis, and there is perhaps no other
problem domain that calls out as loudly for a “beyond worst-case” approach.

To illustrate some of the challenges, consider a canonical supervised learning
problem, where a learning algorithm is given a data set of object-label pairs and the
goal is to produce a classifier that accurately predicts the label of as-yet-unseen objects

5 Recall that a polynomial-time algorithm for an NP-hard problem would yield a polynomial-time algorithm
for every problem in NP – for every problem with efficiently verifiable solutions. Assuming the widely believed
P �= NP conjecture, every algorithm for an NP-hard problem either returns an incorrect answer for some inputs
or runs in super-polynomial time for some inputs (or both).

6 More generally, optimization problems are more likely to be NP-hard than polynomial-time solvable. In
many cases, even computing an approximately optimal solution is an NP-hard problem. Whenever an efficient
algorithm for such a problem performs better on real-world instances than (worst-case) complexity theory would
suggest, there’s an opportunity for a refined and more accurate theoretical analysis.

5

T. ROUGHGARDEN

(e.g., whether or not an image contains a cat). Over the past decade, aided by massive
data sets and computational power, neural networks have achieved impressive levels
of performance across a range of prediction tasks. Their empirical success flies in
the face of conventional wisdom in multiple ways. First, there is a computational
mystery: Neural network training usually boils down to fitting parameters (weights
and biases) to minimize a nonconvex loss function, for example, to minimize the
number of classification errors the model makes on the training set. In the past such
problems were written off as computationally intractable, but first-order methods
(i.e., variants of gradient descent) often converge quickly to a local optimum or even
to a global optimum. Why?

Second, there is a statistical mystery: Modern neural networks are typically over-
parameterized, meaning that the number of parameters to fit is considerably larger
than the size of the training data set. Overparameterized models are vulnerable
to large generalization error (i.e., overfitting), since they can effectively memorize
the training data without learning anything that helps classify as-yet-unseen data
points. Nevertheless, state-of-the-art neural networks generalize shockingly well –
why? The answer likely hinges on special properties of both real-world data sets and
the optimization algorithms used for neural network training (principally stochastic
gradient descent). Part Five of this book covers the state-of-the-art explanations
of these and other mysteries in the empirical performance of machine learning
algorithms.

The beyond worst-case viewpoint can also contribute to machine learning by
“stress-testing” the existing theory and providing a road map for more robust
guarantees. While work in beyond worst-case analysis makes strong assumptions
relative to the norm in theoretical computer science, these assumptions are usually
weaker than the norm in statistical machine learning. Research in the latter field
often resembles average-case analysis, for example, when data points are modeled
as independent and identically distributed samples from some underlying structured
distribution. The semirandom models described in Parts Three and Four of this book
serve as role models for blending adversarial and average-case modeling to encourage
the design of algorithms with robustly good performance.

1.2.4 Analysis of Online Algorithms

Online algorithms are algorithms that must process their input as it arrives over time.
For example, consider the online paging problem, where there is a system with a small
fast memory (the cache) and a big slow memory. Data are organized into blocks called
pages, with up to k different pages fitting in the cache at once. A page request results
in either a cache hit (if the page is already in the cache) or a cache miss (if not). On a
cache miss, the requested page must be brought into the cache. If the cache is already
full, then some page in it must be evicted. A cache replacement policy is an algorithm
for making these eviction decisions. Any systems textbook will recommend aspiring
to the Least Recently Used (LRU) policy, which evicts the page whose most recent
reference is furthest in the past. The same textbook will explain why: Real-world
page request sequences tend to exhibit locality of reference, meaning that recently
requested pages are likely to be requested again soon. The LRU policy uses the recent
past as a prediction for the near future. Empirically, it typically suffers fewer cache
misses than competing policies like First-In First-Out (FIFO).

6

INTRODUCTION

Worst-case analysis, straightforwardly applied, provides no useful insights about
the performance of different cache replacement policies. For every deterministic
policy and cache size k, there is a pathological page request sequence that triggers
a page fault rate of 100%, even though the optimal clairvoyant replacement policy
(known as Bélády’s furthest-in-the-future algorithm) would have a page fault rate of
at most 1/k (Exercise 1.1). This observation is troublesome both for its absurdly pes-
simistic performance prediction and for its failure to differentiate between competing
replacement policies (such as LRU vs. FIFO). One solution, described in Section 1.3,
is to choose an appropriately fine-grained parameterization of the input space and to
assess and compare algorithms using parameterized guarantees.

1.2.5 The Cons of Worst-Case Analysis

We should celebrate the fact that worst-case analysis works so well for so many
fundamental computational problems, while at the same time recognizing that
the cherrypicked successes highlighted in undergraduate algorithms can paint a
potentially misleading picture about the range of its practical relevance. The
preceding four examples highlight the chief weaknesses of the worst-case analysis
framework.

1. Overly pessimistic performance predictions. By design, worst-case analysis gives a
pessimistic estimate of an algorithm’s empirical performance. In the preceding
four examples, the gap between the two is embarrassingly large.

2. Can rank algorithms inaccurately. Overly pessimistic performance summaries can
derail worst-case analysis from identifying the right algorithm to use in practice.
In the online paging problem, it cannot distinguish between the FIFO and LRU
policies; for linear programming, it implicitly suggests that the ellipsoid method is
superior to the simplex method.

3. No data model. If worst-case analysis has an implicit model of data, then it’s the
“Murphy’s Law” data model, where the instance to be solved is an adversarially
selected function of the chosen algorithm.7 Outside of security applications, this
algorithm-dependent model of data is a rather paranoid and incoherent way to
think about a computational problem.

In many applications, the algorithm of choice is superior precisely because
of properties of data in the application domain, such as meaningful solutions
in clustering problems or locality of reference in online paging. Pure worst-case
analysis provides no language for articulating such domain-specific properties of
data. In this sense, the strength of worst-case analysis is also its weakness.

These drawbacks show the importance of alternatives to worst-case analysis, in
the form of models that articulate properties of “relevant” inputs and algorithms
that possess rigorous and meaningful algorithmic guarantees for inputs with these
properties. Research in “beyond worst-case analysis” is a conversation between
models and algorithms, with each informing the development of the other. It has
both a scientific dimension, where the goal is to formulate transparent mathematical

7 Murphy’s Law: If anything can go wrong, it will.

7

T. ROUGHGARDEN

models that explain empirically observed phenomena about algorithm performance,
and an engineering dimension, where the goals are to provide accurate guidance about
which algorithm to use for a problem and to design new algorithms that perform
particularly well on the relevant inputs.

Concretely, what might a result that goes “beyond worst-case analysis” look like?
The next section covers in detail an exemplary result by Albers et al. (2005) for the
online paging problem introduced in Section 1.2.4. The rest of the book offers dozens
of further examples.

1.3 Example: Parameterized Bounds in Online Paging

1.3.1 Parameterizing by Locality of Reference

Returning to the online paging example in Section 1.2.4, perhaps we shouldn’t be
surprised that worst-case analysis fails to advocate LRU over FIFO. The empirical
superiority of LRU is due to the special structure in real-world page request sequences
(locality of reference), which is outside the language of pure worst-case analysis.

The key idea for obtaining meaningful performance guarantees for and compar-
isons between online paging algorithms is to parameterize page request sequences
according to how much locality of reference they exhibit, and then prove param-
eterized worst-case guarantees. Refining worst-case analysis in this way leads to
dramatically more informative results. Part One of the book describes many other
applications of such fine-grained input parameterizations; see Section 1.4.1 for an
overview.

How should we measure locality in a page request sequence? One tried and true
method is the working set model, which is parameterized by a function f from the
positive integers N to N that describes how many different page requests are possible
in a window of a given length. Formally, we say that a page sequence σ conforms to f if
for every positive integer n and every set of n consecutive page requests in σ , there are
requests for at most f (n) distinct pages. For example, the identity function f (n) = n
imposes no restrictions on the page request sequence. A sequence can only conform
to a sublinear function like f (n) = �√n� or f (n) = �1 + log2 n� if it exhibits locality
of reference.8 We can assume without loss of generality that f (1) = 1, f (2) = 2, and
f (n + 1) ∈ {f (n),f (n) + 1} for all n (Exercise 1.2).

We adopt as our performance measure PERF(A,z) the fault rate of an online
algorithm A on the page request sequence z – the fraction of requests in z on which A
suffers a page fault. We next state a performance guarantee for the fault rate of the
LRU policy with a cache size of k that is parameterized by a number αf (k) ∈ [0,1].
The parameter αf (k) is defined below in (1.1); intuitively, it will be close to 0 for
slow-growing functions f (i.e., functions that impose strong locality of reference) and
close to 1 for functions f that grow quickly (e.g., near-linearly). This performance
guarantee requires that the function f is approximately concave in the sense that the
number my of inputs with value y under f (that is, | f −1(y)|) is nondecreasing in y
(Figure 1.3).

8 The notation �x� means the number x, rounded up to the nearest integer.

8

INTRODUCTION

f (n) 1 2 3 3 4 4 4 5 · · ·

n 1 2 3 4 5 6 7 8 · · ·
Figure 1.3 An approximately concave function, with m1 = 1, m2 = 1, m3 = 2, m4 = 3, . . .

Theorem 1.1 (Albers et al., 2005) With αf (k) defined as in (1.1) below:

(a) For every approximately concave function f , cache size k ≥ 2, and deterministic
cache replacement policy, there are arbitrarily long page request sequences
conforming to f for which the policy’s page fault rate is at least αf (k).

(b) For every approximately concave function f , cache size k ≥ 2, and page request
sequence that conforms to f , the page fault rate of the LRU policy is at most
αf (k) plus an additive term that goes to 0 with the sequence length.

(c) There exists a choice of an approximately concave function f , a cache size k ≥ 2,
and an arbitrarily long page request sequence that conforms to f , such that the
page fault rate of the FIFO policy is bounded away from αf (k).

Parts (a) and (b) prove the worst-case optimality of the LRU policy in a strong
and fine-grained sense, f -by-f and k-by-k. Part (c) differentiates LRU from FIFO, as
the latter is suboptimal for some (in fact, many) choices of f and k.

The guarantees in Theorem 1.1 are so good that they are meaningful even when
taken at face value – for strongly sublinear f ’s, αf (k) goes to 0 reasonably quickly
with k. The precise definition of αf (k) for k ≥ 2 is

αf (k) = k − 1
f −1(k + 1) − 2

, (1.1)

where we abuse notation and interpret f −1(y) as the smallest value of x such that
f (x) = y. That is, f −1(y) denotes the smallest window length in which page requests
for y distinct pages might appear. As expected, for the function f (n) = n we have
αf (k) = 1 for all k. (With no restriction on the input sequence, an adversary can force
a 100% fault rate.) If f (n) = �√n�, however, then αf (k) scales with 1/

√
k. Thus with

a cache size of 10,000, the page fault rate is always at most 1%. If f (n) = �1+ log2 n�,
then αf (k) goes to 0 even faster with k, roughly as k/2k.

1.3.2 Proof of Theorem 1.1

This section proves the first two parts of Theorem 1.1; part (c) is left as Exercise 1.4.

Part (a). To prove the lower bound in part (a), fix an approximately concave function
f and a cache size k ≥ 2. Fix a deterministic cache replacement policy A.

We construct a page sequence σ that uses only k + 1 distinct pages, so at any given
time step there is exactly one page missing from the algorithm’s cache. (Assume that
the algorithm begins with the first k pages in its cache.) The sequence comprises k−1
blocks, where the jth block consists of mj+1 consecutive requests for the same page
pj, where pj is the unique page missing from the algorithm A’s cache at the start of the

9

T. ROUGHGARDEN

Figure 1.4 Blocks of k − 1 faults, for k = 3.

block. (Recall that my is the number of values of x such that f (x) = y.) This sequence
conforms to f (Exercise 1.3).

By the choice of the pj’s, A incurs a page fault on the first request of a block, and
not on any of the other (duplicate) requests of that block. Thus, algorithm A suffers
exactly k − 1 page faults.

The length of the page request sequence is m2 + m3 + · · · + mk. Because m1 = 1,
this sum equals (

∑k
j=1 mj)−1 which, using the definition of the mj’s, equals (f −1(k+

1)−1)−1 = f −1(k+1)−2. The algorithm’s page fault rate on this sequence matches
the definition (1.1) of αf (k), as required. More generally, repeating the construction
over and over again produces arbitrarily long page request sequences for which the
algorithm has page fault rate αf (k).

Part (b). To prove a matching upper bound for the LRU policy, fix an approximately
concave function f , a cache size k ≥ 2, and a sequence σ that conforms to f . Our
fault rate target αf (k) is a major clue to the proof (recall (1.1)): we should be looking
to partition the sequence σ into blocks of length at least f −1(k+1)−2 such that each
block has at most k − 1 faults. So consider groups of k − 1 consecutive faults of the
LRU policy on σ . Each such group defines a block, beginning with the first fault of
the group, and ending with the page request that immediately precedes the beginning
of the next group of faults (see Figure 1.4).

Claim Consider a block other than the first or last. Consider the page requests
in this block, together with the requests immediately before and after this block.
These requests are for at least k + 1 distinct pages.

The claim immediately implies that every block contains at least f −1(k + 1) − 2
requests. Because there are k−1 faults per block, this shows that the page fault rate is
at most αf (k) (ignoring the vanishing additive error due to the first and last blocks),
proving Theorem 1.1(b).

We proceed to the proof of the claim. Note that, in light of Theorem 1.1(c), it is
essential that the proof uses properties of the LRU policy not shared by FIFO. Fix
a block other than the first or last, and let p be the page requested immediately prior
to this block. This request could have been a page fault, or not (cf., Figure 1.4). In
any case, p is in the cache when this block begins. Consider the k − 1 faults contained
in the block, together with the kth fault that occurs immediately after the block. We
consider three cases.

First, if the k faults occurred on distinct pages that are all different from p, we have
identified our k+1 distinct requests (p and the k faults). For the second case, suppose
that two of the k faults were for the same page q �= p. How could this have happened?
The page q was brought into the cache after the first fault on q and was not evicted
until there were k requests for distinct pages other than q after this page fault. This
gives k + 1 distinct page requests (q and the k other distinct requests between the two

10

INTRODUCTION

faults on q). Finally, suppose that one of these k faults was on the page p. Because p
was requested just before the first of these faults, the LRU algorithm, subsequent to
this request and prior to evicting p, must have received requests for k distinct pages
other than p. These requests, together with that for p, give the desired k + 1 distinct
page requests.9

1.3.3 Discussion

Theorem 1.1 is an example of a “parameterized analysis” of an algorithm, where
the performance guarantee is expressed as a function of parameters of the input
other than its size. A parameter like αf (k) measures the “easiness” of an input, much
like matrix condition numbers in linear algebra. We will see many more examples of
parameterized analyses later in the book.

There are several reasons to aspire toward parameterized performance guarantees.

1. A parameterized guarantee is a mathematically stronger statement, containing
strictly more information about an algorithm’s performance than a worst-case
guarantee parameterized solely by the input size.

2. A parameterized analysis can explain why an algorithm has good “real-world”
performance even when its worst-case performance is poor. The approach is to
first show that the algorithm performs well for “easy” values of the parameter
(e.g., for f and k such that αf (k) is close to 0), and then make a case that “real-
world” instances are “easy” in this sense (e.g., have enough locality of reference
to conform to a function f with a small value of αf (k)). The latter argument can
be made empirically (e.g., by computing the parameter on representative bench-
marks) or mathematically (e.g., by positing a generative model and proving that
it typically generates easy inputs). Results in smoothed analysis (see Section 1.4.4
and Part Four) typically follow this two-step approach.

3. A parameterized performance guarantee suggests when – for which inputs, and
which application domains – a given algorithm should be used. (Namely, on the
inputs where the performance of the algorithm is good!) Such advice is useful
to someone who has no time or interest in developing their own algorithm from
scratch, and merely wishes to be an educated client of existing algorithms.10

4. Fine-grained performance characterizations can differentiate algorithms when
worst-case analysis cannot (as with LRU vs. FIFO).

5. Formulating a good parameter often forces the analyst to articulate a form of
structure in data, like the “amount of locality” in a page request sequence.
Ideas for new algorithms that explicitly exploit such structure often follow soon
thereafter.11

9 The first two arguments apply also to the FIFO policy, but the third does not. Suppose p was already in
the cache when it was requested just prior to the block. Under FIFO, this request does not “reset p’s clock”; if
it was originally brought into the cache long ago, FIFO might well evict p on the block’s very first fault.

10 For a familiar example, parameterizing the running time of graph algorithms by both the number of
vertices and the number of edges provides guidance about which algorithms should be used for sparse graphs
and which ones for dense graphs.

11 The parameter αf (k) showed up only in our analysis of the LRU policy; in other applications, the chosen
parameter also guides the design of algorithms for the problem.

11

T. ROUGHGARDEN

Useful parameters come in several flavors. The parameter αf (k) in Theorem 1.1
is derived directly from the input to the problem, and later chapters contain many
more examples of such input-based parameters. It is also common to parameterize
algorithm performance by properties of an optimal solution. In parameterized
algorithms (Chapter 2), the most well-studied such parameter is the size of an optimal
solution. Another solution-based parameterization, popular in machine learning
applications, is by the “margin,” meaning the extent to which the optimal solution is
particularly “pronounced”; see Exercise 1.7 for the canonical example of the analysis
of the perceptron algorithm.

“Input size” is well defined for every computational problem, and this is one of the
reasons why performance guarantees parameterized by input size are so ubiquitous.
By contrast, the parameter αf (k) used in Theorem 1.1 is specifically tailored to the
online paging problem; in exchange, the performance guarantee is unusually accurate
and meaningful. Alas, there are no silver bullets in parameterized analysis, or in
algorithm analysis more generally, and the most enlightening analysis approach is
often problem specific. Worst-case analysis can inform the choice of an appropriate
analysis framework for a problem by highlighting the problem’s most difficult (and
often unrealistic) instances.

1.4 Overview of the Book

This book has six parts, four on “core theory” and two on “applications.” Each of
the following sections summarizes the chapters in one of the parts.

1.4.1 Refinements of Worst-Case Analysis

Part One of the book hews closest to traditional worst-case analysis. No assumptions
are imposed on the input; as in worst-case analysis, there is no commitment to a
“model of data.” The innovative ideas in these chapters concern novel and problem-
specific ways of expressing algorithm performance. Our online paging example
(Section 1.3) falls squarely in this domain.

Chapter 2, by Fomin, Lokshtanov, Saurabh, and Zehavi, provides an overview of
the relatively mature field of parameterized algorithms. The goal here is to understand
how the running time of algorithms and the complexity of computational problems
depend on parameters other than the input size. For example, for which NP-hard
problems � and parameters k is � “fixed-parameter tractable” with respect to k,
meaning solvable in time f (k) · nO(1) for some function f that is independent of the
input size n? The field has developed a number of powerful approaches to designing
fixed-parameter tractable algorithms, as well as lower bound techniques for ruling
out the existence of such algorithms (under appropriate complexity assumptions).

Chapter 3, by Barbay, searches for instance-optimal algorithms that for every
input perform better than every other algorithm (up to a constant factor). Such
an input-by-input guarantee is essentially the strongest notion of optimality one
could hope for. Remarkably, there are several fundamental problems, for example, in
low-dimensional computational geometry, that admit instance-optimal algorithms.
Proofs of instance optimality involve input-by-input matching upper and lower
bounds, and this typically requires a very fine-grained parameterization of the
input space.

12

INTRODUCTION

Chapter 4, by Roughgarden, concerns resource augmentation. This concept makes
sense for problems that have a natural notion of a “resource,” with the performance
of an algorithm improving as it is given more resources. Examples include the size
of a cache (with larger caches leading to fewer faults), the capacity of a network
(with higher-capacity networks leading to less congestion), and the speed of a
processor (with faster processors leading to earlier job completion times). A resource
augmentation guarantee then states that the performance of an algorithm of interest
is always close to that achieved by an all-powerful algorithm that is handicapped by
slightly less resources.

1.4.2 Deterministic Models of Data

Part Two of the book proposes deterministic models of data for several NP-hard
clustering and sparse recovery problems, which effectively posit conditions that are
conceivably satisfied by “real-world” inputs. This work fits into the long-standing
tradition of identifying “islands of tractability,” meaning polynomial-time solvable
special cases of NP-hard problems. Twentieth-century research on tractable special
cases focused primarily on syntactic and easily checked restrictions (e.g., graph
planarity or Horn satisfiability). The chapters in Part Two and some of the related
application chapters consider conditions that are not necessarily easy to check, but
for which there is a plausible narrative about why “real-world instances” might satisfy
them, at least approximately.

Chapter 5, by Makarychev and Makarychev, studies perturbation stability in
several different computational problems. A perturbation-stable instance satisfies a
property that is effectively a uniqueness condition on steroids, stating that the optimal
solution remains invariant to sufficiently small perturbations of the numbers in the
input. The larger the perturbations that are tolerated, the stronger the condition
on the instance and the easier the computational problem. Many problems have
“stability thresholds,” an allowable perturbation size at which the complexity of
the problem switches suddenly from NP-hard to polynomial-time solvable. To the
extent that we’re comfortable identifying “instances with a meaningful clustering”
with perturbation-stable instances, the positive results in this chapter give a precise
sense in which clustering is hard only when it doesn’t matter (cf. Section 1.2.2). As
a bonus, many of these positive results are achieved by algorithms that resemble
popular approaches in practice, such as single-linkage clustering and local search.

Chapter 6, by Blum, proposes an alternative condition called approximation sta-
bility, stating that every solution with a near-optimal objective function value closely
resembles the optimal solution. That is, any solution that is structurally different from
the optimal solution has significantly worse objective function value. This condition is
particularly appropriate for problems like clustering, in which the objective function
is only means to an end and the real goal is to recover some type of “ground-truth”
clustering. This chapter demonstrates that many NP-hard problems become provably
easier for approximation-stable instances.

Chapter 7, by Price, provides a glimpse of the vast literature on sparse recovery,
where the goal is to reverse engineer a “sparse” object from a small number of
clues about it. This area is more strongly associated with applied mathematics than
with theoretical computer science and algorithms, but there are compelling parallels
between it and the topics of the preceding two chapters. For example, consider the

13

T. ROUGHGARDEN

canonical problem in compressive sensing, in which the goal is to recover an unknown
sparse signal z (a vector of length n) from a small number m of linear measurements
of it. If z can be arbitrary, then the problem is hopeless unless m = n. But many
real-world signals have most of their mass concentrated on k coordinates for small k
(for an appropriate basis), and the results surveyed in this chapter show that, for such
“natural” signals, the problem can be solved efficiently even when m is only modestly
bigger than k (and much smaller than n).

1.4.3 Semirandom Models

Part Three of the book is about semirandom models – hybrids of worst- and average-
case analysis in which nature and an adversary collaborate to produce an instance
of a problem. For many problems, such hybrid frameworks are a “sweet spot” for
algorithm analysis, with the worst-case dimension encouraging the design of robustly
good algorithms and the average-case dimension allowing for strong provable guar-
antees.

Chapter 8, by Roughgarden, sets the stage with a review of pure average-case or
distributional analysis, along with some of its killer applications and biggest weak-
nesses. Work in this area adopts a specific probability distribution over the inputs of
a problem, and analyzes the expectation (or some other statistic) of the performance
of an algorithm with respect to this distribution. One use of distributional analysis is
to show that a general-purpose algorithm has good performance on non-pathological
inputs (e.g., deterministic QuickSort on randomly ordered arrays). One key drawback
of distributional analysis is that it can encourage the design of algorithms that are
brittle and overly tailored to the assumed input distribution. The semirandom models
of the subsequent chapters are designed to ameliorate this issue.

Chapter 9, by Feige, introduces several planted models and their semirandom coun-
terparts. For example, in the planted clique problem, a clique of size k is planted in
an otherwise uniformly random graph. How large does k need to be, as a function of
the number of vertices, before the planted clique can be recovered in polynomial time
(with high probability)? In a semi-random version of a planted model, an adversary
can modify the random input in a restricted way. For example, in the clique problem,
an adversary might be allowed to remove edges not in the clique; such changes
intuitively make the planted clique only “more obviously optimal,” but nevertheless
can foil overly simplistic algorithms. One rule of thumb that emerges from this line of
work, and also recurs in the next chapter, is that spectral algorithms tend to work well
for planted models but the heavier machinery of semidefinite programming seems
required for their semirandom counterparts. This chapter also investigates random
and semirandom models for Boolean formulas, including refutation algorithms that
certify that a given input formula is not satisfiable.

Chapter 10, by Moitra, drills down on a specific and extensively studied planted
model, the stochastic block model. The vertices of a graph are partitioned into groups,
and each potential edge of the graph is present independently with a probability
that depends only on the groups that contain its endpoints. The algorithmic goal
is to recover the groups from the (unlabeled) graph. One important special case is
the planted bisection problem, where the vertices are split into two equal-size sets A
and B and each edge is present independently with probability p (if both endpoints
are in the same group) or q< p (otherwise). How big does the gap p − q need to

14

INTRODUCTION

be before the planted bisection (A,B) can be recovered, either statistically (i.e., with
unbounded computational power) or with a polynomial-time algorithm? When p
and q are sufficiently small, the relevant goal becomes partial recovery, meaning a
proposed classification of the vertices with accuracy better than random guessing.
In the semirandom version of the model, an adversary can remove edges crossing
the bisection and add edges internal to each of the groups. For partial recovery, this
semirandom version is provably more difficult than the original model.

Chapter 11, by Gupta and Singla, describes results for a number of online algo-
rithms in random-order models. These are semirandom models in which an adversary
decides on an input, and nature then presents this input to an online algorithm, one
piece at a time and in random order. The canonical example here is the secretary
problem, where an arbitrary finite set of numbers is presented to an algorithm in
random order, and the goal is to design a stopping rule with the maximum-possible
probability of stopping on the largest number of the sequence. Analogous random-
order models have proved useful for overcoming worst-case lower bounds for the
online versions of a number of combinatorial optimization problems, including bin
packing, facility location, and network design.

Chapter 12, by Seshadhri, is a survey of the field of self-improving algorithms.
The goal here is to design an algorithm that, when presented with a sequence of
independent samples drawn from an unknown input distribution, quickly converges
to the optimal algorithm for that distribution. For example, for many distributions
over length-n arrays, there are sorting algorithms that make less than �(n log n)
comparisons on average. Could there be a “master algorithm” that replicates the
performance of a distribution-optimal sorter from only a limited number of samples
from the distribution? This chapter gives a positive answer under the assumption that
array entries are drawn independently (from possibly different distributions), along
with analogous positive results for several fundamental problems in low-dimensional
computational geometry.

1.4.4 Smoothed Analysis

Part Four of the book focuses on the semirandom models studied in smoothed
analysis. In smoothed analysis, an adversary chooses an arbitrary input, and this
input is then perturbed slightly by nature. The performance of an algorithm is
then assessed by its worst-case expected performance, where the worst case is over
the adversary’s input choice and the expectation is over the random perturbation.
This analysis framework can be applied to any problem where “small random
perturbations” make sense, including most problems with real-valued inputs. It can
be applied to any measure of algorithm performance, but has proven most effective
for running time analyses of algorithms that seem to run in super-polynomial time
only on highly contrived inputs (like the simplex method). As with other semirandom
models, smoothed analysis has the benefit of potentially escaping worst-case inputs,
especially if they are “isolated” in the input space, while avoiding overfitting a solution
to a specific distributional assumption. There is also a plausible narrative about why
“real-world” inputs are captured by this framework: Whatever problem you’d like to
solve, there are inevitable inaccuracies in its formulation from measurement errors,
uncertainty, and so on.

15

T. ROUGHGARDEN

Chapter 13, by Manthey, details several applications of smoothed analysis to
the analysis of local search algorithms for combinatorial optimization problems. For
example, the 2-opt heuristic for the Traveling Salesman Problem is a local search
algorithm that begins with an arbitrary tour and repeatedly improves the current
solution using local moves that swap one pair of edges for another. In practice, local
search algorithms such as the 2-opt heuristic almost always converge to a locally
optimal solution in a small number of steps. Delicate constructions show that the
2-opt heuristic, and many other local search algorithms, require an exponential
number of steps to converge in the worst case. The results in this chapter use smoothed
analysis to narrow the gap between worst-case analysis and empirically observed
performance, establishing that many local search algorithms (including the 2-opt
heuristic) have polynomial smoothed complexity.

Chapter 14, by Dadush and Huiberts, surveys the first and most famous killer
application of smoothed analysis, the Spielman–Teng analysis of the running time
of the simplex method for linear programming. As discussed in Section 1.2.1, the
running time of the simplex method is exponential in the worst case but almost always
polynomial in practice. This chapter develops intuition for and outlines a proof of
the fact that the simplex method, implemented with the shadow vertex pivot rule,
has polynomial smoothed complexity with respect to small Gaussian perturbations
of the entries of the constraint matrix. The chapter also shows how to interpret the
successive shortest-path algorithm for the minimum-cost maximum-flow problem as
an instantiation of this version of the simplex method.

Chapter 15, by Röglin, presents a third application of smoothed analysis, to the
size of Pareto curves for multiobjective optimization problems. For example, consider
the knapsack problem, where the input consists of n items with values and sizes.
One subset of the items dominates another if it has both a larger overall value and
a smaller overall size, and the Pareto curve is defined as the set of undominated
solutions. Pareto curves matter for algorithm design because many algorithms for
multiobjective optimization problems (such as the Nemhauser–Ullmann knapsack
algorithm) run in time polynomial in the size of the Pareto curve. For many problems,
the Pareto curve has exponential size in the worst case but expected polynomial size
in a smoothed analysis model. This chapter also presents a satisfyingly strong con-
nection between smoothed polynomial complexity and worst-case pseudopolynomial
complexity for linear binary optimization problems.

1.4.5 Applications in Machine Learning and Statistics

Part Five of the book gives a number of examples of how the paradigms in Parts One–
Four have been applied to problems in machine learning and statistics.

Chapter 16, by Balcan and Haghtalab, considers one of the most basic problems in
supervised learning, that of learning an unknown halfspace. This problem is relatively
easy in the noiseless case but becomes notoriously difficult in the worst case in the
presence of adversarial noise. This chapter surveys a number of positive statistical
and computational results for the problem under additional assumptions on the
data-generating distribution. One type of assumption imposes structure, such as log-
concavity, on the marginal distribution over data points (i.e., ignoring their labels).
A second type restricts the power of the adversary that introduces the noise, for

16

INTRODUCTION

example, by allowing the adversary to mislabel a point only with a probability that is
bounded away from 1/2.

Chapter 17, by Diakonikolas and Kane, provides an overview of recent progress
in robust high-dimensional statistics, where the goal is to design learning algorithms
that have provable guarantees even when a small constant fraction of the data points
has been adversarially corrupted. For example, consider the problem of estimating
the mean μ of an unknown one-dimensional Gaussian distribution N (μ,σ 2), where
the input consists of (1 − ε)n samples from the distribution and εn additional points
defined by an adversary. The empirical mean of the data points is a good estimator
of the true mean when there is no adversary, but adversarial outliers can distort
the empirical mean arbitrarily. The median of the input points, however, remains
a good estimator of the true mean even with a small fraction of corrupted data
points. What about in more than one dimension? Among other results, this chapter
describes a robust and efficiently computable estimator for learning the mean of a
high-dimensional Gaussian distribution.

Chapter 18, by Dasgupta and Kpotufe, investigates the twin topics of nearest
neighbor search and classification. The former is algorithmic, and the goal is to
design a data structure that enables fast nearest neighbor queries. The latter is
statistical, and the goal is to understand the amount of data required before the
nearest neighbor classifier enjoys provable accuracy guarantees. In both cases, novel
parameterizations are the key to narrowing the gap between worst-case analysis and
empirically observed performance – for search, a parameterization of the data set;
for classification, of the allowable target functions.

Chapter 19, by Vijayaraghavan, is about computing a low-rank tensor decompo-
sition. For example, given an m × n × p 3-tensor with entries {Ti,j,k}, the goal is
to express T as a linear combination of the minimum-possible number of rank-one
tensors (where a rank-one tensor has entries of the form {ui · vj · wk} for some vectors
u ∈ R

m, v ∈ R
n, and w ∈ R

p). Efficient algorithms for this problem are an increasingly
important tool in the design of learning algorithms; see also Chapters 20 and 21.
This problem is NP-hard in general. Jennrich’s algorithm solves in polynomial time
the special case of the problem in which the three sets of vectors in the low-rank
decomposition (the u’s, the v’s, and the w’s) are linearly independent. This result does
not address the overcomplete regime, meaning tensors that have rank larger than
dimension. (Unlike matrices, the rank of a tensor can be much larger than its smallest
dimension.) For this regime, the chapter shows that a generalization of Jennrich’s
algorithm has smoothed polynomial complexity.

Chapter 20, by Ge and Moitra, concerns topic modeling, which is a basic problem
in unsupervised learning. The goal here is to process a large unlabeled corpus of
documents and produce a list of meaningful topics and an assignment of each
document to a mixture of topics. One approach to the problem is to reduce it
to nonnegative matrix factorization (NMF) – the analogue of a singular value
decomposition of a matrix, with the additional constraint that both matrix factors
are nonnegative. The NMF problem is hard in general, but this chapter proposes a
condition on inputs, which is reasonable in a topic modeling context, under which the
problem can be solved quickly in both theory and practice. The key assumption is that
each topic has at least one “anchor word,” the presence of which strongly indicates
that the document is at least partly about that topic.

17

T. ROUGHGARDEN

Chapter 21, by Ma, studies the computational mystery outlined in Section 1.2.3:
Why are local methods such as stochastic gradient descent so effective in solving the
nonconvex optimization problems that arise in supervised learning, such as computing
the loss-minimizing parameters for a given neural network architecture? This chapter
surveys the quickly evolving state-of-the-art on this topic, including a number of
different restrictions on problems under which local methods have provable guar-
antees. For example, some natural problems have a nonconvex objective function
that satisfies the “strict saddle condition,” which asserts that at every saddle point
(i.e., a point with zero gradient that is neither a minimum nor a maximum) there is a
direction with strictly negative curvature. Under this condition, variants of gradient
descent provably converge to a local minimum (and, for some problems, a global
minimum).

Chapter 22, by Hardt, tackles the statistical mystery discussed in Section 1.2.3:
Why do overparameterized models such as deep neural networks, which have many
more parameters than training data points, so often generalize well in practice? While
the jury is still out, this chapter surveys several of the leading explanations for this
phenomenon, ranging from properties of optimization algorithms such as stochas-
tic gradient descent (including algorithmic stability and implicit regularization) to
properties of data sets (such as margin-based guarantees).

Chapter 23, by G. Valiant and P. Valiant, presents two instance optimality results
for distribution testing and learning. The chapter first considers the problem of
learning a discretely supported distribution from independent samples, and describes
an algorithm that learns the distribution nearly as accurately as would an optimal
algorithm with advance knowledge of the true multiset of (unlabeled) probabilities
of the distribution. This algorithm is instance optimal in the sense that, whatever
the structure of the distribution, the learning algorithm will perform almost as well
as an algorithm specifically tailored for that structure. The chapter then explores
the problem of identity testing: Given the description of a reference probability
distribution, p, supported on a countable set, and sample access to an unknown
distribution, q, the goal is to distinguish whether p = q versus the case that p and
q have total variation distance at least ε. This chapter presents a testing algorithm
that has optimal sample complexity simultaneously for every distribution p and ε, up
to constant factors.

1.4.6 Further Applications

The final part of the book, Part Six, gathers a number of additional applications of
the ideas and techniques introduced in Parts One–Three.

Chapter 24, by Karlin and Koutsoupias, surveys alternatives to worst-case analysis
in the competitive analysis of online algorithms. There is a long tradition in online
algorithms of exploring alternative analysis frameworks, and accordingly this chapter
connects to many of the themes of Parts One–Three.12 For example, the chapter
includes results on deterministic models of data (e.g., the access graph model for
restricting the allowable page request sequences) and semirandom models (e.g., the
diffuse adversary model to blend worst- and average-case analysis).

12 Indeed, the title of this book is a riff on that of a paper in the competitive analysis of online algorithms
(Koutsoupias and Papadimitriou, 2000).

18

INTRODUCTION

Chapter 25, by Ganesh and Vardi, explores the mysteries posed by the empirical
performance of Boolean satisfiability (SAT) solvers. Solvers based on backtracking
algorithms such as the Davis–Putnam–Logemann–Loveland (DPLL) algorithm fre-
quently solve SAT instances with millions of variables and clauses in a reasonable
amount of time. This chapter provides an introduction to conflict-driven clause-
learning (CDCL) solvers and their connections to proof systems, followed by a high-
level overview of the state-of-the-art parameterizations of SAT formulas, including
input-based parameters (such as parameters derived from the variable-incidence
graph of an instance) and output-based parameters (such as the proof complexity
in the proof system associated with CDCL solvers).

Chapter 26, by Chung, Mitzenmacher, and Vadhan, uses ideas from pseudoran-
domness to explain why simple hash functions work so well in practice. Well-designed
hash functions are practical proxies for random functions – simple enough to be
efficiently implementable, but complex enough to “look random.” In the theoretical
analysis of hash functions and their applications, one generally assumes that a hash
function is chosen at random from a restricted family, such as a set of universal or
k-wise independent functions for small k. For some statistics, such as the expected
number of collisions under a random hash function, small families of hash functions
provably perform as well as completely random functions. For others, such as the
expected insertion time in a hash table with linear probing, simple hash functions are
provably worse than random functions (for worst-case data). The running theme of
this chapter is that a little randomness in the data, in the form of a lower bound on
the entropy of the (otherwise adversarial) data-generating distribution, compensates
for any missing randomness in a universal family of hash functions.

Chapter 27, by Talgam-Cohen, presents an application of the beyond worst-case
viewpoint in algorithmic game theory, to prior-independent auctions. For example,
consider the problem of designing a single-item auction, which solicits bids from
bidders and then decides which bidder (if any) wins the item and what everybody pays.
The traditional approach in economics to designing revenue-maximizing auctions
is average-case, meaning that the setup includes a commonly known distribution
over each bidder’s willingness to pay for the item. An auction designer can then
implement an auction that maximizes the expected revenue with respect to the
assumed distributions (e.g., by setting a distribution-dependent reserve price). As
with many average-case frameworks, this approach can lead to impractical solutions
that are overly tailored to the assumed distributions. A semirandom variant of the
model allows an adversary to pick its favorite distribution out of a rich class, from
which nature chooses a random sample for each bidder. This chapter presents prior-
independent auctions, both with and without a type of resource augmentation,
that achieve near-optimal expected revenue simultaneously across all distributions
in the class.

Chapter 28, by Roughgarden and Seshadhri, takes a beyond worst-case approach
to the analysis of social networks. Most research in social network analysis revolves
around a collection of competing generative models – probability distributions over
graphs designed to replicate the most common features observed in such networks.
The results in this chapter dispense with generative models and instead provide
algorithmic or structural guarantees under deterministic combinatorial restrictions
on a graph – that is, for restricted classes of graphs. The restrictions are motivated
by the most uncontroversial properties of social and information networks, such as

19

T. ROUGHGARDEN

heavy-tailed degree distributions and strong triadic closure properties. Results for
these graph classes effectively apply to all “plausible” generative models of social
networks.

Chapter 29, by Balcan, reports on the emerging area of data-driven algorithm
design. The idea here is to model the problem of selecting the best-in-class algorithm
for a given application domain as an offline or online learning problem, in the spirit
of the aforementioned work on self-improving algorithms. For example, in the offline
version of the problem, there is an unknown distribution D over inputs, a class C of
allowable algorithms, and the goal is to identify from samples the algorithm in C with
the best expected performance with respect to D. The distribution D captures the
details of the application domain, the samples correspond to benchmark instances
representative of the domain, and the restriction to the class C is a concession to the
reality that it is often more practical to be an educated client of already-implemented
algorithms than to design a new algorithm from scratch. For many computational
problems and algorithm classes C, it is possible to learn an (almost) best-in-class
algorithm from a modest number of representative instances.

Chapter 30, by Mitzenmacher and Vassilvitskii, is an introduction to algorithms
with predictions. For example, in the online paging problem (Section 1.2.4), the
LRU policy makes predictions about future page requests based on the recent past.
If its predictions were perfect, the algorithm would be optimal. What if a good
but imperfect predictor is available, such as one computed by a machine learning
algorithm using past data? An ideal solution would be a generic online algorithm
that, given a predictor as a “black box”: (i) is optimal when predictions are perfect;
(ii) has gracefully degrading performance as the predictor error increases; and (iii)
with an arbitrarily poor predictor, defaults to the optimal worst-case guarantee.
This chapter investigates the extent to which properties (i)–(iii) can be achieved by
predictor-augmented data structures and algorithms for several different problems.

1.5 Notes

This chapter is based in part on Roughgarden (2019).
The simplex method (Section 1.2.1) is described, for example, in Dantzig (1963);

Khachiyan (1979) proved that the ellipsoid method solves linear programming
problems in polynomial time; and the first polynomial-time interior-point method
was developed by Karmarkar (1984). Lloyd’s algorithm for k-means (Section 1.2.2)
appears in Lloyd (1962). The phrase “clustering is hard only when it doesn’t matter”
(Section 1.2.2) is credited to Naftali Tishby by Daniely et al. (2012). The competitive
analysis of online algorithms (Section 1.2.4) was pioneered by Sleator and Tarjan
(1985). Bélády’s algorithm (Section 1.2.4) appears in Bélády (1967). The working set
model in Section 1.3.1 was formulated by Denning (1968). Theorem 1.1 is due to
Albers et al. (2005), as is Exercise 1.5. Exercise 1.6 is folklore. The result in Exercise 1.7
is due to Block (1962) and Novikoff (1962).

Acknowledgments

I thank Jérémy Barbay, Daniel Kane, and Salil Vadhan for helpful comments on a
preliminary draft of this chapter.

20

INTRODUCTION

References

Albers, S., Favrholdt, L. M., and Giel, O. 2005. On paging with locality of reference. Journal
of Computer and System Sciences, 70(2), 145–175.

Bélády, L. A. 1967. A study of replacement algorithms for a virtual storage computer. IBM
Systems Journal, 5(2), 78–101.

Block, H. D. 1962. The perceptron: A model for brain functioning. Reviews of Modern Physics,
34, 123–135.

Daniely, A., Linial, N., and Saks, M. 2012. Clustering is difficult only when it does not matter.
arXiv:1205.4891.

Dantzig, G. B. 1963. Linear Programming and Extensions. Princeton University Press.
Denning, P. J. 1968. The working set model for program behavior. Commuications of the ACM,

11(5), 323–333.
Karmarkar, N. 1984. A new polynomial-time algorithm for linear programming. Combinator-

ica, 4, 373–395.
Khachiyan, L. G. 1979. A polynomial algorithm in linear programming. Soviet Mathematics

Doklady, 20(1), 191–194.
Klee, V., and Minty, G. J. 1972. How good is the simplex algorithm? In Shisha, O. (ed.),

Inequalities III, pp. 159–175. New York: Academic Press.
Koutsoupias, E., and Papadimitriou, C. H. 2000. Beyond competitive analysis. SIAM Journal

on Computing, 30(1), 300–317.
Lloyd, S. P. 1962. Least squares quantization in PCM. IEEE Transactions on Information

Theory, 28(2), 129–136.
Novikoff, A. 1962. On convergence proofs for perceptrons. Proceedings of the Symposium on

Mathematical Theory of Automata, vol. 12, pp. 615–622.
Roughgarden, T. 2019. Beyond worst-case analysis. Communications of the ACM, 62(3),

88–96.
Sleator, D. D., and Tarjan, R. E. 1985. Amortized efficiency of list update and paging rules.

Communications of the ACM, 28(2), 202–208.

Exercises

Exercise 1.1 Prove that for every deterministic cache replacement policy and cache
size k, there is an adversarial page request sequence such that the policy faults on
every request, and such that an optimal clairvoyant policy would fault on at most
a 1/k fraction of the requests.

[Hint: use only k + 1 distinct pages, and the fact that the optimal policy always
evicts the page that will be requested furthest in the future.]

Exercise 1.2 Let f : N → N be a function of the type described in Section 1.3,
with f (n) denoting the maximum allowable number of distinct page requests in
any window of length n.

(a) Prove that there is a nondecreasing function f ′ : N → N with f ′(1) = 1
and f ′(n + 1) ∈ {f ′(n),f ′(n + 1)} for all n such that a page request sequence
conforms to f ′ if and only if it conforms to f .

(b) Prove that parts (a) and (b) of Theorem 1.1 hold trivially if f ′(2) = 1.

Exercise 1.3 Prove that the page request sequence constructed in the proof of
Theorem 1.1(a) conforms to the given approximately concave function f .

21

T. ROUGHGARDEN

f (n) 1 2 3 3 4 4 5 5

n 1 2 3 4 5 6 7 · · ·
Figure 1.5 Function used to construct a bad page request sequence for FIFO (Exercise 1.4).

Input: n unit vectors x1, . . . ,xn ∈ R
d with labels b1, . . . ,bn ∈ {−1, + 1}.

1. Initialize t to 1 and w1 to the all-zero vector.
2. While there is a point xi such that sgn(wt · xi) �= bi, set wt+1 = wt + bixi and increment t.13

Figure 1.6 The perceptron algorithm.

Exercise 1.4 Prove Theorem 1.1(c).

(Hint: Many different choices of f and k work. For example, take k = 4, a set
{0,1,2,3,4} of five pages, the function f shown in Figure 1.5, and a page request
sequence consisting of an arbitrarily large number of identical blocks of the eight
page requests 10203040.)

Exercise 1.5 Prove the following analogue of Theorem 1.1(b) for the FIFO replace-
ment policy: for every k ≥ 2 and approximately concave function f with f (1) = 1,
f (2) = 2, and f (n + 1) ∈ {f (n),f (n + 1)} for all n ≥ 2, the page fault rate of the
FIFO policy on every request sequence that conforms to f is at most

k
f −1(k + 1) − 1

. (1.2)

[Hint: Make minor modifications to the proof of Theorem 1.1(b). The expression
in (1.2) suggests defining phases such that (i) the FIFO policy makes at most k
faults per phase; and (ii) a phase plus one additional request comprises requests
for at least k + 1 distinct pages.]

Exercise 1.6 An instance of the knapsack problem consists of n items with nonneg-
ative values v1, . . . ,vn and sizes s1, . . . ,sn, and a knapsack capacity C. The goal is
to compute a subset S ⊆ {1,2, . . . ,n} of items that fits in the knapsack (i.e., with∑

i∈S si ≤ C) and, subject to this, has the maximum total value
∑

i∈S vi.
One simple greedy algorithm for the problem reindexes the items in nonincreas-

ing order of density vi
si

and then returns the largest prefix {1,2, . . . ,j} of items that

fits in the knapsack (i.e., with
∑j

i=1 si ≤ C). Parameterize a knapsack instance by
the ratio α of the largest size of an item and the knapsack capacity, and prove a
parameterized guarantee for the greedy algorithm: The total value of its solution
is at least 1 − α times that of an optimal solution.

Exercise 1.7 The perceptron algorithm is one of the most classical machine learning
algorithms (Figure 1.6). The input to the algorithm is n points in R

d , with a label

13 Intuitively, this update step forces the next vector to be “more correct” on xi, by increasing w · xi by
bi(xi · xi) = bi.

22

INTRODUCTION

bi ∈ {−1, + 1} for each point xi. The goal is to compute a separating hyperplane:
a hyperplane with all of the positively labeled points on one side, and all of
the negatively labeled points on the other. Assume that there exists a separating
hyperplane, and moreover that some such hyperplane passes through the origin.14

We are then free to scale each data point xi so that ‖xi‖2 = 1 – this does not change
which side of a hyperplane xi is on.

Parameterize the input by its margin μ, defined as

μ = max
w : ‖w‖=1

n
min
i=1

|w · xi|,

where w ranges over the unit normal vectors of all separating hyperplanes. Let w∗
attain the maximum. Geometrically, the parameter μ is the smallest cosine of an
angle defined by a point xi and the normal vector w∗.

(a) Prove that the squared norm of wt grows slowly with the number of iterations t:
‖wt+1‖2 ≤ ‖wt‖2 + 1 for every t ≥ 1.

(b) Prove that the projection of wt onto w∗ grows significantly with every iteration:
wt+1 · w∗ ≥ wt · w∗ + μ for every t ≥ 1.

(c) Conclude that the iteration count t never exceeds 1/μ2.

14 The second assumption is without loss of generality, as it can be enforced by adding an extra “dummy
coordinate” to the data points.

23

PART ONE

Refinements of Worst-Case Analysis

CHAPTER TWO

Parameterized Algorithms
Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi

Abstract: Parameterized algorithmics analyzes running time in finer
detail than classical complexity theory: instead of expressing the
running time of an algorithm as a function of the input size only,
dependence on one or more parameters of the input instance is taken
into account. In this chapter we sketch some techniques and tools
from this rapidly developing area.

2.1 Introduction

Worst-case running time analysis has been at the center of nearly all developments
in theoretical computer science since the inception of the field. Nevertheless, this
approach to measuring algorithm efficiency has its own drawbacks. It is almost never
the case that the input size is the only feature of the input instance that affects the
running time of an algorithm. Further, it is rarely the case that the input instances
we actually want to solve look like the instances on which the algorithm performs
the worst. For this reason, the running time estimates from a worst-case analysis
can be overly pessimistic, and algorithms with optimized worst-case behavior often
perform poorly on instances arising in applications. Real-world instances are not
worst-case instances; they exhibit additional structure that can often be exploited
algorithmically. Almost all areas of applications of algorithms are full of parameters.
Example parameters include size, topology, shape, depth of the formula, and so
on. Parameterized complexity systematically seeks to understand the contribution
of such parameters to the overall complexity of the problem. That is, the goal of
parameterized complexity is to find ways of solving NP-hard problems more effi-
ciently than brute force: our aim is to restrict the combinatorial explosion to a
parameter that is hopefully much smaller than the input size.

2.1.1 Warm-Up: Vertex Cover

Without doubt, VERTEX COVER is the most popular problem in parameterized
complexity and this is why many people call it the Drosophila melanogaster of
parameterized algorithmics. This is because VERTEX COVER is the “simplest” among
all parameterized problems. By simplest we mean the following empirical fact: When
designing some new algorithmic technique for a parameterized problem it is always
useful to check how this technique could be applied on VERTEX COVER.

27

F V. FOMIN, D LOKSHTANOV, S SAURABH, AND M ZEHAVI

Recall that a vertex cover S of a graph G is a set of vertices “covering” every edge
of G. In other words, the graph G −S obtained from G by removing the vertices of S
has no edges. In the VERTEX COVER problem, we are given a graph G and an integer k.
The question is to decide whether G contains a vertex cover of size k. Moreover, most
of the known algorithms, if the pair (G,k) is a yes-instance, can actually construct
the corresponding vertex cover.

VERTEX COVER is an NP-complete problem, so it is very unlikely that it will admit
a polynomial-time algorithm. On the contrary, deciding whether a graph has a vertex
cover of size at most 2 can be clearly done in time O(n2 · m), which is polynomial in
the input size.1 We just try all pairs of vertices and for every pair we check whether
there is an edge not covered by this pair. This running time can be easily improved
to O(n2 · n) by making use of the following observation: A pair u,v is a vertex cover
if and only if for every vertex w /∈ {u,v} its adjacency list contains no vertices but u
and v. Thus if we have a vertex w whose adjacency list is longer than 2, we know that
{u,v} is not a vertex cover. Otherwise, going through all the lists takes time O(n2 · n).
This is clearly a polynomial-time algorithm.

In general, an algorithm in which we enumerate all vertex subsets of size at most
k and check whether any of them forms a vertex cover solves the problem in time
O(nk · k · n), which is polynomial for every constant k. We also know that unless
P �= NP, when k is unbounded, VERTEX COVER cannot be solved in polynomial
time. This sounds like the end of the story.

A bit surprisingly, this is not the end. We can show that VERTEX COVER can be
solved in linear time for every fixed k. Moreover, VERTEX COVER can be solved in
polynomial time even when k = O(log n). We do it by introducing a bounded depth
search tree (recursive) algorithm for the problem.

One of the simplest parameterized algorithms solving VERTEX COVER is a recur-
sive algorithm often called the bounded search tree or branching algorithm. The
algorithm is based on the following two observations: (1) For a vertex v, any vertex
cover must contain either v or all of its neighbors N(v); and (2) for a vertex v, any
vertex cover must contain either v or all of its neighbors N(v). The algorithm now
proceeds recursively, where G and k will be modified before passing to a recursive
call. If in some recursive branch graph G has at least one edge and parameter k ≤ 0,
this instance has no vertex cover of size k and we halt in this branch. Otherwise, we
find a vertex v ∈ V(G) of maximum degree in G. If v is of degree 0, then G has no
edges and we have found a solution. Otherwise, we recursively branch on two cases by
considering either v or N(v) in the vertex cover. In the branch where v is in the vertex
cover, we delete v and decrease the parameter k by 1. In the second branch, we add
N(v) to the vertex cover, delete N(v) ∪ {v} from the graph, and decrease k by |N(v)|.
Since |N(v)| ≥ 1, in each of the branches we decrease k by at least 1.

To analyze the running time of the algorithm, it is convenient to view this
recursive algorithm as a search tree T . The root of this tree corresponds to the
initial instance (G,k), and for every node of the tree its children correspond to
instances in the recursive calls. Then the running time of the algorithm is bounded
by (the number of nodes in the search tree) × (time taken at each node). It is easy to
implement the algorithm so the time taken at each node is bounded by O(k ·n), where

1 In what follows, we will always use n and m to denote the number of vertices and the number of edges in
the graph, respectively.

28

PARAMETERIZED ALGORITHMS

n is the number of vertices in G. Thus, if τ(k) is the number of nodes in the search
tree, then the total time used by the algorithm is at most O(τ (k) · k · n). Observe that
in each recursive call we reduce the parameter k by at least 1. Hence the height of the
tree does not exceed k, and hence τ(k) ≤ 2k+1 − 1. The above discussions bring us to
the following theorem.

Theorem 2.1 VERTEX COVER is solvable in time O(2k · k · n).

Since for every constant k, we have that O(2k · k · n) = O(n), the running time of
Theorem 2.1 is linear for every fixed k. Also, for k = c log n, we have O(2k · k · n) =
O(2c log n · log n · n) = O(nc+1 · log n), which is polynomial in n.

Let us remark thatO(2k·k·n) is not the best running time bound for VERTEX COVER

and the algorithm can be improved easily. For example, the following observation can
be helpful. If all the vertices of a graph are of degree at most 2, then the graph is the
disjoint union of cycles and paths. In this case, the minimum vertex cover can be
easily found in polynomial time (how?). If, however, the graph has a vertex of degree
at least 3, then branching on this vertex provides us with a better recurrence and it
is possible to show that in this case the branching tree has O(1.4656k) vertices. We
leave the formal proof of this claim as an exercise (Exercise 2.1). The best known
algorithm solves the problem in time O(1.2738k + kn); it is based on a combination
of kernelization (see Section 2.4) and clever branching techniques [Chen et al. (2010)].

Algorithms with running time f (k) · nc, for a constant c independent of both n and k,
are called fixed-parameter algorithms, or FPT algorithms. The goal in parameterized
algorithmics is to design FPT algorithms, trying to make both the f (k) factor and the
constant c in the bound on the running time as small as possible. FPT algorithms can be
contrasted with less efficient XP algorithms (for slice-wise polynomial), where the running
time is of the form f (k)·ng(k), for some functions f ,g. There is a huge difference in running
times of the form f (k) · ng(k) and f (k) · nc.

Inspired by the success we had with VERTEX COVER, it is natural to ask whether a
similar improvement over brute-force is possible for every NP-hard problem, for every
choice of parameter. Of course, this is not true. As an example, consider VERTEX

COLORING. Here we are given as input a graph G and an integer k, and we need
to decide whether G has a proper k-coloring – that is, a coloring where no two
adjacent vertices obtain the same color. It is well known that VERTEX COLORING is
NP-complete already for k = 3, so we do not hope for a polynomial-time algorithm
for fixed k. Observe that even an XP algorithm with running time f (k) · ng(k) for any
functions f and g would imply that P = NP.

The example of VERTEX COLORING illustrates that parameterized algorithms may
not be all-powerful: there are parameterized problems that do not seem to admit
FPT algorithms. However, in this specific example, we could explain very precisely
why we are not able to design efficient algorithms, even when the number of colors is
small. From the perspective of algorithm designers such an insight is very useful;
they can now stop wasting their time trying to design efficient algorithms based
only on the fact that the number of colors is small and start searching for other

29

F V. FOMIN, D LOKSHTANOV, S SAURABH, AND M ZEHAVI

ways to attack the problem instances. If we are trying to design a polynomial-time
algorithm for a problem and failing, it is quite likely that this is because the problem is
NP-hard. Is the theory of NP-hardness the right tool also for giving negative evidence
for fixed-parameter tractability? In particular, if we are trying to design an f (k) · nc-
time algorithm and fail to do so, is it because the problem is NP-hard for some
fixed constant value of k, say k = 100? Let us look at another example, the CLIQUE

problem.
In the CLIQUE problem we are given as input graph G and integer k, and the task is

to decide whether G contains a clique on k vertices, that is, a set of k vertices with an
edge between every pair of them. Similar to VERTEX COVER, there is a simple brute-
force nO(k)-time algorithm to check whether there is a clique on at least k vertices.
Can we design an FPT algorithm for this problem? After some reflection one can see
that the NP-hardness of CLIQUE cannot be used to rule out an FPT algorithm for it.

Since NP-hardness is insufficient to differentiate between problems with f (k)·ng(k)-
time algorithms and problems with f (k) · nc-time algorithms, we have to resort to
stronger complexity-theoretic assumptions. The theory of W[1]-hardness allows us
to prove (under certain complexity assumptions) that even though a problem is
polynomial-time solvable for every fixed k, the parameter k has to appear in the
exponent of n in the running time; that is, the problem is not FPT. This theory
has been quite successful for identifying which parameterized problems are FPT and
which are unlikely to be. Besides this qualitative classification of FPT versus W [1]-
hard, more recent developments give us also (an often surprisingly tight) quantitative
understanding of the time needed to solve a parameterized problem. Under reason-
able assumptions about the hardness of the CNF-SAT problem, it is possible to show
that there is no f (k) · nc, or even f (k) · no(k)-time algorithm for finding a clique on k
vertices. Thus, up to constant factors in the exponent, the naive O(nk)-time algorithm
is optimal!

Any algorithmic theory is incomplete without an accompanying complexity theory
that establishes intractability of certain problems. There is such a complexity theory
providing lower bounds on the running time required to solve parameterized problems.

So the common belief is that there is no algorithm for solving CLIQUE with running
time f (k)·no(k). But what if we seek a k-clique in a graph of maximum degree
 where
the parameter is
? Notice that the existence of a k-clique implies that
 ≥ k − 1;
thus,
 is a weaker parameter than k, which gives hope for membership in FPT. In
fact, it turns out that this can be done quite easily and efficiently when
 is small: if
we guess one vertex v in the clique, then the remaining vertices in the clique must be
among the
 neighbors of v; thus we can try all of the 2
 subsets of the neighbors of v
and return the largest clique that we found. The total running time of this algorithm
is O(2
 ·
2 · n), which is feasible for
 = 20 even if n is quite large. Again it is
possible to use complexity theoretic assumptions on the hardness of CNF-SAT to
show that this algorithm is asymptotically optimal, up to multiplicative constants in
the exponent.

What the preceding algorithm shows is that the CLIQUE problem is FPT when the
parameter is the maximum degree
 of the input graph. At the same time CLIQUE is
probably not FPT when the parameter is the solution size k. Thus, the classification
of the problem into “tractable” or “intractable” crucially depends on the choice of
parameter. This makes a lot of sense; the more we know about our input instances,
the more we can exploit algorithmically! For the same problem there can be multiple

30

PARAMETERIZED ALGORITHMS

Table 2.1 Overview of the discussed problems

Problem/parameter Good news Bad news

VERTEX COVER/k O(2k · k · n)-time algorithm NP-hard
(probably not in P)

CLIQUE/
 O(2
 ·
2 · n)-time algorithm NP-hard
(probably not in P)

CLIQUE /k nO(k)-time algorithm W [1]-hard
(probably not FPT)

VERTEX COLORING/k NP-hard for k = 3
(probably not XP)

choices of parameters. Selecting the right parameter(s) for a particular problem is an
art. We summarize the complexities of the preceding problems in Table 2.1.

Finally, we give the formal definition.

Definition 2.2 A parameterized problem L ⊆ �∗ × N (for alphabet �) is
fixed-parameter tractable (FPT) if there exists an algorithm A (called a fixed-
parameter algorithm), a computable function f : N → N, and a constant c with
the following property: given any (x,k) ∈ �∗ × N, the algorithm A correctly
decides whether (x,k) ∈ L in time f (k) · |x|c where |x| denotes the length of the
input x. The complexity class containing all fixed-parameter tractable problems
is called FPT.

2.2 Randomization

Randomness is a powerful resource in designing algorithms and often leads to elegant
algorithms, and parameterized algorithms are no exception. Consider for example the
classic LONGEST PATH problem. A path is a sequence v1,v2, . . . ,v� of distinct vertices
of a graph, such that for every i there is an edge in the graph from vi to vi+1. The
number � of the vertices in the path is its length. In the LONGEST PATH problem the
input is a (directed and undirected) graph G together with an integer k, and the goal is
to determine whether G contains a path P of length k. For simplicity we shall restrict
our attention to undirected graphs, even though most of the discussion applies also
to directed graphs.

When k = n the LONGEST PATH problem is precisely the well-known HAMILTONIAN

PATH problem, and therefore it is NP-complete. On the other hand, there is a simple
nk+O(1) time algorithm that tries all sequences of k vertices and checks whether any
of them forms a k-path. Papadimitriou and Yannakakis (1996) posed as an open
problem whether there exists a polynomial-time algorithm that determines whether a
graph G on n vertices contains a path of length at least log n. To achieve this it suffices
to devise an algorithm with running time cknO(1) for some constant c. In 1995, Alon,
Yuster, and Zwick (1995) invented the color coding technique and gave a (2e)knO(1)

time randomized algorithm for LONGEST PATH (where e ≈ 2.718), resolving the
question of Papadimitriou and Yannakakis in the affirmative.

31

F V. FOMIN, D LOKSHTANOV, S SAURABH, AND M ZEHAVI

The algorithm is based on two key steps: a random coloring step, followed by a
procedure that finds a multicolored path P, if such a path exists. To describe both
steps we need a few definitions: a k-coloring of G is a function c : V(G) → {1, . . . ,k}.
Notice that a coloring simply assigns a number (color) to every vertex, and we do not
demand that this is a proper coloring in the terminology of graph theory, where edge
endpoints need to receive different colors. We will say that a path P = v1,v2, . . . ,v� is
multicolored by a coloring c if all vertices in P receive distinct colors by c. Formally
we require that for every i �= j we have c(i) �= c(j).

The first key building block of the algorithm is the insight that, for every path P
of length k, a random coloring c : V(G) → {1, . . . ,k} with k colors will multicolor P
with “not so small” probability. In particular, there are kk ways to color V(P) with k
colors, and k! of these colorings assign distinct colors to all vertices of P. Hence, the
probability that P is multicolored is

k!
kk

≥
√

2πk

ek
≥ e−k. (2.1)

Here the first inequality follows from Stirling’s approximation.
The second building block is an efficient algorithm that determines whether G

contains a path P of length k that is multicolored by a given coloring c. The algorithm
uses dynamic programming. We define a function

f : 2{1,...,k} × V(G) → {true,false}

that takes as input a set S ⊆ {1, . . . ,k} together with a vertex v ∈ V(G) and outputs
true if there exists a path in G[S] (the subgraph of G induced by S, that is, we retain
only the vertices in S and all edges between them) that uses each color of S precisely
once and ends at v. Note that such a path necessarily has length |S|. It can be easily
verified that the function f satisfies the following recurrence relation:

f (S,v) =

⎧⎪⎨⎪⎩
false if c(v) /∈ S or
true if {c(v)} = S∨

u∈N(v) f (S \ {c(v)},u) otherwise.

(2.2)

The recurrence (2.2) immediately yields an algorithm for determining whether a
multicolored path exists: iterate through every set S ⊆ {1, . . . ,k} from small to large
and every vertex v ∈ V(G). In each iteration compute f (S,v) using Equation (2.2)
and store the result in a table. Thus, when the algorithm computes f (S,v) it can
look up the value of f (S \ {c(v)},u) (which was computed in a previous iteration) in
the table.

In each of the iterations the value of f (S,v) is computed in at most d(v) table
lookups, which we assume take constant time. Thus the total time of the algorithm
for determining whether a multicolored path exists is upper bounded by

O

⎛⎝ ∑
S⊆{1,...,k}

∑
v∈V(G)

d(v)

⎞⎠ = O
(

2k(n + m)
)

.

32

PARAMETERIZED ALGORITHMS

The final algorithm for LONGEST PATH is as follows: iterate through ek random
k-colorings ci (here i goes from 1 to ek). For each i check in time O

(
2k(n + m)

)
whether there exists a path that is multicolored by ci using the foregoing dynamic
programming algorithm. If the algorithm finds a multicolored path, then this path
has length k. However, if a path of length k exists, then the probability that none of
the ci’s multicolors it is at most (1 − 1

ek)
ek ≤ 1

e . Thus, the algorithm runs in time

O((2e)k(n+m)), always correctly returns “no” on no-instances, and returns “yes” on
yes-instances with probability at least 1 − 1

e .

Theorem 2.3 (Alon et al., 1995) There exists a randomized algorithm with one-
sided error for LONGEST PATH with running time O((2e)k(n + m)).

2.2.1 Random Separation: Set Splitting

Color coding is far from being the only way to use randomness to design parameter-
ized algorithms. A different example is the “random separation” technique. We will
see how to apply random separation to design an algorithm for the SET SPLITTING

problem. Here the input is a universe U , a family F = {S∞,S∈, . . . ,S�} of subsets
of U , and an integer k ≤ m. The goal is to find an assignment φ : U → {0,1} that
splits at least k sets in F . Here a set Si ∈ F is split by φ if it contains at least one
element u such that φ(u) = 0 and at least one element v such that φ(v) = 1. The SET

SPLITTING problem is also known as HYPERGRAPH MAX CUT, because when all sets
Si have cardinality 2 this is precisely the classic MAX CUT problem.

It turns out that a simple strategy yields an FPT algorithm for SET SPLITTING. In
particular, we prove that if there exists an assignment φ that splits at least k sets in F ,
then a random assignment ψ splits at least k sets with probability at least 1

4k . Indeed,
suppose {S1,S2, . . . ,Sk} are split by φ. For every i ≤ k let ui be an element of Si such
that φ(ui) = 0 and vi ∈ Si be such that φ(vi) = 1. We remark that ui and uj (or vi and
vj) can be the same element even though i �= j. Let X = ⋃

i≤k{ui,vi}, and observe that
X has the following two properties. First, |X | ≤ 2k. Second, for every assignment
ψ that agrees with φ on X (that is, ψ(x) = φ(x) for every x ∈ X) ψ splits the sets
S1, . . . ,Sk (since ψ(ui) = 0 and ψ(vi) = 1). The probability that ψ agrees with φ on
X is 2−|X | ≥ 2−2k = 4−k, as claimed.

This gives the following simple algorithm that runs in timeO(4knm): try 4k random
assignments ψ1, . . . ,ψ4k . If some ψi splits at least k sets, return that assignment.
If none of the ψi’s split at least k sets report that no assignment does. Just as for
the LONGEST PATH problem, if there is an assignment that splits at least k sets, then
the probability that the algorithm fails to find one is at most (1 − 1

4k)
4k ≤ 1/e. This

proves the following theorem.

Theorem 2.4 There exists a randomized algorithm with one-sided error for SET

SPLITTING with running time O(4knm).

We remark that a random assignment ψ will actually split k sets with probability
at least 1

2k . The proof of this claim is (slightly) more complicated, so we leave it as
Exercise 2.3 (see also Chen and Lu, 2009).

33

F V. FOMIN, D LOKSHTANOV, S SAURABH, AND M ZEHAVI

2.2.2 Derandomization

It would appear that the algorithms of Theorems 2.3 and 2.4 are inherently random-
ized. It turns out that the randomized step can be replaced by appropriate pseudo-
random constructions without compromising (much) on the worst-case running time
guarantees.

Let us first consider the algorithm for LONGEST PATH. Here we tried ek random
colorings and used the fact that if there exists a path, then with probability at
least 1 − 1/e at least one of the colorings multicolors it. Quite remarkably one can
deterministically construct a family of colorings such that this property always holds,
instead of holding with constant probability.

Theorem 2.5 (Naor et al., 1995) There exists an algorithm that given a universe
U of size n and an integer k runs in time eknO(1) and produces k-colorings
c1,c2, . . . c� with � = O(ek+o(k) log n) such that for every set S ⊆ U of size at
most k there exists an i such that ci multicolors S.

Replacing the ek random k-colorings with the ek+o(k)nO(1) k-colorings of
Theorem 2.5 in the algorithm for LONGEST PATH yields a deterministic algorithm
with running time (2e)k+o(k)nO(1).

A similar situation happens for SET SPLITTING. What we need is a family of
assignments ψ1,ψ2, . . . ψ� such that for some unknown set X of size at most 2k, at
least one of the assignments ψi agrees with an unknown assignment φ on X . Since X
and φ are unknown, what we really need is that for every set X of size at most 2k and
every assignment φX : X → {0,1} at least one ψi agrees with φX on X . Again, this
can be achieved!

Theorem 2.6 (Naor et al., 1995) There exists an algorithm that given a universe
U of size n and an integer k runs in time 2k+o(k)nO(1) and produces assignments
ψ1,ψ2, . . . ψ� with � ≤ 2k+o(k) log n such that for every set X ⊆ U of size at most
k and every assignment φX : X → {0,1} at least one ψi agrees with φX .

Replacing the 4k random assignments with the 4k+o(k)nO(1) assigments produced
by Theorem 2.6 (applied with |X | ≤ 2k) yields a deterministic algorithm for SET

SPLITTING with running time 4k+o(k)nO(1)m. We remark that the constructions of
Theorems 2.5 and 2.6 are optimal in the sense that � cannot be reduced below
�(ek log n) and �(2k log n) respectively.

Theorem 2.7 There exists a deterministic algorithm for LONGEST PATH with
running time (2e)k+o(k)nO(1). There exists a deterministic algorithm for SET

SPLITTING with running time 4k+o(k)nO(1)m.

2.3 Structural Parameterizations

We have mostly concerned ourselves with the parameter k being the value of the
objective function, or just the size of the solution. This does not mean that this is the
only reasonable choice of parameter! For example, recall that the GRAPH COLORING

34

PARAMETERIZED ALGORITHMS

problem is NP-complete for k = 3, where k, is the number of colors, so an FPT
algorithm parameterized by k is out of the question. This does not rule out the
potential for other interesting parameterized algorithms for the problem. Suppose
we want to solve GRAPH COLORING, but now we know that the input instances have
a relatively small vertex cover, say of size at most t. Can we use this to get an efficient
algorithm?

Here is an algorithm that is FPT when parameterized by the vertex cover number t.
First, compute a vertex cover X of size at most t in time 2t(n+m) using the algorithm
of Theorem 2.1. If k > t we can find a coloring with at most t + 1 ≤ k colors
in time O(m + n): just use one color of {1, . . . ,|X |} per vertex of X and use color
|X | + 1 for all of the remaining vertices. Because X is a vertex cover, this is a proper
coloring.

Suppose now that k ≤ t. The algorithm tries all kt possible colorings of X . For each
such choice cX : X → {1, . . . ,k} it checks whether cX can be extended to a proper
coloring of G. A necessary condition for this to be possible is that every vertex y /∈ X
has an available color. Formally, for every y /∈ X there should exist an 1 ≤ i ≤ k so
that no neighbor of y has color i. Since no pair of vertices outside of X is adjacent
this necessary condition is also sufficient – to each y /∈ X we can simply assign any
of its available colors. This leads to an algorithm for GRAPH COLORING with running
time O(kt(n + m)) ≤ O(tt(n + m)).

Theorem 2.8 There exists an algorithm for GRAPH COLORING with running time
O(tt(n + m)) where t is the size of the smallest vertex cover of G.

This algorithm is quite naive; however, quite surprisingly, one can show that it
cannot be substantially improved (under appropriate complexity-theoretic assump-
tions). Indeed, an algorithm with running time 2o(t log t)nO(1) would contradict the
Exponential Time Hypothesis (Lokshtanov et al., 2018) (see Section 2.5.2).

2.4 Kernelization

Preprocessing is a widely used technique to help cope with computationally hard
problems. A natural question in this regard is how to measure the quality of prepro-
cessing rules proposed for a specific problem; yet for a long time the mathematical
analysis of polynomial time preprocessing algorithms was neglected. One central
reason for this anomaly can be found in the following observation: showing that
in polynomial time an instance I of an NP-hard problem can be replaced by an
equivalent instance whose size is smaller than the size of I implies that P = NP.
The situation has changed drastically with the advent of Parameterized Complexity.
Roughly speaking, the objective of preprocessing rules within this framework is
to reduce the input size to depend only on the parameter, where the smaller the
dependency is, the better the rules are.

2.4.1 Warm-Up: the Buss Rule

Before we delve into the formal definitions, let us see a simple example. For an instance
(G,k) of the VERTEX COVER problem, consider the following rule.

35

F V. FOMIN, D LOKSHTANOV, S SAURABH, AND M ZEHAVI

Rule I. If G contains an isolated vertex v, then remove v from G. The resulting instance
is (G − v,k).

This rule takes an instance of the problem, and, if its condition is satisfied, returns
an instance of the same problem of smaller size. Such a rule is called a reduction rule.
Most importantly, this rule is safe in the following sense: The instance that it takes
as input is a yes-instance if and only if the instance that it outputs is a yes-instance.
Indeed, it is immediate to see that the removal of isolated vertices has no effect on
the answer of the given instance.

Now, consider yet another reduction rule, known as the Buss rule.

Rule II. If G contains a vertex v of degree at least k+1, then remove v (along with incident
edges) from G, and decrement k by 1. The resulting instance is (G − v,k − 1).

The safeness of this rule follows from the observation that any vertex cover of size
at most k in G must contain v – indeed, any vertex cover in G that excludes v must
contain all of its neighbors, and their number is strictly larger than k.

Lastly, suppose that Rules I and II have been applied exhaustively, thus neither of
their conditions is satisfied, and consider the following rule.

Rule III. If G contains more than k2 edges, then return no.

Here, safeness also follows from a simple observation: As the maximum degree of a
vertex in G is k (due to the exhaustive application of Rule II), any set of at most k
vertices can cover at most k2 edges. Thus, if G contains more than k2 edges, it does
not admit a vertex cover of size at most k. To strictly comply with the definition of
a reduction rule, the output should be an instance of VERTEX COVER rather than yes
or no. However, it is acceptable to use yes or no as abbreviations for trivial yes- or
no-instances, respectively. For VERTEX COVER, concrete trivial yes- and no-instances
can be, for example, the graph on an empty vertex set with k = 0, and the graph on
two vertices connected by an edge with k = 0, respectively.

After the consideration of the last rule, we know that the number of edges in G is
at most k2. Furthermore, the number of vertices in G is at most 2k2 because G does
not contain any isolated vertex (due to the exhaustive application of Rule I). We also
observe that the entire process is implementable in polynomial time – each of our
three rules can be applied only polynomially many times and each application runs
in polynomial time. Thus, in polynomial time, we managed to reduce the size of the
input instance (without even trying to solve it!) to be quadratic in k.

2.4.2 Formal Definition and Relation to Membership in FPT

The main definition in kernelization is that of a kernel, which is derived from a more
general notion called compression.

36

PARAMETERIZED ALGORITHMS

Definition 2.9 A compression of a parameterized language Q ⊆ �∗ ×N into a
language R ⊆ �∗ is an algorithm that takes as input an instance (x,k) ∈ �∗×N,
runs in time polynomial in |x| + k, and returns a string y such that:

1. |y| ≤ f (k) for some function f (·), and
2. y ∈ R if and only if (x,k) ∈ Q.

If |�| = 2, the function f (·) is called the bitsize of the compression.

Kernelization is the special case of compression in which the projection of Q
onto �∗ equals R, that is, the source and target languages are essentially the same.
Then, the algorithm is referred to as a kernelization algorithm or a kernel. Particular
attention is given to the case where the function f is polynomial. In this case, we say
that the problem admits polynomial compression or kernelization. While a polynomial
kernel is obviously better than an arbitrary kernel, we have particular interest in
polynomial kernels due the following characterization, which uses arbitrary (not
necessarily polynomial) kernels.

In one direction, it is easy to see that if a decidable (parameterized) problem admits
a kernel for some function f , then it is FPT: for any instance of the problem, we call
a (polynomial-time) kernelization algorithm, and then use a decision algorithm to
determine the answer to the resulting instance. Since the size of the kernel is bounded
by some function f of the parameter, the running time of the decision algorithm
depends only on the parameter. More surprising is the converse direction:

Theorem 2.10 If a parameterized problem L is FPT, then it admits a kernel.

Proof Suppose that there is an algorithm deciding if (x,k) ∈ L in time f (k)|x|c
for some computable function f and constant c. We consider two cases. In
the first, |x| ≥ f (k), and we run the FPT algorithm on the instance in time
f (k)|x|c ≤ |x|c+1. If the FPT algorithm outputs yes, then the kernelization algo-
rithm outputs a constant size yes-instance, and if the decision algorithm outputs
no, then the kernelization algorithm outputs a constant size no-instance. In the
second case, |x| < f (k), and the kernelization algorithm outputs x. This yields
a kernel of size f (k) for the problem. �

Theorem 2.10 shows that kernelization gives rise to an alternative definition of
membership in FPT. So, to decide if a parameterized problem has a kernel, we can
employ many known tools already given by parameterized complexity. But what if we
are interested in kernels that are as small as possible? The size of a kernel obtained
using Theorem 2.10 equals the dependence on k in the running time of the best known
parameterized algorithm for the problem, which is often quite large (exponential or
worse). Can we find better kernels? The answer is yes, we can, but not always. For
many problems we can obtain polynomial kernels, but under reasonable complexity-
theoretic assumptions, there exist problems in FPT that do not admit kernels of
polynomial size (see Section 2.5).

In Section 2.4.1, we have already seen a polynomial (in fact, quadratic) kernel for
VERTEX COVER, based on three very simple rules, where the central one is known as
the Buss rule. Specifically, we proved the following theorem.

37

F V. FOMIN, D LOKSHTANOV, S SAURABH, AND M ZEHAVI

Theorem 2.11 VERTEX COVER admits a kernel of size O(k2).

In fact, a general scheme to develop kernelization algorithms is to provide a list of
reduction rules, where always the first rule in the list whose condition is satisfied is the
one to be executed next; eventually, when no rule is applicable, the size of the instance
should be bounded. Next, we adapt the Buss rule to a less expected context. We
remark that nowadays, there is a rich toolkit to design kernels (see Notes). Moreover,
extensions of kernelization are explored (see Section 2.6.1).

2.4.3 Generalization of the Buss Rule to Matrix Rank

We will now discuss a more sophisticated example of a polynomial kernel. The rigidity
of a matrix A for a target rank r over a field F is the minimum Hamming distance
between A and a matrix of rank at most r. Naturally, given a parameter k, the MATRIX

RIGIDITY problem asks whether the rigidity of A is at most k.

Theorem 2.12 There exists a polynomial-time algorithm that, given an instance
(A,k,r) of MATRIX RIGIDITY, returns an equivalent instance (A′,k,r) where A′
has O((rk)2) entries.

Proof Sketch Given an instance (A,r,k) of MATRIX RIGIDITY, the algorithm
works as follows. For k + 1 steps, it repeatedly selects a set of maximum size
consisting of rows that are linearly independent, where if the size of this set
exceeds r+ 1, a subset of it of size r+ 1 is used instead. Each such set of rows is
removed from the input matrix, and then it is inserted into the output matrix. At
the end of this greedy process, rows that remain in the input matrix are simply
discarded. Afterwards, the symmetric process is executed on columns.

Clearly, the output matrix A′ has at most (r+1)k rows and (r+1)k columns,
and therefore O((rk)2) entries. Moreover, in the forward direction, because A′
is obtained by deleting rows, and then further deleting columns, of A, it is clear
that if (A,k,r) is a yes-instance, then so is (A′,k,r).

For the reverse direction, we only prove that the operation on rows is safe,
as the safeness for columns follows similarly. To this end, let Â be the matrix
obtained after the operation on rows, and suppose that (Â,k,r) is a yes-instance.
Let B̂ be a matrix of rank at most r and Hamming distance at most k from Â.
Because the rows of Â were taken from A, the matrix B that consists of B̂ and
the rows of A outside Â is at Hamming distance at most k from A. To prove that
(A,k,r) is a yes-instance as well (which will be witnessed by B), we will prove that
each row in A that was not inserted into Â belongs to the span of the rows of Â
that also belong to B̂.

Notice that in each set of r + 1 rows inserted (in the same iteration) into Â,
there must be a difference between Â and B̂ as this set in itself is linearly indepen-
dent. Since k + 1 iterations are performed, and the Hamming distance between
Â and B̂ is k, there must be at least one set that is the same in both, and thus this
set must have size at most r. In particular, when this set was inserted into Â, it
was a set of maximum size of linearly independent rows (that was not replaced
by a smaller set). Thus, every row in A that was not inserted into Â belongs to

38

PARAMETERIZED ALGORITHMS

the span of this set. Because this set is the same in Â and B̂, we conclude that B
and B̂ have the same rank, and thus (A,k,r) is a yes-instance. �

Let us point out two similarities. While in the Buss rule, we relied on the obser-
vation that in a set of k + 1 edges incident to the same vertex, that vertex must be
picked, here we relied on the observation that in a set of r + 1 linearly independent
rows, at least one change must be made. Further, both when arguing the correctness
of Rule III, and when arguing for the existence of an “untouched” set in the reverse
direction, we used an argument based on the pigeonhole principle.

When F=R, Theorem 2.12 does not yield a kernel for MATRIX RIGIDITY parame-
terized by k + r because the bitsize to encode each entry may be unbounded in k + r.
However, for finite fields, we have the following consequence.

Corollary 2.13 MATRIX RIGIDITY over finite fields admits a kernel of size
O((kr)2f), where f is the field size.

We remark that parameterization by multiple parameters (among k,r, and f) is
likely to be essential here, because it can be shown that parameterized by k alone, r
alone, or f alone, MATRIX RIGIDITY is W[1]-hard (see Section 2.5.1).

2.5 Hardness and Optimality

2.5.1 W[1]-Hardness

In addition to a rich toolkit to design parameterized algorithms, research in parame-
terized complexity has also provided complementary methods to show that a problem
is unlikely to be FPT. The main technique is the one of parameterized reductions
analogous to those employed in the theory of NP-hardness. Here, the concept of
W[1]-hardness replaces the one of NP-hardness, and for reductions we need not
only construct an equivalent instance in FPT time, but also ensure that the size of
the parameter in the new instance depends only on the size of the parameter in the
original one. If there exists such a reduction transforming a problem known to be
W [1]-hard to another problem �, then the problem � is W [1]-hard as well. Cen-
tral W [1]-hard problems include, for example, deciding whether a nondeterministic
single-tape Turing machine accepts within k steps, CLIQUE (determine whether a given
graph has a clique of size k) parameterized by solution size k, and INDEPENDENT

SET parameterized by solution size k (determine whether a given graph has an
independent set of size k). To show that a problem � is not XP unless P = NP, it is
sufficient to show that there exists a fixed k such � is NP-hard. Then, the problem is
said to be para-NP-hard.

More formally, a central notion in this context is of a parameterized reduction,
defined as follows.

Definition 2.14 Let A,B ⊆�∗ × N be two parameterized problems. A param-
eterized reduction from A to B is an algorithm that, given an instance (x,k) of
A, outputs an instance (x′,k′) of B such that (i) (x,k) is a yes-instance of A if
and only if (x′,k′) is a yes-instance of B; (ii) k′ ≤ g(k) for some computable

39

F V. FOMIN, D LOKSHTANOV, S SAURABH, AND M ZEHAVI

function g; (iii) the running time is upper bounded by f (k) · |x|c for some
computable function f and constant c.

As an example of a very simple parameterized reduction, let A be CLIQUE and B
be INDEPENDENT SET, and consider the following algorithm. Given an instance (G,k)
of CLIQUE, the algorithm outputs the instance (G,k) of INDEPENDENT SET, where G
is the complement of G (i.e., {u,v} ∈ E(G) if and only if {u,v} /∈ E(G)). Then, it is
trivial to verify that the three properties in Definition 2.14 are satisfied. Generally, the
design of parameterized reductions can often be quite technical, as we need to avoid
blowing up the parameter. In many cases, it is useful to consider the “colorful version”
of a W[1]-hard problem as the source of the reduction. In particular, in COLORFUL

CLIQUE we are given a graph G, and a (not necessarily proper) coloring of the vertices
of G in k colors, and the goal is to determine whether G has a clique on k vertices,
where each vertex has a distinct color. Roughly speaking, the main reason why colors
help is that they enable the reduction to consist, for each color, of a gadget for the
selection of a vertex of that color, rather than k gadgets for the selection of k vertices
from the entire graph. In particular, each gadget “works” on a different set of vertices.
This generally simplifies the design of the gadgets that need to verify that the selected
vertices form a clique.

We remark that for some choices of A and B, even when both problems are NP-
hard, we do not expect to have a parameterized reduction. For example, let A be
CLIQUE and B be VERTEX COVER. As already noted in Section 2.1.1, VERTEX COVER

is FPT while CLIQUE is W[1]-hard. Then, although there exists a polynomial-time
reduction from CLIQUE to VERTEX COVER (because both problems are NP-complete),
a parameterized one would imply that CLIQUE is FPT, which is considered unlikely.
We remark that known reductions from CLIQUE to VERTEX COVER blow up the
parameter in the output instance, so it no longer depends only on the parameter in
the input instance but on the entire input instance size. Interestingly, while we know
of a parameterized reduction from INDEPENDENT SET to DOMINATING SET (through
COLORFUL INDEPENDENT SET; see Notes), we do not know of a parameterized
reduction from DOMINATING SET to INDEPENDENT SET. In fact, we do not expect
that such a reduction exists, since INDEPENDENT SET and DOMINATING SET lie in
different levels of the W-hierarchy. Specifically, INDEPENDENT SET is complete for the
first level of this squirearchy, while DOMINATING SET is complete for the second one.
For more details, we refer to the Notes.

2.5.2 ETH and SETH

To obtain (essentially) tight conditional lower bounds for the running times of
algorithms, we can rely (among other hypotheses) on the Exponential-Time Hypoth-
esis (ETH) and Strong Exponential-Time Hypothesis (SETH). To formalize the
statements of ETH and SETH, first recall that given a formula ϕ in conjuctive normal
form (CNF) with n Boolean variables and m clauses, the task of CNF-SAT is to decide
whether there is a truth assignment to the variables that satisfies ϕ. In the p-CNF-SAT
problem, each clause is restricted to have at most p literals. First, ETH asserts that
3-CNF-SAT cannot be solved in time O(2o(n)). Second, SETH asserts that for every
fixed ε < 1, there exists a (large) integer p = p(ε) such that p-CNF-SAT cannot be
solved in time O((2 − ε)n). We remark that for every fixed integer p, we know that

40

PARAMETERIZED ALGORITHMS

p-CNF-SAT is solvable in time O(cn) for c < 2 that depends on p (notice that this
does not contradict SETH).

Parameterized reductions (as in Definition 2.14) can be used in conjunction with
ETH or SETH to provide more fine-grained lower bounds. For an example, consider
the classic reduction from 3-CNF-SAT to VERTEX COVER described by, e.g., Sipser
(1996). This reduction has the following properties: Given a 3-CNF-SAT instance
φ with n variables and m clauses, the reduction outputs in polynomial time a graph
G on 3m vertices, such that G has a vertex cover of size at most m if and only if φ

is satisfiable. This reduction, together with the ETH, rules out the possibility of a
2o(|V(G)|1/3) time algorithm for VERTEX COVER: If such an algorithm exists, we could
feed the output of the reduction into the algorithm and solve 3-CNF-SAT

2o(|V(G)|1/3) ≤ 2o((3m)1/3) ≤ 2o(n) in time.

This would contradict the ETH. In the last transition we used that the number of
clauses m in a 3-SAT instance is at most O(n3).

Some key points to take away from this reduction. First, good old NP-hardness
reductions are by themselves sufficient to provide running time lower bounds assum-
ing the ETH, we just had to carefully keep track how the parameters of the instance
produced by the reduction depend on the parameters of the input instance. Second,
the running time lower bound of 2o(|V(G)|1/3) is very far off from the 2�(n) running
times of the currently best known algorithms for VERTEX COVER. Luckily, Impagli-
azzo et al. (2001) provide a handy tool to bridge this gap.

Theorem 2.15 Assuming the ETH, 3-CNF-SAT has no algorithm with running
time 2o(n+m)

Theorem 2.15, combined with the reduction foregoing shows that VERTEX COVER

can not have an algorithm with running time 2o(n), since this would yield an algorithm
for 3-CNF-SAT with running time 2o(m), contradicting ETH. Thus, assuming the
ETH, up to constants in the exponent the existing algorithms for VERTEX COVER (in
fact even the naive 2n time algorithm) are the best one can do!

Notice also that this gives a lower bound on the running time of FPT algorithms
for VERTEX COVER when parameterized by solution size k. Indeed, since k ≤ |V(G)|,
a 2o(k)|V(G)|O(1) time algorithm for VERTEX COVER would contradict the ETH.
From this starting point one can get numerous lower bounds that miraculously
match the running times of the best known algorithms, just by tracing the existing
reductions. Of course in many cases clever new reductions have to be designed to
get tight bounds (see the survey Lokshtanov et al., 2011). For example, assuming the
ETH, all of the following algorithms are already best possible, up to constants in the
exponent: the naive nk+O(1) time algorithms for CLIQUE and DOMINATING SET, the
2O(k)nO(1) time algorithms for LONGEST PATH and SET SPLITTING from Theorems 2.3
and 2.4, and theO(tt(n+m)) time algorithm for GRAPH COLORING from Theorem 2.8.

All of the so-called “tight” lower bounds assuming the ETH come with the fine
print “up to constants in the exponent.” This is of course unsatisfactory: There is a
huge difference between a 2n time algorithm and a 1.00001n time algorithm and, so
far, no one has been able to use the ETH to rule out an algorithm with running time
1.00001n for a problem that does have an algorithm with running time 100n. If one is

41

F V. FOMIN, D LOKSHTANOV, S SAURABH, AND M ZEHAVI

willing to assume the much stronger hypothesis that is SETH, then one can pin down
the precise dependence on k for some problems (Lokshtanov et al., 2011). However,
so far we are lacking a result akin to Theorem 2.15 for SETH, quite severly limiting
its applicability.

2.5.3 Hardness and Optimality of Kernelization

LONGEST PATH can be solved in time 2O(k)nO(1) (Theorem 2.7). Thus by Theorem
2.10, we deduce that LONGEST PATH admits a kernel of size 2O(k). But what about a
kernel of polynomial size?

We argue that intuitively this should not be possible. Assume that LONGEST PATH

admits a polynomial kernel of size kc, where c is some fixed constant. We take many
instances,

(G1,k),(G2,k), . . . ,(Gt,k),

of the LONGEST PATH problem, where in each instance |V(Gi)| = n, 1 ≤ i ≤ t, and
k ≤ n. If we make a new graph G by just taking the disjoint union of the graphs
G1, . . . ,Gt, we see that G contains a path of length k if and only if Gi contains a
path of length k for some i ≤ t. Now run the kernelization algorithm on G. Then
the kernelization algorithm would in polynomial time return a new instance (G′,k′)
such that |V(G′)| ≤ kc ≤ nc, a number potentially much smaller than t; for example,
set t = n1000c. This means that in some sense, the kernelization algorithm considers
the instances (G1,k),(G2,k), . . . ,(Gt,k) and in polynomial time figures out which of
the instances are the most likely to contain a path of length k. More precisely, if
we have to preserve the value of the OR of our instances while being forced to
forget at least one of the inputs entirely, then we have to make sure that the input
being forgotten was not the only one whose answer is yes (otherwise we turn a yes-
instance into a no-instance). However, at least intuitively, this seems almost as difficult
as solving the instances themselves, and since the LONGEST PATH problem is NP-
complete, this seems unlikely. In 2009, a methodology to rule out polynomial kernels
was developed in Fortnow and Santhanam (2008) and Bodlaender et al. (2009). The
existence of polynomial kernels are ruled out, in this framework, by linking the
availability of a polynomial kernel to an unlikely collapse in classical complexity.
These developments deepen the connection between classical and parameterized
complexity. Using this methodology one can show that LONGEST PATH does not
admit a polynomial kernel unless coNP ⊆ NP

poly . In fact, in Dell and van Melkebeek
(2014), the kernel lower bound methodology established in Fortnow and Santhanam
(2008) and Bodlaender et al. (2009) was generalized further to provide lower bounds
based on different polynomial functions for the kernel size. For an example we can
show that the O(k2) kernel for VERTEX COVER given by 2.11 is optimal. That is,
VERTEX COVER does not have kernels of size O(k2−ε) unless coNP ⊆ NP

poly .

2.6 Outlook: New Paradigms and Application Domains

The main idea of parameterized algorithms is very general: to measure the running
time in terms of both input size as well as a parameter that captures structural
properties of the input instance. This idea of a multivariate algorithm analysis holds

42

PARAMETERIZED ALGORITHMS

the potential to address the need for a framework for refined algorithm analysis for
all kinds of problems across all domains and subfields of computer science. Indeed,
parameterized complexity has permeated other algorithmic paradigms as well as
other application domains. In this section we look at some of these.

2.6.1 FPT-Approximation and Lossy Kernels

Until now we have only seen decision problems in the realm of fixed parameter
tractability. However, to define the notion of FPT-approximation we need to move
away from decision problems and define the notion of optimization problems.
However, this chapter is not the right place to do so. We will work with some
ad hoc definitions and use them to show glimpses of the budding field of FPT-
approximation. For the purpose of this section, we will call an approximaiton
algorithm, an FPT-approximation algorithm, if its running time is f (k) · nO(1), for a
parameter k (k need not be the solution size).

We will exemplify this paradigm via the PARTIAL VERTEX COVER problem. In this
problem, we are given an undirected graph G and a positive integer k, and the task is
to find a subset X of k vertices that covers as many edges as possible. This problem
can easily be shown to be W [1]-hard via a reduction from the INDEPENDENT SET

problem. In what follows, we give an algorithm that for every ε > 0, runs in time
f (ε,k) · nO(1), and produces a (1 + ε)-approximate solution for the problem.

A natural greedy heuristic for the problem is to output a set X containing k vertices
of the highest degree. The case in which X could cover far fewer edges than an optimal
solution is when the number of edges with both endpoints in X is proportional to the
total number of edges that X covers. We will show that this case can be addressed with
an FPT algorithm. Let us fix C = 2

(k
2

)
/ε and and let v1, . . . ,vn be the vertices of the

graph ordered by nonincreasing degree. In the first case we assume that d(v1) ≥ C.
Here, d(vi) denotes the degree of vi. In this case the greedy heuristic outputs our
desired solution. Indeed, X = {v1, . . . ,vk} covers at least

∑k
i=1 d(vi)− (k2) edges. The

last inequality follows from the fact that any simple graph on k vertices has at most(k
2

)
edges. Observe that optimal the solution is always upper bounded by

∑k
i=1 d(vi).

Thus, the quality of the desired solution is

∑k
i=1 d(vi) − (k2)∑k

i=1 d(vi)
≥ 1 −

(k
2

)
C

≥ 1 − ε

2
≥ 1

1 + ε
,

at most (1 + ε) times the optimum.
We can therefore assume that d(v1) < C = 2

(k
2

)
/ε. Hence, the optimal solution is

upper bounded by
∑k

i=1 d(vi) < Ck. That is, in this case the maximum number of
edges, say t, that any set of size k can cover becomes a function of k and ε. What if we
parameterize PARTIAL VERTEX COVER by the maximum number of edges, say t, that
are covered by a set of size k? Indeed, one can show that PARTIAL VERTEX COVER is
solvable in time 2O(t)nO(1) using the method of color coding explained in Section 2.2.
We leave this as an exercise (Exercise 2.4). With this exercise in hand we can prove the
following theorem.

43

F V. FOMIN, D LOKSHTANOV, S SAURABH, AND M ZEHAVI

Theorem 2.16 For every ε > 0, there exists an algorithm for PARTIAL VERTEX

COVER that runs in time f (ε,k)·nO(1), and produces a (1+ε)-approximate solution
for the problem.

PARTIAL VERTEX COVER is not the only problem for which FPT-approximation
algorithm exists. There are several other problem but arguably the most notable one
is s-WAY CUT, parameterized by s (delete minimum number of edges such that the
resulting graph has at least s connected components). The problem admits a factor
2-approximation algorithm in polynomial time. On the other hand assuming some
well known complexity theory assumption it is not possible to improve this approx-
imation algorithm. Furthermore, the problem is known to be W [1]-hard, parame-
terized by s (Downey et al., 2003). Gupta et al. (2018) obtained a (2 − ε)-factor
approximation algorithm, a fixed constant ε > 0, running in time f (s) · nO(1). After
couple of improvements, Kawarabayashi and Lin (2020) have recently obtained a
nearly 5/3 factor FPT-approximation algorithm.

The area of FPT-inapproximability has also flourished. In particular, assuming
FPT �= W [1], DOMINATING SET does not admit an FPT-approximation algorithm
with factor o(k) (Karthik et al., 2019). On the other hand, assuming a gap version
of ETH, one can show that CLIQUE does not admit any FPT-approximation algo-
rithm (Chalermsook et al., 2017).

Can we combine the theory of kernelization (Section 2.4) with FPT approxima-
tion? Unfortunately, the answer is no. Despite the success of kernelization, the basic
definition has an important drawback: It does not combine well with approximation
algorithms. This is a serious problem, since after all the ultimate goal of parameterized
algorithms, or for that matter of any algorithmic paradigm, is to eventually solve the
given input instance. Thus, the application of a preprocessing algorithm is always
followed by an algorithm that finds a solution to the reduced instance. In practice,
even after applying a preprocessing procedure, the reduced instance may not be small
enough to be solved to optimality within a reasonable time bound. In these cases
one gives up on optimality and resorts to approximation algorithms (or heuristics)
instead. Thus it is crucial that the solution obtained by an approximation algorithm
when run on the reduced instance provides a good solution to the original instance,
or at least some meaningful information about the original instance.

The main reason that the existing notion of kernelization does not combine well
with approximation algorithms is that the definition of a kernel is deeply rooted in
decision problems, while approximation algorithms are optimization problems. This
led to the new definition of lossy kernels, coined by Lokshtanov et al. (2017), which
extends the notion of kernelization to optimization problems. The main object here is
a definition of α-approximate kernels. We do not give the formal definition here, but,
loosely speaking, an α-approximate kernel of size g(k) is a polynomial time algorithm
that given an instance (I,k) outputs an instance (I ′,k′) such that |I ′| + k′ ≤ g(k) and
any c-approximate solution s′ to the instance (I ′,k′) can be turned in polynomial time
into a (c · α)-approximate solution s to the original instance (I,k).

We again exemplify the idea of α-approximate kernels by giving a suitable algo-
rithm for PARTIAL VERTEX COVER. Here, we will rely on the observation that the first
case in the proof of Theorem 2.16 is handled in polynomial time. We formally show
this in the next theorem.

44

PARAMETERIZED ALGORITHMS

Theorem 2.17 PARTIAL VERTEX COVER admits α-approximate kernels for every
α > 1.

Proof We give an α-approximate kernelization algorithm for the problem for
every α > 1. Let ε = 1 − 1

α
and β = 1

ε
. Let (G,k) be the input instance. Let

v1,v2, . . . ,vn be the vertices of G in the nonincreasing order of degree, i.e.,
dG(vi) ≥ dG(vj) for all 1 ≥ i > j ≥ n. The kernelization algorithm has two
cases based on the degree of v1.
Case 1 dG(v1) ≥ β

(k
2

)
. In this case S = {v1, . . . ,vk} is a α-approximate solution.

The number of edges incident to S is at least (
∑k

i=1 dG(vi)) − (k
2

)
, because at

most
(k

2

)
edges have both endpoints in S and they are counted twice in the sum

(
∑k

i=1 dG(vi)). The value of the optimum solution is at most
∑k

i=1 dG(vi). As in
Theorem 2.16, we can show that

(
∑k

i=1 dG(vi)) − (k2)∑k
i=1 dG(vi)

≥ 1 −
(k

2

)
dG(v1)

≥ 1 − 1
β

= 1
α

.

The foregoing inequality implies that S is an α-approximate solution. So the
kernelization algorithm outputs a trivial instance (∅,0) in this case.
Case 2 dG(v1)<β

(k
2

)
. Let V ′ = {v1,v2, . . . ,vk�β(k

2)�+1}. In this case the algorithm

outputs (G′,k), where G′ = G[NG[V ′]] (the subgraph of G induced by the
vertices of V ′ and all of their neighbors). Let OPT(G,k) denote the optimum
value of the instance. We first claim that OPT(G′,k) = OPT(G,k). Since G′ is
a subgraph of G, OPT(G′,k) ≤ OPT(G,k). Now it is enough to show that
OPT(G′,k) ≥ OPT(G,k). Toward that, we prove that there is an optimum
solution that contains only vertices from the set V ′. Suppose not; then consider
the solution S, which is lexicographically smallest in the ordered list v1, . . . vn.
The set S contains at most k − 1 vertices from V ′ and at least one from V \ V ′.
Since the degree of each vertex in G is at most �β(k2)� − 1 and |S| ≤ k, we

have that |NG[S]| ≤ k�β(k2)�. This implies that there exists a vertex v ∈ V ′ such
that v /∈ NG[S]. Hence by including the vertex v and removing a vertex from
S \ V ′, we can cover at least as many edges as S can cover. This contradicts
our assumption that S is lexicographically smallest. Since G′ is a subgraph
of G any solution of G′ is also a solution of G. Thus we have shown that
OPT(G′,k) = OPT(G,k). So the algorithm returns the instance (G′,k) as the
reduced instance. Since G′ is a subgraph of G, in this case, the solution lifting
algorithm takes a solution S′ of (G′,k) as input and outputs S′ as a solution
of (G,k). Since OPT(G′,k) = OPT(G,k), the correctness of the kernelization
algorithm follows.

The number of vertices in the reduced instance is O(k · � 1
ε

(k
2

)�2) = O(k5).
The running time of the algorithm is polynomial in the size of G. �

We note that as for classical kernelization (Section 2.5.3), there are tools to rule
out lossy kernelization (refer to Lokshtanov et al., 2017 for further details).

45

F V. FOMIN, D LOKSHTANOV, S SAURABH, AND M ZEHAVI

2.6.2 FPT in P

While initially the main focus of parameterized complexity was on NP-complete
problems, the idea of going beyond the worst-case analysis by exploiting the struc-
tural properties of the input instance is applicable to problems in P too.

Several such algorithms can be found in the literature. For example, by the result of
Fomin et al. (2018a), a maximum matching in a graph of treewidth at most k can be
constructed in time O(k4 ·n log2 n), while the best known worst-case running time on
general graphs is O(nω), which is due to Mucha and Sankowski (2004). Abboud et al.
(2016) proved that the DIAMETER problem can be solved in time 2O(k log k) · n1+o(1)

on graphs of treewidth k, but achieving running time of the form 2o(k) · n2−ε for any
ε > 0 would already contradict the SETH.

2.6.3 Application Domains

Parameterized complexity focused largely on problems on graphs in the first two
decades of its existence. However, in the past decade, problems arising in different
domains such as computational geometry, bioinformatics, machine learning and
computational social choice theory have been considered through the lens of param-
eterized complexity. A plethora of parameters such as the dimension of the input,
solution size, the number of input strings, patterns in people’s preferences, number
of candidates, and number of voters have been used as parameters in these domains.
These led to numerous results in these areas and several parameterized algorithms
or nonexistence of such algorithms have been proved. We refer to the following
surveys for these Giannopoulos et al., 2008; Bredereck et al., 2014; Faliszewski and
Niedermeier (2016); Panolan et al., 2019).

2.7 The Big Picture

Parameterized algorithms and complexity has been a spectacular success from a
theoretical perspective. From the more applied perspective, only very recently, the
PACE challenge kickstarted research into practical implementations for basic FPT
problems like VERTEX COVER, TREEWIDTH, or STEINER TREE. (See Dell et al., 2017,
2018). These experimental contests have shown the following:

� Parameterized complexity seems particularly useful/efficient for problems arising
in graph theory and networks.

� PACE implementation challenge has shown that to improve the practical perfor-
mance of a parameterized algorithm one needs to fine-tune parameters and apply
“time-saving optimization” tricks on top of it. Also, the algorithm that has the
“best running time” (this is not unique as the running time is governed by two
parameters and thus we can only talk about Pareto-optimality) may not be the best
performing algorithm in practice. Thus, in practice we should use parameterized
algorithms as a skeleton and optimize other parameters for performance.

� There is huge discrepancy between the running time predictions derived from
theoretical analysis of parameterized algorithms (which is worst case and hence
overly pessimistic) and the performance of algorithms in practice.

46

PARAMETERIZED ALGORITHMS

Every success is accompanied with its own list of failures. Unfortunately, there is lack
of study of weighted discrete optimization problems, or problems over continuous
domains. For example, problems arising in the field of computational geometry or
mathematical programming. One reason for this is that with respect to solution size,
which has become the go to parameterization in the field, the problem generally turns
out to be intractable. Similarly, for problems in which input consists of vectors in R

d ,
most problems turn out to be W -hard with respect to dimension d. Thus, for such
problems a user should either not use parameterized complexity as a tool to design
an algorithm or should avoid using so-called classical parameters. Finally, choice of
a parameter is an art. One should not restrict oneself with just one parameter for the
same problem. It is possible that different parameters are “small” for different families
of instances of the same problem and hence together they represent wider tractability
of the problem. One thing that the field must do is to interact with other fields
and develop tools based on this synergy. For example, combining approximation
algorithms and parameterized complexity has yielded several positive results (of
course, some exciting negative results as well).

2.8 Notes

The history of parameterized algorithms can be traced back to the 1970s and 80s,
including the algorithm of Dreyfus and Wagner (1971) for STEINER TREE, the
algorithm of Farber et al. (1986) for ACHROMATIC NUMBER, and the celebrated
result of Robertson and Seymour (1995) on DISJOINT PATHS. The foundations of
parameterized complexity, the toolkit for analyzing parameterized algorithms, were
laid in 1990s in the series of papers Abrahamson et al. (1995) and Downey and
Fellows (1992, 1995a,b). The classic reference on parameterized complexity is the
book of Downey and Fellows (1999). The new edition of this book Downey and
Fellows (2013) is a comprehensive overview of the state of the art in many areas
of parameterized complexity. The book by Flum and Grohe (2006) is an extensive
introduction to the area with a strong emphasis on the complexity viewpoint. An
introduction to basic algorithmic techniques in parameterized complexity up to 2006
is given in the book by Niedermeier (2006). The recent textbook by Cygan et al.
(2015) provides a coherent account of the most recent tools and techniques in the
area. The book by Fomin et al. (2019) gives a detailed overview of algorithmic and
complexity techniques used in kernelization.

The reference point for branching algorithms is the work of Davis and Putnam
(1960) [see also Davis et al. (1962)] on the design and analysis of algorithms to
solve some satisfiability problems. Branching algorithms and techniques for their
analysis are discussed in detail in the book by Fomin and Kratsch (2010). A branching
algorithm with running time O(2k(n + m)) for VERTEX COVER appears in the book
by Mehlhorn (1984). After a long sequence of improvements, the current champion
algorithm runs in time O(1.2738k + kn) and is due to Chen et al. (2010). The method
of color coding was introduced in the seminal paper of Alon et al. (1995).

ETH and SETH were first introduced in the work of Impagliazzo and Paturi
(2001), which built upon earlier work of Impagliazzo et al. (2001).

Theorem 2.10 on equivalence of kernelization and fixed-parameter tractability is
due to Cai et al. (1997). The reduction rules for VERTEX COVER discussed in this
chapter are attributed to Buss in Buss and Goldsmith (1993) and are often referred

47

F V. FOMIN, D LOKSHTANOV, S SAURABH, AND M ZEHAVI

to as Buss kernelization in the literature. A more refined set of reduction rules for
VERTEX COVER was introduced in Balasubramanian et al. (1998). The kernelization
algorithm for matrix rigidity is from Fomin et al. (2018b). We refer to the following
books an [Downey and Fellows (1999, 2013); Flum and Grohe (2006); Niedermeier
(2006); Cygan et al. (2015); Fomin et al. (2019); Fomin and Kratsch (2010)] for
detailed overview of all the techniques presented in this survey and more. We also
refer the readers to the book of van Rooij et al. (2019) for an application to questions
of intractability, with respect to both classical and parameterized complexity analysis,
in cognitive science.

References

Abboud, Amir, Williams, Virginia Vassilevska, and Wang, Joshua R. 2016. Approximation
and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs.
Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp 377–391. SIAM.

Abrahamson, Karl R., Downey, Rodney G., and Fellows, Michael R. 1995. Fixed-parameter
tractability and completeness IV: On completeness for W [P] and PSPACE analogues.
Annals Pure Applied Logic, 73(3), 235–276.

Alon, Noga, Yuster, Raphael, and Zwick, Uri. 1995. Color-coding. Journal of the ACM, 42(4),
844–856.

Balasubramanian, R., Fellows, Michael R., and Raman, Venkatesh. 1998. An improved fixed-
parameter algorithm for vertex cover. Information Processing Letters, 65(3), 163–168.

Bodlaender, Hans L., Downey, Rodney G., Fellows, Michael R., and Hermelin, Danny. 2009.
On problems without polynomial kernels. Journal of Computer and System Sciences,
75(8), 423–434.

Bredereck, Robert, Chen, Jiehua, Faliszewski, Piotr, Guo, Jiong, Niedermeier, Rolf, and
Woeginger, Gerhard J. 2014. Parameterized algorithmics for computational social choice:
Nine research challenges. CoRR, abs/1407.2143.

Buss, Jonathan F., and Goldsmith, Judy. 1993. Nondeterminism within P. SIAM Journal of
Computing, 22(3), 560–572.

Cai, Liming, Chen, Jianer, Downey, Rodney G., and Fellows, Michael R. 1997. Advice classes
of parameterized tractability. Annals Pure Applied Logic, 84(1), 119–138.

Chalermsook, Parinya, Cygan, Marek, Kortsarz, Guy, Laekhanukit, Bundit, Manurangsi,
Pasin, Nanongkai, Danupon, and Trevisan, Luca. 2017. From gap-ETH to FPT-
inapproximability: Clique, dominating set, and more. 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, pp. 743–754. IEEE Computer Society.

Chen, Jianer, and Lu, Songjian. 2009. Improved parameterized set splitting algorithms: A
probabilistic approach. Algorithmica, 54(4), 472–489.

Chen, Jianer, Kanj, Iyad A., and Xia, Ge. 2010. Improved upper bounds for vertex cover.
Theoretical Computer Science, 411(40–42), 3736–3756.

Cygan, Marek, Fomin, Fedor V., Kowalik, Lukasz, Lokshtanov, Daniel, Marx, Dániel,
Pilipczuk, Marcin, Pilipczuk, Michał, and Saurabh, Saket. 2015. Parameterized Algo-
rithms. Springer.

Davis, Martin, and Putnam, Hilary. 1960. A computing procedure for quantification theory.
Journal of the ACM, 7, 201–215.

Davis, Martin, Logemann, George, and Loveland, Donald. 1962. A machine program for
theorem-proving. Communications of the ACM, 5, 394–397.

Dell, Holge, and van Melkebeek, Dieter. 2014. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. Journal of the ACM, 61(4), 1–23:27.

48

PARAMETERIZED ALGORITHMS

Dell, Holger, Husfeldt, Thore, Jansen, Bart M. P., Kaski, Petteri, Komusiewicz, Christian,
and Rosamond, Frances A. 2017. The first parameterized algorithms and computational
experiments challenge. Guo, Jiong, and Hermelin, Danny (eds.), 11th International Sym-
posium on Parameterized and Exact Computation (IPEC 2016), pp. 30.1–30.9. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 63. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

Dell, Holger, Komusiewicz, Christian, Talmon, Nimrod, and Weller, Mathias. 2018. The
PACE 2017 Parameterized algorithms and computational experiments challenge: The
second iteration. Lokshtanov, Daniel, and Nishimura, Naomi (eds.), 12th International
Symposium on Parameterized and Exact Computation (IPEC 2017), pp. 30.1–30.12.
Leibniz International Proceedings in Informatics (LIPIcs), vol. 89. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

Downey, Rodney G., and Fellows, Michael R. 1992. Fixed-parameter tractability and com-
pleteness. Proceedings of the 21st Manitoba Conference on Numerical Mathematics and
Computing. Congressus Numerantium, 87, 161–178.

Downey, Rodney G., and Fellows, Michael R. 1995a. Fixed-parameter tractability and
completeness I: Basic results. SIAM Journals of Computing, 24(4), 873–921.

Downey, Rodney G., and Fellows, Michael R. 1995b. Fixed-parameter tractability and
completeness II: On completeness for W [1]. Theoretical Computer Science, 141(1&2),
109–131.

Downey, Rodney G., and Fellows, Michael R. 1999. Parameterized Complexity. Springer-
Verlag.

Downey, Rodney G., and Fellows, Michael R. 2013. Fundamentals of Parameterized Complex-
ity. Texts in Computer Science. Springer.

Downey, Rodney G., Estivill-Castro, Vladimir, Fellows, Michael R., Prieto-Rodriguez, Elena,
and Rosamond, Frances A. 2003. Cutting up is hard to do: The parameterized complexity
of k-cut and related problems. Electronic Notes in Theoretical Computer Science, 78,
209–222.

Dreyfus, Stuart E., and Wagner, Robert A. 1971. The Steiner problem in graphs. Networks,
1(3), 195–207.

Faliszewski, Piotr, and Niedermeier, Rolf. 2016. Parameterization in computational social
choice. In Encyclopedia of Algorithms, pp. 1516–1520.

Farber, Martin, Hahn, Gena, Hell, Pavol, and Miller, Donald J. 1986. Concerning
the achromatic number of graphs. Journal of Combinatorial Theory Ser. B, 40(1),
21–39.

Flum, Jörg, and Grohe, Martin. 2006. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag.

Fomin, Fedor V., and Kratsch, Dieter. 2010. Exact Exponential Algorithms. Texts in Theoret-
ical Computer Science. An EATCS Series. Berlin: Springer-Verlag.

Fomin, Fedor V., Lokshtanov, Daniel, Saurabh, Saket, Pilipczuk, Michal, and Wrochna,
Marcin. 2018a. Fully polynomial-time parameterized computations for graphs and matri-
ces of low treewidth. ACM Transactions on Algorithms, 14(3), 34:1–34:45.

Fomin, Fedor V., Lokshtanov, Daniel, Meesum, Syed Mohammad, Saurabh, Saket, and
Zehavi, Meirav. 2018b. Matrix rigidity from the viewpoint of parameterized complexity.
SIAM Journal Discrete Mathematics, 32(2), 966–985.

Fomin, Fedor V., Lokshtanov, Daniel, Saurabh, Saket, and Zehavi, Meirav. 2019. Kerneliza-
tion. Theory of Parameterized Preprocessing. Cambridge University Press.

Fortnow, Lance, and Santhanam, Rahul. 2008. Infeasibility of instance compression and
succinct PCPs for NP. Proceedings of the 40th Annual ACM Symposium on Theory of
Computing (STOC), pp. 133–142. ACM.

Giannopoulos, Panos, Knauer, Christian, and Whitesides, Sue. 2008. Parameterized complex-
ity of geometric problems. Computer Journal, 51(3), 372–384.

49

F V. FOMIN, D LOKSHTANOV, S SAURABH, AND M ZEHAVI

Gupta, Anupam, Lee, Euiwoong, and Li, Jason. 2018. An FPT algorithm beating
2-approximation for k-cut. Proceedings of the Twenty-Ninth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2018, pp. 2821–2837. SIAM.

Impagliazzo, Russell, and Paturi, Ramamohan. 2001. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2), 367–375.

Impagliazzo, Russell, Paturi, Ramamohan, and Zane, Francis. 2001. Which problems have
strongly exponential complexity. Journal of Computer and System Sciences, 63(4),
512–530.

Karthik C. S., Laekhanukit, Bundit, and Manurangsi, Pasin. 2019. On the parameterized
complexity of approximating dominating set. Journal of ACM, 66(5), 33:1–33:38.

Kawarabayashi, Ken-Ichi, and Lin, Bingkai. 2020. A nearly 5/3-approximation FPT algorithm
for min-k-cut. Proceedings of the Thirty First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, pp. 990–999. Salt Lake City, Utah, USA, January 6-8, 2020.
SIAM.

Lokshtanov, Daniel, Marx, Dániel, and Saurabh, Saket. 2011. Lower bounds based on the
Exponential Time Hypothesis. Bulletin of the EATCS, 105, 41–72.

Lokshtanov, Daniel, Panolan, Fahad, Ramanujan, M. S., and Saurabh, Saket. 2017. Lossy
kernelization. Proceedings of the 49th Annual ACM Symposium on Theory of Computing
(STOC), pp. 224–237. ACM.

Lokshtanov, Daniel, Marx, Dániel, and Saurabh, Saket. 2018. Slightly Superexponential
Parameterized Problems. SIAM Journal on Computing, 47(3), 675–702.

Mehlhorn, Kurt. 1984. Data Structures and Algorithms 2: Graph Algorithms and NP-
Completeness. EATCS Monographs on Theoretical Computer Science, vol. 2. Springer.

Mucha, Marcin, and Sankowski, Piotr. 2004. Maximum matchings via Gaussian elimination.
FOCS 2004, pp. 248–255. IEEE Computer Society.

Naor, Moni, Schulman, Leonard J., and Srinivasan, Aravind. 1995. Splitters and near-optimal
derandomization. Proceedings of the 36th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 182–181. IEEE.

Niedermeier, Rolf. 2006. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in
Mathematics and Its Applications, vol. 31. Oxford University Press.

Panolan, Fahad, Saurabh, Saket, and Zehavi, Meirav. 2019. Parameterized computational
geometry via decomposition theorems. In Proceedings of the 13th International Con-
ference on Algorithms and Computation (WALCOM), pp. 15–27. Lecture Notes in
Computer Science, vol. 11355. Springer.

Papadimitriou, Christos H., and Yannakakis, Mihalis. 1996. On limited nondeterminism and
the complexity of the V-C dimension. Journal of Computer and System Sciences, 53(2),
161–170.

Robertson, Neil, and Seymour, Paul D. 1995. Graph minors. XIII. The disjoint paths problem.
Journal of Combinatorial Theory B, 63(1), 65–110.

Sipser, Michael. 1996. Introduction to the Theory of Computation. 1st ed. International
Thomson.

van Rooij, Iris, Blokpoel, Mark, Kwisthout, Johan, and Wareham, Todd. 2019. Cognition and
Intractability: A Guide to Classical and Parameterized Complexity Analysis. Cambridge
University Press.

Exercises

Exercise 2.1 Give an algorithm for VERTEX COVER that runs in time 1.4656k · nO(1).

Exercise 2.2 In the CLUSTER EDITING problem, we are given a graph G and an
integer k, and the objective is to check whether we can turn G into a cluster

50

PARAMETERIZED ALGORITHMS

graph (a disjoint union of cliques) by making at most k edge editions, where
each edition is adding or deleting one edge. Obtain a 3knO(1)-time algorithm for
CLUSTER EDITING.

Exercise 2.3 Prove that a random assignment ψ splits k sets with probability at least
1
2k (see Section 2.2.1).

Exercise 2.4 Show that PARTIAL VERTEX COVER is solvable in time 2O(t)nO(1), where
t is the number of covered edges.

51

CHAPTER THREE

From Adaptive Analysis to
Instance Optimality

Jérémy Barbay

Abstract: This chapter introduces the related concepts of adaptive
analysis and instance optimality. The goal is to define an extremely
fine-grained parameterization of a problem’s instance space in order
to argue that a particular algorithm for the problem is “optimal” in
a very strong sense. This chapter presents two detailed case studies,
for the MAXIMA SET problem and a database aggregation problem,
as well as a representative list of additional techniques, results, and
open problems.

3.1 Case Study 1: Maxima Sets

Suppose you have a new job and need to find a house to buy or rent. You would
like to find a place close to work but not too expensive. You gather a list of possible
houses, but there are too many to visit them all. Can you reduce the list of places to
visit without compromising any of your criteria?

This is a two-dimensional version of a well-known problem, reinvented multiple
times in various areas; we will call it the MAXIMA SET problem. In a computational
geometry context, it was first considered by Kung et al. (1975). The input is a set S of
n points in the plane. A point of S is called maximal if none of the other points in S
dominates it in every coordinate. The goal in the MAXIMA SET problem is to identify
all of the maximal points (i.e., the maxima set).1 See also Figure 3.1.2

Several algorithms have been proposed for the MAXIMA SET problem in two
dimensions.3 These algorithms highlight the importance of analyzing an algorithm’s
running time as a function of two parameters, the usual input size n (i.e., the number
of input points) and also the output size k (i.e., the number of maximal points). We
next briefly review several of these algorithms, which are important precursors to the
more general notions of adaptive analysis and instance optimality. This sequence
of increasingly instance-adaptive running time bounds will illustrate a process of
iterative refinement, culminating in a form of instance optimality.

1 For the house-finding problem, the x- and y-axes correspond to the negative price and negative distance
of a house (as in the house-finding problem, smaller prices and distances are better).

2 The same problem is explored in Chapter 12 in the context of self-improving algorithms.
3 Similar algorithms can also be used to compute the convex hull of a set of points, and indeed were originally

proposed primarily for this purpose.

52

FROM ADAPTIVE ANALYSIS TO INSTANCE OPTIMALITY

Maximal points

Figure 3.1 A point set and its maxima. Solid circles are the maximal points, hollow circles are the
dominated points. The dashed lines indicate the “region of domination” for each of the maximal points.

3.1.1 Jarvis March (a.k.a. Gift Wrapping)

Among the n houses to consider, the cheapest and the closest are especially good
candidates and can be identified with O(n) comparisons. If there is only one such
house (at once cheaper and closer than any other), the problem is solved. Otherwise,
the cheapest and the closest must both be part of the output (they correspond to
maximal points, which we will call candidate houses), and one can then iterate on the
remaining n − 2 houses.

On account of a similar algorithm for the CONVEX HULL problem (Jarvis, 1973),
we will call this algorithm Jarvis march. The number of house comparisons per-
formed by the algorithm is �(nh) in the worst case for instances with n houses and h
candidate houses selected in the end. This running time ranges from �(n) to �(n2),
depending on the output size h.

3.1.2 Graham’s Scan

Another approach, which improves over the quadratic worst-case running time
of Jarvis march, is to first sort the n houses by increasing price using O(n log n)
comparisons and then scan the list of houses in order to eliminate all the houses that
are not maxima. Scanning the sorted list requires at most 2n = O(n) further home
comparisons: the first house of this list is the cheapest and necessarily a candidate, and
any house considered after that is either a candidate (if it is closer to work than the
previous most expensive candidate considered) or can be pruned (if it is at once more
expensive and farther to work than the previously most expensive house considered).

As before, by analogy with a similar algorithm for the CONVEX HULL problem
(Graham, 1972), we’ll call this algorithm Graham’s scan.4 This algorithm performs

4 Called Sweeping Line in Chapter 12.

53

J. BARBAY

O(n log n) house comparisons. A reduction from SORTING can be used to show that,
in the comparison model of computation, no algorithm uses asymptotically fewer
comparisons in the worst case over instances with n houses.

Jarvis march is superior to Graham’s scan when h = o(log n), equivalent to
it when h = �(log n), and inferior to it otherwise. How could we know which
algorithm to use, given that the number h of candidate houses is what we wanted
to compute in the first place? One idea is to execute both algorithms in parallel and
to stop as soon as one of them finishes.5 This would yield a solution that runs in
O(n · min{h, log n}) time, but potentially with many comparisons performed twice. Is
there a more parsimonious solution?

3.1.3 Marriage Before Conquest

Rather than choosing between Jarvis march and Graham’s scan, Kirkpatrick
and Seidel (1985) described a clever solution that performs O(n log h) house com-
parisons in the worst case over instances with n input points and h maximal points.
They called the analogous algorithm for the CONVEX HULL problem Marriage Before
Conquest (Kirkpatrick and Seidel, 1986), and we adopt that name here.6

Algorithm Marriage Before Conquest(S):

1. If |S| = 1 then return S.
2. Divide S into the left and right halves S� and Sr by the median x-coordinate.
3. Discover the point q with the maximum y-coordinate in Sr.
4. Prune all points in S� and Sr that are dominated by q.
5. Return the concatenation of Marriage Before Conquest(S�) and Marriage Before

Conquest(Sr).

This divide-and-conquer algorithm uses as a subroutine the linear-time median
finding algorithm of Blum et al. (1973). After identifying the median house price,
one can partition the set of n houses into the �n/2� cheapest houses (corresponding to
Sr, as cheaper is better) and the �n/2� most expensive houses (corresponding to S�).
Given such a partition, one can find a first candidate house by selecting the house
closest to work among the �n/2� least expensive houses, prune the houses dominated
by this candidate, and recurse on both the set of remaining cheaper houses and the
set of remaining more expensive houses.

Theorem 3.1 (Kirkpatrick and Seidel, 1985) Given a set S of n points in the
plane, the algorithm Marriage Before Conquest computes the maximal points of S
in O(n log h) time, where h is the the number of maximal points.

Proof Sketch The number of comparisons performed by the algorithm is
O(n log h), as in the worst case the median divides the h − 1 maxima left to
identify into two sets of roughly equal sizes. (In the best case, the median divides
the instance into one instance with half the input points and one maximal point,

5 Kirkpatrick (2009) describes this as a “Dovetailing” solution.
6 The algorithm described here is a slight variant of that in Kirkpatrick and Seidel (1985); the original pruned

only points from S� in line 4.

54

FROM ADAPTIVE ANALYSIS TO INSTANCE OPTIMALITY

which is then solved recursively in linear time, and one instance with h − 2
maxima but only n/2 input points.) �

A reduction from the SORTING MULTISETS problem on an alphabet of size h shows
that no algorithm in the comparison model has a running time asymptotically better
than O(n log h), in the worst case over inputs with input size n and output size h.

Marriage Before Conquest is so good that its inventors titled their paper on
an extension to the CONVEX HULL problem “The Ultimate Planar Convex Hull
Algorithm?” (Kirkpatrick and Seidel, 1986). To answer this question (for MAXIMA

SET or CONVEX HULL), one would need to prove that no algorithm can outperform
Marriage Before Conquest by more than a constant factor. Haven’t we already proved
this? What type of optimality could one hope for beyond optimality over instances
of a given input size and output size?

3.1.4 Vertical Entropy

It turns out there are natural finer-grained parameterizations of the input space for
the MAXIMA SET (and CONVEX HULL) problem, which enable stronger notions of
algorithm optimality. For example, consider an instance with output size h = o(n),
where one of the h houses in the output is cheaper and closer than the n − h
dominated houses. Such an instance is much easier for the Marriage Before Conquest
algorithm than, say, one where each of the h candidate houses dominates exactly
(n − h)/h noncandidate houses. In the latter case, the algorithm might well run in
�(n log h) time. But in the former case, it performs only O(n + h log h) = o(n log h)
comparisons: as h = o(n), the median-priced house will be among the n−h dominated
houses, leading to the selection of the particular one cheaper and closer than the
n − h noncandidate houses and the latter’s immediate elimination, leaving only h − 1
candidate houses to process in O(h log h) time.

To better measure the difference in difficulty between such instances, Sen and
Gupta (1999) defined ni as the number of noncandidate houses dominated by the
ith cheapest candidate house (and no candidate house cheaper than this one), and
the vertical entropy of an instance as the entropy of the distribution of {ni}i∈[2,...,h].
Formally:

Hv(n2, . . . ,nh) =
h∑

i=2

ni

n
log

(
n
ni

)
. (3.1)

Note that, by basic properties of entropy, Hv ≤ log2 h.
Vertical entropy yields a more fine-grained parameterization and the following

result:

Theorem 3.2 (Sen and Gupta, 1999) Given a set S of n points in the plane, the
Marriage Before Conquest algorithm computes the maxima set of S in O(nHv)

time, where Hv is the vertical entropy (3.1) of S.

55

J. BARBAY

Proof Sketch We claim that the number of comparisons used by the Mar-
riage Before Conquest algorithm is O(n log n − ∑h

i=2 ni log ni)= O(
∑h

i=2 ni
log(n/ni)) = O(nHv(n2, . . . ,ni)). The essential idea is that, if a maximal point
dominates at least ni input points, then it will be identified by Marriage Before
Conquest after at most log2(n/ni) rounds. (For example, if ni ≥ n/2, it will be
identified immediately; if ni ≥ n/4 it will be identified after at most two levels
of recursion; and so on.) Thus, the ni input points that it dominates contribute
at most ni comparisons to at most log2(n/ni) partition phases. �

A reduction from the SORTING MULTISETS problem on an alphabet of size h − 1
and frequency distributions {ni}i∈[2,...,h] shows that no algorithm in the comparison
model has a running time asymptotically better than O(nHv), in the worst case over
inputs with input size n and vertical entropy Hv.

Because Hv ≤ log2 h, the analysis of Sen and Gupta (1999) is more fine-grained
that that of Kirkpatrick and Seidel (1985). This shows that Marriage Before Conquest
is even more “adaptive” than its authors gave the algorithm credit for. But does
Theorem 3.2 prove that it truly is the “ultimate” algorithm for the problem?

3.1.5 (Order-Oblivious) Instance Optimality

Theorem 3.2 is insufficient to claim the “ultimateness” of the Marriage Before
Conquest algorithm: one could define in a very similar way the “horizontal entropy”
of an instance. There are instances with high vertical entropy and low horizontal
entropy, and vice versa. One could also define a “horizontal” version of the Marriage
Before Conquest algorithm, which would iteratively partition houses around the one
of median distance rather than cost, which would then be optimal with respect to
the horizontal entropy parameter. This section outlines a result of Afshani et al.
(2017), who showed that a minor variant of the Marriage Before Conquest algorithm
is indeed “ultimate,” among algorithms in the comparison model that do not take
advantage of the order of the input.

Central to the notion of instance optimality is the idea of a certificate of an
instance.7 Any correct algorithm for a problem implicitly certifies the correctness
of its output, and the description length of this certificate is a lower bound on the
algorithm’s running time. In instance optimality, the goal is to define a form of
certificate such that, for every instance (1) every correct algorithm implicitly defines
such a certificate and (2) the protagonist algorithm (to be proved instance-optimal)
runs in time at most a constant factor times the length of the shortest certificate.

In the specific case of the MAXIMA SET problem, any correct algorithm must be
able to justify: (1) for each of the n−h noncandidate houses, why it was discarded; and
(2) for each of the h candidate houses, why it cannot be discarded. The algorithms
presented in this section (Jarvis march, Graham’s scan, and Marriage Before
Conquest) justify their choices in the same way: (1) each noncandidate house is
discarded only after the algorithm has found another house that dominates it; and
(2) each candidate house is added to the output only after it has been determined that
there is no cheaper house which is closer, and no closer house that is cheaper.

7 A similar notion is used in Chapter 12 in the context of self-improving algorithms.

56

FROM ADAPTIVE ANALYSIS TO INSTANCE OPTIMALITY

q1

q2

q3

Figure 3.2 A “harder” point set for the compu-
tation of the maxima set in two dimensions.

q1

q2

q3

Figure 3.3 An “easier” point set.

The next definition formalizes this idea. By the staircase of a point set, we mean
the boundary of the union of the “regions of domination” of the maximal points (cf.,
Figure 3.1).

Definition 3.3 Consider a partition � of the set S of n input points into
disjoint subsets S1, . . . ,St. The partition � is respectful if each subset Sk is
either a singleton or can be enclosed by an axis-aligned box Bk whose interior is
completely below the staircase of S. Define the entropy H(�) of the partition �

to be
∑t

k=1(|Sk|/n) log(n/|Sk|). Define the structural entropy H(S) of the input
set S to be the minimum of H(�) over all respectful partitions � of S.

The intuition is that each nonsingleton group Si represents a cluster of points that
could conceivably be eliminated by an algorithm in one fell swoop.8 Thus the bigger
the Si’s, the easier one might expect the instance to be (Figures 3.2–3.3).

The structural entropy is always at most the vertical entropy (and similarly the
horizontal entropy), as shown by taking the Si’s to be “vertical slabs” as in Figure 3.4
(with each maximal point in its own set).

The following result shows that, for every instance, the running time of the
Marriage Before Conquest algorithm is bounded by the number of points times the
structural entropy of the instance.

Theorem 3.4 (Afshani et al., 2017) Given a set S of n points in the plane,
the algorithm Marriage Before Conquest computes the maxima set of S in
O(n(H(S) + 1)) time.

Proof Consider the recursion tree of the algorithm (Figure 3.5) and let
Xj denote the sub-list of all maximal points of S discovered during the first
j recursion levels, in left-to-right order. Let S(j) be the subset of points of
S that survive recursion level j, i.e., that have not been pruned during levels
0, . . . ,j of the recursion, and let nj = |S(j)|. The algorithm performs O(nj)

operations to refine level j into level j + 1, and there are at most �log n� such
levels in the computation, so the total running time is O(

∑�log n�
j=0 nj). Next

observe that:

8 Beginning from the northeast corner of the box, travel north until you hit the staircase, and then east until
you hit a maximal point q. The point q dominates all of the points in Si.

57

J. BARBAY

S1

S2

S3

S4 S5
S6

Figure 3.4 A respectful partition using vertical slabs: structural entropy generalizes vertical entropy.

q1

q2

q3

median

Figure 3.5 The beginning of the recursive partitioning of S. The two bottom boxes are already leaves of
the recursion tree, while the two top boxes will be divided further.

(i) there can be at most �n/2j� points of S(j) with x-coordinates between any
two consecutive points in Xj; and

(ii) all points of S that are strictly below the staircase of Xj have been pruned
during levels 0, . . . ,j of the recursion.

Let � be a respectful partition of S. Consider a nonsingleton subset Sk in �.
Let Bk be a box enclosing Sk whose interior lies below the staircase of S. Fix
a level j. Suppose that the upper-right corner of Bk has x-coordinate between
two consecutive points qi and qi+1 in Xj. By (ii), the only points in Bk that can
survive level j must have x-coordinates between qi and qi+1. Thus, by (i), the
number of points in Sk that survive level j is at most min

{|Sk|,�n/2j�}. (Note

58

FROM ADAPTIVE ANALYSIS TO INSTANCE OPTIMALITY

that the bound is trivially true if Sk is a singleton.) Because the Sk’s cover the
entire point set, with a double summation we have

�log n�∑
j=0

nj ≤
�log n�∑

j=0

∑
k

min
{|Sk|,�n/2j�}

=
∑

k

�log n�∑
j=0

min
{|Sk|,�n/2j�}

≤
∑

k

(|Sk|�log(n/|Sk|)� + |Sk| + |Sk|/2 + |Sk|/4 + · · · + 1)

≤
∑

k

|Sk|(�log(n/|Sk|)� + 2)

= O(n(H(�) + 1)).

This bound applies for every respectful partition of S, so it also applies
with H(�) replaced by the structural entropy H(S) of S. This completes the
proof. �

Moreover, a nontrivial adversary argument can be used to prove a matching lower
bound for all order-oblivious algorithms (Afshani et al., 2017). Formally, the statement
is: For every correct algorithm A for the MAXIMA SET problem and every set S of n
points, there exists an ordering of the points in S such that A uses �(n(H(S) + 1))
comparisons to solve the corresponding instance of MAXIMA SET. Thus, any running
time bound that does not reference the ordering of the points in the input (like all of
the standard running time bounds for algorithms for the MAXIMA SET problem) must
be �(n(H(S) + 1)).

Theorem 3.4 and the matching lower bound prove a strong form of “ultimateness”
for the Marriage Before Conquest algorithm. But could we do even better by
somehow taking advantage of the input order?

3.1.6 Partially Sorted Inputs

Remember the Graham’s scan algorithm (Section 3.1.2), which first sorted the houses
by price and then scanned the sorted list in linear time to discard noncandidate
houses? This algorithm shows that the MAXIMA SET problem can be solved in linear
time for instances in which the input is already sorted. An analogous observation
holds for inputs that are partially sorted, meaning that the (ordered) input can be
partitioned into a small number of sorted fragments. Here, the maxima set of each
fragment can be computed in time linear in the fragment length, and the merging
of all the maxima sets can in some cases be done quickly enough to obtain a better
running time bound than an order-oblivious algorithm.9

Theorem 3.5 (Ochoa, 2019) Consider a sequence S of n points in the plane
comprising sorted fragments of lengths r0, . . . ,rρ , with structural entropy H(S).

9 For further examples of algorithms that adapt to partially sorted inputs, see Exercise 3.6 and Section 3.3.1.

59

J. BARBAY

There is an algorithm which computes the maxima set of S in O(n+min{n log n−∑ρ

i=0 ri log ri,nH)}) time.

Perhaps techniques along the lines of Theorem 3.5 can lead to a truly instance-
optimal algorithm for the MAXIMA SET problem, without any restriction to order-
obliviousness?

3.1.7 Impossibility Result

The very existence of the Graham’s scan algorithm implies that no algorithm for the
MAXIMA SET problem can be truly instance optimal in the comparison model:

Theorem 3.6 (Afshani et al., 2017) There is no instance-optimal algorithm for
the MAXIMA SET problem.

In fact, for every algorithm A for the MAXIMA SET problem, there is another
algorithm B for the problem and an infinite family of inputs z such that A runs in
�(n log n) time on these inputs while B runs in O(n) time.

Proof Sketch The intuition of the proof is very simple: For any given
instance I , there is at least one competing algorithm that correctly guesses
an order in which to process the input so that the Graham’s scan algorithm
computes the maxima set of I in linear time. Furthermore, no algorithm in
the comparison model can solve all instances of size n in o(n log n) time (by a
simple counting argument). Hence, no algorithm can compute the maxima set
for every instance I in time bounded by a constant factor times that of the best
algorithm for I . �

Theorem 3.6 shows that the “order-oblivious” qualifier (or some other restriction)
is necessary for an instance optimality result for the MAXIMA SET problem. Thus,
if one had to choose an “ultimate” algorithm for the problem, the Marriage Before
Conquest algorithm is the best candidate around: it (or the minor variant described
here) is instance optimal among order-oblivious algorithms, which would seem to be
the next best thing to a truly instance-optimal algorithm (which does not exist).

3.2 Case Study 2: Instance-Optimal Aggregation Algorithms

This section considers a second case study of an instance-optimal algorithm, for the
database aggregation problem for which the concept was originally defined.

3.2.1 Instance Optimality

We begin by zooming out to discuss instance optimality in general. Some measures of
difficulty are finer than others. Could there be a “finest-possible” measure, so that an
algorithm that is optimal with respect to that measure is automatically optimal also
with respect to every other (coarser) measure? This may seem like a pipe dream for
any natural computational problem, but Fagin et al. (2003) described such a result

60

FROM ADAPTIVE ANALYSIS TO INSTANCE OPTIMALITY

for a database aggregation problem.10 Algorithms that are optimal with respect to
such a finest-possible measure – instance-optimal algorithms – can be viewed as the
ultimate adaptive algorithms, always as good (up to a constant factor) as every other
algorithm on every input.

Consider a computational problem and cost measure, with cost(A,z) denoting the
cost incurred (e.g., number of operations) by the algorithm A on the input z.

Definition 3.7 (Instance Optimality) An algorithm A for a problem is instance
optimal with approximation c with respect to the set C of algorithms if for every
algorithm B ∈ C and every input z,

cost(A,z) ≤ c · cost(B,z),

where c ≥ 1 is a constant, independent of B and z.

The constant c in Definition 3.7 is called the optimality ratio of A (with respect
to C). By an instance-optimal algorithm, one generally means an algorithm with
optimality ratio bounded by a constant.11 This is a demanding definition, and for
many problems there is no instance-optimal algorithm with respect to any reasonably
rich class of algorithms C. In Theorem 3.4, we saw an example of an instance-
optimal algorithm for the MAXIMA SET problem with respect to the class of order-
oblivious algorithms, and from Theorem 3.6 we learned that there is no instance-
optimal algorithm for the problem with respect to the class of all comparison-based
algorithms.

The rest of this section covers the original success story for instance-optimal
algorithms.

3.2.2 The Setup

The problem is as follows. There is a very large set X of objects, such as Web pages.
There is a small number m of attributes, such as the ranking (e.g., PageRank) of a Web
page under m different search engines. To keep things simple, assume that attribute
values lie in [0,1]. Thus an object consists of a unique name and an element of [0,1]m.

We are also given a scoring function σ : [0,1]m → [0,1] which aggregates m attribute
values into a single score. We interpret higher attribute values and scores as being
“better.” We assume that the scoring function is monotone, meaning that its output is
nondecreasing in each of its inputs. An obvious scoring function is the average, but
clearly there are numerous other natural examples.

The algorithmic goal is, given a positive integer k, to identify k objects of X that
have the highest scores (ties can be broken arbitrarily).

We assume that the data can be accessed only in a restricted way. It is presented as
m sorted lists L1,L2, . . . ,Lm. Each list Li is a copy of X , sorted in nonincreasing order

10 This paper by Fagin et al. (2003) was the winner of the 2014 EATCS-SIGACT Gödel prize, a “test of
time” award for papers in theoretical computer science.

11 One drawback of this coarse definition of an instance-optimal algorithm is its Manichean nature – it
does not differentiate between competing instance-optimal algorithms whose optimality ratios differ by large
(constant) factors, nor does it differentiate between different problems that, even though they do not admit
instance-optimal algorithms, might nevertheless differ in difficulty.

61

J. BARBAY

of the ith attribute value. An algorithm can access the data only by requesting the next
object in one of the lists. Thus an algorithm could ask for the first (highest) object
of L4, followed by the first object of L7, followed by the second object of L4, and so
on. Such a request reveals the name of said object along with all m of its attribute
values. We charge an algorithm a cost of 1 for each such data access.12 Thus, in the
notation of Definition 3.7, we are defining the cost measure cost(A,z) as the number
of data accesses that the algorithm A needs to correctly identify the top k objects in
the input z.

3.2.3 The Threshold Algorithm

We study the following threshold algorithm (TA). The algorithm is natural but
perhaps not the first algorithm one would write down for the problem. The reader
is encouraged to think about “more obvious” algorithms, which will probably not be
instance-optimal.

Algorithm 1 The threshold algorithm (TA)
Input: a parameter k and m sorted lists.
Invariant: of the objects seen so far, S is those with the top k scores.

1. Fetch the next item from each of the m lists.
2. Compute the score σ(x) of each object x returned, and update S as needed.
3. Let ai denote the ith attribute value of the object just fetched from the list Li, and

set a threshold t := σ(a1, . . . ,am).
4. If all objects of S have score at least t, halt; otherwise return to step 1.

We first claim that the TA is correct – for every input, it successfully identifies
the k objects with the highest scores (even if it halts well before encountering all of
the objects of X).

Proof By definition, the final set S returned by the TA is the best of the objects
seen by the algorithm. If an object x ∈ X has not been seen by the TA, then
its ith attribute value xi is at most the lowest attribute value ai of an object
fetched from the list Li (since the lists are sorted). Since σ is a monotone scoring
function, σ(x) is at most σ(a1, . . . ,am), which by definition is the final threshold
t of the TA, which by the stopping rule is at most the score of every object in S.
Thus every object in S has score at least as large as every object outside of S, as
desired. �

12 This is not the most realistic cost model, but it serves to illustrate our main points in a simple way. In
the terminology of Fagin et al. (2003), this corresponds to a sequential access cost of 1 and a random access
cost of 0. More generally, Fagin et al. (2003) charge some constant cs for each data access of the type we
describe and assume that accessing list Li only reveals the value of the ith attribute; the other attribute values
are then determined via m−1 “random accesses” to the other lists, each of which is assumed to cost some other
constant cr. Analogous instance optimality results are possible in this more general model (Fagin et al., 2003).

62

FROM ADAPTIVE ANALYSIS TO INSTANCE OPTIMALITY

The main takeaway point of the proof is: the threshold t acts as an upper bound
on the best possible score of an unseen object. Once the best objects identified so far
are at least this threshold, it is safe to halt without further exploration.

3.2.4 Instance Optimality of the Threshold Algorithm

The threshold algorithm is in fact instance-optimal with optimality ratio m.

Theorem 3.8 (Instance optimality of the TA) For every algorithm A and every
input z,

cost(TA,z) ≤ m · cost(A,z). (3.2)

In words, suppose you precommit to using the TA, and you have a competitor
who is allowed to pick both an input z and a (correct) algorithm A that is specifically
tailored to perform well on the input z. Theorem 3.8 says that even with this extreme
advantage, your opponent’s performance will be only a factor of m better than yours.
Recall that we view m as a small constant, which makes sense in many natural
motivating applications for the problem. We will see in the text that follows that no
algorithm has an optimality ratio smaller than m.

Proof (of Theorem 3.8) Consider a (correct) algorithm A and an input z.
Suppose that A accesses the first k1, . . . ,km elements of the lists L1, . . . ,Lm en
route to computing the (correct) output S on z. For each i, let bi denote the ith
attribute value of the last accessed object of Li – the lowest such attribute value
seen for an object fetched from Li.

The key claim is that, on accord of A’s correctness, every object x in A’s
output S must have a score σ(x) that is at least σ(b1, . . . ,bm). The reason is: For
all A knows, there is an unseen object y with attribute values b1, . . . ,bm lurking
as the (ki + 1)th object of list Li for each i (recall that ties within an Li can be
broken arbitrarily). Thus, A cannot halt with x ∈ S and σ(x) < σ(b1, . . . ,bm)

without violating correctness on some input z′. (Here z′ agrees with z on the first
ki objects of each Li, and has an object y as above next in each of the lists.)

Now, after maxi ki rounds, the TA has probed at least as far as A into each
of lists, and has discovered every object that A did (including all of S). Thus ai,
the ith attribute value of the final item fetched by the TA from the list Li, is
at most bi. Since σ is monotone, σ(a1, . . . ,am) ≤ σ(b1, . . . ,bm). Thus after at
most maxi ki rounds, the TA discovers at least k objects with a score at least its
threshold, which triggers its stopping condition. Thus cost(TA,z) ≤ m ·maxi ki;
since cost(A,z) = ∑

i ki ≥ maxi ki, the proof is complete. �

3.2.5 A Matching Lower Bound on the Optimality Ratio

The factor of m in Theorem 3.8 cannot be improved, for the TA or any other
algorithm. We content ourselves with the case of k = 1 and a scoring function σ

with the property that σ(x) = 1 if and only if x1 = x2 = · · · = xm = 1. More general

63

J. BARBAY

lower bounds are possible (Fagin et al., 2003), using extensions of the simple idea
explained here.

The guarantee of instance optimality is so strong that proving lower bounds can
be quite easy. Given an arbitrary correct algorithm A, one needs to exhibit an input z
and a correct algorithm A′ with smaller cost on z than A. Getting to choose A′ and z
in tandem is what enables simple lower bound proofs.

Suppose k = 1. We will use only special inputs z of the following form:

� there is a unique object y with σ(y) = 1; and
� this object y appears first in exactly 1 of the lists L1, . . . ,Lm. (Recall that arbitrary

tie-breaking within a list is allowed.)

The lower bound follows from the following two observations. For every such
input z, there is an algorithm A′ with cost(A′,z) = 1: It looks in the list containing y
first, and on finding it can safely halt with y as the answer, since no other object can
have a higher score. But for every fixed algorithm A, there is such an input z on which
cost(A,z) ≥ m: A must look at one of the lists last, and an adversary can choose the
input z in which y is hidden in this last list.

The fact that lower bounds for instance optimality arise so trivially should give
further appreciation for instance-optimal algorithms with small optimality ratios
(when they exist).

3.3 Survey of Additional Results and Techniques

Many techniques have been introduced to refine worst-case analysis through parame-
terizations of input difficulty beyond input size. There are too many such results to list
here, so we present only a selection that illustrates some key notions and techniques.

3.3.1 Input Order

We distinguish between algorithms adaptive to the ordering of the input versus those
to the (unordered) structure of the input. An example of the former is the algorithm in
Theorem 3.5, which adapts to partially sorted instances of the MAXIMA SET problem.
For further results along these lines for adaptive sorting, see the survey of Estivill-
Castro and Wood (1992) and the overview of Moffat and Petersson (1992).

3.3.2 Input Structure

An early example of adapting to (unordered) input structure is due to Munro and
Spira (1976), who showed how algorithms could adapt to the frequencies of the
elements in a multiset M in order to sort them with fewer comparisons than would
be required in the worst case. We discuss this and a few additional examples in the
text that follows.

Output size: In Section 3.1.3 we saw the concept of an output-sensitive algorithm, one
of the most basic notions of adaptivity to input structure. Kirkpatrick and Seidel
(1985) gave the first output-sensitive algorithm for computing the maximal points of

64

FROM ADAPTIVE ANALYSIS TO INSTANCE OPTIMALITY

a point set in d dimensions. Their algorithm’s running time is O(n(1+ log h)) in 2 and
3 dimensions, and O(n(1+ logd−2 h)) for dimensions d > 3, where h is the number of
maximal points. The next year Kirkpatrick and Seidel (1986) proved similar results
for the CONVEX HULL problem, if only in two and three dimensions.

Such results were later refined for the CONVEX HULL problem by Sen and Gupta
(1999) to adapt to the vertical entropy [cf. (3.1)] and by Afshani et al. (2017) to adapt
to the structural entropy of a point set (cf., Definition 3.3). See Section 3.5.1 for recent
progress and open questions for point sets in four or more dimensions.

Repetitions. For another example of (unordered) input structure, consider a multiset
M of size n (e.g., M = {4,4,3,3,4,5,6,7,1,2} of size n = 10). The multiplicity of
an element x of M is the number mx of occurrences of x in M (e.g., m3 = 2). The
distribution of the multiplicities of the elements in M is the set of pairs (x,mx) (e.g.,
{(1,1), (2,1), (3,2), (4,3), (5,1), (6,1), (7,1)} in M). Munro and Spira (1976) described
a variant of the MergeSort algorithm that uses counters, and which takes advantage
of the distribution of the multiplicities of the elements in M when sorting it. This
algorithm runs in O(n(1 + H(m1, . . . ,mσ))) time, where σ is the number of distinct
elements in M, m1, . . . ,mσ are the multiplicities of the σ distinct elements, and H is
the entropy of the corresponding distribution. They proved that this running time is
the best possible in the decision tree model (up to constant factors), in the worst case
over instances of size n with σ distinct elements of multiplicities m1, . . . ,mσ .

Miscellaneous Input Structure. Barbay et al. (2017a) proposed adaptive algorithms
for three related problems where the input is a set B of axis-aligned boxes in d
dimensions: the KLEE’S MEASURE problem (i.e., computing the volume occupied by
the union of the boxes of B); the MAXIMAL DEPTH problem (i.e., computing the
maximal number of boxes of B that cover a common point of space); and the DEPTH

DISTRIBUTION problem (i.e., for each i compute the volume of the points that are
covered by exactly i boxes from B).

3.3.3 Synergy between Order and Structure

Are there algorithms that profitably take advantage of both input order and input
structure? This is the question considered by Barbay et al. (2017b). They showed that,
for the problem of sorting a multiset, there is an algorithm that adapts simultaneously
to partially sorted inputs (as in Section 3.1.6) and also the entropy of the distribution
of elements’ frequencies; for some instances, this results in a running time that is
asymptotically faster than what can be achieved when taking advantage of only
of one of the two aspects. They also consider data structures for answering rank
and select queries, while taking advantage of the query structure and query order (in
addition to the input order and input structure). Finally, Barbay and Ochoa (2018)
show analogous results for the MAXIMA SET and CONVEX HULL problems (in two
dimensions).

3.4 Discussion

This section compares and contrasts adaptive analysis and instance optimality with
parameterized algorithms and the competitive analysis of online algorithms.

65

J. BARBAY

3.4.1 Comparison with Parameterized Algorithms

Both adaptive analysis and parameterized algorithms (as described in Chapter 2)
analyze the running time of algorithms using parameters above and beyond the
input size. One major difference between the two areas is that the former focuses
on polynomial-time solvable problems (often with near-linear worst-case complexity)
while the latter is focused on NP-hard problems.13 Lower bounds for NP-hard
parameterized problems are necessarily conditional (at least on P �= NP, and often on
stronger assumptions such as the Strong Exponential Time Hypothesis). Meanwhile,
tight unconditional lower bounds are a prerequisite for instance optimality results,
and these are typically known only for near-linear-time solvable problems (such as
SORTING or CONVEX HULL in two or three dimensions) and restricted models of
computation (comparison-based algorithms or decision trees).

Adaptive analysis is relevant more generally to polynomial-time solvable problems
for which we don’t know good lower bounds. For example, Barbay and Pérez-Lantero
(2018) and Barbay and Olivares (2018) analyzed adaptive algorithms for various
string problems (in the spirit of EDIT DISTANCE) while Barbay (2018) presented
similar results for the DISCRETE FRECHET DISTANCE problem.

3.4.2 Comparison with the Competitive Analysis of Online Algorithms

An online algorithm is one that receives its input one piece at a time and is required
to make irrevocable decisions along the way. In the competitive analysis of online
algorithms (initiated by Sleator and Tarjan (1985) and covered in Chapter 24 of this
book), the goal is to identify online algorithms with a good (close to 1) competitive
ratio, meaning that the objective function value of the algorithm’s output is guar-
anteed to be almost as good as what could be achieved by an all-powerful and all-
knowing offline optimal algorithm.

The competitive ratio provided inspiration for the optimality ratio (Definition 3.7)
and instance optimality.14 Indeed, we can interpret a guarantee of c on the competi-
tive ratio of an online algorithm A as a guarantee on the optimality ratio of A (where
the cost(A,z) is the objective function value of the output of A for the input z) with
respect to the family C of all algorithms (and in particular, the offline optimal one).

3.5 Selected Open Problems

We close our chapter with two open research directions.

3.5.1 High Dimensions

One may have more than two criteria for choosing a house: Rather than just the price
and the distance to work, certainly its size, whether it has a garden, the quality of

13 One superficial distinction is that in parameterized algorithms the relevant parameter value is generally
given as part of the input, while in adaptive analysis it shows up only in the analysis of an algorithm. But a
typical fixed-parameter tractable algorithm can be extended to handle the case where the relevant parameter is
not part of the input, merely by trying all possible values for that parameter.

14 Fagin et al. (2003) write, “We refer to c as the optimality ratio. It is similar to the competitive ratio in
competitive analysis.”

66

FROM ADAPTIVE ANALYSIS TO INSTANCE OPTIMALITY

the neighborhood, and so on should be taken into account for such an important
decision.

The results of Kirkpatrick and Seidel (1985) on the MAXIMA SET problem also
covered the case of high dimensions, with the higher-dimensional analog of Marriage
Before Conquest computing the maximal set of a d-dimensional point set with
d ≥ 3 in O(n logd−2 h) time, where as usual n and h denote the size of the input
and output, respectively. Afshani et al. (2017) refined this analysis not only in
dimension two (as described in Section 3.1.5), but also in dimension three, with a
rather different algorithm that partitions the input based on a carefully chosen sample
of points. Barbay and Rojas-Ledesma (2017) proved analogous results in d > 3
dimensions:

Theorem 3.9 (Barbay and Rojas-Ledesma, 2017) Consider a set S of n points
in R

d, and let � be a respectful partition of S into subsets S1, . . . ,St of sizes
n1, . . . ,nt, respectively. There is an algorithm that computes the maximal points
of S in

O

(
n +

t∑
k=1

nk logd−2 n
nk

)
(3.3)

time.

Could there be a matching lower bound, as is the case in two and three dimensions?
The (open) problem is that there is no reason to believe that the expression in (3.3) is
the minimal description length of a certificate of correctness; for example, for all we
know there is a bound that depends linearly on d (rather than exponentially).

3.5.2 Layers of Maxima Sets

In the MAXIMA SET problem, every point is given a binary classification (maximal or
not). More generally, one could identify the maximal set S1 of the input S (the “first
layer”), followed by the maximal set S2 of the remaining point S \ S1 (the “second
layer”), and so on.

Nielsen (1996) described this problem and an output sensitive solution (similar to
that described in Section 3.1.3 for the MAXIMA SET problem). Extending this result
to obtain order-oblivious instance optimality is not overly difficult, but it remains an
open problem to make the algorithm adaptive to various forms of input order.

3.6 Key Takeaways

In the following we summarize what we consider to be two of the main lessons from
this incomplete survey of results on adaptive analysis and instance optimality.

1. Most of the techniques used in the adaptive analysis of algorithms and data
structures resemble those used in classical worst-case analysis over instances of
a given input size, the difference being that the ideas are applied in a more fine-
grained context.

67

J. BARBAY

2. The concept of instance optimality (for various computational models) can be
further refined to the concept of the optimality ratio among a class of algorithms
over a class of instances. Such a refinement differentiates between more pairs of
algorithms than the coarser criterion of instance optimality.

3.7 Notes

We conclude with some final bibliographic remarks, to supplement those given
throughout the preceding sections.

1. McQueen and Toussaint (1985) originally introduced the minor variant of Mar-
riage Before Conquest which was proved (order-oblivious) instance optimal in
Afshani et al. (2017).

2. Petersson and Moffat (1995) introduced a notion of formal reductions
between measures of difficulty, which induces a partial order on difficulty
measures (Estivill-Castro and Wood, 1992; Moffat and Petersson, 1992). Such
a theory of reductions is similar to the reductions between pairs of problems and
parameters discussed in Chapter 2 on parameterized algorithms (as reductions
between parameterized problems induce a partial order on them according to
difficulty), but in a context where one can prove unconditional lower bounds.

3. Barbay and Navarro (2013) formalized the notion of compressibility measures for
the analysis of the space used by compressed data structures, inspired by difficulty
measures used in the running time analysis of algorithms.

Acknowledgments

Some of the examples, definitions, and results in this chapter were inspired by similar
ones in the PhD theses of Carlos Ochoa and Javiel Rojas.

References

Afshani, Peyman, Barbay, Jérémy, and Chan, Timothy M. 2017. Instance-optimal geometric
algorithms. Journal of the ACM, 64(1), 3:1–3:38.

Barbay, Jérémy. 2018. Adaptive computation of the discrete Fréchet distance. In Proceed-
ings of the 11th Symposium on String Processing and Information Retrieval (SPIRE),
pp. 50–60.

Barbay, Jérémy, and Navarro, Gonzalo. 2013. On compressing permutations and adaptive
sorting. Theoretical Computer Science, 513, 109–123.

Barbay, Jérémy, and Ochoa, Carlos. 2018. Synergistic computation of planar maxima and con-
vex hull. In Proceedings of the 23rd Annual International Computing and Combinatorics
Conference (COCOON), pp. 156–167.

Barbay, Jérémy, and Olivares, Andrés. 2018. Indexed dynamic programming to boost edit
distance and LCSS computation. In Proceedings of the 11th Symposium on String
Processing and Information Retrieval (SPIRE), pp. 61–73.

Barbay, Jérémy, and Pérez-Lantero, Pablo. 2018. Adaptive computation of the swap-insert
correction distance. ACM Transactions on Algorithms, 14(4), 49:1–49:16.

Barbay, Jérémy, and Rojas-Ledesma, Javiel. 2017. Multivariate analysis for computing max-
ima in high dimensions. CoRR, abs/1701.03693.

68

FROM ADAPTIVE ANALYSIS TO INSTANCE OPTIMALITY

Barbay, Jérémy, Pérez-Lantero, Pablo, and Rojas-Ledesma, Javiel. 2017a. Depth distribution
in high dimensions. In Proceedings of the 23rd Annual International Computing and
Combinatorics Conference (COCOON), pp. 38–40.

Barbay, Jérémy, Ochoa, Carlos, and Satti, Srinivasa Rao. 2017b. Synergistic solutions on mul-
tiSets. In Proceedings of the 28th Annual Symposium on Combinatorial Pattern Matching
(CPM), pp. 31:1–31:14.

Blum, Manuel, Floyd, Robert W., Pratt, Vaughan, Rivest, Ronald L., and Tarjan, Robert E.
1973. Time bounds for selection. Journal of Computer and System Sciences, 7(4), 448–461.

Estivill-Castro, Vladimir, and Wood, Derick. 1992. A survey of adaptive sorting algorithms.
ACM Computing Surveys, 24(4), 441–476.

Fagin, Ronald, Lotem, Amnon, and Naor, Moni. 2003. Optimal aggregation algorithms for
middleware. Journal of Computer and System Sciences, 66(4), 614–656.

Graham, Ron L. 1972. An efficient algorithm for determining the convex hull of a finite planar
set. Information Processing Letters, 1, 132–133.

Jarvis, Ray A. 1973. On the identification of the convex hull of a finite set of points in the
plane. Information Processing Letters, 2(1), 18–21.

Kirkpatrick, David G. 2009. Hyperbolic dovetailing. In Proceedings of the 17th Annual
European Symposium on Algorithms, pp. 516–527. Springer Science+Business Media.

Kirkpatrick, David G., and Seidel, Raimund. 1985. Output-size sensitive algorithms for
finding maximal vectors. In Proceedings of the First International Symposium on Com-
putational Geometry (SOCG), pp. 89–96. ACM.

Kirkpatrick, David G, and Seidel, Raimund. 1986. The ultimate planar convex hull algorithm?
SIAM Journal on Computing, 15(1), 287–299.

Kung, H T, Luccio, F, and Preparata, F P. 1975. On finding the maxima of a set of vectors.
Journal of the ACM, 22, 469–476.

Lucas, Édouard. 1883. La Tour d’Hanoï, Véritable Casse-Tête Annamite. In a puzzle game,
Amiens. Jeu rapporté du Tonkin par le professeur N.Claus (De Siam).

McQueen, Mary M., and Toussaint, Godfried T. 1985. On the ultimate convex hull algorithm
in practice. Pattern Recognition Letters, 3(1), 29–34.

Moffat, Alistair, and Petersson, Ola. 1992. An overview of adaptive sorting. Australian
Computer Journal, 24(2), 70–77.

Munro, J. Ian, and Spira, Philip M. 1976. Sorting and searching in multisets. SIAM Journal
on Computing, 5(1), 1–8.

Nielsen, Frank. 1996. Output-sensitive peeling of convex and maximal layers. Information
Processing Letters, 59(5), 255–259.

Ochoa, Carlos. 2019. Synergistic (Analysis of) Algorithms and Data Structures. PhD thesis,
University of Chile.

Petersson, Ola, and Moffat, Alistair. 1995. A framework for adaptive sorting. Discrete Applied
Mathematics, 59, 153–179.

Sen, Sandeep, and Gupta, Neelima. 1999. Distribution-sensitive algorithms. Nordic Journal
on Computing, 6, 194–211.

Sleator, D. D., and Tarjan, R. E. 1985. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2), 202–208.

Exercises

Exercise 3.1 The HANOÏ TOWER problem is a classic example of recursion, originally
proposed by Lucas (1883).15 A recursive algorithm proposed in 1892 completes

15 Recall the setup: The game consists of three identical rods and n disks of different sizes, which can slide
onto any rod. The puzzle starts with all disks on the same rod, ordered from the biggest (at the bottom) to the

69

J. BARBAY

the task using 2n − 1 moves, and an easy argument shows that 2n − 1 moves are
necessary. For this exercise, consider the variant in which we allow disks of equal
size; everything else about the setup is the same as before. (A disk is allowed to be
placed on another disk with the same size.) We call this the DISK PILE problem. In
the extreme case, when all disks have the same size, the tower can be moved in a
linear number of moves.

(a) Prove that there is an algorithm for DISK PILE that performs
∑

i∈{1,...,s} ni2s−i

moves, where s denotes the number of distinct sizes and ni the number of disks
with size i.

(b) Prove that no algorithm can move such a tower with less than
∑

i∈{1,...,s} ni2s−i

moves.
(c) What is the worst-case performance of your algorithm over all instances with

a fixed value of s and a fixed total number of disks n?
(d) Which analysis is more fine-grained: the one for s and n fixed, or the one for

n1, . . . ,ns fixed?

Exercise 3.2 Given an unsorted array A and an element x, the UNSORTED SEARCH

problem is to decide whether A contains at least one element with the same value
as x. The cost measure is the number of times that an algorithm probes an entry
of A.

(a) What is the best possible optimality ratio for the UNSORTED SEARCH problem
with respect to deterministic algorithms over instances of size k and r elements
with the same value as x?

(b) What is the best possible optimality ratio for the UNSORTED SEARCH problem
with respect to randomized algorithms over instances of size k and r elements
with the same value as x?

(c) What is the best possible optimality ratio for the UNSORTED SEARCH problems
with respect to randomized algorithms over instances of size k and σ distinct
elements?

Exercise 3.3 Given a sorted array A and an element x, the SORTED SEARCH problem
is to decide whether A contains at least one element with the same value as x.
What are the best-possible optimality ratios for the SORTED SEARCH problem with
respect to deterministic and randomized algorithms over instances of size k and r
elements with the same value as x?

Exercise 3.4 In the ELEMENTARY INTERSECTION problem, the input is an element x
and k sorted arrays A1, . . . ,Ak, and the goal is to decide whether x belongs to all k
of the arrays. In the ELEMENTARY UNION problem, the input is the same but the
goal is to decide whether x belongs to at least one of the k arrays.

smallest. A legal move consists of removing the topmost disk of one of the rods and placing it on top of the
stack on one of the other two rods. A key constraint is that no move is allowed to place a larger disk on top
of a smaller disk. The goal is to move the disks so that all are on a common rod (necessarily in sorted order)
different from the one they started on.

70

FROM ADAPTIVE ANALYSIS TO INSTANCE OPTIMALITY

(a) What is the best possible optimality ratio of an algorithm for the ELEMENTARY

INTERSECTION problem over instances formed by k arrays of size n/k each,
when ρ of those arrays contain an element of value equal to x?

(b) What is the best possible optimality ratio of an algorithm for the ELEMENTARY

UNION problem over instances formed by k arrays of size n/k each, when ρ of
those arrays contain an element of value equal to x?

Exercise 3.5 The algorithm Bubble Sort is well known to run in time �(n2) in the
worst case and �(n) for alreadysorted inputs. Consider the related procedures
Bubble Up and Bubble Down, defined as follows: Bubble Up compares each pair
of consecutive elements from the smallest index to the largest one, swapping them
if inverted; while Bubble Up compares each pair of consecutive elements from the
largest index to the smallest one, swapping them if inverted. In order to simplify
the notation, suppose that the first and last elements of the array are −∞ (at index
0) and +∞ (at index n + 1).

(a) Prove that a position p whose corresponding element is left unmoved by both
Bubble Up and Bubble Down is a natural pivot: in the input array, the element
is larger than all elements with smaller indices and smaller than all elements
with larger indices.

(b) Prove that there is an algorithm sorting an array of n elements with η natural
pivots in O(n(1 + log n

η
)) time.

(c) Refine the previous proof to show that there is an algorithm sorting an array
of n elements with η natural pivots separated by η+ 1 gaps of sizes (r0, . . . ,rη)
in O(n +∑η

i=0 ri log ri) time.
(d) Prove that, in the worst case over instances formed by n elements with η natural

pivots separated by η + 1 gaps of sizes (r0, . . . ,rη), every sorting algorithm in
the comparison model runs in time �(n +∑η

i=0 ri log ri).

Exercise 3.6 The algorithm QuickSort is well known to have worst-case running time
�(n2) when sorting length-n arrays and using arbitrary pivots, and worst-case
running time �(n log n) when using median elements as pivots (using a linear-time
median subroutine). Consider the implementation QuickSortWithRepetitions in
which the partition induced by the median m yields three areas in the array: all
elements of value strictly smaller than m on the left, all the elements of value strictly
larger than m on the right, and all the elements of value equal to m in the remaining
central positions.

(a) Prove that such an implementation performs O(n(1 + log σ)) comparisons in
the worst case over instances formed by n elements from an alphabet with σ

distinct values.
(b) Refine the previous proof and show that such an implementation performs

O(n + ∑σ
i=1 ni log n

ni
) comparisons in the worst case over instances formed

by n elements taken from the alphabet [1, . . . ,σ], where ni is the number of
occurrences of the ith value.

(c) Prove a matching lower bound (up to constant factors) that applies to all order-
oblivious algorithms.

(d) Can you combine the analysis in (b) with that of natural pivots (Exercise 3.5)?

71

CHAPTER FOUR

Resource Augmentation
Tim Roughgarden

Abstract: This chapter introduces resource augmentation, in which
the performance of an algorithm is compared to the best possible
solution that is handicapped by fewer resources. We consider three
case studies: online paging, with cache size as the resource; selfish
routing, with capacity as the resource; and scheduling, with pro-
cessor speed as the resource. Resource augmentation bounds also
imply “loosely competitive” bounds, which show that an algorithm’s
performance is near-optimal for most resource levels.

4.1 Online Paging Revisited

This section illustrates the idea of resource augmentation with a familiar example,
the competitive analysis of online paging algorithms. Section 4.2 discusses the pros
and cons of resource augmentation more generally, Sections 4.3 and 4.4 describe
additional case studies in routing and scheduling, and Section 4.5 shows how resource
augmentation bounds lead to “loosely competitive” guarantees.

4.1.1 The Model

Our first case study of resource augmentation concerns the online paging problem
introduced in Chapter 1. Recall the ingredients of the problem:

� There is a slow memory with N pages.
� There is a fast memory (a cache) that can hold only k < N of the pages at a time.
� Page requests arrive online over time, with one request per time step. The decisions

of an online algorithm at time t can depend only on the requests arriving at or
before time t.

� If the page pt requested at time t is already in the cache, no action is necessary.
� If pt is not in the cache, it must be brought in; if the cache is full, one of its k pages

must be evicted. This is called a page fault.1

1 This model corresponds to “demand paging,” meaning algorithms that modify the cache only in response
to a page fault. The results in this section continue to hold in the more general model in which an algorithm is
allowed to make arbitrary changes to the cache at each time step, whether or not there is a page fault, with the
cost incurred by the algorithm equal to the number of changes.

72

RESOURCE AUGMENTATION

We measure the performance PERF(A,z) of an algorithm A on a page request
sequence z by the number of page faults incurred.

4.1.2 FIF and LRU

As a benchmark, what would we do if we had clairvoyance about all future page
requests? An intuitive greedy algorithm minimizes the number of page faults.

Theorem 4.1 (Bélády, 1967) The Furthest-In-the-Future (FIF) algorithm,
which on a page fault evicts the page to be requested furthest in the future, always
minimizes the number of page faults.

The FIF algorithm is not an online algorithm, as its eviction decisions depend
on future page requests. The Least Recently Used (LRU) policy, which on a page
fault evicts the page whose most recent request is furthest in the past, is an online
surrogate for the FIF algorithm that uses the past as an approximation for the
future. Empirically, the LRU algorithm performs well on most “real-world” page
request sequences – not much worse than the unimplementable FIF algorithm,
and better than other online algorithms such as First-In First-Out (FIFO). The
usual explanation for the superiority of the LRU algorithm is that the page request
sequences that arise in practice exhibit locality of reference, with recent requests likely
to be requested again soon, and that LRU automatically adapts to and exploits this
locality.

4.1.3 Competitive Ratio

One popular way to assess the performance of an online algorithm is through its
competitive ratio:2

Definition 4.2 (Sleator and Tarjan, 1985) The competitive ratio of an online
algorithm A is its worst-case performance (over inputs z) relative to an optimal
offline algorithm OPT that has advance knowledge of the entire input:

max
z

PERF(A,z)
PERF(OPT,z)

.

For the objective of minimizing the number of page faults, the competitive ratio is
always at least 1, and the closer to 1 the better.3

Exercise 1.1 of Chapter 1 shows that, for every deterministic online paging
algorithm A and cache size k, there are arbitrarily long page request sequences z such
that A faults at every time step while the FIF algorithm faults at most once per k
time steps. This example shows that every deterministic online paging algorithm has a
competitive ratio of at least k. For most natural online algorithms, there is a matching
upper bound of k. This state of affairs is unsatisfying for several reasons:

2 See Chapter 24 for a deep dive on alternatives to worst-case analysis in the competitive analysis of online
algorithms.

3 One usually ignores any extra additive terms in the competitive ratio, which vanish as PERF(OPT,z)→∞.

73

T. ROUGHGARDEN

1. The analysis gives an absurdly pessimistic performance prediction for LRU (and
all other deterministic online algorithms), suggesting that a 100% page fault rate
is unavoidable.

2. The analysis suggests that online algorithms perform worse (relative to FIF) as the
cache size grows, a sharp departure from empirical observations.

3. The analysis fails to differentiate between competing policies such as LRU and
FIFO, which both have a competitive ratio of k.

We next address the first two issues through a resource augmentation analysis (but
not the third; see Exercise 4.2).

4.1.4 A Resource Augmentation Bound

In a resource augmentation analysis, the idea is to compare the performance of a
protagonist algorithm (such as LRU) to an all-knowing optimal algorithm that is
handicapped by “less resources.” Naturally, weakening the capabilities of the offline
optimal algorithm can only lead to better approximation guarantees.

Let PERF(A,k,z) denote the number of page faults incurred by the algorithm A
with cache size k on the page request sequence z. The main result of this section is:

Theorem 4.3 (Sleator and Tarjan, 1985) For every page request sequence z and
cache sizes h ≤ k,

PERF(LRU,k,z) ≤ k
k − h + 1

· PERF(FIF,h,z),

plus an additive error term that goes to 0 with PERF(FIF,h,z).

For example, LRU suffers at most twice as many page faults as the unimple-
mentable FIF algorithm when the latter has roughly half the cache size.

Proof Consider an arbitrary page request sequence z and cache sizes h ≤ k. We
first prove an upper bound on the number of page faults incurred by the LRU
algorithm, and then a lower bound on the number of faults incurred by the FIF
algorithm. A useful idea for accomplishing both goals is to break z into blocks
σ1,σ2, . . . ,σb. Here σ1 is the maximal prefix of z in which only k distinct pages
are requested; the block σ2 starts immediately after and is maximal subject to
only k distinct pages being requested within it; and so on.

For the first step, note that LRU faults at most k times within a single block –
at most once per page requested in the block. The reason is that once a page
is brought into the cache, LRU won’t evict it until k other distinct pages are
requested, and this can’t happen until the following block. Thus LRU incurs at
most bk page faults, where b is the number of blocks. See Figure 4.1a.

For the second step, consider the FIF algorithm with a cache size h ≤ k.
Consider the first block σ1 plus the first request of the second block σ2. Since σ1
is maximal, this represents requests for k+1 distinct pages. At least k−h+1 of
these pages are initially absent from the size-h cache, so no algorithm can serve
all k+1 pages without incurring at least k−h+1 page faults. Similarly, suppose

74

RESOURCE AUGMENTATION

σ1 σ2 σ3 σ4 σb

...etc.maximal subject to
≤ k distinct requests

maximal subject to≤ k distinct requests

(a) Blocks of a request sequence

σ1 σ2
σ3 σ4 σb

...etc.≥ 1 fault ≥ 1 fault

(b) Lower bound for FIF (with h = k)

Figure 4.1 Proof of Theorem 4.3. In (a), the blocks of a page request sequence; the LRU algorithm incurs
at most k page faults in each. In (b), the FIF algorithm incurs at least k − h + 1 page faults in each “shifted
block.”

the first request of σ2 is the page p. After an algorithm serves the request for p,
the cache contains only h − 1 pages other than p. By the maximality of σ2, the
“shifted block” comprising the rest of σ2 and the first request of σ3 includes
requests for k distinct pages other than p; these cannot all be served without
incurring another

k︸︷︷︸
requests other than p

− (h − 1)︸ ︷︷ ︸
pages in cache other than p

page faults. And so on, resulting in at least (b−1)(k−h+1) page faults overall.
See Figure 4.1b.

We conclude that

PERF(LRU,k,z) ≤ bk ≤ k
k − h + 1

· PERF(FIF,h,z) + k
(b − 1)(k − h + 1)

.

The additive error term goes to 0 as b grows large and the proof is complete. �

4.2 Discussion

Resource augmentation guarantees make sense for any problem in which there is
a natural notion of a “resource,” with algorithm performance improving in the
resource level; see Sections 4.3 and 4.4 for two further examples. In general, a resource
augmentation guarantee implies that the performance curves (i.e., performance as a
function of resource level) of an online algorithm and the offline optimal algorithm
are similar (Figure 4.2).

The resource augmentation guarantees in this chapter resemble worst-case anal-
ysis, in that no model of data is proposed; the difference is purely in the method of
measuring algorithm performance (relative to optimal performance). As usual, this is
both a feature and a bug: the lack of a data model guarantees universal applicability,
but also robs the analyst of any opportunity to articulate properties of “real-world”
inputs that might lead to a more accurate and fine-grained analysis. There is nothing
inherently worst-case about resource augmentation guarantees, however, and the
concept can equally well be applied with one of the models of data discussed in the
other parts of this book.4

4 For example, Chapter 27 combines robust distributional analysis with resource augmentation, in the
context of prior-independent auctions.

75

T. ROUGHGARDEN

(a) A good competitive ratio (b) A resource augmentation guarantee

Figure 4.2 Competitive ratio guarantees vs. resource augmentation guarantees. All curves plot, for a
fixed input, the cost incurred by an algorithm (e.g., number of page faults) as a function of the resource
level (e.g., the cache size). In (a), a good upper bound on the competitive ratio requires that the curve
for the online algorithm closely approximates that of the offline optimal algorithm pointwise over the
x-axis. In (b), the vertical distance between the two curves (and the competitive ratio) grows large as
the resource level approaches its minimum. A resource augmentation guarantee roughly translates to the
relaxed requirement that every point of the online algorithm’s performance curve has a nearby neighbor
somewhere on the optimal offline algorithm’s performance curve.

How should you interpret a resource augmentation guarantee like Theorem 4.3?
Should you be impressed? Taken at face value, Theorem 4.3 seems much more mean-
ingful than the competitive ratio of k without resource augmentation, even though it
doesn’t provide particularly sharp performance predictions (as to be expected, given
the lack of a model of data). But isn’t it an “apples vs. oranges” comparison? The
optimal offline algorithm is powerful in its knowledge of all future page requests, but
it’s artificially hobbled by a small cache.

One interpretation of a resource augmentation guarantee is as a two-step recipe
for building a system in which an online algorithm has good performance.

1. Estimate the resource level (e.g., cache size) such that the optimal offline algorithm
has acceptable performance (e.g., page fault rate below a given target).5 This task
can be simpler than reasoning simultaneously about the cache size and paging
algorithm design decisions.

2. Scale up the resources to realize the resource augmentation guarantee (e.g.,
doubling the cache size needed by the FIF algorithm to achieve good performance
with the LRU algorithm).

5 Remember: Competing with the optimal algorithm is useful only when its performance is good in some
absolute sense!

76

RESOURCE AUGMENTATION

A second justification for resource augmentation guarantees is that they usually
lead directly to good “apples vs. apples” comparisons for most resource levels (as
suggested by Figure 4.2b). Section 4.5 presents a detailed case study in the context of
online paging.

4.3 Selfish Routing

Our second case study of a resource augmentation guarantee concerns a model of
selfish routing in a congested network.

4.3.1 The Model and a Motivating Example

In selfish routing, we consider a directed flow network G = (V,E), with r units of
flow traveling from a source vertex s to a sink vertex t; r is called the traffic rate. Each
edge e of the network has a flow-dependent cost function ce(x). For example, in the
network in Figure 4.3a, the top edge has a constant cost function c(x) = 1, while the
cost to traffic on the bottom edge equals the amount of flow x on the edge.

The key approximation concept in selfish routing networks is the price of anarchy
which, as usual with approximation ratios, is defined as the ratio between two things:
a realizable protagonist and a hypothetical benchmark.

Our protagonist is an equilibrium flow, in which all traffic is routed on shortest
paths, where the length of an s–t path P is the (flow-dependent) quantity

∑
e∈P ce(fe),

where fe denotes the amount of flow using the edge e. In Figure 4.3a, with one unit of
traffic, the only equilibrium flow sends all traffic on the bottom edge. If ε > 0 units
of traffic were routed on the top path, that traffic would not be routed on a shortest
path (incurring cost 1 instead of 1 − ε), and hence would want to switch paths.

Our benchmark is the optimal solution, meaning the fractional s–t flow that
routes the r units of traffic to minimize the total cost

∑
e∈E ce(fe)fe. For example,

in Figure 4.3a, the optimal flow splits traffic evenly between the two paths, for a cost
of 1

2 · 1 + 1
2 · 1

2 = 3
4 . The cost of the equilibrium flow is 0 · 1 + 1 · 1 = 1.

The price of anarchy of a selfish routing network is defined as the ratio between
the cost of an equilibrium flow and that of an optimal flow.6 In the network in
Figure 4.3a, the price of anarchy is 4/3.

An interesting research goal is to identify selfish routing networks in which the
price of anarchy is close to 1 – networks in which decentralized optimization by selfish
users performs almost as well as centralized optimization. Unfortunately, without any
restrictions on edges’ cost functions, the price of anarchy can be arbitrarily large. To
see this, replace the cost function on the bottom edge in Figure 4.3a by the function
c(x) = xd for a large positive integer d (Figure 4.3b). The equilibrium flow and its
cost remain the same, with all selfish traffic using the bottom edge for an overall cost
of 1. The optimal flow, however, improves with d: Routing 1 − ε units of flow on the
bottom edge and ε units on the top edge yields a flow with cost ε + (1 − ε)d+1. This
cost tends to 0 as d tends to infinity and ε tends appropriately to 0, and hence the
price of anarchy goes to infinity with d.

6 It turns out that the equilibrium flow cost is uniquely defined in every selfish routing network with
continuous and nondecreasing edge cost functions; see the Notes for details.

77

T. ROUGHGARDEN

(a) (b)

Figure 4.3 Two selfish routing networks. Each cost function c(x) describes the cost incurred by users of
an edge, as a function of the amount of traffic routed on that edge.

4.3.2 A Resource Augmentation Guarantee

Despite the negative example in the preceding section, a very general resource
augmentation guarantee holds in selfish routing networks.7

Theorem 4.4 (Roughgarden and Tardos, 2002) For every network G with
nonnegative, continuous, and nondecreasing cost functions, for every traffic rate
r > 0, and for every δ > 0, the cost of an equilibrium flow in G with traffic rate r
is at most 1

δ
times the cost of an optimal flow with traffic rate (1 + δ)r.

For example, consider the network in Figure 4.3b with r = δ = 1 (and large d).
The cost of the equilibrium flow with traffic rate 1 is 1. The optimal flow can route
one unit of traffic cheaply (as we’ve seen), but then the network gets clogged up and
it has no choice but to incur one unit of cost on the second unit of flow (the best it
can do is route it on the top edge). Thus the cost of an optimal flow with double the
traffic exceeds that of the original equilibrium flow.

Theorem 4.4 can be reformulated as a comparison between an equilibrium flow in a
network with “faster”edges and an optimal flow in the original network. For example,
simple calculations (Exercise 4.5) show that the following statement is equivalent to
Theorem 4.4 with δ = 1.

Corollary 4.5 For every network G with nonnegative, continuous, and nonde-
creasing cost functions and for every traffic rate r > 0, the cost of an equilibrium
flow in G with traffic rate r and cost functions {c̃e}e∈E is at most that of an optimal
flow in G with traffic rate r and cost functions {ce}e∈E, where each function c̃e is
derived from ce as c̃e(x) = ce(x/2)/2.

Corollary 4.5 takes on a particularly appealing form in networks with M/M/1 delay
functions, meaning cost functions of the form ce(x) = 1/(ue − x), where ue can be
interpreted as an edge capacity or a queue service rate. (If x ≥ ue, interpret ce(x) as
+∞.) In this case, the modified function c̃e in Corollary 4.5 is

c̃e(x) = 1
2(ue − x

2)
= 1

2ue − x
.

7 This result holds still more generally, in networks with multiple source and sink vertices (Exercise 4.4).

78

RESOURCE AUGMENTATION

Corollary 4.5 thus translates to the following design principle for selfish routing
networks with M/M/1 delay functions: to outperform optimal routing, double the
capacity of every edge.

4.3.3 Proof of Theorem 4.4 (Parallel Edges)

As a warm-up to the proof of Theorem 4.4, consider the special case where
G = (V,E) is a network of parallel edges, meaning V = {s,t} and every edge of E is
directed from s to t (as in Figure 4.3). Choose a traffic rate r > 0; a cost function ce
for each edge e ∈ E that is nonnegative, continuous, and nondecreasing; and the
parameter δ > 0. Let f and f ∗ denote equilibrium and optimal flows in G at traffic
rates r and (1+δ)r, respectively. The equilibrium flow f routes traffic only on shortest
paths, so there is a number L (the shortest s–t path length) such that

ce(fe) = L if fe > 0;
ce(fe) ≥ L if fe = 0.

The cost of the equilibrium flow f is then∑
e∈E

ce(fe)fe =
∑

e∈E : fe>0

ce(fe)fe =
∑

e∈E : fe>0

L · fe = r · L,

as the total amount of flow
∑

e : fe>0 fe equals the traffic rate r.
How can we bound from below the cost of the optimal flow f ∗, relative to the

cost rL of f ? To proceed, bucket the edges of E into two categories:

E1 := the edges e with f ∗
e ≥ fe;

E2 := the edges e with f ∗
e < fe.

With so few assumptions on the network cost functions, we can’t say much about the
costs of edges under the optimal flow f ∗. The two things we can say are that ce(f ∗

e) ≥ L
for all e ∈ E1 (because cost functions are nondecreasing) and that ce(f ∗

e) ≥ 0 for all
e ∈ E2 (because cost functions are nonnegative). At the very least, we can therefore
lower bound the cost of f ∗ by∑

e∈E

ce(f ∗
e)f

∗
e ≥

∑
e∈E1

ce(f ∗
e)f

∗
e ≥ L ·

∑
e∈E1

f ∗
e . (4.1)

How little traffic could f ∗ possibly route on the edges of E1? The flow routes (1 + δ)r
units of traffic overall. It routes less flow than f on the edges of E2 (by the definition
of E2), and f routes at most r units (i.e., its full traffic rate) on these edges. Thus∑

e∈E1

f ∗
e = (1 + δ)r −

∑
e∈E2

f ∗
e ≥ (1 + δ)r −

∑
e∈E2

fe︸ ︷︷ ︸
≤r

≥ δr. (4.2)

Combining the inequalities (4.1) and (4.2) shows that the cost of f ∗ is at least δ · rL,
which is δ times the cost of f , as desired.

79

T. ROUGHGARDEN

fe

flow

fe

co
st

ec ()

(a) Graph of cost function ce and its value at
flow value fe

fe

flow

fe

co
st

ec ()

(b) Graph of cost function c̄e

Figure 4.4 Construction in the proof of Theorem 4.4 of the fictitious cost function c̄e from the original cost
function ce and equilibrium flow value fe.

4.3.4 Proof of Theorem 4.4 (General Networks)

Consider now the general case of Theorem 4.4, in which the network G = (V,E)

is arbitrary. General networks are more complex than networks of parallel edges
because there is no longer a one-to-one correspondence between edges and paths –
a path might comprise many edges, and an edge might participate in many different
paths. This complication aside, the proof proceeds similarly to that for the special
case of networks of parallel edges.

Fix a traffic rate r, a cost function ce for each edge e ∈ E, and the parameter δ > 0.
As before, let f and f ∗ denote equilibrium and optimal flows in G at traffic rates r
and (1 + δ)r, respectively. It is still true that there is a number L such that all traffic
in f is routed on paths P with length

∑
e∈P ce(fe) equal to L, and such that all s–t

paths have length at least L. The cost of the equilibrium flow is again rL.
The key trick in the proof is to replace, for the sake of analysis, each cost

function ce(x) (Figure 4.4a) by the larger cost function c̄e(x) = max{ce(x),ce(fe)}
(Figure 4.4b). This trick substitutes for the decomposition in Section 4.3.3 of E
into E1 and E2. With the fictitious cost functions c̄e, edge costs are always as large as
if the equilibrium flow f had already been routed in the network.

By design, the cost of the optimal flow f ∗ is easy to bound from below with the
fictitious cost functions. Even with zero flow in the network, every s–t path has cost
at least L with respect to these functions. Because f ∗ routes (1 + δ)r units of traffic
on paths with (fictitious) cost at least L, its total (fictitious) cost with respect to the
c̄e’s is at least (1 + δ)rL.

We can complete the proof by showing that the fictitious cost of f ∗ (with respect to
the c̄e’s) exceeds its real cost (with respect to the ce’s) by at most rL, the equilibrium
flow cost. For each edge e ∈ E and x ≥ 0, c̄e(x) − ce(x) is either 0 (if x ≥ fe) or
bounded above by ce(fe) (if x < fe); in any case,

c̄e(f ∗
e)f

∗
e︸ ︷︷ ︸

fictitious cost of f ∗ on e

− ce(f ∗
e)f

∗
e︸ ︷︷ ︸

real cost of f ∗ on e

≤ ce(fe)fe︸ ︷︷ ︸
real cost of f on e

.

Summing this inequality over all edges e ∈ E shows that the difference between the
costs of f ∗ with respect to the different cost functions is at most the cost of f (i.e.,
rL); this completes the proof of Theorem 4.4.

80

RESOURCE AUGMENTATION

4.4 Speed Scaling in Scheduling

The lion’s share of killer applications of resource augmentation concern scheduling
problems. This section describes one paradigmatic example.

4.4.1 Nonclairvoyant Scheduling

We consider a model with a single machine and m jobs that arrive online. Each
job j has a release time rj and the algorithm is unaware of the job before this time.
Each job j has a processing time pj, indicating how much machine time is necessary to
complete it. We assume that preemption is allowed, meaning that a job can be stopped
mid-execution and restarted from the same point (with no loss) at a subsequent time.

We consider the basic objective of minimizing the total flow time8:

m∑
j=1

(
Cj − rj

)
,

where Cj denotes the completion time of job j. For an alternative formulation, note
that each infinitesimal time interval [t,t+dt] contributes dt to the flow time Cj − rj of
every job that is active at time t, meaning released but not yet completed. Thus, the
total flow time can be written as ∫ ∞

0
|Xt|dt, (4.3)

where Xt denotes the active jobs at time t.
The shortest remaining processing time (SRPT) algorithm always processes the job

that is closest to completion (preempting jobs as needed). This algorithm makes |Xt|
as small as possible for all times t (Exercise 4.7) and is therefore optimal. This is a
rare example of a problem in which the optimal offline algorithm is implementable
as an online algorithm.

SRPT uses knowledge of the job processing times to make decisions, and as such
is a clairvoyant algorithm. What about applications in which a job’s processing time
is not known before it completes, where a nonclairvoyant algorithm is called for?
No nonclairvoyant online algorithm can guarantee a total flow time close to that
achieved by SRPT (Exercise 4.8). Could a resource augmentation approach provide
more helpful algorithmic guidance?

4.4.2 A Resource Augmentation Guarantee for SETF

The natural notion of a “resource” in this scheduling problem is processor speed.
Thus, a resource augmentation guarantee would assert that the total flow time of
some nonclairvoyant protagonist with a faster machine is close to that of SRPT with
the original machine.

We prove such a guarantee for the shortest elapsed time first (SETF) algorithm,
which always processes the job that has been processed the least so far. When multiple
jobs are tied for the minimum elapsed time, the machine splits its processing power

8 This objective is also called the total response time.

81

T. ROUGHGARDEN

equally between them. SETF does not use jobs’ processing times to make decisions,
and as such is a nonclairvoyant algorithm.

Example 4.6 Fix parameters ε,δ > 0, with δ much smaller than ε. With an
eye toward a resource augmentation guarantee, we compare the total flow time
of SETF with a machine with speed 1 + ε – meaning that the machine can
process (1 + ε)t units of jobs in a time interval of length t – to that of SRPT
with a unit-speed machine.

Suppose m jobs arrive at times r1 = 0,r2 = 1, . . . ,rm = m − 1, where m is
� 1
ε
� − 1. Suppose pj = 1 + ε + δ for every job j. Under the SRPT algorithm,

assuming that ε + δ is sufficiently small, there will be at most two active jobs
at all times (the most recently released jobs); using (4.3), the total flow time of
its schedule is O(1

ε
). The SETF algorithm will not complete any jobs until after

time m, so in each time interval [j −1,j] there are j active jobs. Using (4.3) again,
the total flow time of SETF’s schedule is �(1

ε2).

Example 4.6 shows that SETF is not optimal, and it draws a line in the sand: The
best we can hope for is that the SETF algorithm with a (1+ε)-speed machine achieves
total flow time O(1

ε
) times that suffered by the SRPT algorithm with a unit-speed

machine. The main result of this section states that this is indeed the case.

Theorem 4.7 (Kalyanasundaram and Pruhs, 2000) For every input and ε > 0,
the total flow time of the schedule produced by the SETF algorithm with a machine
with speed 1 + ε is at most

1 + 1
ε

times that by the SRPT algorithm with a unit-speed machine.

Using the second version (4.3) of the objective function, Theorem 4.7 reduces to
the following pointwise (over time) bound.

Lemma 4.8 Fix ε > 0. For every input, at every time step t,

|Xt| ≤
(

1 + 1
ε

)
|X∗

t |,

where Xt and X∗
t denote the jobs active at time t under SETF with a (1 + ε)-speed

machine and SRPT with a unit-speed machine, respectively.

In Example 4.6, at time t = m, |X∗
t | = 1 (provided ε,δ are sufficiently small) while

|Xt| = m ≈ 1
ε
. Thus, every inequality used in the proof of Lemma 4.8 should hold

almost with equality for the instance in Example 4.6. The reader is encouraged to
keep this example in mind throughout the proof.

To describe the intuition behind Lemma 4.8, fix a time t. Roughly:

1. SRPT must have spent more time processing the jobs of Xt \ X∗
t than SETF

(because SRPT finished them by time t while SETF did not).

82

RESOURCE AUGMENTATION

2. SETF performed 1 + ε times as much job processing as SRPT, an ε portion of
which must have been devoted to the jobs of X∗

t .
3. Because SETF prioritizes the jobs that have been processed the least, it also spent

significant time processing the jobs of Xt \ X∗
t .

4. SRPT had enough time to complete all the jobs of Xt \X∗
t by time t, so there can’t

be too many such jobs.

The rest of this section supplies the appropriate details.

4.4.3 Proof of Lemma 4.8: Preliminaries

Fix an input and a time t, with Xt and X∗
t defined as in Lemma 4.8. Rename the jobs

of Xt \ X∗
t = {1,2, . . . ,k} such that r1 ≥ r2 ≥ · · · ≥ rk.

Consider the execution of the SETF algorithm with a (1 + ε)-speed machine. We
say that job � interferes with job j if there is a time s ≤ t at which j is active and �

is processed in parallel with or instead of j. The interference set Ij of a job j is the
transitive closure of the interference relation:

1. Initialize Ij to {j}.
2. While there is a job � that interferes with a job of Ij, add one such job to Ij.

In Example 4.6 with t = +∞, the interference set of every job is the set of all jobs
(because all of the jobs are processed in parallel at the very end of the algorithm). If
instead t = m, then Ij = {j,j + 1, . . . ,m} for each job j ∈ {1,2, . . . ,m}.

The interference set of a job is uniquely defined, independent of which interfering
job is chosen in each iteration of the while loop. Note that the interference set can
contain jobs that were completed by SETF strictly before time t.

We require several properties of the interference sets of the jobs in Xt\X∗
t . To state

the first, define the lifetime of a job j as the interval [rj, min{Cj,t}] up to time t during
which it is active.

Proposition 4.9 Let j ∈ {1,2, . . . ,k} be a job of Xt\X∗
t . The union of the lifetimes

of the jobs in an interference set Ij is the interval [sj,t], where sj is the earliest release
time of a job in Ij.

Proof One job can interfere with another only if their lifetimes overlap. By
induction, the union of the lifetimes of jobs in Ij is an interval. The right
endpoint of the interval is at most t by definition, and is at least t because job j
is active at time t. The left endpoint of the interval is the earliest time at which
a job of Ij is active, which is min�∈Ij r�. �

Conversely, every job processed in the interval corresponding to an interference set
belongs to that set.

Proposition 4.10 Let j ∈ {1,2, . . . ,k} be a job of Xt \ X∗
t and [sj,t] the union of

the lifetimes of the jobs in j’s interference set Ij. Every job processed at some time
s ∈ [sj,t] belongs to Ij.

83

T. ROUGHGARDEN

Proof Suppose job � is processed at some time s ∈ [sj,t]. Since [sj,t] is the union
of the lifetimes of the jobs in Ij, Ij contains a job i that is active at time s. If i �= �,
then job � interferes with i and hence also belongs to Ij. �

The next proposition helps implement the third step of the intuition outlined in
Section 4.4.2.

Proposition 4.11 Let j ∈ {1,2, . . . ,k} be a job of Xt \ X∗
t . Let w� denote the

elapsed time of a job � under SETF by time t. Then w� ≤ wj for every job � in j’s
interference set Ij.

Proof We proceed by induction on the additions to the interference set.
Consider an iteration of the construction that adds a job j1 to Ij. By construc-
tion, there is a sequence of already added jobs j2,j3, . . . ,jp such that jp = j
and ji interferes with ji+1 for each i = 1,2, . . . ,p − 1. (Assume that p> 1;
otherwise we’re in the base case where j1 = j and there’s nothing to prove.)
As in Proposition 4.9, the union of the lifetimes of the jobs {j2,j3, . . . ,jp} forms
an interval [s,t]; the right endpoint is t because jp = j is active at time t. By
induction, wji ≤ wj for every i = 2,3, . . . ,p. Thus, whenever j1 is processed in
the interval [s,t], there is an active job with elapsed time at most wj. By virtue
of being processed by SETF, the elapsed time of j1 at any such point in time is
also at most wj. The job j1 must be processed at least once during the interval
[s,t] (as the job interferes with j2), so its elapsed time by time t is at most wj. �

4.4.4 Proof of Lemma 4.8: The Main Argument

We are now prepared to implement formally the intuition outlined in Section 4.4.2.
Fix a job j ∈ Xt \ X∗

t ; recall that Xt \ X∗
t ={1,2, . . . ,k}, with jobs indexed in

nonincreasing order of release time. Let Ij denote the corresponding interference set
and [sj,t] the corresponding interval in Proposition 4.9. As in Proposition 4.11, let wi
denote the elapsed time of a job i under SETF at time t. All processing of the jobs
in Ij (by SETF or SRPT) up to time t occurs in this interval, and all processing by
SETF in this interval is of jobs in Ij (Proposition 4.10). Thus, the value wi is precisely
the amount of time devoted by SETF to the job i in the interval [sj,t].

During the interval [sj,t], the SRPT algorithm (with a unit-speed machine) spends
at most t − sj time processing jobs, and in particular at most t − sj time processing
jobs of Ij. Meanwhile, the SETF algorithm works continually over the interval [sj,t];
at all times s ∈ [sj,t] there is at least one active job (Proposition 4.9), and the SETF
algorithm never idles with an active job. Thus SETF (with a (1 + ε)-speed machine)
processes (1 + ε)(t − sj) units worth of jobs in this interval, and all of this work is
devoted to jobs of Ij (Proposition 4.10).

Now group the jobs of Ij into three categories:

1. Jobs i ∈ Ij that belong to X∗
t (i.e., SRPT has not completed i by time t)

2. Jobs i ∈ Ij that belong to Xt but not X∗
t (i.e., SETF has not completed i by time t,

but SRPT has)

84

RESOURCE AUGMENTATION

3. Jobs i ∈ Ij that belong to neither Xt nor X∗
t (i.e., both SETF and SRPT have

completed i by time t)

The SRPT algorithm spends at least as much time as SETF in the interval [sj,t]
processing category-2 jobs (as the former completes them and the latter does not),
as per the first step of the intuition in Section 4.4.2. Both algorithms spend exactly
the same amount of time on category-3 jobs in this interval (namely, the sum of the
processing times of these jobs). We can therefore conclude that the excess time ε(t−sj)

spent by the SETF algorithm (beyond that spent by SRPT) is devoted entirely to
category-1 jobs – the jobs of X∗

t (cf., the second step of the outline in Section 4.4.2).
We summarize our progress so far in a proposition.

Proposition 4.12 For every j = 1,2, . . . ,k,∑
i∈Ij∩X∗

t

wi ≥ ε · (t − sj).

The sum in Proposition 4.12 is, at least, over the jobs {1,2, . . . ,j}.

Proposition 4.13 For every j = 1,2, . . . ,k, the interference set Ij includes the jobs
{1,2, . . . ,j}.

Proof Recall that the jobs {1,2, . . . ,k} of Xt \ X∗
t are sorted in nonincreasing

order of release time. Each job i = 1,2, . . . ,j−1 is released after job j and before
job j completes (which is at time t or later), and interferes with j at the time of
its release (as SETF begins processing it immediately). �

Combining Propositions 4.12 and 4.13, we can associate unfinished work at time t
for SETF with that of SRPT:

Corollary 4.14 For every j = 1,2, . . . ,k,

∑
i∈Ij∩X∗

t

wi ≥ ε ·
j∑

�=1

w�.

For example, taking j = 1, we can identify εw1 units of time that SETF spends
processing the jobs of I1∩X∗

t before time t. Similarly, taking j = 2, we can identify εw2
different units of time that SETF spends processing the jobs of I2∩X∗

t : Corollary 4.14
ensures that the total amount of time so spent is at least εw1 + εw2, with at most εw1
of it already accounted for in the first step. Continuing with j = 3,4, . . . ,k, the end
result of this process is a collection {α(j,i)} of nonnegative “charges” from jobs j of
Xt \ X∗

t to jobs i of X∗
t that satisfies the following properties:

1. For every j = 1,2, . . . ,k,
∑

i∈X∗
t
α(j,i) = εwj.

2. For every i ∈ X∗
t ,
∑k

j=1 α(j,i) ≤ wi.
3. α(j,i) > 0 only if i ∈ Ij ∩ X∗

t .

85

T. ROUGHGARDEN

Combining the third property with Proposition 4.11:

wi ≤ wj whenever α(j,i) > 0. (4.4)

We can extract from the α(j,i)’s a type of network flow in a bipartite graph with
vertex sets Xt \ X∗

t and X∗
t . Precisely, define the flow f +

ji outgoing from j ∈ Xt \ X∗
t to

i ∈ X∗
t by

f +
ji = α(j,i)

wj

and the flow f −
ji incoming to i from j by

f −
ji = α(j,i)

wi
.

If we think of each vertex h as having a capacity of wh, then f +
ji (respectively, f −

ji)
represents the fraction of j’s capacity (respectively, i’s capacity) consumed by the
charge α(j,i). Property (4.4) implies that the flow is expansive, meaning that

f +
ji ≤ f −

ji

for every j and i.
The first property of the α(j,i)’s implies that there are ε units of flow outgoing

from each j ∈ Xt \ X∗
t , for a total of ε · |Xt \ X∗

t |. The second property implies that
there is at most one unit of flow incoming to each i ∈ X∗

t , for a total of at most |X∗
t |.

Because the flow is expansive, the total amount of flow incoming to X∗
t is at least that

outgoing from Xt \ X∗
t , and so

|X∗
t | ≥ ε · |Xt \ X∗

t |.
This completes the proof of Lemma 4.8:

|Xt| ≤ |X∗
t | + |Xt \ X∗

t | ≤ |X∗
t | ·

(
1 + 1

ε

)
.

4.5 Loosely Competitive Algorithms

An online algorithm with a good resource augmentation guarantee is usually “loosely
competitive” with the offline optimal algorithm, which roughly means that, for every
input, its performance is near-optimal for most resource levels (cf., Figure 4.2b). We
illustrate the idea using the online paging problem from Section 4.1; Exercise 4.6
outlines an analogous result in the selfish routing model of Section 4.3.

There is simple and accurate intuition behind the main result of this section.
Consider a page request sequence z and a cache size k. Suppose the number of page
faults incurred by the LRU algorithm is roughly the same – within a factor of 2, say –
with the cache sizes k and 2k. Theorem 4.3, with 2k and k playing the roles of k and h,
respectively, then immediately implies that the number of page faults incurred by the
LRU algorithm with cache size k is at most a constant (roughly 4) times that incurred
by the offline optimal algorithm with the same cache size. In other words, in this case
the LRU algorithm is competitive in the traditional sense (Definition 4.2). Otherwise,
the performance of the LRU algorithm improves rapidly as the cache size is expanded

86

RESOURCE AUGMENTATION

from k to 2k. But because there is a bound on the maximum fluctuation of LRU’s
performance (between no page faults and faulting every time step), its performance
can only change rapidly for a bounded number of different cache sizes.

Here is the precise statement, followed by discussion and a proof.

Theorem 4.15 (Young, 2002) For every ε,δ > 0 and positive integer n, for every
page request sequence z, for all but a δ fraction of the cache sizes k in {1,2, . . . ,n},
the LRU algorithm satisfies either:

1. PERF(LRU,k,z) = O(1
δ

log 1
ε
) · PERF(FIF,k,z); or

2. PERF(LRU,k,z) ≤ ε · |z|.
Thus, for every page request sequence z, each cache size k falls into one of three

cases. In the first case, the LRU algorithm with cache size k is competitive in the
sense of Definition 4.2, with the number of page faults incurred at most a constant
(i.e., O(1

δ
log 1

ε
)) times the minimum possible. In the second case, the LRU algorithm

has a page fault rate of at most ε, and thus has laudable performance in an absolute
sense. In the third case neither good event occurs, but fortunately this happens for
only a δ fraction of the possible cache sizes.

The parameters δ, ε, and n in Theorem 4.15 are used in the analysis only – no
“tuning” of the LRU algorithm is needed – and Theorem 4.15 holds simultaneously
for all choices of these parameters. The larger the fraction δ of bad cache sizes
or the absolute performance bound ε that can be tolerated, the better the relative
performance guarantee in the first case.

In effect, Theorem 4.15 shows that a resource augmentation guarantee like The-
orem 4.3 – an apples vs. oranges comparison between an online algorithm with a
big cache and an offline algorithm with a small cache – has interesting implications
for online algorithms even compared with offline algorithms with the same cache
size. This result dodges the lower bound on the competitive ratio of the LRU
algorithm (Section 4.1.3) in two ways. First, Theorem 4.15 offers guarantees only
for most choices of the cache size k; LRU might perform poorly for a few unlucky
cache sizes. This is a reasonable relaxation, given that we don’t expect actual page
request sequences to be adversarially tailored to the choice of cache size. Second,
Theorem 4.15 does not insist on good performance relative to the offline optimal
algorithm – good absolute performance (i.e., a very small page fault rate) is also
acceptable, as one would expect in a typical application.9

We proceed to the proof of Theorem 4.15, which follows closely the intuition laid
out at the beginning of the section.

Proof Fix a request sequence z and values for the parameters δ, ε, and n. Let
b be a positive integer, to be chosen in due time. The resource augmentation
guarantee in Theorem 4.3 states that, ignoring additive terms,

PERF(LRU,k + b,z) ≤ k + b
b + 1

· PERF(FIF,k,z), (4.5)

where k + b and k are playing the roles of k and h in Theorem 4.3, respectively.

9 This may seem like an obvious point, but such appeals to good absolute performance are uncommon in
the analysis of online algorithms.

87

T. ROUGHGARDEN

There are two cases, depending on whether

PERF(LRU,k + b,z) ≥ 1
2

· PERF(LRU,k,z) (4.6)

or

PERF(LRU,k + b,z) <
1
2

· PERF(LRU,k,z).

Call a cache size k good or bad according to whether it belongs to the first
or second case, respectively. For good cache sizes k, chaining together the
inequalities (4.5) and (4.6) shows that

PERF(LRU,k,z) ≤ 2 · k + b
b + 1

· PERF(FIF,k,z), (4.7)

and hence LRU is competitive (with ratio 2(k+b)
b+1) in the sense of Definition 4.2.

Consider the set of bad cache sizes; for every such size, adding b extra pages
to the cache decreases the number of page faults incurred by the LRU algorithm
on z by at least a factor of 2. If there are at least � bad cache sizes between 1 and
t − b for some t, then we can find �/b bad cache sizes k1 < k2 < · · · < k�/b in
this interval that are each at least b apart (by taking every bth bad cache size).10

In this case, using that PERF(LRU,k,z) is nonincreasing in k (Exercise 4.1), we
have

PERF(LRU,ki+1,z) <
1
2

· PERF(LRU,ki,z)

for each i = 1,2, . . . ,�/b, where k(�/b)+1 should be interpreted as k�/b + b ≤ t.
Chaining all of these inequalities together yields

PERF(LRU,t,z) < 2−�/b · PERF(LRU,1,z).

Thus, once

� ≥ b · log2
1
ε
, (4.8)

we have a page fault rate of at most ε:

PERF(LRU,t,z) ≤ ε · |z|, (4.9)

where |z| is the length of the request sequence z.
The time has come to instantiate the parameter b. Guided by our desire

to have δn bad cache sizes between 1 and some number t force the condition
that PERF(LRU,k,z) ≤ ε|z| for all cache sizes k ≥ t, we take � = δn. The
inequality (4.8) then suggests taking b = δn/ log2

1
ε
.

Cache sizes now fall into three categories:

1. Good cache sizes. By the inequality (4.7) and our choice of b,

PERF(LRU,k,z) = O
(

1
δ

log 1
ε

)
· PERF(FIF,k,z)

for every such cache size k.

10 For clarity, we omit the appropriate ceilings and floors from fractions such as �/b.

88

RESOURCE AUGMENTATION

2. The smallest δn bad cache sizes in {1,2, . . . ,n}. There is no performance
guarantee for these cache sizes.

3. Bad cache sizes that are bigger than at least δn other bad cache sizes. Our
choices of � and b ensure that the inequality (4.9) holds for such a cache
size k, with

PERF(LRU,k,z) ≤ ε|z|.

Cache sizes in the first and third categories meet the first and second guarantees,
respectively, of Theorem 4.15. Cache sizes in the second category constitute at
most a δ fraction of the possible cache sizes, so the proof is complete. �

4.6 Notes

Resource augmentation was first stressed as a first-order analysis framework by
Kalyanasundaram and Pruhs (2000), although there were compelling examples much
earlier [such as Theorem 4.3, which was proved by Sleator and Tarjan (1985)]. The
phrase “resource augmentation” was proposed shortly thereafter, by Phillips et al.
(2002).

The competitive analysis of online algorithms, including the model and results in
Section 4.1, was developed by Sleator and Tarjan (1985). A good general reference for
the topic is the book by Borodin and El-Yaniv (1998). Theorem 4.1 is due to Bélády
(1967). See Young (1991, §2.4) for empirical comparisons of the FIF, LRU, and FIFO
cache replacement policies on benchmark page request sequences.

The selfish routing model described in Section 4.3 was defined by Wardrop (1952).
Existence and uniqueness of equilibrium flows (see footnote 6) was proved by
Beckmann et al. (1956); see also Roughgarden (2007). The price of anarchy was
defined, in a different context, by Koutsoupias and Papadimitriou (1999). Theo-
rem 4.4 and the extension in Exercise 4.4 were proved by Roughgarden and Tardos
(2002). The consequent loosely competitive bound (Exercise 4.6) was proved by
Friedman (2004).

Pruhs et al. (2004) is a good reference on the competitive analysis of online
scheduling algorithms; it includes a figure that inspired Figure 4.2. The optimality of
SRPT (Exercise 4.7) was first proved by Schrage (1968). Theorem 4.7 is by Kalyana-
sundaram and Pruhs (2000), as is Exercise 4.9. One solution to Exercise 4.8 appears
in Motwani et al. (1994). There are several more recent and sophisticated resource
augmentation guarantees for more complex scheduling problems, for example with
multiple machines, jobs with different priorities, and preemptions replaced by a small
number of rejections. Good entry points to this literature include Im et al. (2011),
Anand et al. (2012), and Thang (2013).

The concept of a loosely competitive online algorithm is due to Young (1994) and
Theorem 4.15 is from Young (2002).

Acknowledgments

I thank Jérémy Barbay, Feder Fomin, Kirk Pruhs, Nguyen Kim Thang, and Neal
Young for helpful comments on a preliminary draft of this chapter.

89

T. ROUGHGARDEN

References

Anand, S., Garg, N., and Kumar, A. 2012. Resource augmentation for weighted flow-
time explained by dual fitting. In Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1228–1241.

Beckmann, M. J., McGuire, C. B., and Winsten, C. B. 1956. Studies in the Economics of
Transportation. Yale University Press.

Bélády, L. A. 1967. A study of replacement algorithms for a virtual storage computer. IBM
Systems Journal, 5(2), 78–101.

Borodin, A., and El-Yaniv, R. 1998. Online Computation and Competitive Analysis. Cambridge
University Press.

Friedman, E. J. 2004. Genericity and congestion control in selfish routing. In Proceedings of
the 43rd Annual IEEE Conference on Decision and Control (CDC), pp. 4667–4672.

Im, S., Moseley, B., and Pruhs, K. 2011. A tutorial on amortized local competitiveness in
online scheduling. SIGACT News, 42(2), 83–97.

Kalyanasundaram, B., and Pruhs, K. 2000. Speed is as powerful as clairvoyance. Journal of
the ACM, 47(4), 617–643.

Koutsoupias, E., and Papadimitriou, C. H. 1999. Worst-case equilibria. In Proceedings of
the 16th Annual Symposium on Theoretical Aspects of Computer Science (STACS),
pp. 404–413.

Motwani, R., Phillips, S., and Torng, E. 1994. Nonclairvoyant scheduling. Theoretical Com-
puter Science, 130(1), 17–47.

Phillips, C. A., Stein, C., Torng, E., and Wein, J. 2002. Optimal time-critical scheduling via
resource augmentation. Algorithmica, 32(2), 163–200.

Pruhs, K., Sgall, J., and Torng, E. 2004. Online scheduling. In Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, Chapter 15. CRC Press.

Roughgarden, T. 2007. Routing games. In Nisan, N., Roughgarden, T., Tardos, É., and
Vazirani, V. (eds.), Algorithmic Game Theory, pp. 461–486. Cambridge University Press.

Roughgarden, T., and Tardos, É. 2002. How bad is selfish routing? Journal of the ACM, 49(2),
236–259.

Schrage, L. 1968. A proof of the optimality of the shortest remaining processing time
discipline. Operations Research Letters, 16(3), 687–690.

Sleator, D. D., and Tarjan, R. E. 1985. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2), 202–208.

Thang, N. K. 2013. Lagrangian duality in online scheduling with resource augmentation
and speed scaling. In 21st Annual European Symposium on Algorithms (ESA), pp.
755–766.

Wardrop, J. G. 1952. Some theoretical aspects of road traffic research. In. Proceedings of the
Institute of Civil Engineers, Pt. II, vol. 1, pp. 325–378.

Young, N. 2002. On-Line File Caching. Algorithmica, 33(3), 371–383.
Young, N. E. 1991. Competitive Paging and Dual-Guided Algorithms for Weighted Caching and

Matching. PhD thesis, Princeton University, Department of Computer Science.
Young, N. E. 1994. The k-server dual and loose competitiveness for paging. Algorithmica,

11(6), 525–541.

Exercises

Exercise 4.1 Prove that for every cache size k ≥ 1 and every page sequence z,

PERF(LRU,k + 1,z) ≤ PERF(LRU,k,z).

Exercise 4.2 Prove that Theorems 4.3 and 4.15 hold also for the FIFO caching policy.

90

RESOURCE AUGMENTATION

Exercise 4.3 Prove a lower bound for all deterministic online algorithms that matches
the upper bound for LRU in Theorem 4.3. That is, for every choice of k and h ≤ k,
every constant α < k

k−h+1 , and every deterministic online paging algorithm A,
there exist arbitrarily long sequences z such that PERF(A,k,z) > α ·PERF(FIF,h,z).

Exercise 4.4 Consider a multicommodity selfish routing network G = (V,E), with
source vertices s1,s2, . . . ,sk, sink vertices t1,t2, . . . ,tk, and traffic rates r1,r2, . . . ,rk.
A flow now routes, for each i = 1,2, . . . ,k, ri units of traffic from si to ti. In an
equilibrium flow f , all traffic from si to ti travels on si–ti paths P with the minimum-
possible length

∑
e∈P ce(fe), where fe denotes the total amount of traffic (across all

source-sink pairs) using edge e.
State and prove a generalization of Theorem 4.4 to multicommodity selfish

routing networks.

Exercise 4.5 Deduce Corollary 4.5 from Theorem 4.4.

Exercise 4.6 This problem derives a loosely competitive-type bound from a resource
augmentation bound in the context of selfish routing (Section 4.3). Let π(G,r)
denote the ratio of the costs of equilibrium flows in G at the traffic rates r and r/2.
By Theorem 4.4, the price of anarchy in the network G at rate r is at most π(G,r).

(a) Use Theorem 4.4 to prove that, for every selfish routing network G and traffic
rate r > 0, and for at least an α fraction of the traffic rates r̂ in [r/2,r], the
price of anarchy in G at traffic rate r̂ is at most β logπ(G,r) (where α,β > 0
are constants, independent of G and r).

(b) Prove that for every constant K > 0, there exists a network G with nonnegative,
continuous, and nondecreasing edge cost functions and a traffic rate r such that
the price of anarchy in G is at least K for every traffic rate r̂ ∈ [r/2,r].
[Hint: Use a network with many parallel links.]

Exercise 4.7 Prove that the shortest remaining processing time (SRPT) algorithm is
an optimal algorithm for the problem of scheduling jobs on a single machine (with
preemption allowed) to minimize the total flow time.

Exercise 4.8 Prove that for every constant c > 0, there is no nonclairvoyant deter-
ministic online algorithm that always produces a schedule with total flow time at
most c times that of the optimal (i.e., SRPT) schedule.

Exercise 4.9 Consider the objective of minimizing the maximum idle time of a job,
where the idle time of job j in a schedule is Cj − rj − pj

s , where Cj is the job’s
completion time, rj is its release time, pj is its processing time, and s is the machine
speed. Show that the maximum idle time of a job under the SETF algorithm with
a (1 + ε)-speed machine is at most 1

ε
times that in an optimal offline solution to

the problem with a unit-speed machine.
[Hint: Start from Proposition 4.11.]

91

PART TWO

Deterministic Models of Data

CHAPTER FIVE

Perturbation Resilience
Konstantin Makarychev and Yury Makarychev

Abstract: This chapter introduces perturbation resilience (also known
as Bilu–Linial stability). Loosely speaking, an instance is pertur-
bation resilient if the optimal solution remains the same when we
perturb the instance. We present algorithmic and hardness results for
perturbation-resilient instances. In particular, we describe certified
algorithms that attempt to bridge the gap between the worst-case and
structured instances: on one hand, they always find an approximate
solution; on the other hand, they exactly solve perturbation-resilient
instances.

5.1 Introduction

In this chapter, we discuss the notion of perturbation resilience (also known as
stability), which was introduced by Bilu and Linial (2010). The notion of perturbation
resilience aims to capture real-life instances of combinatorial optimization and
clustering problems. Informally, an instance of a combinatorial optimization or
clustering problem is perturbation resilient if the optimal solution remains the same
when we perturb the instance.

Definition 5.1 Consider a combinatorial optimization or clustering problem.
Suppose that every instance has a number of parameters; for example, if the
problem is a graph partitioning problem, the parameters are edge weights; if it is
a constraint satisfaction problem, they are constraint weights; if it is a clustering
problem, they are distances between points. A γ -perturbation of an instance I
is an instance I ′ produced by multiplying each parameter in I by a number
between 1 and γ (the number may be different for each parameter).1

Definition 5.2 An instance I is γ -perturbation resilient if every γ -perturbation
of I has the same optimal solution as I (we require that I have a unique optimal
solution).

While the solution should not change, the value or cost of the solution may and,
generally speaking, will change when we perturb the instance. The larger γ is, the

1 All problems we consider are scale invariant, so equivalently we can divide the parameters by a number
between 1 and γ ; we will use this convention when we talk about clustering problems.

95

K. MAKARYCHEV AND Y. MAKARYCHEV

more restrictive the γ -perturbation resilience condition becomes. In particular, the
instance is 1-stable if and only if it has a unique solution.

In this chapter, we also describe certified algorithms (see Definition 5.4), which
attempt to bridge the gap between the worst-case and structured instances: on one
hand, they always find an approximate solution; on the other, they exactly solve
perturbation-resilient instances.

Motivation. The definition of perturbation resilience is particularly applicable to
machine learning problems, where we are interested in finding the true solution/clus-
tering/partitioning rather than in optimizing the objective function per se. Indeed,
when we frame a real-life problem as a machine learning problem, we make a number
of somewhat arbitrary modelling decisions (for example, when we solve a clustering
problem, we choose one similarity function among a number of reasonable choices).
If the optimal solution is very sensitive to these modeling choices, then, by solving
the problem exactly, we will likely not find the true solution. This suggests that there
is no point in solving non–perturbation-resilient instances of many machine learning
problems in the first place. Additionally, empirical evidence shows that in many real-
life instances, the optimal solution stands out among all feasible solutions and is thus
not sensitive to small perturbations of the parameters.

Weak Perturbation Resilience. The definition of perturbation resilience is some-
what strict. Perhaps it is more natural to require that the optimal solution to a
perturbed instance be close but not necessarily equal to the optimal solution for
the original instance. This notion is captured in the definitions of (γ,N)-weak
perturbation resilience.2

Definition 5.3 (Makarychev et al., 2014) Consider an instance I of a combi-
natorial optimization problem. Let s∗ be an optimal solution and N be a set
of solutions, which includes all optimal solutions. Then s∗ is better than any
solution s outside of N. Assume further that for every γ -perturbation I ′ of
I, s∗ is a better solution for I ′ than s is. Then we say that I is (γ,N)-weakly
perturbation-resilient or simply γ -weakly perturbation resilient. We say that an
algorithm solves a weakly perturbation resilient instance I, if given a (γ,N)-
weakly perturbation-resilient instance, it finds a solution s ∈ N (crucially, the
algorithm does not know N).

One should think of set N in Definition 5.3 as the set of solutions that are close
to s∗ in some sense. Let us say we solve Max Cut. Then, N may be the set of cuts
(S′,T ′) that can be obtained from the optimal cut (S∗,T∗) by moving at most an ε

fraction of the vertices from one side of the cut to the other. Or, N may be the set
of cuts that partition some subset of the vertices V0 (informally, the “core of the
graph” or the subset of “important vertices”) in the same way as (S∗,T∗). Or, it may
be a set of cuts that satisfy some other structural property. Note that an instance is
(γ,{s∗})-weakly perturbation resilient if and only if it is γ -perturbation resilient.

It would be interesting to further relax the definition of perturbation resilience.
In particular, it would be more natural to require only that the optimal solution not

2 We note that a related notion of weak perturbation resilience, called (γ,ε)-perturbation resilience, was
introduced by (Balcan and Liang, 2016).

96

PERTURBATION RESILIENCE

change if we randomly perturb the input. Unfortunately, we do not have any results
for this weaker definition of perturbation resilience.

Certified Algorithms. Let us now define the notion of a certified approximation
algorithm (Makarychev and Makarychev, 2020). The definition is inspired by the
definitions of perturbation resilience and smoothed analysis (Spielman and Teng,
2004) (see also Chapters 13–15 of this book). Recall that in the smoothed analysis
framework, we analyze the performance of an algorithm on a small random perturba-
tion of the input instance. That is, we show that, after we randomly perturb the input,
the algorithm can solve it with the desired accuracy in the desired time. A certified
algorithm perturbs the input instance on its own and then solves the obtained instance
exactly. Importantly, the perturbation does not have to be random or small (in fact,
we will later see that for many problems the perturbation must be considerable).

Definition 5.4 A γ -certified algorithm is an algorithm that, given an instance
I of the problem, returns a γ -perturbation I ′ of I and an optimal solution s∗
for I ′. We will say that I ′ certifies s∗.

As we will see in Section 5.2, certified algorithms have a number of desirable
properties. A γ -certified algorithm always gives a γ -approximation for the problem
and its “complement,” exactly solves γ -perturbation-resilient instances, and solves
weakly perturbation-resilient instances. Also, one may run a certified algorithm, get
a perturbed instance I ′ and an optimal solution s∗ for it, then, taking into account
problem-specific considerations, decide for oneself whether I ′ is similar enough to I
and, consequently, whether s∗ is a reasonably good solution for I.

Robust Algorithms. Most algorithms for perturbation-resilient instances of combi-
natorial optimization problems (but not clustering problems) that we discuss in this
chapter are robust – they never output an incorrect answer, even if the input is not
γ -perturbation-resilient.

Definition 5.5 An algorithm for γ -perturbation-resilient instances is robust
if the following holds: If the input instance is γ -perturbation resilient, the
algorithm finds the optimal solution; if the instance is not γ -perturbation-
resilient, the algorithm either finds an optimal solution or reports that the
instance is not γ -perturbation resilient.

This property is very desirable, as in real life we can only assume that input
instances are perturbation resilient but we cannot be completely certain that they
indeed are.

Running Time. The running time of most certified algorithm we consider in
this chapter will be polynomial in the size of the input and the magnitude of the
parameters. Thus, we will refer to these algorithms as pseudo-polynomial-time
algorithms. Specifically, the running time will be polynomial in the size of the
input and the ratio between the largest and the smallest parameters. To simplify the
exposition, we will additionally assume that the parameters are integers between 1
and W . However, this assumption is not crucial [see (Makarychev and Makarychev,
2020)]. In this chapter, we will also talk about other (“noncertified”) algorithms for
perturbation and weakly perturbation-resilient instances – these algorithms will be
true polynomial-time algorithms, whose running time is polynomial in the input size.

97

K. MAKARYCHEV AND Y. MAKARYCHEV

Organization. We discuss results for combinatorial optimization problems in
Sections 5.2–5.3 and results for clustering problems in Sections 5.5–5.7.

5.2 Combinatorial Optimization Problems

In this section, we describe properties of certified algorithm for combinatorial
optimization problems.

Preliminaries We will formally define what a combinatorial optimization problem is.
Our definition will capture various constraint satisfaction, graph partitioning, and
covering problems. It will be instructive for us to keep in mind two examples of such
problems, Max Cut and Min Uncut.

Definition 5.6 In Max Cut, given a graph G = (V,E,we), the goal is to find a
cut (S,S̄) in G that maximizes the total weight of the cut edges. In Min Uncut,
given a graph G = (V,E,we), the goal is to find a cut (S,S̄) in G that minimizes
the total weight of the edges not cut by (S,S̄).

For a given graph G, the value of a cut (S,S̄) w.r.t. the Max Cut objective plus the
cost of (S,S̄) w.r.t. the Min Uncut objective equals the total weight of all the edges
and does not depend on the specific cut (S,S̄). In particular, an optimal solution for
Max Cut is also an optimal solution for Min Uncut and vice versa. However, as we will
discuss later, a good approximate solution for one of the problems is not necessarily a
good solution for the other. We say that Max Cut and Min Uncut are complementary
problems. Now we give a general definition of a combinatorial optimization problem.

Definition 5.7 An instance of a combinatorial optimization problem is specified
by a set of feasible solutions S (the solution space), a set of constraints C,
and constraint weights wc > 0 for c ∈ C. Typically, the solution space S is of
exponential size and is not provided explicitly. Each constraint is a map from
S to {0,1}. We say that a feasible solution s ∈ S satisfies a constraint c in C if
c(s) = 1.

We consider maximization and minimization objectives.

� The maximization objective is to maximize the total weight of the satisfied
constraints: find s ∈ S that maximizes valI(s) = ∑

c∈C wcc(s).
� The minimization objective is to minimize the total weight of the unsatisfied
constraints: find s ∈ S that minimizes

∑
c∈C wc(1 − c(s)) = w(C) − valI(s)

(where w(C) = ∑
c∈C w(c) is the total weight of all the constraints).

We say that maximization and minimization are complementary objectives;
likewise, we call two instances that differ only in the objective complementary
instances. Note that complementary instances have the same optimal solutions.

Weights {wc}c∈C are the parameters of the instance in the sense of
Definition 5.1.

As is standard for maximization and minimization constraint satisfaction problems,
we do not require that a feasible solution s ∈ S satisfy all of the constraints. In other

98

PERTURBATION RESILIENCE

words, we assume that the constraints are “soft”; later we will consider problems with
“hard” and “soft” constraints (see Theorem 5.12).

Definition 5.8 An optimization problem is a family F of instances. We require
that all instances in F have the same type of the objective (either all of them
have a maximization or all have a minimization objective). We assume that if an
instance (S,C,w) is in F , then so is (S,C,w′) for any choice of positive weights w.

Let us see why this definition captures Max Cut and Min Uncut. For a given
instance G = (V,E,w) of Max Cut or Min Uncut, S is the set of all the cuts in G.
For every edge e ∈ E, there is a constraint ce; ce((S,S̄)) = 1 if e is cut by (S,S̄). The
objective for Max Cut is to maximize

∑
c∈C wcc(S,S̄). The objective for Min Uncut

is to minimize
∑

c∈C wc(1 − c(S,S̄)).
Consider two other examples.

Example 5.9 In Minimum Multiway Cut, we are given a graph G = (V,E,we)

and a set of terminals t1, . . . ,tk. The goal is to partition G into k clusters
P1, . . . ,Pk such that ti ∈ Pi for i ∈ {1, . . . ,k} so as to minimize the total
weight of the cut edges. For this problem, S is the set of all partitions P1, . . . ,Pk
such that ti ∈ Pi for every i. For every edge e ∈ E, there is a constraint ce;
ce((P1, . . . ,Pk)) = 1 if e is not cut by (P1, . . . ,Pk). The objective is to minimize∑

c∈C wc(1 − c(P1, . . . ,Pk)).

Example 5.10 In Maximum Independent Set, we are given a graph
G = (V,E,wv), where wv are positive vertex weights. The goal is to find an
independent set3 I that maximizes w(I). For this problem, S is the set of
all independents sets I in G. For every vertex v ∈ V , there is a constraint cv;
cv(I)= 1 if v ∈ I . The objective is to maximize

∑
c∈C wcc(I). The problem

complementary to Maximum Independent Set is Minimum Vertex Cover. In
Minimum Vertex Cover, the objective is to find a vertex cover C ⊂ V that
minimizes w(C); equivalently, the objective is to find an independent set I that
minimizes

∑
c∈C wc(1 − c(I)).

Basic Properties of Certified Algorithms Now, we discuss basic properties of certified
algorithms. First, we show that certified algorithms provide an approximate solution
for worst case instances and solve perturbation-resilient and weakly perturbation-
resilient instances.

Theorem 5.11 Consider a γ -certified algorithm A.

�A finds a γ -approximate solution regardless of what the input instance is.
Further, it finds a γ -approximation for both the maximization and minimization
objectives.

� If the instance is γ -perturbation-resilient, A finds the optimal solution. If it is
(γ,N)-weakly stable, A finds a solution in N.

3 Recall that a set I ⊂ V is an independent set if no edge in e ∈ E has both its endpoints in I . A set C ⊂ V is
a vertex cover if every edge e ∈ E has at least one endpoint in C. Note that I is an independent set if and only
if V \ I is a set cover.

99

K. MAKARYCHEV AND Y. MAKARYCHEV

Proof Consider an instance I. Denote its optimal solution by s∗. Denote the
instance and solution found by A by I ′ and s′. For each constraint c ∈ C, let wc
and w′

c be its weights in I and I ′, respectively.
1. First, we prove that the algorithm always gives a γ -approximation for both
objectives. Consider the maximization objective. The value of s′ (w.r.t. weights
wc) equals∑

c∈C
wcc(s′) ≥

∑
c∈C

w′
c

γ
c(s′) = 1

γ

∑
c∈C

w′
cc(s′)

(�)≥ 1
γ

∑
c∈C

w′
cc(s∗) ≥ 1

γ

∑
c∈C

wcc(s∗),

where (�) holds since s′ is an optimal solution for I ′. We conclude that s′ is a
γ -approximate solution for the maximization objective. Similarly, we upper
bound the approximation factor for the minimization objective.∑
c∈C

wc(1 − c(s′)) ≤
∑
c∈C

w′
c(1 − c(s′)) ≤

∑
c∈C

w′
c(1 − c(s∗)) ≤ γ

∑
c

wc(1 − c(s∗)).

2. Now, assume that I is γ -perturbation resilient. By the definition of perturba-
tion resilience, I and I ′ have the same optimal solution. Thus, s∗ is an optimal
solution not only for I ′ but also for I. Finally, assume that I is (γ,N)-weakly
perturbation resilient. Since I is (γ,N) weakly perturbation resilient and I ′ is a
γ -perturbation of I, the optimal solution s′ for I ′ must lie in N. �

We note that traditional approximation results for maximization and minimiza-
tion objectives are often very different. For example, the algorithm for Max Cut
by Goemans and Williamson (1995) gives an αGW ≈ 0.878 approximation, while
the best known approximation algorithm for Min Uncut gives only an O(

√
log n)

approximation (Agarwal et al., 2005). Similarly, Minimum Vertex Cover admits a
2-approximation algorithm, while its complement, Maximum Independent Set, does
not even have an n1−δ approximation if P �= NP(for every δ > 0).

Consider an instance of an optimization problem. We may choose a subset of con-
straints H ⊂ C and require that all of them be satisfied. We call them hard constraints
and the obtained instance an instance with hard constraints. Formally, given an
instance (S,C,w) and a subset of constraints H, we define the correspondent instance
(S ′,C′,w) with hard constraints as follows: S ′ = {a ∈ S : c(s)= 1 for every c ∈ H};
C′ = C \ H; w′(c) = w(c) for c ∈ C′.

Theorem 5.12 (Makarychev and Makarychev, 2020) Assume that there is
a pseudo-polynomial-time γ -certified algorithm for a problem P, where γ = γn
is at most polynomial in n. Then there is also a pseudo-polynomial-time
γ -certified algorithm for a variant P′ of P with hard constraints. Accordingly, the
maximization and minimization variants of P′ admit γ -approximation algorithms.

We leave the proof as an exercise (see Exercise 5.3).

Remark Constraint satisfaction problems (CSPs) with hard constraints are
often much harder for approximation algorithms than those without hard
constraints. More precisely, algorithms for minimization CSPs without hard

100

PERTURBATION RESILIENCE

constraints typically can also solve instances with hard constraints. However,
algorithms for maximization CSPs often cannot solve instances with hard
constraints. For example, the algorithm for Max 2-SAT by Lewin et al. (2002)
gives a 0.9401 approximation. However, there is no even an n1−δ approximation
algorithm for Max 2-SAT with hard constraints. The latter is also true for Max
2-Horn SAT (which is a variant of Max 2-SAT in which all the constraints are
Horn clauses).

5.3 Designing Certified Algorithms

In this section, we will describe a general framework for designing certified algo-
rithms, robust algorithms for perturbation-resilient instances, and algorithms for
weakly perturbation-resilient instances, as well as proving that LP or SDP relax-
ations for perturbation-resilient instances are integral (Makarychev et al., 2014;
Makarychev and Makarychev, 2020). To use this framework, one needs to either
develop a procedure for solving a certain combinatorial task (see Task 5.13 and
Lemma 5.14) or design a rounding scheme (procedure) that satisfies so-called approx-
imation and co-approximation properties (see Theorems 5.17 and 5.19 below).

General Framework Consider an optimization problem. We design a certified
algorithm that (1) starts with an arbitrary solution and (2) then iteratively improves
it. This approach is somewhat similar to local search, except that the improvements
are not necessarily local. We show that it suffices to have a procedure for the
following task.

Task 5.13 Assume that we are given an instance I(S,C,w), a partition of its
constraints C = C∞ ∪ C∈, and a parameter γ ≥ 1. The task is either

� Option 1: to find s ∈ S such that γ
∑

c∈C1
wcc(s) >

∑
c∈C2

wc(1 − c(s)), or
� Option 2: to report that for every s ∈ S:

∑
c∈C1

wcc(s) ≤ ∑
c∈C2

wc(1 − c(s)).

(Note that the foregoing options are not mutually exclusive.)

When we use this procedure, C1 and C2 will be the sets of the constraints that are
currently unsatisfied and satisfied, respectively. To give some intuition what Options
1 and 2 say, imagine that γ = 1. Then Option 1 is to find a solution s such that the
weight of the currently unsatisfied constraints satisfied by s is greater than the weight
of the currently satisfied constraints unsatisfied by s. In other words, Option 1 is to
find a solution s better than the current solution. Option 2 is to report that there is
no solution better than s.

Lemma 5.14 Assume that (1) there is a polynomial-time algorithm for Task 5.13
above and (2) there is a polynomial-time algorithm that finds some solution s ∈ S.
Then there exists a pseudo-polynomial-time certified algorithm for the problem.

Before we prove Lemma 5.14, we show how to get a certified algorithm for Max
Cut and Min Uncut.

101

K. MAKARYCHEV AND Y. MAKARYCHEV

Theorem 5.15 There exists a pseudo-polynomial-time γ -certified algorithm for
Max Cut and Min Uncut, where γ = O(

√
log n log log n) is the approximation

factor of the algorithm for Sparsest Cut with nonuniform demands by Arora et al.
(2008).

Proof To prove the theorem, we show how to solve Task 5.13 in polynomial
time. Recall that in our formulation of Max Cut, ce(S,S̄) = 1 if edge e is cut.
Let E1 = {e ∈ E : ce ∈ C1} and E2 = {e ∈ E : ce ∈ C2}; denote the total
weight of the edges in Ei cut by (S,S̄) by w(Ei(S,S̄)). Let φ(S) = w(E2(S,S̄))

w(E1(S,S̄))
.

Then our goal is to either find a cut (S,S̄) such that φ(S) < γ or report that
φ(S) ≥ 1 for every (S,S̄). Now the problem of minimizing φ(S) over all cuts
(S,S̄) is the same as finding the sparsest cut with nonuniform demands in graph
(V,E2) with edge capacities w, demand pairs E1, and demand weights w. We
run the approximation algorithm for Sparsest Cut and get a cut (S,S̄) that
approximately – within a factor of γ – minimizes φ(S). If φ(S) < γ , we report
cut (S,S̄); otherwise, we report that φ(S′) ≥ 1 for every cut (S′,S̄′). �

Our certified algorithm gives γn = O(
√

log n log log n) approximation for Max Cut
and Min Uncut. Let us compare this result with known approximation results for Max
Cut and Min Uncut. For Max Cut, we can obtain a much better approximation factor
of αGW ≈ 0.878 (Goemans and Williamson, 1995). However, for Min Uncut, the best
known approximation factor is O(

√
log n) (Agarwal et al., 2005), which is comparable

to γn. Note that there is also a γn-certified algorithm with an approximation factor
of αGW . The algorithm first finds an αGW approximation for Max Cut, and then
iteratively improves it as described in Theorem 5.15. Can the bound on γn be
improved? It turns out that the optimal value of γn is essentially equal to the best
approximation factorαn for Sparsest Cut with nonuniform demands [see Makarychev
et al. (2014) for details].

Proof of Lemma 5.14 As stated in the introduction, we assume that all weights
wc are integers between 1 and W . We first find a feasible solution s and then
iteratively improve it.

Improvement Procedure. At each iteration, we let C1 ={c ∈ C : c(s)= 0} and
C2 = {c ∈ C : c(s) = 1} be the sets of unsatisfied and satisfied constraints,
respectively. Define weights w′ as follows: w′

c = wc if c ∈ C1 and w′
c = γwc if

c ∈ C2. We run the procedure for Task 5.13 on instance I ′ = (S,C,w′). Consider
two cases. Assume first that the procedure returns a solution s′ such that
γ
∑

c∈C1
w′

cc(s′) >
∑

c∈C2
w′

c(1− c(s′)) (Option 1). We get that
∑

c∈C1
wcc(s′) >∑

c∈C2
wc(1 − c(s′)) and thus valI(s′)=

∑
c∈C1∪C2

wcc(s′)>
∑

c∈C2
wc = valI(s).

Therefore, solution s′ improves s. We use this s′ in the next iteration of the
algorithm.

Assume now that the procedure reports that for every solution s′:∑
c∈C1

w′
cc(s′) ≤ ∑

c∈C2
w′

c(1 − c(s′)) (Option 2) or, equivalently, valI ′(s′) =∑
c∈C1∪C2

w′
cc(s′) ≤ ∑

c∈C2
w′

c = valI ′(s) We return instance I ′ and solution s.
When the algorithm terminates, it outputs an instance I ′, which is a

γ -perturbation of I, and an optimal solution s for it. Thus, the algorithm

102

PERTURBATION RESILIENCE

is indeed a γ -certified algorithm. It remains to bound its running time. At each
iteration, the value of the solution increases by at least 1 (recall that we have
assumed that all weights are integers). Therefore, the algorithm terminates in
at most

∑
c∈C wc ≤ |C|W iterations. Since each iteration requires polynomial

time, the running time is polynomial in n and W . �

Using Convex Relaxations We now describe how to design certified algorithms using
linear or semidefinite programming relaxations (or, in fact, any polynomially tractable
convex relaxations).

While our ultimate goal is to design a certified approximation algorithm, imagine
for a moment that we simply want to design a regular approximation algorithm. One
standard approach is to write a relaxation for the problem and design a rounding
scheme for it. For example, to solve Maximum Independent Set (see Example 5.10),
we can use the following linear programming (LP) relaxation:

maximize
∑
u∈V

wuxu (5.1)

subject to: xu + xv ≤ 1 for (u,v) ∈ E and 0 ≤ xu ≤ 1 for u ∈ V

Our discussion that follows applies to any combinatorial optimization problem; but
it might be instructive to keep relaxation (5.1) in mind. We refer to problem solutions
s ∈ S as combinatorial solutions and relaxation solutions x as fractional solutions; we
say that x is integral if it corresponds to a combinatorial solution s ∈ S. We assume
that in the relaxation we have a variable xc for each constraint c so that xc = c(s) for
every integral solution x and corresponding combinatorial solution s.4

Suppose first that we design an approximation algorithm for a maximization
problem. Then the relaxation is to maximize fval(x) = ∑

c∈C wcxc subject to certain
problem specific constraints. We solve the relaxation, find a fractional solution x, and
round it to a combinatorial solution R(x) using a randomized rounding scheme R.
Assume that the rounding scheme satisfies the following approximation condition for
some α ≥ 1:

� Approximation Condition The probability5 that each constraint c ∈ C is satisfied
by R(x) is at least xc/α.

Then the expected weight of the constraints satisfied by R(x) is at least fval
α

. Thus, we
get a randomized α-approximation algorithm.

Suppose now that we design an algorithm for a minimization problem. Then the
relaxation objective is to minimize

∑
c∈C wc(1 − xc). Now, we use a rounding scheme

that satisfies the following co-approximation condition for some β ≥ 1:

� Co-approximation Condition. The probability that each constraint c ∈ C is unsatis-
fied by R(x) is at most β(1 − xc).

The expected weight of the unsatisfied constraints is at most β
∑

c∈C wc(1 − xc). We
get a β-approximation algorithm. We see that approximation and co-approximation

4 Note that if we do not have variables xc in the relaxation, we can usually add them, since expressions for
them appear in the relaxation objective anyway.

5 The probability is over the random choices made by R.

103

K. MAKARYCHEV AND Y. MAKARYCHEV

conditions play a central role in the design of traditional approximation algorithms.
It turns out that they can also be used to design certified algorithms.

Definition 5.16 We say that a rounding scheme R is an (α,β)-rounding if it
simultaneously satisfies the approximation and co-approximation conditions
with parameters α and β.

Theorem 5.17 Assume that there exists an (α,β)-rounding scheme R.
1. Assume that R is computable in randomized polynomial time. Let
W = maxc∈C wc

minc∈C wc
be the ratio between the maximum and the minimum weights. Then

there exists a randomized6 certified γ -approximation algorithm for the problem
where γ = αβ+ε; its running time is polynomial in the instance size, W, and 1/ε.
2. Now we make a stronger assumption. Assume that the support of R is of
polynomial size and can be found in polynomial time and that all the weights are
integers between 1 and W. Then there exists a certified γ -approximation algorithm
where γ = αβ; its running time is polynomial in the instance size and W.

In both cases, the solution s∗ returned by the algorithm is an optimal solution
for the convex relaxation for I ′.

Proof To simplify the exposition, we will only prove Part Two. The proof of
Part One is very similar but more technical. We refer the reader to Makarychev
and Makarychev (2020) for details. Note that the condition that the support
of R can be found in polynomial time is not very restrictive; most rounding
schemes satisfy it.

We use Lemma 5.14 to design the algorithm. Namely, we show how to solve
Task 5.13 in polynomial time. First, we solve the convex relaxation for the
problem and obtain a fractional solution x. If

∑
c∈C1

wcxc ≤ ∑
c∈C2

wc(1−xc),
then for every s∑

c∈C1

wcc(s) +
∑
c∈C2

wcc(s) ≤
∑
c∈C1

wcxc +
∑
c∈C2

wcxc ≤
∑
c∈C2

wc. (5.2)

So we report that
∑

c∈C1
wcc(s) ≤ ∑

c∈C2
wc(1 − c(s)) for every s (Option 2).

In this case, the certified algorithm from Lemma 5.14 returns a solution s∗ of
value w(C2) = ∑

c∈C2
wc. Equation (5.2) shows that the value of every fractional

solution (let alone integral) is at most valI(s∗) = w(C2).
Assume now that

∑
c∈C1

wcxc >
∑

c∈C2
wc(1 − xc). We apply rounding

scheme R and obtain a solution R(x). From the approximation and co-
approximation conditions, we get

E

⎡⎣γ ∑
c∈C1

wcc(R(x)) −
∑
c∈C2

wc(1 − c(R(x)))

⎤⎦ ≥ γ

α

∑
c∈C1

wcxc−β
∑
c∈C2

wc(1−xc)

since γ = αβ= β

⎛⎝∑
c∈C1

wcxc −
∑
c∈C2

wc(1 − xc)

⎞⎠ > 0.

6 More precisely, the algorithm is a Las Vegas algorithm, and as such, always outputs a correct solution.

104

PERTURBATION RESILIENCE

Thus for some solution s in the support of R(x), we have γ
∑

c∈C1
wcc(s) >∑

c∈C2
wc(1 − c(s)). We find and return such a solution s. �

As an immediate corollary, we get an algorithm for solving γ -perturbation-
resilient and γ -weakly perturbation-resilient instances of combinatorial optimization
problems. As we will describe below (see Theorem 5.19), it is actually sufficient to
make slightly weaker assumptions to get algorithms for perturbation-resilient and
weakly perturbation-resilient instances. Before we state Theorem 5.19, let us discuss
how we can relax the conditions in Theorem 5.17. First, it is sufficient to design a
rounding scheme that only rounds an optimal fractional solution. For some problems,
this may be an easier task as the optimal fractional solution may satisfy certain
additional properties (e.g., be half-integral). Also, it is sufficient to design a rounding
scheme that only rounds fractional solutions that are close to integral solutions.

Definition 5.18 Let us say that a fractional solution x is δ-close to integral if
x = (1 − δ)xint + δxfrac for some integer solution xint and fractional solution
xfrac (for LP relaxations this condition implies that each LP variable xc is in
[0,δ] ∪ [1 − δ,1]). Rounding scheme R is a δ-local (α,β)-rounding if it is defined
and satisfies the approximation and co-approximation conditions for fractional
solutions x that are δ-close to an integral solution; the rounding scheme may but
does not have to be defined or satisfy the approximation and co-approximation
conditions for fractional solutions that are not δ-close to integral solutions.

Remark It is sufficient to have a δ-local rounding scheme (with δ ≥ 1/ poly(n))
in Theorem 5.17. Designing such a scheme may be a considerably easer task
than designing a rounding scheme for arbitrary solutions. If we have such a
scheme, we proceed as follows. Denote the fractional solution corresponding to
the combinatorial solution s by x(s). We find an optimal fractional solution x∗
and then let x = (1 − δ)x(s) + δx∗. Note that x is δ-close to integral. It is easy
to see that if x∗ is better than x(s), then so is x. Then we use x in the proof of
Theorem 5.17 [see Makarychev and Makarychev (2020) for details].

Now, we describe a condition under which polynomial-time algorithms for solving
γ -perturbation-resilient and (γ + ε,N)-weakly stable instances of combinatorial
optimization problems are guaranteed to exist. Note that we do not make any
assumptions about the weights wc.

Theorem 5.19 (Makarychev and Makarychev (2016); Angelidakis et al. (2017))
Assume that there is an (α,β)-rounding scheme or a δ-local (α,β)-rounding
scheme R. Let γ = αβ. Then we have:

� The convex relaxation is integral for γ -perturbation-resilient instances. R does
not have to be computable in polynomial-time.

� There exists a robust polynomial-time algorithm for solving γ -perturbation-
resilient instances. The running time depends only on the size of the input. Again,
R does not have to be computable in polynomial time (we use R only in the
analysis of the algorithm).

105

K. MAKARYCHEV AND Y. MAKARYCHEV

� Assume that the support of R(x) is of polynomial size and can be found in
polynomial time and that ε,δ ≥ 1/ poly(n). Then there exists a polynomial-time
algorithm for solving (γ + ε)-weakly perturbation-resilient instances.

5.4 Examples of Certified Algorithms

Maximum Independent Set We now prove that there exist a (k−1)-certified algorithm
for Maximum Independent Set (MIS) in k-colorable graphs and a robust algorithm
for (k − 1)-perturbation-resilient instances of the problem (see Example 5.10 for the
definition of MIS). To get the algorithms, we follow the approach we discussed in the
previous section and design an (α,β)-rounding scheme with αβ = k − 1.

Consider a k-colorable graph G = (V,E,w). Solve relaxation (5.1) for MIS. Let
x be an optimal vertex solution. It is known that x is half-integral (Nemhauser and
Trotter, 1975). Define Vt = {u ∈ V : xu = t} for t ∈ {0,1/2,1}. Consider the following
rounding scheme due to Hochbaum (1983) (the rounding scheme needs to know a
proper k-coloring (C1, . . . ,Ck) of V).

Rounding scheme R
Choose i ∈ {1, . . . ,k} uniformly at random.
Return S = V1 ∪ (V1/2 ∩ Ci).

Theorem 5.20 (Angelidakis et al., 2019) R is an (α,β)-rounding for MIS with
α = k/2 and β = 2(k − 1)/k. Given the coloring, the rounding algorithm outputs
a distribution of independent sets in polynomial time; the distribution support is
of polynomial size.

Proof It is easy to see that the rounding scheme always outputs an independent
set S. If u ∈ V1, then u ∈ S (always); if u ∈ V0, then u /∈ S (always) – in
these two cases there is no randomness involved, and the approximation and
coapproximation conditions trivially hold. Now if u ∈ V1/2, then u ∈ S with
probability 1/k (this happens when i is the color of u). The approximation
condition holds, since Pr (u ∈ S) = 1/k = xu/α; the co-approximation
condition holds, since Pr (u /∈ S) = k−1

k = β(1 − xu). �

We conclude that there exists a polynomial-time (k − 1)-certified algorithm for MIS
and a robust polynomial-time algorithm for (k − 1)-perturbation-resilient instances.
Note that the certified algorithm needs to know the k-coloring of the graph, but the
robust algorithm does not; the algorithm simply solves the LP relaxation and outputs
the solution, which is guaranteed to be integral (see Theorem 5.19).

Minimum Multiway Cut Now, we design certified and robust algorithms for Minimum
Multiway Cut (see Example 5.9 for the definition of the problem). To simplify the
exposition, we focus on the case k = 3. Consider the LP relaxation by Călinescu
et al. (2000) for the problem. For every vertex u, there is a vector ū = (u1,u2,u3) in
the LP. In the integral solution corresponding to a partition (P1,P2,P3): ui = 1, if
u ∈ Pi; and ui = 0, otherwise. That is, ū = ei (the ith standard basis vector) if u ∈ Pi.
The objective is to minimize 1

2

∑
e=(u,v)∈E w(e)‖ū − v̄‖1 subject to (i) t̄j = ej for all

j ∈ {1,2,3}, (ii) u1 +u2 +u3 = 1 for all u ∈ V , and (iii) uj ≥ 0 for all u ∈ V , j ∈ {1,2,3}.

106

PERTURBATION RESILIENCE

e1 e2

e3

e1 e2

e3

Figure 5.1 Each vector ū lies in the triangle with vertices e1, e2, e3. The left figure shows the 2-vertex cut
of radius 3/10 with pivot i = 3; the right figure shows the ball cut of radius 4/5 with pivot i = 3.

It is easy to see that by adding auxiliary variables, we can write the objective as a
linear function. Let d(ū,v̄) = 1

2‖ū − v̄‖1. The relaxation requires that each vector ū
lie in the triangle
 = conv(e1,e2,e3) with vertices e1,e2,e3. Our goal is to design a
δ-local (α,β)-rounding for Minimum Multiway Cut with αβ = 4/3 and δ= 1/30.
As is standard for approximation algorithms for Minimum Multiway Cut, we
will consider a rounding scheme that (randomly) cuts triangle
 into three pieces
P̂1,P̂2,P̂3 so that ei ∈ P̂i and then lets Pi = {u : ū ∈ P̂i} for each i. It is immediate
that the rounding gives a feasible solution, since t̄i = ei ∈ P̂i. We will describe how
to cut triangle
 so that the obtained rounding scheme is a δ-local (α,β)-rounding.

We are going to define two families of cuts, two-vertex cuts and ball cuts [introduced
by Karger et al. (2004)]. Given a vertex ei and radius r ∈ (0,1), let Br(ei) = {x̄ :
d(x̄,ei) ≤ r} be the ball of radius r around ei w.r.t. distance d. Geometrically, Br(ei) is
the triangle with vertices ei, (1−r)ei+rej1 , and (1−r)ei+rej2 , where ej1,ej2 are the basis
vectors other than ei. The two-vertex cut of radius r ∈ (0,1) with pivot i ∈ {1,2,3},
shown on Figure 5.1, is defined by P̂j = Br(ej) for j ∈ {j1,j2} and P̂i =
 \ (P̂j1 ∪ P̂j2).
The ball cut of radius r ∈ (0,1) with pivot i ∈ {1,2,3}, shown on Figure 5.1, is defined
by: P̂i = Br(ei), every point x̄ /∈ P̂i belongs to either P̂j1 or P̂j2 depending on whether
it lies closer to ej1 or ej2 w.r.t. distance d. Now we are ready to present the rounding
scheme.

Rounding scheme R
Choose r ∈ (0,2/5) uniformly at random.
Choose pivot i ∈ {1,2,3} uniformly at random.
With probability 1/3, let (P̂1,P̂2,P̂3) be the two-corner cut of radius r with pivot i.
Otherwise, let (P̂1,P̂2,P̂3) be the ball cut of radius 1 − r with pivot i.
Let Pj = {u ∈ V : ū ∈ P̂j} for j ∈ {1,2,3}.
Return partition P = (P1,P2,P3).

Theorem 5.21 (Angelidakis et al., 2017) R is a δ-local (α,β)-rounding for
Minimum Multiway Cut with α = 10/9 and β = 6/5.

We leave the proof as an exercise (see Exercise 5.4). We conclude that there exists a
polynomial-time 4/3-certified algorithm for Multiway Cut with three terminals and
a robust polynomial-time algorithm for 4/3-perturbation-resilient instances. These
results generalize to (2 − 2/k)-perturbation-resilient instances of Multiway Cut with
k terminals; see Angelidakis et al. (2017).

107

K. MAKARYCHEV AND Y. MAKARYCHEV

5.5 Perturbation-Resilient Clustering Problems

In this section, we consider k-clustering problems with the �p objective. This is a broad
class of problems which includes k-means, k-medians, and k-center.

Definition 5.22 (k-Clustering with the �p Objective) An instance of k-
clustering with the �p objective (p ≥ 1) consists of a metric space (X,d) and a
natural number k. The goal is to partition X into k disjoint clusters C1, . . . ,Ck
and assign a center ci to each cluster Ci so as to minimize the following objective
function:

k∑
i=1

∑
u∈Ci

dp(u,ci).

For p = ∞, the objective function is maxi∈{1,...,k}
u∈Ci

|d(u,ci)|.

Note that k-medians is the k-clustering problem with the �1 objective; k-means is
k-clustering with the �2 objective; and k-center is k-clustering with the �∞ objective.

Consider an instance (X,d) of k-clustering with the �p objective. In an optimal
solution to this problem, each point is assigned to the closest center c1, . . . ,ck. That
is, if u ∈ Ci, then d(u,ci) ≤ d(u,cj) for all j �= i. This is an important property common
to all so-called clustering problems with a center-based objective. Note that the optimal
clustering C1, . . . ,Ck is determined by the centers c1, . . . ,ck. Specifically, {C1, . . . ,Ck}
is the Voronoi partition for c1, . . . ,ck; that is, Ci is the set of points in X that are closer
to ci than to any other cj.

Now let us assume that the distance from every point in X to its own center is
less than the distances to other centers by a certain margin. Specifically, suppose that
there exists an optimal clustering C1, . . . ,Ck with centers c1, . . . ,ck that satisfies the
following condition called λ-center proximity: for every u ∈ Ci, not only d(u,ci) ≤
d(u,cj) but also λd(u,ci) < d(u,cj).

Definition 5.23 (λ-Center Proximity) Let (X,d) be an instance of the
k-clustering problem with the �p objective. Consider an optimal solution
C1, . . . ,Ck with centers c1, . . . ,ck. We say that c1, . . . ,ck satisfies the
λ-center proximity condition (where λ≥ 1) if for every u ∈ Ci and j �= i, we
have λd(u,ci) < d(u,cj).

We say that (X,d) has an optimal solution satisfying the λ-center proximity
condition if there exists an optimal solution C1, . . . ,Ck with centers c1, . . . ,ck
satisfying the λ-center proximity condition.

The optimal set of centers is not necessarily unique for a given clustering
C1, . . . ,Ck. Some optimal sets of centers for C1, . . . ,Ck may satisfy the λ-center
proximity condition, while others do not.

In Section 5.6, we show that there exists an algorithm – a variant of the classic
single-linkage clustering – that finds the optimal clustering if this clustering satisfies
the 2-center proximity condition for some set of optimal centers. We note that it

108

PERTURBATION RESILIENCE

is NP-hard to find the optimal clustering in instances satisfying λ-center proximity
condition with λ < 2 (Ben-David and Reyzin, 2014). Now we restate Definitions 5.1
and 5.2 taking into account specifics of clustering problems.

Definition 5.24 (Perturbations and Metric Perturbations) Consider a met-
ric space (X,d). We say that a symmetric function d ′ : X × X → R+ is a
γ -perturbation of d if for all u,v ∈ X we have 1

γ
d(u,v) ≤ d ′(u,v) ≤ d(u,v). We

say that d ′ is a metric γ -perturbation of d if d ′ is a γ -perturbation of d and a
metric itself; i.e., d ′ satisfies the triangle inequality.

Note that a (non-metric) γ -perturbation d ′ may violate the triangle inequality and
thus is not necessarily a metric.

Definition 5.25 (Perturbation Resilience) Consider an instance (X,d) of the
k-clustering problem with the �p objective. Let C1, . . . ,Ck be the optimal
clustering. Then, (X,d) is γ -perturbation resilient if for every γ -perturbation
of d, the unique optimal clustering of (X,d ′) is C1, . . . ,Ck. Similarly, (X,d)
is metric γ -perturbation-resilient if for every metric γ -perturbation of d, the
unique optimal clustering of (X,d ′) is C1, . . . ,Ck.

The definition of metric γ -perturbation resilience is less restrictive than that of
γ -perturbation resilience: if an instance is γ -perturbation resilient, it is also metric
γ -perturbation resilient but not the other way around. In particular, every algo-
rithm that solves metric γ -perturbation-resilient instances also solves γ -perturbation-
resilient instances.

Note that in the definition of γ -perturbation resilience we do not require that
the optimal centers of the clusters C1, . . . ,Ck are the same for distance functions
d and d ′. If we added this requirement we would get a much stronger definition of
γ -perturbation resilience or metric γ -perturbation resilience (see Exercise 5.7).

Perturbation resilience is a stronger notion than center proximity: Every
γ -perturbation-resilient instance satisfies the γ -center proximity condition. We prove
this implication in Theorem 5.27. The converse statement does not hold, and thus
these notions are not equivalent (see Exercise 5.10).

In this chapter, we present two results on γ -perturbation resilience. First, we
give a dynamic programming algorithm that finds an exact solution to any 2-center
proximity instance of the k-clustering problem (see Theorem 5.29). Since every metric
2-perturbation-resilient instance satisfies the 2-center proximity condition (see The-
orem 5.27), our algorithm also works for metric 2-perturbation-resilient instances.
Then, we discuss a connection between perturbation resilience and local search and
show that the standard local search algorithm for k-medians is a (3 + ε)-certified
algorithm. Thus, this algorithm returns the optimal clustering for γ -perturbation-
resilient instances and gives a (3 + ε)-approximation for arbitrary instances.

Open Question 5.26 Suppose we replace the requirement that d ′ be a γ -
perturbation of d with the requirement that d ′ be a metric γ -perturbation of
d in the definition of a γ -certified algorithm (see Definition 5.4). Can we design
a (3 + ε)-certified algorithm according to the new definition?

109

K. MAKARYCHEV AND Y. MAKARYCHEV

5.5.1 Metric Perturbation Resilience Implies Center Proximity

We show that metric perturbation resilience implies center proximity.

Theorem 5.27 (Awasthi et al., 2012, and Angelidakis et al., 2017) Let (X,d) be
a metric γ -perturbation-resilient instance of the k-clustering problem with the �p
objective (p ≥ 1). Consider the unique optimal solution C = (C1, . . . ,Ck) and an
optimal set of centers {c1, . . . ,ck} (which is not necessarily unique). Then, centers
c1, . . . ,ck satisfy the γ -center proximity property.

Proof Consider an arbitrary point p in X . Let ci be the closest center to p in
{c1, . . . ,ck} and cj be another center. We need to show that d(p,cj) > γ d(p,ci).
Suppose that d(p,cj) ≤ γ d(p,ci). Let r∗ = d(p,ci). Define a new metric d ′.
Consider the complete graph G = (X,E) on the metric space X . Let the length
len(u,v) of every edge (u,v) be d(u,v). Then, d(u,v) is the shortest path metric
on G. We now shorten edge (p,cj) while preserving the lengths of all other edges.
Specifically, we let len′(p,cj) = r∗ and len′(u,v) = d(u,v) for (u,v) �= (p,cj). Let
d ′ be the shortest path metric on graph G with edge lengths len′(u,v). Observe
that d ′(u,v) = d(u,v) unless there is a shortcut that goes along the edge (p,cj).
That is, the distance d ′(u,v) between any two points u and v equals the length of
the shortest of the following three paths: (1) u → v, (2) u → p → cj → v, and
(3) u → cj → p → v. Thus,

d ′(u,v) = min
(
d(u,v),d(u,p) + r∗ + d(cj,v),d(u,cj) + r∗ + d(p,v)).

Note that len(u,v)/γ ≤ len′(u,v) ≤ len(u,v). Hence, d(u,v)/γ ≤ d ′(u,v) ≤
d(u,v) and thus d ′(u,v) is a γ -perturbation. Thus, the optimal clustering of
X for d ′ is the same as for d. Namely, it is C1, . . . ,Ck. However, generally
speaking, the optimal centers for clusters C1, . . . ,Ck may differ for metrics d
and d ′ (for some γ -perturbations they do!). Nevertheless, we claim that ci and
cj are optimal centers for clusters Ci and Cj with respect to metric d ′. This
leads to a contradiction with our assumption that d(p,cj) ≤ γ d(p,ci), because
p must be closer to its own center ci than to cj and, consequently, we must have
d(p,ci) = d ′(p,ci) < d ′(p,cj) = d(p,ci).

Therefore, to finish the proof we need to show that ci and cj are optimal
centers for clusters Ci and Cj with respect to the metric d ′. To this end, we prove
that the metric d ′ equals d within clusters Ci and Cj, and, hence any optimal
center for Ci w.r.t. d is also an optimal center w.r.t d ′ and vice versa. �

Lemma 5.28 For all u,v ∈ Ci, we have d(u,v) = d ′(u,v). Also, for all u,v ∈ Cj,
we have d(u,v) = d ′(u,v).

Proof To prove that d ′(u,v)= d(u,v), we need to show that d(u,v)< min
(d(u,p)+ r∗ + d(cj,v),d(u,cj)+ r∗ + d(p,v)). Assume without loss of generality
that d(u,p) + r∗ + d(cj,v) ≤ d(u,cj) + r∗ + d(p,v). Then,

d(u,p) + r∗ + d(cj,v) = (
d(u,p) + d(p,ci)︸ ︷︷ ︸

≥d(u,ci)

)+ d(cj,v) ≥ d(u,ci) + d(cj,v).

110

PERTURBATION RESILIENCE

1. If u,v ∈ Ci, then the closest center to v is ci and, particularly, d(cj,v) >

d(ci,v). Thus, d(u,p) + r∗ + d(cj,v) > d(u,ci) + d(ci,v) ≥ d(u,v).
2. If u,v ∈ Cj, then the closest center to u is cj and, particularly, d(u,ci) >

d(u,cj). Thus, d(u,p) + r∗ + d(cj,v) > d(u,cj) + d(cj,v) ≥ d(u,v). �

5.6 Algorithm for 2-Perturbation-Resilient Instances

In this section, we prove that a variant of the single-linkage clustering algorithm finds
the exact optimal solution for instances of clustering problems with the �p objective
satisfying the 2-center proximity condition (or, more formally: instances that have an
optimal solution C1, . . . ,Ck with centers c1, . . . ,ck that satisfy the 2-center proximity
condition).

Single-linkage clustering is a classic algorithm that works as follows. Given a metric
space (X,d) on n points, it creates n clusters each containing a single point from X .
Then, at every step it picks the two closest clusters and merges them. The distance
between clusters is usually defined as the distance between the two closest points in
the clusters i.e., d(C′,C′′) = minu∈C′,v∈C′′ d(u,v). Thus, at every step the number of
clusters decreases by 1. The algorithm stops when only k clusters remain.

Single-linkage clustering is a fairly simple and relatively fast algorithm. However,
it fails to find an optimal clustering when the clusters are not isolated from each
other. It is also very fragile to noise because adding just a few extra points to the
dataset X can drastically alter the output. We cannot use single-linkage clustering
as is for perturbation-resilient instances, since this algorithm may output a very
bad clustering even if the instance is γ -perturbation-resilient with arbitrarily large
γ (see Exercise 5.11) and for this reason will use a dynamic programming-based
postprocessing step.

Theorem 5.29 (Angelidakis et al., 2017) There exists a polynomial-time algo-
rithm that given an instance (X,d) of k-clustering with the �p objective outputs an
optimal solution if (X,d) has an optimal solution satisfying the 2-center proximity
condition.

Algorithm Consider the complete graph G on X , in which every edge (u,v) has
length d(u,v). Our algorithm first constructs the minimum spanning tree (MST) T in
G and then clusters T using dynamic programming. To construct the MST, we can use
one of many known algorithms, particularly Kruskal’s algorithm which is essentially
a variant of single-linkage clustering. We describe the dynamic program later in this
section. Now we show that if an instance has an optimal solution satisfying the
2-center proximity condition then all clusters in that solution must form connected
components in the minimum spanning tree.

Theorem 5.30 Consider an instance (X,d) of k-clustering with the �p objective.
Let C1, . . . ,Ck be an optimal clustering with centers c1, . . . ,ck satisfying the
2-center proximity condition; and let T = (X,E) be the minimum spanning tree
(MST) in the complete graph on X with edge lengths d(u,v). Then, each cluster
Ci is a subtree of T (i.e., for every two vertices u,v ∈ Ci, the unique shortest path
from u to v in T completely lies within Ci).

111

K. MAKARYCHEV AND Y. MAKARYCHEV

We will need the following lemma.

Lemma 5.31 Consider an instance (X,d) of the k-clustering problem with the
�p objective. Suppose that C1, . . . ,Ck is an optimal clustering for (X,d) and
c1, . . . ,ck is an optimal set of centers. If c1, . . . ,ck satisfy the 2-center proximity
property, then for every two distinct clusters Ci and Cj and all points u ∈ Ci and
v ∈ Cj, we have d(u,ci) < d(u,v).

Proof Since c1, . . . ,ck satisfy the 2-center proximity property, we have
2d(u,ci)< d(u,cj) and 2d(v,cj)< d(v,ci). Thus, by the triangle inequality,
2d(u,ci)< d(u,v) + d(v,cj) and 2d(v,cj)< d(u,v) + d(u,ci). We sum these
inequalities with coefficients 2/3 and 1/3 and obtain the desired bound:
d(u,ci) < d(u,v). �

Proof of Theorem 5.30 Since T is a tree, it suffices to show that for every u ∈ Ci,
all points on the unique path in T from u to ci lie in Ci. Consider an arbitrary
point u ∈ Ci and denote the path from u to ci by u1, . . . ,uM , where u1 = u and
uM = ci. We prove by induction on m that all um (m = 1, . . . ,M) are in Ci.
The point u1 = u is in Ci. Also, uM ∈ Ci because uM = ci is the center of Ci.
Suppose that um ∈ Ci and m < M − 1, we show that um+1 ∈ Ci. By the MST
cycle property, (uM,um) is the longest edge in the cycle um → um+1 → · · · →
uM → um (since all edges in the cycle but edge (uM,um) belong to the MST).
Particularly, d(um,ci) ≡ d(um,uM) ≥ d(um,um+1). By the induction hypothesis
um ∈ Ci. Therefore, by Lemma 5.31, um+1 also belongs to Ci (because if um+1
was not in Ci we would have d(um,ci) < d(um,um+1)). �

Dynamic Program We now describe a dynamic program for finding the optimal
clustering in the MST. Let us choose an arbitrary vertex r in X as a root for the MST
T . Denote by Tu the subtree rooted at vertex u. We define two types of subproblems
OPT and OPTAC :

1. Let OPT(u,m) be the optimal cost of partitioning subtree Tu into m clusters that
are subtrees of T .

2. Let OPTAC(u,m,c) be the optimal cost of partitioning subtree Tu into m clusters
subject to the following constraint: vertex u and all points in its cluster must be
assigned to the center c.

The cost of k-clustering X equals OPT(r,k). For simplicity, we assume that the MST
is a binary tree (the general case can be handled by transforming any tree to a binary
tree by adding “dummy” vertices). Let left(u) be the left child of u and right(u) be the
right child of u.

We write recurrence relations on OPT and OPTAC . To compute OPT(u,m)we need
to find the optimal center for u and return OPT(u,m,c). Thus,

OPT(u,m) = min
c∈X

OPTAC(u,m,c).

112

PERTURBATION RESILIENCE

To find OPTAC(u,m,c), we find the optimal solutions for the left and right subtrees
and combine them. To this end, we need to guess the number of clusters mL and mR in
the left and right subtrees. We present formulas for OPTAC(u,m,c) in the four possible
cases.

1. If both children left(u) and right(u) are in the same cluster as u, then

min
mL,mR∈Z+

mL+mR=m+1

d(c,u) + OPTAC(left(u),c,mL) + OPTAC(right(u),c,mR).

2. If left(u) is in the same cluster as u, but right(u) is in a different cluster, then

min
mL,mR∈Z+
mL+mR=m

d(c,u) + OPTAC(left(u),c,mL) + OPT(right(u),mR).

3. If right(u) is in the same cluster as u, but left(u) is in a different cluster, then

min
mL,mR∈Z+
mL+mR=m

d(c,u) + OPT(left(u),mL) + OPTAC(right(u),c,mR).

4. If u, left(u), and right(u) are in different clusters, then

min
mL,mR∈Z+

mL+mR=m−1

d(c,u) + OPT(left(u),mL) + OPT(right(u),mR).

We compute the values of OPTAC(u,m,c) in the four cases above and choose the
minimum among them.

The sizes of the DP tables for OPT and OPTAC are O(n × k) and n × k × n) =
O(n2k), respectively. It takes O(n) and O(k) time to compute each entry in the tables
OPT and OPTAC , respectively. Thus, the total running time of the DP algorithm is
O(n2k2). The running time of Prim’s MST algorithm is O(n2).

5.7 (3 + ε)-Certified Local Search Algorithm for k-Medians

A common heuristic for clustering as well as for related problems such as Facility
Location is local search (see also Chapter 13). Sometimes, local search algorithms
are used on their own and sometimes to process the output of other algorithms. It is
known that local search gives a (3 + ε)-approximation for k-medians and a (9 + ε)-
approximation for k-means (Arya et al., 2004; Kanungo et al., 2004), where ε > 0
is arbitrary. The running time is exponential in 1/ε. We will see that local search is a
(3 + ε)-certified algorithm k-medians.

Below, we will focus on the k-medians problem though similar results hold for
any clustering problems with the �p objective. Consider an arbitrary set of centers
c1, . . . ,ck. The optimal clustering C1, . . . ,Ck for this set of centers is defined by the
Voronoi partition; i.e., u ∈ Ci if and only if ci is the closest center to u (ties between
centers are broken arbitrarily). Denote by cost(c1, . . . ,ck) its cost.

We now describe a 1-local search algorithm. The algorithm maintains a set of k
centers c1, . . . ,ck. It starts with an arbitrary set of centers c1, . . . ,ck. Then, at every

113

K. MAKARYCHEV AND Y. MAKARYCHEV

step, it considers all possible swaps ci → u, where ci is a center in the current set
of centers, and u is a point outside of this set. If we can improve the solution by
swapping ci with u, we perform this swap. In other words, if for some pair (ci,u), we
have cost(c1, . . . ,ci−1,u,ci+1, . . . ,ck) < cost(c1, . . . ,ck), then we replace the center ci
with u. The algorithm terminates when no swap ci → u can improve the solution. We
call the obtained set of centers 1-locally optimal and denote it by L. A more powerful
(alas less practical) version of the local search algorithm considers swaps of size up to
ρ instead of 1. We call this algorithm the ρ-local search algorithm. Its running time
is exponential in ρ.

Theorem 5.32 (Cohen-Addad and Schwiegelshohn, 2017 and Balcan and
White, 2017) The ρ-local search algorithm for k-medians outputs the optimal
solution on (3 + O(1/ρ))-perturbation-resilient instances7.

This result follows from the following theorem.

Theorem 5.33 The ρ-local search algorithm for k-medians is (3 + O(1/ρ))-
certified.

Proof Consider an arbitrary metric space (X,d). Suppose that the local search
algorithm outputs a clustering with centers L = {l1, . . . ,lk}. We show that there
exists a γ -perturbation of d – a distance function d ′ : X × X → R+ for which
L is the optimal solution (where γ = 3 + O(1/ρ)). We note that, generally
speaking, d ′ does not have to satisfy the triangle inequality and thus (X,d ′) is
not necessarily a metric space.

We define d ′ as follows: If li is the closest center to u in L, then d ′(u,li) =
d(u,li)/γ ; otherwise, d ′(u,li) = d(u,li). Consider an arbitrary set of centers
S = {s1, . . . ,sk}. We need to show that the cost of the k-median clustering with
centers in L is at most the cost of the k-median clustering with centers in S with
respect to the new distance function d ′ and thus L is an optimal solution for d ′.
Let l(u) and s(u) be the closest centers to point u in L and S respectively with
respect to d; and let l′(u) and s′(u) be the closest centers to point u in L and S
respectively with respect to d ′. Our goal is to prove that∑

u∈X

d ′(u,l′(u)) ≤
∑
u∈X

d ′(u,s′(u)). (5.3)

Observe that for every point u ∈ X , we have d(u,v) = d ′(u,v) for all v but
v = l(u). Thus, l′(u) = l(u) and d ′(u,l′(u)) = d(u,l(u))/γ . Consequently, the
left-hand side of (5.3) equals

∑
u∈X d(u,l(u))/γ . Similarly, s′(u) = s(u) and

d ′(u,s′(u)) = d(u,s(u)) if l(u) /∈ S. However, if l(u) ∈ S, then d ′(u,s′(u)) =
min

(
d(u,s(u)),d(u,l(u))/γ

)
as, in this case, the optimal center for u in S w.r.t. d ′

can be l(u).
Let us split all vertices in X into two groups A = {u : l(u) ∈ S} and B = {u :

l(u) /∈ S}. Then, for u ∈ A, we have d ′(u,s′(u)) = min
(
d(u,s(u)),d(u,l(u))/γ

)
;

7 In contrast to Theorem 5.29, Theorem 5.32 requires that the instance be perturbation resilient, not only
metric perturbation resilient.

114

PERTURBATION RESILIENCE

and for u ∈ B, we have d ′(u,s′(u)) = d(u,s(u)). Thus, inequality (5.3) is equiva-
lent to ∑

u∈X

d(u,l(u))
γ

≤
∑
u∈A

min
(

d(u,s(u)),
d(u,l(u))

γ

)
+
∑
u∈B

d(u,s(u)),

which after multiplying both parts by γ can be written as∑
u∈X

d(u,l(u)) ≤
∑
u∈A

min
(
γ d(u,s(u)),d(u,l(u))

)+∑
u∈B

γ d(u,s(u)). (5.4)

For u ∈ A, we have d(u,s(u)) ≤ d(u,l(u)), since both s(u) and l(u) are in
S and s(u) = arg minv∈Sd(u,v). Thus, min

(
γ d(u,s(u)),d(u,l(u))

) ≥ d(u,s(u)).
Consequently, inequality (5.4) follows from the following theorem. �

Theorem 5.34 (Local Approximation; Cohen-Addad and Schwiegelshohn,
2017) Let L be a ρ-locally optimal set of centers with respect to a metric d
and S be an arbitrary set of k centers. Define sets A and B as above. Then,∑

u∈X d(u,l(u)) ≤ ∑
u∈A d(u,s(u))+γ

∑
u∈B d(u,s(u)), for some γ = 3+O(1/ρ).

We refer to Cohen-Addad and Schwiegelshohn (2017) for the proof.

5.8 Notes

In the first article on the subject, Bilu and Linial (2010) defined perturbation
resilience, explained its importance, and gave an algorithm for O(n)-perturbation-
resilient instances of Max Cut.8 Bilu et al. (2013) gave an algorithm for O(

√
n)-

perturbation-resilient instances of Max Cut. Mihalák et al. (2011) designed a greedy
algorithm for 1.8-perturbation-resilient instances of TSP. Then, Makarychev et al.
(2014) designed a general framework for solving perturbation-resilient instances
of combinatorial optimization problems (which we described in this chapter). The
framework provides a general recipe for designing algorithms for perturbation-
resilient and weakly perturbation-resilient instances, as well as proving that LP and
SDP relaxations for perturbation-resilient instances are integral. This framework was
used to design algorithms for several optimization problems, including algorithms
for O(

√
log n log log n)-perturbation-resilient instances of Max Cut (Makarychev

et al., 2014), (2 − 2/k)-perturbation-resilient instances of Minimum Multiway Cut
(Angelidakis et al., 2017), (1 + ε)-perturbation-resilient instances of planar Max-
imum Independent Set, and (k − 1)-perturbation-resilient instances of Maximum
Independent Set in k-colorable graphs (Angelidakis et al., 2019). Makarychev and
Makarychev (2020) introduced certified algorithms and showed how to design them
using the framework we discussed above.

There are a number of negative results for perturbation-resilient instances. Most
of the negative results show that there are no robust algorithms for γ -perturbation-
resilient instances and no polynomial-time γ -certified algorithms. The assump-
tion that the algorithms are certified or robust is crucial. In fact, that there is no

8 Note that Bilu and Linial, as well as many other authors, refer to “perturbation resilience” as “stability.”

115

K. MAKARYCHEV AND Y. MAKARYCHEV

polynomial-time algorithm, robust or otherwise, for perturbation-resilient instances
is very challenging; to do so, one needs to get a reduction that maps known
“hard instances” of some problem to perturbation-resilient instances of the problem
at hand. Nevertheless, we know that there is no polynomial-time algorithm for
∞-perturbation-resilient instances of Max k-Cut (for every k ≥ 3) if RP �= NP
(Makarychev et al., 2014), and there is no polynomial-time algorithm for o(

√
n)-

perturbation-resilient instances of Maximum Independent Set if finding a planted
clique in a random graph is hard (Angelidakis et al., 2019). Note that there are
strong negative results for some very basic problems: there are no polynomial-time
n1−δ-certified algorithms for Set Cover, Min Vertex Cover/Maximum Independent
Set, Max 2-Horn SAT; also, there are no polynomial-time robust algorithms for
n1−δ-perturbation-resilient instances of these problems. The result for Max 2-Horn
SAT is particularly striking, since maximization and minimization variants of the
problem admit a constant-factor approximation. The negative results suggest that
one should study algorithms for special families of perturbation-resilient instances.
This was done by Angelidakis et al. (2019), who gave an algorithm for planar
(1 + ε)-perturbation-resilient instances of Maximum Independent Set. This result
is particularly interesting, as it holds when the perturbation resilience parameter
γ = 1 + ε is arbitrarily close to 1.

The study of perturbation-resilient instances of clustering problems was initiated
by Awasthi et al. (2012), who gave an algorithm for finding the optimal clustering
for 3-perturbation-resilient instances. Similarly to the algorithm we discussed in this
chapter, their algorithm first runs single-linkage clustering and then recovers the
optimal solution using dynamic programming. However, the dynamic program used
in their algorithm is quite different from the one we presented here – it is simpler
and faster but requires that the input be more perturbation-resilient. Balcan and
Liang (2016) designed an algorithm for (1 + √

2)-perturbation-resilient instances
(1 + √

2 ≈ 2.414). Balcan et al. (2016) gave algorithms for 2-perturbation-resilient
instances of symmetric and asymmetric k-center and obtained matching hardness
results. Angelidakis et al. (2017) offered the definition of metric γ -perturbation
resilience and presented an algorithm for metric 2-perturbation-resilient instances
of k-medians and k-means, which we discussed in this chapter (see Theorem 5.29).
Ben-David and Reyzin (2014) showed that it is NP-hard to find the optimal clustering
for instances of k-medians satisfying the (2 − ε)-center proximity condition.

Cohen-Addad and Schwiegelshohn (2017) observed that the local search algo-
rithm finds the optimal clustering for (3 + ε)-perturbation-resilient instances. In
their paper, they used a slightly different model from the one we discussed in this
chapter. Theorem 5.32 is due to Balcan and White (2017). Very recently, Friggstad
et al. (2019) designed an algorithm for solving (1+ε)-perturbation-resilient instances
of Euclidean k-means and k-medians (where the points lie in a fixed dimensional
Euclidean space). As was noted in Makarychev and Makarychev (2020), their
algorithm is also (1 + ε)-certified.

We also refer the reader to the survey by Makarychev and Makarychev (2016)
for a more detailed though somewhat outdated overview of known results for
perturbation-resilient instances. Finally, we note that this chapter is based in part
on Makarychev and Makarychev (2020).

116

PERTURBATION RESILIENCE

References

Agarwal, Amit, Charikar, Moses, Makarychev, Konstantin, and Makarychev, Yury. 2005.
O(
√

log n) approximation algorithms for Min UnCut, Min 2CNF Deletion, and directed
cut problems. In Proceedings of the Symposium on Theory of Computing, pp. 573–581.

Angelidakis, Haris, Makarychev, Konstantin, and Makarychev, Yury. 2017. Algorithms for
stable and perturbation-resilient problems. In Proceedings of the Symposium on Theory
of Computing, pp. 438–451.

Angelidakis, Haris, Awasthi, Pranjal, Blum, Avrim, Chatziafratis, Vaggos, and Dan, Chen.
2019. Bilu-Linial stability, certified algorithms and the Independent Set problem. In
Proceedings of the European Symposium on Algorithms, pp. 7:1–16.

Arora, Sanjeev, Lee, James, and Naor, Assaf. 2008. Euclidean distortion and the sparsest cut.
Journal of the American Mathematical Society, 21(1), 1–21.

Arya, Vijay, Garg, Naveen, Khandekar, Rohit, Meyerson, Adam, Munagala, Kamesh, and
Pandit, Vinayaka. 2004. Local search heuristics for k-median and facility location prob-
lems. SIAM Journal on Computing, 33(3), 544–562.

Awasthi, Pranjal, Blum, Avrim, and Sheffet, Or. 2012. Center-based clustering under pertur-
bation stability. Information Processing Letters, 112(1–2), 49–54.

Balcan, Maria Florina, and Liang, Yingyu. 2016. Clustering under perturbation resilience.
SIAM Journal on Computing, 45(1), 102–155.

Balcan, Maria-Florina, and White, Colin. 2017. Clustering under local stability: Bridging the
gap between worst-case and beyond worst-case analysis. arXiv preprint arXiv:1705.07157.

Balcan, Maria-Florina, Haghtalab, Nika, and White, Colin. 2016. k-center Clustering under
perturbation resilience. Proceedings of ICALP, 68, 1–68:14.

Ben-David, Shalev, and Reyzin, Lev. 2014. Data stability in clustering: A closer look. Theo-
retical Computer Science, 558, 51–61.

Bilu, Yonatan, and Linial, Nathan. 2010. Are stable instances easy? Proceedings of ICS, 2010,
332–341.

Bilu, Yonatan, Daniely, Amit, Linial, Nati, and Saks, Michael. 2013. On the practically
interesting instances of MAXCUT. Proceedings of STACS, 2013, 526–537.

Călinescu, Gruia, Karloff, Howard, and Rabani, Yuval. 2000. An improved approxima-
tion algorithm for MULTIWAY CUT. Journal of Computer System Sciences, 60(3),
564–574.

Cohen-Addad, Vincent, and Schwiegelshohn, Chris. 2017. On the local structure of stable
clustering instances. In Proceedings of the Symposium on Foundations of Computer
Science, pp. 49–60.

Friggstad, Zachary, Khodamoradi, Kamyar, and Salavatipour, Mohammad R. 2019. Exact
algorithms and lower bounds for stable instances of Euclidean K-means. In Proceedings
of the Symposium on Discrete Algorithms, pp. 2958–2972.

Goemans, Michel X, and Williamson, David P. 1995. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal of the
ACM (JACM), 42(6), 1115–1145.

Hochbaum, Dorit S. 1983. Efficient bounds for the stable set, vertex cover and set packing
problems. Discrete Applied Mathematics, 6(3), 243–254.

Kanungo, Tapas, Mount, David M, Netanyahu, Nathan S, Piatko, Christine D, Silverman,
Ruth, and Wu, Angela Y. 2004. A local search approximation algorithm for k-means
clustering. Computational Geometry, 28(2–3), 89–112.

Karger, David R, Klein, Philip, Stein, Cliff, Thorup, Mikkel, and Young, Neal E. 2004. Round-
ing algorithms for a geometric embedding of minimum multiway Cut. Mathematics of
Operations Research, 29(3), 436–461.

117

K. MAKARYCHEV AND Y. MAKARYCHEV

Lewin, Michael, Livnat, Dror, and Zwick, Uri. 2002. Improved Rounding Techniques for the
MAX 2-SAT and MAX DI-CUT Problems. In Proceedings of the Conference on Integer
Programming and Combinatorial Optimization, pp. 67–82.

Makarychev, Konstantin, and Makarychev, Yury. 2016. Bilu-Linial stability. Hazan, T.,
Papandreou, G., and Tarlow, D. (eds.), Perturbations, Optimization, and Statistics. MIT
Press.

Makarychev, Konstantin, and Makarychev, Yury. 2020. Certified algorithms: Worst-case
analysis and beyond. Proceeding of ITCS, 49, 1–4: 14.

Makarychev, Konstantin, Makarychev, Yury, and Vijayaraghavan, Aravindan. 2014. Bilu-
Linial stable instances of max cut and minimum multiway cut. In Proceedings of the
Symposium on Discrete Algorithms, pp. 890–906.

Mihalák, Matúš, Schöngens, Marcel, Šrámek, Rastislav, and Widmayer, Peter. 2011. On the
complexity of the metric TSP under stability considerations. In SOFSEM 2011: Theory
and Practice of Computer Science, pp. 382–393.

Nemhauser, George L, and Trotter, Leslie Earl. 1975. Vertex packings: Structural properties
and algorithms. Mathematical Programming, 8(1), 232–248.

Spielman, Daniel A, and Teng, Shang-Hua. 2004. Smoothed Analysis of Algorithms: Why the
simplex algorithm usually takes polynomial time. Journal of the ACM, 51(3), 385–463.

Exercises

Exercise 5.1 Consider an instance I of a maximization constraint satisfaction prob-
lem (such as Max 3SAT or Max 2CSP), in which the constraints are individ-
ually satisfiable. Assume that I has a unique optimal solution. Show that I is
∞-perturbation resilient iff there is a solution that satisfies all the constraints.

Exercise 5.2 Give examples of α-approximation algorithms for combinatorial opti-
mization and clustering problems that are not α-certified.

Exercise 5.3 Prove Theorem 5.12. [Hint: Assign very large weights to c ∈ H.]

Exercise 5.4 Prove Theorem 5.21.

Exercise 5.5 Consider a maximization optimization problem P. Assume that every
instance I = (S,C,w) has value at least α · w(C) for some α ≤ 1 (for example,
α= 1/2 for Max Cut, α= 1/2k for Boolean k-CSP). Prove that every
γ -perturbation-resilient instance I = (S,C,w) has a solution of value at least

γ
γ+1/αw(C).

Exercise 5.6 Consider a maximization problem P. Assume that it does not admit an
α-approximation (α > 1); more precisely, there is a Karp-reduction from 3-SAT
to P that maps a yes-instance to an instance whose optimal solution has value at
least c · w(C), and a no-instance to an instance whose optimal solution has value
less than c·w(C)

α
. Prove that then there is no polynomial-time algorithm for deciding

whether an instance I of P is α-perturbation-resilient (if NP �= coNP).

Exercise 5.7 Show that there are no instances (X,d) of k-clustering problems with
|X | > k and γ ≥ 2 satisfying the following strong version of the γ -perturbation

118

PERTURBATION RESILIENCE

resilience condition: For every metric γ -perturbation d ′ of d there is only one set
of optimal centers, and this set of centers is the same as for metric (X,d).

Exercise 5.8 Consider a γ -perturbation-resilient instance (X,d) of the k-clustering
problem with the �p objective. Show that a γ -certified solution to (X,d) is an
optimal solution for this problem.

Exercise 5.9 Show that a γ -certified solution to an arbitrary instance of the k-
clustering problem with the �p objective is a γ p approximation to the optimal
solution.

Exercise 5.10 Give an example of an instance (X,d) of k-medians that is not γ -
perturbation-resilient, but whose unique optimal solution satisfies the γ -center
proximity property.

Exercise 5.11 Give an example of a 100-perturbation-resilient instance for which the
single-linkage clustering is suboptimal.

119

CHAPTER SIX

Approximation Stability and
Proxy Objectives

Avrim Blum

Abstract: This chapter introduces approximation stability, an input
condition motivated by the common practice of using the score of
a solution under an easy-to-measure objective function as proxy
for true solution quality, in problems in which the true goal is to
find a solution that “looks like” an unknown target solution. An
instance is approximation-stable if all solutions with near-optimal
values for the proxy objective are close in solution space to the
desired target solution, and it turns out that such instances have a
number of surprising algorithmic properties. This chapter describes
the approximation-stability notion, presents a variety of algorithmic
guarantees under this condition, and discusses implications for the
use of approximation ratio as a yardstick for problems of solution
discovery.

6.1 Introduction and Motivation

Many algorithmic problems, while posed as a task of optimizing a measurable
objective function, are motivated by an underlying goal of approximating a desired
(target) solution. An example would be clustering a dataset of points that represent
images of people by optimizing a k-means or k-median objective, when the true
goal is to cluster the images based on who is in them.1 Another example would be
searching for a Nash or approximate-Nash equilibrium in a game with the hope
that the solution found will approximately predict how people will play. Implicit
in formulations such as these is a hope that a solution that optimizes or nearly
optimizes the measurable proxy objective (the k-means or k-median score in the case
of clustering, or the maximum incentive to deviate in the case of equilibria) will
indeed be close to the solution one is hoping to recover.

Approximation stability formalizes and makes explicit this connection. An
instance is approximation stable if all near-optimal solutions to the proxy objective
are indeed close to the desired target solution (see Section 6.2 for a formal definition
with parameters). An instance is not approximation stable if being near-optimal for
the proxy objective is not a sufficient condition for being close to the target. Any

1 For a clustering C1, . . . ,Ck of a point set S, its k-median score is
∑k

i=1 minci
∑

x∈Ci
d(x,ci). Its k-means

score is
∑k

i=1 minci
∑

x∈Ci
d(x,ci)

2.

120

APPROXIMATION STABILITY AND PROXY OBJECTIVES

given instance might or might not be approximation stable. If it is, this motivates use
of the proxy objective. If it is not, then it means the motivation for using the proxy
objective, at least by itself without additional conditions, is somewhat suspect and
perhaps should be reexamined.

The results surveyed in this chapter show the following surprising type of statement
for a variety of well-studied objectives: Instances satisfying approximation stability at
levels that would seem too weak to be helpful can in fact be solved to high accuracy
using structural properties inherent in the stability condition itself. As an example,
suppose a clustering instance is stable with respect to the k-median objective in the
sense that every clustering whose k-median score is within a factor 1.1 of optimal is
ε-close to the target solution. For instance, in the case of clustering images by who is in
them, this would mean that every 1.1-approximation to the k-median score correctly
clusters a 1 − ε fraction of the images. (In Section 6.2 we will define this as (1.1,ε)-
approximation stability to the k-median objective.) At first glance, this condition
seems too weak to be useful since we do not have any efficient algorithms that achieve
a 1.1-approximation to the k-median score. The best approximation guarantee known
for k-median is roughly a factor of 2.7 (Li and Svensson, 2016), and in fact achieving
a 1.1-approximation is known to be NP-hard (Guha and Khuller, 1999; Jain et al.,
2002). Nonetheless, as we will see in the text that follows, we can give a natural, effi-
cient algorithm guaranteed to find a clustering that is O(ε)-close to the target in any
instance satisfying this condition. Curiously, the k-median problem remains NP-hard
to approximate even on such stable instances, so the algorithm approximates the solu-
tion without necessarily approximating the objective (Balcan et al., 2009b, 2013).2

Interesting Parameter Ranges We will define an instance to be (c,ε) approximation
stable for a given objective function if every c-approximation to the objective is
ε-close to the target solution. Notice that if c is greater than or equal to the best
known approximation factor for the objective, then we immediately have an efficient
algorithm to find solutions that are ε-close to the target for such instances. So, such
large values of c are not so interesting. Instead, we will be interested in the case that
c is much smaller than the best known approximation factor for the given objective.
We will then be asking the question: Even though we do not have a c-approximation
to the given objective, can we do as well as if we had a generic such approxima-
tion algorithm, with respect to the goal of finding a solution that is close to the
desired target?

6.2 Definitions and Discussion

We now formally present the main property studied in this chapter, namely that of
(c,ε)-approximation stability.

First, consider some optimization problem, such as MAX-SAT or k-median
clustering. An optimization problem is defined by an objective function �, such as
the number of clauses satisfied for the MAX-SAT problem or the k-median cost
for the k-median problem. For any given problem instance, there is some space of
possible solutions to that instance, and the objective function � assigns a score to

2 If one also makes the assumption that cluster sizes are roughly balanced, then this hardness goes away,
and in fact one can give efficient algorithms to approximate k-median to the desired 1.1 factor, and thereby get
ε-close to the target solution. See Section 6.3.

121

A. BLUM

each one. For example, for the MAX-SAT problem, an instance would be a formula
on n variables, the solution space would be the set {0,1}n of all possible Boolean
assignments to the variables, and the objective value for a proposed solution is the
number of clauses satisfied. For the k-median problem, an instance would be a set
S of n points in some metric space M = (X,d), the solution space would be the
set of all k-clusterings {C1, . . . ,Ck} of S, and the objective value for a proposed
solution would be the k-median score

∑k
i=1 minci∈X

∑
x∈Ci

d(x,ci). In addition to
the objective score, we are also interested in the distance between solutions in the
solution space. So we will assume we are given some natural distance measure
dist(·,·) over possible solutions, such as normalized Hamming distance for the case
of truth assignments to variables (normalized to the range [0,1]), or the fraction of
points that would have to be reassigned in one clustering in order to make it match
another clustering, in the case of clustering problems. Lastly, we assume there is some
unknown target solution we are hoping to get close to, such as a correct clustering
of images based on who is in them, or in the case of MAX-SAT that there is some
truth assignment that corresponds to “correct” behavior. We then say that an instance
satisfies approximation stability if all near-optimal solutions according to the given
objective are close to the target solution according to the given distance measure on
solutions. Formally,

Definition 6.1 Consider a problem defined by an objective function �, and
with distance function dist on its solution space. An instance I satisfies (c,ε)-
approximation stability with respect to an (unknown) target solution yT if all
solutions y of I having �(I,y) within a factor c of the optimal objective value
for I satisfy dist(y,yT) ≤ ε.

For example, an instance of the k-median problem satisfies (c,ε)-approximation
stability if all clusterings that have k-median score at most c times that of the optimal
k-median clustering agree with the target clustering on at least a 1 − ε fraction of
points.

It is often helpful to think of approximation stability in its contrapositive form: any
solution that is ε-far from the target must be expensive, costing more than c times the
minimum objective cost. A schematic illustration of approximation-stability is given
in Figure 6.1.

Removing the Target Solution One can also define a nearly identical notion of
approximation stability without reference to any target solution, by just asking that all
near-optimal solutions be close to each other. Specifically, if all near-optimal solutions
are within distance ε of a target solution then they are all within distance 2ε of each
other by the triangle inequality, and if all near-optimal solutions are within distance
ε of each other and the target is also a near-optimal solution, then clearly they are
within distance ε of the target.

Target versus Optimal Approximation stability does not require that the target
solution be the same as the solution with optimal objective value (see Figure 6.1). For
example, for the problem of clustering, we will typically refer to the target clustering
as CT and the optimal clustering for the objective as C∗. However, it can be helpful to
think of the two as equal on first reading.

Determining if an Instance Is Stable Because approximation stability refers to
distance to an unknown target, there is no way for an algorithm to tell if an instance

122

APPROXIMATION STABILITY AND PROXY OBJECTIVES

Objective
value

Solution space

×

(target)

Solutions within distance of
target (all -approximations

lie in here)

Figure 6.1 A schematic view of approximation stability. Note that the target yT need not have the optimum
objective value, but all near-optimal solutions must be close to yT .

is indeed approximation stable. However, if one has an oracle that will report if a
solution is “good enough,” and if one has an algorithm that finds good solutions on
stable instances, then one can just run the algorithm: If the oracle reports success,
then one has found a good solution (in which case one probably doesn’t care if the
instance was actually stable); if it reports failure, then one knows the instance wasn’t
stable.

Algorithmic Structure For a given stability notion, it is natural to ask what kinds
of algorithms that notion motivates. In the case of clustering, we will see that
approximation stability motivates “ball growing” approaches, where one increases
a threshold τ , connecting together all pairs of distance ≤ τ , and then forms cluster
cores based on dense components in this graph. One can then make a second pass
to assign non-core points to clusters based on their distance to the cluster cores from
the first pass. In the case of Nash equilibria, approximation stability does not seem to
necessarily motivate new algorithms, but rather leads to improved bounds for existing
algorithms that aim to find solutions of small support.

Connection to Perturbation Stability Perturbation stability, discussed in Chapter 5,
asks that modifying the instance (e.g., changing the distances between data points)
by up to a factor of c should not change the optimal solution to the given objective
(e.g., should not change how points are clustered in the optimal k-median clustering).
One can also define a relaxed version of perturbation stability that allows the optimal
solution to change by up to an ε fraction of points (Balcan and Liang, 2016). This
relaxed version has an interesting connection to approximation stability. In particular,
for many problems of interest, if one modifies an instance by changing distances by
up to a factor of c, then the cost of any given solution changes by at most some
function of c (e.g., for k-median clustering, the cost of any given solution would
change by at most a factor of c and for k-means clustering, the cost of any given
solution would change by at most a factor of c2). This implies that an optimal solution
to a perturbed instance is also a near-optimal solution to the original instance. Thus,
the perturbation-stability requirement that optimal solutions to perturbed instances

123

A. BLUM

be close to the optimal solution to the original instance is a less stringent version of
the approximation-stability requirement that all approximately optimal solutions to
the original instance be close to the optimal solution to the original instance (if we
associate the optimal solution with the unknown target). On the other hand, while
perturbation stability is a less stringent condition than approximation stability for
the same c, typically one can achieve positive results for perturbation stability only
for factors c that are close to or greater than the best approximation ratios possible,
whereas for approximation stability one aims to get positive results for much smaller
parameter values, ideally constants arbitrarily close to 1. So the types of results one
can prove about the two stability notions are generally incomparable.

Connection to Separability Notion of Ostrovsky et al. (2012) The separability notion
of Ostrovsky et al. (2012), which is specifically designed for clustering, asks that the
optimal objective value for k clusters should be substantially lower (by a sufficiently
large constant factor) than the optimal objective value for k−1 clusters. For example,
the optimal k-means cost should be substantially less than the optimal (k−1)-means
cost. Ostrovsky et al. (2012) then show that under this condition, a Lloyd’s-style
algorithm will succeed in finding a near-optimal solution. They also show that if a
clustering instance satisfies this property for a sufficiently large constant factor, then
it also has the property that all near-optimal k-means clusterings are close together,
namely approximation stability. Therefore, algorithms designed for approximation
stability (such as given in this chapter) will also succeed under their separability
condition. In the other direction, the Ostrovsky et al. (2012) separation condition
for a small separation constant is a weaker condition than approximation stability in
the case that all target clusters are large. That is because approximation stability asks
that all clusterings that are ε-far from the target be more expensive than optimal by
at least a factor of c, whereas this condition only asks that clusterings having at most
k − 1 clusters (which are ε-far from the target if all target clusters have at least εn
points) be expensive.

Proxy Objectives An ideal proxy objective would both (a) be something one has
reason to believe is optimized by the target and not by any solution far from the target
and (b) be efficiently optimizable. If (b) does not hold but either one has a good
approximation algorithm or one has an algorithm under approximation stability,
then it would be enough to satisfy a somewhat stronger version of (a) in which
solutions far from the target are not even near-optimal. Thus, algorithms that work
under approximation stability can help broaden the set of proxy objectives one might
reasonably consider for a given problem.

More broadly, a general approach to finding a desired target solution is to identify
properties that one believes the target solution should have, and then use them to
identify the target or a close approximation to it. In the context of clustering, Balcan
et al. (2008) and Daniely et al. (2012) even more broadly consider properties that
are not (even in principle) sufficient to uniquely identify the target solution, but
do allow for a small set of candidate solutions, that one could then present to a
user for further refinement using other criteria. An example of such a property is
that most data points x should be closer on average to points in their own target
cluster than to points in any other target cluster, by some additive (Balcan et al.,
2008) or multiplicative (Daniely et al., 2012) gap γ . Ackerman and Ben-David (2009)
consider an intriguing property called “center perturbation clusterability” that is a
bit like an inverse of approximation stability. They consider center-based clusterings

124

APPROXIMATION STABILITY AND PROXY OBJECTIVES

(a clustering is defined by k centers, with each data point assigned to its nearest center)
and ask that all clusterings whose centers are close to the optimal centers should have
a cost within a small factor of the optimal cost. One could also hope to learn relevant
properties from past data, using techniques such as in Chapter 29.

6.3 The k-Median Problem

The k-median problem is a particularly clean objective for studying approximation-
stability, and many of the ideas used for it can be extended to other clustering
formulations such as k-means and min-sum clustering. So, we focus on it here.

We now show how one can design an efficient clustering algorithm with the guar-
antee that if an instance is (1.1,ε)-approximation stable for the k-median objective, it
will find a solution that is O(ε)-close to the target, or even ε-close to the target if all
target clusters are large compared to εn. That is, it performs nearly as well (in terms of
distance to the target) as would be guaranteed by a generic 1.1-factor approximation
to the k-median objective, even though approximating k-median to such a level is NP-
hard. More generally, if the instance is (1 + α,ε)-stable then the algorithm will find
a solution that is O(ε/α)-close to the target, or even ε-close to the target if all target
clusters are large compared to εn/α. Note that 1/ε, 1/α, and k need not be constants
(and in fact, one should not think of k as a constant since we do not want to view
an algorithm that “tries all possible k-tuples of centers” as efficient). For example, we
might have CT consist of n0.1 clusters of size n0.9, ε = 1/n0.2 and α = 1/n0.09 (this
would correspond to the case of large target clusters in Theorem 6.2).

We begin with a formal definition of the k-median problem, state the main results,
and then give algorithms and proofs.

6.3.1 Definitions

Let M= (X,d) be a metric space with point set X and distance function d.
A k-clustering of a point set S ⊆ X is a partition C of S into k clusters {C1, . . . ,Ck}.
The k-median cost of a clustering is the total distance of all points to the best “center”
of their clustering. That is,

�kmedian(C) =
k∑

i=1

min
ci∈X

∑
x∈Ci

d(x,ci). (6.1)

As mentioned earlier, we define the distance dist(C,C′) between two clusterings
of the same point set S as the fraction of points that would need to be reassigned
in one of the clusterings to make it equal to the other (up to reindexing of the
clusters, since the names of the clusters do not matter). Formally, the distance between
C = {C1, . . . ,Ck} and C′ = {C′

1, . . . ,C
′
k} is

dist(C,C′) = min
σ

1
n

k∑
i=1

|Ci \ C′
σ(i)|, (6.2)

where the minimum is taken over all bijections σ : {1, . . . ,k} → {1, . . . ,k}. This
distance is a metric on clusterings (see Exercise 6.1).

125

A. BLUM

We say that two clusterings C and C′ are ε-close if dist(C,C′) < ε. Note that if C and
C′ are ε-close and all clusters Ci have size at least 2εn, then the bijection σ minimizing
1
n

∑k
i=1 |Ci \C′

σ(i)| has the property that for all i, |Ci ∩C′
σ(i)| > 1

2 |Ci|. This implies for
instance that such σ is unique, and we can say that C and C′ agree on x if x ∈ Ci∩C′

σ(i)
for some i, and C and C′ disagree on x otherwise.

6.3.2 Some Interesting Results

We now present some interesting results known about k-median clustering under
approximation stability. We will then go into more detail into the algorithm and proof
for one of them.

Theorem 6.2 k-Median, Large Clusters Case (Balcan et al., 2013) There is
an efficient algorithm that will produce a clustering that is ε-close to the target
clustering CT whenever the instance satisfies (1+α,ε)-approximation stability for
the k-median objective and each cluster in CT has size at least (4 + 15/α)εn + 2.

The proof of Theorem 6.2 by Balcan et al. (2013) focuses on the distance of the
clustering produced to the target CT , though Schalekamp et al. (2010) point out that
under the assumptions of the theorem, the algorithm additionally achieves a good
k-median approximation as well. So, in this case, the k-median approximation prob-
lem itself has become easier under approximation stability. However, interestingly,
once we allow small clusters, finding an approximation to the objective becomes as
hard as in the general case, and yet we can still find a solution that is close to the
target clustering.

Theorem 6.3 k-Median: General Case (Balcan et al., 2013) There is an efficient
algorithm that will produce a clustering that is O(ε + ε/α)-close to the target
clustering CT whenever the instance satisfies (1 + α,ε)-approximation-stability
for the k-median objective.

Theorem 6.4 Hardness of Approximation (Balcan et al., 2013) For k-median,
k-means, and min-sum objectives, for any c> 1, the problem of finding a
c-approximation can be reduced in polynomial time to the problem of finding
a c-approximation under (c,ε)-approximation-stability. Therefore, a polynomial-
time algorithm for finding a c-approximation under (c,ε)-approximation stability
implies a polynomial-time algorithm for finding a c-approximation in general.

As noted previously, α and ε may be sub-constant. However, in the case that
1/α = O(1), Awasthi et al. (2010b) give an improvement to Theorem 6.2, needing
a minimum cluster size of only εn to produce a solution that is ε-close to the target.
Their result also holds under the separability notion of Ostrovsky et al. (2012) at the
1 + α separation level, and further was used as a building block by Li and Svensson
(2016) in the current best k-median approximation.3 So it is interesting that results

3 Li and Svensson (2016) give a bi-criteria algorithm that for some constant c0 finds a k-clustering Ck whose
k-median cost is not too much greater than the cost of the optimal k − c0 clustering C∗

k−c0
. To convert this to a

true approximation, one then considers two cases. Case (a) is that C∗
k−c0

is not too much more expensive than

126

APPROXIMATION STABILITY AND PROXY OBJECTIVES

based on non-worst-case stability notions can also have application to worst-case
approximation bounds.

6.3.3 Algorithms and Proofs

We now present the algorithm and main ideas for the proof of Theorem 6.2.
First, a small amount of notation. Given a clustering instance specified by a metric

space M = (X,d) and a set of points S ⊆ X , fix an optimal k-median clustering
C∗ = {C∗

1, . . . ,C
∗
k}, and let c∗

i be the center point (a.k.a. “median”) for C∗
i . Note that

C∗ may not be exactly the same as the target CT . For x ∈ S, define

w(x) = min
i

d(x,c∗
i)

to be the contribution of x to the k-median objective in C∗ (i.e., x’s “weight”). Simi-
larly, let w2(x) be x’s distance to its second-closest center point among {c∗

1,c
∗
2, . . . ,c

∗
k}.

Also, let OPT denote the k-median cost of C∗ and define

wavg = 1
n

n∑
i=1

w(x) = OPT
n

.

That is, wavg is the average weight of the points. Finally, let ε∗ = dist(CT,C∗). By the
approximation stability assumption, ε∗ ≤ ε. (The reader may wish to think of ε∗ = 0
and C∗ = CT on first read.)

The way that approximation stability will be used is via the following key lemma,
which gives us two important properties of approximation-stable instances.

Lemma 6.5 If the instance (M,S) is (1 + α,ε)-approximation stable for the
k-median objective, then

a. If each cluster in CT has size at least 2εn, then less than (ε− ε∗)n points x ∈ S
on which CT and C∗ agree have w2(x) − w(x) < αwavg

ε
.

b. For any t > 0, at most t(εn/α) points x ∈ S have w(x) ≥ αwavg
tε .

Proof To prove Property (a), assume to the contrary. Then one could take
C∗ and move (ε − ε∗)n points x on which CT and C∗ agree to their second-
closest clusters, increasing the objective by at most αOPT . Moreover, this new
clustering C′ = {C′

1, . . . ,C
′
k} has distance at least ε from CT , because we begin

at distance ε∗ from CT and each move increases this distance by 1
n (here we

use the fact that because each cluster in CT has size at least 2εn, the optimal
bijection between CT and C′ remains the same as the optimal bijection between
CT and C∗). Hence we have a clustering that is not ε-close to CT with cost only
(1 + α)OPT , a contradiction.

the optimal k-clustering C∗
k , in which case the solution Ck found is itself a good approximation to C∗

k . Case (b)
is that there is a large gap between the cost of C∗

k−c0
and the cost of C∗

k . But in that case, running the algorithm

of Awasthi et al. (2010b) on values k,k − 1,k − 2, . . . ,k − c0 + 1 is guaranteed to produce at least one low-cost
k′-clustering for k′ ≤ k. So, running both procedures guarantees a good approximation.

127

A. BLUM

Property (b) simply follows from the definition of the average weight wavg,
and Markov’s inequality. �

Note: one can also prove that a slightly weaker version of Property (a) of
Lemma 6.5 holds in the case that CT may have small clusters. The small clusters case is
trickier because reassigning points need not always increase the distance between the
clusterings (e.g., think of just swapping all points in two clusters). So, the argument
is more involved. See Section 6.3.4.

Let us now use Lemma 6.5 to define the notion of a critical distance and of good
and bad points. Specifically,

Definition 6.6 Define the critical distance dcrit = αwavg
5ε ; note that this is 1/5

the value in property (a) of Lemma 6.5. Define point x ∈ S to be good if both
w(x) < dcrit and w2(x)−w(x) ≥ 5dcrit, else define x to be bad. Let Xi ⊆ C∗

i be the
good points in the optimal cluster C∗

i , and let B = S \ (∪Xi) be the bad points.

We now show that if an instance is approximation stable, there cannot be too many
bad points:

Proposition 6.7 If the instance (M,S) is (1 + α,ε)-approximation stable for the
k-median objective and each cluster in CT has size at least 2εn, then |B| < (1 +
5/α)εn.

Proof By Lemma 6.5(a), the number of points on which C∗ and CT agree where
w2(x)−w(x) < 5dcrit is at most (ε−ε∗)n, and there can be at most ε∗n additional
such points where C∗ and CT disagree. Setting t = 5 in Lemma 6.5(b) bounds
the number of points that have w(x) ≥ dcrit by (5ε/α)n. �

Let us now see one way we can use the critical distance and definition of good and
bad points to help with clustering. To do this we begin by defining the notion of a
threshold graph.

Definition 6.8 (Threshold Graph) Define the τ -threshold graph Gτ = (S,Eτ)

to be the graph produced by connecting all pairs {x,y} ∈ (S2) with d(x,y) < τ .

Lemma 6.9 (Threshold Graph Lemma) For a (1 + α,ε)-approximation-stable
instance, the threshold graph Gτ for τ = 2dcrit has the following properties:

(i) For all x,y in the same Xi, the edge {x,y} is in the graph Gτ .
(ii) For x ∈ Xi and y ∈ Xj for j �= i, {x,y} is not an edge in Gτ . Moreover, such

points x,y do not share any neighbors in Gτ .

Proof For part (i), since x,y are both good, they are at distance less than dcrit to
their common cluster center c∗

i , by definition. Hence, by the triangle inequality,
the distance d(x,y) satisfies

d(x,y) ≤ d(x,c∗
i) + d(c∗

i ,y) < 2 × dcrit = τ .

128

APPROXIMATION STABILITY AND PROXY OBJECTIVES

Figure 6.2 The high-level structure of a threshold graph.

For part (ii), note that the distance from any good point x to any other cluster
center, and in particular to y’s cluster center c∗

j , is at least 5dcrit. Again by the
triangle inequality,

d(x,y) ≥ d(x,c∗
j) − d(y,c∗

j) ≥ 5dcrit − dcrit = 2τ .

Since each edge in Gτ is between points at distance less than τ , the points x,y
cannot share any common neighbors. �

Hence, the graph Gτ for the foregoing value of τ is fairly simple to describe: each
Xi forms a clique, and its neighborhood NGτ

(Xi)\Xi lies entirely in the bad set B with
no edges going between Xi and Xj �=i, or between Xi and NGτ

(Xj �=i). See Figure 6.2 for
an illustration.

We now show how we can use this structure to find a clustering of error at most ε.
We do this in two steps, beginning with the following lemma.

Lemma 6.10 There is a deterministic polynomial-time algorithm that given a
graph G = (S,E) satisfying properties (i), (ii) of Lemma 6.9 and given an upper
bound b on the number of bad points such that each |Xi| ≥ b + 2, outputs a
k-clustering with each Xi contained in a distinct cluster.

Proof Construct a graph H = (S,E′) where we place an edge {x,y} ∈ E′ if x
and y have at least b common neighbors in G. By property (i), each Xi is a clique
of size ≥ b+2 in G, so each pair x,y ∈ Xi has at least b common neighbors in G
and hence {x,y} ∈ E′. Now consider x ∈ Xi ∪ NG(Xi), and y �∈ Xi ∪ NG(Xi): we
claim there is no edge between x,y in this new graph H. First, x and y cannot
share neighbors that lie in Xi (since y �∈ Xi ∪ NG(Xi)), nor in some Xj �=i (since
x �∈ Xj ∪NG(Xj) by property (ii)). Hence the common neighbors of x,y all lie in
B, which has size at most b. Moreover, at least one of x and y must itself belong
to B for them to have any common neighbors at all (again by property (ii)) –
hence, the number of distinct common neighbors is at most b−1, which implies
that {x,y} �∈ E′.

Thus each Xi is contained within a distinct component of the graph H. Note
that the component containing some Xi may also contain some vertices from B;
moreover, there may also be components in H that contain only vertices from B.
But since the Xi’s are larger than B, we can obtain the claimed clustering by
taking the largest k components in H and adding the vertices of all other smaller
components in H to any of these, using this as the k-clustering. �

129

A. BLUM

We now show how we can use Lemma 6.10 to find a clustering that is ε-close to
CT when all clusters are large. The algorithm will run in two phases: first creating a
threshold graph and using the algorithm of Lemma 6.10 to get an initial clustering,
and then running a second “Lloyd’s-like” step to recluster points based on their
median distances to the initial clusters, which will fix most of the errors from the first
step. For simplicity, we begin by assuming that we are given the value of wavg = OPT

n ,
and then we show how this assumption can be removed.

Theorem 6.11 (Large Clusters, Known wavg) There is an efficient algorithm
such that if the given clustering instance (M,S) is (1+α,ε)-approximation-stable
for the k-median objective and each cluster in CT has size at least (3+10/α)εn+2,
then given wavg it will find a clustering that is ε-close to CT .

Proof Let us define b := (1+5/α)εn. By assumption, each cluster in the target
clustering has at least (3 + 10/α)εn + 2 = 2b + εn + 2 points. Since the optimal
k-median clustering C∗ differs from the target clustering by at most ε∗n ≤ εn
points, each cluster C∗

i in C∗ must have at least 2b + 2 points. Moreover, by
Proposition 6.7(i), the bad points B have |B| ≤ b, and hence for each i,

|Xi| = |C∗
i \ B| ≥ b + 2.

Now, given wavg, we can construct the graph Gτ with τ = 2dcrit (which we
can compute from the given value of wavg), and apply Lemma 6.10 to find a
k-clustering C′ where each Xi is contained within a distinct cluster. Note that
this clustering C′ differs from the optimal clustering C∗ only in the bad points,
and hence, dist(C′,CT) ≤ ε∗ + |B|/n ≤ O(ε + ε/α). However, our goal is to get
ε-close to the target, which we do as follows.

Call a point x “red” if it is a bad point of the type given in part (a) of
Lemma 6.5 (i.e., w2(x) − w(x) < 5dcrit), “yellow” if it is not red but is a bad
point of the type given in part (b) of Lemma 6.5 with t = 5 (i.e., w(x) ≥ dcrit),
and “green” otherwise. So, the green points are those in the sets Xi, and
we have partitioned the bad set B into red points and yellow points. Let
C′ = {C′

1, . . . ,C
′
k} and recall that C′ agrees with C∗ on the green points,

so without loss of generality we may assume Xi ⊆ C′
i . We now construct a

new clustering C′′ that agrees with C∗ on both the green and yellow points.
Specifically, for each point x and each cluster C′

j , compute the median
distance dmedian(x,C′

j) between x and all points in C′
j ; then insert x into the

cluster C′′
i for i = argminjdmedian(x,C′

j). Since each non-red point x satisfies
w2(x)−w(x) ≥ 5dcrit, and all green points g satisfy w(g) < dcrit, this means that
any non-red point x must satisfy the following two conditions: (1) for a green
point g1 in the same cluster as x in C∗ we have

d(x,g1) ≤ w(x) + dcrit,

and (2) for a green point g2 in a different cluster than x in C∗ we have

d(x,g2) ≥ w2(x) − dcrit ≥ w(x) + 4dcrit.

Therefore, d(x,g1)< d(x,g2). Since each cluster in C′ has a strict majority of
green points (even with point x removed) all of which are clustered as in C∗,

130

APPROXIMATION STABILITY AND PROXY OBJECTIVES

this means that for a non-red point x, the median distance to points in its
correct cluster with respect to C∗ is less than the median distance to points in
any incorrect cluster. Thus, C′′ agrees with C∗ on all non-red points. Therefore,
every point where C′′ and CT disagree must be either (i) a point where C∗ and
CT disagree or (ii) a red point where C∗ and CT agree. Since there are at most
ε∗n of the former and at most (ε− ε∗)n of the latter by Lemma 6.5, this implies
dist(C′′,CT) ≤ ε as desired. For convenience, the above procedure is given as
Algorithm 1. �

Algorithm 1 k-median algorithm: Large clusters (given a guess w of wavg)

Input: w, ε ≤ 1, α > 0, k.

Step 1: Construct the τ -threshold graph Gτ with τ = 2dcrit = 1
5
αw
ε

.
Step 2: Apply the algorithm of Lemma 6.10 to find an initial clustering C′. Specif-

ically, construct graph H by connecting x,y if they share at least b = (1 +
5/α)εn neighbors in Gτ and let C′

1, . . . ,C
′
k be the k largest components of H.

Step 3: Produce clustering C′′ by reclustering according to smallest median distance
in C′. That is, C′′

i = {x : i = argminjdmedian(x,C′
j)}.

Step 4: Output the k clusters C′′
1, . . . ,C′′

k .

We now extend the preceding argument to the case where we are not given the value
of wavg.

Theorem 6.12 (Large Clusters, Unknown wavg) There is an efficient algorithm
such that if the given instance (M,S) is (1 + α,ε)-approximation stable for the
k-median objective, and each cluster in CT has size at least (4 + 15/α)εn + 2, the
algorithm will produce a clustering that is ε-close to CT .

Proof The algorithm for the case that we are not given the value wavg is the
following: we run steps 1 and 2 of Algorithm 1 repeatedly for different guesses
w of wavg, starting with w = 0 (so the graph Gτ is empty) and at each step
increasing w to the next value such that Gτ contains at least one new edge (so
we have at most n2 different guesses to try). If the current value of w causes the
k largest components of H to miss more than b := (1+5/α)εn points, or if any
of these components has size ≤ b, then we discard this guess w, and try again
with the next larger guess for w. Otherwise, we run Algorithm 1 to completion
and let C′′ be the clustering produced.

Note that we still might have w<wavg, but this just implies that the resulting
graphs Gτ and H can have only fewer edges than the corresponding graphs
for the correct wavg. Hence, some of the Xi’s might not have fully formed into
connected components in H. However, if the k largest components together
miss at most b points, then this implies we must have at least one component
for each Xi, and therefore exactly one component for each Xi. So, we never
misclassify the good points lying in these largest components. We might mis-
classify all the bad points (at most b of these), and might fail to cluster at
most b of the points in the actual Xi’s (i.e., those not lying in the largest k

131

A. BLUM

components), but this nonetheless guarantees that each cluster C′
i contains at

least |Xi|−b ≥ b+2 correctly clustered green points (with respect to C∗) and at
most b misclassified points. Therefore, as shown in the proof of Theorem 6.11,
the resulting clustering C′′ will correctly cluster all non-red points as in C∗ and so
is at distance at most (ε−ε∗)+ε∗ = ε from CT . For convenience, this procedure
is given as Algorithm 2. �

Algorithm 2 k-median algorithm: Large clusters (unknown wavg)

Input: ε ≤ 1, α > 0, k.
For j = 1,2,3 . . . do:

Step 1: Let τ be the jth smallest pairwise distance in S. Construct τ -threshold
graph Gτ .

Step 2: Run step 2 of Algorithm 1 to construct graph H and clusters C′
1, . . . ,C

′
k.

Step 3: If min(|C′
1|, . . . ,|C′

k|) > b and |C′
1 ∪ . . . ∪ C′

k| ≥ n(1 − ε − 5ε/α), run step 3
of Algorithm 1 and output the clusters C′′

1, . . . ,C
′′
k produced.

6.3.4 Handling Small Clusters

Small target clusters introduce additional challenges. One is that modifying a clus-
tering C by reassigning εn points into different clusters may no longer produce a
clustering C′ that is ε-far from C. For example, if two clusters Ci and Cj in C are
both small, then moving all points from Ci into Cj and moving all points from Cj
into Ci produces the exact same clustering as at the start. However, it turns out that
any set of εn reassignments must contain a subset of size at least ε′n for ε′ ≥ ε/3
that indeed create a clustering C′ that is ε′-far from the original C (Balcan et al.,
2013). This allows for a slightly weaker analog of Lemma 6.5 to be shown. Another
challenge is that in growing the threshold τ , it can be difficult to tell when to stop. In
particular, if we grow the threshold until the kth largest cluster produced has more
than b points, we may have gone too far – merging two large clusters and producing
a high-error solution. However, this can be addressed by first running any constant-
factor k-median approximation to get an estimate w̃avg for wavg, and then using that
quantity inside the algorithm. Finally, there may be some clusters that are dominated
by bad points. Nonetheless, this can be handled as well, though we can no longer run
the reclustering phase (step 3) of algorithm 1, resulting in a solution that is O(ε+ε/α)-
close to the target rather than ε-close. The formal guarantee is in Theorem 6.3.

6.4 k-Means, Min-Sum, and Other Clustering Objectives

Similar results to those presented for the k-median problem are also known for the
k-means and min-sum clustering objectives. The k-means score of a clustering is
defined similarly to the k-median score, except we square the distances:

�kmeans(C) =
k∑

i=1

min
ci∈X

∑
x∈Ci

d(x,ci)
2. (6.3)

132

APPROXIMATION STABILITY AND PROXY OBJECTIVES

In min-sum clustering, the objective value is the sum of all pairwise intra-cluster
distances.

�minsum(C) =
k∑

i=1

∑
x∈Ci

∑
y∈Ci

d(x,y). (6.4)

For example, in a uniform metric space, all clusterings have the same k-median or
k-means cost, but the min-sum objective would be optimized by making all clusters
equal in size.

For the k-means problem, there is an analogous result to Theorem 6.3:

Theorem 6.13 k-Means: General Case (Balcan et al., 2013) There is an effi-
cient algorithm that will produce a clustering that is O(ε+ε/α)-close to the target
clustering CT whenever the instance satisfies (1+α,ε)-approximation stability for
the k-means objective.

The min-sum objective is more challenging to analyze because the contribution
of any given data point to the overall cost depends on the size of the cluster it is
in. In fact, unlike the k-median and k-means problems that have constant-factor
approximation algorithms, the best approximation guarantee known for the min-sum
objective is an O(log1+δ(n)) factor (Bartal et al., 2001).

Balcan et al. (2013) give a bound for min-sum clustering of the form in
Theorem 6.13 given earlier but only under the assumption that all target clusters have
size at least cεn/α for a sufficiently large constant c. Balcan and Braverman (2009)
extend this to general cluster sizes, so long as one is given up-front a constant-factor
approximation to the objective; else their algorithm produces a list of O(log log n)
solutions such that at least one solution will be O(ε + ε/α)-close to the target
clustering.

6.5 Clustering Applications

Voevodski et al. (2012) consider clustering applications in computational biology, and
show that approximation stability can be a useful guide in designing algorithms for
them, especially when those settings come with additional constraints. Specifically, in
the application considered by Voevodski et al. (2012), one is not given the distances
between all data points up front. Instead, one can make a limited number of one-
versus-all queries: proposing a query point and running a procedure that returns its
distance to all other points in the dataset. They design an algorithm that, assuming
(c,ε)-approximation stability for the k-median objective, finds a clustering that is
ε-close to the target by using only O(k) such one-versus-all queries in the large
cluster case, and furthermore is faster than the algorithm we presented here. They
then use their algorithm to cluster biological datasets in the Pfam (Finn et al.,
2010) and SCOP (Murzin et al., 1995) databases, where the points are proteins and
distances are inversely proportional to their sequence similarity. The Pfam and SCOP
databases are used in biology to observe evolutionary relationships between proteins
and to find close relatives of particular proteins. Voevodski et al. (2012) show that
their algorithms are not only fast on these datasets, but also achieve high accuracy.
In particular, for one of these sources they obtain clusterings that almost exactly

133

A. BLUM

match the given classification, and for the other, the accuracy of their algorithm
is comparable to that of the best known (but slower) algorithms using the full
distance matrix.

6.6 Nash Equilibria

We now consider the problem of finding approximate Nash equilibria from the
perspective of approximation stability.

Let (R,C) denote a 2-player, n-action bimatrix game. Here, R is the payoff matrix
for the row player and C is the payoff matrix for the column player. A (mixed) strategy
is a probability distribution over n actions, which we will represent as a column vector.
Let
n denote the strategy space, that is, the set of vectors in [0,1]n whose entries sum
to 1. The goal of each player is to maximize its expected payoff. A pair of strategies
(p,q) (p for the row player and q for the column player) is a Nash equilibrium if neither
player has any incentive to deviate; that is,

� For all p′ ∈
n, p′T Rq ≤ pT Rq.
� For all q′ ∈
n, pT Cq′ ≤ pT Cq.

A pair of strategies (p,q) is an approximate Nash equilibrium if no player has a large
incentive to deviate. More formally, assume the matrices R,C have all entries in the
range [0,1]. We then say that (p,q) is an α-approximate equilibrium if

� For all p′ ∈
n, p′T Rq ≤ pT Rq + α.
� For all q′ ∈
n, pT Cq′ ≤ pT Cq + α.

We say that (p,q) is a well-supported α-approximate Nash equilibrium if only actions
whose payoffs are within α of the best response to the opponent’s strategy have
positive probability. That is, if i is in the support of p, then eT

i Rq ≥ maxj eT
j Rq − α,

and similarly if i is in the support of q then pT Cei ≥ maxj pT Cej − α, where ei is the
unit vector with 1 in coordinate i.

Finding approximate equilibria in general n × n bimatrix games appears to
be a challenge computationally. Lipton et al. (2003) show that there always exist
α-approximate equilibria with support over at most O((log n)/α2) actions, which
leads to an nO(log n/α2)-time algorithm for computing α-approximate equilibria. This
is the fastest general algorithm known, and Rubinstein (2016) shows that under the
Exponential Time Hypothesis for PPAD, there is no algorithm with running time
nO(log1−δ n) for any constant δ > 0. The associated structural statement is also known
to be existentially tight (Feder et al., 2007). The smallest value of α for which an
α-approximate equilibrium is known to be computable in polynomial time is 0.3393
(Tsaknakis and Spirakis, 2007).

However, one reason we might wish to find an approximate Nash equilibrium
is to predict how people will play. If we imagine that people will indeed play an
approximate Nash equilibrium, but beyond that we wish to make no additional
assumptions on player behavior, then for play to be predictable in principle this
requires that all approximate equilibria be close together. That is, if we anticipate
people will play an α-approximate equilibrium and wish to predict mixed strategies

134

APPROXIMATION STABILITY AND PROXY OBJECTIVES

up to, say, a variation distance ε, then we will want the game to satisfy (α,ε)-
approximation stability.4

Awasthi et al. (2010a) show that games satisfying (α,ε)-approximation stability
indeed have additional useful structural properties. Specifically, if ε ≤ 2α − 6α2, then
there must exist an O(α)-equilibrium where each player’s strategy has support size
O(1/α). For constant α this implies a polynomial-time algorithm for computing
O(α)-equilibria. For general α,ε such games must have an α-equilibrium of support
size O((ε

2

α2) log(1 + 1
ε
) log(n)); this does not lead to a polynomial-time algorithm,

but at least gives a substantial reduction in the dependence on α when ε = O(α),
for instance. Note also that α and ε need not be constants, so this gives a quasi-
polynomial time algorithm for finding, say, 1/poly(n)-approximate equilibria in
games that are sufficiently stable at that value of α. This is especially interesting
because it is known to be PPAD-hard to find 1/poly(n)-approximate equilibria in
general games. See Balcan and Braverman (2017) for further discussion.

An Example As a simple example of an approximation-stable game, consider the
prisoner’s dilemma (with payoffs scaled to [0,1]):

R =
[

0.75 0
1 0.25

]
C =

[
0.75 1

0 0.25

]
.

Here, the only Nash equilibrium is to both play action 2 (defecting), resulting in
a payoff of 0.25 to each, even though both playing action 1 (cooperating) would
produce payoff 0.75 to each. This game is (α,ε)-approximation stable for α = ε/4 for
any ε < 1 because if any player puts an ε probability mass on action 1, then (no matter
what the other player is doing) that player will have incentive ε/4 to deviate. Further
examples of natural approximation-stable games are given in Exercises 6.4 and 6.5.

Approximation Stability and Perturbation Stability Balcan and Braverman (2017)
prove an interesting connection between approximation stability and perturbation
stability (discussed in Chapter 5) for the Nash equilibrium problem. Specifically, they
show that if (p,q) is a well-supported approximate Nash equilibrium in game (R,C),
then there must exist a nearby game (R′,C′) such that (p,q) is an (exact) Nash equi-
librium in (R′,C′), and vice versa. This implies that assuming that all well-supported
approximate equilibria are close together is the same as assuming that all exact
equilibria in slightly perturbed games are close together. In addition, they extend the
above general support-size statement to this assumption, as well as to a reversal of
quantifiers when the total number of equilibria is polynomial in n (assuming that for
each equilibrium in a perturbed game there exists a close equilibrium in the original
game, rather than assuming that there exists an equilibrium in the original game that
is close to all equilibria in perturbed games).

6.7 The Big Picture

We now step back and reflect on how approximation stability may be useful and what
it can tell us. First, approximation stability allows us to formalize what typically
are informal motivations for objective functions that can be measured from the
data, when the true goal is to find an unknown target solution. If an algorithm

4 For concreteness, we define the distance between the strategy pair (p,q) and the strategy pair (p′,q′) as
max[d(p,p′),d(q,q′)] where d(.,.) is variation distance.

135

A. BLUM

can be designed for approximation-stable instances, it means that this algorithm will
perform well on any instances for which that motivation is well justified, possibly even
bypassing approximation-hardness barriers with respect to the true goal.

Second, approximation stability provides an interesting implication through its
contrapositive. Suppose an algorithm designed for approximation stability does not
perform well on typical instances from a given domain, e.g., as in the domains
considered by Schalekamp et al. (2010). This means that those instances are not
approximation stable, which in turn means that if an algorithm is to perform well
on them, it will not be due solely to its ability to achieve a good approximation to
the given objective function. Instead, one should aim to look for other criteria or
algorithmic properties, perhaps in concert with performance on the objective. That
is, approximation stability can help motivate and provide guidance in the search for
additional theoretical guarantees beyond approximation ratio.

Third, approximation stability can provide a useful design guide for algorithms in
practice. As seen in the work of Voevodski et al. (2012) described earlier on clustering
protein sequences from limited information, if one is in a new situation and unsure
about what kind of algorithm would be best, asking “can we design an algorithm that
operates under our given constraints and would do well if the input was sufficiently
approximation stable?” can help in producing highly practical methods, regardless of
whether stability is indeed perfectly satisfied in the instances.

6.8 Open Questions

One problem for which an approximation stability result would be quite interesting
is sparsest cut. Given a graph G = (V,E), the sparsest cut problem asks to find
the cut (S,V \ S) that minimizes |E(S,V\S)|

min(|S|,|V\S|) . This problem is NP-hard and the

best approximation known is a factor O(
√

log n) (Arora et al., 2009). One common
motivation for sparsest cut is that nodes might represent objects of two types (say,
images of cats and of dogs), edges might represent similarity, and the hope is that the
correct partition (cats on one side and dogs on the other) would in fact be a sparse cut.
Notice that this is a problem of recovering a target solution. From this perspective, a
natural question then is: suppose an instance satisfies (c,ε) approximation stability for
sparsest cut, even for a large constant c. Can one use this to efficiently find a solution
that is O(ε)-close to the target? If so, then this would be achieving the benefits of a
constant-factor approximation even if we do not in general know how to achieve a
constant-factor approximation.

Another type of problem for which approximation stability could be quite interest-
ing to consider is phylogenetic tree reconstruction. Here, the goal is to reconstruct an
unknown evolutionary tree for a given set of current objects (species, languages, etc.),
by optimizing some quantity over the current objects. Typically, the quantity being
optimized is motivated by a specific postulated probabilistic model for how mutations
occur. However, it would be interesting to obtain guarantees under nonprobabilistic
stability assumptions as well.

Finally, the MAX-SAT problem could be interesting to consider in this context.
The MAX-SAT problem is sometimes used to model solution discovery problems,
including problems of learning and clustering (Berg et al., 2018), so approximation-
stability results would be of interest here as well.

136

APPROXIMATION STABILITY AND PROXY OBJECTIVES

6.9 Relaxations

Balcan et al. (2009a) consider a relaxation of (c,ε)-approximation stability that allows
for the presence of noisy data: data points for which the (heuristic) distance measure
does not reflect cluster membership well, which could cause stability over the full
dataset to be violated. Specifically, they define and analyze a notion of (ν,c,ε)-
approximation stability, which requires that the data satisfy (c,ε) approximation
stability only after a ν fraction of the data points have been removed.

It would also be interesting to consider relaxations that place an assumption
only on c-approximations satisfying some additional condition that natural approx-
imation algorithms tend to provide. For example, suppose we require only that
c-approximations that are also local optima under some reasonable locality notion
must be ε-close to the target. Can one extend positive results like those described
earlier to weaker assumptions of this form as well?

6.10 Notes

The notion of approximation stability for clustering first appeared in Balcan et al.
(2008), though its implications were not studied in detail until Balcan et al. (2009b).
The terminology used in this chapter follows Balcan et al. (2013). The approximation-
stability results for clustering and Nash equilibria described in this chapter are
primarily from Balcan et al. (2013), Awasthi et al. (2010a), and Balcan and Braverman
(2017). Empirical work described on clustering biological sequences is from Voevod-
ski et al. (2012). Other work on approximation stability, not discussed here, includes
work analyzing k-means++ under approximation stability (Agarwal et al., 2015) and
on correlation clustering (Balcan and Braverman, 2009).

References

Ackerman, Margareta, and Ben-David, Shai. 2009. Clusterability: A theoretical study. Artifi-
cial Intelligence and Statistics, 1–8.

Agarwal, Manu, Jaiswal, Ragesh, and Pal, Arindam. 2015. k-Means++ under approximation
stability. Theoretical Computer Science, 588, 37–51.

Arora, Sanjeev, Rao, Satish, and Vazirani, Umesh. 2009. Expander flows, geometric embed-
dings and graph partitioning. Journal of the ACM (JACM), 56(2), 5.

Awasthi, Pranjal, Balcan, Maria-Florina, Blum, Avrim, Sheffet, Or, and Vempala, Santosh.
2010a. On Nash-equilibria of approximation-stable games. In International Symposium
on Algorithmic Game Theory, pp. 78–89. Springer.

Awasthi, Pranjal, Blum, Avrim, and Sheffet, Or. 2010b. Stability yields a PTAS for
k-median and k-means clustering. In 2010 IEEE 51st Annual Symposium on Foundations
of Computer Science, pp. 309–318. IEEE.

Balcan, Maria-Florina, and Braverman, Mark. 2009. Finding low error clusterings. In
Proceedings of the 22nd Annual Conference on Learning Theory.

Balcan, Maria-Florina, and Braverman, Mark. 2017. Nash equilibria in perturbation-stable
games. Theory of Computing, 13(1), 1–31.

Balcan, Maria-Florina, and Liang, Yingyu. 2016. Clustering under perturbation resilience.
SIAM Journal on Computing, 45(1), 102–155.

Balcan, Maria-Florina, Blum, Avrim, and Vempala, Santosh. 2008. A Discriminative Frame-
work for Clustering via Similarity Functions. In Proceedings of the 40th ACM Symposium
on Theory of Computing, pp. 671–680.

137

A. BLUM

Balcan, Maria-Florina, Röglin, Heiko, and Teng, Shang-Hua. 2009a. Agnostic clustering. In
International Conference on Algorithmic Learning Theory, pp. 384–398. Springer.

Balcan, Maria-Florina, Blum, Avrim, and Gupta, Anupam. 2009b. Approximate cluster-
ing without the approximation. In Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1068–1077. Society for Industrial and Applied
Mathematics.

Balcan, Maria-Florina, Blum, Avrim, and Gupta, Anupam. 2013. Clustering under approxi-
mation stability. Journal of the ACM (JACM), 60(2), 8.

Bartal, Yair, Charikar, Moses, and Raz, Danny. 2001. Approximating min-sum k-clustering in
metric spaces. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing.

Berg, Jeremias, Hyttinen, Antti, and Järvisalo, Matti. Applications of MaxSAT in data
analysis. In Proceedings of Pragmatics of SAT 2015 and 2018, pp. 50–64.

Daniely, Amit, Linial, Nati, and Saks, Michael. 2012. Clustering is difficult only when it does
not matter. arXiv preprint arXiv:1205.4891.

Feder, Tomas, Nazerzadeh, Hamid, and Saberi, Amin. 2007. Approximating Nash equilibria
using small-support strategies. Proceeding of the 8th ACM-EC, pp. 352–354.

Finn, R.D., Mistry, J., Tate, J., et al. 2010. The Pfam protein families database. Nucleic Acids
Research, 38, D211–222.

Guha, Sudipto, and Khuller, Samir. 1999. Greedy strikes back: Improved facility location
algorithms. Journal of Algorithms, 31(1), 228–248.

Jain, Kamal, Mahdian, Mohammad, and Saberi, Amin. 2002. A new greedy approach for
facility location problems. In Proceedings of the Thiry-Fourth Annual ACM Symposium
on Theory of Computing, pp. 731–740. ACM.

Li, Shi, and Svensson, Ola. 2016. Approximating k-median via pseudo-approximation. SIAM
Journal on Computing, 45(2), 530–547.

Lipton, Richard J., Markakis, Evangelos, and Mehta, Aranyak. 2003. Playing large games
using simple strategies. In Proceedings of 4th ACM-EC, pp. 36–41.

Murzin, A.G., Brenner, S. E., Hubbard, T., and Chothia, C. 1995. SCOP: A structural
classification of proteins database for the investigation of sequences and structures.
Journal of Molecular Biology, 247, 536–540.

Ostrovsky, Rafail, Rabani, Yuval, Schulman, Leonard J, and Swamy, Chaitanya. 2012. The
effectiveness of Lloyd-type methods for the k-means problem. Journal of the ACM
(JACM), 59(6), 28.

Rubinstein, Aviad. 2016. Settling the complexity of computing approximate two-player Nash
equilibria. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 258–265. IEEE.

Schalekamp, Frans, Yu, Michael, and van Zuylen, Anke. 2010. Clustering with or without
the approximation. In Proceedings of the 16th Annual International Computing and
Combinatorics Conference.

Tsaknakis, Haralampos, and Spirakis, Paul G. 2007. An optimization approach for approxi-
mate Nash equilibria. Workshop on Internet and Network Economics, pp. 42–56.

Voevodski, Konstantin, Balcan, Maria-Florina, Röglin, Heiko, Teng, Shang-Hua, and Xia,
Yu. 2012. Active clustering of biological sequences. Journal of Machine Learning
Research, 13(Jan), 203–225.

Exercises

Exercise 6.1 Prove that Equation 6.2 defining the distance between k-clusterings is
a metric. Specifically, show that (a) dist(C,C′) is symmetric and (b) it satisfies the
triangle inequality. Note: the trickier property here is (a).

138

APPROXIMATION STABILITY AND PROXY OBJECTIVES

Exercise 6.2 What is the expected distance dist(C,C′) between two random
k-clusterings C,C′ of a set of n points, in the limit as n → ∞?

Exercise 6.3 Consider k-median clustering for k = 2. Give an example of a set of
points satisfying (1.4,0) approximation stability (i.e., all c-approximations for
c ≤ 1.4 are identical to the target clustering) but not (1.6,0.3) approximation-
stability (i.e., there exists a c-approximation for c ≤ 1.6 that has distance at least 0.3
from the target clustering). Is your example 1.6-perturbation resilient (Chapter 5)?

Exercise 6.4 Consider the matching pennies game (with payoffs scaled to [0,1]):

R =
[

1 0
0 1

]
C =

[
0 1
1 0

]
.

The unique Nash equilibrium of this game is for both players to play (0.5,0.5),
giving each an expected payoff of 0.5. Prove that this game is (3/16,1/4)-
approximation stable. That is, for any strategy pair (p,q) such that at least one
of p or q puts more than 3/4 probability on one of its two actions, at least one
player must have at least a 3/16 incentive to deviate (there must be some action
they can play in which their expected gain is larger than their current expected
gain by at least 3/16).

Exercise 6.5 Consider the game of rock-paper-scissors (with payoffs scaled to [0,1]):

R =
⎡⎣ 0.5 0 1

1 0.5 0
0 1 0.5

⎤⎦ C =
⎡⎣ 0.5 1 0

0 0.5 1
1 0 0.5

⎤⎦ .

Prove that this game is (α,4α)-approximation stable for any α < 1/6.

139

CHAPTER SEVEN

Sparse Recovery
Eric Price

Abstract: Many real-world signals are approximately sparse, mean-
ing that a small fraction of the coordinates contain almost all the
signal mass; examples include images, audio, and any signals drawn
from Zipfian, power-law, or log-normal distributions. If a signal
x ∈ R

n is approximately k-sparse, then ideally the complexity of
estimating or manipulating x should scale primarily with k rather
than n.

Such sparse recovery algorithms are possible for a variety of
different problem variants, corresponding to different modalities of
measuring x and different guarantees on the estimation error. In this
chapter we will consider streaming algorithms, compressed sensing,
and sparse Fourier transforms, as well as extensions to low-rank
matrix recovery.

7.1 Sparse Recovery

Imagine that you are tallying the results of an election by hand, and would like to
find the top few candidates. You might maintain a sheet of paper recording the count
for each candidate, while you pass through the giant stack of ballots. But write-in
candidates make this challenging in a large election: the recording sheet would run
out of space from votes for “candidates” like Batman or Bart Simpson. You would
be fine ignoring such joke candidates with very few votes, but you don’t want to miss
a significant write-in candidate – and you don’t want to miss him or her even if all his
or her votes happened late in the day, at the bottom of the stack of ballots, after your
tally sheet has run out of space. An algorithm due to Misra and Gries (1982), to be
covered in the next section, offers a solution that uses only a small amount of space,
at the cost of giving an approximate answer. If there are only k “real” candidates, and
all the other candidates are rare, the approximation error will be small.

This property, that a small fraction of coordinates contains a large fraction of the
mass, has been empirically observed for signals in many different domains. It follows
from popular rules of thumb such as Zipf’s law and the 80/20 rule, as well as popular
generative models that yield power law or lognormal distributions. In Figure 7.1
we show a few examples of this phenomenon: in music (the Fourier transform of
a short snippet), images (represented in a basis such as the Haar wavelet), and
networks (number of inlinks per page). These different domains vary in how quickly

140

SPARSE RECOVERY

I

I

I
I

Figure 7.1 Coefficient decay in three example signals of different domains. In each example, the i th
largest coordinate has magnitude decaying as i−α for some α ∈ (0.5,1). The audio data contain the
frequencies in a 1/10 second clip of a popular music video; the image data are the Haar wavelet
representation of one frame of this video; the graph data are the number of inlinks per page on English
Wikipedia.

the coefficients decay, but they all have the same qualitative behavior: the ith largest
coordinate has magnitude roughly proportional to i−α for some α ∈ (0.5,1) for small i,
followed by even faster decay for large i.

None of the results presented in this chapter rely on any distributional assump-
tions on signals, and require only that the signal to be recovered or manipulated
is (approximately) sparse. This assumption is analogous to the stability defini-
tions of Chapters 5 and 6, except with “meaningful solutions” now identified with
“(approximate) sparsity.” Most of the algorithms in this chapter provide input-
by-input guarantees, parameterized by how close the unknown signal is to being
k-sparse. As with the parameterized guarantees in Chapters 1 and 2, these will be
nontrivial only when the parameter is small (i.e., when the signal is approximately
k-sparse).

Outline of the Chapter. In Section 7.2 we give a streaming algorithm for sparse
recovery. In Section 7.3 we present two linear sketching algorithms for the problem.
Linear sketching algorithms have several advantages over other streaming algorithms,
and the second algorithm also achieves a stronger “�2” approximation guarantee for
sparse recovery. In Section 7.4 we turn to compressive sensing algorithms. Compres-
sive sensing is essentially the same problem as sparse recovery with linear sketching,
but studied by a different community for a different purpose, leading to significant
differences in techniques and subtler differences in goals. Section 7.5 contains a lower
bound that matches the algorithms of Sections 7.3 and 7.4. Section 7.6 presents some
more involved results in the area. Finally, Section 7.7 shows how sparse recovery
techniques extend to low-rank matrix estimation.

Notation. For any x ∈ R
n and k ∈ [n], we use Hk(x) to denote the k-sparse vector in

R
n that sets all but the largest k entries (in magnitude) of x to zero.

141

E. PRICE

Algorithm 1 FREQUENTELEMENTS heavy hitters algorithm
1: function FREQUENTELEMENTS(STREAM, k)
2: d ← DICTIONARY()

3: for u in STREAM do
4: if u in d then
5: d[u] += 1
6: else if d has less than k keys then
7: d[u] ← 1
8: else
9: d[u′] −= 1 ∀u′ ∈ d.

10: Remove keys of d that now map to zero
11: end if
12: end for
13: return d
14: end function

7.2 A Simple Insertion-Only Streaming Algorithm

The election counting example is one example of a data stream. An (insertion-only)
data stream consists of a long series of items

u1,u2,u3, . . . ,uN ∈ [n].

This stream represents the count vector x ∈ R
n given by

xi = |{j : uj = i}|.
The goal of sparse recovery (also known as heavy hitters) in this context is to
approximate x while scanning through u, while storing much less than n or N = ‖x‖1
space (where ‖x‖p := (

∑
i xp

i)
1/p is the �p-norm).

The straightforward method for estimating x is to store it in a dictionary (a.k.a.
associative array or map). We would start with an empty dictionary d, and for every
element u that appears in the stream we increment d[u] (with newly added elements
set to 1). The problem with this method is that the space used is the total number of
distinct elements in the stream, which could be as large as n.

The FREQUENTELEMENTS algorithm, presented in Algorithm 1 and due to Misra
and Gries (1982), is a simple twist on the straightforward approach. The only
difference is that we pick a parameter k (think, perhaps, k = √

n) and, if incrementing
d[u] would make d have more than k keys, we instead subtract 1 from the counter of
every key in the dictionary – and if that brings a counter to zero, the corresponding
key is removed. The space usage is then �(k) words and the error in the final count
of every element is, at most, the total number of times this subtraction occurs. Since
each subtraction removes k from the sum of the values in d, while each addition adds
only 1 and the sum of values remains nonnegative, the subtraction step can happen
at most a 1/(k + 1) fraction of the stream steps. Thus:

Lemma 7.1 The estimates x̂u = d[u] given by the FREQUENTELEMENTS algo-
rithm satisfy

142

SPARSE RECOVERY

xu − 1
k + 1

‖x‖1 ≤ x̂u ≤ xu

for every element u.

One can also get a more refined bound that is significantly stronger in a sparse setting.
If a few elements really do dominate the stream, those elements will end up with large
values, which further constrains the number of deletions. One way to bound this is to
consider as a potential function the sum of the entries of d that do not correspond to
the k/2 largest entries of x. This potential is nonnegative at all times, only increases
by 1 at a time, and does so at most ‖x − Hk/2(x)‖1 ≤ ‖x‖1 times; on the other hand,
each subtraction removes at least k/2 from this potential, so the total number of
subtractions is at most ‖x − Hk/2(x)‖1 · 2

k . Thus:

Lemma 7.2 The estimates x̂u = d[u] given by the FREQUENTELEMENTS algo-
rithm satisfy

xu − 2
k
‖x − Hk/2(x)‖1 ≤ x̂u ≤ xu

for every element u.

Which of Lemmas 7.1 and 7.2 more accurately characterizes the performance
of FREQUENTELEMENTS depends on the sparsity of x. The sparsity-aware bound
of Lemma 7.2 gives a better asymptotic bound on the error in terms of k when
the frequencies decay faster than Zipf’s law (in which the ith most common element
having frequency proportional to 1/i). When the frequencies decay slower, however,
‖x−Hk/2(x)‖1 ≈ ‖x‖1 for k � n so Lemma 7.1’s better constant factors give a better
bound.

7.3 Handling Deletions: Linear Sketching Algorithms

The FREQUENTELEMENTS algorithm is designed for insertion-only streams, where
items arrive in sequence and never leave. A more general, and more challenging,
setting is that of turnstile streams, where items can be both inserted and deleted. The
name evokes an amusement park: you want to study the people who are currently
inside the park, while only tracking people as they enter and leave through turnstiles.
An important subclass is the strict turnstile stream, wherein the final vector x has
nonnegative values (e.g., people cannot leave without arriving).

In Algorithm 2 we present two algorithms for solving sparse recovery in
turnstile streams: COUNTMINSKETCH (Cormode and Muthukrishnan, 2005) and
COUNTSKETCH (Charikar et al., 2002). The two algorithms are almost identical, with
COUNTSKETCH having a few more pieces; these extra parts are displayed in gray, and
should be ignored to read the COUNTMINSKETCH algorithm.

It turns out that almost every turnstile streaming algorithm can be implemented as
a linear sketch. In a linear sketch, you store y = Ax for some (possibly randomized)
matrix A ∈ R

m×n. This can easily be maintained under streaming updates: when an
element is inserted or deleted, you simply add or subtract the corresponding column
of A from the sketch y. The space used by the linear sketch is m words to store y, plus
the size of the random seed to produce A; and for the algorithms we will consider, the

143

E. PRICE

Algorithm 2 COUNTMINSKETCH in black / COUNTSKETCH in black and gray
1: function COUNTMINSKETCH/COUNTSKETCH(STREAM, B, R)
2: Pick h1, . . . ,hR : [n] → [B] pairwise independent hash functions.
3: Pick s1, . . . ,sR : [n] → {−1,1} pairwise independent hash functions.
4: y(r)i ← 0 ∀i ∈ [B],r ∈ [R]
5: for (u,a) in STREAM do � (Corresponding to stream update xu ← xu + a)
6: for r ∈ [R] do
7: y(r)hr(u)

+= a·sr(u).
8: end for
9: end for

10: for u ∈ [n] do
11: x̂u ← minr∈[R] yhr(u). � (COUNTMINSKETCH only)
12: x̂u ← medianr∈[R] yhr(u) · sr(u). � (COUNTSKETCH only)
13: end for
14: return x̂
15: end function

seed is small so this is essentially m. Another benefit of linear sketching algorithms
over insertion-only streaming is mergability: you can split the stream into pieces (say,
multiple routers), sketch the pieces individually, then add up the results to get the
sketch for the full stream. One can observe that COUNTMINSKETCH/COUNTSKETCH

are linear sketches. In particular, the final value stored in each coordinate y(r)j is

y(r)j =
n∑

u=1

1hr(u)=jsr(u) · xu, (7.1)

which is a linear function of x.

7.3.1 The Count-Min Sketch: An �1 Guarantee

The idea behind COUNTMINSKETCH is that if we had unlimited space, we’d just store
a single hash table with the counts for all items in the stream. If we instead store a
hash table of much smaller size B = O(k), there will be collisions. Standard methods
for resolving those collisions, like linked lists, would again need linear space in the
number of distinct items. But what happens if we don’t resolve collisions at all, and
just store in each hash cell the total number of elements that hash there?

Given such a “hash table,” we can estimate the count for an item by the value in the
cell it hashes to. For strict turnstile streams, this is an overestimate of the true answer:
it contains the true count plus the counts of colliding elements. But any other element
has only a 1/B chance of colliding in the hash table, so the expected error is at most
‖x‖1/B. This would be a decent bound comparable to Lemma 7.1, except that it is
only in expectation for each element. Almost surely some element will have much
higher error – indeed, there is no way to distinguish between the heavy hitters and the
(small fraction, but still numerous) other elements that happen to collide with them.

144

SPARSE RECOVERY

To fix this, COUNTMINSKETCH repeats the process with R = O(log n) different
hash tables. Since each hash table gives an overestimate, the final estimate of an
element is the minimum estimate from any repetition. This achieves the following:

Theorem 7.3 If x has nonnegative entries, then COUNTMINSKETCH, when run
with B ≥ 4k and R ≥ 2 log2 n, returns an x̂ that satisfies

xu ≤ x̂u ≤ xu + 1
k
‖x − Hk(x)‖1

for all u with 1 − 1/n probability.

The statement is very similar to the FREQUENTELEMENTS bound in Lemma 7.2.
It is an overestimate rather than an underestimate, but otherwise the error bound is
identical up to scaling k by 2. Unlike FREQUENTELEMENTS, COUNTMINSKETCH can
handle deletions, but this comes at a cost: COUNTMINSKETCH uses O(k log n) words
of space rather than O(k), it is randomized, and the time required for computing
x̂ at the end of the stream is O(n log n) rather than O(k) because every coordinate
xu must be estimated to find the largest k. The first two issues cannot be avoided for
“typical” values of k ∈ (n0.01,n0.99). In Section 7.5 we will show that �(k log n) words
of space are necessary to handle deletions, and randomization is needed to achieve
o(min(k2,n)) words (Ganguly, 2008). The recovery time, however, can be improved;
see the bibliographic notes for details.

Proof of Theorem 7.3. Define x̂(r) by x̂(r)
u = yhr(u) for each u, so that x̂u =

minr x̂(r)
u . Let H ⊆ [n] contain the largest k coordinates of x, known as the

“heavy hitters”. Then

0 ≤ x̂(r)
u − xu =

∑
hr(v)=hr(u)

v �=u

xv =
∑
v∈H

hr(v)=hr(u)
v �=u

xv

︸ ︷︷ ︸
EH

+
∑
v/∈H

hr(v)=hr(u)
v �=u

xv

︸ ︷︷ ︸
EL

. (7.2)

For u to be estimated badly, either EH or EL must be large. EH represents the
error u receives from colliding with heavy hitters. This is usually zero, because
there aren’t too many heavy hitters. EL is the error from non–heavy-hitters. This
is likely nonzero, but is small in expectation. Formally, we have that

Pr[EH > 0] ≤ Pr[∃v ∈ H \ {u} : hr(v) = hr(u)] ≤ k
B

≤ 1
4

(7.3)

by our choice of B ≥ 4k. We also have that

E[EL] =
∑

v∈[n]\H
v �=u

xv · Pr[h(v) = h(u)] ≤
∑

v∈[n]\H

xv · 1
B

= ‖x − Hk(x)‖1/B. (7.4)

Hence by Markov’s inequality,

Pr[EL > ‖x − Hk(x)‖1/k] ≤ k
B

≤ 1
4
;

145

E. PRICE

so by a union bound, independently for each r

Pr[̂x(r)
u − xu > ‖x − Hk(x)‖1/k] ≤ 1

2
. (7.5)

Therefore because R ≥ 2 log2 n,

Pr[̂xu − xu > ‖x − Hk(x)‖1/k] ≤ 1
2R ≤ 1

n2 .

Taking a union bound over u gives the result. �

Negative Entries and COUNTMEDIANSKETCH. The COUNTMINSKETCH algorithm
relies on the strict turnstile assumption that the final vector x has only nonnegative
coordinates. If the entries of x may be negative, one can simply replace the min on
line 11 with a median and increase B and R by constant factors. By increasing B, the
failure event (7.5) will have failure probability 2k/B < 1/2. Then a Chernoff bound
can show that with high probability most iterations r will not fail, and hence the
median estimate is good. This algorithm is known as the COUNTMEDIANSKETCH,
and achieves the same 1

k‖x − Hk(x)‖1 error guarantee as Theorem 7.3 but with
two-sided error.

7.3.2 Count-Sketch: The �2 Guarantee

The gray lines in Algorithm 2 describe the modifications required to produce the
COUNTSKETCH algorithm, which is like COUNTMEDIANSKETCH but with random
signs introduced. This changes the error for a single r from (7.2) to

x̂(r)
u − xu =

∑
hr(v)=hr(u)

v �=u

xvsr(v)sr(u).

For fixed hr, this is now a random variable in sr, and because sr is pairwise independent
and mean zero, all the cross terms in Esr [(̂x

(r)
u − xu)

2] disappear. In particular, (7.4)
becomes

E
hr,sr

[E2
L] =

∑
v∈[n]\H

v �=u

x2
v · Pr[h(v) = h(u)] ≤ ‖x − Hk(x)‖2

2/B.

If B ≥ 16k, applying Markov’s inequality and a union bound with the k/B chance
that EH > 0 shows that in each repetition

Pr
[
(̂x(r)

u − xu)
2 > ‖x − Hk(x)‖2

2/k
]
< 1/8.

The chance this happens in at least R/2 of the R repetitions is then at most(
R

R/2

)
· (1/8)R/2 < 2R/8R/2 = 1/2R/2 ≤ 1/n2

for R ≥ 4 log2 n. If that failure event doesn’t happen, the median is a good estimate,
giving the following theorem:

146

SPARSE RECOVERY

Theorem 7.4 COUNTSKETCH, when run with B ≥ 16k and R ≥ 4 log2 n, returns
an x̂ that satisfies

(̂xu − xu)
2 ≤ 1

k
‖x − Hk(x)‖2

2

for all u with 1 − 1/n probability.

At first glance, the bounds on |̂xu − xu| given for COUNTMINSKETCH

(Theorem 7.3) and COUNTSKETCH (Theorem 7.4) may seem incomparable—while
‖x−Hk(x)‖2 ≤ ‖x−Hk(x)‖1, the denominator is only

√
k for COUNTSKETCH rather

than k for COUNTMINSKETCH. However, as shown in Exercise 7.1, this is misleading:
up to constant factors, the �2 bound of Theorem 7.4 is stronger than the �1 bound of
Theorem 7.3 for every vector x. For many natural vectors x, this difference is quite
significant; we now examine it in detail.

7.3.3 Discussion of Recovery Guarantees

To better understand how much better �2 recovery guarantees are than �1 ones, we
consider power-law (or “Zipfian”) distributions where the ith largest element has
frequency proportional to i−α. We also suppose the stream is distributed over a
number of elements n � k (which is finite so the sum of frequencies is still finite
for α < 1.0). For sharply decaying distributions of α > 1.0, the �1 guarantee is

‖̂x − x‖∞ ≤ 1
k

n∑
i=k+1

xi ≈ 1
k

x1 ·
n∑

i=k+1

i−α ≈ 1
α − 1

xk,

while the �2 guarantee for α > 0.5 is

‖̂x − x‖∞ ≤
√√√√1

k

n∑
i=k+1

x2
i ≈

√√√√1
k

x2
1 ·

n∑
i=k+1

i−2α ≈ 1√
2α − 1

xk.

When α > 1.0, these two guarantees are identical up to constant factors. But for
intermediate decay of 0.5 < α < 1.0, the �1 guarantee is much worse:

‖̂x − x‖∞ ≤ 1
k

n∑
i=k+1

xi ≈ 1
k

x1 ·
n∑

i=k+1

i−α ≈ 1
k

x1
1

1 − α
n1−α

That is, unless k > n1−α, the �1 guarantee gives no nontrivial estimates (indeed, the
all-zeros vector would satisfy it). Even above that threshold, the �1 guarantee remains
a (n/k)1−α factor worse than the �2 guarantee. For slow decay of α < 0.5, the �2
guarantee becomes

‖̂x − x‖∞ ≤
√√√√1

k

n∑
i=k+1

x2
i ≈

√√√√1
k

x2
1 ·

n∑
i=k+1

i−2α ≈ x1
1√

1 − 2α

√
n
k

n−α.

which is trivial until k > n1−2α, and remains a
√

n/k factor better than the �1 bound
for larger k.

147

E. PRICE

(a) α = 0.8 (b) α = 1.3

Figure 7.2 Comparison of error as a function of space for sparse recovery algorithms on random power
law distribution streams, where the i th most common element has frequency proportional to i−α , with 105

items drawn over a 104 size domain. FREQUENTELEMENTS is assumed to use two words per entry of its
table (one for the key, one for the value). ORACLE stores exactly the largest entries of the stream (with two
words per entry). For α < 1, the �2 bound of COUNTSKETCH gives significant benefit; for α > 1, it performs
worse than COUNTMINSKETCH due to constant factor inefficiency. In both cases, FREQUENTELEMENTS

uses roughly an order of magnitude less space than COUNTMINSKETCH due to avoiding the O(log n)
factor.

The intermediate regime of α ∈ (0.5,1.0) is the most relevant one in practice, as
observed in the examples illustrated in Figure 7.1 as well as more generally (see,
for example, Clauset et al. (2009)). Therefore the �2 guarantee is significantly more
desirable than the �1 one.

In Figure 7.2 we illustrate these calculations with the empirical performance of
the algorithms we have seen so far on such power-law distributions. The results
closely match what one would expect from the theoretical bounds we have shown.
For α = 0.8, but not α = 1.3, COUNTSKETCH’s �2 bound is more important than
COUNTMINSKETCH’s constant factors, and in certain parameter regimes even enough
to beat the �(log n) factor savings in FREQUENTELEMENTS.

7.4 Uniform Algorithms

The sparse recovery algorithms described in the preceding sections originated in the
computer science community in the context of streaming algorithms. Another body
of work designed to solve very similar problems comes from the statistics and signal
processing communities, where it is known as compressed sensing or compressive
sampling (Donoho et al., 2006; Candes et al., 2006). The motivation for compressed
sensing is situations where one has a physical process that can cheaply observe linear
measurements of a signal of interest – for example, MRI machines inherently sample
Fourier measurements of the desired image; the single-pixel camera architecture takes
pictures by applying brief masks during exposure; genetic testing companies can mix
blood samples before testing; and radio telescopes sample from the Fourier spectrum
based on their geometry. Without any assumption on the signal structure, learning an
arbitrary x ∈ R

n would require n linear measurements, but a structural assumption
such as sparsity can allow for fewer measurements – ideally leading to faster MRIs,
higher-resolution photos, and cheaper genetic testing.

148

SPARSE RECOVERY

The high-level goal in compressed sensing is thus essentially identical to that of
turnstile streaming sparse recovery: estimating approximately k-sparse vectors x from
a small number of linear measurements y = Ax. (We say that x is k-sparse if it has at
most k nonzero coordinates, and approximately k-sparse if it is “close” to a k-sparse
vector.) But the emphasis is somewhat different, leading to different solutions.

Most notably, compressed sensing algorithms are designed to work even if the
observation matrix A is not fully under the control of the algorithm designer. The
observation matrix may have to satisfy a number of complicated constraints coming
from how the physical sensing apparatus works; but as long as A is “good enough”
in a formal sense, the recovery algorithms will work. Moreover, this allows for a
degree of modularity: one can mix and match different algorithms and matrices, since
essentially any “good enough” matrix construction will work with any algorithm.
This modularity is in sharp contrast to most methods from the streaming community:
it makes no sense to try and use (say) the COUNTSKETCH measurement matrix with the
faster (Larsen et al., 2016) recovery algorithm, because the algorithms are intimately
tied to their matrices.

7.4.1 The Restricted Isometry Property

The simplest approach to determining if A is “good enough” is that of incoherence:

Definition 7.5 Let A ∈R
m×n have columns a1, . . . ,an of �2 norm 1. The coher-

ence μ of A is

μ := max
i �=j

|〈ai,aj〉|.

If μ = 0, then A has orthonormal columns so it is invertible and recovery is
certainly possible. But our goal is to have m � n, so A cannot have orthonormal
columns. The interesting thing is that even if μ is somewhat larger – up to �(1/k) –
then sparse recovery is possible with a variety of algorithms. Unfortunately, every

matrix with m< n/2 has coherence μ >

√
1

2m , so achieving “good enough” incoher-

ence would require �(k2) linear measurements. For the polynomially large values of
k typically considered, this is rather more than the O(k log n) measurements we saw
with streaming algorithms, suggesting the need for a different definition of “good
enough.” One popular definition is the Restricted Isometry Property:

Definition 7.6 For any k, the restricted isometry constant δk = δk(A) of a
matrix A ∈ R

m×n is the smallest δ ≥ 0 such that

(1 − δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2 for all k-sparse x.

An equivalent formulation is that

‖(A!A − I)S×S‖ ≤ δ for all S ⊂ [n], |S| ≤ k, (7.6)

where ‖ · ‖ denotes the spectral norm.

We (informally) say that A satisfies the Restricted Isometry Property (RIP) if
δCk < c for some sufficiently large constant C ≥ 1 and sufficiently small c < 1. The

149

E. PRICE

algorithmic results that follow show that the RIP (with sufficiently good constants
C,c) implies that approximate k-sparse recovery is possible. One can show that δk ≤
(k − 1)μ, so this subsumes the incoherence-based results that require μ < �(1/k),
but the RIP bound is possible with only m = O(k log(n/k)).

The Gaussian Ensemble. A simple way to construct an RIP matrix with good param-
eters is by taking i.i.d. Gaussian entries of the appropriate variance.

Theorem 7.7 Let 0 < ε < 1 and k > 1 be parameters. If A ∈ R
m×n has i.i.d.

Gaussian entries of variance 1/m, and m > C 1
ε2 k log n

k for a sufficiently large

constant C, then A has RIP constant δk < ε with 1 − e−�(ε2m) probability.

The proof is based on applying a union bound to a net. We start with a lemma that
shows how to bound an operator norm – which is a supremum over a continuous set –
by the maximum over a finite set:

Lemma 7.8 There exists a set T ⊂R
n of 3n unit vectors such that, for any

symmetric matrix M ∈ R
n×n,

‖M‖ ≤ 4 max
x∈T

x!Mx.

Since ‖M‖ = sup‖x‖2=1 x!Mx, this lemma loses at most a factor of 4. The proof
is given as Exercise 7.5.

The other key lemma we need is the distributional Johnson–Lindenstrauss Lemma,
which shows for any specific x that ‖Ax‖2 ≈ ‖x‖2 with high probability:

Lemma 7.9 (Johnson–Lindenstrauss) For any x ∈ R
n and ε ∈ (0,1), if A ∈

R
m×n has i.i.d. Gaussian entries of variance 1/m, then

Pr[|‖Ax‖2
2 − ‖x‖2

2| > ε‖x‖2
2] < 2e−�(ε2m).

Proof of Theorem 7.7 Let T ⊂ R
k be the set of size 3k given by Lemma 7.8 such

that, for every set S ⊆ [n] of size k,

‖(A!A − I)S×S‖ ≤ 4 max
x∈T

x!(A!A − I)S×Sx.

By Lemma 7.9 applied with ε′ = ε/4 and n′ = k, we have for each S and x ∈ T
that

x!(A!A − I)S×Sx ≤ ε

4
‖x‖2

2 ≤ ε

4

with probability at least 1 − 2e−�(ε2m). Taking a union bound over all S and
x ∈ T , we have that

δk ≤ 4 max
S

max
x∈T

x!(A!A − I)S×Sx

is bounded by ε with probability at least 1−2
(n

k

)
3ke−�(ε2m). If m ≥ O(1

ε2 k log n
k),

this is 1 − e−�(ε2m). �

150

SPARSE RECOVERY

Gaussian matrices are just one way of constructing RIP matrices. Another exam-
ple, with an essentially identical proof to the above, is a matrix with i.i.d. {±1} entries.
We discuss more involved examples in Section 7.6 and the bibliographic notes.

7.4.2 Postmeasurement vs. Premeasurement Noise

In streaming algorithms, it makes sense to suppose that y = Ax is stored exactly:
we see all of x eventually, and have complete control of the observations. But for
the motivating applications for compressed sensing, where y represents a physical
observation of some signal, one expects noise in the observation. Therefore we will
aim for algorithmic guarantees in the presence of postmeasurement noise: if

y = Ax∗ + e

for an exactly k-sparse x∗ and arbitrary noise vector e, the recovered x̂ will satisfy

‖̂x − x∗‖2 ≤ C‖e‖2 (7.7)

for some constant C.
Of course, signals such as images are unlikely to be exactly sparse, so a more

realistic setting would have both postmeasurement noise e and premeasurement noise
x − Hk(x). For RIP matrices, however, such a result is actually implied by the post-
measurement guarantee (7.7) by treating the premeasurement noise x − Hk(x) as
postmeasurement noise A(x − Hk(x)); see Exercise 7.2.

7.4.3 Iterative Methods

We now turn to algorithms that perform sparse recovery with RIP matrices. This
can be done with either iterative methods or convex programming. The iterative
methods are generally simpler and faster, but often require more measurements
(by a constant factor). We will present a simple recovery algorithm, known as
ITERATIVEHARDTHRESHOLDING.

For intuition, suppose that there is no noise, so y = Ax∗. Recall that, since A
satisfies the RIP, A!A approximates the identity on any O(k) × O(k) submatrix.
Therefore

A!y = A!Ax∗ ≈ x∗,

where the approximation is good over O(k)-sized subsets. In particular, we will show

‖Hk(A
!y) − x∗‖2 ≤ O(δ2k)‖x∗‖2 � ‖x∗‖2.

This means that x(1) = Hk(A!y) is a good first step in recovering x∗: it is most of the
way there. (The operation Hk, which thresholds to the largest k entries, is known as
“hard” thresholding because of the discontinuity in treatment between elements just
above and just below the threshold.) But x(1) still has some residual error x∗ − x(1).
To reduce this, we can compute y − Ax(1) = A(x∗ − x(1)), which is effectively a
measurement of this residual. We then repeat the procedure of multiplying by A!
and thresholding, getting a new estimate of x∗:

x(2) = Hk(x
(1) + A!(y − Ax(1))).

151

E. PRICE

Algorithm 3 Iterative Hard Thresholding (IHT)
1: function ITERATIVEHARDTHRESHOLDING(y, A, k)
2: x(0) ← 0
3: for r ← 0,1,2, . . . ,R − 1 do
4: x(r+1) ← Hk

(
x(r) + A!(y − Ax(r))

)
5: end for
6: return x(R)

7: end function

In Lemma 7.11 we show that this ITERATIVEHARDTHRESHOLDING procedure
works even with noise: if y = Ax∗ + e for an exactly k-sparse vector x∗, the residual
error geometrically converges to the noise level O(‖e‖2). To establish this, we first
show that the thresholding step does not increase the �2 distance by more than a
constant factor:

Lemma 7.10 Let x,z ∈ R
n so that x is k-sparse with support S and T ⊆ [n]

consists of the largest k terms of z. Then

‖x − zT‖2
2 ≤ 3‖(x − z)S∪T‖2

2.

Proof For every i ∈ S \T we can assign a unique j ∈ T \S such that |zj| ≥ |zi|.
Therefore

x2
i ≤ (|xi − zi| + |zi|)2 ≤ (|xi − zi| + |zj|)2 ≤ 2(xi − zi)

2 + 2z2
j .

Adding in the terms for i ∈ T gives the result. �

Lemma 7.11 In each iteration of ITERATIVEHARDTHRESHOLDING,

‖x(r+1) − x∗‖2 ≤
√

3δ3k‖x(r) − x∗‖2 +
√

6‖e‖2.

Proof Define

x′ := x(r) + A!(y − Ax(r)) = x∗ + (A!A − I)(x∗ − x(r)) + A!e.

Let S = supp(x(r+1)) ∪ supp(x(r)) ∪ supp(x∗), so |S| ≤ 3k. Note that the RIP
implies that

‖A!
S ‖2 = ‖(A!A)S×S‖ ≤ 1 + δ3k.

Therefore we have

‖(x′ − x∗)S‖2 ≤ ‖((A!A − I)(x∗ − x(r)))S‖2 + ‖(A!e)S‖2

≤ ‖(A!A − I)S×S‖‖x∗ − x(r)‖2 + ‖A!
S ‖ · ‖e‖2

≤ δ3k‖x∗ − x(r)‖2 +
√

1 + δ3k · ‖e‖2.

152

SPARSE RECOVERY

Finally, since δ3k < 1 and x(r+1) = Hk(x′) we have by Lemma 7.10 that

‖x(r+1) − x∗‖2 ≤
√

3‖(x∗ − x′)S‖2 ≤
√

3δ3k‖x(r) − x∗‖2 +
√

6‖e‖2. �

If δ3k < 1/
√

3, this iteration will eventually converge to O(‖e‖2). If δ3k < 1
4
√

3
≈

0.144, we will have

‖x(r+1) − x∗‖2 ≤ max
(

1
2
‖x(r) − x∗‖2,

√
24‖e‖2

)
and hence the residual error ‖x(r+1) − x∗‖2 will converge geometrically to at most√

24‖e‖2:

Theorem 7.12 If δ3k < 0.14, the output x(R) of ITERATIVEHARDTHRESHOLDING

will have

‖x(R) − x∗‖2 ≤
√

24‖e‖2

after R = log2
‖x∗‖2
‖e‖2

iterations.

Uniformity vs. Nonuniformity. The foregoing argument relies on the fact that RIP
works uniformly for all sparse vectors, even ones that depend on the matrix A (as
the residuals x∗ − x(r) do). As a result, the theorem also applies to y = Ax∗ + e
for every x∗ and e. This stands in contrast to the nonuniform randomized guarantee
of COUNTMINSKETCH: for each matrix A, there are many vectors x that will cause
COUNTMINSKETCH to violate its �1 guarantee. For RIP-based algorithms, while the
matrix A is typically randomized and as such might fail to satisfy the RIP, as long as
A satisfies the RIP the recovery guarantee will hold on every input.

Uniformity is very convenient in proofs because it allows us to ignore any pos-
sible dependencies between the error and the measurement matrix. However, some
properties cannot be achieved uniformly: the �2 bound achieved by COUNTSKETCH is
one (Cohen et al., 2009).

7.4.4 L1 Minimization

Another method for performing compressed sensing from an RIP matrix is L1
minimization, also known as basis pursuit or, in its Lagrangian form, the LASSO.
The intuition is that, since the true x∗ is k-sparse, one would like to find the sparsest
vector x̂ that approximately matches the measurements; here we say x̂ “matches”
the measurements if ‖y − Ax̂‖2 ≤ R for some external estimate R on the noise
‖e‖2. However, finding the sparsest x̂ is a hard nonconvex optimization problem, so
we settle for minimizing its convex relaxation ‖̂x‖1. Remarkably, and in contrast to
minimizing ‖̂x‖p for p > 1, this tends to yield sparse solutions.

Algorithm 4 L1 minimization
1: function L1MINIMIZATION(y, A, R)
2: x̂ ← arg min‖y−Ax′‖2≤R ‖x′‖1
3: return x̂
4: end function

153

E. PRICE

Theorem 7.13 There exists a constant C > 0 such that the following holds. Let
A ∈R

m×n have RIP constant δ2k < 0.62. Then for any k-sparse x ∈ R
n and any

e ∈ R
m, and any R ≥ ‖e‖2, the L1 minimization result x̂ = L1MINIMIZATION

(Ax + e,A,R) satisfies

‖̂x − x∗‖2 ≤ CR.

See Candes et al. (2006), or the presentation in Foucart and Rauhut (2013), for
a proof. Up to constant factors, this is essentially the same result as Iterative Hard
Thresholding.

7.5 Lower Bound

A linear sparse recovery algorithm consists of a distribution on random matrices
A ∈ R

m×n and an algorithm for recovering x̂ from A and y = Ax. In the preceding
sections we have given various such algorithms that achieve various guarantees, the
weakest of which is the �1/�1 guarantee:

‖̂x − x‖1 ≤ O(1) · ‖x − Hk(x)‖1.

Both COUNTMINSKETCH and COUNTSKETCH achieved this with O(k log n) linear
measurements, and ITERATIVEHARDTHRESHOLDING and L1MINIMIZATION achieve
this with O(k log n

k) Gaussian linear measurements; for k < n0.99, the two bounds are
equivalent. We now show that this many measurements are necessary for any linear
sketching algorithm.

Theorem 7.14 (Do Ba et al., 2010) Any �1/�1 linear sparse recovery algorithm
with constant approximation factor and constant success probability requires
�(k log n

k) linear measurements.

Proof Sketch The proof is based on communication complexity. Roughly
speaking, we will produce a distribution on x that contains a lot of information,
then show how to extract that information from Ax using the �1/�1 sparse
recovery algorithm. This implies Ax also contains a lot of information, so m
must be fairly large.

We pick a large “codebook” T ⊆{0,1}n of k-sparse binary vectors of min-
imum Hamming distance k/2. One can construct such a T of size 2�(k log n

k)

using a greedy construction (see Exercise 7.6).
Now, suppose we have an algorithm that can perform �1/�1 sparse recovery

with approximation factor C. Set R = �(log n), and for any x1,x2, . . . ,xR ∈ T
take

x = x1 + εx2 + ε2x3 + · · · + εRxR

for ε = 1
4C+6 a small constant. The idea of the proof is the following: given

y = Ax, we can recover x̂ such that

‖̂x − x1‖1 ≤ ‖x − x1‖1 + ‖̂x − x‖1 ≤ (C + 1)‖x − x1‖1

≤ (C + 1)k
ε

1 − ε
< k/4

154

SPARSE RECOVERY

and so, because T has minimum distance k/2, we can exactly recover x1 by
rounding x̂ to the nearest element of T . But then we can repeat the process on
1
ε
(Ax − Ax1) to find x2, then x3, up to xR, for R lg |T | = �(Rk log(n/k)) bits

total. Thus Ax must contain this many bits; but if the entries of A are rational
numbers with poly(n) bounded numerators and denominators, then each entry
of Ax can be described in O(R + log n) bits, so

m · O(R + log n) ≥ �(Rk log(n/k))

or m ≥ �(k log(n/k)).
There are two issues that make the aforementioned outline not totally

satisfactory, which we only briefly address how to resolve here. First, the
theorem statement makes no supposition on the entries of A being polynomially
bounded. To resolve this, we perturb x with a tiny (polynomially small) amount
of additive Gaussian noise, after which discretizing Ax at an even tinier (but
still polynomial) precision has negligible effect on the failure probability. The
second issue is that the above outline requires the algorithm to recover all R
vectors, so it applies only if the algorithm succeeds with 1 − 1/ log n probability
rather than constant probability. This is resolved by using a reduction from the
communication complexity of the augmented indexing problem. �

7.6 Different Measurement Models

7.6.1 A Hybrid Result: The RIP-1 and Sparse Matrices

Sparse matrices are much more convenient to store and manipulate than dense ones.
Unfortunately, sparse matrices cannot satisfy the standard RIP (see Exercise 7.3).
However, they can satisfy an �1 version of it:

Definition 7.15 For any k, the RIP-1 constant δ(1)k of a matrix A ∈ R
m×n is the

smallest δ ≥ 0 such that

(1 − δ)‖x‖1 ≤ 1
d
‖Ax‖1 ≤ ‖x‖1 for all k-sparse x

for some scale factor d.

We (informally) say that A satisfies the RIP-1 if δ
(1)
Ck < c for some sufficiently

good constants C ≥ 1, c < 1. The definition of the RIP-1 differs from the standard
RIP in that it uses the �1 norm and that it includes a scale factor d. The scale factor
is convenient, because the prototypical RIP-1 matrix is the adjacency matrix of an
unbalanced bipartite expander graph:

Definition 7.16 A (k,ε) unbalanced bipartite expander is a bipartite graph G =
(A,B,E) with left degree d such that, for any set S ⊆ A of vertices on the left
with size |S| ≤ k, the neighborhood N(S) ⊆ B has size |N(S)| ≥ (1 − ε)d|S|.

A random bipartite graph of left degree d =�(log n), n right vertices, and
m = �(1

ε2 k log n) left vertices is an expander with high probability. There also exist

155

E. PRICE

explicit constructions, albeit with slightly worse parameters. Bipartite expansion is
closely connected to the RIP-1:

Lemma 7.17 (Berinde et al., 2008a) A binary matrix A ∈ {0,1}m×n with d ones
per column has RIP-1 constant δ(1)k < ε if and only if it is the adjacency matrix
of a (k,�(ε))-bipartite expander.

Just like with the standard RIP, sparse recovery from RIP-1 matrices is possible
through either linear programming or iterative methods. One such iterative method
is SPARSEMATCHINGPURSUIT (Berinde et al., 2008b), shown in Algorithm 5.

Algorithm 5 Sparse Matching Pursuit (SMP)
1: function SPARSEMATCHINGPURSUIT(y, A, k)
2: x(0) ← 0
3: for r ← 0,1,2, . . . ,R − 1 do
4: ui ← medianAji=1(y − Ax(r))j ∀i ∈ [n]
5: x(r+1) ← Hk

(
x(r) + H2k(u)

)
6: end for
7: return x(R)

8: end function

Theorem 7.18 Let A ∈ R
m×n be a binary matrix with RIP-1 constant δ(1)Ck < c

for sufficiently large constant C and small constant c. Then for any x ∈ R
n, the

result x̂ of either SMP or L1 minimization has

‖̂x − x‖ ≤ O(1) · ‖x − Hk(x)‖1.

The SPARSEMATCHINGPURSUIT algorithm is very similar to ITERATIVEHARD

THRESHOLDING. In fact, if the H2k threshold were removed and the median replaced
by a mean, the algorithm would be identical to ITERATIVEHARDTHRESHOLDING on
A/

√
d for d-regular graphs A. It seems plausible that ITERATIVEHARDTHRESHOLDING

also works in this setting, but we are not aware of such a result.
Alternatively, one can view SPARSEMATCHINGPURSUIT as an iterative version

of COUNTMEDIANSKETCH. If the random hash functions used in COUNTMEDIAN

SKETCH were fully independent, not just pairwise independent, then the asso-
ciated matrix A would be a near-optimal RIP-1 matrix with high probability.
Furthermore, the first iterate x(1) of SPARSEMATCHINGPURSUIT is identical to
the (thresholded to top k) result of COUNTMEDIANSKETCH, which achieves the
�1/�1 result with high probability for each x. By iteratively refining the estimates,
SPARSEMATCHINGPURSUIT can achieve the �1/�1 result uniformly for all x.

Relative to algorithms previously considered in this chapter, the RIP-1 algorithm
combines the uniform guarantees of RIP-based algorithms with the sparse matrices
and fast algorithms of COUNTMIN and COUNTSKETCH. The downside is that the
Theorem 7.18 recovery guarantee is weaker than all the others: it depends on the �1
not the �2 norm of the tail, and only bounds the �1 not the �2 or �∞ error of the
result.

156

SPARSE RECOVERY

7.6.2 Fourier Measurements

An important subclass of linear measurements is that of Fourier measurements,
where A consists of rows of a Fourier matrix. In this section we will focus on the
unidimensional discrete Fourier matrix F ∈ C

n×n given by

Fij = 1√
n

e2π iij/n,

although similar results exist for other Fourier-related matrices such as Hadamard
or multidimensional discrete Fourier matrices. In this context, we consider the
measurement matrix A = F� that consists of a subset � ⊂ [n] of rows of the discrete
Fourier matrix. The goal is to find conditions on� and algorithms under which sparse
recovery is possible and efficient.

This problem is of interest to both the streaming and compressed sensing commu-
nities, but as with previous sections of this chapter there are differences in emphasis.

Compressed Sensing. The main compressed sensing motivation for Fourier mea-
surements is that physical processes such as MRIs, radio astronomy, and wireless
communication naturally yield Fourier measurements of the signal. The secondary
motivation is that subsampled Fourier matrices make compressed sensing algorithms
more efficient: they can be stored in O(m) words rather than the O(mn) required
by i.i.d. Gaussian matrices, and the running time for recovery algorithms – being
dominated by the cost of multiplying a vector by A or A! – becomes Õ(n) rather
than Õ(mn) by using the Fast Fourier Transform (FFT).

Fortunately, subsampled Fourier matrices satisfy the RIP with relatively few rows:

Theorem 7.19 (Haviv and Regev, 2017) Let 0 < ε < 1 and k > 1 be
parameters. Let �⊂ [n] by a random subset of size m. If m>C 1

ε2 k log n log2 k for

a sufficiently large constant C, then
√

n
m F� satisfies δk < ε with high probability.

Therefore, with an extra O(log2 k) factor in measurements, standard recovery algo-
rithms such as ITERATIVEHARDTHRESHOLDING and L1MINIMIZATION give sparse
recovery from Fourier measurements. We do not know if the extra log2 k factor
relative to Gaussian matrices’ O(k log(n/k)) is necessary. For the case of Hadamard
matrices, the same theorem applies but we do know at least one extra log k is
necessary (Błasiok et al., 2019).

Sublinear Algorithms. The streaming and sublinear algorithms community became
interested in sparse recovery with Fourier measurements for a different reason: it gives
the prospect of a faster Fourier transform than the FFT, one that can approximate
the Fourier transform of a signal in sublinear time.

Theorem 7.20 (Hassanieh et al., 2012) There exists an algorithm to compute x̂
using O(k log(n/k) log(n/δ)) time and queries to Fx such that

‖̂x − x‖2 ≤ 2‖x − Hk(x)‖2 + δ‖x‖2

with 9/10 probability.

157

E. PRICE

One can also optimize the number of queries at the expense of time, down to
O(k log(n/δ)) queries with O(k logO(1) n) time (Kapralov, 2017).

The basic approach for these results is to try to simulate streaming algorithms
like COUNTSKETCH using Fourier measurements. We pick a “filter” g ∈ C

n that is
sparse in both Fourier (“frequency”) domain and regular (“time”) domain: Fg is
B = O(k)-sparse, while g is approximately n/B-sparse. We can use our queries to
Fx to compute the sparse result of pointwise multiplication Fx · Fg. By the Fourier
convolution theorem,

F−1(Fx · Fg) = x ∗ g.

We can use a B-dimensional inverse FFT on Fx · Fg to quickly compute (x ∗ g)j at
B different positions j. If g is chosen carefully, the result can be shown to behave
similarly to the linear observations (7.1) in COUNTSKETCH: we can approximately
“hash” the coordinates down to B cells, and observe the sum within each cell.

7.7 Matrix Recovery

A natural extension of sparse recovery is that of low-rank matrix recovery. Rather
than estimating a k-sparse vector x ∈ R

n, we consider estimating a rank-k matrix X .
For this brief overview, we only consider positive semidefinite matrices X ∈ R

n×n.
Let the eigenspectrum of X be λ = λ(X) ∈ R

n, sorted in decreasing order: λ1 ≥
λ2 ≥ · · · ≥ λn ≥ 0. Then X having rank k is equivalent to λ being k-sparse. Low-
rank matrix recovery shares much motivation with sparse recovery, since the matrix
spectra often do empirically decay. Moreover, the techniques used in sparse recovery
often extend to the matrix case. Such techniques include:

Algorithm 6 FREQUENTDIRECTIONS matrix heavy hitters algorithm
1: function FREQUENTDIRECTIONS(STREAM, k)
2: X̂ ← 0 ∈ R

n×n

3: for u in STREAM do
4: X̂ += uu!
5: if X̂ has rank k + 1 then
6: Compute the eigendecomposition X̂ = ∑k+1

i=1 λiviv!
i

7: Set X̂ ← ∑k
i=1(λi − λk+1)viv!

i
8: end if
9: end for

10: return X̂
11: end function

Insertion-Only. Suppose that the matrix X is received as a series of rank one updates,
X = ∑

uiu!
i for a stream of vectors ui ∈ R

n. This setting is much like insertion-only
streaming algorithms, and a simple extension of FREQUENTELEMENTS due to Liberty
(2013), known as FREQUENTDIRECTIONS, achieves a result analogous to Lemma 7.1.
The idea is to keep track of a rank-k approximation X̂ to X (which can be stored
in kn space). On any update uiu!

i , first the update is added to X̂ , then this updated
matrix – which could have rank up to k + 1 – is “shrunk” back down to rank k by

158

SPARSE RECOVERY

subtracting si := λk+1(X̂) from every eigenvalue. As shown in Exercise 7.4, one can
prove bounds for this algorithm analogous to the FREQUENTELEMENTS bounds of
Lemmas 7.1 and 7.2: both

X − 1
k + 1

‖λ‖1I " X̂ " X (7.8)

and a sparsity-aware bound

X − 2
k
‖λ − Hk/2(λ)‖1I " X̂ " X . (7.9)

L1 Minimization. The foregoing algorithm relies on “insertion-only”–like updates
to X . With more general updates, one would like an algorithm that can reconstruct
an estimate of X from linear measurements A : Rn×n → R

m.
The natural analogue of L1 minimization is to minimize the nuclear norm, which

for positive semidefinite matrices equals the trace:

‖X̂‖∗ := ‖λ(X̂)‖1 = Tr(X̂) =
n∑

i=1

λi.

This nuclear norm minimization problem

min
A(X̂)=y

‖X̂‖∗

is a semidefinite program, and it turns out that this leads to an �1/�1 bound for
recovery:

‖X − X̂‖∗ ≤ O(1)‖λ − Hk(λ)‖1

if A is a “good” set of observations, as Gaussian linear measurements are w.h.p. once
m ≥ O(kn).

Note that just as in the vector case, this �1/�1 bound from L1 minimization is
weaker than the �∞/�1 achieved by FREQUENTELEMENTS/FREQUENTDIRECTIONS.
Unlike the vector case, however, here L1 minimization does not lose an additional
log(n/k) factor in the sample/space complexity.

Streaming Algorithms. Nuclear norm minimization requires solving a semidefinite
program, which is polynomial time but still not that efficient. It also uses a dense
linear sketch A(X), which takes m = O(kn) time to update whenever a single entry
of X is updated.

One alternative is to store

Y = X� and W = �X

for random Gaussian matrices � ∈ R
n×2k+1,� ∈ R

4k+3×n. These can be updated
in O(k) time under single-entry updates to X . Moreover, there is a relatively fast
algorithm to compute a good approximation X̂ to X from Y and W : if Y has SVD
Q�R! for Q ∈ R

n×2k+1,

X̂ := Q(�Q)+W

159

E. PRICE

satisfies

E[‖X − X̂‖2
F] ≤ 4‖λ − Hk(λ)‖2

2.

This is an �2/�2 bound on the eigenvalues of the approximation, which is stronger
than the �1/�1 bound from L1 minimization (although the latter is a uniform bound).

7.8 Notes

For much more detail on compressed sensing, in both the vector and matrix case,
we recommend the book by Foucart and Rauhut (2013). For a survey on sparse
recovery from the perspective of streaming algorithms, see Gilbert and Indyk (2010).
An empirical study of power-law distributions can be found in Clauset et al. (2009).

Algorithms similar to COUNTMINSKETCH or COUNTSKETCH but with sublinear
recovery time can be found in Cormode and Hadjieleftheriou (2008), Gilbert et al.
(2012), and Larsen et al. (2016).

Alternative RIP Matrices. The sample complexity m required for subsampled Fourier
matrices to satisfy the RIP has been the focus of a long line of improvements (Candes
et al., 2006; Rudelson and Vershynin, 2008; Cheraghchi et al., 2013; Bourgain, 2014;
Haviv and Regev, 2017). Partial circulant matrices are another construction of RIP
matrices with similar benefits to subsampled Fourier matrices: they use O(n) bits
of randomness, they can be multiplied with a vector in O(n log n) time, and they
satisfy the RIP with O(k logc n) measurements (Krahmer et al., 2014). The best
deterministic construction of RIP matrices uses m = k2−ε rows for a very small
constant ε > 0 Bourgain et al. (2011). The lower bound on sparsity of RIP matrices
given in Exercise 7.3 is due to Chandar (2010).

Matrix Recovery. Nuclear norm minimization for low-rank matrix recovery was first
shown for exactly low-rank matrices by Recht et al. (2010), and extended to the robust
case by Candes and Plan (2011). The streaming algorithm we present is from Tropp
et al. (2017), based on Upadhyay (2018) and Clarkson and Woodruff (2009).

References

Berinde, Radu, Gilbert, Anna C, Indyk, Piotr, Karloff, Howard, and Strauss, Martin J. 2008a.
Combining geometry and combinatorics: A unified approach to sparse signal recovery.
In 2008 46th Annual Allerton Conference on Communication, Control, and Computing, pp.
798–805. IEEE.

Berinde, Radu, Indyk, Piotr, and Ruzic, Milan. 2008b. Practical near-optimal sparse recovery
in the l1 norm. In 2008 46th Annual Allerton Conference on Communication, Control, and
Computing, pp. 198–205. IEEE.

Błasiok, Jarosław, Lopatto, Patrick, Luh, Kyle, and Marcinek, Jake. 2019. An improved lower
bound for sparse reconstruction from subsampled Hadamard matrices. In Foundations of
Computer Science, pp. 1564–1567.

Bourgain, Jean. 2014. An improved estimate in the restricted isometry problem. In Geometric
Aspects of Functional Analysis, pp. 65–70. Springer.

Bourgain, Jean, Dilworth, Stephen, Ford, Kevin, Konyagin, Sergei, Kutzarova, Denka, et al.
2011. Explicit constructions of RIP matrices and related problems. Duke Mathematical
Journal, 159(1), 145–185.

160

SPARSE RECOVERY

Candes, Emmanuel J, and Plan, Yaniv. 2011. Tight oracle inequalities for low-rank matrix
recovery from a minimal number of noisy random measurements. IEEE Transactions on
Information Theory, 57(4), 2342–2359.

Candes, Emmanuel J, Romberg, Justin K, and Tao, Terence. 2006. Stable signal recovery
from incomplete and inaccurate measurements. Communications on Pure and Applied
Mathematics, 59(8), 1207–1223.

Chandar, Venkat Bala. 2010. Sparse Graph Codes for Compression, Sensing, and Secrecy. Ph.D.
thesis, Massachusetts Institute of Technology.

Charikar, Moses, Chen, Kevin, and Farach-Colton, Martin. 2002. Finding frequent items in
data streams. International Colloquium on Automata, Languages, and Programming, pp.
693–703. Springer.

Cheraghchi, Mahdi, Guruswami, Venkatesan, and Velingker, Ameya. 2013. Restricted isom-
etry of Fourier matrices and list decodability of random linear codes. SIAM Journal on
Computing, 42(5), 1888–1914.

Clarkson, Kenneth L, and Woodruff, David P. 2009. Numerical linear algebra in the streaming
model. In Proceedings of the Forty-First Annual ACM Symposium on Theory of Comput-
ing, pp. 798–805. ACM.

Clauset, Aaron, Shalizi, Cosma Rohilla, and Newman, Mark EJ. 2009. Power-law distribu-
tions in empirical data. SIAM Review, 51(4), 661–703.

Cohen, A., Dahmen, W., and DeVore, R. 2009. Compressed sensing and best k-term approx-
imation. Journal of the American Mathematical Society, 22(1), 211–231.

Cormode, Graham, and Hadjieleftheriou, Marios. 2008. Finding frequent items in data
streams. Proceedings of the VLDB Endowment, 1(2), 1530–1541.

Cormode, Graham, and Muthukrishnan, Shan. 2005. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1), 58–75.

Do Ba, Khanh, Indyk, Piotr, Price, Eric, and Woodruff, David P. 2010. Lower bounds for
sparse recovery. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 1190–1197. SIAM.

Donoho, David L, et al. 2006. Compressed sensing. IEEE Transactions on Information Theory,
52(4), 1289–1306.

Foucart, Simon, and Rauhut, Holger. 2013. A Mathematical Introduction to Compressive
Sensing. Springer.

Ganguly, Sumit. 2008. Lower bounds on frequency estimation of data streams. In International
Computer Science Symposium in Russia, pp. 204–215. Springer.

Gilbert, Anna, and Indyk, Piotr. 2010. Sparse recovery using sparse matrices. Proceedings of
the IEEE, 98(6), 937–947.

Gilbert, Anna C, Li, Yi, Porat, Ely, and Strauss, Martin J. 2012. Approximate sparse recovery:
optimizing time and measurements. SIAM Journal on Computing, 41(2), 436–453.

Hassanieh, H., Indyk, P., Katabi, D., and Price, E. 2012. Nearly optimal sparse Fourier
transform. In Proceedings of the 44th Symposium on Theory of Computing Conference,
pp. 563–578.

Haviv, Ishay, and Regev, Oded. 2017. The restricted isometry property of subsampled Fourier
matrices. Geometric Aspects of Functional Analysis, pp. 163–179. Springer.

Kapralov, Michael. 2017. Sample efficient estimation and recovery in sparse FFT via isolation
on average. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 651–662. IEEE

Krahmer, Felix, Mendelson, Shahar, and Rauhut, Holger. 2014. Suprema of chaos processes
and the restricted isometry property. Communications on Pure and Applied Mathematics,
67(11), 1877–1904.

Larsen, Kasper Green, Nelson, Jelani, Nguyên, Huy L, and Thorup, Mikkel. 2016. Heavy
hitters via cluster-preserving clustering. In 2016 IEEE 57th Annual Symposium on Foun-
dations of Computer Science (FOCS), pp. 61–70. IEEE.

161

E. PRICE

Liberty, Edo. 2013. Simple and deterministic matrix sketching. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM.

Misra, Jayadev, and Gries, David. 1982. Finding repeated elements. Science of Computer
Programming, 2(2), 143–152.

Recht, Benjamin, Fazel, Maryam, and Parrilo, Pablo A. 2010. Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3),
471–501.

Rudelson, M., and Vershynin, R. 2008. On sparse reconstruction from Fourier and Gaussian
measurements. CPAM, 61(8), 1025–1171.

Tropp, Joel A, Yurtsever, Alp, Udell, Madeleine, and Cevher, Volkan. 2017. Practical sketching
algorithms for low-rank matrix approximation. SIAM Journal on Matrix Analysis and
Applications, 38(4), 1454–1485.

Upadhyay, Jalaj. 2018. The price of privacy for low-rank factorization. Advances in Neural
Information Processing Systems, pp. 4176–4187.

Exercises

Exercise 7.1 Comparison of COUNTSKETCH and COUNTMINSKETCH guarantees.

(a) For any vector x ∈ R
n, show that

‖x − Hk(x)‖2 ≤ 1√
k
‖x‖1.

(b) Show that if x̂ is the result of COUNTSKETCH for k′ = 2k, then

‖̂x − x‖∞ ≤ 1
k
‖x − Hk(x)‖1.

Compare this bound to the Theorem 7.3 bound for COUNTMINSKETCH.

Exercise 7.2 Premeasurement noise and RIP-based methods.

(a) Show that, if A has RIP constant δk,

‖A(x − Hk(x))‖2 ≤ (1 + δk)√
k

‖x‖1

for any vector x ∈ R
n.

(b) Show that the result x̂ of L1MINIMIZATION or ITERATIVEHARDTHRESHOLDING

from y = Ax satisfies

‖̂x − x‖2 ≤ O(1)√
k

‖x − Hk(x)‖1

if A satisfies a sufficiently strong RIP.
(c) Use the Johnson–Lindenstrauss Lemma to show that, if A has i.i.d.

Gaussian entries of variance 1/m, the result x̂ of L1MINIMIZATION or
ITERATIVEHARDTHRESHOLDING from y = Ax will satisfy

‖̂x − x‖2 ≤ O(1)‖x − Hk(x)‖2

162

SPARSE RECOVERY

with 1 − e−�(m) probability. Note that this is a nonuniform bound. How does
it compare to the bound in (b)?

Exercise 7.3 In this problem we show that matrices that satisfy the RIP cannot be
very sparse. Let A ∈ R

m×n have δk < 1/2 for m < n. Suppose that the average
column sparsity of A is d, i.e., A has nd nonzero entries. Furthermore, suppose
that A ∈ {0, ± α}m×n for some parameter α.

(a) By looking at the sparsest column, give a bound for α in terms of d.
(b) By looking at the densest row, give a bound for α in terms of n,m,d and k.
(c) Conclude that either d ≥ k/C or m ≥ n/C for a universal constant C.
(d) [Optional] Extend the result to general settings of the nonzero Ai,j.

Exercise 7.4 Consider the matrix FREQUENTELEMENTS-like algorithm FREQUENT

DIRECTIONS described in Algorithm 6.

(a) Use the potential function Tr(X̂) to show that
∑

i si ≤ 1
k+1‖λ‖1, where si is the

eigenvalue shrinkage after the ith update. Conclude that FREQUENTELEMENTS

achieves (7.8).
(b) Now let � be the orthogonal projection matrix onto the span of all but the

top k/2 eigenvectors of X . Using Tr(�X̂) as a potential function, prove that
FREQUENTDIRECTIONS also satisfies the bound (7.9).

Exercise 7.5 Prove Lemma 7.8. Choose T to be a 1/2-cover of the unit �2 ball B,
meaning that T ⊂ B and, for every x ∈ B, there exists an x′ in T such that ‖x′ −
x‖2 ≤ 1

2 . (This will give a set T satisfying the lemma of at most unit norm elements,
but scaling them up to unit norm only makes the result more true.)

Exercise 7.6 Construct the codebook T used in the proof of Theorem 7.14. First
construct a code of Hamming distance k/4 over [n/k]k, then embed this into {0,1}n.

163

PART THREE

Semirandom Models

CHAPTER EIGHT

Distributional Analysis
Tim Roughgarden

Abstract: In distributional or average-case analysis, the goal is to
design an algorithm with good-on-average performance with respect
to a specific probability distribution. Distributional analysis can
be useful for the study of general-purpose algorithms on “non-
pathological” inputs, and for the design of specialized algorithms
in applications where there is detailed understanding of the relevant
input distribution. For some problems, however, pure distributional
analysis encourages “overfitting” an algorithmic solution to a par-
ticular distributional assumption and a more robust analysis frame-
work is called for. This chapter presents numerous examples of the
pros and cons of distributional analysis, highlighting some of its
greatest hits while also setting the stage for the hybrids of worst- and
average-case analysis studied in later chapters.

8.1 Introduction

Part One of this book covered refinements of worst-case analysis that do not impose
any assumptions on the possible inputs. Part Two described several deterministic
models of data, where inputs to a problem were restricted to those with properties
that are plausibly shared by all “real-world” inputs. This chapter, and a majority
of the remaining chapters in the book, consider models that include a probability
distribution over inputs.

8.1.1 The Pros and Cons of Distributional Analysis

In its purest form, the goal in distributional analysis is to analyze the average
performance of algorithms with respect to a specific input distribution, and perhaps
also to design new algorithms that perform particularly well for this distribution.
What do we hope to gain from such an analysis?

� In applications in which the input distribution is well understood (e.g., because
of lots of recent and representative data), distributional analysis is well suited
both to predict the performance of existing algorithms and to design algorithms
specialized to the input distribution.

� When there is a large gap between the empirical and worst-case performance of
an algorithm, an input distribution can serve as a metaphor for “nonpathological”

167

T. ROUGHGARDEN

inputs. Even if the input distribution cannot be taken literally, a good average-case
bound is a plausibility argument for the algorithm’s empirical performance. The
three examples in Section 8.2 are in this spirit.

� Optimizing performance with respect to a specific input distribution can lead
to new algorithmic ideas that are useful much more broadly. The examples in
Sections 8.3 and 8.4 have this flavor.

And what could go wrong?

� Carrying out an average-case analysis of an algorithm might be analytically
tractable only for the simplest (and not necessarily realistic) input distributions.

� Optimizing performance with respect to a specific input distribution can lead to
“overfitting,” meaning algorithmic solutions that are overly reliant on the details
of the distributional assumptions and have brittle performance guarantees (which
may not hold if the distributional assumptions are violated).

� Pursuing distribution-specific optimizations can distract from the pursuit of more
robust and broadly useful algorithmic ideas.

This chapter has two goals. The first is to celebrate a few classical results in the
average-case analysis of algorithms, which constitute some of the earliest work on
alternatives to worst-case analysis. Our coverage here is far from encyclopedic, with
the discussion confined to a sampling of relatively simple results for well-known
problems that contribute to the chapter’s overarching narrative. The second goal is
to examine critically such average-case results, thereby motivating the more robust
models of distributional analysis outlined in Section 8.5 and studied in detail later in
the book.

8.1.2 An Optimal Stopping Problem

The pros and cons of distributional analysis are evident in a famous example from
optimal stopping theory, which is interesting in its own right and also relevant to some
of the random-order models described in Chapter 11. Consider a game with n stages.
Nonnegative prizes arrive online, with vi denoting the value of the prize that appears
in stage i. At each stage, an algorithm must decide between accepting the current prize
(which terminates the game) and proceeding to the next stage after discarding it. This
involves a difficult trade-off, between the risk of being too ambitious (and skipping
over what turns out to be the highest-value prize) and not ambitious enough (settling
for a modest-value prize instead of waiting for a better one).

Suppose we posit specific distributions D1,D2, . . . ,Dn, known in advance to the
algorithm designer, such that the value vi of the stage-i prize is drawn independently
from Di. (The Di’s may or may not be identical.) An algorithm learns the realization vi
of a prize value only at stage i. We can then speak about an optimal algorithm
for the problem, meaning an online algorithm that achieves the maximum-possible
expected prize value, where the expectation is with respect to the assumed distribu-
tions D1,D2, . . . ,Dn.

The optimal algorithm for a given sequence of prize value distributions is easy
enough to specify, by working backward in time. If an algorithm finds itself at stage n
without having accepted a prize, it should definitely accept the final prize. (Recall all

168

DISTRIBUTIONAL ANALYSIS

prizes have nonnegative values.) At an earlier stage i, the algorithm should accept
the stage-i prize if and only if vi is at least the expected prize value obtained by the
(inductively defined) optimal strategy for stages i + 1,i + 2, . . . ,n.

8.1.3 Discussion

The solution above illustrates the primary advantages of distributional analysis: an
unequivocal definition of an “optimal” algorithm, and the possibility of a crisp
characterization of such an algorithm (as a function of the input distributions).

The disadvantages of average-case analysis are also on display, and there are
several reasons why one might reject this optimal algorithm.

1. The algorithm takes the distributional assumptions literally and its description
depends in a detailed way on the assumed distributions. It is unclear how robust
the optimality guarantee is to misspecifications of these distributions, or to a
reordering of the distributions.

2. The algorithm is relatively complicated, in that it is defined by n different param-
eters (one threshold for each stage).

3. The algorithm does not provide any qualitative advice about how to tackle similar
problems (other than “work backwards”).

The third point is particularly relevant when studying a problem chosen as a delib-
erate simplification of a “real-world” problem that is too messy to analyze directly.
In this case, an optimal solution to the simpler problem is useful only inasmuch as it
suggests a plausibly effective solution to the more general problem.

For our optimal stopping problem, could there be nontrivial guarantees for
simpler, more intuitive, and more robust algorithms?

8.1.4 Threshold Rules and the Prophet Inequality

Returning to the optimal stopping problem of Section 8.1.2, a threshold stopping rule
is defined by a single parameter, a threshold t. The corresponding online algorithm
accepts the first prize i with value satisfying vi ≥ t (if any). Such a rule is clearly
suboptimal, as it doesn’t even necessarily accept the prize at stage n. Nevertheless, the
following prophet inequality proves that there is a threshold strategy with an intuitive
threshold that performs approximately as well as a fully clairvoyant prophet.1

Theorem 8.1 (Samuel-Cahn, 1984) For every sequence D = D1,D2, . . . ,Dn
of independent prize value distributions, there is a threshold rule that guarantees
expected reward at least 1

2 Ev∼D[maxi vi], where v denotes (v1, . . . ,vn).

This guarantee holds, in particular, for the threshold t at which there is a 50/50
chance that the rule accepts one of the n prizes.

Proof Let z+ denote max{z,0}. Consider a threshold strategy with threshold t
(to be chosen later). The plan is to prove a lower bound on the expected value

1 See Chapter 11 for an analogous result for a related problem, the secretary problem.

169

T. ROUGHGARDEN

of this strategy and an upper bound on the expected value of a prophet such
that the two bounds are easy to compare.

What value does the t-threshold strategy obtain? Let q(t) denote the prob-
ability of the failure mode in which the threshold strategy accepts no prize at
all; in this case, it obtains zero value. With the remaining probability 1 − q(t),
the rule obtains value at least t. To improve this lower bound, consider the case
where exactly one prize i satisfies vi ≥ t; then, the rule also gets “extra credit”
of vi − t above and beyond its baseline value of t.2

Formally, we can bound the expected value obtained by the t-threshold
strategy from below by

(1 − q(t)) · t

+
n∑

i=1

Ev
[
vi − t | vi ≥ t,vj < t ∀j �= i

] · Pr[vi ≥ t] · Pr
[
vj < t ∀j �= i

]
(8.1)

= (1 − q(t)) · t +
n∑

i=1

Ev[vi − t | vi ≥ t] · Pr[vi ≥ t]︸ ︷︷ ︸
=Ev[(vi−t)+]

· Pr
[
vj < t ∀j �= i

]︸ ︷︷ ︸
≥q(t)

(8.2)

≥ (1 − q(t)) · t + q(t)
n∑

i=1

Ev
[
(vi − t)+

]
, (8.3)

where we use the independence of the Di’s in (8.1) to factor the two probability
terms and in (8.2) to drop the conditioning on the event that vj < t for every
j �= i. In (8.3), we use that q(t) = Pr

[
vj < t ∀j

] ≤ Pr
[
vj < t ∀j �= i

]
.

Now we produce an upper bound on the prophet’s expected value
Ev∼D[maxi vi] that is easy to compare to (8.3). The expression Ev[maxi vi] doesn’t
reference the strategy’s threshold t, so we add and subtract it to derive

Ev

[
n

max
i=1

vi

]
= Ev

[
t + n

max
i=1

(vi − t)
]

≤ t + Ev

[
n

max
i=1

(vi − t)+
]

≤ t +
n∑

i=1

Ev
[
(vi − t)+

]
. (8.4)

Comparing (8.3) and (8.4), we can complete the proof by setting t so that
q(t) = 1

2 , with a 50/50 chance of accepting a prize.3 �

The drawback of this threshold rule relative to the optimal online algorithm
is clear: it does not guarantee as much expected value. Nonetheless, this solution
possesses several attractive properties that are not satisfied by the optimal algorithm:

2 The difficulty when two prizes i and j exceed the threshold is that this extra credit is either vi − t or vj − t
(whichever appeared earlier). The proof avoids reasoning about the ordering of the distributions by crediting
the rule only with the baseline value of t in this case.

3 If there is no such t because of point masses in the Di’s, then a minor extension of the argument yields the
same result (Exercise 8.1).

170

DISTRIBUTIONAL ANALYSIS

1. The threshold rule recommended by Theorem 8.1 depends on the prize value
distributions D1,D2, . . . ,Dn only inasmuch as it depends on the number t for which
there is a 50/50 probability that at least one realized value exceeds t. For example,
reordering the distributions arbitrarily does not change the recommended thresh-
old rule.

2. A threshold rule is simple in that it is defined by only one parameter. Intuitively,
a single-parameter rule is less prone to “overfitting” to the assumed distributions
than a more highly parameterized algorithm like the (n-parameter) optimal algo-
rithm.4

3. Theorem 8.1 gives flexible qualitative advice about how to approach such prob-
lems: Start with threshold rules, and don’t be too risk-averse (i.e., choose an
ambitious enough threshold that receiving no prize is a distinct possibility).

8.2 Average-Case Justifications of Classical Algorithms

Distributional assumptions can guide the design of algorithms, as with the optimal
stopping problem introduced in Section 8.1.2. Distributional analysis can also be used
to analyze a general-purpose algorithm, with the goal of explaining mathematically
why its empirical performance is much better than its worst-case performance. In
these applications, the assumed probability distribution over inputs should not be
taken literally; rather, it serves as a metaphor for “real-world” or “non-pathological”
inputs. This section gives the flavor of work along these lines by describing one result
for each of three classical problems: sorting, hashing, and bin packing.

8.2.1 QuickSort

Recall the QUICKSORT algorithm from undergraduate algorithms which, given an
array of n elements from a totally ordered set, works as follows:

� Designate one the n array entries as a “pivot” element.
� Partition the input array around the pivot element p, meaning rearrange the array

entries so that all entries less than p appear before p in the array and all entries
greater than p appear after p in the array.

� Recursively sort the subarray comprising the elements less than p.
� Recursively sort the subarray comprising the elements greater than p.

The second step of the algorithm is easy to implement in �(n) time. There are many
ways to choose the pivot element, and the running time of the algorithm varies
between �(n log n) and �(n2), depending on these choices.5 One way to enforce
the best-case scenario is to explicitly compute the median element and use it as
the pivot. A simpler and more practical solution is to choose the pivot element
uniformly at random; most of the time, it will be close enough to the median that

4 See Chapter 29 on data-driven algorithm design for a formalization of this intuition.
5 In the best-case scenario, every pivot element is the median element of the subarray, leading to the

recurrence T(n) = 2T(n
2) + �(n) with solution �(n log n). In the worst-case scenario, every pivot element

is the minimum or maximum element of the subarray, leading to the recurrence T(n) = T(n − 1) + �(n) with
solution �(n2).

171

T. ROUGHGARDEN

both recursive calls are on significantly smaller inputs. A still simpler solution, which
is common in practice, is to always use the first array element as the pivot element.
This deterministic version of QUICKSORT runs in�(n2) time on already sorted arrays,
but empirically its running time is �(n log n) on almost all other inputs. One way
to formalize this observation is to analyze the algorithm’s expected running time
on a random input. As a comparison-based sorting algorithm, the running time
of QUICKSORT depends only on the relative order of the array entries, so we can
assume without loss of generality that the input is a permutation of {1,2, . . . ,n} and
identify a “random input” with a random permutation. With any of the standard
implementations of the partitioning subroutine, the average-case running time of this
deterministic QUICKSORT algorithm is at most a constant factor larger than its best-
case running time.

Theorem 8.2 (Hoare, 1962) The expected running time of the deterministic
QuickSort algorithm on a random permutation of {1,2, . . . ,n} is O(n log n).

Proof We sketch one of the standard proofs. Assume that the partitioning sub-
routine only makes comparisons that involve the pivot element; this is the case
for all of the textbook implementations. Each recursive call is given a subarray
consisting of the elements from some interval {i,i+1, . . . ,j}; conditioned on this
interval, the relative order of its elements in the subarray is uniformly random.

Fix elements i and j with i < j. These elements are passed to the same
sequence of recursive calls (along with i + 1,i + 2, . . . ,j − 1), up to the first
call in which an element from {i,i+1, . . . ,j} is chosen as a pivot element. At this
point, i and j are either compared to each other (if i or j was the chosen pivot)
or not (otherwise); in any case, they are never compared to each other again in
the future. With all subarray orderings equally likely, the probability that i and
j are compared is exactly 2

j−i+1 . By the linearity of expectation, the expected

total number of comparisons is then
∑n−1

i=1
∑n

j=i+1
2

j−i+1 = O(n log n), and the
expected running time of the algorithm is at most a constant factor larger. �

8.2.2 Linear Probing

A hash table is a data structure that supports fast insertions and lookups. Under the
hood, most hash table implementations maintain an array A of some length n and use
a hash function h to map each inserted object x to an array entry h(x) ∈ {1,2, . . . ,n}.
A fundamental issue in hash table design is how to resolve collisions, meaning
pairs x,y of distinct inserted objects for which h(x) = h(y). Linear probing is a specific
way of resolving collisions:

1. Initially, all entries of A are empty.
2. Store a newly inserted object x in the first empty entry in the sequence A[h(x)],

A[h(x) + 1],A[h(x) + 2], . . ., wrapping around to the beginning of the array, if
necessary.

3. To search for an object x, scan the entries A[h(x)],A[h(x)+1],A[h(x)+2], . . . until
encountering x (a successful search) or an empty slot (an unsuccessful search),
wrapping around to the beginning of the array, if necessary.

172

DISTRIBUTIONAL ANALYSIS

That is, the hash function indicates the starting position for an insertion or lookup
operation, and the operation scans to the right until it finds the desired object or an
empty position. The running time of an insertion or lookup operation is proportional
to the length of this scan.

The bigger the fraction α of the hash table that is occupied (called its load),
the fewer empty array entries and the longer the scans. To get calibrated, imagine
searching for an empty array entry using independent and uniformly random probes.
The number of attempts until a success is then a geometric random variable with
success probability 1−α, which has expected value 1

1−α
. With linear probing, however,

objects tend to clump together in consecutive slots, resulting in slower operation
times. How much slower?

Nontrivial mathematical guarantees for hash tables are possible only under
assumptions that rule out data sets that are pathologically correlated with the table’s
hash function; for this reason, hash tables have long constituted one of the killer
applications of average-case analysis. Common assumptions include asserting some
amount of randomness in the data (as in average-case analysis), in the choice of hash
function (as in randomized algorithms), or both (as in Chapter 26). For example,
assuming that the data and hash function are such that every hash value h(x) is an
independent and uniform draw from {1,2, . . . ,n}, the expected time of insertions and
lookups scales with 1

(1−α)2 .6

8.2.3 Bin Packing

The bin packing problem played a central role in the early development of the average-
case analysis of algorithms; this section presents one representative result.7 Here,
the average-case analysis is of the solution quality output by a heuristic (as with the
prophet inequality), not its running time (unlike our QUICKSORT and linear probing
examples).

In the bin packing problem, the input is n items with sizes s1,s2, . . . ,sn ∈ [0,1].
Feasible solutions correspond to ways of partitioning the items into bins so that the
sum of the sizes in each bin is at most 1. The objective is to minimize the number of
bins used. This problem is NP-hard, so every polynomial-time algorithm produces
suboptimal solutions in some cases (assuming P �= NP).

Many practical bin packing heuristics have been studied extensively from both
worst-case and average-case viewpoints. One example is the first-fit decreasing (FFD)
algorithm:

� Sort and reindex the items so that s1 ≥ s2 ≥ · · · sn.
� For i = 1,2, . . . ,n:

– If there is an existing bin with room for item i (i.e., with current total size at
most 1 − si), add i to the first such bin.

– Otherwise, start a new bin and add i to it.

6 This result played an important role in the genesis of the mathematical analysis of algorithms. Donald
E. Knuth, its discoverer, wrote: “I first formulated the following derivation in 1962…Ever since that day, the
analysis of algorithms has in fact been one of the major themes in my life.”

7 See Chapter 11 for an analysis of bin packing heuristics in random-order models.

173

T. ROUGHGARDEN

For example, consider an input consisting of 6 items with size 1
2 + ε, 6 items with size

1
4 + 2ε, 6 jobs with size 1

4 + ε, and 12 items with size 1
4 − 2ε. The FFD algorithm

uses 11 bins while an optimal solution packs them perfectly into 9 bins (Exercise 8.3).
Duplicating this set of 30 jobs as many times as necessary shows that there are
arbitrarily large inputs for which the FFD algorithm uses 11

9 times as many bins
as an optimal solution. Conversely, the FFD algorithm never uses more than 11

9
times the minimum-possible number of bins plus an additive constant (see the Notes
for details).

The factor of 11
9 ≈ 1.22 is quite good as worst-case approximation ratios go,

but empirically the FFD algorithm usually produces a solution that is extremely
close to optimal. One approach to better theoretical bounds is distributional analysis.
For bin-packing algorithms, the natural starting point is the case where item sizes
are independent draws from the uniform distribution on [0,1]. Under this (strong)
assumption, the FFD algorithm is near-optimal in a strong sense.

Theorem 8.3 (Frederickson, 1980) For every ε > 0, for n items with sizes dis-
tributed independently and uniformly in [0,1], with probability 1−o(1) as n → ∞,
the FFD algorithm uses less than (1+ε) times as many bins as an optimal solution.

In other words, the typical approximation ratio of the FFD algorithm tends to 1
as the input size grows large.

We outline a two-step proof of Theorem 8.3. The first step shows that the
guarantee holds for a less natural algorithm that we call the truncate and match (TM)
algorithm. The second step shows that the FFD algorithm never uses more bins than
the TM algorithm.

The truncate and match algorithm works as follows:

� Pack every item with size at least 1 − 2
n1/4 in its own bin.8

� Sort and reindex the remaining k items so that s1 ≥ s2 ≥ · · · ≥ sk. (Assume for
simplicity that k is even.)

� For each i = 1, . . . ,k/2, put items i and k − i + 1 into a common bin if possible;
otherwise, put them in separate bins.

To explain the intuition behind the TM algorithm, consider the expected order
statistics (i.e., expected minimum, expected second-minimum, etc.) of n independent
samples from the uniform distribution on [0,1]. It can be shown that these split [0,1]
evenly into n + 1 subintervals; the expected minimum is 1

n+1 , the expected second-
minimum 2

n+1 , and so on. Thus at least in an expected sense, the first and last items
together should fill up a bin exactly, as should the second and second-to-last items,
and so on. Moreover, as n grows large, the difference between the realized order
statistics and their expectations should become small. Setting aside a small number
of the largest items in the first step then corrects for any (small) deviations from these
expectations with negligible additional cost. See Exercise 8.4 for details.

We leave the second step of the proof of Theorem 8.3 as Exercise 8.5.

8 For clarity, we omit ceilings and floors. See Exercise 8.4 for the motivation behind this size cutoff.

174

DISTRIBUTIONAL ANALYSIS

Lemma 8.4 For every bin packing input, the FFD algorithm uses at most as many
bins as the TM algorithm.

The description of the general-purpose FFD algorithm is not tailored to a distri-
butional assumption, but the proof of Theorem 8.3 is fairly specific to uniform-type
distributions. This is emblematic of one of the drawbacks of average-case analysis:
Often, it is analytically tractable only under quite specific distributional assumptions.

8.3 Good-on-Average Algorithms for Euclidean Problems

Another classical application domain for average-case analysis is in computational
geometry, with the input comprising random points from some subset of Euclidean
space. We highlight two representative results for fundamental problems in two
dimensions, one concerning the running time of an always-correct convex hull
algorithm and one about the solution quality of an efficient heuristic for the NP-hard
Traveling Salesman Problem.

8.3.1 2D Convex Hull

A typical textbook on computational geometry begins with the 2D convex hull
problem. The input consists of a set S of n points in the plane (in the unit square
[0,1] × [0,1], say) and the goal is to report, in sorted order, the points of S that lie
on the convex hull of S.9 There are several algorithms that solve the 2D convex hull
problem in �(n log n) time. Can we do better – perhaps even linear time – when the
points are drawn from a distribution, such as the uniform distribution on the square?

Theorem 8.5 (Bentley and Shamos, 1978) There is an algorithm that solves the
2D convex hull problem in expected O(n) time for n points drawn independently
and uniformly from the unit square.

The algorithm is a simple divide-and-conquer algorithm. Given points
S = {p1,p2, . . . ,pn} drawn independently and uniformly from the plane:

� If the input S contains at most five points, compute the convex hull by brute force.
Return the points of S on the convex hull, sorted by their x-coordinates.

� Otherwise, let S1 = {p1, . . . ,pn/2} and S2 = {p(n/2)+1, . . . ,pn} denote the first and
second halves of S. (Assume for simplicity that n is even.)

� Recursively compute the convex hull C1 of S1, with its points sorted by their
x-coordinates.

� Recursively compute the convex hull C2 of S2, with its points sorted by their
x-coordinates.

� Merge C1 and C2 into the convex hull C of S. Return C, with the points of C
sorted by their x-coordinates.

9 Recall that the convex hull of a set of points is the smallest convex set containing them, or equivalently the
set of all convex combinations of points from S. In two dimensions, imagine the points as nails in a board, and
the convex hull as a taut rubber band that encloses them.

175

T. ROUGHGARDEN

For every set S and partition of S into S1 and S2, every point on the convex hull
of S is on the convex hull of either S1 or S2. Correctness of the algorithm follows
immediately. The last step is easy to implement in time linear in |C1| + |C2|; see
Exercise 8.6. Because the subproblems S1 and S2 are themselves uniformly random
points from the unit square (with the sorting occurring only after the recursive
computation completes), the expected running time of the algorithm is governed by
the recurrence

T(n) ≤ 2 · T(n
2) + O(E[|C1| + |C2|]).

Theorem 8.5 follows immediately from this recurrence and the following combinato-
rial bound.

Lemma 8.6 (Rényi and Sulanke, 1963) The expected size of the convex hull of n
points drawn independently and uniformly from the unit square is O(log n).

Proof Imagine drawing the input points in two phases, with n
2 points Si drawn

in phase i for i = 1,2. An elementary argument shows that the convex hull of the
points in S1 occupies, in expectation, at least a 1 − O(

log n
n) fraction of the unit

square (Exercise 8.7). Each point of the second phase thus lies in the interior of
the convex hull of S1 (and hence of S1 ∪S2) except with probability O(

log n
n), so

the expected number of points from S2 on the convex hull of S1 ∪S2 is O(log n).
By symmetry, the same is true of S1. �

8.3.2 The Traveling Salesman Problem in the Plane

In the Traveling Salesman Problem (TSP), the input consists of n points and distances
between them, and the goal is to compute a tour of the points (visiting each point
once and returning to the starting point) with the minimum-possible total length. In
Euclidean TSP, the points lie in Euclidean space and all distances are straight-line
distances. This problem is NP-hard, even in two dimensions. The main result of this
section is analogous to Theorem 8.3 in Section 8.2.3 for the bin packing problem–
a polynomial-time algorithm that, when the input points are drawn independently
and uniformly from the unit square, has approximation ratio tending to 1 (with high
probability) as n tends to infinity.

The algorithm, which we call the Stitch algorithm, works as follows:

� Divide the unit square evenly into s = n
ln n subsquares, each with side length√

(ln n)/n.10

� For each subsquare i = 1,2, . . . ,s, containing the points Pi:
– If |Pi| ≤ 6 log2 n, compute the optimal tour Ti of Pi using dynamic program-

ming.11

– Otherwise, return an arbitrary tour Ti of Pi.

10 Again, we ignore ceilings and floors.
11 Given k points, label them {1,2, . . . ,k}. There is one subproblem for each subset S of points and point

j ∈ S, whose solution is the minimum-length path that starts at the point 1, ends at the point j, and visits every
point of S exactly once. Each of the O(k2k) subproblems can be solved in O(k) time by trying all possibilities
for the final hop of the optimal path. When k = O(log n), this running time of O(k22k) is polynomial in n.

176

DISTRIBUTIONAL ANALYSIS

� Choose an arbitrary representative point from each nonempty set Pi, and let R
denote the set of representatives.

� Construct a tour T0 of R by visiting points from left-to-right in the bottommost
row of subsquares, right to left in the second to bottom row, and so on, returning
to the starting point after visiting all the points in the topmost row.

� Shortcut the union of the subtours ∪s
i=0Ti to a single tour T of all n points, and

return T .12

This algorithm runs in polynomial time with probability 1 and returns a tour of the
input points. As for the approximation guarantee:

Theorem 8.7 (Karp, 1977) For every ε > 0, for n points distributed indepen-
dently and uniformly in the unit square, with probability 1 − o(1) as n → ∞, the
Stitch algorithm returns a tour with total length less than (1 + ε) times that of an
optimal tour.

Proving Theorem 8.7 requires understanding the typical length of an optimal tour
of random points in the unit square and then bounding from above the difference
between the lengths of the tour returned by the Stitch algorithm and of the optimal
tour. The first step is not difficult (Exercise 8.8).

Lemma 8.8 There is a constant c1 > 0 such that, with probability 1 − o(1) as
n → ∞, the length of an optimal tour of n points drawn independently and
uniformly from the unit square is at least c1

√
n.

Lemma 8.8 implies that proving Theorem 8.7 reduces to showing that (with high
probability) the difference between the lengths of Stitch’s tour and the optimal tour
is o(

√
n).

For the second step, we start with a simple consequence of the Chernoff bound
(see Exercise 8.9).

Lemma 8.9 In the Stitch algorithm, with probability 1 − o(1) as n → ∞, every
subsquare contains at most 6 log2 n points.

It is also easy to bound the length of the tour T0 of the representative points R in
the Stitch algorithm (see Exercise 8.10).

Lemma 8.10 There is a constant c2 such that, for every input, the length of the
tour T0 in the Stitch algorithm is at most

c2 · √s = c2 ·
√

n
ln n

.

12 The union of the s + 1 subtours can be viewed as a connected Eulerian graph, which then admits a closed
Eulerian walk (using every edge of the graph exactly once). This walk can be transformed to a tour of the points
with only smaller length by skipping repeated visits to a point.

177

T. ROUGHGARDEN

The key lemma states that an optimal tour can be massaged into subtours for all
of the subsquares without much additional cost.

Lemma 8.11 Let T∗ denote an optimal tour of the n input points, and let Li
denote the length of the portion of T∗ that lies within the subsquare i ∈ {1,2, . . . ,s}
defined by the Stitch algorithm. For every subsquare i = 1,2, . . . ,s, there exists a
tour of the points Pi in the subsquare of length at most

Li + 6

√
ln n
n

. (8.5)

The key point in Lemma 8.11 is that the upper bound in (8.5) depends only on the
size of the square, and not on the number of times that the optimal tour T∗ crosses
its boundaries.

Before proving Lemma 8.11, we observe that Lemmas 8.8–8.11 easily imply
Theorem 8.7. Indeed, with high probability:

1. The optimal tour has length L∗ ≥ c1
√

n.
2. Every subsquare in the Stitch algorithm contains at most 6 ln n points, and hence

the algorithm computes an optimal tour of the points in each subsquare (with
length at most (8.5)).

3. Thus, recalling that s = n
ln n , the total length of Stitch’s tour is at most

s∑
i=1

(
Li + 6

√
ln n
n

)
+ c2 ·

√
n

ln n
= L∗ + O

(√
n

ln n

)
= (1 + o(1)) · L∗.

Finally, we prove Lemma 8.11.

Proof (Lemma 8.11) Fix a subsquare i with a nonempty set Pi of points.
The optimal tour T∗ visits every point in Pi while crossing the boundary
of the subsquare an even number 2t of times; denote these crossing points
by Qi = {y1,y2, . . . ,y2t}, indexed in clockwise order around the subsquare’s
perimeter (starting from the lower left corner). Now form a connected Eulerian
multigraph G = (V,E) with vertices V = Pi ∪Qi by adding the following edges:

• Add the portions of T∗ that lie inside the subsquare (giving points of Pi a
degree of 2 and points of Qi a degree of 1).

• Let M1 (respectively, M2) denote the perfect matching of Qi that matches
each yj with j odd (respectively, with j even) to yj+1. (In M2, y2t is matched
with y1.) Add two copies of the cheaper matching to the edge set E and one
copy of the more expensive matching (boosting the degree of points of Qi
to 4 while also ensuring connectivity).

The total length of the edges contributed by the first ingredient is Li. The total
length of the edges in M1 ∪M2 is at most the perimeter of the subsquare, which

is 4
√

ln n
n . The second copy of the cheaper matching adds at most 2

√
ln n
n to the

total length of the edges in G. As in footnote 12, because G is connected and

178

DISTRIBUTIONAL ANALYSIS

Eulerian, we can extract from it a tour of Pi ∪ Qi (and hence of Pi) that has

total length at most that of the edges of G, which is at most Li + 6
√

ln n
n . �

8.3.3 Discussion

To what extent are the two divide-and-conquer algorithms of this section tailored
to the distributional assumption that the input points are drawn independently
and uniformly at random from the unit square? For the convex hull algorithm in
Section 8.3.1, the consequence of an incorrect distributional assumption is mild; its
worst-case running time is governed by the recurrence T(n) ≤ 2T(n

2) + O(n) and
hence is O(n log n), which is close to linear. Also, analogs of Lemma 8.6 (and hence
Theorem 8.5) can be shown to hold for a number of other distributions.

The Stitch algorithm in Section 8.3.2, with its fixed dissection of the unit square
into equal-size subsquares, may appear hopelessly tied to the assumption of a
uniform distribution. But minor modifications to it result in more robust algorithms,
for example by using an adaptive dissection, which recursively divides each square
along either the median x-coordinate or the median y-coordinate of the points
in the square. Indeed, this idea paved the way for later algorithms that obtained
polynomial-time approximation schemes (i.e., (1 + ε)-approximations for arbitrarily
small constant ε) even for the worst-case version of Euclidean TSP (see the Notes).

Zooming out, our discussion of these two examples touches on one of the biggest
risks of average-case analysis: distributional assumptions can lead to algorithms that
are unduly tailored to the assumptions. On the other hand, even when this is the case,
the high-level ideas behind the algorithms can prove useful much more broadly.

8.4 Random Graphs and Planted Models

Most of our average-case models so far concern random numerical data. This
section studies random combinatorial structures, and specifically different probability
distributions over graphs.

8.4.1 Erdős-Rényi Random Graphs

This section reviews the most well-studied model of random graphs, the Erdős-Rényi
random graph model. This model is a family {Gn,p} of distributions, indexed by
the number n of vertices and the edge density p. A sample from the distribution
Gn,p is a graph G = (V,E) with |V | = n and each of the

(n
2

)
possible edges present

independently with probability p. The special case of p = 1
2 is the uniform distribution

over all n-vertex graphs. This is an example of an “oblivious random model,”meaning
that it is defined independently of any particular optimization problem.

The assumption of uniformly random data may have felt like cheating already
in our previous examples, but it is particularly problematic for many computational
problems on graphs. Not only is this distributional assumption extremely specific, it
also fails to meaningfully differentiate between different algorithms.13 We illustrate
this point with two problems that are discussed at length in Chapters 9 and 10.

13 It also fails to replicate the statistical properties commonly observed in “real-world” graphs; see
Chapter 28 for further discussion.

179

T. ROUGHGARDEN

Example: Minimum Bisection. In the graph bisection problem, the input is an undi-
rected graph G = (V,E) with an even number of vertices, and the goal is to identify
a bisection (i.e., a partition of V into two equal-size groups) with the fewest number
of crossing edges.

To see why this problem is algorithmically uninteresting in the Erdős–Rényi
random graph model, take p = 1

2 and let n tend to infinity. In a random sample
from Gn,p, for every bisection (S,S̄) of the set V of n vertices, the expected number

of edges of E crossing it is n2

8 . A straightforward application of the Chernoff bound
shows that, with probability 1 − o(1) as n → ∞, the number of edges crossing every
bisection is (1 ± o(1)) · n2

8 (Exercise 8.11). Thus even an algorithm that computes
a maximum bisection is an almost optimal algorithm for computing a minimum
bisection!

Example: Maximum Clique. In the maximum clique problem, the goal (given an
undirected graph) is to identify the largest subset of vertices that are mutually
adjacent. In a random graph in the Gn,1/2 model, the size of the maximum clique
is very likely to be ≈ 2 log2 n.14 To see heuristically why this is true, note that for an
integer k, the expected number of cliques on k vertices in a random graph of Gn,1/2
is exactly (

n
k

)
2−(k

2) ≈ nk2−k2/2,

which is 1 precisely when k = 2 log2 n. That is, 2 log2 n is approximately the largest k
for which we expect to see at least one k-clique.

On the other hand, while there are several polynomial-time algorithms (including
the obvious greedy algorithm) that compute, with high probability, a clique of size
≈ log2 n in a random graph from Gn,1/2, no such algorithm is known to do better.
The Erdős–Rényi model fails to distinguish between different efficient heuristics for
the Maximum Clique problem.

8.4.2 Planted Graph Models

Chapters 5 and 6 study deterministic models of data in which the optimal solution to
an optimization problem must be “clearly optimal” in some sense, with the motivation
of zeroing in on the instances with a “meaningful” solution (such as an informative
clustering of data points). Planted graph models implement the same stability idea
in the context of random graphs, by positing probability distributions over inputs
which generate (with high probability) graphs in which an optimal solution “sticks
out.” The goal is then to devise a polynomial-time algorithm that recovers the
optimal solution with high probability, under the weakest possible assumptions on
the input distribution. Unlike an oblivious random model such as the Erdős–Rényi
model, planted models are generally defined with a particular computational problem
in mind.

Algorithms for planted models generally fall into three categories, listed roughly
in order of increasing complexity and power.

14 In fact, the size of the maximum clique turns out to be incredibly concentrated; see the Notes.

180

DISTRIBUTIONAL ANALYSIS

1. Combinatorial approaches. We leave the term “combinatorial” safely undefined,
but basically it refers to algorithms that work directly with the graph, rather than
resorting to any continuous methods. For example, an algorithm that looks only at
vertex degrees, subgraphs, shortest paths, etc., would be considered combinatorial.

2. Spectral algorithms. Here “spectral” means an algorithm that computes and uses
the eigenvectors of a suitable matrix derived from the input graph. Spectral
algorithms often achieve optimal recovery guarantees for planted models.

3. Semidefinite programming (SDP). Algorithms that use semidefinite programming
have proved useful for extending guarantees for spectral algorithms in planted
models to hold also in semirandom models (see Chapters 9 and 10).

Example: Planted Bisection. In the planted bisection problem, a graph is generated
according to the following random process (for a fixed vertex set V , with |V | even,
and parameters p,q ∈ [0,1]):

1. Choose a partition (S,T) of V with |S| = |T | uniformly at random.
2. Independently for each pair (i,j) of vertices inside the same cluster (S or T),

include the edge (i,j) with probability p.
3. Independently for each pair (i,j) of vertices in different clusters, include the edge

(i,j) with probability q.15

Thus the expected edge density inside the clusters is p, and between the clusters is q.
The difficulty of recovering the planted bisection (S,T) clearly depends on the gap

between p and q. The problem is impossible if p = q and trivial if p = 1 and q = 0.
Thus the key question in this model is: how big does the gap p − q need to be before
exact recovery is possible in polynomial time (with high probability)?

When p, q, and p − q are bounded below by a constant independent of n, the
problem is easily solved by combinatorial approaches (Exercise 8.12); unfortunately,
these do not resemble algorithms that perform well in practice.

We can make the problem more difficult by allowing p, q, and p − q to go to 0
with n. Here, semidefinite programming-based algorithms work for an impressively
wide range of parameter values. For example:

Theorem 8.12 (Abbe et al., 2016; Hajek et al., 2016) If p = α ln n
n and q = β ln n

n
with α > β, then:

(a) If
√
α − √

β ≥ √
2, there is a polynomial-time algorithm that recovers the

planted partition (S,T) with probability 1 − o(1) as n → ∞.
(b) If

√
α − √

β <
√

2, then no algorithm recovers the planted partition with
constant probability as n → ∞.

In this parameter regime, semidefinite programming algorithms provably achieve
information-theoretically optimal recovery guarantees. Thus, switching from the
p,q,p − q = �(1) parameter regime to the p,q,p − q = o(1) regime is valuable not
because we literally believe that the latter is more faithful to “real-world” instances,
but rather because it encourages better algorithm design.

15 This model is a special case of the stochastic block model studied in Chapter 10.

181

T. ROUGHGARDEN

Figure 8.1 Degree distribution of an Erdős–Rényi random graph with edge density 1
2 , before planting the

k -clique Q. If k = �(
√

n lg n), then the planted clique will consist of the k vertices with the highest degrees.

Example: Planted Clique. The planted clique problem with parameters k and n
concerns the following distribution over graphs.

1. Fix a vertex set V with n vertices. Sample a graph from Gn,1/2: Independently for
each pair (i,j) of vertices, include the edge (i,j) with probability 1

2 .
2. Choose a random subset Q ⊆ V of k vertices.
3. Add all remaining edges between pairs of vertices in Q.

Once k is significantly bigger than ≈ 2 log2 n, the likely size of a maximum clique
in a random graph from Gn,1/2, the planted clique Q is with high probability the
maximum clique of the graph. How big does k need to be before it becomes visible
to a polynomial-time algorithm?

When k = �(
√

n log n), the problem is trivial, with the k highest-degree vertices
constituting the planted clique Q. To see why this is true, think first about the sampled
Erdős–Rényi random graph, before the clique Q is planted. The expected degree of
each vertex is ≈ n/2, with standard deviation ≈ √

n/2. Textbook large deviation
inequalities show that, with high probability, the degree of every vertex is within ≈√

ln n standard deviations of its expectation (Figure 8.1). Planting a clique Q of size
a
√

n log n, for a sufficiently large constant a, then boosts the degrees of all of the
clique vertices enough that they catapult past the degrees of all of the vertices not in
the clique.

The “highest degrees” algorithm is not very useful in practice. What went wrong?
The same thing that often goes wrong with pure average-case analysis – the solution is
brittle and overly tailored to a specific distributional assumption. How can we change
the input model to encourage the design of algorithms with more robust guarantees?

One idea is to mimic what worked well for the planted bisection problem, and
to study a more difficult parameter regime that forces us to develop more useful
algorithms. For the planted clique problem, there are nontrivial algorithms, including
spectral algorithms, that recover the planted clique Q with high probability provided
k = �(

√
n) (see the Notes).

8.4.3 Discussion

There is a happy ending to the study of both the planted bisection and planted clique
problems: with the right choice of parameter regimes, these models drive us toward

182

DISTRIBUTIONAL ANALYSIS

nontrivial algorithms that might plausibly be useful starting points for the design of
practical algorithms. Still, both results seem to emerge from “threading the needle” in
the parameter space. Could there be a better alternative, in the form of input models
that explicitly encourage the design of robustly good algorithms?

8.5 Robust Distributional Analysis

Many of the remaining chapters in this book pursue different hybrids of worst- and
average-case analysis, in search of a “sweet spot” for algorithm analysis that both
encourages robustly good algorithms (as in worst-case analysis) and allows for strong
provable guarantees (as in average-case analysis). Most of these models assume that
there is in fact a probability distribution over inputs (as in average-case analysis), but
that this distribution is a priori unknown to an algorithm. The goal is then to design
algorithms that work well no matter what the input distribution is (perhaps with some
restrictions on the class of possible distributions). Indeed, several of the average-case
guarantees in this chapter can be viewed as applying simultaneously (i.e., in the worst
case) across a restricted but still infinite family of input distributions:

� The 1
2 -approximation in the prophet inequality (Theorem 8.1) for a threshold-t

rule applies simultaneously to all distribution sequences D1,D2, . . . ,Dn such that
Prv∼D[maxi vi ≥ t] = 1

2 (e.g., all possible reorderings of one such sequence).
� The guarantees for our algorithms for the bin packing (Theorem 8.3), convex hull

(Theorem 8.5), and Euclidean TSP (Theorem 8.7) problems hold more generally
for all input distributions that are sufficiently close to uniform.

The general research agenda in robust distributional analysis is to prove approximate
optimality guarantees for algorithms for as many different computational problems
and as rich a class of input distributions as possible. Work in the area can be divided
into two categories, both well represented in this book, depending on whether an
algorithm observes one or many samples from the unknown input distribution. We
conclude this chapter with an overview of what’s to come.

8.5.1 Simultaneous Near-Optimality

In single-sample models, an algorithm is designed with knowledge only of a classD of
possible input distributions, and receives only a single input drawn from an unknown
and adversarially chosen distribution from D. In these models, the algorithm cannot
hope to learn anything non-trivial about the input distribution. Instead, the goal
is to design an algorithm that, for every input distribution D ∈D, has expected
performance close to that of the optimal algorithm specifically tailored for D.
Examples include:

� The semirandom models in Chapters 9–11 and 17 and the smoothed analysis
models in Chapters 13–15 and 19. In these models, nature and an adversary
collaborate to produce an input, and each fixed adversary strategy induces a
particular input distribution. Performing well with respect to the adversary in these
models is equivalent to performing well simultaneously across all of the induced
input distributions.

183

T. ROUGHGARDEN

� The effectiveness of simple hash functions with pseudorandom data (Chapter 26).
The main result in this chapter is a guarantee for universal hashing that holds
simultaneously across all data distributions with sufficient entropy.

� Prior-independent auctions (Chapter 27), which are auctions that achieve
near-optimal expected revenue simultaneously across a wide class of valuation
distributions.

8.5.2 Learning a Near-Optimal Solution

In multisample models, an algorithm observes multiple samples from an unknown
input distribution D ∈D, and the goal is to efficiently identify a near-optimal algo-
rithm for D from as few samples as possible. Examples include:

� Self-improving algorithms (Chapter 12) and data-driven algorithm design
(Chapter 29), where the goal is to design an algorithm that, when presented
with independent samples from an unknown input distribution, quickly converges
to an approximately best-in-class algorithm for that distribution.

� Supervised learning (Chapters 16 and 22), where the goal is to identify the expected
loss-minimizing hypothesis (from a given hypothesis class) for an unknown data
distribution given samples from that distribution.

� Distribution testing (Chapter 23), where the goal is to make accurate inferences
about an unknown distribution from a limited number of samples.

8.6 Notes

The prophet inequality (Theorem 8.1) is due to Samuel-Cahn (1984). The pros
and cons of threshold rules versus optimal online algorithms are discussed also by
Hartline (in preparation). QUICKSORT and its original analysis are due to Hoare
(1962). The (1−α)−2 bound for linear probing with load α and random data, as well
as the corresponding quote in Section 8.2.2, are in Knuth (1998). A good (if outdated)
entry point to the literature on bin packing is Coffman et al. (1996). The lower bound
for the FFD algorithm in Exercise 8.3 is from Johnson et al. (1974). The first upper
bound of the form 11

9 ·OPT+O(1) for the number of bins used by the FFD algorithm,
where OPT denotes the minimum-possible number of bins, is due to Johnson (1973).
The exact worst-case bound for FFD was pinned down recently by Dósa et al. (2013).
The average-case guarantee in Theorem 8.3 is a variation on one by Frederickson
(1980), who proved that the expected difference between the number of bins used by
FFD and an optimal solution is O(n2/3). A more sophisticated argument gives a tight
bound of �(n1/2) on this expectation (Coffman et al., 1991).

The linear expected time algorithm for 2D convex hulls (Theorem 8.5) is by
Bentley and Shamos (1978). Lemma 8.6 was first proved by Rényi and Sulanke
(1963); the proof outlined here follows Har-Peled (1998). Exercise 8.6 is solved by
Andrews (1979). The asymptotic optimality of the Stitch algorithm for Euclidean
TSP (Theorem 8.7) is due to Karp (1977), who also gave an alternative solution based
on the adaptive dissections mentioned in Section 8.3.3. A good general reference
for this topic is Karp and Steele (1985). The worst-case approximation schemes
mentioned in Section 8.3.3 are due to Arora (1998) and Mitchell (1999).

184

DISTRIBUTIONAL ANALYSIS

The Erdős–Rényi random graph model is from Erdős and Rényi (1960). The size
of the maximum clique in a random graph drawn from Gn,1/2 was characterized by
Matula (1976); with high probability it is either k or k + 1, where k is an integer
roughly equal to 2 log2 n. Grimmett and McDiarmid (1975) proved that the greedy
algorithm finds, with high probability, a clique of size roughly log2 n in a random
graph from Gn,1/2. The planted bisection model described here was proposed by Bui
et al. (1987) and is also a special case of the stochastic block model defined by Holland
et al. (1983). Part (b) of Theorem 8.12 and a weaker version of part (a) were proved
by Abbe et al. (2016); the stated version of part (a) is due to Hajek et al. (2016).
The planted clique model was suggested by Jerrum (1992). Kucera (1995) noted that
the “top-k degrees” algorithm works with high probability when k = �(

√
n log n).

The first polynomial-time algorithm for the planted clique problem with k = O(
√

n)
was the spectral algorithm of Alon et al. (1998). Barak et al. (2016) supplied evidence,
in the form of a sum-of-squares lower bound, that the planted clique problem is
intractable when k = o(

√
n).

The versions of the Chernoff bound stated in Exercises 8.4(a) and 8.9 can be found,
for example, in Mitzenmacher and Upfal (2017).

Acknowledgments

I thank Anupam Gupta, C. Seshadhri, and Sahil Singla for helpful comments on a
preliminary draft of this chapter.

References

Abbe, E., Bandeira, A. S., and Hall, G. 2016. Exact recovery in the stochastic block model.
IEEE Transactions on Information Theory, 62(1), 471–487.

Alon, N., Krivelevich, M., and Sudakov, B. 1998. Finding a large hidden clique in a random
graph. Random Structures & Algorithms, 13(3–4), 457–466.

Andrews, A. M. 1979. Another efficient algorithm for convex hulls in two dimensions.
Information Processing Letters, 9(5), 216–219.

Arora, S. 1998. Polynomial time approximation schemes for Euclidean Traveling Salesman
and other geometric problems. Journal of the ACM, 45(5), 753–782.

Barak, B., Hopkins, S. B., Kelner, J. A., Kothari, P., Moitra, A., and Potechin, A. 2016. A
nearly tight sum-of-squares lower bound for the planted clique problem. In Proceedings
of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp.
428–437.

Bentley, J. L., and Shamos, M. I. 1978. Divide and conquer for linear expected time. Informa-
tion Processing Letters, 7(2), 87–91.

Bui, T. N., Chaudhuri, S., Leighton, F. T., and Sipser, M. 1987. Graph bisection algorithms
with good average case behavior. Combinatorica, 7(2), 171–191.

Coffman, Jr., E. G., Courcoubetis, C., Garey, M. R., Johnson, D. S., McGeoch, L. A., Shor,
P. W., Weber, R. R., and Yannakakis, M. 1991. Fundamental discrepancies between
average-case analyses under discrete and continuous distributions: A bin packing case
study. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing
(STOC), pp. 230–240.

Coffman, Jr., E. G., Garey, M. R., and Johnson, D. S. 1996. Approximation algorithms for
bin packing: A survey. In Hochbaum, D. (ed.), Approximation Algorithms for NP-Hard
Problems, pp. 46–93. PWS.

185

T. ROUGHGARDEN

Dósa, G., Li, R., Hanc, X., and Tuza, Z. 2013. Tight absolute bound for first fit decreasing
bin-packing: FFD(L) ≤ 11/9OPT(L) + 6/9. Theoretical Computer Science, 510, 13–61.

Erdős, P., and Rényi, A. 1960. On the evolution of random graphs. Publications of the
Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–61.

Frederickson, G. N. 1980. Probabilistic analysis for simple one- and two-dimensional bin
packing algorithms. Information Processing Letters, 11(4–5), 156–161.

Grimmett, G., and McDiarmid, C. J. H. 1975. On colouring random graphs. Mathematical
Proceedings of the Cambridge Philosophical Society, 77, 313–324.

Hajek, B., Wu, Y., and Xu, J. 2016. Achieving exact cluster recovery threshold via semidefinite
programming: Extensions. IEEE Transactions on Information Theory, 62(10), 5918–5937.

Har-Peled, S. 1998. On the Expected Complexity of Random Convex Hulls. Technical Report
330/98. School of Mathematical Sciences, Tel Aviv University.

Hartline, J. D. Mechanism Design and Approximation. Cambridge University Press, Book in
preparation.

Hoare, C. A. R. 1962. Quicksort. The Computer Journal, 5(1), 10–15.
Holland, P. W., Lasket, K., and Leinhardt, S. 1983. Stochastic blockmodels: First steps. Social

Networks, 5(2), 109–137.
Jerrum, M. 1992. Large cliques elude the metropolis process. Random Structures and Algo-

rithms, 3(4), 347–359.
Johnson, D. S. 1973. Near-Optimal Bin Packing Algorithms. PhD thesis, MIT.
Johnson, D. S., Demers, A., Ullman, J. D., Garey, M. R., and Graham, R. L. 1974. Worst-case

performance bounds for simple one-dimensional packing Algorithms. SIAM Journal on
Computing, 3(4), 299–325.

Karp, R. M. 1977. Probabilistic analysis of partitioning algorithms for the Traveling-Salesman
Problem in the plane. Mathematics of Operations Research, 2(3), 209–224.

Karp, R. M., and Steele, J. M. 1985. Probabilistic analysis of heuristics. In Lawler, E. L.,
Lenstra, J. K., Rinnooy Kan, A. H. G., and Shmoys, D. B. (eds.), The Traveling Salesman
Problem, pp. 181–205. John Wiley & Sons.

Knuth, D. E. 1998. The Art of Computer Programming: Sorting and Searching, 2nd ed., vol. 3.
Addison-Wesley.

Kucera, L. 1995. Expected complexity of graph partitioning problems. Discrete Applied
Mathematics, 57(2–3), 193–212.

Matula, D. W. 1976. The Largest Clique Size in a Random Graph. Technical Report 7608.
Department of Computer Science, Southern Methodist University.

Mitchell, J. S. B. 1999. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM Journal on Computing, 28(4), 1298–1309.

Mitzenmacher, M., and Upfal, E. 2017. Probability and Computing, 2nd ed. Cambridge.
University Press.

Rényi, A., and Sulanke, R. 1963. Über die konvexe Hülle von n zugällig gewählten Punkten.
Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2, 75–84.

Samuel-Cahn, E. 1984. Comparison of threshold stop rules and maximum for independent
nonnegative random variables. Annals of Probability, 12(4), 1213–1216.

Exercises

Exercise 8.1 Extend the prophet inequality (Theorem 8.1) to the case in which there
is no threshold t with q(t) = 1

2 , where q(t) is the probability that no prize meets
the threshold.

186

DISTRIBUTIONAL ANALYSIS

[Hint: Define t such that Pr[πi > t for all i] ≤ 1
2 ≤ Pr[πi ≥ t for all i]. Show that

at least one of the two corresponding strategies – either taking the first prize with
value at least t, or the first with value exceeding t – satisfies the requirement.]

Exercise 8.2 The prophet inequality (Theorem 8.1) provides an approximation guar-
antee of 1

2 relative to the expected prize value obtained by a prophet, which is at
least (and possibly more than) the expected prize value obtained by an optimal
online algorithm. Show by examples that the latter quantity can range from 50%
to 100% of the former.

Exercise 8.3 Prove that for a bin packing instance consisting of 6 items with size 1
2+ε,

6 items with size 1
4 + 2ε, 6 jobs with size 1

4 + ε, and 12 items with size 1
4 − 2ε, the

first-fit decreasing algorithm uses 11 bins and an optimal solution uses 9 bins.

Exercise 8.4 This exercise and the next outline a proof of Theorem 8.3. Divide the
interval [0,1] evenly into n1/4 intervals, with Ij denoting the subinterval [j−1

n1/4 ,
j

n1/4]

for j = 1,2, . . . ,n1/4. Let Pj denote the items with size in Ij.

(a) One version of the Chernoff bound states that, for every sequence
X1,X2, . . . ,Xn of Bernoulli (0–1) random variables with means p1,p2, . . . ,pn
and every δ ∈ (0,1),

Pr[|X − μ| ≥ δμ] ≤ 2e−μδ2/3,

where X and μ denote
∑n

i=1 Xi and
∑n

i=1 pi, respectively. Use this bound to
prove that

|Pj| ∈
[
n3/4 − √

n,n3/4 + √
n
]

for all j = 1,2, . . . ,n1/4 (8.6)

with probability 1-o(1) as n → ∞.
(b) Assuming (8.6), prove that the sum

∑n
i=1 si is at least 1

2 n − c1n3/4 for some
constant c1 > 0. What does this imply about the number of bins used by an
optimal solution?

(c) Assuming (8.6), prove that in the third step of the TM algorithm, every pair
of items i and k − i + 1 fits in a single bin.

(d) Conclude that there is a constant c2 > 0 such that, when property (8.6) holds,
the TM algorithm uses at most 1

2 n+c2n3/4 = (1+o(1))·OPT bins, where OPT
denotes the number of bins used by an optimal solution.

Exercise 8.5 Prove Lemma 8.4.

Exercise 8.6 Give an algorithm that, given a set S of n points from the square sorted
by x-coordinate, computes the convex hull of S in O(n) time.

[Hint: compute the lower and upper parts of the convex hull separately.]

Exercise 8.7 Prove that the convex hull of n points drawn independently and uni-
formly at random from the unit square occupies a 1 − O(

log n
n) fraction of the

square.

187

T. ROUGHGARDEN

Exercise 8.8 Prove Lemma 8.8.
[Hint: Chop the unit square evenly into n subsquares of side length n−1/2, and
each subsquare further into 9 mini-squares of side length 1

3 · n−1/2. For a given
subsquare, what is the probability that the input includes one point from its center
mini-square and none from the other 8 mini-squares?]

Exercise 8.9 Another variation of the Chernoff bound states that, for every sequence
X1,X2, . . . ,Xn of Bernoulli (0–1) random variables with means p1,p2, . . . ,pn and
every t ≥ 6μ,

Pr[X ≥ t] ≤ 2−t,

where X and μ denote
∑n

i=1 Xi and
∑n

i=1 pi, respectively. Use this bound to prove
Lemma 8.9.

Exercise 8.10 Prove Lemma 8.10.

Exercise 8.11 Use the Chernoff bound from Exercise 8.4(a) to prove that, with
probability approaching 1 as n → ∞, every bisection of a random graph from
Gn,p has (1 ± o(1)) · n2

8 crossing edges.

Exercise 8.12 Consider the planted bisection problem with parameters p = c1 and
q = p − c2 for constants c1,c2 > 0. Consider the following simple combinatorial
algorithm for recovering a planted bisection:

� Choose a vertex v arbitrarily.
� Let A denote the n

2 vertices that have the fewest common neighbors with v.
� Let B denote the rest of the vertices (including v) and return (A,B).

Prove that, with high probability over the random choice of G (approaching 1 as
n → ∞), this algorithm exactly recovers the planted bisection.
[Hint: compute the expected number of common neighbors for pairs of vertices on
the same and on different sides of the planted partition. Use the Chernoff bound.]

Exercise 8.13 Consider the planted clique problem (Section 8.4.2) with planted clique
size k ≥ c log2 n for a sufficiently large constant c. Design an algorithm that runs in
nO(log n) time and, with probability 1− o(1) as n → ∞, recovers the planted clique.

188

CHAPTER NINE

Introduction to Semirandom Models
Uriel Feige

Abstract: This chapter introduces semirandom models, in which
input instances are generated by a process that combines random
components with adversarial components. These models may bridge
the gap between worst case assumptions on input instances, that
often are too pessimistic, and purely random “average case” assump-
tions, which might be too optimistic. We discuss several semiran-
dom frameworks. We present algorithmic paradigms that have been
proved effective in handling semirandom instances, and explain some
principles used in their analysis. We also discuss computational
hardness results for the semirandom setting.

9.1 Introduction

In semirandom models, input instances are generated by a process that combines
random components with adversarial components. There are different ways by which
these components can be combined, and indeed, many different semirandom models
have been proposed. In this section we present several such models. In Section 9.2
we explain considerations that motivate the introduction of semirandom models.
In Section 9.3 we survey some representative past work on semirandom models. In
Section 9.4 we list some open questions.

9.1.1 Examples of Semirandom Models

In distributional models (see Chapter 8 in this book) the input instance is generated
by a random process. In semirandom models, generation of input instances involves
both a random component and an adversarial (worst-case) component. We present
here examples of semirandom models, and contrast them with related distributional
models that have no adversarial component. In all models considered in this chapter,
the algorithm that is faced with a computational problem (3SAT, 3-coloring, min-
imum bisection, maximum independent set, in our examples) gets to see only the
resulting input instance, but not the way by which it was generated.

In our first example, the adversary first chooses a tentative input instance, and then
the final input instance is generated by applying a small random perturbation to the
tentative input instance. Semirandom models of this nature are studied in the area of
smoothed analysis (see Part Four in this book).

189

U. FEIGE

3SAT

Worst case. The input is an arbitrary 3CNF formula φ. A 3CNF formula is
a collection of clauses, in which each clause contains three literals, where a
literal is a Boolean variable or a negation of a Boolean variable. A satisfying
assignment is a truth assignment to the Boolean variables such that in every
clause at least one literal is set to true. The goal is to determine whether φ is
satisfiable, namely, whether there is a satisfying assignment.

Distributional. Given positive integer parameters n (for the number of variables)
and m (the number of clauses), one generates independently at random m
clauses, where each clause contains three variables chosen uniformly at random
from the

(n
3

)
triples of variables, and the polarity of the variables in each

clause (determining whether the literal associated with the variable is negated)
is chosen uniformly at random. The goal is to determine whether the resulting
3CNF formula φ is satisfiable.

Semirandom. Given integer parameters n and m and a parameter p (where
0 < p < 1), an adversary generates a 3CNF formula φ′ containing m clauses of
its choice. This completes the adversarial part of the construction. Thereafter,
for each literal in φ′, its polarity is flipped independently with probability p.
The goal is to determine whether the resulting 3CNF formula φ is satisfiable.

In our next example, a tentative input instance is first generated in a distributional
manner, and thereafter an adversary is allowed to modify the tentative input instance
in some restricted way. Often, the forms of modification that are allowed are meant
to capture modifications under which the resulting final instance should not be more
difficult to solve than the original tentative instance. We refer to such an adversary as
a monotone adversary.

Minimum Bisection

Worst case. The input is an arbitrary graph G(V,E) with an even number n of
vertices. The goal is to output a set S ⊂ V of cardinality n

2 for which the number
|E(S,V \ S)| of cut edges is minimized.

Distributional. Given an even integer n and parameters 1
n ≤ p < q ≤ 1 − 1

n one
generates a graph G(V,E) (with |V | = n) as follows. A subset S ⊂ V of size n

2
is chosen at random. For every pair of vertices (u,v) with u ∈ S and v ∈ V \ S,
the edge (u,v) is included in E independently with probability p. For other pairs
(u,v) of distinct vertices (either both vertices in S or both not in S) the edge (u,v)
is included in E independently with probability q. The resulting graph G(V,E)

is the input graph, and the goal is to output the minimum bisection. The set S
is referred to as the planted bisection. If q − p is sufficiently large then with high
probability the unique minimum bisection is S.

Semirandom. Given n,p,q, first one generates a random input graph exactly as
explained earlier. This completes the random component of the construction.
Thereafter, an adversary may observe the random graph and remove from the
cut (S,V \S) arbitrary edges of its choice, and add elsewhere (within S or within
V \S) arbitrary edges of its choice. The goal is to output the minimum bisection
in the resulting input graph. If S was the minimum bisection in the random
graph, it remains so in the semirandom graph.

190

INTRODUCTION TO SEMIRANDOM MODELS

In the following example, one of the random steps in a distributional model
is replaced by an adversarial step. We refer here to such models as separable, as
we separate between the components generated at random and those generated by
the adversary. The semirandom model presented for 3SAT, in the special case in
which p = 1

2 , is one such separable model, as the choice of variables is completely
adversarial, whereas the choice of polarities is completely random. We now present
a separable model for 3-coloring.

3-Coloring

Worst case. The input is an arbitrary graph G(V,E). The goal is to legally 3-color
its vertices, if possible. A legal 3-coloring is a partition of V into three sets of
vertices, referred to as color classes, where the subgraph induced on each color
class is an independent set.

Distributional. Given parameters n and 0 < p < 1, first, a graph G(V,E′) is
generated as an Erdos–Renyi Gn,p random graph (where there are n vertices,
and every edge is present independently with probability p). Thereafter, every
vertex independently at random is associated with one of the colors, c1,c2, or
c3. This association is referred to as the planted 3-coloring. All monochromatic
edges (edges whose endpoints are associated with the same color) are removed.
The resulting graph is the input graph G(V,E). The goal is to output a legal
3-coloring. If p is sufficiently large (e.g., p ≥ 2 log n

n suffices) then with high
probability the planted 3-coloring is the unique legal 3-coloring of G(V,E).

Semirandom. Given parameters n and 0< p< 1, the input graph G(V,E) is gener-
ated as follows. First, a graph G(V,E′) is generated as a Gn,p random graph. This
completes the random component of the construction. Thereafter, an adversary
observes the random graph and associates with each vertex one of the three
colors, c1,c2, or c3, with the only restriction being that every color class is of
size n

3 (rounded up or down to an integer value). All monochromatic edges (with
respect to this planted 3-coloring) are removed. The goal is to output a legal
3-coloring for the resulting input graph G(V,E). Here, even if p is fairly large
(but not larger than 1

3), G(V,E) may have legal 3-colorings that differ from the
planted one.

Our final example (for this section) gives a semirandom model that is a variation
on a distributional planted model. In the underlying distributional planted model,
with high probability the planted solution is the unique optimal solution. In contrast,
in the semirandom model the planted solution might be far from optimal. The
algorithmic goal in the semirandom setting is to find a solution that is as good as
the planted one.

Maximum Independent Set (MIS)

Worst case. The input is an arbitrary graph G(V,E). The goal is to output a
set S ⊂ V of maximum cardinality that induces an independent set (namely,
(u,v) �∈ E for every u,v ∈ S).

Distributional. Given parameters n,k, and p (where k< n are positive integers
and 0< p< 1), first, a graph G(V,E′) is generated as a Gn,p random graph.
Thereafter, a random set S ⊂ V of k vertices is turned into an independent set
by removing from E′ all edges of the form (u,v) for u,v ∈ S. This S is referred to

191

U. FEIGE

as the planted independent set. The resulting graph G(V,E) is the input graph,
and the goal is to output an independent set of maximum size. If k is sufficiently
large (e.g., for p = 1

2 it suffices to take k = 3 log n) then with high probability
the unique independent set of maximum size is S.

Semirandom. Given parameters n,k, and p, the input graph G(V,E) (with |V | = n)
is generated as follows. First, a graph with a planted independent set S is
generated exactly as in the distributional model. This completes the random
component of the construction. Thereafter, all edges within V \ S are removed.
Finally, an adversary observes the random graph (whose only edges are between
S and V \ S) and may add to it arbitrary edges of its choice, as long as none of
the added edges has both endpoints inside S. Hence the adversary has complete
control over the subgraph induced on V \ S, and acts as a monotone adversary
with respect to the edges between S and V \ S. The goal is to output an
independent set of size at least k in the resulting input graph G(V,E). Note that
regardless of the edges added by the adversary, S itself is a feasible solution,
but depending on the edges (not) added by the adversary, there might be other
feasible solutions.

9.2 Why Study Semirandom Models?

A semirandom model involves a random component and an adversarial component.
As we have seen in Section 9.1.1 (and we will see additional examples later), there
are many different roles that we can delegate to the adversary when constructing the
input instance. In the text that follows we discuss some of the considerations involved
in proposing a semirandom model. As semirandom models are often conceived as
refinements of distributional models, we shall also discuss some of the motivations
for studying distributional models, with emphasis on those motivations that apply
also to semirandom models.

In the discussion that follows, it will be convenient to distinguish between two
classes of distributional models. We shall refer to one class as that of oblivious random
models, and to the other as planted models.

In oblivious random models, the input is generated by a random process that
is independent of the optimization problem that one is interested in solving. The
distributional model given for 3SAT in Section 9.1.1 is an example of an oblivious
random model, and the model applies without change to other constraint satisfaction
problems such as 3AND or not-all-equal 3SAT. An example of an oblivious random
model for graph problems is the Erdos–Renyi Gn,p random graph model. This model
applies to any graph problem, though the range of interest for the parameter p might
depend on the optimization problem of interest. For example, for maximum clique
one might choose p = 1

2 , for Hamiltonicity one might choose p = log n
n , whereas for

3-coloring one might choose p = 4
n .

In planted models, the input is generated by a random process that depends on the
optimization problem that one is interested in. For example, the planted distributional
models considered in Section 9.1.1 for the three graph problems – minimum bisection,
3-coloring, and maximum independent set – are different from each other. In planted
models, the planted solution is often the unique optimal solution.

192

INTRODUCTION TO SEMIRANDOM MODELS

9.2.1 Average Case Analysis

Distributional models are sometimes assumed to represent input instances that may
occur in practice. The extent to which one can defend such assumptions depends on
the setting.

In some settings, distributional models exactly capture the set of interesting input
instances. Most notably, this happens in settings related to cryptography, in which
participants in a cryptographic scheme are instructed to generate various inputs to
the scheme at random. For example, in public key cryptographic schemes such as
RSA, a participant is instructed to generate its public key by privately picking two
large random primes p and q, computing n = pq, and publishing n as the public
key. Factoring algorithms that are tailored for this specific distributional setting have
far-reaching consequences for the underlying cryptographic scheme.

In some settings, distributional models are conjectured to be a good approximation
of reality. For example, studies in statistical physics often involve random graph
models that have a geometric nature: the vertices of the graph lie in a low dimensional
space, and only vertices that are geometrically close to each other may be connected
by edges. The random aspect of the model can be either in the location of the vertices,
or in the choice of which of the possible edges are indeed edges.

However, in many settings, the relation between distributional models and typical
instances that occur in practice is less clear. For example, in the study of social
networks, one often considers distributions over graphs that are generated by a
random process such as preferential attachment. These distributions may capture
some of the typical aspects of social networks (such as typical degree sequences),
though for any given social network of interest, there may be other important aspects
(such as the relative frequencies of various small subgraphs) that are not captured well
by the underlying distributional model.

Oblivious random models typically exhibit a multitude of nearly optimal solutions,
with pairs of nearly optimal solutions that are very different from each other. As
argued in Chapters 5 and 6, in some settings, an optimal solution to an optimization
problems is most useful when it is basically unique, and of significantly better value
than those solutions that significantly differ from it. In these cases, planted models
can serve as the basis for average case analysis of instances of interest, as the planted
solution is often the unique optimal solution. But also here, the planted models
capture only some aspects of “interesting” input instances, and may not capture
other aspects.

Summarizing the foregoing discussion, distributional models, whether oblivious or
planted, are sometimes meant to represent average case analysis, but in many cases
there is a major difficulty of characterizing the “right” distributional model for the
set of problems that may appear in practice. In such settings, it is important that
algorithms that are designed for inputs generated by the distributional model will be
robust, and work well also for inputs that are generated by other processes. A way of
addressing this concern is through the use of semirandom models. In these models,
the exact distribution of input instances is not known to the algorithm, as some
aspects of the input instance are left to the discretion of an adversary. Consequently,
algorithms designed for semirandom models avoid the danger of “overfitting” to a
particular input distribution, and they are expected to be more robust than algorithms
that are designed for distributional models. This is one of the major reasons for

193

U. FEIGE

introducing semirandom models such as the monotone adversary (e.g., for minimum
bisection in Section 9.1.1). In Section 9.3 we will see examples of how such models
direct the design of algorithms toward algorithms that are more robust.

Another contribution of semirandom models is in providing refinements of aver-
age case analysis, clarifying what it is that one actually averages over. In semirandom
models, some aspects of the input instance are chosen by an adversary, and the
random distribution is over some other aspects. For example, in smoothed models
(e.g., for 3SAT in Section 9.1.1), the algorithm needs to work well on average not only
when the average is taken as a global average over all input instances, but also when
one takes a local average around any particular tentative input instance, regardless
of what this tentative input instance is. Another example is random-order models
for online algorithms (see Chapter 11), where an adversary may select a worst-case
instance, and only the order of arrival is random.

9.2.2 Recovering a Signal Contaminated by Noise

Randomness in generation of input instances can sometimes be thought of as repre-
senting “noise” that makes finding an otherwise obvious solution more difficult. For
example, for error correction of encoded messages transmitted over a noisy channel,
the source of difficulty in decoding is the errors introduced into the encoded message
by the noisy channel. In the absence of noise, decoding the transmitted message
is trivial. With noise, decoding typically involves two aspects. One is information
theoretic – does the noisy message contain sufficient information in order to uniquely
recover the transmitted message (with high probability)? The other is algorithmic,
designing an efficient algorithm for recovering encoded messages from their noisy
received message.

Noise is often modeled as being random. For example, in a binary symmetric
channel (BSC) each transmitted bit is flipped independently with probability p < 1

2 .
However, it is also reasonable to model noise as being semirandom. For example,
one may assume that each transmitted bit i is flipped with probability pi ≤ p rather
than exactly p, where the value of pi is determined by an adversary. If a decoding
algorithm works in the former model but not in this latter model, this may be a sign
of “overfitting” the algorithm to the model. Noise is also often modeled as being
fully adversarial. In Hamming’s model, within a block of bits, the total fraction of
bits flipped is at most p, but an adversary may decide which bits are flipped. Decoding
in the information theoretic sense is more difficult in the Hamming model than in the
BSC model (the transmission rate under which unique decoding is possible is smaller
in the Hamming model). Also, decoding in the algorithmic sense appears to be more
difficult in the Hamming model. This last statement is supported by the observation
that for every p < 1

2 and p′ < p, if block sizes are sufficiently large, every decoding
algorithm for the Hamming model with p fraction of errors works also in the BSC
model when the error probability is p′.

In analogy to the coding setting, planted models can also be viewed as representing
an ideal object contaminated by noise. Under this view, the goal is typically to recover
the ideal object. Solving an optimization problem associated with the object may serve
as a means toward this end, but is not the goal by itself. This view is different from that
taken in most of this chapter, where the goal is typically to solve an optimization prob-
lem, and a solution is accepted even if it does not correspond to the planted object.

194

INTRODUCTION TO SEMIRANDOM MODELS

As an example, for the MIS problem, the ideal object is an independent set of
size k in an otherwise complete graph. This ideal object is contaminated by noise,
where noise corresponds to removing some of the edges of the graph. If every edge is
removed independently with the same probability (in analogy to independent noise),
one gets the standard distributional model for planted independent set (but with the
goal of finding the planted independent set, rather than that of finding a maximum
independent set). Semirandom models for MIS correspond to models in which the
noise is not independent, and this makes recovering the ideal object more difficult.

9.2.3 A Model for Worst-Case Instances

To make progress (e.g., achieve a better approximation ratio) in the design of
algorithms for a difficult computational problem, it is useful to have an understanding
of which are the most difficult instances of the problem. For some problems,
distributional models are conjectured to produce input instances that are essentially
as difficult as worst-case instances. For example, it is conjectured that 3SAT on
random 3CNF formulas with dn clauses (for some large constant d – such formulas
are unlikely to be satisfiable) are essentially as difficult to refute as adversarially
chosen 3CNF formulas with dn clauses. For some other problems, such as the dense
k-subgraph problem (given an input graph and a parameter k, find the induced sub-
graph on k vertices with the highest average degree), distributional models appear to
capture the limitations of currently known algorithms, and progress on distributional
instances played a key role in improving the approximation ratio also for worst-case
instances (see Bhaskara et al., 2010).

There are problems whose approximability is not well understood (examples
include sparsest cut, unique games) and (natural) distributional models produce
instances on which known algorithms perform much better than the best approxima-
tion ratios known for worst-case instances. In such cases, it is instructive to consider
semirandom instances, and try to extend the good performance of algorithms to
the semirandom instances (as done in Kolla et al., 2011). Success in this effort may
suggest that known algorithmic approaches might also suffice in order to handle
worst-cases instances (even though we might be lacking the analysis to support this),
whereas failure may help clarify what aspects of input instances are those that create
difficulties for currently known algorithms.

9.2.4 NP-Hardness

The theory of NP-completeness has great value in informing us that certain problems
do not have polynomial-time algorithms (unless P = NP), and hence that we should
not waste efforts in trying to design polynomial-time algorithms for them (unless we
are seriously trying to prove that P = NP). This theory has been extended to proving
NP-hardness of approximation results. This plays a key role in directing research on
approximation algorithms to those problems (such as sparsest cut) for which there still
is hope for substantial improvements, and away from problems (such as max-3SAT)
for which there is only negligible room for improvements. Unfortunately, the theory
of NP-completeness has not been successfully extended (so far) to distributional
problems, and hence it is difficult to judge whether our failure to find good algorithms
for a distributional problem (in those cases where we fail) is because there really is no

195

U. FEIGE

good algorithm for handling the instances generated by the distribution, or because
we are not using the right algorithmic tools for the distributional problem. This makes
it difficult to classify which distributional problems are easy and which are hard.

One of the advantages of semirandom models is that their adversarial component
offers us possibilities for proving NP-hardness results. Consequently, it is not rare that
for semirandom models, for certain ranges of parameters we have polynomial-time
algorithms, and we also have NP-hardness results that explain why the algorithmic
results do not extend to other ranges of the parameters. Hence research on algorithms
for semirandom models can be guided by the theory of NP-completeness toward
problems or which there is hope to make progress, and away from problems for which
progress is hopeless. This aspect is missing in research on algorithms for distributional
problems.

9.3 Some Representative Work

In this section we shall present some key insights that emerged in the study of
semirandom input models. In doing so, we shall provide some historical perspective
of how these ideas developed (though not necessarily in historical order).

9.3.1 Preliminary Results on Semirandom Models

Blum and Spencer (1995), following earlier work by Blum (1990), motivated and
introduced several semirandom models for the k-coloring problem. One of these
models, referred to in their work as the colorgame model, is a monotone adversary
model for k-coloring. In this model, the set of vertices is partitioned into k equal
sized color classes. Thereafter for every pair of vertices u,v in different color classes,
an edge (u,v) is introduced independently with probability p. The edges introduced
in this stage are referred to as random edges. Finally, the adversary may introduce
arbitrary additional edges between color classes, referred to as adversarial edges. The
goal is to design polynomial-time algorithms that k-color the resulting graph, for a
wide range of values of k and p. As in all semirandom models, the coloring algorithm
is not told which edges are random and which are adversarial.

For k = 3 Blum and Spencer propose the following algorithm. Let N(v) denote
the set of neighbors of a vertex v. Two vertices u and v are said to be linked if the
subgraph induced on N(u)∩N(v) includes at least one edge. Observe that in every legal
3-coloring, two linked vertices must both be colored by the same color, because
in every legal coloring their common neighborhood requires at least two colors.
Consequently, two linked vertices u and v may be merged, namely, replaced by a single
vertex w, with N(w)= N(u) ∪ N(v). The new graph is 3-colorable if and only if the
original graph is 3-colorable. Any two vertices that were linked in the original graph
are also linked in the new graph, but there may be vertices that were not linked in
the original graph and become linked in the new graph. Repeatedly merging linked
vertices whenever possible (in an arbitrary order – all orders give the same final
outcome), the algorithm is successful if the final resulting graph is a triangle. In
this case the graph has a unique 3-coloring: for every vertex t of the triangle, the
set of vertices that were merged in order to give t forms a color class. Observe that the
algorithm is monotone in the following sense: if it is successful for a graph G, then it
also successful for every 3-colorable graph G′ that can be obtained from G by adding

196

INTRODUCTION TO SEMIRANDOM MODELS

edges to G. This follows because any sequence of merge operations that is performed
in G can also be performed in G′. The only edge addition that can prevent a merge
between linked vertices u and v is to add the edge (u,v), but this is not allowed because
the resulting graph will not be 3-colorable.

Blum and Spencer proved that when p > n−0.6+ε there is high probability (over the
choice of the random edges, regardless of the choice of the adversarial edges) that
the algorithm indeed 3-colors the graph. At this low edge density, initially most pairs
of vertices do not have any common neighbors and hence cannot possibly be linked,
and the crux of the proof is in showing that as the algorithm progresses, more pairs
of vertices become linked. The algorithm can be adapted to k-coloring of k-colorable
semirandom graphs (two vertices are linked if their common neighborhood contains
a Kk−1), though the required value of p increases to n−δk+ε , for δk = 2k

k(k+1)−2 .
Blum and Spencer also considered an unbalanced k-colorable semirandom model

in which the sizes of different color classes can differ significantly, and showed an
NP-hardness result for coloring such graphs.

Theorem 9.1 (Blum and Spencer, 1995) For every k ≥ 4 and every ε > 0, if
p ≤ n−ε then it is NP-hard to k-color graphs that are produced by the monotone
adversary unbalanced semirandom model for k-coloring.

Proof We sketch the proof for k = 4. Suppose that p = n−3ε for some
0 < ε < 1. Let H be an arbitrary graph on 3nε vertices for which one wishes to
find a 3-coloring. This problem is NP-hard, but can be reduced to the problem
of 4-coloring a semirandom graph with unbalanced color classes. This is done
by creating a graph G∗ that is composed of a disjoint union of H and an
independent set I of size n − 3nε , and connecting every vertex u ∈ H and v ∈ I
by an edge (u,v). Every 4-coloring of G∗ must 3-color H, and moreover, deriving
the 3-coloring for H from the 4-coloring of G∗ can be done in polynomial time.
Hence if 3-coloring H is NP-hard, so is 4-coloring G∗.

However, G∗ can be obtained with high probability as the outcome of
the unbalanced semirandom 4-coloring model. Suppose for simplicity of the
presentation that the three color classes of H are of equal size. Then consider
the unbalanced 4-coloring semirandom model with one “large” color class of
size n−3nε and three “small”color classes, each of size nε . With high probability,
all random edges in the construction of the input graph will have at least one
of their endpoints in the large color class, and no edges between the small color
classes. If this high-probability event happens, then the monotone adversary
can add between the three small color classes a set of edges that make the
subgraph induced on them isomorphic to H, and also add all missing edges
between the large color class and each of the small color classes, and this results
in the graph G∗. As we argued that it is NP-hard to 4-color G∗, it is NP-hard to
4-color graphs in the unbalanced semirandom 4-coloring model. �

9.3.2 Planted Clique/MIS with a Monotone Adversary

In this section we shall discuss algorithms for a semirandom model for the maximum
independent set (MIS) problem. The model and associated algorithms can easily be

197

U. FEIGE

adapted to the clique problem as well, due to the fact that a set S of vertices forms a
clique in G if and only if it forms an independent set in the complement graph Ḡ

The following is a standard distributional model Gn,k, 1
2

for MIS, often referred

to as planted MIS, or hidden MIS (and in analogy, planted/hidden clique – see
Chapter 8). One first generates a random Gn, 1

2
graph G′. In G′, one selects a set S

of k vertices at random, and removes all edges within S. The result is the input graph
G. The goal is to design a polynomial-time algorithm that with high probability (over
the choice of G) solves the MIS problem. For sufficiently large k (k slightly above
2 log n suffices), there is high probability (over the random choice G ∈ Gn,k, 1

2
) that S

is the unique MIS in G, and in this case the goal of solving MIS coincides with a goal
of finding S.

When k ≥ c
√

n log n for a sufficiently large constant c, the vertices of S are (almost
surely) simply those of lowest degree in G. When k ≥ c

√
n, recovering S (with high

probability) is more challenging, but there are several known algorithms that manage
to do so. Perhaps the simplest of these is the following algorithm of Feige and Ron
(2010). The highest degree vertices in the (residual) graph are removed from the graph
in an iterative fashion, until only an independent set remains. Feige and Ron prove
that with high probability this independent set I is a relatively large subset of S.
Moreover, S can be recovered by adding to I those vertices not connected to any
vertex in I .

Alon et al. (1998) developed a spectral algorithm for recovering S. It is easier to
present their algorithm in the planted clique model rather than planted MIS. It is well
known that for the adjacency matrix A of a random Gn, 1

2
graph, almost surely the

largest eigenvalue satisfies λ1(A) $ n
2 , whereas all other eigenvalues are not larger

than roughly
√

n. A standard argument based on Rayleigh quotients implies that
planting a clique of size k > c

√
n (for sufficiently large constant c) in a random

graph should create an eigenvalue of value roughly k
2 . Hence for the input graph G,

we expect its adjacency matrix AG to satisfy λ2(AG) $ k
2 >

√
n. Alon et al. (1998)

proved that with high probability, the set K of k largest entries in the eigenvector with
eigenvalue λ2 have an overlap of size at least 5k

6 with set S. Iteratively removing from
K pairs of vertices that do not form an edge results in a clique K ′ of size at least 2k

3 .
It is not hard to prove that necessarily K ′ ⊂ S, and that all other vertices of S are
precisely those vertices that are neighbors with all vertices of K ′.

To evaluate the robustness of these algorithmic techniques, the distributional
Gn,k, 1

2
model for MIS can be extended into a semirandom model by introducing a

monotone adversary. The adversary, who has unbounded computational power, may
observe G, and add to it edges of his choice, provided that S remains an independent
set. This gives the semirandom graph Ĝ. Observe that if S is a MIS (the unique
MIS, respectively) in G, then necessarily S is a MIS (the unique MIS, respectively)
in Ĝ as well. The goal is to design a polynomial-time algorithm that with high
probability (over the choice of G ∈ Gn,k, 1

2
, for every Ĝ that may be generated from G)

finds S.
The iterative algorithm that is based only on degrees of vertices can easily be

fooled by the adversary (that in particular has the power to make all vertices of S
have substantial higher degree than all the remaining vertices). Likewise, the spectral
algorithm can also be fooled by the adversary, and it too will not find S in Ĝ. However,

198

INTRODUCTION TO SEMIRANDOM MODELS

with additional machinery, the spectral algorithm can be salvaged. An algorithm that
does work in the semirandom model is based on semidefinite programming. At a high
level, one may think of semidefinite programs (SDPs) as a technique that combines
spectral techniques with linear programming. This is because SDPs involve two types
of constraints: spectral (requiring a certain matrix to have no negative eigenvalues),
and linear (as in linear programming).

We present here the algorithm of Feige and Krauthgamer (2000) for the semi-
random MIS model. It is based on the ϑ function of Lovasz (which will be defined
shortly). Given a graph G, ϑ(G) can be computed (up to arbitrary precision) in
polynomial time, and it provides an upper bound (that might be far from tight) on
α(G) (the size of the MIS in G). The key technical lemma in Feige and Krauthgamer
(2000) is the following.

Lemma 9.2 Let k ≥ c
√

n for sufficiently large c. For G ∈ Gn,k, 1
2
, with probability

at least 1 − 1
n2 (over choice of G) it holds that ϑ(G) = α(G).

Though Lemma 9.2 is stated for G ∈ Gn,k, 1
2
, it applies also for Ĝ generated by the

semirandom model. This is because ϑ is a monotone function – adding edges to G
can only cause ϑ to decrease. But ϑ cannot decrease below α(Ĝ), and hence equality
is preserved.

Given Lemma 9.2, finding S in Ĝ is easy. The failure probability is small enough
to ensure that with high probability, for every vertex v ∈ S it holds that ϑ(Ĝ \ v) =
k − 1, and for every vertex v �∈ S it holds that ϑ(Ĝ \ v) = k (here Ĝ \ v refers to the
graph obtained from Ĝ by removing vertex v and all its incident edges). This gives a
polynomial-time test that correctly classifies every vertex of Ĝ as either in S or not
in S. As we shall see, in fact it holds that all vertices can be tested simultaneously just
by a single computation of ϑ(Ĝ).

Let us now provide some details about the contents of Lemma 9.2. The ϑ function
has many equivalent definitions. One of them is the following. An orthonormal
representation of G(V,E) associates with each vertex i ∈ V a unit vector xi ∈ Rn, such
that xi and xj are orthogonal (xi · xj = 0) whenever (i,j) ∈ E. Maximizing over all
orthonormal representations {xi} of G and over all unit vectors d (d is referred to as
the handle) we have

ϑ(G) = max
d,{xi}

∑
i∈V

(d · xi)
2.

The optimal orthonormal representation and the associated handle that maximize the
above formulation for ϑ can be found (up to arbitrary precision) in polynomial time
by formulating the problem as an SDP (details omitted). To see that ϑ(G) ≥ α(G),
observe that for any independent set S the following is a feasible solution for the SDP:
choose xi = d for all i ∈ S, and choose all remaining vectors xj for j �∈ S to be orthog-
onal to d and to each other. Observe also that ϑ is indeed monotone as explained
above (adding edges to G adds constraints on the orthonormal representation, and
hence the value of ϑ cannot increase).

Now we explain how Lemma 9.2 can be used in order to recover the planted
independent set S. Applying a union bound over less than n subgraphs, the lemma

199

U. FEIGE

implies that with probability at least 1 − 1
n (over the choice of G ∈ Gn,k, 1

2
) ϑ(G′) =

α(G′) = α(G) − 1 for every subgraph G′ that can be obtained from G by removing a
single vertex of S. The foregoing equalities imply that for every vertex i ∈ S, it holds
that in the optimal SDP solution d · xi ≥ 1 − 1

2n . Otherwise, by dropping i from G
without changing the SDP solution we get that ϑ(G\{i}) > ϑ(G)−1+ 1

2n > α(G)−1,
contradicting the foregoing equality (with G′ = G \ {i}). No vertex i �∈ S can have
d · xj ≥ 1 − 1

2n , as together with the contribution of the vertices from S, the value of
ϑ(G)would exceed |S| = α(G), contradicting Lemma 9.2. We thus conclude that with
high probability (over the choice of G ∈ Gn,k, 1

2
), for Ĝ generated in the semirandom

model, the vertices of S are precisely those that have inner product larger than 1− 1
2n

with the handle d.
We now explain how Lemma 9.2 is proved. Its proof is based on a dual (equivalent)

formulation of the ϑ function. In this formulation, given a graph G(V,E)

ϑ(G) = min
M

[λ1(M)],

where M ranges over all n by n symmetric matrices in which Mij = 1 whenever (i,j) �∈
E, and λ1(M) denotes the largest eigenvalue of M. As a sanity check, observe that
if G has an independent set S of size k, the minimum of the foregoing formulation
cannot possibly be smaller than k, because M contains a k by k block of “1” entries (a
Rayleigh quotient argument then implies that λ1(M) ≥ k). Given G ∈ Gn,k, 1

2
with an

independent set S of size k, Feige and Krauthgamer (2000) construct the following
matrix M. As required, M is symmetric, and Mi,j = 1 for all vertices i,j for which
(i,j) �∈ E (including the diagonal of M). It remains to set the values of Mi,j for pairs
of vertices i,j for which (i,j) ∈ E (which can happen only if at least one of i or j is
not in S). This is done as follows. If both i and j are not in S, then Mij = −1. If

i �∈ S and j ∈ S then Mi,j = −k−di,S
di,S

, where di,S is the number of neighbors that
vertex i has in the set S. This value of Mij roughly equals −1, and is chosen so that∑

j∈S Mij = 0 for every i �∈ S. Finally, if i ∈ S and j �∈ S, then symmetry of M
dictates that Mij = Mji. For this matrix M, the vector vS ∈ {0,1}n, which has entries
of value 1 at coordinates that correspond to vertices of S and 0 elsewhere, serves as
an eigenvector of eigenvalue k. Feige and Krauthgamer (2000) prove that with high
probability (over choice of G) it holds that this matrix M has no eigenvalue larger
than k. This establishes that ϑ(G) = k. The same M applies also to any graph Ĝ
derived from G by a monotone adversary, because adding edges to G only removes
constraints imposed on M.

Summarizing, the spectral algorithm of Alon et al. (1998) can find the planted
independent set in the distributional model Gn,p, 1

2
. The way to extend it to the

semirandom model is by use of semidefinite programming, based on computing the
ϑ function. More generally, a useful rule of thumb to remember is that semidefinite
programming can often serve as a robust version of spectral algorithms.

Another advantage of the SDP approach, implicit in the preceding discussion, is
that it not only finds the planted independent set, but also certifies its optimality: the
solution to the dual SDP serves as a proof that Ĝ does not contain any independent
set of size larger than k.

200

INTRODUCTION TO SEMIRANDOM MODELS

9.3.3 Refutation Heuristics

In Section 9.3.2 we presented algorithms that search for solutions in various random
and semirandom models. Once a solution is found, the algorithm terminates. A com-
plementary problem is that of determining that an input instance does not have any
good solutions. For example, when attempting to verify that a given hardware design
or a given software code meets its specification, one often reduces the verification task
to that of determining satisfiability of a Boolean formula. A satisfying assignment for
the Boolean formula corresponds to a bug in the design, and the absence of satisfying
assignments implies that the design meets the specifications. Hence one would like an
algorithm that certifies that no solution (satisfying assignment, in this case) exists.
Such algorithms are referred to as refutation algorithms.

For NP-hard problems such as SAT, there are no polynomial-time refutation
algorithms unless P = NP. Hence it is natural to consider random and semiran-
dom models for refutation tasks. However, refutation tasks involve a difficulty not
present in search tasks. NP-hard problems do not possess polynomial size witnesses
for their unsatisfiability (unless NP = coNP). Consequently it is not clear what
a refutation algorithm should be searching for, and what evidence a refutation
algorithm can gather that would ensure that the input instance cannot possibly have a
solution.

Recall the distributional model for 3SAT presented in Section 9.1.1. In that model,
the input is a random 3CNF formula φ with n variables and m clauses, and the
goal is to determine whether it is satisfiable. Standard use of Chernoff bounds and
a union bound over all possible assignments shows that when m > cn (for some
sufficiently large constant c) then almost surely φ is not satisfiable. Hence, if we trust
that the formula was indeed generated according the the distributional model, and
are willing to tolerate a small probability of error, then a refutation algorithm can
simply output not satisfiable, and will with high probability (over choice of φ) be
correct. However, this approach is not satisfactory for multiple reasons, one of which
being that it provides no insights as to how to design refutation algorithms in practice.
Consequently, we shall be interested in algorithms that for a given distributional
model D have the following properties.

1. For every input formula φ, the algorithm A correctly determines whether φ is
satisfiable or not.

2. With high probability (over choice of φ ∈ D), the algorithm A produces its output
in polynomial time.

We can completely trust the output of such an algorithm A. However, on some
instances, A might run for exponential time, and we might need to terminate A before
obtaining an answer. If most inputs generated by D are not satisfiable, then it is
appropriate to refer to A as a refutation heuristic.

Before addressing refutation heuristics for SAT, it is useful to consider refutation
heuristics for a different NP-hard problem, that of MIS. Consider the Gn, 1

2
distribu-

tional model for MIS, and fix k = n
5 . We refer to graphs G for which α(G) ≥ k as

satisfiable. For this setting we offer the following refutation heuristic, based on the ϑ
function discussed in Section 9.3.2.

201

U. FEIGE

Refutation Heuristic for MIS Compute ϑ(G). If ϑ(G) < k output not satisfiable.
If ϑ(G) ≥ k use exhaustive search to find the MIS in G. If its size is at least k output
satisfiable, and if its size is less than k output not satisfiable.

The output of the refutation heuristic is always correct because ϑ(G) ≥ α(G) for
every graph G. For most input graphs G generated from Gn, 1

2
the algorithm runs in

polynomial time, because for such graphs ϑ(G) = O(
√

n) with high probability (an
indirect way of proving this is by combining Lemma 9.2 with monotonicity of the ϑ

function), and ϑ can be computed up to arbitrary precision in polynomial time.
This refutation heuristic extends without change to Gn,p models with p ≥ c

n for
a sufficiently large constant c, because also for such graphs ϑ(G)< n

5 with high
probability. See Coja-Oghlan (2005).

Given that we have a refutation heuristic for MIS we can hope to design one
for 3SAT as well, by reducing 3SAT to MIS. However, the standard “textbook”
reductions from 3SAT to MIS, when applied to a random 3SAT instance, do not give
a random Gn,p graph. Hence the refutation heuristic for MIS might not terminate
in polynomial time for such graphs. This difficulty is addressed by Friedman et al.
(2005), who design a different reduction for 3SAT to MIS. They also design a simpler
reduction from 4SAT to MIS, and this is the reduction that we choose to explain here.

We consider a random 4CNF formula φ with m = cn2 clauses, for large enough
c. Partition φ it into three subformulas. φ+ contains only those clauses in which all
literals are positive, φ− contains only those clauses in which all literals are negative,
and φ′ contains the remaining clauses. We completely ignore φ′, and construct two
graphs, G+ based on φ+, and G− based on φ−. We describe the construction of G+,
and the construction of G− is similar.

The vertex set V of G+ contains
(n

2

)
vertices, where each vertex is labeled by a

distinct pair of distinct variables. For every clause in φ+ (that we assume contains
four distinct variables), put an edge in G+ between the vertex labeled by the first two
variables in the clause and the vertex labeled by the last two variables in the clause.

Lemma 9.3 If φ is satisfiable, then at least one of the two graphs G+ and G− has
an independent set of size at least

(n/2
2

) $ |V |/4.

Proof Consider an arbitrary satisfying assignment for φ, let S+ be the set
of variables assigned to true, and let S− be the set of variables assigned to
false. Consider the set of

(|S−|
2

)
vertices in G+ labeled by pairs of vertices

from S−. They must form an independent set because φ cannot have a clause
containing only variables from S− in which all literals are positive. Likewise,
G− has an independent set of size at least

(|S+|
2

)
. As max[|S+|,|S−|] ≥ n/2, the

proof follows. �

Observe that if φ is random then both G+ and G− are random graphs, each with
roughly m/16 $ c|V |/8 edges, and hence average degree roughly c/4. (Clarification:
the exact number of edges in each of the graphs is not distributed exactly as in
the Gn,p model. However, given the number of edges, the locations of the edges are
random and independent, exactly as in the Gn,p model. This suffices for the bounds of
Coja-Oghlan [2005] on the ϑ function to apply.) For large enough c, the refutation
Heuristic for MIS will with high probability take only polynomial time to certify that

202

INTRODUCTION TO SEMIRANDOM MODELS

neither G+ nor G− have independent sets larger than |V |/5, and thus establish that φ
cannot have a satisfying assignment.

The refutation heuristic for 4SAT can be extended to kSAT, refuting random
kCNF formulas for all k, provided that m > cnk/2. Doing so for even values of k is
fairly straightforward. The extension to odd k (including k = 3, 3SAT) is significantly
more difficult. For some of the latest results in this respect, see Allen et al. (2015) and
references therein.

It is an open question whether there are refutation heuristics that can refute
random 3CNF formulas with significantly fewer than n3/2 clauses. The answer to this
question may have implications to the approximability of various NP-hard problems
such as minimum bisection and dense k-subgraph (see Feige (2002) for details),
as well as to problems in statistics and machine learning (see for example Daniely
et al. [2013]).

9.3.4 Monotone Adversary for Locally Optimal Solutions

Recall the semirandom model for the MIS problem presented in Section 9.1.1. That
model, referred here as the FK model (as introduced by Feige and Kilian [2001])
is more challenging than the model presented in Section 9.3.2, as the monotone
adversary has complete control on the subgraph induced on V \ S. That subgraph
might contain independent sets larger than S, and hence S need not be the MIS in G.
Consequently, there is no hope of developing algorithms that solve MIS in the FK
model, as the solution might lie within V \S, and the graph induced on V \S might be
a “worst case” instance for MIS. Likewise, recovering S unambiguously is also not a
feasible task in this model, because the adversary may plant in V\S other independent
sets of size k that are statistically indistinguishable from S itself. Consequently, for
simplicity, we set the goal in this model to be that of outputting one independent set
of size at least k. However, we remark that the algorithms for this model meet this
goal by outputting a list of independent sets, one of which is S. Hence the algorithms
might not be able to tell which of the independent sets that they output is S itself, but
they do find S.

The FK model attempts to address the following question: what properties of an
independent set make finding the independent set easy? Clearly, being the largest
independent set in a graph is not such a property, as MIS is NP-hard. Instead, the FK
model offers a different answer that can be phrased as follows: if the independent set
S is a strong local maximum, then S can be found. The term strong local maximum
informally means that for every independent set S′ in G, either |S′ ∩ S| is much
smaller than |S|, or the size |S′| is much closer to |S′ ∩ S| than to |S|. The strong
local optimality of S is implied (with high probability) by the random part of the FK
model, and adding edges to G (by the monotone adversary) preserves the property
of being a strong local minimum.

Another motivation for the FK model comes from the graph coloring problem.
Every color class is an independent set, but need not be the largest independent set in
the graph. Algorithms for finding independent sets in the FK model easily translate to
graph coloring algorithms in various random and semirandom models for the graph
coloring problem.

Algorithms for the FK model are based on semidefinite programming. However,
Lemma 9.2 need not hold in this model. The subgraph induced on V \ S can cause

203

U. FEIGE

the ϑ function to greatly exceed k – this is true even if this subgraph does not contain
any independent set larger than k. Consequently, in the FK model, the algorithm
presented in Section 9.3.2 need not find neither S, nor any other independent set in
G of size at least k.

Feige and Kilian (2001) make more sophisticated use of semidefinite program-
ming, and in a certain regime for the parameters of the FK model, they obtain the
following result.

Theorem 9.4 (Feige and Kilian, 2001) Let k = αn, and let ε > 0 be an arbitrary
positive constant. Then in the FK model (in which |S| = k, edges between S and
V \ S are introduced independently with probability p, and the adversary may add
arbitrary edges (u,v) �∈ S × S) the following results hold:

� If p ≥ (1 + ε) ln n
αn then there is a random polynomial-time algorithm that with

high probability outputs an independent set of size k.
� If p ≤ (1 − ε) ln n

αn then the adversary has a strategy such that unless NP ⊂ BPP,
every random polynomial-time algorithm fails with high probability to output an
independent set of size k.

The algorithm in the proof of Theorem 9.4 has five phases that are sketched in the
following list (with most of the details omitted).

1. Make repeated use of the ϑ function to extract from the graph t ≤ O(log n) sets
of vertices S1, . . . ,St, with the property that most vertices of S are among the
extracted vertices.

2. Make repeated use of the random hyperplane rounding technique of Goemans
and Williamson (1995) so as to find within each set Si a relatively large independent
set Ii.

3. It can be shown that with high probability, there will be good indices i ∈ [t] for which
|Ii ∩ S| ≥ 3

4 |Ii|. “Guess” (by trying all possibilities – there are only polynomially
many of them) which are the good indices. Take the union of the corresponding
Ii, and remove a maximal matching from the corresponding induced subgraph.
The resulting set I of vertices that remains forms an independent set (due to the
maximality of the matching). Moreover, as every matching edge must contain at
least one vertex not from S, it follows that (for the correct guess) most of the
vertices of I are from S.

4. Setting up a certain matching problem between I and V \ I , identify a set of M
vertices to remove from I , resulting in I ′ = I \M. It can then be shown that I ′ ⊂ S.

5. Consider the subgraph induced on the nonneighbors of I ′ (this subgraph includes
I ′ itself), find in it a maximal matching, and remove the vertices of the matching.
This gives an independent set, and if it is larger than I ′, it replaces I ′. It can be
shown that this new I ′ maintains the invariant that it is a subset of S. Repeat
this process until there is no further improvement in the size of I ′. If at this point
|I ′| ≥ k, then output I ′.

In phase 3 the algorithm tries out polynomially many guesses, and several of them
may result in outputting independent sets of size at least k. Feige and Kilian (2001)
prove that when p ≥ (1+ε) ln n

αn , there is high probability that the planted independent

204

INTRODUCTION TO SEMIRANDOM MODELS

set S is among those output by the algorithm. However, when p ≤ (1 − ε) ln n
αn ,

the monotone adversary has a strategy that may cause the algorithm to fail. The
algorithm does manage to complete the first three phases and to find a fairly large
independent set, but of size somewhat smaller than k. The difficulty is in the fourth
and fifth phases of the algorithm. This difficulty arises because there is likely to be a
small (but not negligible) set of vertices T ⊂ (V\S) that has no random edge to S. The
adversary may then choose a pattern of edges between T and S that on the one hand
makes the largest independent set in S ∪ T be S itself, and on the other hand makes
it difficult for the algorithm to determine which vertices of I (the result of the third
phase) belong to T . These vertices prevent extending I to a larger independent set.
Moreover, these considerations can be used to derive the NP-hardness result stated
in the second part of Theorem 9.4, along lines similar to those used in the proof of
Theorem 9.1.

We end this section with an open question.

Question: What is the smallest value of k (as a function of n) such that an independent
set of size k can be efficiently found in the FK model when p = 1

2 ?

McKenzie et al. (2020) show that an algorithm based on semidefinite programming
works when k ≥ �(n2/3). In analogy to the results stated in Section 9.3.2, one may
hope to design an algorithm that works for k ≥ �(

√
n), though such an algorithm

is not known at the moment, and neither is there a hardness result that suggests that
no such algorithm exists.

9.3.5 Separable Semirandom Models

In Sections 9.3.2 and 9.3.4 we discussed semirandom graph models in which some of
the edges in the input graph are generated at random, and others are generated by
an adversary. Hence when generating an input instance, both the random decisions
and the adversarial decisions refer to the same aspect of the input instance, to the
edges. In this and subsequent sections we discuss classes of semirandom models that
we refer to as separable. In these models, certain aspects of the input instance are
random, and certain other aspects are adversarial. Such models help clarify which
aspects of a problem contribute to its computational difficulty.

Recall the 3SAT semirandom model of Section 9.1.1, with n variables, m clauses,
and probability p of flipping the polarity of a variable. When setting p = 1

2 , it provides
a conceptually simple separable model for 3SAT. One may think of a 3CNF formula
as having two distinct aspects: one is the choice of variables in each clause, and the
other is the polarity of each variable. In the distributional model, both the choice of
variables and the choice of their polarities are random. In the separable semirandom
model, the choice of variables is left to the complete discretion of the adversary,
whereas given the set of variables in each clause, the polarities of variables are set
completely at random (each variable appearance is set independently to be positive
with probability 1

2 and negative with probability 1
2). As in the distributional model

for 3SAT, when m > cn (for some sufficiently large constant c) then almost surely
the resulting input formula is not satisfiable. As discussed in Section 9.3.3, when
m > cn3/2, there are refutation heuristics for the distributional model. As stated, these
heuristics do not apply to the separable semirandom model. To appreciate some of
the difficulties, observe that for the heuristic described in Section 9.3.3 for refuting

205

U. FEIGE

4SAT, the graphs G+ and G− referred to in Lemma 9.3 will not be random in the
semirandom model. Nevertheless, if one allows a modest increase in the number of
clauses to m ≥ cn3/2

√
log log n, then there are ways of adapting the known refutation

heuristics for 3SAT to the semirandom model (see Feige, 2007). This suggests that the
key aspect that is required for efficient refutation of random 3CNF formulas (with
sufficiently many clauses) is randomness in the polarity of the variables. Randomness
in the choice of variables does not seem to play a significant role. To test this
conclusion, it makes sense to study also a complementary separable semirandom
model for 3SAT, in which the choice of variables in each clause is random, whereas
the choice of their polarities is adversarial. We do not know if the known refutation
heuristics can be adapted to this other separable semirandom model.

9.3.6 Separable Models for Unique Games

An instructive use of separable semirandom models is provided by Kolla et al. (2011).
They consider instances of unique games. A unique game instance is specified by
a graph G(V,E) with n vertices, a set [k] of labels, and for every (u,v) ∈ E – a
permutation πuv on [k]. Given an assignment of a label L(v) ∈ [k] to each vertex
v ∈ V , the value of the game is the fraction of edges (u,v) for which L(v) = πuv(L(u)).
One seeks an assignment of labels that maximizes the value of the game. This problem
is NP-hard, and the unique games conjecture (UGC) of Khot (2002) states that for
every ε > 0, there is some k such that it is NP-hard to distinguish between unique
games of value at least 1−ε and unique games of value at most ε. Because of its many
consequences for hardness of approximation, much effort has been spent both in
attempts to prove and in attempts to refute the UGC. Such efforts could presumably
be guided toward promising avenues if we knew how to design instances of unique
games with value 1 − ε for which no known algorithm can find a solution of value
greater than ε. Given n, k and ε, the design of such unique games instance involves
four aspects:

1. A choice of input graph G(V,E)

2. A function L : V → [k] assigning labels to the vertices, and a choice of
permutations πuv that cause the value of the assignment to be 1

3. A choice of ε|E| edges E′ to corrupt
4. A choice of alternative permutations π ′

uv for (u,v) ∈ E′ (where possibly L(v) �=
π ′

uv(L(u)))

If an adversary controls all aspects of the input instance, then we get a worst-case
unique games instance. There are four separable semirandom models that weaken
the adversary in a minimal way. Namely, for each model three of the above aspects
are controlled by the adversary, where the remaining one is random. One may ask
which of these semirandom models generates a distribution over inputs on which
UGC might be true. Somewhat surprisingly, Kolla et al. (2011) prove that none of
them do (if the input graph has sufficiently many edges).

Theorem 9.5 (Kolla et al., 2011) For arbitrary δ > 0, let k be sufficiently large,
let ε > 0 (the fraction of corrupted edges) be sufficiently small, and suppose that

206

INTRODUCTION TO SEMIRANDOM MODELS

the number of edges in G is required to be at least f (k,δ)n (for some explicitly given
function f). Then there is a randomized polynomial-time algorithm that given an
instance generated in any one of the above four separable semirandom models,
finds with high probability a solution of value at least 1 − δ.

The probability in Theorem 9.5 is taken both over the random choices made in
the generation of the semirandom input instance, and over the randomness of the
algorithm.

For lack of space we do not sketch the proof of Theorem 9.5. However, we do wish
to point out that when only the third aspect (the choice of E′) is random, the adversary
is sufficiently strong to foil all previously known approaches for approximating
unique games. To handle this case, Kolla et al. (2011) introduce the so-called crude
SDP and develop techniques that exploit its solutions in order to find approximate
solutions for unique games. One of the goals of semirandom models is to bring about
the development of new algorithmic techniques, and the separable model for unique
games has served this purpose well.

9.3.7 The Hosted Coloring Framework

We discuss here two separable semirandom models for 3-coloring. Recall the
3-coloring distributional model of Section 9.1.1. The key parameter there is
p – the probability with which edges are introduced between vertices of different
color classes. When p is constant, the 3-coloring can be recovered using the fact
that for graphs of degree �(n), 3-coloring can be solved in polynomial time even on
worst case instances. (Here is a sketch of how this can be done. A greedy algorithm
finds a dominating set S of size O(log n) is such a graph. “Guess” (that is, try all
possibilities) the true color of every vertex in S. For each vertex not in S, at most two
possible colors remain legal. Hence the problem of extending the correct 3-coloring
of S to the rest of the graph can be cast as a 2SAT problem, and 2SAT is solvable
in polynomial time.) As p decreases, finding the planted coloring becomes more
difficult. In fact, if there is an algorithm that finds the planted 3-coloring (with high
probability) for p = p0, then the same algorithm can be applied for every p1 > p0, by
first subsampling the edges of the graph, keeping each edge with probability p0

p1
.

Blum and Spencer (1995) design a combinatorial algorithm that finds the planted
3-coloring (w.h.p.) when p ≥ nε−1 for ε > 0. Their algorithm is based on the following
principle. For every two vertices u and v one computes the size of the intersection
of the distance r neighborhood of u and the distance r neighborhood of v, where
r = �(1

ε
) and r is odd. For some threshold t that depends on p and r, it holds with

high probability that vertices u and v are in the same color class if and only if the
size of the intersection is above t. For example, if p = n−0.4 one can take r = 1 and
t = n

2 p2, because vertices of the same color classes are expected to have p2 2n
3 common

neighbors, whereas vertices of different color classes are expected to have only p2 n
3

common neighbors.
Alon and Kahale (1997) greatly improved over the results of Blum and Spencer

(1995). They designed a spectral algorithm (based on the eigenvectors associated
with the two most negative eigenvalues of the adjacency matrix of G) that finds
the planted 3-coloring (w.h.p.) whenever p ≥ c log n

n (for sufficiently large constant c).

207

U. FEIGE

Moreover, enhancing the spectral algorithm with additional combinatorial steps,
they also manage to 3-color the input graph (w.h.p.) whenever p ≥ c

n (for sufficiently
large constant c). At such low densities, the planted 3-color is no longer the unique
3-coloring of the input graph (for example, the graph is likely to have isolated vertices
that may be placed in any color class), and hence the algorithm does not necessarily
recover the planted 3-coloring (which is statistically indistinguishable from many
other 3-colorings of the graph).

David and Feige (2016) introduced the hosted 3-coloring framework for the
3-coloring problem. In their models, there is a class H of host graphs. To generate
an input graph G, one first selects a graph H ∈ H, and then plants in it a balanced
3-coloring (by partitioning the vertex set into three roughly equal parts and removing
all edges within each part). The resulting graph G is given as input to a polynomial-
time algorithm that needs to 3-color G. The distributional 3-coloring model is a
special case of the hosted 3-coloring framework, in which H is the class of Gn,p
graphs, a member H ∈H is chosen at random, and then a balanced 3-coloring is
planted at random. Other models within the hosted 3-coloring framework may assign
parts (or even all, if the class H is sufficiently restricted) of the graph generation
process to the discretion on an adversary.

In one separable semirandom model within the framework, H is the class of
d-regular spectral expander graphs. Namely, for every graph H ∈ H, except for the
largest eigenvalue of its adjacency matrix, every other eigenvalue has absolute value
much smaller than d. A graph H ∈ H is chosen by an adversary, and the planted
3-coloring is chosen at random. David and Feige (2016) show that the 3-coloring
algorithm of Alon and Kahale (1997) can be modified to apply to this case. This
shows that random planted 3-colorings can be found even if the host graph is chosen
by an adversary, provided that the host graph is an expander.

In another separable semirandom model within the framework, a host graph H is
chosen at random from H = Gn,p, but the planted balanced 3-coloring is chosen by
an adversary, after seeing H. Somewhat surprisingly, David and Feige (2016) show
that for a certain range of values for p, corresponding to the random graph having
average degree somewhat smaller than

√
n, 3-coloring the resulting graph is NP-hard.

We explain here the main idea of the NP-hardness result (substantial additional work
is required in order to turn the following informal argument into a rigorous proof).
Let Q be a carefully chosen class of graphs on which 3-coloring is NP-hard. First
one shows that given any 3-colorable graph Q ∈ Q on nε vertices, if p is sufficiently
large (p ≥ n−2/3 is required here), then H is likely to contain many copies of Q. The
computationally unbounded adversary can find a copy of Q in H, and plant in H a
3-coloring that leaves this copy of Q unmodified (by having the planted coloring agree
on Q with some existing 3-coloring of Q). Moreover, if p is not too large (p ≤ n−1/2

is required here), the planting can be made in such a way that Q becomes separated
from the rest of H (due to the fact that edges that are monochromatic under the
planted 3-coloring are removed from H). Any algorithm that 3-colors G can infer
from it in polynomial time a 3-coloring for Q, because it is easy to find Q within G.
As 3-coloring Q was assumed to be difficult, so is 3-coloring G.

In general, results in the hosted 3-coloring framework help clarify which aspects
of randomness in the planted coloring model are the key to successful 3-coloring
algorithms.

208

INTRODUCTION TO SEMIRANDOM MODELS

9.4 Open Problems

As is evident from Section 9.3, there are many different semirandom models. We
presented some of them, and some others are discussed more extensively in other
chapters of this book. Some of the more creative models, such as the permutation-
invariant random edges (PIE) model of Makarychev et al. (2014), were not discussed
because of lack of space.

We also attempted to provide an overview of some of the algorithmic techniques
that are used in handling semirandom models. Further details can be found in the
references. Moreover, we provided brief explanations as to how hardness results are
proved in semirandom model. We believe that having hardness results (and not just
algorithms) is a key component in building a complexity theory for semirandom
models.

There are many open questions associated with distributional and semirandom
models. Some were mentioned in previous sections. Here we list a few more. The first
two refer to improving the parameters under which algorithms are known to work.
Similar questions can be asked for other problems. The other two questions relate to
less standard research directions.

� Recall that Alon and Kahale (1997) design a 3-coloring for the distributional model
for 3-coloring, provided that p ≥ cn for a sufficiently large constant c. Can the
algorithm be extended to hold for all p? In this context, it is worth mentioning that
for a different NP-hard problem, that of Hamiltonicity, there is a polynomial-time
algorithm that works in the Gn,p model for all values of p. That is, regardless of the
value of p, with high probability over the choice of the input random graph G, if G
is not Hamiltonian then the algorithm provides a witness for this fact (the witness
is simply a vertex of degree less that 2), whereas if the graph is Hamiltonian the
algorithm produces a Hamiltonian cycle (using the extension–rotation technique).
See Bollobás et al. (1987) for details.

� In Theorem 9.5 (concerning unique games), can one remove the requirement that
the number of edges is sufficiently high?

� Consider the following semirandom model for the MIS problem. First an adver-
sary selects an arbitrary n vertex graph H(V,E). Thereafter, a random subset
S ⊂ V of size k is made into an independent set by removing all edges induced by
S, thus making S a random planted independent set. The resulting graph G (but
not H) and the parameter k (size of S) are given as input, and the task is to output
an independent set of size at least k. Is there a polynomial-time algorithm that with
high probability (over the random choice of S) outputs an independent set of size
at least k? Is there a proof that this problem is NP-hard?

� Recall that there are refutation heuristics for 3SAT when the random 3CNF
formula has more than n3/2 clauses. The following questions may serve as a first
step toward refuting sparser formulas.

Given an initial random 3CNF formula φ with nδ clauses, one can set the
polarities of all variables to be positive, and then the resulting formula is satisfiable.
The question is how one should set the polarities of the variables so that the
resulting formula φ′ can be certified in polynomial time to be not satisfiable. When
δ > 3

2 , this can be done by setting the polarities at random, as then the refutation
heuristic of Section 9.3.3 can be used. For 7

5 < δ < 3
2 , with high probability over

209

U. FEIGE

the choice of φ, there are settings of the polarities (not necessarily by a polynomial-
time procedure) under which refutation can be achieved in polynomial time. (Hint:
break φ′ into a prefix with random polarities, and a suffix whose polarities form a
0/1 string that encodes the refutation witness of Feige et al. (2006) for the prefix.)
For δ < 7

5 , it is an open question whether there is any setting of the polarities
(whether done in polynomial time or exponential time) under which polynomial-
time refutation becomes possible.

Acknowledgments

The work of the author is supported in part by the Israel Science Foundation (grant
No. 1388/16). I thank Ankur Moitra, Tim Roughgarden, and Danny Vilenchik for
their useful comments.

References

Allen, Sarah R., O’Donnell, Ryan, and Witmer, David. 2015. How to refute a random CSP. In
IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS, pp. 689–708.

Alon, Noga, and Kahale, Nabil. 1997. A spectral technique for coloring random 3-colorable
graphs. SIAM Journal on Computing, 26(6), 1733–1748.

Alon, Noga, Krivelevich, Michael, and Sudakov, Benny. 1998. Finding a large hidden clique
in a random graph. Random Structures & Algorithms, 13(3-4), 457–466.

Bhaskara, Aditya, Charikar, Moses, Chlamtac, Eden, Feige, Uriel, and Vijayaraghavan,
Aravindan. 2010. Detecting high log-densities: an O(n1/4) approximation for densest k-
subgraph. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC,
pp. 201–210.

Blum, Avrim. 1990. Some tools for approximate 3-coloring (extended abstract). In 31st Annual
Symposium on Foundations of Computer Science, Volume II, pp. 554–562. IEEE.

Blum, Avrim, and Spencer, Joel. 1995. Coloring random and semirandom k-colorable graphs.
Journal of Algorithms, 19(2), 204–234.

Bollobás, Béla, Fenner, Trevor I., and Frieze, Alan M. 1987. An algorithm for finding
Hamilton cycles in a random graph. Combinatorica, 7(4), 327–341.

Coja-Oghlan, Amin. 2005. The Lovász number of random graphs. Combinatorics, Probability
& Computing, 14(4), 439–465.

Daniely, Amit, Linial, Nati, and Shalev-Shwartz, Shai. 2013. More data speeds up training
time in learning halfspaces over sparse vectors. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems
2013, pp. 145–153.

David, Roee, and Feige, Uriel. 2016. On the effect of randomness on planted 3-coloring
models. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, pp. 77–90.

Feige, Uriel. 2002. Relations between average case complexity and approximation complexity.
In Proceedings on 34th Annual ACM Symposium on Theory of Computing, pp. 534–543.

Feige, Uriel. 2007. Refuting smoothed 3CNF formulas. In 48th Annual IEEE Symposium on
Foundations of Computer Science, FOCS, pp. 407–417.

Feige, Uriel, and Kilian, Joe. 2001. Heuristics for semirandom graph problems. Journal of
Computer and System Sciences, 63(4), 639–671.

Feige, Uriel, and Krauthgamer, Robert. 2000. Finding and certifying a large hidden clique in
a semirandom graph. Random Struct. Algorithms, 16(2), 195–208.

210

INTRODUCTION TO SEMIRANDOM MODELS

Feige, Uriel, and Ron, Dorit. 2010. Finding hidden cliques in linear time. In 21st International
Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of
Algorithms (AofA’10), pp. 189–204.

Feige, Uriel, Kim, Jeong Han, and Ofek, Eran. 2006. Witnesses for non-satisfiability of dense
random 3CNF formulas. In 47th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2006, pp. 497–508.

Friedman, Joel, Goerdt, Andreas, and Krivelevich, Michael. 2005. Recognizing more unsatis-
fiable random k-SAT instances efficiently. SIAM Journal of Computing, 35(2), 408–430.

Goemans, Michel X., and Williamson, David P. 1995. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming. Journal of
ACM, 42(6), 1115–1145.

Khot, Subhash. 2002. On the power of unique 2-prover 1-round games. In Proceedings on 34th
Annual ACM Symposium on Theory of Computing, pp. 767–775.

Kolla, Alexandra, Makarychev, Konstantin, and Makarychev, Yury. 2011. How to play unique
games Against a semirandom adversary: Study of semirandom models of unique games.
In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, pp.
443–452.

Makarychev, Konstantin, Makarychev, Yury, and Vijayaraghavan, Aravindan. 2014. Constant
factor approximation for balanced cut in the PIE model. In Symposium on Theory of
Computing, STOC 2014, pp. 41–49.

McKenzie, Theo, Mehta, Hermish, and Trevisan, Luca. 2020. A new algorithm for the
robust semirandom independent set problem. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 738–746.

211

CHAPTER TEN

Semirandom Stochastic Block Models
Ankur Moitra

Abstract: This chapter introduces semirandom stochastic block mod-
els and explores semirandom models in other machine learning
applications.

10.1 Introduction

The stochastic block model was introduced by Holland et al. (1983) and has been
a mainstay in statistics ever since. Furthermore, it has found a wide range of
applications in biology, physics, and computer science. The model defines a procedure
for generating a random graph with a planted community structure that proceeds as
follows:

(a) First, each of the n nodes is independently assigned to one of the k communities,
where pi is the probability of being assigned to community i.

(b) Next, edges are sampled independently based on the community assignments: If
nodes u and v belong to communities i and j respectively, the edge (u,v) occurs
with probability Wi,j independent of all other edges, where W is a k×k symmetric
matrix whose entries are between zero and one.

The goal is to recover the community structure, either exactly or approximately, from
observing the graph. But how could we go about doing that?

Let’s build some intuition by starting from a special case. Suppose there are just
two communities and that W1,1 = W2,2 = p and W1,2 = W2,1 = q. Furthermore,
suppose that p > q, which is called the assortative case and is natural in applications
such as finding communities in a social network, where we would expect members of
the same community to be more likely to be friends with each other. Finally consider
the sparsity of a cut, defined as

φ(U) = |E(U,V \ U)|
min(|U|,|V \ U|),

where V is the set of all nodes and |E(U,V \ U)| is the number of edges with one
endpoint in U and the other outside of U . It is easy to see that for sufficiently large
n the cut that is the sparsest in expectation is exactly the one that puts all the nodes
from one community on one side and the rest on the other side. With a bit more work
(and with some restrictions on the parameters) it can be shown that this is true with

212

SEMIRANDOM STOCHASTIC BLOCK MODELS

high probability too: For sufficiently large n, the cut that is the sparsest is (with high
probability) the same as the planted community structure that was used to generate the
graph. Thus, recovering the planted community structure reduces to computing the
sparsest cut in a random graph sampled from the model.

But it turns out that there is a wrench in our plan: Finding the sparsest cut (or
even approximating it) is known to be NP-hard. Nevertheless it turns out that there
are ways around it. For example, we could write down a semidefinite programming
relaxation (and we will do that later). Somewhat surprisingly, the relaxation turns out
to be exact in the case of the stochastic block model.

Moreover, there are all sorts of algorithms that succeed in recovering the planted
community structure. Historically, the first algorithms that were shown to work used
degree counting – i.e., counting the number of common neighbors between two
nodes – to decide if they belong to the same or different communities. This is similar
in spirit to the top degree algorithm that was introduced in Section 8.4.2 in Chapter 8
for the planted clique problem. There are also spectral algorithms that write down
the adjacency matrix of the graph and use the top eigenvectors to find the planted
community structure. There are even approaches based on Markov chains and ones
based on belief propagation. Since it was first introduced, the stochastic block model
has become a sort of test bed for different algorithmic techniques, with an emphasis
on getting algorithms that succeed in the widest possible range of parameters. In
this chapter, we will take a different perspective and will study how robust various
algorithms are to changes in the model.

First we will define the notion of a monotone adversary. This definition will make
sense only in the assortative case.

Definition 10.1 A monotone adversary is given the graph G along with the
planted community structure that was used to generate it and is allowed to make
the following modifications:

(a) It can add an edge (u,v) between any pair of nodes u and v that belong to
the same community.

(b) It can remove an edge (u,v) between any pair of nodes u and v that are in
different communities.

What’s a bit strange is that the types of changes the monotone adversary is allowed
to make seem to be helpful, in the sense that they make the planted community
more obvious. It turns out that coping with a monotone adversary is actually quite
challenging and many natural algorithms break. It is also important to note that there
is no budget to the number of changes that the adversary can make. But then again,
his goal is to further obfuscate the community structure; so if he simply made all
of these changes and added all the edges within each community and removed all
edges between communities it would be trivial to find the community structure. Our
adversary will have to be more subtle.

To get a feel for what this adversary can do, let’s study two algorithms, one that
he can break and one that he cannot. Suppose there are two communities and they
have exactly the same size. This is called the planted bisection model. Also set p = 1

2
and q = 1

4 for the intra- and interconnection probabilities respectively. Then it is easy

213

A. MOITRA

to see that for any pair of nodes from the same community, the expected number of
common neighbors they have is

p2 × n
2

+ q2 × n
2

= 5
32

× n.

Instead, if they come from different communities, the expected number of common
neighbors is

pq × n = 4
32

× n.

Hence if we choose a threshold T = 9
64 × n and n is sufficiently large, the pairs of

nodes with at least T common neighbors will be exactly those pairs of nodes from
the same community. This is our first algorithm.

Also consider the minimum bisection problem:

min
|U|= n

2

|E(U,V \ U)|.

As before (when we considered the sparsest cut), it is easy to see that for sufficiently
large n the bisection that cuts the fewest edges will (with high probability) be the
same as the planted community structure. Let’s solve the minimum bisection problem
by brute-force search. This is our second algorithm. Any idea which of the two
algorithms continues to work in the presence of a monotone adversary?

Lemma 10.2 Minimum bisection succeeds against a monotone adversary with
p = 1

2 and q = 1
4

Proof First, consider any edge that the adversary adds. Its endpoints belong
to the same community so adding the edge does not increase the number of
edges cut in the planted bisection. Moreover adding the edge cannot decrease
the number of edges cut in any other bisection. Second, consider any edge
that the adversary removes. Its endpoints belong to different communities so
removing it reduces the number of edges cut in the planted bisection by one.
Removing it can decrease the number of edges cut in any other bisection by
at most one. So, either way, if at the beginning (before the adversary makes
any changes) the planted bisection was the unique solution to the minimum
bisection, it is afterwards as well. �

There are many ways to break the degree counting algorithm. The adversary could
add all the edges within one of the two communities, say the first one. Then the
number of common neighbors for two nodes from the first community is larger than
the number for nodes in different communities, which itself is larger than the number
for nodes that are both in the second community. Now if we knew this is what the
adversary was doing, we could in turn try to fix our degree counting algorithm. But
the goal is to find algorithms that do not need to be fixed in this kind of vicious
cycle. We want to design algorithms that work without exploiting some kind of brittle
structure present in the graphs sampled from the generative model.

214

SEMIRANDOM STOCHASTIC BLOCK MODELS

10.2 Recovery via Semidefinite Programming

As before, let G be a random graph on n nodes with a planted bisection where the
probability of including an edge with both endpoints on the same side is p and
otherwise the probability is q. In this section, we will give an algorithm for recovering
the planted bisection that is based on semidefinite programming and succeeds with
high probability. Later, we will show that it continues to work against a monotone
adversary.

10.2.1 A Certificate of Optimality

First we define the relaxation we will work with. We will use the standard notation
X % 0 to denote the constraint that X is symmetric and has nonnegative eigenvalues –
i.e., it is positive semidefinite. Now consider

min m
2 −∑(u,v)∈E

Xu,v
2

s.t.
∑

u,v Xu,v = 0

Xu,u = 1 for all u

X % 0,

where E are the edges in G.
To see that this is indeed a relaxation for the minimum bisection problem, consider

any bisection (U,V \ U) and define a corresponding length n vector s where su = 1
if u ∈ U and su = −1 otherwise. Now set X = ss!. It is easy to check that Xu,u = 1
and X % 0. Moreover a straightforward computation gives the equation

m
2

−
∑

(u,v)∈E

Xu,v

2
= |E(U,V \ U)|,

which shows that the objective value in the semidefinite program is exactly the number
of edges crossing the bisection. Finally, if we let &1 be the vector of all ones, then

∑
u,v

Xu,v = &1!X&1 =
(∑

u

su

)2

= 0

because U is a bisection.
We will now prove the following main theorem of Boppana (1987), refined in Feige

and Kilian (2001):

Theorem 10.3 If (p − q)n ≥ C
√

pn log n for some universal constant C, then
with high probability over the generation of the random graph G, the value of the
semidefinite programming relaxation is exactly the size of its minimum bisection.

The approach is to guess a feasible solution to the dual program that certifies that
there is no feasible solution to the primal that achieves a value that is strictly smaller
than the minimum bisection. The dual takes the form:

215

A. MOITRA

max m
2 +

∑
u yu
4

s.t. M � −A − y0J − Y % 0.

Here m is the number of edges in G, A is the adjacency matrix, J is the matrix of all
ones, and Y is the diagonal matrix whose values along the diagonal are the variables
yu, one for each node in the graph. There is also a special variable y0.

To get some intuition for this dual let us check weak duality. Consider a primal
and dual feasible pair (X,M). Let 〈X,M〉 = ∑

u,v Xu,vMu,v denote the matrix inner
product. First using the fact that X % 0 and M % 0 and standard facts about the
cone of positive semidefinite matrices, we have that

〈X,M〉 ≥ 0.

Now using the expression for M we can write

−〈X,A〉 − 〈X,y0J〉 − 〈X,Y〉 ≥ 0.

We can rewrite the first term using the computation

〈X,A〉 = 2
∑

(u,v)∈E

Xu,v.

The second term is zero because X is feasible. The third term is equal to
∑

u yu because
Xu,u = 1 and Y is diagonal. Rearranging, adding 2m to both sides and dividing by
four gives us

m
2

−
∑

(u,v)∈E Xu,v

2
≥ m

2
+
∑

u yu

4
.

The left-hand side is the objective function of the primal and the right-hand side is
the objective function of the dual, as desired.

The main insight of Feige and Kilian (2001) is to guess a solution to the dual based
on the planted bisection. The first time you see a trick like this, you might feel like
you’ve been cheated. After all, finding the planted bisection is what we’re after so how
can you assume you know it when you guess a solution to the dual? The point is that
you can pretend to know whatever you want, and if at the end of the day you construct
a solution that really is feasible, you know that when you solve the dual program to
optimality the lower bound you get will be at least as good. To foreshadow what we
will talk about later, this is also the main insight behind why semidefinite programs are
robust to a monotone adversary. When you’re working in the dual, you can pretend
to know what the monotone adversary has done as well. This knowledge can help
you adapt your lower bound to however the instance has been modified.

Anyways, let ou be the number of neighbors of u that are on the opposite side of
the bisection as u. Similarly let su be the number of neighbors of u on the same side.
The idea is to set y0 = 1 and each yu = ou − su. For this setting of the variables, it is
easy to compute that

m
2

+
∑

u yu

4
= |E(U,V \ U)|,

216

SEMIRANDOM STOCHASTIC BLOCK MODELS

where U is the planted bisection. What remains is to show that with high probability
this construction is feasible – i.e.,

M = −A + J − Y % 0.

The way that Feige and Kilian (2001) proved this bound was by applying the trace
method. Specifically, they computed the expected trace of even powers of M to get a
handle on the distribution of its eigenvalues. Instead, we will give a heuristic argument
why one would expect this bound to be true.

10.2.2 Some Random Matrix Theory

First we review some classic random matrix theory. In a seminal work, Wigner (1993)
studied the distribution of the eigenvalues of a random matrix A whose entries are
independent and identically distributed and mean zero.

Theorem 10.4 Suppose that Z is an n × n random symmetric matrix whose
diagonal entries are zero and whose off-diagonal entries Zi,j are independent and
identically distributed with mean zero and variance σ 2. Then the distribution of
the eigenvalues of Z converges in law to the semicircle of radius R = 2σ

√
n – i.e.,

the distribution

2
πR2

√
R2 − x2.

Now there are some weaknesses to using this semicircle law. While it tells us
what the distribution converges to, there could be o(n) eigenvalues that are anywhere
outside the semicircle. However, it turns out that there are other related approaches
for showing essentially the same bounds on the spectral radius that hold with high
probability. See, for example, Füredi and Komlós (1981). There are even extensions
that allow the entries of Z to have different distributions, as long as they remain
independent; see Bandeira et al. (2016).

Our goal is to understand the spectrum of A, which, recall is the adjacency matrix
of G. Its diagonal entries are zero and its off diagonal entries are Bernoulli random
variables with either mean p or mean q depending on whether or not the pair of nodes
corresponding to the row and column are on the same side of the planted bisection.
First, notice that the entries in A do not have mean zero. This drastically changes what
we should expect its spectrum to look like. Intuitively, we should expect one large
eigenvalue that behaves like the average degree and its corresponding eigenvector
should be close to the all 1’s vector. If G were regular, this would be exactly true.
In terms of the contribution to M, the large eigenvalue in A is cancelled out by the
J term whose eigenvector is also the all ones vector but has a much larger eigenvalue
of n rather than p+q

2 n.
Now that we have discussed the top eigenvalue of A, let’s talk about the others. It

is reasonable to expect them to behave like they do in a random matrix whose entries
are mean zero. It turns out there are generalizations of Theorem 10.4 that allow for
the entries to be independent but not identically distributed. In fact, what we need is
even a little stronger than that because we need bounds on the spectral radius rather
than merely characterizing what the limiting distribution of the spectrum looks like.

217

A. MOITRA

In any case, we should expect λ2(A) � 2
√

pn because the entries of A have variance
at most p.

Finally, the eigenvalues of Y are its diagonals, which are distributed as the
difference between a binomial with mean q

2 n and one with mean p
2 n. And putting

it all together,

λmin(−A + J − Y) � −λ2(A) − λmin(Y) � p − q
2

n − 2
√

pn ≥ 0.

If G were regular, the tilde in the first inequality could be removed.

10.3 Robustness Against a Monotone Adversary

In this section, we will show that the semidefinite programming relaxation continues
to be exact even in the presence of a monotone adversary. In fact, Feige and Kilian
(2001) gave an elegant abstraction of what makes the relaxation robust. Let h(G)

denote the optimal value of the relaxation on G and let b(G) denote the size of the
minimum bisection.

Definition 10.5 We say that a function h is robust with respect to a monotone
adversary if for any graph G, h(G) = b(G) implies that h(H) = b(H), where
H is obtained from G by either removing an edge that crosses the minimum
bisection or adding an edge that does not cross it.

Note that this is a slightly different notion of a monotone change because it is with
respect to the minimum bisection (as opposed to the planted bisection). However,
for the stochastic block model, in the regime of parameters we are interested in, the
minimum bisection and the planted one will be the same with high probability. It
turns out that verifying some bounded monotonicity properties of h is enough to
guarantee that it is robust. In particular Feige and Kilian (2001) prove:

Proposition 10.6 Suppose that h satisfies the properties

(1) For all graphs G, h(G) ≤ b(G) and
(2) If H is obtained by adding an edge to G then h(G) ≤ h(H) ≤ h(G) + 1

Then h is robust with respect to a monotone adversary.

Proof Suppose G is a graph for which h(G) = b(G) and H is obtained by
adding an edge with both endpoints on the same side of the minimum bisection.
Invoking the properties of h we have

h(G) ≤ h(H) ≤ b(H) = b(G) = h(G).

The first inequality follows from the monotonicity property. The second
inequality follows from the lower bound property. The first equality follows
because adding the edge does not change the value of the minimum bisection.
And the last equality is by assumption. This implies h(H) = b(H), as desired.

218

SEMIRANDOM STOCHASTIC BLOCK MODELS

Now suppose instead that H is obtained by removing an edge that crosses
the minimum bisection. Again invoking the properties of h we have

h(G) − 1 ≤ h(H) ≤ b(H) = b(G) − 1.

The first inequality follows from the bounded monotonicity property. The
second inequality follows from the lower bound property. The equality follows
because removing the edge decreases the value of the minimum bisection by
one. This implies h(H) = b(H) and completes the proof. �

Now all that remains is to verify that the relaxation satisfies the properties in the
proposition. First, h(G) ≤ b(G) holds because it is a relaxation of the minimum
bisection. Second, if H is obtained by adding an edge (u,v) to G then the change in
the objective function in the relaxation is that we have added a term 1

2 − Xu,v
2 . Because

X % 0 and Xu,u = Xv,v = 1 it follows that |Xu,v| ≤ 1 (otherwise the determinant of
the 2 × 2 submatrix indexed by u and v would be negative). Thus for any feasible X
the net change in the objective function is between zero and one, as desired. Hence
we have the following main result:

Theorem 10.7 If (p − q)n ≥ C
√

pn log n for some universal constant C, the
semidefinite programming relaxation recovers the exact value of the minimum
bisection in the semirandom planted bisection model.

Alternatively, it is easy to see that the explicit dual certificate that Feige and Kilian
(2001) construct tracks the number of edges cut in the planted bisection (if you
remove an edge crossing the cut, it decreases in value by one and if you add an edge
that does not cross the cut it stays the same) and continues to be feasible.

To summarize, what we have learned is that while there are many sorts of
algorithms that recover the planted partition in the stochastic block model, some
of them break when we allow monotone changes. However, semidefinite programs
do not. Once you can show that they work and get the exact value of the planted
bisection, they continue to track it after monotone changes. You can see this either
by making a bounded monotonicity argument using the constraints of the relaxation
or by directly reasoning about the choice of the dual certificate. Generally, we do
not know many other ways to obtain algorithms that work in semirandom models.
Most of the analyses work by passing the dual and involve convex programs in some
intrinsic way.

10.4 Information Theoretic Limits of Exact Recovery

10.4.1 Planted Bisection

In this section, we will study the information theoretic limits of exact recovery in the
planted bisection model. So far our approach has been to approximate the minimum
bisection and in some range of parameters the relaxation works and moreover the
minimum bisection really is the planted bisection. But if p and q are sufficiently close,
the minimum bisection will not be the planted bisection. This motivates the question:
In what range of parameters is it information theoretically possible to recover the

219

A. MOITRA

planted bisection (or partition) exactly? And can we design algorithms that work
down to this limit?

It turns out that the answer is yes! First, Abbe et al. (2015) gave sharp bounds on
the threshold for exact recovery:

Theorem 10.8 Let n be the number of nodes and set p = a log n
n and q = b log n

n .
Then in the planted bisection model if

a + b
2

−
√

ab > 1,

then it is possible to recover the planted bisection exactly with high probability.
And if

a + b
2

−
√

ab < 1

it is information-theoretically impossible to recover the planted bisection exactly
with probability 1 − o(1) for sufficiently large n.

Moreover, they showed that almost the same semidefinite programming relax-
ation works close to the information theoretic threshold. They use the Goemans–
Williamson relaxation

min m
2 −∑(u,v)∈E

Xu,v
2

Xu,u = 1 for all u

X % 0.

This is almost the same as our earlier relaxation, except that we have removed the
constraint that

∑
u,v Xu,v = 1. This was later improved by Hajek et al. (2016) to get

all the way down to the threshold.

Theorem 10.9 When a+b
2 −√

ab> 1, the unique solution to the Goemans–
Williamson relaxation is the rank one matrix X = ss!, where s is the ±1 indicator
vector of the planted bisection.

The proof uses many of the same ideas we have seen before, including a similar
choice for the dual certificate (except that there is no longer a y0). However, it requires
a sharper bound on the spectrum of the associated random matrix in order to reach
the information theoretic limit exactly.

We remark that just as before, the fact that we have a semidefinite programming
algorithm that works down to the information theoretic threshold actually gives us
more – it gives us an algorithm that works even against a monotone adversary. This
is a somewhat surprising corollary because it means that there are no gaps between
what can be done in a random versus a semirandom model, at least when it comes to
exact recovery.

Corollary 10.10 The threshold for recovery in the planted bisection model and
the semirandom planted bisection model are the same, and can both be solved by
semidefinite programming.

220

SEMIRANDOM STOCHASTIC BLOCK MODELS

10.4.2 General Stochastic Block Models

So far we have only talked about planted bisection problems. With considerably more
work, Abbe and Sandon (2015) were able to pin down the sharp information theoretic
limits of exact recovery in a general stochastic block model – with k communities
of potentially different sizes and a general k × k symmetric matrix of connection
probabilities. It turns out that there is a nice information theoretic interpretation of
the threshold through what is called the Chernoff–Hellinger divergence. In fact, even
in the planted bisection model, the bound corresponds to the threshold where you
would expect each of the n nodes to have more neighbors on the same side of the
bisection than on the opposite side.

The algorithm of Abbe and Sandon (2015) uses the local neighborhoods around
each node in a highly complex way to guess which community it belongs to and
then performs a cleanup phase to refine these estimates. However, the algorithm
breaks down in a semirandom model in much the same way that the degree counting
algorithm we gave in Section 2.1 did. Perry and Wein (2017) gave a semidefinite
relaxation for the multicommunity case. For example in the case of k communities
of known sizes s1, . . . ,sk they solve the semidefinite program:

max 〈A,X〉
s.t. 〈J,X〉 = k

k−1

∑
i s2

i − 1
k−1 n2

Xu,u = 1 for all u

X ≥ −1
k−1

X % 0.

This is the standard relaxation of the maximum k-cut problem. They show that
it achieves exact recovery down to the information theoretic limit, and once again
the results extend to the semirandom model. At this juncture it is natural to wonder
if the thresholds for recovery for all sorts of problems are the same in the random
and semirandom models. Later we will see examples where they are not, where being
robust to a monotone adversary really is at odds with reaching the information
theoretic limits of an average-case model.

10.5 Partial Recovery and Belief Propagation

So far we have focused on the problem of exact recovery, and necessarily we needed
the average degree to be logarithmic. After all, if it is not at least logarithmic, with
high probability the graph we generate will have isolated nodes and it is impossible to
figure out to which community they belong. In this section, we will switch gears and
will study settings where the average degree is constant but we relax our goal. We will
want to find a bisection that is merely 1

2 + ε correlated with the true bisection. What
this means is if the nodes on one side of the planted bisection are given a hidden color
of red, and the others are given blue, we want to find a bisection where one side has at
least a 1

2 +ε fraction of its nodes colored red and the other has at least a 1
2 +ε fraction

colored blue. If we can do this with probability 1−o(1) for some ε that is bounded away
from zero independently of n, we say that we have solved partial recovery.

221

A. MOITRA

Suppose p = a
n and q = b

n are the intra- and interconnection probabilities
respectively. Then Decelle et al. (2011) made a striking conjecture:

Conjecture 1 If (a − b)2 > 2(a + b), there is a polynomial-time algorithm to
solve partial recovery in the planted bisection model. Moreover, if (a − b)2 <

2(a+b), then it is information theoretically impossible to solve partial recovery.

10.5.1 Belief Propagation

The conjecture was based on deep but nonrigorous ideas originating from statistical
physics, and was first derived heuristically as a stability criterion for belief propa-
gation. Belief propagation is an iterative algorithm for performing probabilistic and
causal reasoning. In our setting, each node maintains a belief of the probability that
it belongs to each particular community. In each step, it broadcasts its beliefs to all
of its neighbors in the graph. After hearing the messages from all the other nodes, it
updates its own beliefs and the process continues until convergence.

To be more precise, let φi
u be node u’s belief that he belongs to community i. For

technical reasons it is important to also have an estimate φi
u←v of the community

that node u belongs to if node v were not there. The assumption underneath belief
propagation is that the neighbors of u are independent conditioned on the state of u.
This is not exactly true but sparse random graphs locally look like trees and it is true
on trees. Accordingly the update rule we follow is to set

φi
u←v ∝

∏
w�=v:(w,u)∈E

2∑
j=1

φ
j
w→upi,j,

where pi,j is the probability that there is an edge between a pair of nodes, one in
community i the other in community j. We normalize the right-hand side so that
φi

u←v is a distribution. After we reach convergence, we compute the marginal as

φi
u ∝

∏
v:(u,v)∈E

2∑
j=1

φ
j
w→upi,j

There is also some effect from missing edges – if nodes u and v do not share an edge
then they are somewhat less likely to be in the same community. However, this can be
treated as a global interaction that is omitted here.

In general, we will reach a fixed point of the belief propagation equations.
However, there is a trivial fixed point. Intuitively, if each node knows nothing about
which community it belongs to, it will never learn anything from its neighbors that will
cause it to update its beliefs. This manifests itself by noticing that if all the messages
are initialized to 1

2 , the next round of messages will also be 1
2 , and so on. The trick is

that in some range of parameters that fixed point will be unstable. If we perturb away
from the trivial fixed point, we will not come back to it. In fact, the trivial fixed point
is unstable if and only if (a − b)2 > 2(a + b). The motivation behind the conjecture
of Decelle et al. (2011) is the hope that if belief propagation does not get stuck at the
trivial fixed point, the solution it ultimately reaches ought to solve the partial recovery
problem. And yet this is only half of the conjecture, because the conjecture also posits

222

SEMIRANDOM STOCHASTIC BLOCK MODELS

that when the trivial fixed point is stable, not only does belief propagation fail to
solve partial recovery, but the problem itself ought to be information theoretically
impossible.

Amazingly, the conjecture is true! Mossel et al. (2018) and Massoulié (2014) proved
that partial recovery is solvable if and only if (a − b)2 > 2(a + b). In fact, the
algorithms that they gave were derived from belief propagation. Massoulié (2014)
used spectral properties of logarithmic length no-return walks to recover the planted
bisection. Mossel et al. (2018) used non-backtracking walks instead.

Theorem 10.11 There is a polynomial-time algorithm that, when (a − b)2 >

2(a + b), solves partial recovery in the planted bisection model. Moreover, if
(a − b)2 < 2(a + b), then it is information theoretically impossible to solve partial
recovery.

The upper bound was proved independently in Mossel et al. (2018) and Massoulié
(2014). The lower bound (which also handles the case of equality, which was not a
part of the original conjecture) was proved in Mossel et al. (2018).

While the algorithms that achieved the sharp information-theoretic threshold for
exact recovery were (for the most part) based on semidefinite programming and their
guarantees immediately extended to the semirandom model, this is not true here.
The spectrum of the non-backtracking random walk matrix cannot be naturally
incorporated into a convex program,1 and it is an essential part of belief propagation
(that was the basis for the conjecture in the first place) in that the message that
node u sends to node v does not depend on the message from node v to node u in
the previous step. The intuition is that you do not want a node to become more
confident about its beliefs because of having its own earlier beliefs reflected back
to itself.

There is another way to think about why non-backtracking walks are natural. In
a sparse random graph, even if the average degree is constant, there are bound to
be some nodes with degree �

(log n
log log n

)
. Now consider the adjacency matrix. Apart

from the top eigenvector, the other eigenvectors corresponding to large eigenvalues
will be localized – they will have their weight concentrated around a high degree
node and its neighbors. Hence they do not reveal anything interesting about the
planted community structure. In contrast, the non-backtracking walk matrix damps
the effect of high degree nodes because once the walk leaves a high-degree node it
cannot immediately return and the high-degree nodes are all typically far apart from
each other.

10.6 Random versus Semirandom Separations

In the exact recovery problem, everything that could be solved in the random model
could also be solved in the semirandom model all the way down to the same
information theoretic limit. In this section, we will show that there is a gap between
what is possible in the random versus semirandom model for partial recovery.

1 The problem is the matrix is not symmetric!

223

A. MOITRA

10.6.1 Information Theoretic Limits in Semirandom Models

Moitra et al. (2016) prove:

Theorem 10.12 There is a δ > 0 (depending on a and b) so that if

(a − b)2 ≤ (2 + δ)(a + b),

partial recovery in the semirandom planted bisection model is information theoret-
ically impossible.

This is the first such separation between a random and a corresponding semi-
random model. This result needs some digestion. What it means is that seemingly
helpful changes such as adding edges within a community and removing edges
between different communities can actually hurt. They can break belief propagation.
But in fact, something stronger is true. Any algorithm that reaches the information
theoretic limit for partial recovery can be broken by one fixed monotone adversary
(because he can move the information theoretic threshold).

Guédon and Vershynin (2016) gave a semidefinite program for solving partial
recovery, but not down to the information theoretic limit (more on that later). As
we saw earlier, when semidefinite programs work for an average-case problem such
as community detection in the stochastic block model, their analysis tends to carry
over to monotone changes. So when algorithms derived through belief propagation
are able to reach the information theoretic limits but semidefinite relaxations are
seemingly not able to, it could be owing to the fact that belief propagation is a sharp
prediction on one type of distribution and semidefinite programs are working with
families of distributions – those that can be obtained from the stochastic block model
under monotone changes.

Another implication is that reaching the sharp information theoretic threshold is
not always the right thing to aim for. Sometimes it is possible to reach the threshold
only by exploiting the structure of the noise – i.e., assumptions from the generative
model about how often nodes on different sides of the community are connected
to each other. So there is a tension between reaching a sharp threshold for partial
recovery and being robust to a monotone adversary. You can have one but not both,
unlike in the case of exact recovery.

10.6.2 The Broadcast Tree Model

We will explain the intuition behind this separation in a simpler model that in many
senses is a precursor to the stochastic block model. It is called the broadcast tree
model:

Definition 10.13 In the broadcast tree model with two colors, we start from a
d-ary tree (where d = a+b

2) of height n and color the root node either red or
blue uniformly at random. Each child is given the same color as its parent with
probability a

a+b and the opposite color otherwise. We are given the colors of the
leaves and the goal is to guess the color of the root correctly with probability at
least 1

2 + ε, where ε is independent of n.

224

SEMIRANDOM STOCHASTIC BLOCK MODELS

In the stochastic block model (where we think of the sides of the bisection as being
associated with the colors red and blue), the local neighborhood around a node looks
like a tree. Each node has a Poisson number of neighbors with expectation d = a+b

2 .
Moreover, each neighbor has probability a

a+b of having the same color, and otherwise
is the opposite color. We call the preceding problem partial recovery, in analogy with
the stochastic block model. In fact, the threshold where partial recovery is possible
will also look familiar:

Theorem 10.14 In the two-color broadcast tree model, partial recovery is possible
if and only if (a − b)2 > 2(a + b).

In fact, when (a − b)2 > 2(a + b), a simple algorithm works: Look at the colors of
the leaves and take majority vote. Kesten and Stigum (1966) proved not just this but
a general central limit theorem for Markov branching processes. Evans et al. (2000)
showed that when (a − b)2 ≤ 2(a + b) partial recovery is information theoretically
impossible through a careful coupling argument. The intuition is that the mutual
information between the color of any leaf and the root is(

a − b
a + b

)2n

and there are dn leaves, so if (a − b)2 < 2(a + b) we might expect that there is not
enough information in the leaves asymptotically as the height increases. However,
mutual information is not subadditive in this way and a more careful argument is
needed. This threshold is called the Kesten–Stigum bound.

Nevertheless, let’s think about what kind of effect a monotone adversary could
have around the local neighborhood of a node in the stochastic block model and find
some way to map this onto the broadcast tree model. A monotone adversary could
remove an edge between a red and blue node, thereby removing the corresponding
subtree from the local neighborhood. (Adding edges within a community is more
difficult to reason about because we are adding subtrees; but what kind of subtrees
ought we be allowed to add?) Now the intuition in the broadcast tree model is this:
Suppose the root is colored red. Then even among the children of the root we are
somewhat likely to have a blue child where in his subtree there are more red leaves than
blue leaves. Thus his descendants vote the opposite way that he would for the color
of the root, but nevertheless help get the correct answer. The point is algorithms that
work down to the Kesten–Stigum bound need to exploit this quirk of our generative
model. Without doing so, they would not actually reach the information theoretic
threshold. By carefully cutting edges like this where the descendants end up voting
the correct way but opposite to the root of the subtree, we can actually move the
information theoretic threshold.

Now you may be wondering whether there is any algorithm that solves partial
recovery in the semirandom model. Moitra et al. (2016) showed that the analysis of
Guédon and Vershynin (2016) carries over with some simple modifications:

Theorem 10.15 There is a constant C > 2 so that if a > 20 and

(a − b)2 ≤ C(a + b)

225

A. MOITRA

then partial recovery in the semirandom planted bisection model can be solved in
polynomial time.

There is also an algorithm for solving partial recovery in the broadcast tree model:
Instead of taking the majority vote of the leaves, we take the recursive majority.
Interestingly, these methods are sometimes preferred in practice over the majority,
and perhaps one explanation is that they trade off reaching the sharp information
theoretic limit with better robustness properties. In a related direction, Makarychev
et al. (2016) give an algorithm for community detection that can tolerate a linear
number of edge insertions or deletions. Their algorithm even extends to settings where
there are more than two communities.

Finally, we mention that in a remarkable paper, Montanari and Sen (2016) showed
that the Goemans–Williamson relaxation almost achieves the Kesten–Stigum bound
for the following distinguishing problem: We are given a graph that is generated
from either (1) an Erdos–Renyi model with average degree a+b

2 or (2) the planted
bisection model. Our goal is to tell which model the graph was generated from.
This is still a challenging problem. First, the average degree in the two models is the
same. Second, the information theoretic lower bounds that show that partial recovery
beneath the Kesten–Stigum bound is impossible actually do so by showing that even
distinguishing problem is impossible – i.e., you can’t tell whether there is any planted
bisection.

The main result of Montanari and Sen (2016) is

Theorem 10.16 The Goemans–Williamson relaxation can be used to solve the
distinguishing problem with probability 1 − o(1) provided that

(a − b)2 > (2 + o(1))(a + b)

The o(1) failure probability goes to zero as a function of n but the o(1) term relating
a and b goes to zero as a and b increase (but not as a function of n).

So the gap in performance between belief propagation and the semidefinite
programming relaxation goes to zero as the degree goes to infinity. The analysis in
Montanari and Sen (2016) is based on guessing a locally computable solution to the
relaxation. It in turn uses intuition from belief propagation about the way that the
color of a node ought to depend on its local neighborhood through what is called
the Gaussian wave. Their analysis is highly sophisticated, and it might be possible
to show that it continues to work in a semirandom model but this is not known. In
exact recovery, we got robustness to a monotone adversary just from the fact that
the relaxation was exact with high probability and satisfied a bounded monotonicity
property. However, in partial recovery the relaxation is not exact anymore.

10.7 Above Average-Case Analysis

In this section, we will explore some applications of semirandom models in machine
learning. Most of this book and even the name “beyond worst-case analysis” put
the emphasis on finding models where we can get provably guarantees that are
better than those that we have on worst-case inputs. In Chapter 17, by assuming a
generative model on the uncorrupted data, we are able to get computationally efficient

226

SEMIRANDOM STOCHASTIC BLOCK MODELS

estimators that are provably resilient to contamination. In Chapter 16, we place
structural assumptions on either the input distribution or the locations where the
labels are the noisiest to get better algorithms for some basic problems in supervised
learning.

In contrast, here we will focus on some average-case settings where we can
rigorously analyze various algorithms by making generative assumptions on their
input. We have already seen some examples – such as when we wanted to find well-
connected sets of nodes in a graph, we assumed there was a planted partition and
that the graph was generated from the stochastic block model. Despite the fact that
our starting point is an average-case model instead of a worst-case one, I argue that
the types of models we have seen in beyond worst-case analysis can still be important
things to think about. Instead of using semirandom models as a way around worst-
case hardness, we can think of them as a way to move “above average-case analysis”
and stress test whether our algorithms continue to work when we make changes to
the model.

It turns out that just like how in community detection there were many algorithms
that worked in an average-case model but only semidefinite programming hierarchies
survived attacks by monotone adversaries, so too in many other classic problems in
machine learning we might expect that some of the standard algorithms are robust
and others are not.

10.7.1 Matrix Completion

To see the same principle applied more broadly, let’s talk about the matrix completion
problem. This is a classic problem in unsupervised learning where the goal is to fill in
the missing entries of a low rank matrix from some partial observations.

Definition 10.17 There is an unknown n × m matrix M of rank at most r and
we observe p of its entries Mi,j chosen uniformly at random. Moreover, M is
μ-incoherent (roughly, this measures how uncorrelated the singular vectors of
M are with the standard basis). The goal is to fill in the missing entries of M,
and to do so while keeping p as small as possible.

We will omit a precise definition of incoherence because it is not needed for our
discussion. However, the picture to keep in mind is if M were diagonal then by virtue
of being rank at most r it would have at most r nonzeros. If we observe p entries of
M that are chosen uniformly at random, we need p to be about mn – i.e., the number
of entries of M – to see all of the diagonal entries to be able to complete M correctly.
The notion of incoherence precludes this possibility by ensuring that the entries of
M are spread out in an appropriate sense.

In any case, the natural approach to try is to look for the matrix X that has the
smallest rank that agrees with all the observed entries. More precisely, let� ⊆ [n]×[m]
be the set of observed entries. Then we could attempt to solve:

min rank(X)

s.t. Xi,j = Mi,j for all (i,j) ∈ �.

This problem is NP-hard. However, inspired by results in compressed sensing that
find sparse solutions to linear systems by using the �1-relaxation, we could use an

227

A. MOITRA

�1-relaxation of the rank. In particular, the rank of a matrix is the number of nonzero
singular values. The nuclear norm, denoted by ‖X‖∗, is the sum of the singular values.
Now we can introduce the relaxation we will be interested in

min ‖X‖∗
s.t. Xi,j = Mi,j for all (i,j) ∈ �.

This is now a convex program that we can solve efficiently. (An easy way to see
this is to use the dual formulation of the nuclear norm as ‖X‖∗ = maxB:‖B‖≤1〈X,B〉
and to incorporate the objective function into the constraints and use the ellipsoid
method. However, there are much faster algorithms for solving this convex program.)
In a seminal work, Candès and Tao (2010) showed the following:

Theorem 10.18 Suppose M is a rank r n×m matrix that is μ-incoherent and that
we observe p of its entries, chosen uniformly at random. Then if p ≥ Cμ2r(n +
m) log2(n+m) for a universal constant C, with high probability the solution to the
convex program is exactly M.

What is amazing about this result is that there are about nr+mr parameters in a rank
r n × m matrix. So if our number of observations is just a polylogarithmic factor
larger, we can fill in all the missing entries of M exactly. Moreover, there is an efficient
algorithm that does it!

10.7.2 Alternating Minimization

There are still some disadvantages to the convex programming approach. First,
actually solving the convex program might be too computationally expensive at large
scale. Second, the answer we are looking for takes up nr + mr space so in principle
we might not want to write it down as an n × m matrix – it could be too large to
store in memory. It turns out there is another approach to matrix completion, one
that is often preferred in practice, which is called alternating minimization. Let U be
an n × r matrix and let V be an m × r matrix. Then alternating minimization iterates
the following steps until convergence:

(a) U ← arg minU
∑

(i,j)∈� |(UV!
i,j − Mi,j|2

(b) V ← arg minV
∑

(i,j)∈� |(UV!
i,j − Mi,j|2

Each step is a least squares problem and can be solved efficiently. Note that
compared to the convex programming approach, we have a different set of problems
when it comes to the analysis. The output is necessarily rank r but we are attempting
to solve a nonconvex problem iteratively so we need to explain why we do not get
stuck in a spurious local minimum. Keshavan et al. (2010) and Jain et al. (2013)
gave the first analysis of alternating minimization and showed that it provably
works under similar conditions. In fact, it is possible to rigorously analyze iterative
methods for various other related nonconvex problems. See Chapter 21. In any
case, there are some aspects of the results in Keshavan et al. (2010) and Jain et al.
(2013) that are quantitatively worse than those that we obtained through nuclear
norm minimization. The bounds for alternating minization have a worse dependence

228

SEMIRANDOM STOCHASTIC BLOCK MODELS

on the condition number of M. In fact, the convex programming approach has
no dependence whatsoever on the condition number! Nevertheless the results are
stronger in that alternating minimization runs much faster and needs much less space
because it keeps track of the answer in a factorized form.

10.7.3 Semirandom Matrix Completion

Now we can introduce a semirandom model for matrix completion suggested in
Moitra (2015):

Definition 10.19 As before, let M be a rank r n×m matrix that is μ-incoherent.
Suppose p entries � ⊆ [n] × [m] are chosen uniformly at random. A monotone
adversary is given M and � and chooses �′ ⊇ �. Finally, we observe Mi,j for
all (i,j) ∈ �′.

In much the same way that the monotone adversary in the stochastic block model
was just making the communities better internally connected, and less connected to
each other, so too this monotone adversary seems to be quite benign. We are trying
to fill in the missing entries of M and he is showing us more of M. However, it turns
out that among the convex programming approach and the alternating minimization
approach, one will continue to work and one will break with the addition of a
monotone adversary.

Claim 10.20 Nuclear norm minimization is robust to a monotone adversary.

Here is an easy way to see why: When a monotone adversary shows you more of the
matrix, the new observations just become additional constraints (that are satisfied by
M). But why does the analysis of alternating minimization break down? Let M� denote
the unknown matrix where we zero out all of the entries outside of �. Then a key step
in the analysis of alternating minimization is that M� (when appropriately rescaled)
should be a good spectral approximation to M. This is true because of the matrix
Chernoff bound and because M is assumed to be incoherent. But when a monotone
adversary can reveal more entries of M it is no longer true. For example, in the case
when M = J (recall, J is the matrix of all ones) then M� is the adjacency matrix
of a random bipartite graph and is spectrally close (when rescaled) to the complete
bipartite graph. But a monotone adversary can plant a dense subgraph and mess up
this key property.

So, while in theoretical computer science, beyond worst-case analysis generally
means giving better algorithms (or approximation algorithms) than you otherwise
would, in theoretical machine learning it can mean giving you new axes (beyond
average-case models) on which to compare algorithms. In the average-case model,
alternating minimization gets similar performance guarantees but is much faster and
more space efficient. But when we move to a semirandom model and test out how
brittle it is, we really see the difference between these two algorithms.

Cheng and Ge (2018) explicitly break several nonconvex methods for matrix
completion in the semirandom model. They show an example where all local
minima of the nonconvex objective are far from the ground truth matrix. They

229

A. MOITRA

show that singular value decomposition based initialization also fails to get close.
Finally Cheng and Ge (2018) give an efficient preprocessing step that can make
nonconvex methods robust to a monotone adversary. The intuition again can
be explained in the setting where M = J. In the random model, our observation can
be described as the adjacency matrix of a random bipartite graph. In the semirandom
model, an adversary has added additional edges. But the resulting graph still
contains an expanding subgraph, and by reweighting the edges we can make it look
more random.

In a related work, Ling et al. (2019) considered synchronization problems where the
goal is to find the phase offsets of some coupled oscillators. It is known that there are
semidefinite programs that provably work under various conditions on the topology
of the graph describing which pairs of oscillators have nonzero interaction terms.
There are also nonconvex methods for solving semidefinite programs when you are
guaranteed that there is a low-rank solution. Ling et al. (2019) show that a monotone
adversary that can add more edges to the network can create spurious local minima.

In summary, while algorithms based on semidefinite programming sometimes
inherit appealing robustness properties automatically, other times it is possible to
modify nonconvex methods to make them robust too. Perhaps there are other
examples waiting to be discovered, where you can teach an old dog (nonconvex
methods) a new trick (like being robust to a monotone adversary) without adding
too much computational overhead.

10.8 Semirandom Mixture Models

There are other interesting settings where incorporating ideas from semirandom
models can help us probe the brittleness of our modeling assumptions. Starting
with Dasgupta (1999) a long line of work in theoretical computer science has
sought efficient algorithms for learning the parameters of a Gaussian mixture model,
culminating in Moitra and Valiant (2010) and Belkin and Sinha (2010). The goal is
to give algorithms that take a polynomial number of samples and run in polynomial
time, that work under the minimal possible assumptions. The first works assumed
the centers of the components are far apart, and later works assumed only that
their pairwise total variation distance was bounded away from zero. Let N (μ,�)

denote the d-dimensional gaussian with mean μ and covariance �. Awasthi and
Vijayaraghavan (2018) introduced a semirandom Gaussian mixture model:

Definition 10.21 First, samples x1, . . . ,xm are drawn from a mixture of k
Gaussians

w1N (μ1,�1) + · · · + wkN (μk,�k)

in d dimensions. Then a monotone adversary is allowed to inspect the samples
and move each sample xi to a point x′

i as follows: Suppose xi was drawn from
the jth component. Then x′

i must be on the segment connecting xi and μj.

Algorithms like in Moitra and Valiant (2010) and Belkin and Sinha (2010) that
are based on the method of moments rely on brittle algebraic properties. They break

230

SEMIRANDOM STOCHASTIC BLOCK MODELS

in the semirandom model. However, clustering based algorithms (which make fairly
strong assumptions about how far the centers of the components are from each other)
continue to work. Awasthi and Vijayaraghavan (2018) prove:

Theorem 10.22 Suppose a polynomial number of points are generated from a
semirandom Gaussian mixture model where each covariance satisfies �i " σ I and
moreover

‖μi − μj‖ �
√

dσ

for all i �= j. There is an algorithm that with high probability clusters points into
which component they were generated from.

Specifically, they use Lloyd’s algorithm. In fact, Awasthi and Vijayaraghavan
(2018) show that the separation criteria, while substantially stronger than what is
needed when the data actually come from a Gaussian mixture model, is in fact
somewhat close to optimal: Let
 be a parameter. Then there is a semirandom
Gaussian mixture model with separation
σ for which any algorithm will misclassify
at least kd/
4 total points. The fact that it continues to work in a semirandom
model suggests some theoretical justification for why it is widely used across so many
domains. An interesting open question is to give a similar analysis for heuristics such
as the expectation–maximization algorithm.

References

Abbe, Emmanuel, and Sandon, Colin. 2015. Community detection in general stochastic block
models: Fundamental limits and efficient algorithms for recovery. In 2015 IEEE 56th
Annual Symposium on Foundations of Computer Science, pp. 670–688. IEEE.

Abbe, Emmanuel, Bandeira, Afonso S, and Hall, Georgina. 2015. Exact recovery
in the stochastic block model. IEEE Transactions on Information Theory, 62(1),
471–487.

Awasthi, Pranjal, and Vijayaraghavan, Aravindan. 2018. Clustering semi-random mix-
tures of Gaussians. In Proceedings of the 35th International Conference on Machine
Learning (ICML) 2018. Proceedings of Machine Learning Research, vol. 80, pp.
5055–5064.

Bandeira, Afonso S, Van Handel, Ramon, et al. 2016. Sharp nonasymptotic bounds on the
norm of random matrices with independent entries. The Annals of Probability, 44(4),
2479–2506.

Belkin, Mikhail, and Sinha, Kaushik. 2010. Polynomial learning of distribution families. In
2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pp. 103–112.
IEEE.

Boppana, Ravi B. 1987. Eigenvalues and graph bisection: An average-case analysis. 28th
Annual Symposium on Foundations of Computer Science (SFCS 1987), pp. 280–285.
IEEE.

Candès, Emmanuel J., and Tao, Terence. 2010. The power of convex relaxation: Near-optimal
matrix completion. IEEE Transactions on Information Theory, 56(5), 2053–2080.

Cheng, Yu, and Ge, Rong. 2018. Non-convex matrix completion against a semi-random
adversary. In 31st Conference on Learning Theory (COLT 2018), Proceedings of Machine
Learning Research, vol. 75, pp. 1362–1394.

Dasgupta, Sanjoy. 1999. Learning mixtures of Gaussians. 40th Annual Symposium on Foun-
dations of Computer Science (Cat. No. 99CB37039), pp. 634–644. IEEE.

231

A. MOITRA

Decelle, Aurelien, Krzakala, Florent, Moore, Cristopher, and Zdeborová, Lenka. 2011.
Asymptotic analysis of the stochastic block model for modular networks and its algo-
rithmic applications. Physical Review E, 84(6), 066106.

Evans, William, Kenyon, Claire, Peres, Yuval, Schulman, Leonard J, et al. 2000. Broadcasting
on trees and the Ising model. The Annals of Applied Probability, 10(2), 410–433.

Feige, Uriel, and Kilian, Joe. 2001. Heuristics for semirandom graph problems. Journal of
Computer and System Sciences, 63(4), 639–671.

Füredi, Zoltán, and Komlós, János. 1981. The eigenvalues of random symmetric matrices.
Combinatorica, 1(3), 233–241.

Guédon, Olivier, and Vershynin, Roman. 2016. Community detection in sparse networks via
Grothendiecks inequality. Probability Theory and Related Fields, 165(3-4), 1025–1049.

Hajek, Bruce, Wu, Yihong, and Xu, Jiaming. 2016. Achieving exact cluster recovery thresh-
old via semidefinite programming. IEEE Transactions on Information Theory, 62(5),
2788–2797.

Holland, Paul W, Laskey, Kathryn Blackmond, and Leinhardt, Samuel. 1983. Stochastic
blockmodels: First steps. Social Networks, 5(2), 109–137.

Jain, Prateek, Netrapalli, Praneeth, and Sanghavi, Sujay. 2013. Low-rank matrix completion
using alternating minimization. In Proceedings of the Forty-Fifth Annual ACM Sympo-
sium on Theory of Computing, pp. 665–674. ACM.

Keshavan, Raghunandan H, Montanari, Andrea, and Oh, Sewoong. 2010. Matrix completion
from a few entries. IEEE Transactions on Information Theory, 56(6), 2980–2998.

Kesten, Harry, and Stigum, Bernt P. 1966. A limit theorem for multidimensional Galton-
Watson processes. The Annals of Mathematical Statistics, 37(5), 1211–1223.

Ling, Shuyang, Xu, Ruitu, and Bandeira, Afonso S. 2019. On the landscape of synchronization
networks: A perspective from nonconvex optimization. SIAM Journal on Optimization,
29(3), 1879–1907.

Makarychev, Konstantin, Makarychev, Yury, and Vijayaraghavan, Aravindan. 2016. Learning
communities in the presence of errors. In 29th Conference on Learning Theory (COLT
2016), Proceedings of Machine Learning Research, vol. 49.

Massoulié, Laurent. 2014. Community detection thresholds and the weak Ramanujan prop-
erty. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing,
pp. 694–703. ACM.

Moitra, Ankur. 2015. CAREER: Algorithmic aspects of machine learning. Available at:
https://thmatters.files.wordpress.com/2016/07/ankur-moitra-proposal.pdf.

Moitra, Ankur, and Valiant, Gregory. 2010. Settling the polynomial learnability of mixtures
of Gaussians. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science,
pp. 93–102. IEEE.

Moitra, Ankur, Perry, William, and Wein, Alexander S. 2016. How robust are reconstruction
thresholds for community detection? In Proceedings of the Forty-Eighth Annual ACM
Symposium on Theory of Computing, pp. 828–841. ACM.

Montanari, Andrea, and Sen, Subhabrata. 2016. Semidefinite programs on sparse random
graphs and their application to community detection. In Proceedings of the Forty-Eighth
Annual ACM Symposium on Theory of Computing, pp. 814–827. ACM.

Mossel, Elchanan, Neeman, Joe, and Sly, Allan. 2018. A proof of the block model threshold
conjecture. Combinatorica, 38(3), 665–708.

Perry, Amelia, and Wein, Alexander S. 2017. A semidefinite program for unbalanced multisec-
tion in the stochastic block model. In 2017 International Conference on Sampling Theory
and Applications (SampTA), pp. 64–67. IEEE.

Wigner, Eugene P. 1993. Characteristic vectors of bordered matrices with infinite dimensions
i. In The Collected Works of Eugene Paul Wigner, pp. 524–540. Springer-Verlag.

232

https://thmatters.files.wordpress.com/2016/07/ankur-moitra-proposal.pdf

SEMIRANDOM STOCHASTIC BLOCK MODELS

Exercises

Exercise 10.1 Consider the planted bisection model from earlier in the chapter: There
are two communities A and B that each have size n

2 . Each pair of nodes from the
same community are connected with probability p = 1

2 and each pair of nodes
from different communities are connected with probability q = 1

4 . This exercise
and the next explore deterministic criteria for recovering the planted bisection
against a monotone adversary.

Suppose we are given a bisection (S,T) with the following properties:

(a) For each node u ∈ S, u has strictly more neighbors in S than in T .
(b) Similarly for each node u ∈ T , u has strictly more neighbors in T than in S.

Show that there is a monotone adversary that can create a bisection (S,T) with
this property but that is uncorrelated with the planted bisection.2

Exercise 10.2 Show that if you can find a bisection (S,T) with the property that the
induced graphs on S and T respectively both have edge expansion at least 1

3 that
S and T are with high probability highly correlated with the planted bisection. In
particular show that the symmetric difference between S and either A or B has at
size O(1) and similarly for T .

Exercise 10.3 This exercise considers semirandom models in another popular setup
in machine learning. Specifically, we will consider compressed sensing where there
is an unknown k-sparse vector x in n dimensions. The usual setting is that we
observe Ax = b, where A is an m × n matrix and m is much smaller than n. We
want to recover x exactly despite the fact that A is not invertible. It turns out that if
A satisfies the restricted isometry property you can get away with m = Ck log n/k,
and one of the many algorithms for finding x is to solve �1 minimization:

min ‖x‖1

s.t. Ax = b

Consider the following semirandom model: Suppose a monotone adversary
can add additional rows to A to form Ã and that we get Ãx = b̃. Show that if
�1 minimization succeeds in recovering x, then it continues to succeed against a
monotone adversary.3

2 Here, by uncorrelated, we mean that each set S and T has the same number of nodes from each of the two
communities.

3 It turns out that one can still recover x approximately even when it is not k-sparse in the sense that one
can recover a k-sparse approximation to it. This is called stable recovery. Even for this more general problem,
�1 minimization works against a monotone adversary (whereas many iterative algorithms do not), but to fully
set up this problem would be too much of a digression…

233

CHAPTER ELEVEN

Random-Order Models
Anupam Gupta and Sahil Singla

Abstract: This chapter introduces the random-order model in online
algorithms. In this model, the input is chosen by an adversary, then
randomly permuted before being presented to the algorithm. This
reshuffling often weakens the power of the adversary and allows for
improved algorithmic guarantees. We show such improvements for
two broad classes of problems: packing problems where we must
pick a constrained set of items to maximize total value, and covering
problems where we must satisfy given requirements at minimum
total cost. We also discuss how random-order model relates to other
stochastic models used for non-worst-case competitive analysis.

11.1 Motivation: Picking a Large Element

Suppose we want to pick the maximum of a collection of n numbers. At the beginning,
we know this cardinality n, but nothing about the range of numbers to arrive. We
are then presented distinct nonnegative real numbers v1,v2, . . . ,vn one by one; upon
seeing a number vi, we must either immediately pick it, or discard it forever. We can
pick at most one number. The goal is to maximize the expected value of the number
we pick, where the expectation is over any randomness in our algorithm. We want this
expected value to be close to the maximum value vmax := maxi∈{1,2,...,n} vi. Formally,
we want to minimize the competitive ratio, which is defined as the ratio of vmax to our
expected value. Note that this maximum vmax is independent of the order in which
the elements are presented, and is unknown to our algorithm until all the numbers
have been revealed.

If we use a deterministic algorithm, our value can be arbitrarily smaller than vmax,
even for n = 2. Say the first number v1 = 1. If our deterministic algorithm picks
v1, the adversary can present v2 = M � 1; if it does not, the adversary can present
v2 = 1/M � 1. Either way, the adversary can make the competitive ratio as bad as it
wants by making M large.

Using a randomized algorithm helps only a little: a naïve randomized strategy
is to select a uniformly random position i ∈ {1, . . . ,n} up-front and pick the ith
number vi. Since we pick each number with probability 1/n, the expected value is∑

i vi/n ≥ vmax/n. This turns out to be the best we can do, as long the input sequence
is controlled by an adversary and the maximum value is much larger than the others.
Indeed, one strategy for the adversary is to choose a uniformly random index j,

234

RANDOM-ORDER MODELS

and present the request sequence 1,M,M2, . . . ,Mj,0,0, . . . ,0 – a rapidly ascending
chain of j numbers followed by worthless numbers. If M is very large, any good
algorithm must pick the last number in the ascending chain upon seeing it. But this
is tantamount to guessing j, and random guessing is the best an algorithm can do.
(This intuition can be made formal using Yao’s minimax lemma.)

These bad examples show that the problem is hard for two reasons: the first reason
being the large range of the numbers involved, and the second being the adversary’s
ability to carefully design these difficult sequences. Consider the following way to
mitigate the latter effect: what if the adversary chooses the n numbers, but then the
numbers are shuffled and presented to the algorithm in a uniformly random order?
This random-order version of the problem above is commonly known as the secretary
problem: the goal is to hire the best secretary (or at least a fairly good one) if the
candidates for the job appear in a random order.

Somewhat surprisingly, randomly shuffling the numbers changes the complexity
of the problem drastically. Here is the elegant 50%-algorithm:

1. Reject the first n/2 numbers, and then
2. Pick the first number after that which is bigger than all the previous numbers (if

any).

Theorem 11.1 The 50%-algorithm gets an expected value of at least vmax/4.

Proof Assume for simplicity all numbers are distinct. The algorithm definitely
picks vmax if the highest number is in the second half of the random order
(which happens with probability 1/2), and also the second-highest number is in
the first half (which, conditioned on the first event, happens with probability at
least 1/2, the two events being positively correlated). Hence, we get an expected
value of at least vmax/4. (We get a stronger guarantee: we pick the highest
number vmax itself with probability at least 1/4, but we will not explore this
expected-value-versus-probability direction any further.) �

11.1.1 The Model and a Discussion

The secretary problem, with the lower bounds in the worst-case setting and an elegant
algorithm for the random-order model, highlights the fact that sequential decision-
making problems are often hard in the worst case not merely because the underlying
set of requests is hard, but also because these requests are carefully woven into a
difficult-to-solve sequence. In many situations where there is no adversary, it may
be reasonable to assume that the ordering of the requests is benign, which leads
us to the random-order model. Indeed, one can view this as a semirandom model
from Chapter 9, where the input is first chosen by an adversary and then randomly
perturbed before being given to the algorithm.

Let us review the competitive analysis model for worst-case analysis of online
algorithms (also discussed in Chapter 24). Here, the adversary chooses a sequence
of requests and presents them to the algorithm one by one. The algorithm must
take actions to serve a request before seeing the next request, and it cannot change
past decisions. The actions have rewards, say, and the competitive ratio is the optimal

235

A. GUPTA AND S. SINGLA

reward for the sequence (in hindsight) divided by the algorithm’s reward. (For prob-
lems in which we seek to minimize costs instead of maximize rewards, the competitive
ratio is the algorithm’s cost divided by the optimal cost.) Since the algorithm can never
outperform the optimal choice, the competitive ratio is always at least 1.

Now given any online problem, the random-order model (henceforth the RO model)
considers the setting where the adversary first chooses a set S of requests (and not a
sequence). The elements of this set are then presented to the algorithm in a uniformly
random order. Formally, given a set S = {r1,r2, . . . ,rn} of n = |S| requests, we
imagine nature drawing a uniformly random permutation π of {1, . . . ,n}, and then
defining the input sequence to be rπ(1),rπ(2), . . . ,rπ(n). As before, the online algorithm
sees these requests one by one, and has to perform its irrevocable actions for rπ(i)
before seeing rπ(i+1). The length n of the input sequence may also be revealed to the
algorithm at the beginning, depending on the problem. The competitive ratio (for
maximization problems) is defined as the ratio between the optimum value for S and
the expected value of the algorithm, where the expectation is now taken over both
the randomness of the reshuffle π and that of the algorithm. (Again, we use the
convention that the competitive ratio is at least 1, and hence have to flip the ratio
for minimization problems.)

A strength of the RO model is its simplicity and that it captures other commonly
considered stochastic input models. Indeed, since the RO model does not assume
the algorithm has any prior knowledge of the underlying set of requests (except
perhaps the cardinality n), it captures situations in which the input sequence consists
of independent and identically distributed (i.i.d.) random draws from some fixed
and unknown distribution. Reasoning about the RO model avoids overfitting the
algorithm to any particular properties of the distribution, and makes the algorithms
more general and robust by design.

Another motivation for the RO model is aesthetic and pragmatic: the simplicity
of the model makes it a good starting point for designing algorithms. If we want to
develop an online algorithm (or even an offline one) for some algorithmic task, a good
step is to first solve it in the RO model and then extend the result to the worst-case
setting. This can be useful either way: in the best case, we may succeed in getting an
algorithm for the worst-case setting using the insights developed in the RO model.
Else the extension may be difficult, but still we know a good algorithm under the
(mild?) assumption of random-order arrivals.

Of course, the assumption of uniform random orderings may be unreasonable in
some settings, especially if the algorithm performs poorly when the random-order
assumption is violated. There have been attempts to refine the model to require less
randomness from the input stream, while still getting better-than-worst-case perfor-
mance. We discuss some of these in Section 11.5.2, but much remains to be done.

11.1.2 Roadmap

In Section 11.2 we discuss an optimal algorithm for the secretary problem. In
Section 11.3 we give algorithms to choose multiple items instead of just a single one,
and other maximization packing problems. In Section 11.4 we discuss minimization
problems. In Section 11.5 we present some specializations and extensions of the
RO model.

236

RANDOM-ORDER MODELS

11.2 The Secretary Problem

We saw the 50% algorithm based on the idea of using the first half of the random
order sequence to compute a threshold that weeds out “low” values. This idea of
choosing a good threshold will be a recurring one in this chapter. The choice of
waiting for half of the sequence was for simplicity: a right choice is to wait for
1/e ≈ 37% fraction, which gives us the 37%-algorithm:

1. Reject the first n/e numbers, and then
2. Pick the first number after that (if any) which is bigger than all the previous

numbers.

(Although n/e is not an integer, rounding it to the nearest integer does not impact
the guarantees substantively.) Call a number a prefix-maximum if it is the largest
among the numbers revealed before it. Notice being the maximum is a property of
just the set of numbers, whereas being a prefix-maximum is a property of the random
sequence and the current position. A wait-and-pick algorithm is one that rejects the
first m numbers, and then picks the first prefix-maximum number.

Theorem 11.2 As n → ∞, the 37%-algorithm picks the highest number with
probability at least 1/e. Hence, it gets expected value at least vmax/e. Moreover,
n/e is the optimal choice of m among all wait-and-pick algorithms.

Proof If we pick the first prefix-maximum after rejecting the first m numbers,
the probability we pick the maximum is

n∑
t=m+1

Pr[vt is max] · Pr[max among first t − 1 numbers falls in first m positions]

(�)=
n∑

t=m+1

1
n

· m
t − 1

= m
n

(
Hn−1 − Hm−1

)
,

where Hk = 1 + 1
2 + 1

3 + · · · + 1
k is the kth harmonic number. The equality (�)

uses the uniform random order. Now using the approximation Hk ≈ ln k+0.57
for large k, we get the probability of picking the maximum is about m

n ln n−1
m−1

when m,n are large. This quantity has a maximum value of 1/e if we choose
m = n/e. �

Next we show we can replace any strategy (in a comparison-based model) with a
wait-and-pick strategy without decreasing the probability of picking the maximum.

Theorem 11.3 The strategy that maximizes the probability of picking the highest
number can be assumed to be a wait-and-pick strategy.

Proof Think of yourself as a player trying to maximize the probability of
picking the maximum number. Clearly, you should reject the next number
vi if it is not prefix-maximum. Otherwise, you should pick vi only if it is

237

A. GUPTA AND S. SINGLA

prefix-maximum and the probability of vi being the maximum is more than
the probability of you picking the maximum in the remaining sequence. Let
us calculate these probabilities.

We use Pmax to abbreviate “prefix-maximum,” For position i ∈ {1, . . . ,n},
define

f (i) = Pr[vi is max | vi is Pmax]
(�)= Pr[vi is max]

Pr[vi is Pmax]
(��)= 1/n

1/i
= i

n
,

where equality (�) uses that the maximum is also a prefix-maximum, and (��)

uses the uniform random ordering. Note that f (i) increases with i.
Now consider a problem in which the numbers are again being revealed

in a random order but we must reject the first i numbers. The goal is to still
maximize the probability of picking the highest of the n numbers. Let g(i)
denote the probability that the optimal strategy for this problem picks the global
maximum.

The function g(i) must be a nonincreasing function of i, else we could just
ignore the (i + 1)st number and set g(i) to mimic the strategy for g(i + 1).
Moreover, f (i) is increasing. So from the preceding discussion, you should not
pick a prefix-maximum number at any position i where f (i) < g(i), since you
can do better on the suffix. Moreover, when f (i) ≥ g(i), you should pick vi if it
is prefix-maximum, since it is worse to wait. Therefore, the approach of waiting
until f becomes greater than g and thereafter picking the first prefix-maximum
is an optimal strategy. �

Theorems 11.2 and 11.3 imply for n →∞ that no algorithm can pick the maximum
with probability more than 1/e. Since we placed no bounds on the number magni-
tudes, this can also be used to show that for any ε > 0, there exist an n and numbers
{vi}i∈{1,...,n} where every algorithm has expected value at most (1/e + ε) · maxi vi.

11.3 Multiple-Secretary and Other Maximization Problems

We now extend our insights from the single-item case to settings where we can pick
multiple items. Each item has a value, and we have constraints on what we can pick
(e.g., we can pick at most k items, or pick any acyclic subset of edges of a graph). The
goal is to maximize the total value. (We study minimization problems in Section 11.4.)
Our algorithms can be broadly classified as being order-oblivious or order-adaptive,
depending on the degree to which they rely on the random-order assumption.

11.3.1 Order-Oblivious Algorithms

The 50%-strategy for the single-item secretary problem has an interesting property:
if each number is equally likely to lie in the first or the second half, we pick vmax with
probability 1/4 even if the arrival sequence within the first and second halves is chosen
by an adversary. To formalize this property, define an order-oblivious algorithm as
one with the following two-phase structure: In the first phase (of some length m)
the algorithm gets a uniformly random subset of m items, but is not allowed to pick
any of these items. In the second phase, the remaining items arrive in an adversarial

238

RANDOM-ORDER MODELS

order, and only now can the algorithm pick items while respecting any constraints that
exist. (For example, in the secretary problem, only one item may be picked.) Clearly,
any order-oblivious algorithm runs in the random-order model with the same (or
better) performance guarantee, and hence we can focus our attention on designing
such algorithms. Focusing on order-oblivious algorithms has two benefits. First,
such algorithms are easier to design and analyze, which becomes crucial when the
underlying constraints become more difficult to reason about. Second, the guarantees
of such algorithms can be interpreted as holding even for adversarial arrivals, as long
as we have offline access to some samples from the underlying distribution (discussed
in Section 11.5). To make things concrete, let us start with the simplest generalization
of the secretary problem.

The Multiple-Secretary Problem: Picking k Items
We now pick k items to maximize the expected sum of their values: the case k = 1
is the secretary problem from the previous section. We associate the items with the
set [n] = {1, . . . ,n}, with item i ∈ [n] having value vi ∈ R; all values are distinct. Let
S� ⊆ [n] be the set of k items of largest value, and let the total value of the set S� be
V� := ∑

i∈S� vi.
It is easy to get an algorithm that gets expected value �(V�), e.g., by splitting

the input sequence of length n into k equal-sized portions and running the single-
item algorithm separately on each of these, or by setting threshold τ to be the value
of (say) the �k/3�th-highest value item in the first 50% of the items and picking the
first k items in the second half whose values exceed τ (see Exercise 11.1). Since both
these algorithms ignore a constant fraction of the items, they lose at least a constant
factor of the optimal value in expectation. But we may hope to do better. Indeed,
the 50% algorithm obtains a (noisy) estimate of the threshold between the maximum
value item and the rest, and then picks the first item above the threshold. The simplest
extension of this idea would be to estimate the threshold between the top k items, and
the rest. Since we are picking k � 1 elements, we can hope to get accurate estimates
of this threshold by sampling a smaller fraction of the stream.

The following (order-oblivious) algorithm formalizes this intuition. It gets an
expected value of V�(1−δ), where δ → 0 as k → ∞. To achieve this performance, we
get an accurate estimate of the kth largest item in the entire sequence after ignoring
only δn items, and hence can start picking items much earlier.

1. Set ε = δ = O
(log k

k1/3

)
.

2. First phase: ignore the first δn items.
Threshold τ ← value of the (1 − ε)δkth-highest valued item in this ignored set.

3. Second phase: pick the first k items seen that have value greater than τ .

Theorem 11.4 The order-oblivious algorithm above for the multiple-secretary
problem has expected value V�(1 − O(δ)), where δ = O

(log k
k1/3

)
.

Proof The δn items ignored in the first phase contain in expectation δk items
from S�, so we lose expected value δV�. Now a natural threshold would be the
δkth-highest value item among the ignored items. To account for the variance in

239

A. GUPTA AND S. SINGLA

how many elements from S� fall among the ignored elements, we set a slightly
higher threshold of the (1 − ε)δkth-highest value.

Let v′ := mini∈S� vi be the lowest value item we actually want to pick. There
are two failure modes for this algorithm: (i) the threshold is too low if τ < v′,
as then we may pick low-valued items, and (ii) the threshold is too high if fewer
than k − O(δk) items from S� fall among the last (1 − δ)n items that are greater
than τ . Let us see why both these bad events happen rarely.

• Not too low: For event (i) to happen, fewer than (1 − ε)δk items from S�

fall in the first δn locations: i.e., their number is less than (1 − ε) times
its expectation δk. This has probability at most exp(−ε2δk) by Chernoff–
Hoeffding concentration bound (see the aside in the text that follows). Notice
if τ ≥ v′ then we never run out of budget k.

• Not too high: For event (ii), let v′′ be the (1 − 2ε)kth-highest value in S�.
We expect (1 − 2ε)δk items above v′′ to appear among the ignored items, so
the probability that more than (1 − ε)δk appear is exp(−ε2δk) by Chernoff-
Hoeffding concentration bound. This means that τ ≤ v′′ with high probabil-
ity, and moreover most of the high-valued items appear in the second phase
(where we will pick them whenever event (i) does not happen, as we don’t run
out of budget).

Finally, since we are allowed to lose O(δV�) value, it suffices that the error
probability exp(−ε2δk) be at most O(δ) = 1/ poly(k). This requires us to set
ε2δk = �(log k), and a good choice of parameters is ε = δ = O

(log k
k1/3

)
. �

An aside: the familiar Chernoff–Hoeffding concentration bounds (Exercise 8.3(a)
in Chapter 8) are for sums of bounded independent random variables, but the RO
model has correlations (e.g., if one element from S� falls in the first δn locations,
another is slightly less likely to do so). The easiest fix to this issue is to ignore
not the first δn items but instead a random number of items with the number
drawn from a Binomial(n,δ) distribution with expectation δn. In this case each
item has probability δ of being ignored, independent of others. A second way
to achieve independence is to imagine each arrival happening at a uniformly and
independently chosen time in [0,1]. Algorithmically, we can sample n i.i.d. times from
Uniform[0,1], sort them in increasing order, and assign the ith time to the ith arrival.
Now, rather than ignoring the first δn arrivals, we can ignore arrivals happening
before time δ ∈ [0,1]. Finally, a third alternative is to not strive for independence,
but instead directly use concentration bounds for sums of exchangeable random
variables. Each of these three alternatives offers different benefits, and one alter-
native might be much easier to analyze than the others, depending on the problem
at hand.

The loss of ≈ V�/k1/3 in Theorem 11.4 is not optimal. We will see an order-
adaptive algorithm in the next section that achieves an expected value of V�

(
1 −

O
(√

log k/k
))

. That algorithm will not use a single threshold; instead it will adaptively
refine its threshold as it sees more of the sequence. But first, let us discuss a few more
order-oblivious algorithms for other combinatorial constraints.

240

RANDOM-ORDER MODELS

Maximum-Weight Forest
Suppose the items arriving in a random order are the n edges of a (multi-)graph
G = (V,E), with edge e having a value/weight ve. The algorithm knows the graph at
the beginning, but not the weights. When the edge e arrives, its weight ve is revealed,
and we decide whether to pick the edge or not. Our goal is to pick a subset of edges
with large total weight that form a forest (i.e., do not contain a cycle). The target
V� is the total weight of a maximum-weight forest of the graph: offline, we can solve
this problem using, e.g., Kruskal’s greedy algorithm. This graphical secretary problem
generalizes the secretary problem: Imagine a graph with two vertices and n parallel
edges between them. Since any two edges form a cycle, we can pick at most one edge,
which models the single-item problem.

As a first step toward an algorithm, suppose all the edge values are either 0 or v
(but we don’t know in advance which edges have what value). A greedy algorithm is
to pick the next weight-v edge whenever possible, i.e., when it does not create cycles
with previously picked edges. This returns a max-weight forest, because the optimal
solution is a maximal forest among the subset of weight-v edges, and every maximal
forest in a graph has the same number of edges. This suggests the following algorithm
for general values: if we know some value v for which there is a subset of acyclic edges,
each of value v, with total weight ≥ 1

α
·V�, then we can get an α-competitive solution

by greedily picking value-v edges whenever possible.
How do we find such a value v that gives a good approximation? The RANDOM-

THRESHOLD algorithm that follows uses two techniques: bucketing the values and
(randomly) mixing a collection of algorithms. We assume that all values are powers
of 2; indeed, rounding values down to the closest power of 2 loses at most a factor
of 2 in the final guarantee.

1. Ignore the first n/2 items and let v̂ be their highest value.
2. Select a uniformly random r ∈ {0, . . . , log n}, and set threshold τ := v̂/2r.
3. For the second n/2 items, greedily pick any item of value at least τ that does not

create a cycle.

Theorem 11.5 The order-oblivious RANDOM-THRESHOLD algorithm for the
graphical secretary problem gets an expected value �

(V�

log n

)
.

Here is the main proof idea: either most of the value is in a single item (say vmax),
in which case when r = 0 (with probability 1/ log n) this mimics the 50%-algorithm.
Else, we can assume that vmax falls in the first half, giving us a good estimate without
much loss. Now, very little of V� can come from items of value less than vmax/n
(since there are only n items). So we can focus on log n buckets of items whose values
lie in [vmax/2i+1,vmax/2i). These buckets, on average, contain value V∗/ log n each,
and hence picking a random one does well.

An Improved Algorithm for Max-Weight Forests. The RANDOM-THRESHOLD algo-
rithm above used relatively few properties of the max-weight forest. Indeed, it extends
to downward-closed set systems with the property that if all values are 0 or v then
picking the next value-v element whenever possible gives a near-optimal solution.
However, we can do better using properties of the underlying graph. Here is a

241

A. GUPTA AND S. SINGLA

Figure 11.1 The optimal tree: the numbers on the left are those given by π̂ . The gray box numbered 4 is
the root. The edges in the right are those retained in the claimed solution.

constant-competitive algorithm for graphical secretary where the main idea is to
decompose the problem into several disjoint single-item secretary problems.

1. Choose a uniformly random permutation π̂ of the vertices of the graph.
2. For each edge {u,v}, direct it from u to v if π̂(u) < π̂(v).
3. Independently for each vertex u, consider the edges directed towards u and run the

order-oblivious 50%-algorithm on these edges.

Theorem 11.6 The algorithm for the graphical secretary problem is order-
oblivious and gets an expected value at least V�/8.

Proof The algorithm picks a forest; i.e., there are no cycles (in the undirected
sense) among the picked edges. Indeed, the highest numbered vertex (w.r.t. π̂)
on any such cycle would have two or more incoming edge picked, which is not
possible.

However, since we restrict to picking only one incoming edge per vertex, the
optimal max-weight forest S� may no longer be feasible. Despite this, we claim
there is a forest with the one-incoming-edge-per-vertex restriction, and expected
value V�/2. (The randomness here is over the choice of the permutation π̂ , but
not of the random order.) Since the 50%-algorithm gets a quarter of this value
(in expectation over the random ordering), we get the desired bound of V�/8.

To prove the claim, root each component of S� at an arbitrary node,
and associate each non-root vertex u with the unique edge e(u) of the undi-
rected graph on the path towards the root. The proposed solution chooses for
each vertex u, the edge e(u)={u,v} if π̂(v)< π̂(u), i.e., if it is directed into u
(Figure 11.1). Since this event happens with probability 1/2, the proof follows
by linearity of expectation. �

This algorithm is order-oblivious because the 50%-algorithm has the property. If
we don’t care about order-obliviousness, we can instead use the 37%-algorithm and
get expected value at least V�/2e.

The Matroid Secretary Problem
One of the most tantalizing generalizations of the secretary problem is to matroids.
(A matroid defines a notion of independence for subsets of elements, generalizing
linear-independence of a collection of vectors in a vector space. For example, if we
define a subset of edges to be independent if they are acyclic, these form a “graphic”

242

RANDOM-ORDER MODELS

matroid.) Suppose the n items form the ground set elements of a known matroid,
and we can pick only subsets of items that are independent in this matroid. The
weight/value V� of the max-weight independent set can be computed offline by the
obvious generalization of Kruskal’s greedy algorithm. The open question is to get an
expected value of �(V�) online in the RO model. The approach from Theorem 11.5
gives expected value �(V�/ log k), where k is the largest size of an independent set
(its rank). The current best algorithms (which are also order-oblivious) achieve an
expected value of �(V�/ log log k). Moreover, we can obtain �(V�) for many special
classes of matroids by exploiting their special properties, like we did for the graphic
matroid earlier; see the Notes for references.

11.3.2 Order-Adaptive Algorithms

The foregoing order-oblivious algorithms have several benefits, but their competitive
ratios are often worse than order-adaptive algorithms where we exploit the random-
ness of the entire arrival order. Let us revisit the problem of picking k items.

The Multiple-Secretary Problem Revisited
In the order-oblivious case of Section 11.3.1, we ignored the first ≈ k−1/3 fraction
of the items in the first phase, and then chose a fixed threshold to use in the second
phase. The length of this initial phase was chosen to balance two competing concerns:
we wanted the first phase to be short, so that we ignore few items, but we wanted it
to be long enough to get a good estimate of the kth largest item in the entire input.
The idea for the improved algorithm is to run in multiple phases and use time-varying
thresholds. Roughly, the algorithm uses the first n0 = δn arrivals to learn a threshold
for the next n0 arrivals, then it computes a new threshold at time n1 = 2n0 for the next
n1 arrivals, and so on.

As in the order-oblivious algorithm, we aim for the (1 − ε)kth-largest element of
S� – that ε gives us a margin of safety so that we don’t pick a threshold lower than
the kth-largest (a.k.a. smallest) element of S�. But we vary the value of ε. In the
beginning, we have low confidence, so we pick items cautiously (by setting a high ε0
and creating a larger safety margin). As we see more elements we are more confident
in our estimates, and can decrease the εj values.

1. Set δ :=
√

log k
k . Denote nj := 2jδn and ignore first n0 = δn items.

2. For j ∈ [0, log 1/δ], phase j runs on arrivals in window Wj := (nj,nj+1]

� Let kj := (k/n)nj and let εj :=
√
δ/2j.

� Set threshold τj to be the (1 − εj)kjth-largest value among the first nj items.
� Choose any item in window Wj with value above τj (until budget k is exhausted).

Theorem 11.7 The order-adaptive algorithm for the multiple-secretary problem

has expected value V�
(
1 − O

(√ log k
k

))
.

Proof As in Theorem 11.4, we first show that none of the thresholds τj are
“too low” (so we never run out of budget k). Indeed, for τj to lie below

243

A. GUPTA AND S. SINGLA

v′ := mini∈S� vi, less than (1 − εj)kj items from S� should fall in the first nj

items. Since we expect kj of them, the probability of this is at most exp(−ε2
j kj) =

exp(−δ2k) = 1/ poly(k).
Next, we claim that τj is not “too high”: it is with high probability at most

the value of the (1 − 2εj)kth highest item in S� (thus all thresholds are at most
(1 − 2ε0)kth highest value). Indeed, we expect (1 − 2εj)kj of these highest items
to appear in the first nj arrivals, and the probability that more than (1 − εj)kj

appear is exp(−ε2
j kj) = 1/ poly(k).

Taking a union bound over all j ∈ [0, log 1/δ], with high probability all
thresholds are neither too high nor too low. Condition on this good event.
Now any of the top (1 − 2ε0)k items will be picked if it arrives after first the
n0 arrivals (since no threshold is too high and we never run out of budget k),
i.e., with probability (1 − δ). Similarly, any item that is in top (1 − 2εj+1)k, but
not in top (1 − 2εj)k, will be picked if it arrives after nj+1, i.e., with probability
(1−2j+1δ). Thus if vmax = v1 > . . . > vk are the top k items, we get an expected
value of

(1−2ε0)k∑
i=1

vi(1 − δ) +
log 1/δ−1∑

j=0

(1−2εj+1)k∑
i=(1−2εj)k

vi(1 − 2j+1δ).

This is at least V�(1 − δ) − V�/k
(∑log 1/δ

j=0 2εj+1k · 2j+1δ
)

because the negative
terms are maximized when the top k items are all equal to V�/k. Simplifying, we
get V�(1 − O(δ)), as claimed. �

The logarithmic term in δ can be removed (see the Notes), but the loss of
√

k is
essential. Here is a sketch of the lower bound. By Yao’s minimax lemma, it suffices
to give a distribution over instances that causes a large loss for any deterministic
algorithm. Suppose each item has value 0 with probability 1− k

n , else it has value 1 or
2 with equal probability. The number of nonzero items is therefore k ± O(

√
k) with

high probability, with about half 1’s and half 2’s, i.e., V� = 3k/2 ± O(
√

k). Ideally,
we want to pick all the 2’s and then fill the remaining k/2± O(

√
k) slots using the 1’s.

However, consider the state of the algorithm after n/2 arrivals. Since the algorithm
doesn’t know how many 2’s will arrive in the second half, it doesn’t know how many
1’s to pick in the first half. Hence, it will either lose about �(

√
k) 2’s in the second

half, or it will pick �(
√

k) too few 1’s from the first half. Either way, the algorithm
will lose �(V�/

√
k) value.

Solving Packing Integer Programs
The problem of picking a max-value subset of k items can be vastly generalized.
Indeed, if each item i has size ai ∈ [0,1] and we can pick items having total size k,
we get the knapsack problem. More generally, suppose we have k units each of d
different resources, and item i is specified by the amount aij ∈ [0,1] of each resource
j ∈ {1, . . . ,d} it uses if picked; we can pick any subset of items/vectors that can be
supported by our resources. Formally, a set of n different d-dimensional vectors
a1,a2, . . . ,an ∈ [0,1]d arrive in a random order, each having an associated value vi.
We can pick any subset of items subject to the associated vectors summing to at most

244

RANDOM-ORDER MODELS

k in each coordinate. (All vectors and values are initially unknown, and on arrival of
a vector we must irrevocably pick or discard it.) We want to maximize the expected
value of the picked vectors. This gives a packing integer program:

max
∑

i

vixi s.t.
∑

i

xiai ≤ k · 1 and xi ∈ {0,1},

where the vectors arrive in a random order. Let V� := maxx ∈ {0,1}d {v · x | Ax ≤ k1}
be the optimal value, where A ∈ [0,1]d×n has columns ai. The multiple-secretary
problem is modeled by A having a single row of all ones. By extending the approach
from Theorem 11.7 considerably, one can achieve a competitive ratio of (1 −
O(
√
(log d)/k)). In fact, several algorithms using varying approaches are known, each

giving this competitive ratio.
We now sketch a weaker result. To begin, we allow the variables to be fractional

(xi ∈ [0,1]) instead of integers (xi ∈ {0,1}). Since we assume the capacity k is much
larger than log d, we can use randomized rounding to go back from fractional to
integer solutions with a little loss in value. One of the key ideas is that learning a
threshold can be viewed as learning optimal dual values for this linear program (LP).

Theorem 11.8 There exists an algorithm to solve packing LPs in the RO model

to achieve expected value V�
(
1 − O(

√
d log n

k)
)
.

Proof Sketch The proof is similar to that of Theorem 11.7. The algorithm uses
windows of exponentially increasing sizes and (re-)estimates the optimal duals

in each window. Let δ :=
√

d log n
k ; we will motivate this choice soon. As before,

let nj = 2jδn, kj = (k/n)nj, εj =
√
δ/2j, and the window Wj = (nj,nj+1]. Now,

our thresholds are the d-dimensional optimal dual variables τj for the linear
program:

max
∑nj

i=1 vixi s.t.
∑nj

i=1 xiai ≤ (1 − εj)kj · 1 and xi ∈ [0,1]. (11.1)

Having computed τ j at time nj, the algorithm picks an item i ∈ Wj if vi ≥
τ j · ai. In the 1-dimensional multiple-secretary case, the dual is just the value
of the (1 − εj)kth

j largest-value item among the first nj, matching the choice in
Theorem 11.7. In general, the dual τ j can be thought of as the price-per-unit-
consumption for every resource; we want to select i only if its value vi is more
than the total price τ j · ai.

Let us sketch why the dual vector τ j is not “too low”: i.e., the dual τ j
computed is (with high probability) such that the set {ai | τ j · ai ≤ vi,i ∈ [n]}
of all columns that satisfy the threshold τ j is still feasible. Indeed, suppose a
price vector τ is bad, and using it as threshold on the entire set causes the usage
of some resource to exceed k. If τ it is an optimal dual at time nj, the usage of
that same resource by the first nj items is at most (1 − εj)kj by the LP (11.1).
A Chernoff–Hoeffding bound shows that this happens with probability at most
exp(−ε2

j kj) = o(1/nd), by our choice of δ. Now the crucial idea is to prune

the (infinite) set of dual vectors to at most nd by considering only a subset of
vectors using which the algorithm makes different decisions. Roughly, there are

245

A. GUPTA AND S. SINGLA

n choices of prices in each of the d dimensions, giving us nd different possible
bad dual vectors; a union-bound now gives the proof. �

As mentioned earlier, a stronger version of this result has an additive loss

O(

√
log d

k)V�. Such a result is interesting only when k � log d, so this is called the
“large budget” assumption. How well can we solve packing problems without such
an assumption? Specifically, given a downwards-closed family F ⊆ 2[n], suppose
we want to pick a subset of items having high total value and lying in F . For the
information-theoretic question where computation is not a concern, the best known
upper bound is �(V�/ log2 n), and there are families where �(V�/

log n
log log n) is not

possible (see Exercise 11.2). Can we close this gap? Also, which downward-closed
families F admit efficient algorithms with good guarantees?

Max-Weight Matchings
Consider a bipartite graph on n agents and m items. Each agent i has a value vij ∈
R≥0 for item j. The maximum-weight matching problem is to find an assignment
M : [n] → [m] to maximize

∑
i∈[n] viM(i) such that no item j is assigned to more

than one agent, i.e., |M−1(j)| ≤ 1 for all j ∈ [m]. In the online setting, which has
applications to allocating advertisements, the m items are given up-front and the n
agents arrive one by one. On arriving, agent i reveals their valuations vij for j ∈ [m],
whereupon we may irrevocably allocate one of the remaining items to i. Let V� denote
the value of the optimal matching. The case of m = 1 with a single item is exactly the
single-item secretary problem.

The main algorithmic technique in this section almost seems naïve at first glance:
after ignoring the few first arrivals, we make each subsequent decision based on an
optimal solution of the arrivals until that point, ignoring all past decisions. For the
matching problem, this idea translates to the following:

Ignore the first n/e agents. When agent i ∈ (n/e,n] arrives:

1. Compute a max-value matching M(i) for the first i arrivals (ignoring past deci-
sions).

2. If M(i) matches the current agent i to item j, and if j is still available, then allocate
j to agent i; else, give nothing to agent i.

(We assume that the matching M(i) depends only on the identities of the first i requests
and is independent of their arrival order.) We show the power of this idea by proving
that it gives optimal competitiveness for matchings.

Theorem 11.9 The algorithm gives a matching with expected value at least V�/e.

Proof There are two insights into the proof. The first is that the matching M(i)

is on a random subset of i of the n requests, and so has an expected value at
least (i/n)V�. The ith agent is a random one of these and so gets expected value
V�/n.

246

RANDOM-ORDER MODELS

The second idea is to show, like in Theorem 11.2, that if agent i is matched to
item j in M(i), then j is free with probability n

ei . Indeed, condition on the set, but
not the order, of first i agents (which fixes M(i)) and the identity of the ith agent
(which fixes j). Now for any k ∈ (n/e,i), the item j was allocated to the kth agent
with probability at most 1

k (because even if j is matched in M(k), the probability
of the corresponding agent being the kth agent is at most 1/k). The arrival order
of the first k − 1 agents is irrelevant for this event, so we can do this argument
for all s < k: the probability j was allocated to the sth agent, conditioned on
j not being allocated to the kth agent, is at most 1

s . So the probability that j is
available for agent i is at least

∏
n/e<k<i

(
1− 1

k

) ≈ n
ei . Combining these two ideas

and using linearity of expectation, the expected total matching value is at least∑n
i=1+n/e

(
n/ei · V�/n

) ≈ V�/e. �

This approach can be extended to combinatorial auctions where each agent i has
a submodular (or an XOS) valuation vi and can be assigned a subset Si ⊆ [m] of
items; the goal is to maximize total welfare

∑
i vi(Si). Also, this approach of following

the current solution (ignoring past decisions) extends to solving packing LPs: the
algorithm solves a slightly scaled-down version of the current LP at each step i and
sets the variable xi according to the obtained solution.

11.4 Minimization Problems

We now study minimization problems in the RO model. In these problems the goal is
to minimize some notion of cost (e.g., the length of augmenting paths, or the number
of bins) subject to fulfilling some requirements. All the algorithms in this section are
order-adaptive. We use OPT to denote both the optimal solution on the instance S
and its cost.

11.4.1 Minimizing Augmentations in Online Matching

We start with one reason why the RO model might help for online discrete minimiza-
tion problems. Consider a problem to be “well-behaved” if there is always a solution
of cost ≈ OPT to serve the remaining requests. This is clearly true at the beginning
of the input sequence, and we want it to remain true over time – i.e., poor choices in
the past should not cause the optimal solution on the remaining requests to become
much more expensive. Moreover, suppose that the problem cost is “additive” over
the requests. Then satisfying the next request, which by the RO property is a random
one of i remaining requests, should cost ≈ OPT/i in expectation. Summing over all n
requests gives an expected cost of ≈ OPT(1

n+ 1
n−1+· · ·+ 1

2+1) = O(log n)OPT . (This
general idea is reminiscent of that for max-weight matchings from Section 11.3.2,
albeit in a minimization setting.)

To illustrate this idea, we consider an online bipartite matching problem. Let
G = (U,V,E) be a bipartite graph with |U| = |V | = n. Initially the algorithm
does not know the edge set E of the graph, and hence the initial matching M0 = ∅.
At each time step t ∈ [1,n], all edges incident to the tth vertex ut ∈ U are revealed.
If the previous matching Mt−1 is no longer a maximum matching among the current
set of edges, the algorithm must perform an augmentation to obtain a maximum

247

A. GUPTA AND S. SINGLA

Figure 11.2 (i) The graph G with a perfect matching shown by dashed edges. (ii) An intermediate matching
M2. (iii) The matching M3 after the next request arrives at d .

matching Mt. We do not want the matchings to change too drastically, so we define
the cost incurred by the algorithm at step t to be the length of the augmenting path
Mt−1)Mt. The goal is to minimize the total cost of the algorithm. (For simplicity,
assume G has a perfect matching and OPT = n, so we need to augment at each step.)
A natural algorithm is shortest augmenting path (see Figure 11.2):

When a request ut ∈ U arrives:

1. Augment along a shortest alternating path Pt from ut to some unmatched vertex
in V .

Theorem 11.10 The shortest augmenting path algorithm incurs in total
O(n log n) augmentation cost in expectation in the RO model.

Proof Fix an optimal matching M∗, and consider some time step during the
algorithm’s execution. Suppose the current maximum matching M has size n−k.
As a thought experiment, if all the remaining k vertices in U are revealed at once,
the symmetric difference M∗)M forms k node-disjoint alternating paths from
these remaining k vertices to unmatched nodes in V . Augmenting along these
paths would gives us the optimal matching. The sum of lengths of these paths is
at most |M∗| + |M| ≤ 2n. (Observe that the cost of the optimal solution on the
remaining requests does increase over time, but only by a constant factor.) Now,
since the next vertex is chosen uniformly at random, its augmenting path in the
above collection – and hence the shortest augmenting path from this vertex –
has expected length at most 2n/k. Now summing over all k from n down to 1
gives a total expected cost of 2n

(1
n + 1

n−1 + · · · + 1
2 + 1

) = 2nHn = O(n log n),
hence proving the theorem. �

This O(log n)-competitiveness guarantee happens to be tight for this matching
problem in the RO model; see Exercise 11.3.

11.4.2 Bin Packing

In the classical bin-packing problem (which you may recall from Chapter 8), the
request sequence consists of items of sizes s1,s2, . . . ,sn; these items need to be packed

248

RANDOM-ORDER MODELS

into bins of unit capacity. (We assume each si ≤ 1.) The goal is to minimize the
number of bins used. One popular algorithm is BEST FIT:

When the next item (with size st) arrives:

1. If the item does not fit in any currently used bin, put it in a new bin. Else,
2. Put into a bin where the resulting empty space is minimized (i.e., where it fits

“best”).

BEST FIT uses no more than 2 OPT bins in the worst case. Indeed, the sum of item
sizes in any two of the bins is strictly more than 1, else we would never have started
the later of these bins. Hence we use at most �2

∑
i si� bins, whereas OPT must be

at least �∑i si�, since each bin holds at most unit total size. A more sophisticated
analysis shows that BEST FIT uses 1.7 OPT + O(1) bins on any request sequence, and
this multiplicative factor of 1.7 is the best possible.

The examples showing the lower bound of 1.7 are intricate, but a lower bound
of 3/2 is much easier to show and also illustrates why BEST FIT does better in the
RO model. Consider n/2 items of size 1/2− := 1/2 − ε, followed by n/2 items of size
1/2+ := 1/2 + ε. While the optimal solution uses n/2 bins, BEST FIT uses 3n/4 bins on
this adversarial sequence, since it pairs up the 1/2− items with each other, and then
has to use one bin per 1/2+ item. On the other hand, in the RO case, the imbalance
between the two kinds of items behaves very similar to a symmetric random walk on
the integers. (It is exactly such a random walk, but conditioned on starting and ending
at the origin). The number of 1/2+ items that occupy a bin by themselves can now
be bounded in terms of the maximum deviation from the origin (see Exercise 11.4),
which is O(

√
n log n) = o(OPT) with high probability. Hence on this instance BEST

FIT uses only (1 + o(1))OPT bins in the RO model, compared to 1.5 OPT in the
adversarial order. On general instances, we get:

Theorem 11.11 The BEST FIT algorithm uses at most (1.5 + o(1))OPT bins in
the RO setting.

The key insight in the proof of this result is a “scaling” result, saying that any
εn-length subsequence of the input has an optimal value εOPT , plus lower-order
terms. The proof uses the random order property and concentration-of-measure.
Observe that the worst-case example does not satisfy this scaling property: the second
half of that instance has optimal value n/2, the same as for the entire instance. (Such a
scaling property is often the crucial difference between the worst-case and RO moels:
e.g., we used this in the algorithm for packing LPs in Section 11.3.2.)

The exact performance of BEST FIT in RO model remains unresolved: the best
known lower bound uses 1.07 OPT bins. Can we close this gap? Also, can we analyze
other common heuristics in this model? For example, FIRST FIT places the next
request in the bin that was started the earliest and can accommodate the item.
Exercise 11.5 asks you to show that the NEXT FIT heuristic does not benefit from
the random ordering, and has a competitive ratio of 2 in both the adversarial and
RO models.

249

A. GUPTA AND S. SINGLA

11.4.3 Facility Location

A slightly different algorithmic intuition is used for the online facility location
problem, which is related to the k-means and k-median clustering problems. In
this problem, we are given a metric space (V,d) with point set V , and distances
d : V × V →R≥0 satisfying the triangle inequality. Let f ≥ 0 be the cost of opening
a facility; the algorithm can be extended to cases where different locations have
different facility costs. Each request is specified by a point in the metric space, and let
Rt = {r1, . . . ,rt} be the (multi)-set of request points that arrive by time t. A solution
at time t is a set Ft ⊆ V of “facilities” whose opening cost is f · |Ft|, and whose
connection cost is the sum of distances from every request to its closest facility in
Ft, i.e.,

∑
j∈Rt

mini∈Ft d(j,i). An open facility remains open forever, so we require
Ft−1 ⊆ Ft. We want the algorithm’s total cost (i.e., the opening plus connection costs)
at time t to be at most a constant times the optimal total cost for Rt in the RO model.
Such a result is impossible in the adversarial arrival model, where a tight �(

log n
log log n)

worst-case competitiveness is known.
There is a tension between the two components of the cost: opening more facilities

increases the opening cost, but reduces the connection cost. Also, when request rt
arrives, if its distance to its closest facility in Ft−1 is more than f , it is definitely better
(in a greedy sense) to open a new facility at rt and pay the opening cost of f , than to
pay the connection cost more than f . This suggests the following algorithm:

When a request rt arrives:

1. Let dt := mini∈Ft−1 d(rt,i) be its distance to the closest facility in Ft−1.
2. Set Ft ← Ft−1 ∪{rt} with probability pt := min{1,dt/f }, and Ft ← Ft−1 otherwise.

Observe that the choice of pt approximately balances the expected opening cost
pt · f ≤ dt with the expected connection cost (1 − pt)dt ≤ dt. Moreover, since the
set of facilities increases over time, a request may be reassigned to a closer facility
later in the algorithm; however, the analysis works even assuming the request rt is
permanently assigned to its closest facility in Ft.

Theorem 11.12 The foregoing algorithm is O(1)-competitive in the RO model.

The insight behind the proof is a charging argument that first classifies each request
as “easy” (if they are close to a facility in the optimal solution, and hence cheap)
or “difficult” (if they are far from their facility). There are an equal number of each
type, and the random permutation ensures that easy and difficult requests are roughly
interleaved. This way, each difficult request can be paired with its preceding easy one,
and this pairing can be used to bound their cost.

11.5 Related Models and Extensions

There have been other online models related to RO arrival. Broadly, these models
can be classified either as “adding more randomness” to the RO model by making
further stochastic assumptions on the arrivals, or as “limiting randomness” where the
arrival sequence need not be uniformly random. The former lets us exploit the

250

RANDOM-ORDER MODELS

increased stochasticity to design algorithms with better performance guarantees;
the latter help us quantify the robustness of the algorithms, and the limitations of
the RO model.

11.5.1 Adding More Randomness

The RO model is at least as general as the i.i.d. model, which assumes a probability
distribution D over potential requests where each request is an independent draw
from the distribution D. Hence, all the foregoing RO results immediately translate to
the i.i.d. model. Is the converse also true – i.e., can we obtain identical algorithmic
results in the two models? The next case study answers this question negatively,
and then illustrates how to use the knowledge of the underlying distribution to
perform better.

Steiner Tree in the RO Model
In the online Steiner tree problem, we are given a metric space (V,d), which can be
thought of as a complete graph with edge weights d(u,v); each request is a vertex
in V . Let Rt = {r1, . . . ,rt} be the (multi)-set of request vertices that arrive by time t.
When a request rt arrives, the algorithm must pick some edges Et ⊆ (V

2

)
, so that edges

E1 ∪ · · · ∪ Et picked until now connect Rt into a single component. The cost of each
edge {u,v} is its length d(u,v), and the goal is to minimize the total cost.

The first algorithm we may imagine is the greedy algorithm, which picks a single
edge connecting rt to the closest previous request in Rt−1. This greedy algorithm
is O(log n)-competitive for any request sequence of length n in the worst case.
Surprisingly, there are lower bounds of �(log n), not just for adversarial arrivals,
but also for the RO model. Let us discuss how the logarithmic lower bound for the
adversarial model translates to one for the RO model.

There are two properties of the Steiner tree problem that make this transformation
possible. The first is that duplicating requests does not change the cost of the Steiner
tree, but making many copies of a request makes it likely that one of these copies
will appear early in the RO sequence. Hence, if we take a fixed request sequence σ ,
duplicate the ith request Cn−i times (for some large C > 1), apply a uniform random
permutation, and remove all but the first copy of each original request, the result
looks close to σ with high probability. Of course, the sequence length increases from
n to ≈ Cn, and hence the lower bound goes from being logarithmic to being doubly
logarithmic in the sequence length.

We now use a second property of Steiner tree: the worst-case examples consist
of n requests that can be given in log n batches, with the ith batch containing ≈ 2i

requests – it turns out that giving so much information in parallel does not help the
algorithm. Since we don’t care about the relative ordering within the batches, we can
duplicate the requests in the ith batch Ci times, thereby making the resulting request
sequences of length ≤ C1+log n. It is now easy to set C = n to get a lower bound
of �(

log n
log log n), but a careful analysis allows us to set C to be a constant, and get an

�(log n) lower bound for the RO setting.

Steiner Tree in the i.i.d. Model
Given this lower bound for the RO model, what if we make stronger assumptions
about the randomness in the input? What if the arrivals are i.i.d. draws from a

251

A. GUPTA AND S. SINGLA

probability distribution? We now have to make an important distinction, whether
the distribution is known to the algorithm or not. The lower bound of the previous
section can easily be extended to the case where arrivals are from an unknown
distribution, so our only hope for a positive result is to consider the i.i.d. model with
known distributions. In other words, each request is a random vertex of the graph,
where vertex v is requested with a known probability pv ≥ 0 (and

∑
v pv = 1). Let

p = (p1,p2, . . . ,p|V |) be the vector of these probabilities. For simplicity, assume that
we know the length n of the request sequence. The augmented greedy algorithm is the
following:

1. Let A be the (multi-)set of n−1 i.i.d. samples from the distribution p, plus the first
request r1.

2. Build a minimum spanning tree T connecting all the vertices in A.
3. For each subsequent request ri (for i ≥ 2): connect ri to the closest vertex in A ∪

Ri−1 using a direct edge.

Note that our algorithm requires minimal knowledge of the underlying distribution:
it merely takes a set of samples that are stochastically identical to the actual request
sequence and builds the “anticipatory” tree connecting this sample. Now the hope is
that the real requests will look similar to the samples, and hence will have close-by
vertices to which they can connect.

Theorem 11.13 The augmented greedy algorithm is 4-competitive for the Steiner
tree problem in the setting of i.i.d. requests with known distributions.

Proof Since set A is drawn from the same distribution as the actual request
sequence Rn, the expected optimal Steiner tree on A also costs OPT . The
minimum spanning tree to connect up A is known to give a 2-approximate
Steiner tree (Exercise 11.6), so the expected cost for T is 2OPT .

Next, we need to bound the expected cost of connecting rt to the previous tree
for t ≥ 2. Let the samples in A be called a2,a3, . . . ,an. Root the tree T at r1, and
let the “share” of at from T be the cost of the first edge on the path from at to
the root. The sum of shares equals the cost of T . Now, the cost to connect rt is at
most the expected minimum distance from rt to a vertex in A\{at}. But rt and at
are from the same distribution, so this expected minimum distance is bounded
by the expected distance from at to its closest neighbor in T , which is at most
the expected share of at. Summing, the connection costs for the rt requests is at
most the expected cost of T , i.e., at most 2OPT . This completes the proof. �

This proof extends to the setting where different requests are drawn from different
known distributions; see Exercise 11.6.

11.5.2 Reducing the Randomness

Do we need the order of items to be uniformly random, or can weaker assumptions
suffice for the problems we care about? This question was partially addressed in
Section 11.3.1 where we saw order-oblivious algorithms. Recall: these algorithms

252

RANDOM-ORDER MODELS

assume a less-demanding arrival model, where a random fraction of the adversarial
input set S is revealed to the algorithm in a first phase, and the remaining input set
arrives in an adversarial order in the second phase. We now discuss some other models
that have been proposed to reduce the amount of randomness required from the
input. While some remarkable results have been obtained in these directions, there
is still much to explore.

Entropy of the Random Arrival Order
One principled way of quantifying the randomness is to measure the entropy of the
input sequences: a uniformly random permutation on n items has entropy log(n!) =
O(n log n), whereas order-oblivious algorithms (where each item is put randomly in
either phase) require at most log

(n
n/2

) ≤ n bits of entropy. Are there arrival order
distributions with even less entropy for which we can give good algorithms?

This line of research was initiated by Kesselheim et al. (2015), who showed the
existence of arrival-order distributions with entropy only O(log log n) that allow
e-competitive algorithms for the single-item secretary problem (and also for some
simple multiple-item problems). Moreover, they showed tightness of their results –
for any arrival distribution with o(log log n) entropy no online algorithm can be O(1)-
competitive. This work also defines a notion of “almost k-wise uniformity,” which
requires that the induced distribution on every subset of k items be close to uniform.
They show that this property and its variants suffice for some of the algorithms, but
not for all.

A different perspective is the following: since the performance analysis for an
algorithm in the RO model depends only on certain randomness properties of the
input sequence (which are implied by the random ordering), it may be meaningful in
some cases to (empirically) verify these specific properties on the actual input stream.
For example, Bahmani et al. (2010) used this approach to explain the experimental
efficacy of their algorithm computing personalized pageranks in the RO model.

Robustness and the RO Model
The RO model assumes that the adversary first chooses all the item values, and then
the arrival order is perturbed at random according to some specified process. While
this is a very appealing framework, one concern is that the algorithms may overfit the
model. What if, as in some other semirandom models, the adversary gets to make a
small number of changes after the randomness has been added? Alternatively, what
if some parts of the input must remain in adversarial order, and the remainder is
randomly permuted? For instance, say the adversary is allowed to specify a single
item that must arrive at some specific position in the input sequence, or it is allowed
to change the position of a single item after the randomness has been added. Most
current algorithms fail when faced with such modest changes to the model. For
example, the 37%-algorithm picks nothing if the adversary presents a large item in
the beginning. Of course, these algorithms were not designed to be robust: but can
we get analogous results even if the input sequence is slightly corrupted?

One approach is to give “best-of-both-worlds” algorithms that achieve a good per-
formance when the input is randomly permuted, and which also have a good worst-
case performance in all cases. For instance, Mirrokni et al. (2012) and Raghvendra
(2016) give such results for online ad allocation and min-cost matching, respectively.

253

A. GUPTA AND S. SINGLA

Since the secretary problem has poor performance in the worst case, we may want
more refined guarantees, that the performance degrades with the amount of corrup-
tion. Here is a different semirandom model for the multiple-secretary problem from
Section 11.3.1. In the Byzantine model, the adversary not only chooses the values of
all n items; it also chooses the relative or absolute order of some εn of these items. The
remaining (1 − ε)n “good” items are then randomly permuted within the remaining
positions. The goal is now to compare to the top k items among only these good items.
Some preliminary results are known for this model (Bradač et al., 2019), but many
questions remain open. In general, getting robust algorithms for secretary problems,
or other optimization problems considered in this chapter, remains an important
direction to explore.

11.5.3 Extending Random-Order Algorithms to Other Models

Algorithms for the RO model can help in designing good algorithms for similar
models. One such example is for the prophet model, which is closely related to the
optimal stopping problem in Section 8.1.4 of Chapter 8. In this model, we are given n
independent prize-value distributions D1, . . . ,Dn, and then presented with draws
vi ∼ Di from these distributions in adversarial order. The threshold rule from
Chapter 8, which picks the first prize with value above some threshold computable
from just the distributions, gets expected value at least 1

2 E[maxi vi]. Note the
differences between the prophet and RO models: the prophet model assumes more
about the values – namely, that they are drawn from the given distributions –
but less about the ordering, since the items can be presented in an adversarial
order. Interestingly, order-oblivious algorithms in the RO model can be used to
get algorithms in the prophet model.

Indeed, suppose we only have limited access to the distributions Di in the prophet
model: we can get information about them only by drawing a few samples from each
distribution. (Clearly we need at least one sample from the distributions, else we
would be back in the online adversarial model.) Can we use these samples to get
algorithms in this limited-access prophet model for some packing constraint family
F? The next theorem shows we can convert order-oblivious algorithms for the RO
model to this setting using only a single sample from each distribution.

Theorem 11.14 Given an α-competitive order-oblivious online algorithm for a
packing problem F , there exists an α-competitive algorithm for the corresponding
prophet model with unknown probability distributions, assuming we have access to
one (independent) sample from each distribution.

The idea is to choose a random subset of items to be presented to the order-
oblivious algorithm in the first phase; for these items we send in the sampled values
available to us, and for the remaining items we use their values among the actual
arrivals. The details are left as Exercise 11.7.

11.6 Notes

The classical secretary problem and its variants have long been studied in optimal
stopping theory; see Ferguson (1989) for a historical survey. In computer science,

254

RANDOM-ORDER MODELS

the RO model has been used, e.g., for computational geometry problems, to get fast
and elegant algorithms for problems like convex hulls and linear programming; see
Seidel (1993) for a survey in the context of the backwards analysis technique. The
secretary problem has gained broader attention due to connections to strategyproof
mechanism design for online auctions (Hajiaghayi et al., 2004; Kleinberg, 2005).
Theorem 11.3 is due to Gilbert and Mosteller (1966).

Section 11.3.1: The notion of an order-oblivious algorithm was first defined by
Azar et al. (2014). The order-oblivious multiple-secretary algorithm is folklore. The
matroid secretary problem was proposed by Babaioff et al. (2018); Theorem 11.5 is
an adaptation of their O(log r)-competitive algorithm for general matroids. Theo-
rem 11.6, due to Korula and Pál (2009), extends to a 2e-competitive order-adaptive
algorithm. The current best algorithm is 4-competitive (Soto et al., 2018). The only
lower bound known is the factor of e from Theorems 11.2 and 11.3, even for arbitrary
matroids, whereas the best algorithm for general matroids has competitive ratio
O(log log rank) (Lachish, 2014; Feldman et al., 2015). See the survey by Dinitz (2013)
for work leading up to these results.

Section 11.3.2: The order-adaptive algorithms for multiple-secretary (Theorem
11.7) and for packing LPs (Theorem 11.8) are based on the work of Agrawal et al.
(2014). The former result can be improved to give (1 − O(

√
1/k))-competitiveness

(Kleinberg, 2005). Extending work on the AdWords problem (see the monograph
by Mehta (2012)), Devanur and Hayes (2009) studied packing LPs in the RO model.
The optimal results have (1 − O(

√
(log dnnz)/k))-competitiveness (Kesselheim et al.,

2018), where dnnz is the maximum number of non-zeros in any column; these
are based on the solve-ignoring-past-decisions approach we used for max-value
matchings. Rubinstein (2016) and Rubinstein and Singla (2017) gave O(poly log n)-
competitive algorithms for general packing problems for subadditive functions.
Theorem 11.9 (and extensions to combinatorial auctions) appear in Kesselheim et al.
(2013).

Section 11.4: Theorem 11.10 about shortest augmenting paths is due to
Chaudhuri et al. (2009). A worst-case result of O(log2 n) was given by Bernstein
et al. (2018); closing this gap remains an open problem. The analysis of BEST FIT

in Theorem 11.11 is by Kenyon (1996). Theorem 11.12 for facility location is by
Meyerson (2001); see Meyerson et al. (2001) for other network design problems in
the RO setting. The tight nearly-logarithmic competitiveness for adversarial arrivals
is due to Fotakis (2008).

Section 11.5.1: Theorem 11.13 for Steiner tree is by Garg et al. (2008). Grandoni
et al. (2013) and Dehghani et al. (2017) give algorithms for set cover and k-server in
the i.i.d. or prophet models. The gap between the RO and i.i.d. models (with unknown
distributions) remains an interesting direction to explore. Correa et al. (2019) show
that the single-item problem has the same competitiveness in both models; can we
show similar results (or gaps) for other problems?

Section 11.5.2: Kesselheim et al. (2015) study connections between entropy
and the RO model. The RO model with corruptions was proposed by Bradač et al.
(2019), who also give (1 − ε)-competitive algorithms for the multiple-secretary
problem with weak estimates on the optimal value. A similar model for online
matching for mixed (stochastic and worst-case) arrivals was studied by Esfandiari
et al. (2018). Finally, Theorem 11.14 to design prophet inequalities from samples is
by Azar et al. (2014).

255

A. GUPTA AND S. SINGLA

Acknowledgments

We thank Tim Roughgarden, C. Seshadhri, Matt Weinberg, and Uri Feige for their
comments on an initial draft of this chapter.

References

Agrawal, Shipra, Wang, Zizhuo, and Ye, Yinyu. 2014. A dynamic near-optimal algorithm for
online linear programming. Operations Research, 62(4), 876–890.

Azar, Pablo D., Kleinberg, Robert, and Weinberg, S. Matthew. 2014. Prophet inequalities with
limited information. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 1358–
1377.

Babaioff, Moshe, Immorlica, Nicole, Kempe, David, and Kleinberg, Robert. 2018. Matroid
secretary problems. Journal of the ACM, 65(6), 35:1–35:26.

Bahmani, Bahman, Chowdhury, Abdur, and Goel, Ashish. 2010. Fast incremental and
personalized PageRank. PVLDB, 4(3), 173–184.

Bernstein, Aaron, Holm, Jacob, and Rotenberg, Eva. 2018. Online bipartite matching with
amortized O(log2 n) replacements. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 947–959.

Bradač, Domagoj, Gupta, Anupam, Singla, Sahil, and Žužic, Goran. 2019. Robust algorithms
for the secretary problem. Proceedings of the 11th Innovations in Theoretical Computer
Science Conference (ITCS), pp. 32: 1–32:26.

Chaudhuri, Kamalika, Daskalakis, Constantinos, Kleinberg, Robert D., and Lin, Henry. 2009.
Online bipartite perfect matching with augmentations.

Correa, José R., Dütting, Paul, Fischer, Felix A., and Schewior, Kevin. 2019. Prophet
Inequalities for I.I.D. Random variables from an unknown distribution. ACM Conference
on Economics and Computation (EC), pp. 3–17.

Dehghani, Sina, Ehsani, Soheil, Hajiaghayi, MohammadTaghi, Liaghat, Vahid, and
Seddighin, Saeed. 2017. Stochastic k-server: How should uber work? International Collo-
quium on Automata, Languages, and Programming (ICALP), pp. 126:1–126:14.

Devanur, Nikhil R., and Hayes, Thomas P. 2009. The adwords problem: Online keyword
matching with budgeted bidders under random permutations. ACM Conference on
Electronic Commerce (EC), pp. 71–78.

Dinitz, Michael. 2013. Recent advances on the matroid secretary problem. SIGACT News,
44(2), 126–142.

Esfandiari, Hossein, Korula, Nitish, and Mirrokni, Vahab S. 2018. Allocation with traffic
spikes: mixing adversarial and stochastic models. ASM Transactions on Economics and
Computing, 6(3–4), 14:1–14.23.

Feldman, Moran, Svensson, Ola, and Zenklusen, Rico. 2015. A simple O(log log(rank))-
competitive algorithm for the matroid secretary problem. ACM-SIAM Symposium on
Discrete Algorithms (SODA), 1189–1201.

Ferguson, Thomas S. 1989. Who solved the secretary problem? Statistical Science, 4(3),
282–289.

Fotakis, Dimitris. 2008. On the Competitive ratio for online facility location. Algorithmica,
50(1), 1–57.

Garg, Naveen, Gupta, Anupam, Leonardi, Stefano, and Sankowski, Piotr. 2008. Stochastic
analyses for online combinatorial optimization problems. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), 942–951.

Gilbert, John P., and Mosteller, Frederick. 1966. Recognizing the maximum of a sequence.
Journal of the American Statistical Association, 61(313), 35–73.

256

RANDOM-ORDER MODELS

Grandoni, Fabrizio, Gupta, Anupam, Leonardi, Stefano, Miettinen, Pauli, Sankowski, Piotr,
and Singh, Mohit. 2013. Set covering with our eyes closed. SIAM Journal on Computing,
42(3), 808–830.

Hajiaghayi, Mohammad Taghi, Kleinberg, Robert D., and Parkes, David C. 2004. Adaptive
limited-supply online auctions. ACM Conference on Electronic Commerce (EC), pp.
71–80

Kenyon, Claire. 1996. Best-fit bin-packing with random order. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), 359–364.

Kesselheim, Thomas, Radke, Klaus, Tönnis, Andreas, and Vöcking, Berthold. 2013. An opti-
mal online algorithm for weighted bipartite matching and extensions to combinatorial
auctions. In European Symposium on Algorithms (ESA), pp. 589–600.

Kesselheim, Thomas, Radke, Klaus, Tönnis, Andreas, and Vöcking, Berthold. 2018. Primal
beats dual on online packing LPs in the random-order model. SIAM Journal on Comput-
ing, 47(5), 1939–1964.

Kesselheim, Thomas, Kleinberg, Robert D., and Niazadeh, Rad. 2015. Secretary problems
with non-uniform arrival order. In ACM Symposium on Theory of Computing (STOC),
pp. 879–888.

Kleinberg, Robert. 2005. A multiple-choice secretary algorithm with applications to
online auctions. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
630–631.

Korula, Nitish, and Pál, Martin. 2009. Algorithms for secretary problems on graphs
and hypergraphs. International Colloquium on Automata, Languages, and Programming
(ICALP), pp. 508–520.

Lachish, Oded. 2014. O(log log Rank) Competitive ratio for the matroid secretary problem.
FOCS, pp. 326–335.

Mehta, Aranyak. 2012. Online matching and ad allocation. Foundations and Trends in Theo-
retical Computer Science, 8(4), 265–368.

Meyerson, Adam. 2001. Online facility location. In IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 426–431.

Meyerson, Adam, Munagala, Kamesh, and Plotkin, Serge A. 2001. Designing networks
incrementally. In IEEE Symposium on Foundations of Computer Science (FOCS), pp.
406–415.

Mirrokni, Vahab S., Gharan, Shayan Oveis, and Zadimoghaddam, Morteza. 2012. Simultane-
ous approximations for adversarial and stochastic online budgeted allocation. In ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 1690–1701.

Raghvendra, Sharath. 2016. A robust and optimal online algorithm for minimum metric
bipartite matching. In Proceedings of the International Conference on Approximation
Algorithms for Combinatorial Optimization Problems and on Randomization and Compu-
tation (APPROX-RANDOM).

Rubinstein, Aviad. 2016. Beyond matroids: secretary problem and prophet inequality
with general constraints. In ACM Symposium on Theory of Computing (STOC), pp.
324–332.

Rubinstein, Aviad, and Singla, Sahil. 2017. Combinatorial prophet inequalities. In ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 1671–1687.

Seidel, Raimund. 1993. Backwards analysis of randomized geometric algorithms. In New
Trends in Discrete and Computational Geometry. Algorithms and Combinatorics, Vol. 10.
Springer-Verlag.

Soto, José A., Turkieltaub, Abner, and Verdugo, Victor. 2018. Strong algorithms for the
ordinal matroid secretary problem. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 715–734.

257

A. GUPTA AND S. SINGLA

Exercises

Exercise 11.1 Show that both algorithms proposed above Theorem 11.4 for the
multiple secretary problem achieve expected value �(V�).

Exercise 11.2 Show why for a general packing constraint family F , i.e., A ∈ F and
B ⊆ A implies B ∈ F , no online algorithm has o(log n

log log n)-competitiveness. [Hint:

Imagine n elements in a
√

n × √
n matrix and F consists of subsets of columns.]

Exercise 11.3 Consider a cycle on 2n vertices, and hence it has a perfect matching.
Show that the shortest augmenting path algorithm for minimizing augmentations
in online matching from Section 11.4.1 has �(n log n) cost in expectation.

Exercise 11.4 Suppose n/2 items of size 1/2− := 1/2 − ε and n/2 items of size 1/2+ :=
1/2 + ε are presented in a random order to the BEST FIT bin packing heuristic from
Section 11.4.2. Define the imbalance It after t items to be the number of 1/2+ items
minus the number of 1/2− items. Show that the number of bins that have only a
single item (and hence waste about 1/2 space) is at most (maxt It) − (mint It). Use
a Chernoff–Hoeffding bound to prove this is at most O(

√
n log n) with probability

1 − 1/ poly(n).

Exercise 11.5 In the NEXT FIT heuristic for the bin packing problem from
Section 11.4.2, the next item is added to the current bin if it can accommodate
the item, otherwise we put the item into a new bin. Show that this algorithm has
a competitive ratio of 2 in both the adversarial and RO models.

Exercise 11.6 Show that for a set of requests in a metric space, the minimum spanning
tree on this subset gives a 2-approximate solution to the Steiner tree. Also, extend
the Steiner tree algorithm from the i.i.d. model to the prophet model, where the n
requests are drawn from n independent (possibly different) known distributions pt

over the vertices.

Exercise 11.7 Prove Theorem 11.14.

Exercise 11.8 Suppose the input consists of (1 − ε)n good items and εn bad items.
The adversary decides all n item values, and also the locations of bad items. The
good items are then randomly permuted in the remaining positions. If v∗ denotes
the value of the largest good item, show there is no online algorithm with expected
value�(v∗/(εn)). [Hint: There is only one non-zero good item and all the bad items
have values much smaller than v∗. The bad items are arranged as the single-item
adversarial arrival lower bound instance.]

258

CHAPTER TWELVE

Self-Improving Algorithms
C. Seshadhri

Abstract: Self-improving algorithms provide a framework that inter-
polates between worst-case and average-case analysis. In this setting,
inputs are assumed to be generated from an unknown distribution
D. A self-improving algorithm starts off as a vanilla worst-case
algorithm. As it processes more inputs from D, it tunes itself to
become optimal for inputs from D. In this chapter, we discuss self-
improving algorithms for sorting and 2D coordinate-wise maxima.

12.1 Introduction

In many scenarios, an algorithm is designed to be used repeatedly, on inputs coming
from some “source.” For example, we may wish to sort the stock prices of com-
modities every morning. Or, design a routing algorithm for a truck delivery service
that is used every day. Instead of just being a standard worst-case algorithm, the
ideal algorithm should attempt to exploit structure in the inputs. On the other hand,
it is highly unlikely that the inputs come from a closed-form source that we can
completely describe.

Suppose one posits that the inputs are generated iid from a distribution D. This
distribution is unknown to the algorithm designer. Worst-case analysis takes the
pessimistic view that because it is impossible to describe D, the algorithm should
simply do as well as possible for the worst possible inputs. Average-case analysis
would take the optimistic route of trying to describe D (to the best extent possible),
tailoring the algorithm for that distribution. The model of self-improving algorithms
is an attempt to bridge the pessimism of worst-case analysis with the optimism of
average-case analysis. It was first formulated in the context of sorting, by Ailon
et al. (2011). A self-improving algorithm starts off with minimal assumptions on
the input distribution D, tries to learn about D, and optimizes the running time for
this D.

Let us begin with some formalism. There is a fixed, but unknown distribution D
that generates iid inputs denoted I1,I2, Given input It, our aim is to compute f (It),
for some fixed function f (·). (For example, f (I) might denote the sorted version of an
input array I .) The self-improving algorithm does not knowD, and gains information
about D as it sees more inputs (as t increases).

259

C. SESHADHRI

A self-improving algorithm has two phases:

� Learning phase: Initially, the self-improving algorithm simply computes f (It) using
a worst-case algorithm. As t increases (more inputs are seen), it learns more
information about D and stores a summary of it in a data structure T.

� Limiting phase: In this phase, the algorithm uses the data structure T to compute
f (It) faster.

The aim is to build a small data structure T in a short learning phase, to attain
a faster running time in the limiting phase. We note that the concept of a self-
improving algorithm is valid for any algorithmic performance measure (such as
solution quality), but all the killer applications concern running time.

Note that there is a natural offline/online view of the setting. The self-improving
algorithm can be thought of as an online algorithm. The corresponding offline
algorithm would know D. The “online” self-improving algorithm should ideally
perform competitively with the “offline” optimal version (which knows D).

Since It is a random variable, it is more meaningful to talk of the expected running
time in the limiting phase. Typically, every algorithm has some bad input, which may
have some negligible (but nonzero) probability. Thus, in general, beating the worst-
case running time seems to require averaging over a distribution of inputs.

While we consider the distribution D to be fixed and the inputs to be independent
draws, one could imagine richer settings. One might consider D to itself evolve over
time, or for the inputs to be generated by a Markov process where It depends on the
previous It−1. All the results known so far take the fixed D view.

12.1.1 The Question of Sorting

Let us test out the self-improving model on the problem of comparison-based sorting.
Let D be a distribution on real-valued arrays1 of length n. A classical worst-case
algorithm, such as MERGESORT, can sort in worst-case O(n lg n) time. Our aim is to
sort I ∼ D, in better than O(n lg n) time. Let us begin with the “offline” setting. When
D is known, can we beat the n lg n time lower bound for sorting?

The tools of information theory can be used to give a fairly satisfying answer to
this question. This answer will form the basis of the self-improving sorter analysis.
To maintain the flow of this chapter, we defer the formal definitions and theorems
from information theory to Section 12.2. A reader unfamiliar with the definition of
entropy and the notion of optimal search trees may wish to read Section 12.2 before
this section.

The question of sorting in o(n lg n) time was first addressed by Fredman (1976),
for the special case of sorting within subsets of permutations. Let [n] denote the set
{1,2, . . . ,n}. Consider an input array I of length n, with indexing starting from 1. On
sorting I , each element ends up a potentially new position. Let π(I) be the array of
final positions after sorting.2 So the ith element of π(I) is the index of the ith element
of I after sorting I . For example, suppose I = [5,3,42,7]. Then π(I) is [2,1,4,3].

1 The results hold for any total order, but it is convenient to assume that the domain of reals.
2 If elements in I are repeated, we can define π(I) for a stable sorting of I .

260

SELF-IMPROVING ALGORITHMS

We will refer to π(I) as the permutation induced by I . Suppose there was a known
set � of permutations, and we are guaranteed that π(I) ∈ �.

Theorem 12.1 Fix a set � of permutations. There is an algorithm that sorts any
array I such that π(I) ∈ �, using (worst case) lg |�| + 2n comparisons.

Proof Let I = (x1,x2, . . . ,xn), and for each k ≤ n, let I≤k = (x1,x2, . . . ,xk).
We will perform insertion sort, as follows. In the kth iteration, π(I≤k) has been
determined. We need to determine the position of xk+1 in the sorted version
of I≤k.

We describe a preprocessing step that does not involve any comparisons of
the elements of I . The purpose of this step is to construct the “right” search
tree to find xk+1. We will construct a large table, indexed by every permutation
τ over [k], for all k ≤ n. Fix some such permutation τ over [k]. Consider
permutations σ (over [n]) such that the subarray of the first k elements of σ

induce the permutation τ . (In other words, if σ≤k denotes the subarray of the
first k elements of σ , then π(σ≤k) = τ .) Let the set of such permutations be
denoted �τ . Furthermore, partition �τ into sets �1

τ,�
2
τ, . . . ,�

k+1
τ as follows. The

set �i
τ consists of permutations σ where the (k + 1)th element is at position i,

after sorting the first (k + 1) elements of σ . Equivalently, π(σ≤k+1) has i as the
(k + 1)th element. Consider the distribution on [k + 1] where the probability of
i is |�i

τ |/|�τ |, and let T be an optimal search tree for this distribution (refer to
Lemma 12.9). Note that leaves of T are labeled with [k + 1]. We can construct
T to be such that: if |�i

τ |/|�τ | ∈ [1/2d,1/2d−1), then, in T , the depth of the leaf
labeled i is at most d + 2.

Now, we describe how to insert xk+1 into the sorted order of x≤k (denote
the latter as y). Having determined π(xk), we get the appropriate search tree T
as described earlier. Each internal node of T denotes a comparison with some
i ∈ [k]. (A comparison with k + 1 would be superfluous, since it is the largest
element in [k + 1].) The algorithm processes this node by comparing xk+1 with
yi. Thus, by walking down the tree T , the algorithm will correctly determine
xk+1’s position in y, and determine π(I≤k+1).

What is the expected search time for this iteration? Suppose the search
reached the leaf node labeled i. The search time is at most lg(|�τ |/|�i

τ |) + 2.
Note that τ is the permutation induced by the first k elements of the input
I , and i is the position of xk+1 in this permutation. Let us define �(k) to be
the set of permutations extending π(I≤�). Then this search time is at most
lg(|�(k)|/|�(k+1)|) + 2. Summing over all k and noting that �1 = �, the total
number of comparisons is at most

∑n
k=1[lg(|�(k)|/|�(k+1)|) + 2] = lg |�| + 2n,

as desired. �

Note that |�| ≤ n!, so lg |�| ≤ lg n! = O(n lg n). But if |�| = 2O(n), then linear time
sorting is possible.

The algorithm given in the proof runs in exponential time, even though the number
of comparisons performed is O(n lg n). For every prefix permutation τ , the algorithm
needs to compute an optimal search tree by going over all of �τ .

For arbitrary distributions, the entropy of the induced distributions on permuta-
tions determines the minimum expected number of comparisons for sorting.

261

C. SESHADHRI

Theorem 12.2 Consider any distribution D on real arrays of length n. There is
a sorting algorithm (that is correct on every input) whose expected comparison
complexity on input I ∼ D is H(π(I)) + O(n). Moreover, any comparison based
algorithm must make at least H(π(I)) comparisons in expectation.

The algorithm is analogous to the previous one, but the analysis needs some
information theoretic manipulations. Details are given in Exercise 12.2. The lower
bound is a direct consequence of Shannon’s encoding theorem, Theorem 12.7.

Theorem 12.2 provides the optimal “offline” bound, which is the benchmark
bound that a self-improving algorithm must shoot for. Moreover, the proof hints at
the role of entropy optimal search trees in beating the n lg n sorting bound. Let us
now state the desired behavior of a self-improving sorter.

� Training phase: Every input is sorted in �(n lg n) time using a vanilla sorting
algorithm, such as MERGESORT. As the number of inputs grows, the self-improving
sorter builds some data structure T.

� Limiting phase: The expected running time is now O(H(π(I))+n), or at least close
to it. The algorithm uses T to speed up the computation.

There are a number of complexity parameters3 to optimize.

� Limiting run time: Making this smaller than the worst-case complexity is the whole
point of self-improving algorithms. As mentioned earlier, our ideal for sorting is
O(H(π(I))+n) time. We stress that the running time is an expectation over I ∼ D.

� Size of the data structure T.
� Training phase length: This is the number of instances seen to build T. There is

a natural tradeoff here: a longer learning phase would lead to more information
about D, which is presumably useful for reducing the limiting run time.

To see the path toward a self-improving sorter, let us begin by ignoring the training
phase length. We effectively assume the self-improving algorithm could learn D
exactly.

Furthermore, suppose we only cared for the limiting running time. In this case,
Theorem 12.2 gives us the desired self-improving algorithm, for any D. Observe that
the search tree constructed in the proof of Theorem 12.1 (and Theorem 12.2) could
be precomputed in the training phase. Using this search tree, every input inducing a
permutation in� can be sorted in lg |�|+O(n) time. The catch is that the search tree, as
described, requires storage exponential in n. As explained later, lower bounds for self-
improving algorithms imply that exponential storage is necessary for any algorithm
that achieves the bound of Theorem 12.2.

3 A less important complexity parameter is the total time required to build T. Ideally, one would hope that
(in the case of sorting) the time to construct T would simply be the length of the training phase times the worst-
case sorting time. In all the self-improving algorithms discussed, such a statement will hold. For the sake of
exposition, we will ignore this aspect.

262

SELF-IMPROVING ALGORITHMS

The next step is to find classes of distributions where T can be made smaller, even
assuming that D is known. The final step is to show that T can be built by seeing a
few instances from D, thereby bounding the training phase length.

We now state the main results on self-improving sorters from Ailon et al. (2011). We
require the self-improving algorithm to always gives the correct output on all inputs,
regardless of what happens in the training phase. The guarantees on the limiting run
time are probabilistic. The training phase depends on the random inputs seen, and it
may fail with some small probability. For convenience, we use with high probability
(whp) to denote events with probability at least 1 − 1/n.

We require that the input distribution D be a product distribution
∏

i∈[n] Di.
Therefore, for all i ∈ [n], the ith entry of the input comes from an independent
distribution Di.

Theorem 12.3 For any ε ∈ (0,1], there exists a self-improving sorter for product
distributions where the following guarantees hold whp. (i) Limiting run time of
O(ε−1H(π(I)) + n), (ii) Data structure size of O(n1+ε), (iii) Training phase
length of O(nε), and (iv) Training run time of O(n lg n).

There appear to be two dissatisfying aspects of this theorem. First, the restriction
to product distributions, and second, the superlinear sized data structure. There are
lower bounds showing that both are necessary.

Theorem 12.4 Any self-improving sorter for arbitrary distributions that has a
limiting run time of O(H(π(I)) + n) requires 2�(n lg n) storage.

Theorem 12.4 shows that Fredman’s construction from Theorems 12.1 and 12.2
are space optimal. One can build on the proof ideas of this lower bound to show that
self-improving sorters for product distributions require superlinear storage.

Theorem 12.5 Fix any ε ∈ (0,1]. Any self-improving sorter for arbitrary product
distributions that has a limiting run time at most ε−1(H(π(I))+ n) requires n1+ε

storage.

A weaker version of Theorem 12.3, with a quadratic-sized data structure, is
proved in Section 12.3. Theorem 12.4 is proven in Section 12.3.3, which can be read
independently of the other sections. Before describing the self-improving algorithm,
we delve into basic information theory.

12.2 Information Theory Basics

Information theory plays a central role in the analysis of self-improving algorithms.
To prove optimality for a self-improving algorithm, one needs a lower bound on
the performance of the best possible algorithm. In many cases, information theory
provides the perfect tools to express such lower bounds. Much of the material
in this section is standard and can be found in the classic textbook of Cover and
Thomas (2006).

Information theory begins with the concept of Shannon entropy.

263

C. SESHADHRI

Definition 12.6 For a discrete random variable X over finite universe X , the
Shannon entropy is H(X) = −∑u∈X Pr[X = u] lg Pr[X = u].

A unique binary encoding of X is a one-to-one function f : X →{0,1}∗. (For
convenience, we simply say “encoding.”) For a random variable X , an important
quantity of student is the encoding length |f (X)|, where size is the string length. Thus,
for the random variable X , one could ask for the encoding function f that minimizes
the encoding length of X . Somewhat abusing notation, we will refer to encodings of
X , though it really refers to encodings of the universe X . This notation allows us to
ignore the universe X .

Shannon’s classic encoding theorem, stated as Theorem 12.7 relates the encoding
length to the entropy.

Theorem 12.7 (Cover and Thomas, 2006, Theorem 5.4.1) Any encoding of a
random variable X has expected length at least H(X). Furthermore, there exists
an encoding of expected length at most H(X) + 1.

Our primary application of this theorem is to comparison trees. Most standard
sorting algorithms work by comparing individual elements of the input array I (“is
I [a] ≤ I [b]?”). One can imagine “unrolling” the algorithm, to represent it as a binary
tree, where each node is a comparison. This tree is called a comparison tree. To “run”
the comparison tree on an input, we apply the comparison at a node, and move to
an appropriate child depending on the answer. The leaves of the comparison tree
contain the answer, which for sorting would be the induced permutation π(I). Note
that this abstraction of sorting ignores the data movement, and only considers the
comparisons required to sort.

Let us describe comparison trees more abstractly. Let U be an arbitrary universe,
and let X be a finite set. A comparison-based algorithm A to compute a function
X : U → X is a rooted binary tree A such that (i) every internal node of A represents
a comparison of the form “f (I) ≤ g(I)?”, where f ,g : U → R are arbitrary functions
on the input universe U ; and (ii) the leaves of A are labeled with outputs from X such
that for every input I ∈ U , following the appropriate path for I leads to the correct
output X(I). In our setting, U is the set of array, X is the set of permutations, and
the functions f ,g typically pick out specific elements of the input.

If A has maximum depth d, we say that A needs d comparisons (in the worst case).
For a distribution D on U , the expected number of comparisons (with respect to D)
is the expected length of a path from the root to a leaf in A, where the leaves are
sampled according to the distribution that D induces on X via X .

In a binary tree, all nodes have a binary encoding given by the path to the node
from the root. Edges to left/right children are encoded as 0/1, thereby giving a string
representation for paths. Thus, the comparison tree implicitly gives a binary encoding
of (the labels on) the leaves, and the depth corresponds to the encoding length. A
direct consequence of Theorem 12.7 is the following theorem.

Theorem 12.8 Let D be a distribution on a universe U and let X : U → X be
a random variable. Then any comparison-based algorithm to compute X needs at
least H(X) expected comparisons.

264

SELF-IMPROVING ALGORITHMS

A special, useful case of comparison trees are search trees for discrete random
variables X over an ordered universe. Each comparison is of the form “X ≤ v?” for
some v in the universe X 4.

We can give an explicit construction of a near optimal search tree for a random
variable. The proof is given as Exercise 12.1.

Lemma 12.9 Let X be a discrete real-valued random variable with support size k.
There exists a search tree that determines the value of X and has the following
properties.

� The tree makes expected H(X) + 2 comparisons.
� The maximum number of comparisons is at most 2 lg k.
� If an element x (in the range of X) has probability in [2−d,2−d+1), then the
depth of x in T is at most d + 2.

� Given an explicit description of X, the search tree can be computed in O(k lg k)
time.

The following lemma is an important tool in the analysis of self-improving
algorithms and was first discovered in that context. To get some context, consider
the self-improving sorter. On an input I , it makes some number of comparisons
to determine π(I). Our goal is to upper bound this number by H(π(I)). We will
describe a random variable Z (which is a deterministic function of I), such that the
comparisons will correspond to searching in the optimal search tree for Z. Thus, the
number of comparisons performed by the self-improving algorithm will be H(Z).
The following lemma asserts that if Z can be computed with few comparisons from
π(I), then H(Z) cannot be much larger than H(π(I)).

To formalize, we think of computing Z from I , with the random variable π(I) as
advice. The lemma is stated in terms of general random variables.

Lemma 12.10 Let D be a distribution on a universe U , and let X : U → X
and Y : U → Y be two random variables. Suppose that the function f defined by
f : (I,Y(I)) *→ X(I) can be computed by a comparison-based algorithm perform-
ing C comparisons on average over D. Then H(X) ≤ H(Y) + C + 1.

Proof Abusing notation, let X and Y denote the ranges of the functions X
and Y respectively. Thus, one can think of X as a distribution over X (and
analogously for Y). The proof strategy is to get an encoding of X , whose
expected length, under X , is an upper bound of H(X). The encoding of X uses
the optimal encoding of the set Y , under distribution Y , and the outcomes of
the comparison-based algorithm that computes X .

Let s be the optimal encoding (with shortest expected length) of Y . For
convenience, let the expected code length of s be Ls. By Theorem 12.7, H(Y) ≤
Ls ≤ H(Y) + 1.

4 We note a technical distinction between the usual concept of binary search trees (BSTs) with our definition
here. In standard BSTs, a node leads to three possibilities (< , = , >) while our notion only has two possibilities
(≤ , >). Standard BSTs technically give ternary encodings, while our notion is more suitable to standard
definitions of entropy.

265

C. SESHADHRI

Using f , we can convert s into a unique encoding t of X . Indeed, for every
I ∈ U , X(I) can be uniquely identified by a string t(I) that is the concatenation
of s(Y(I)) and additional bits that represent the outcomes of the comparisons
for the algorithm to compute f (I,Y(I)). Thus, for every element x ∈X , we can
define t(x) as the lexicographically smallest string t(I) for which X(I) = x,
and we obtain a unique encoding t for X . Let c(I) denote the number of
comparisons made for (I,Y(I)) and let the expected code length of t be Lt.
Observe that

Lt = ED[|t(X(I))|] ≤ ED[c(I) + s(Y(I))] = C + Ls ≤ H(Y) + C + 1.

By Theorem 12.7 again, Lt ≥ H(X), completing the proof. �

Finally, we recall the well-known property of the joint entropy of independent
random variables. The joint entropy of random variables X1,X2, . . . ,Xk can be
thought of as the entropy of a single k-tuple random variable (X1,X2, . . . ,Xk).

Claim 12.11 (Cover and Thomas, 2006, Theorem 2.6.6) Let H(X1, . . . ,Xn)

be the joint entropy of independent random variables X1, . . . ,Xn. Then
H(X1, . . . ,Xn) = ∑

i H(Xi).

12.3 The Self-Improving Sorter

The sorting algorithm is a version of bucket sort. Essentially, the training phase
identifies a linear set of disjoint intervals (buckets) such that the expected number
of input numbers within a bucket is constant. The sorting algorithm uses an optimal
search tree to search for each input number in these buckets. The buckets are sorted
using insertion sort. Since the buckets are disjoint, the final sorted order can be
determined in linear time.

We start by describing the data structures T that will be learned. Given specific
conditions on the data structures, we can complete the analysis of the limiting phase.
Lastly, we show how T is built in the training phase.

In general, expectations are taken over I ∼ D. We will use i ∈ [n] to refer to the
ith entry of an input, which is distributed as Di. We will assume that all the Di’s are
continuous, so two numbers have zero probability of being identical. This is mostly
a technical convenience, and can be removed using tie-breaking rules.

The data structures that form T will be parameterized by α > 1.

� The Bj buckets This is a sequence −∞ = b1 ≤ b2 ≤ b2 . . . bn ≤ bn+1 = ∞. We will
refer to the interval (bj,bj+1] as the jth bucket Bj. Note that the buckets partition
R. We require that the expected number of input numbers falling into any bucket
is constant (the choice of 10 is just for concreteness).

Property B: For all j ∈ [n], E[|I ∩ Bj|] ≤ 10.
� The Ti-trees For each i ∈ [n], Ti is an “α-approximate” search tree with leaves

corresponding to the buckets.

266

SELF-IMPROVING ALGORITHMS

1 2 3 nn− 1n− 2

f

1
2

3

n − 2
n − 1

n

b b b b b b

(a) The buckets

(x1,x2 , . . . ,xn)

T1 T2 Tn

b1 b2 b3 bnbn− 1bn− 2
(b) The self-improving sorter

Figure 12.1 (a) The construction of the ideal buckets. (b) A pictorial description of the limiting phase. In
this figure, we use empty squares to denote the xi s.

Definition 12.12 For any i ∈ [n], let Xi be the random variable denoting
the bucket that contains x ∼ Di. Denote by Hi the Shannon entropy of Xi,
H(Xi).

Property T: For all i ∈ [n], Ex∼Di [search time of x in Ti] ≤ α(Hi + 1).

If the distributions are known, one can construct “ideal” buckets such that
E[|I ∩ Bj|] = 1, and construct tress with α = 1. Consider the function f (v) :=
E[|I ∩ (−∞,v)|], the number of input numbers at most v. (This is the sum of CDFs
of Di.) Recall that the distributions Di are continuous. Then f is a continuous5,
monotone function going from 0 to n. The bucket boundaries are simply defined by
f −1(1), f −1(2), etc. Refer to Figure 12.1a. Given the buckets and knowledge of the
Di’s, Lemma 12.9 provides us with the Ti trees (with α = 1).

12.3.1 The Limiting Phase

The limiting phase is quite straightforward (also refer to Figure 12.1b). For conve-
nience, we use i to denote an input number, and j to denote a bucket. We denote the
input by I = (x1,x2, . . . ,xn).

Theorem 12.13 Assume that properties B and T hold. Then the expected running
time of SISLimiting(I) is O(α(H(π(I)) + n)).

The expected running time can be split into the time required for determining the
buckets, and the total running time of insertion sort on each bucket (quadratic in

5 Without continuity, Bj buckets might not exist. since there could be an individual number that repeatedly
appears in an input. Of course, this would only make sorting easier. We could find all such numbers and place
them into special buckets, where further sorting is not needed.

267

C. SESHADHRI

SISLimiting(I)

1. For each i ∈ [n], determine the bucket containing xi using Ti.
2. Initialize empty output.
3. For each j ∈ [n], sort I ∩ Bj using insertion sort, and append to output.

Figure 12.2 Self-improving sorter: limiting phase.

bucket size). Property B gives a handle on the former, while the latter is bounded by
property T . The expected running time is at most:∑

i∈[n]

Ex∼Di [search time of x in Ti] +
∑
j∈[n]

E[|I ∩ Bj|2]

≤
∑
i∈[n]

αHi + αn +
∑
j∈[n]

E[|I ∩ Bj|2]. (12.1)

As we show in Lemma 12.14,
∑

i Hi ≤ H(π(I)) + O(n) and for all j, E[|I ∩ Bj|2] =
O(1). These bounds complete the proof of Theorem 12.13.

The following lemma is what connects the sum of search times to the optimal
sorting time of H(π(I)). The full independence of the Di’s is crucially used in this
proof. The lemma applies for any choice of buckets (not just buckets constructed by
the self-improving sorter).

Lemma 12.14
∑

i Hi ≤ H(π(I)) + 2n.

Proof Let Xi be the random variable denoting the bucket that xi falls
into. Since the Xis are independent, by Claim 12.11 the joint entropy
H(X1,X2, . . . ,Xn) is exactly

∑
i∈[n] H(Xi) = ∑

i∈[n] Hi.
Let X be the random variable (X1,X2, . . . ,Xn). We apply Lemma 12.10, with

Y =π(I). We need to give a comparison-based algorithm that computes X given
(I,π(I)). The “advice” π(I) allows the algorithm to sort I for free. The desired
comparison-based algorithm uses π(I) to sort I (for no extra comparisons) and
then merge the sorted list with [b1,b2, . . . ,bn+1 = ∞]. The merging requires
at most 2n comparisons, after which the bucket of every xi in I is determined.
Thus, H(X) ≤ H(π(I)) + 2n. �

The next claim is proven by property B and only requires pairwise independence
of the Di’s. (Proof in Exercise 12.7.)

Claim 12.15 For all j ∈ [n], E[|I ∩ Bj|2] = O(1).

12.3.2 The Training Phase

The training phase uses independent inputs I1,I2, . . . ,It to construct a data structure.
Instead of directly proving the full Theorem 12.3 here, it is instructive to get a
quadratic sized T (the ε = 1 case). The size of T will be O(n2) and the training phase

268

SELF-IMPROVING ALGORITHMS

Bucket

1. Merge λ = �c ln n� independent inputs into a single sorted array L of length λn.
2. Output L(λ),L(2λ), . . . ,L(λn) as the bucket boundaries.

Figure 12.3 Self-improving sorter: constructing buckets.

Tree

1. Take � = �cn2 ln n� independent inputs. For each i ∈ [n], let Si denote the set of �

independent draws from Di.
2. For each i ∈ [n]:

1. For each j ∈ [n], let p̂ij be the fraction of numbers in Si that are contained in Bj .
2. Output, as Ti, the search tree over the buckets given by Lemma 12.9 applied to the

distribution {p̂ij} (varying over j).

Figure 12.4 Self-improving sorter: constructing search trees.

will last O(n2 lg n) rounds. We split the training phase into λ + � rounds, where the
first λ rounds are used to learn the buckets, and the latter � are used to learn the trees.

We use c to denote a sufficiently large constant, required to get sufficient concentra-
tion in the application of Chernoff–Hoeffding bounds. (Refer to Chap. 8, Exercise 8.3
for more details on Chernoff bounds.)

The “ideal” buckets would each contain λ elements from the union of λ inputs.
So we simply construct the empirical buckets with respect to λ inputs. We require
λ = �(lg n) for taking a union bound over the n buckets.

Once the buckets are constructed, we can simply estimate the distribution of Xi (see
Definition 12.12) to construct approximately optimal search trees. We will of course
need to prove that these trees are approximate optimal with respect to the original
distribution.

Claim 12.16 The Bj-buckets satisfy property B with probability at least 1−1/n2.

Proof Consider the ideal buckets given in Figure 12.1a. We will denote these
with primed variables, to distinguish from the buckets constructed by the
algorithm. The ideal buckets are given by a sequence −∞ = b′

0 ≤ b′
1 ≤

b′
2 ≤ · · · ≤ b′

n = ∞ with the following property. Let the jth ideal bucket
be B′

j = (b′
j−1,b

′
j]. For every j, E[|I ∩ B′

j|] = 1. Observe that the expected
size E[|L ∩ B′

j|] is exactly λ. Note that |L ∩ B′
j| can be expressed as a sum of

independent Bernoulli random variables (Exercise 12.7). By a multiplicative
Chernoff bound (Dubhashi and Panconesi, 2009, Part 2, Theorem 1.1), for
each j ∈ [n], Pr[|L ∩ B′

j| < λ/2] ≤ exp(−λ/8) = exp(−(c/8) lg n) ≤ 1/n3 (for
sufficiently large c). By a union bound over the ideal buckets, with probability
at least 1 − 1/n2, all ideal buckets contain at least λ/2 points of L. Each bucket
constructed in Bucket contains λ contiguous points of L. These constructed
buckets contain at most two ideal buckets, and intersects at most four ideal
buckets. (Each endpoint might lie in a different ideal bucket.) Thus, for every
constructed bucket Bj, E[|I ∩ Bj|] ≤ 4. �

269

C. SESHADHRI

Claim 12.17 The Ti-trees constructed by the algorithm (refer to Figure 12.4)
satisfy Property T with probability at least 1−1/n2. Formally, the expected search
time in Ti is at most 2Hi + 5.

Proof First, fix i,j ∈ [n]. Let pij be the probability that x ∼ Di lands in bucket
Bj. Let p̂ij be the fraction of entries in Si that land in Bj. Observe that E[p̂ij] = pij,
and by the Hoeffding bound (Dubhashi and Panconesi, 2009, Part 2, Theorem
1.1), Pr[|pij − p̂ij| > 1/2n] ≤ 2 exp(−2�/n2). By the choice of �, this probability
is at most 1/n5.

We take a union bound over all i,j. Thus, with probability at least 1 − 1/n3,
for all i,j ∈ [n], |p̂ij − pij| ≤ 1/2n. Henceforth, assume this holds.

Let us fix a choice of i. Note that Ti is the optimal search tree with respect
to p̂ij, but the expected search time needs to be computed according to x ∼ Di.
We apply the properties of the optimal search tree given in Lemma 12.9. If
x ∈ Bj, then the search time is the depth of Bj in Ti, which is at most �lg p̂−1

ij �≤
lg p̂−1

ij + 1. The maximum search time is at most 2 lg n. Let us partition the
support [n] into H := {j|pij ≥ 1/n} and L := [n] \ H. The expected search
time in Ti is at most:∑

j∈L

pij(2 lg n) +
∑
j∈H

pij(lg p̂−1
ij + 1)

= 2
∑
j∈L

pij lg(1/pij) +
∑
j∈H

pij lg(1/pij) +
∑
j∈H

pij lg(pij /̂pij) + 1

= 2Hi + 1 +
∑
j∈H

pij lg(pij /̂pij).

Thus, we get the desired optimal time of 2Hi + 1, with an additional “error”
term. The error term is the Kullback–Leibler (KL) divergence between the
true distribution and the estimated version. Using that fact that |̂pij − pij| ≤
1/2n and that pij ≥ 1/n for j ∈ H, we can upper bound the error term by 4
(Exercise 12.3). �

Reducing the Storage of T to nε The hint to reducing the size of the trees is given
in the end of the previous proof. Indeed, it is overkill to estimate all of the pijs so
accurately. We only need to get the search time to within a constant factor of Hi,
which can be obtained with a cruder estimate of pijs. Intuitively, suppose (for a fixed i)
we knew only the buckets Bj where pij ≥ n−ε. There are at most nε such “heavy”
buckets. We could store the optimal search tree for just these buckets using nε storage.
For the remaining buckets, we can simply perform binary search.

Consider x ∼ Di. Recall that the optimal time to find x in Bj is approximately
lg 1/pij. If x landed in a heavy bucket, then the search time is identical to the optimal
time. If not, then the search takes lg n time. Since the bucket is not heavy, the optimal
time is lg 1/pij ≥ lg n−ε = ε lg n. Thus, this construction satisfies property T, with the
factor α = 1/ε.

270

SELF-IMPROVING ALGORITHMS

We leave the formal description of the tree construction and the optimality proof
to Exercise 12.6.

12.3.3 The Lower Bound for Self-Improving Sorters

The self-improving sorter described in the previous section crucially uses the inde-
pendence of the Di distributions. In this section, we investigate the connections
between the (in)dependence of the Di distributions and the storage required by the
self-improving algorithm.

The next result shows that if the Di’s are arbitrarily correlated, then any self-
improving algorithm requires exponential storage. This result will also imply the
storage required for Fredman’s construction in Theorem 12.1 is essentially optimal
(up to exponential factors).

We require the following definition.

Definition 12.18 For a parameter γ > 1, a comparison tree for sorting is
γ -optimal for distributionD, if the expected number of comparisons for sorting
an input from D is at most γ (H(π(I)) + n).

A self-improving sorter is γ -optimal for D if: assuming the input distribution
is D, the limiting run time is at most γ (H(π(I)) + n).

The lower bounds are basically counting arguments. We ignore the running time
or length of the training phase, and abstract it away as follows. In the training phase,
the self-improving algorithm has unrestricted access to D. At the end of the training
phase, it is allowed only s bits of storage. In the limiting phase, it cannot change
these bits.

One can view the s bits of storage as (implicitly) storing a γ -optimal comparison
tree for small γ . Focus on distributions D that are uniform over subsets of permu-
tations, as in Theorem 12.1. There are 2�(n!) such distributions. If a self-improving
sorter works for all distributions, then the s bits of storage must be able to encode a
γ -optimal comparison tree for all these 2�(n!) distributions. If 2s � 2�(n!), then the
same setting of s bits must work for many distributions. We will show that this is not
possible, and thus s must be �(n!). The lower bound is surprisingly robust even for
fairly large γ .

Theorem 12.19 Let γ ∈ (1,(lg n)/10). A self-improving sorter that is γ -optimal
for all distributions requires �(2(n lg n)/6γ) bits of storage.

Proof Set h = (6γ)−1n lg n. For every subset � of 2h permutations, let D�

denote the uniform distribution on �. The total number of such distributions
is
(n!

2h

)
> (n! /2h)2h

.
By definition, a γ -optimal comparison tree sorter for D� makes γ (n + h)

expected comparisons on inputs from D�. Fix any such sorter A. By Markov’s
inequality, at least half of the permutations in � are sorted by A in at most
2γ (n + h) comparisons. But, within 2γ (n + h) comparisons, the procedure
A can only sort a set P of at most 22γ (n+h) permutations. Therefore, if A is

271

C. SESHADHRI

γ -optimal for distribution D�′ , then �′ must have half its elements from P.
This limits the number of such �′ to(

n!
2h/2

)(
22γ (n+h)

2h/2

)
< (n!)2h−1

2γ (n+h)2h
.

Consider a set of comparison trees, such that for every D�, there is some tree
in this set that is γ -optimal. The size of this set is at least

(n! /2h)2h
/((n!)2h−1

2γ (n+h)2h
) > (n!)2h−1

2−2h(h(γ+1)+γ n).

The self-improving sorter must have enough storage to uniquely encode every
comparison tree in this set. Thus, its storage s must be at least the logarithm
of the above bound. Plugging in the choice of h = (6γ)−1n lg n and using γ <

(lg n)/10, we can bound s = �(2h) (Exercise 12.8). �

A refinement of this argument proves the time-space tradeoff for self-improving
algorithms for product distributions.

Theorem 12.20 Let γ > 1. A self-improving sorter that is γ -optimal for product
distributions requires n1+�(γ) storage.

12.4 Self-Improving Algorithms for 2D Maxima

The problem of 2D coordinate-wise maxima is a classic computational geometry
problem. The input is a set of n points P in R2, represented as an array of coordinate
pairs. For a point x, we use x(1),x(2) to denote the coordinates. A point x dominates
point y if x(1) ≥ y(1) and x(2) ≥ y(2). A point that is not dominated by any other
point in P is called maximal (or a maximum). The problem is to find the set of maxima
in P.

(We will use left/right and above/below to denote relative positions in the plane.)
The maxima form a “staircase” such that all other points of P lie below the staircase.
This is also called the Pareto frontier. Conventionally, the algorithm must also output
the maxima in sorted order along the staircase. This is equivalent to a sorted order
(in either coordinate). Refer to Figure 12.5a. All points in the shaded region are
dominated by the maxima.

The problem of computing the set of maxima can be reduced to sorting, using
the sweep line approach. Begin by sorting P from right to left. Imagine a vertical
sweep line � processing points from right to left. We will maintain the invariant that
all maximal points to the right of � have been determined (in sorted order). Suppose
the sweep line now processes the point x. Since all maximal points to the right of x
have been found, we also know the highest such maximal point y. If x is lower than
y, x is dominated by y (and can be removed). Otherwise, x is maximal, and is added
to the output. The sweep line then processes the next point, to the left of x. Observe
that, after the initial sorting, the algorithm runs in O(n) time.

Clarkson et al. (2014) designed self-improving algorithms for 2D maxima. The
input is an array of points (x1,x2, . . . ,xn), where xi ∼ Di. Each Di is a distribution
over R2 and independent. Why can’t we simply run a self-improving sorter over the

272

SELF-IMPROVING ALGORITHMS

x1

x2
x3

x4

(a) Maxima

x1

x2

x3

xn/2

(b) A challenging distribution

p

q

(c) Correlations in output

Figure 12.5 (a) The staircase formed by maxima. (b) Points that lie in the gray region are easy to discard,
but those lying near the staircase require more time. (c) If a distribution generates p instead of q, the output
changes dramatically.

1-coordinates and run the linear time sweeping procedure to get the maxima? The
answer to this gets to tricky issues in defining optimality for maxima computation.

Consider Figure 12.5a. Suppose, for i ∈ [1,4], Di generates the fixed point xi. The
other (n − 4) distributions generate a uniform at random point from the darkest
grey region. Observe that the 1-coordinates of the latter points can have any of
(n − 4)! permutations with equal probability. Thus, the entropy of the sorted order
of 1-coordinates of the input is �(n lg n), which is the limiting time of the self-
improving sorter. On the other hand, the output is simply (x1,x2,x3,x4). Indeed,
the classic output sensitive 2D maxima algorithm of Kirkpatrick and Seidel (1986)
finds the maxima in O(n lg h) time, where h is the number of maximal points. (Here,
h = 4.) This raises the issue of accurately describing the “right” optimal limiting
running time.

Consider Figure 12.5b. For i ≤ n/2, Di generates the fixed point xi, all of which
are maximal. For i > n/2, Di behaves as follows. It first generates a point on the
staircase. With probability 1/n, it perturbs this point above the staircase. With the
remaining probability, it moves it slightly below the staircase. The final algorithm
must be correct on all inputs. For each xi (i > n/2), determining maximality seems
equivalent to determining fairly precisely its position with respect to x1, . . . ,xn/2. This
would require �(lg n) time for each such point, and �(n lg n) time seems unavoidable
overall.

Contrast this with the situation where with probability 1 − 1/n, Di (i > n/2)
generates a point in the grey region. With the remaining probability, it generates
a point above the staircase, as in the previous setting. Clearly, one can determine
in O(1) time whether xi lies in the gray region, by simply comparing with x3. In
expectation, at most one of these points lies above the staircase, for which we can
determine maximality in O(lg n) by binary search. Overall, there is a O(n) algorithm
in this scenario. The takeaway is that the positioning of nonmaximal points affect the
optimal running time. Similar considerations appear in instance optimal algorithms,
as discussed in Chapter 3.

The Correlations For the sorting analysis, it was crucial that we could relate the
optimal running time to independent searches over the buckets. This independence
is exploited in the optimality analysis of Theorem 12.13. Intuitively, one number of
the input does not affect the relative order of other numbers. But this is not true for

273

C. SESHADHRI

maxima. Consider Figure 12.5a. There are two specific points, p and q. The other
points are simply referred to as the “remaining points.” Suppose D1 places a point
either at p or q. Other distributions choose randomly from the remaining points. The
optimal algorithm will determine the relative ordering of x2, . . . ,xn only when D1
generates q. This introduces dependencies in the optimal algorithm’s behavior that
prevents analyses like Theorem 12.13. Indeed, in the presence of such examples, it is
not clear how self-improving algorithms can exploit independence of the Di’s.

In the remainder of this chapter, we will discuss the specific model of decision trees
uses to formalize the notion of optimality for self-improving maxima algorithms.
Then, we will describe the actual self-improving algorithm. We do not give any details
of the analysis.

12.4.1 Certificates and Linear Decision Trees

We need to make precise the notion of an optimal algorithm for 2D maxima, over a
distributionD. Unlike sorting, where we leverage information theory for this purpose,
our approach here is less general. As the previous section shows, there are a number
of challenges that maxima pose, and we do not know if there is a self-improving
algorithm that is optimal with respect to any possible algorithm.

Let us first address the output sensitivity issue. Even though the actual output
size may be small, additional work is necessary to determine which points appear
in the output. We also want to consider algorithms that give a correct output on all
instances, not just those in the support of D. For example, suppose for all inputs in
the support of D, there was a set of (say) three points that always formed the maxima.
The optimal algorithm just for D could always output these three points. But such
an algorithm is not a legitimate maxima algorithm, since it would be incorrect on
other inputs.

To handle these issues, we demand that any algorithm must provide a simple proof
that the output is correct. This is formalized through certificates.

Definition 12.21 Let P ⊆ R2 be finite. A maxima certificate γ for P consists of
(i) the indices of the maximal points in P, sorted from left to right; and (ii) a per-
point certificate for each non-maximal point p ∈ P, i.e., the index of an input
point that dominates p. A certificate γ is valid for P if γ satisfies conditions (i)
and (ii) for P.

A correct algorithm might not produce a certificate, but most known algorithms
implicitly provide such a certificate. Clearly, the simple sweep-line algorithm does so;
a point x is removed from consideration iff the algorithm discovers an input point
y that dominates it. Note that certificates are not unique, and this is one of the
challenges for designing optimal maxima algorithms. In Figure 12.5a, the darker the
region, the more certificates for nonmaximality. The optimal algorithm likely needs
to discover the “fastest” certificate. Our notion of optimality crucially depends on the
definition of certificates. Again, we point the reader to Chapter 3 on instance optimal
algorithms, where similar notions appear.

Linear Comparison Trees For sorting, the notion of optimal limiting time was
defined with respect to any comparison tree. Intuitively, one operation only generated
one bit of information. For 2D maxima, we do not know how to compete with such a

274

SELF-IMPROVING ALGORITHMS

powerful model. Instead, we consider a weaker model, where nodes in the comparison
tree correspond to linear queries.

Definition 12.22 A linear comparison tree (LCT) T is a rooted binary tree. Each
node v of T is labeled with a query of the form “is p above �v?” Here, p is an
input point and �v a line. The line �v can be obtained in four ways, in increasing
order of complexity: (i) a fixed line independent of the input (but dependent on
v); (ii) a line with a fixed slope (dependent on v) passing through a given input
point; (iii) a line through an input point and a fixed point qv, dependent on v;
and (iv) a line through two distinct input points.

Given an input P, an evaluation of a linear comparison tree T on P is the node
sequence that starts at the root and chooses in each step the child according to the
outcome of the current comparison on P.

This model does not capture queries that involve relationships of more than three
points. Nonetheless, the model is powerful enough to capture standard computational
geometry algorithms, as those described by de Berg et al. (2008). Typically, 2D
maxima algorithms only compare coordinates between individual points, which is
captured by query (ii). (The slope of the line is either zero or infinity.) The final self-
improving algorithm will also only use query (ii).

Now for the key definition that formalizes our desired limiting running time.

Definition 12.23 An LCT T computes the maxima of a planar point set if every
leaf v of T is labeled with a maxima certificate that is valid for every input that
reaches v (on evaluation by T).

The depth dv of node v in T is the length of the path from the root of T to v. Let
v(P) be the leaf reached by the evaluation of T on input P. The expected depth of T
over D is defined as

dD(T) = EP∼D[dv(P)].

Finally, we have the benchmark limiting running time to aim for.

Definition 12.24 Let T be the set of LCTs that compute 2D maxima. For a
distribution D, define OPTMAX(D) as infT ∈T dD(T).

Thus, for inputs drawn from D, it is the expected depth of the best LCT computing
2D maxima. The limiting running time of our self-improving algorithm will run in
time O(OPTMAX(D) + n).

12.4.2 The Self-Improving Algorithm

Rather surprisingly, the data structures built in the learning phase are identical to
those used for sorting. These will be built using the 1-coordinate of the input points.
Somewhat counterintuitively, despite OPTMAX(D) potentially being defined by a
tree that makes arbitrary line comparisons, our optimal self-improving algorithm
purely uses vertical lines (compares 1-coordinates).

275

C. SESHADHRI

Figure 12.6 A pictorial description of the self-improving algorithm for 2D maxima.

Recall the buckets used in the self-improving sorter. The bucket boundaries are
every λth element of a merged (sorted) list of 1-coordinates of λ inputs. It will be
convenient to interpret any interval B of 1-coordinates as the 2D region B × R. We
will refer to the latter as a slab. Using the notation of b1 ≤ b2 ≤ b3 . . . ≤ bn+1 for the
bucket boundaries, a slab is defined as (bj,bk] × R for j < k. If k = j + 1, we refer to
this as a leaf slab. Note that all internal nodes of the Ti-trees can be interpreted as
placing a point in a slab. Refer to Figure 12.6. The black circles denote the bj’s, and
the region between two vertical lines is a slab.

The self-improving algorithm (in the limiting phase) can be thought of as a
refinement of the sweep line algorithm discussed at the beginning of Section 12.4.
The key idea is to interleave the sorting of 1-coordinates with the maxima discovery.
The searching is conservative, in that we only search for points that have the potential
of being the next maximal point.

Let us revisit the self-improving sorting algorithm, and imagine that searches in
the different Ti’s are proceeding in parallel. Consider some snapshot in time. The
search for (the 1-coordinate of) each xi is at some node in Ti; equivalently each xi
has been placed in some slab. Some of these searches have reached leaf slabs, and the
corresponding points has been placed in leaf slabs. By the properties of the buckets,
the expected number of points falling in each leaf slab is O(1). We can afford to sort
the 1-coordinates of all points placed in leaf slabs and find the maxima among them.
By choosing the searching ordering carefully, we can ensure the following. At any
time, there is a slab boundary such that all maxima to the right of this boundary
have been discovered. Whenever we advance the search for any point, we first check
if it is dominated by any of the discovered maxima. If so, we can remove this point
and save the (remaining) time to search for it. This is precisely the savings over the
self-improving sorter.

We describe the limiting phase of the self-improving algorithm. For the sake of
exposition, we defer the details of data structure implementations to Exercises 12.10
and 12.11. The important variables are

� �: This is the equivalent of the vertical sweep line. It only takes as values the slab
boundaries. Initially, it is set to bn+1 = ∞ and will only decrease. Abusing notation,
we will say “decrement �” to mean moving � from bi to bi−1.

276

SELF-IMPROVING ALGORITHMS

SIMaxima
While � > b1:

1. Find the rightmost slab boundary r, among all the active Sis. Find an arbitrary active
slab Sj with right slab boundary r.

2. If r = �:
1. If xj is dominated by p∗: mark xj as inactive and nonmaximal (certified by p∗).
2. Else, if Sj is L (the leaf slab with � as the right boundary): the search of xj has

completed, so mark xj as inactive.
3. Else: advance the search for xj by one step (thereby updating Sj).

3. Else (r < �):
1. Sort all points in L by 1-coordinate, and update the set of maxima and p∗.
2. Decrement �.

Figure 12.7 Self-improving maxima.

� Active/inactive points: These are points currently being searched. Inactive points
are either classified as maximal or are assigned a certificate of nonmaximality.

� L: This is the leaf slab whose right boundary is �.
� p∗: This is the leftmost maximal point to the right of �. It is also the highest point

to the right of �.
� Si slabs: This represents the current snapshot of the searches. Each active point xi

is currently placed in a slab Si, which corresponds to a node in Ti. Initially, this
slab is simply (b1,bn+1]. Every step of a search updates the slab.

The algorithm is described in Figure 12.7. Refer to Figure 12.6, showing a snapshot
of the algorithm. All maximal points in the grey region have been determined, and p∗
is the leftmost such maximal point. All points below the dashed line can be certified
as nonmaximal. The lightly shaded slab Si corresponds to the current state of the
search of a point xi.

At every stage, the active points have not yet been placed in leaf slabs, but are
known to be to the left of �. Our aim is to find all the (potential maxima) points
in the leaf slab L, with the minimum amount of searching. Among all the right
slab boundaries of the Si slabs (recall that these are only for the active points), let
r denote the rightmost slab boundary. If r < �, then there is no active point in L.
Equivalently, all points in L have already been found. So the set of maxima can be
updated with the points in L, � can be decremented, and the sweep has progressed.
The real work happens when r = �, so there are active points potentially in �. In this
case, the algorithm finds an arbitrary active point xj, whose corresponding slab Sj has
right boundary �. If xj is dominated by p∗, then the search for xj can be terminated
immediately. Otherwise, the search for xj proceeds one step. The optimality of the self-
improving algorithm hinges on the termination of searches for nonmaximal points.

12.5 More Self-Improving Algorithms

We give a short summary of other results on self-improving algorithms.
Self-Improving 2D Delaunay Triangulations The Delaunay triangulation and its

dual, the Voronoi diagram, are fundamental constructs in computational geometry.
They can be built in O(n lg n) time for n points in R2. One of the first generalizations of

277

C. SESHADHRI

the self-improving sorter was for Delaunay triangulations (given in Ailon et al., 2011).
Conceptually, it follows the sorting paradigm almost exactly, where each step/data
structure of the algorithm is replaced with a more complex geometric object. The
bucket boundaries are replaced by an ε-net for disks; the buckets themselves by a
Delaunay triangulation of this ε-net; the search trees are distribution-optimal search
trees for points in the plane. Simple operations like merging lists of sorted numbers
or sorting within buckets become fairly complex procedures. There is no challenge
of output sensitivity (as there is for 2D maxima), so one can achieve optimality with
respect to arbitrary comparison trees.

Self-Improving 2D Convex Hulls Getting self-improving algorithms for 2D convex
hulls is surprisingly tricky, because of complicated dependencies on the output
structure. Conceptually, the approach is similar to that of 2D maxima. As with the
latter, the optimality is shown only with respect to LCTs. The slab structure and search
trees used are identical. The main new idea is to learn a nested sequence of convex
polygons, such that the probability that a point is on the convex hull is related to
its position in these nested polygons. The number of comparisons made by the final
algorithm is optimal, but the data structure operations add an additive overhead of
O(n lg lg n) time. Thus, the final running time is slightly suboptimal. The first paper
by Clarkson et al. (2010) on this problem claimed the optimal additive term of O(n),
but had a serious error. The final result was obtained by Clarkson et al. (2014), in
conjunction with the 2D maxima result.

Self-Improving Sorters, Beyond Product Distributions This is a natural and com-
pelling question, in light of the exponential storage lower bound for arbitrary
distributions. Recent work by Cheng et al. (2020) studied two richer classes of
distributions: mixtures of m product distributions and linearly correlated classes. The
former is an important generalization, and provides an interpolation between vanilla
product distributions (m = 1) and arbitrary distributions (m = n!). The limiting time
and storage are O(ε−1(H(π(I)+n))) and O(mεn1+ε +mn) respectively, matching the
m = 1 bound of Theorem 12.3. But the training phase lasts for O(mn) rounds, which
is significantly larger than the nε bound of Theorem 12.3.

12.6 Critique of the Self-Improving Model

The Successes The self-improving framework has something new to say about classic
problems such as sorting, 2D Delaunay triangulations, and convex hulls. Compu-
tational geometers regularly study assumptions under which the classic O(n lg n)
running time bound can be beaten. The series of current results share a common
set of techniques, which makes for an underlying theory (instead of just a collection
of results).

The Shortcomings All of the current results are for O(n lg n) time problems, and that is
no coincidence. For all these problems, we have nuanced understanding of the lower
bounds, which give an analytic handle on the optimality of the limiting phase. All the
running time improvements come from faster search, which can be related to entropy-
like expressions. A similar issue appears in Chapter 3 for instance-optimal algorithms.

This pinpoints a major roadblock in designing self-improving graph algorithms.
For problems such as shortest paths, routing, flows, etc., we do not have a good handle
on lower bounds with respect to a distribution on inputs. A somewhat subtle issue

278

SELF-IMPROVING ALGORITHMS

is that for approximation problems, concentration inequalities suggest “trivial” self-
improving algorithms. In the training phase, the algorithm precomputes solutions
for all the sampled inputs. In the limiting phase, the algorithm simply tries out all
of these candidate solutions, and outputs the best option. As an example, consider
the minimum spanning tree (MST) problem over n vertices, where each edge weight
is generated from an independent distribution. Our aim is to solve the problem in
o(n2) time. Under certain assumptions, Goemans and Vondrák (2006) prove that
there is a set of O(n lg n) edges that contain the MST with high probability. Thus,
the self-improving algorithm would simply find these edges in the training phase. In
the limiting phase, it could run an MST algorithm on this subset. Unfortunately, to
get a zero failure probability, the algorithm would be forced to look at all edges to
find unlikely events (going back to the vanilla algorithm). It seems challenging to find
graph problems that lead to compelling self-improving algorithms.

Connections to Other Models Chapter 3 discusses instance optimal algorithms. This
is philosophically quite different from self-improving algorithms, since instance
optimality is about specific inputs that are easy, rather than input distributions that
are easy. Nonetheless, for the 2D maxima problem, there is a striking similarity
between the challenges and techniques: the important of output-sensitive algorithms,
the notion of certificates of output, and the appearance of entropy (like) terms in the
analysis. Could there be some formal connection between these models?

Chapter 29 is on data-driven algorithm selection. In this setting, there is a fixed
class of algorithms and a distribution D on inputs. Suppose we selected an algorithm
from this class by first sampling a few inputs (the training data) and outputting the
best algorithm for the training data from the class. How well does this generalize?
Here, the connections with self-improving algorithms are direct. The self-improving
sorter implicitly constructs a class of potential algorithms through the data structure
T (the buckets and search trees). The training phase essentially selects an algorithm
from this class, based on the inputs seen thus far. The optimality argument of the
self-improving algorithm can be thought of as a proof of generalization.

The most intriguing connection is with Chapter 30, combining machine learning
(ML) models (from, say, deep learning) with algorithms, to adapt to their input. This
is uncannily similar to the self-improving framework. The following example was first
introduced by Kraska et al. (2018), though Lykouris and Vassilvitskii (2018) give the
following formalization. Take the simple example of (repeatedly) searching among a
set of n objects. The standard solution is to store these objects sorted by an index and,
of course, do binary search. Suppose one had a predictor for the position of a query
element, based on some other features of the object. This could be used to speed up
the search, presumably by searching around the predicted position using finger search
trees. If the prediction is accurate, we beat binary search. Otherwise, we wish to do no
worse than it. This is analogous to the self-improving sorter. The buckets and trees
can be thought of as predictors for the positions of elements, which are sufficiently
accurate if the distribution is learned correctly. Lykouris and Vassilvitskii (2018) have
results for online caching in this setting. Practically, the most compelling aspect of
their work is that the algorithms designed are oblivious to the predictor (unlike self-
improving algorithms, where the “predictors” are explicitly constructed through the
data structures). The connection between these models is an exciting direction for
future work.

279

C. SESHADHRI

The Path Forward We provide a list of open problems and directions in self-improving
algorithms.

1. Get a self-improving sorter for mixtures of m product distributions, with o(mn)
length training phase (refer to Cheng et al., 2020).

2. Get a self-improving 2D convex hull algorithm that has running time O(OPT +n).
The current bound is O(OPT + n lg lg n), given by Clarkson et al. (2014).

3. Get optimality for self-improving 2D convex hulls and maxima, with respect to
general comparison trees, not just LCTs. This will likely require a new set of
techniques.

4. Get self-improving algorithms for 2D convex hulls and maxima, where the input
distribution is a mixture of product distributions. Given the recent results for
sorting, this appears to be a promising direction for future work.

5. Get self-improving algorithms for higher dimensional Delaunay triangulations
and convex hulls. This seems like an excellent candidate to go beyond O(n lg n)
problems. One would likely have to extend the current toolkit significantly, espe-
cially to deal with the variable output complexity.

6. Design self-improving graph algorithms. This would be an exciting development
for the self-improving model, and may require a rethink of the current framework.
Currently, we require the algorithm to be always correct, which may be too
restrictive. Likely candidates for problems are spanning subgraphs, shortest paths,
and routing/flow problems.

7. Consider settings where the inputs come from a Markov distribution. Currently,
we think of the input distribution D as fixed, generating independent inputs. One
could think of there being an unknown Markov process that generates inputs to
the algorithm. It would be interesting to come up with even a toy problem in this
setting that leads to some new algorithmic techniques.

8. Explore the connection of self-improving algorithms to recent applied work on
algorithms with predictors. In terms of branching out of theory, this appears to
be the most significant direction.

Acknowledgments

The author would like to thank Jérémy Barbay, Anupam Gupta, Akash Kumar, Tim
Roughgarden, and Sahil Singla for their valuable comments on this chapter. This
chapter reads significantly better because of their suggestions.

References

Ailon, Nir, Chazelle, Bernard, Clarkson, Kenneth L., Liu, Ding, Mulzer, Wolfgang, and
Seshadhri, C. 2011. Self-improving algorithms. SIAM Journal on Computing, 40(2),
350–375.

Cheng, Siu-Wing, Jin, Kai, and Yan, Lie. 2020. Extensions of self-improving sorters. Algorith-
mica, 82, 88–102.

Clarkson, K. L., Mulzer, W., and Seshadhri, C. 2010. Self-improving algorithms for convex
hulls. ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1546–1565.

Clarkson, Kenneth L., Mulzer, Wolfgang, and Seshadhri, C. 2014. Self-improving algorithms
for coordinatewise maxima and convex hulls. SIAM Journal on Computing, 43(2),
617–653.

280

SELF-IMPROVING ALGORITHMS

Cover, Thomas M., and Thomas, Joy A. 2006. Elements of Information Theory, 2nd ed. Wiley-
Interscience.

de Berg, Mark, Cheong, Otfried, van Kreveld, Marc, and Overmars, Mark. 2008. Computa-
tional Geometry. Springer.

Dubhashi, D. P., and Panconesi, A. 2009. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press.

Fredman, Michael L. 1976. How good is the information theory bound in sorting? Theoretical
Computer Science, 1(4), 355–361.

Goemans, Michel X., and Vondrák, Jan. 2006. Covering minimum spanning trees of random
subgraphs. Random Structures and Algorithms, 29(3), 257–276.

Kirkpatrick, David G., and Seidel, Raimund. 1986. The ultimate planar convex hull algorithm?
SIAM Journal on Computing, 15(1), 287–299.

Kraska, Tim, Beutel, Alex, Chi, Ed H., Dean, Jeffrey, and Polyzotis, Neoklis. 2018. The
case for learned index structures. International Conference on Management of Data
(SIGMOD), pp. 489–504.

Lykouris, Thodoris, and Vassilvitskii, Sergei. 2018. Competitive caching with machine learned
advice. In International Conference on Machine Learning (ICML), pp. 3302–3311.

Exercises

Exercise 12.1 Consider a discrete distribution D on [n]. Construct a search tree
whose expected search time is O(H(D) + 1). [Hint: do binary search, but split the
probability mass in half. But what if half is not possible? To bound the maximum
depth, switch to vanilla binary search after some comparisons.]

Exercise 12.2 In this exercise, we will prove Theorem 12.2. This will require some
setup.

1. The conditional entropy H(Y |X) is defined as
∑

x∈X Pr[X = x]H(Y |X = x).
Prove the chain rule: H(Y |X) = H(X,Y) − H(X).

2. The key to generalizing the proof of Theorem 12.1 is in defining the random
variables Zi as follows. Let Zi be the position of xi when inserted into the sorted
order of I≤i−1. Follow the algorithm in the proof of Theorem 12.1, appropri-
ately generalized to the setting of Theorem 12.2. Prove that the insertion of
xk+1 can be done in expected H(Zk+1|Z1,Z2, . . . ,Zk) comparisons.

3. Now complete the proof of Theorem 12.2 using the chain rule.

Exercise 12.3 Complete the proof of Claim 12.17. Prove that
∑

j∈H pij lg(pij /̂pij) ≤ 4.
Recall that ∀j ∈ H, pij ≥ 1/n and that for all j, |pij − p̂ij| ≤ 1/2n. [Hint: use the
Taylor approximation ln(1 − x) ≤ 2x for x ∈ (0,1).]

Exercise 12.4 The construction of Tree and the proof of Claim 12.17 are overkill,
in that O(n2 lg n) inputs are not necessary. The next few exercises will demonstrate
why, and will lead to the n1+ε storage construction. One does not need to approxi-
mate pijs to additive accuracy�(1/n). Suppose one obtained p̂ijs with the following
property. If pij > 1/2n, then p̂ij = �(pij). If pij ≤ 1/2n, then p̂ij = O(1/n). Show
that the search trees constructed in Exercise 12.1 with {p̂ij} are O(1)-optimal search
trees with respect to the original distribution.

281

C. SESHADHRI

Exercise 12.5 Use Exercise 12.4 to prove Claim 12.17 when the training phase length
is O(n lg n) (as opposed to O(n2 lg n)) independent inputs.

Exercise 12.6 The previous exercises set us up to construct Tis of size nε, for any
ε > 0. Let a bucket Bj be heavy for i if pij ≥ n−ε, and call a search heavy if it leads
to a heavy bucket. First, show that O(nε lg n) independent inputs can be used to
build Tis (for all i, each of size O(nε)) that are O(1)-optimal for heavy searches.
Next, use these trees to perform searches that O(1/ε)-optimal. (Hint: if a search is
not heavy, perform standard binary search.)

Exercise 12.7 Let Y1,Y2, . . . ,Yr be pairwise independent Bernoulli random vari-
ables. Prove that E[(

∑
i≤r Yi)

2] = O(E[
∑

i≤r Yi]2 + E[
∑

i≤r Yi]). Use this fact to
prove Claim 12.15. (Hint: write |I ∩ Bj| as a sum of Bernoulli random variables.)

Exercise 12.8 Complete the proof of Theorem 12.19 by showing the following state-
ment. Let h = (6γ)−1n lg n and γ < (lg n)/10. Then lg[(n!)2h−1

2−2h(h(γ+1)+γ n)] =
�(2h).

Exercise 12.9 Consider maximal certificates as defined in Definition 12.21. Suppose
we additionally required that when the certificates says “xi dominated by xj,” then
xj be maximal. Thus, only maximal points are allowed to certify that other points
are nonmaximal. Show that there is a linear time procedure that, given a maximal
certificate, constructs one with this condition.

Exercise 12.10 Consider storing a universe of objects with keys in [n]. We need a data
structure that supportfind-max (finding an object with maximum key),delete,
and decrement-key operations. For the latter two, assume you have a pointer to
the object. Initially, all objects have key n, and there are at most n objects. Design a
data structure that runs in total O(n+ z) time, where z is the number of operations
performed.

Exercise 12.11 Use the data structure in Exercise 12.10 to implement the self-
improving maxima algorithm of Figure 12.7. Suppose the total search time
(operations in Ti’s) is t. Prove that the total running time is O(t + n).

282

PART FOUR

Smoothed Analysis

CHAPTER THIRTEEN

Smoothed Analysis of Local Search
Bodo Manthey

Abstract: Local search is a powerful paradigm for finding good solu-
tions to intractable combinatorial optimization problems. However,
for many local search heuristics there exist worst-case instances on
which they are extremely slow or provide solutions that are far from
optimal.

Smoothed analysis is a semirandom input model that has been
invented to bridge the gap between poor worst-case and good empir-
ical performance of algorithms. In smoothed analysis, an adversary
picks an arbitrary input, which is then slightly randomly perturbed.
In particular, smoothed analysis has been applied successfully to
local search algorithms in a variety of cases.

We use the 2-opt heuristic for the traveling salesman problem and
the k-means method for clustering as examples to explain how local
search heuristics can be analyzed in the framework of smoothed
analysis. For both algorithms, as for many other local search algo-
rithms, the worst-case running time is exponential in the input size,
but polynomial in the framework of smoothed analysis.

13.1 Introduction

Large-scale optimization problems appear in many areas, ranging from engineering to
the sciences. Unfortunately, many of these problems are computationally intractable.
Thus, finding optimal solutions is very time consuming. In practice, however, heuris-
tics are often successful in finding close-to-optimal solutions surprisingly quickly.
One particularly popular class of such heuristics are local search heuristics, which
are often appealing because of their speed and because they are very easy to
implement.

A local search heuristic for a combinatorial optimization problem is initialized with
some solution of the given instance. Then it searches in the neighborhood of the
current solution for a solution with better objective value. If successful, the local
search heuristic replaces the current solution with this better solution. We call this
a local improvement step of the local search heuristic. Then the local search heuristic
does the same search again. Here, the neighborhood of a solution are all solutions
that can be obtained by slightly modifying this solution. What this means exactly
depends on the problem and the local search heuristic.

285

B. MANTHEY

A local search heuristic terminates if there is no better solution in the neighbor-
hood of the current solution. We call such a solution a local optimum. Note that local
optima are not necessarily globally optimal solutions.

What is striking for many local search algorithms is the discrepancy between worst-
case and observed performance: on the one hand, there often exist instances on which
they take an exponential number of iterations before reaching a local optimum. It
is also often quite easy to come up with instances on which they can converge to
local optima that are much worse than global optima. From the complexity-theoretic
perspective, finding a local optimum with respect to a given local search algorithm
is PLS-complete for many such algorithms. (PLS stands for “polynomial local
search” and captures the difficulty of finding local optima of optimization problems
with respect to a “neighborhood.” Although weaker than NP-completeness, PLS-
completeness is widely considered to be a strong evidence of intractability (Schäffer
and Yannakakis, 1991).)

On the other hand, this pessimistic view does not seem to reflect reality, where
local search algorithms are popular because of their speed. The worst-case examples
that show exponential running time are usually fragile constructions that hardly ever
occur in practice. Sometimes, local search heuristics even achieve good empirical
approximation performance. But even if not, their speed allows to rerun them a
number of times with different initializations, which often results in much better
performance.

This discrepancy makes local search heuristics a prime candidate for an “analysis
beyond the worst case.” In particular, smoothed analysis has been applied quite
successfully to explain the empirical performance of local search algorithms.

Smoothed analysis is a semirandom input model that has been invented by
Spielman and Teng (2004) in order to explain the empirical performance of the
simplex method for linear programming. It is a hybrid of worst-case and average-
case analysis and interpolates between these two: an adversary specifies an instance,
and then this instance is slightly randomly perturbed. The smoothed performance of
an algorithm is the maximum expected performance that the adversary can achieve,
where the expectation is taken over the random perturbation.

If worst-case instances are isolated in the input space, then it is potentially very
unlikely that we obtain such bad instances after perturbation. In principle, smoothed
analysis can be applied to any measure of performance, but it has been most
successful for the analysis of running times of algorithms that are super-polynomial
in the worst-case but fast in practice, such as the two local search heuristics that we
discuss in this chapter.

In the following, we explain smoothed analysis of local search algorithms mainly
by means of the 2-opt heuristic for the traveling salesman problem (TSP) and the
k-means method for clustering. We will mostly focus on the running time of these
algorithms and only briefly touch upon their approximation performance.

13.2 Smoothed Analysis of the Running Time

The goal in this section is to show bounds for the smoothed number of iterations of
local search algorithms, which is the maximum expected number of iterations, where
the expectation is taken over the random perturbation.

286

SMOOTHED ANALYSIS OF LOCAL SEARCH

We start this section with a simple analysis of the running time of the 2-opt
heuristic for the TSP. After that, we sketch how to improve the bound obtained.
Finally, we analyze the k-means method as an example of a local search algorithm
where the analysis is much less straightforward than for 2-opt.

13.2.1 Main Ideas

The main idea behind all smoothed analyses of running times of local search
heuristics that have been conducted so far is the following “potential function”
approach, where the objective function plays the role of the potential:

� We prove that the objective value of the initial solution is not too big.
� We prove that it is unlikely that iterations improve the objective value by only a

small amount.

If the objective value is at most ν in the beginning and there is no iteration that
decreases it by less than ε, then the number of iterations can be at most ν/ε.

Note that this approach is still quite pessimistic: first, it is unlikely that we always
make the minimal possible improvement. It is more likely that some iterations cause
a much larger improvement. Second, often there are several local improvement steps
possible. In this case, the foregoing approach assumes that we always make the worst
possible choice.

The main advantage of this approach is that it decouples the iterations. If we would
analyze iterations depending on earlier iterations, then we would face dependencies
that are very hard to deal with.

13.2.2 A Simple Bound for 2-Opt

To illustrate a smoothed analysis of the running time of a local search heuristic, we
take the 2-opt heuristic for the TSP as an example. More specifically, we consider the
TSP in the Euclidean plane, where the distance between two points a,b ∈ R

2 is given
by ‖a − b‖2, i.e., the squared Euclidean distance between the two points. This means
that – given a set Y ⊆ R

2 of n points – the goal is to compute a Hamiltonian cycle
(also called a tour) H through Y that minimizes∑

{a,b}∈H

‖a − b‖2.

In other words, we want to find a cyclic ordering of the points that minimizes the sum
of squared distances of consecutive points.

We chose this problem for two reasons. First, for points in the plane, the concept
of “small perturbations” is quite natural. Second, the choice of squared Euclidean
distances (compared to the – more natural – Euclidean distances) is because this
makes the smoothed analysis of the running time relatively compact, in contrast to
many other cases of smoothed analysis, which are quite involved technically.

TSP and the 2-Opt Heuristic
The 2-opt heuristic for the TSP performs so-called 2-opt steps to improve a given
initial tour as long as possible. A 2-opt step is the following operation: let H be an

287

B. MANTHEY

y1

y3
y2

y4

Figure 13.1 An example of a 2-opt step, where the edges {y1,y2} are replaced by {y1,y3} and {y2,y4}.

arbitrary Hamiltonian tour through the point set Y . Assume that H contains edges
{y1,y2} and {y3,y4}, where the four distinct points y1, y2, y3, and y4 appear in this
order in H. Assume further that ‖y1−y2‖2+‖y3−y4‖2 > ‖y1−y3‖2+‖y2−y4‖2. Then
we replace {y1,y2} and {y3,y4} by {y1,y3} and {y2,y4} to obtain a shorter Hamiltonian
tour. See Figure 13.1 for an example.

Initialized with an arbitrary Hamiltonian tour H through the point set Y , the 2-opt
heuristic performs 2-opt steps until a local minimum is reached.

Model and Approach
We use the following probabilistic input model for the analysis of 2-opt: an adversary
specifies a set X = {x1, . . . ,xn} ⊆ [0,1]2 consisting of n points from the unit
square. Then we obtain the actual input Y by perturbing each point xi by a random
variable gi:

Y = {yi = xi + gi | i ∈ {1, . . . ,n}}.

We assume that g1, . . . ,gn are independent and follow a 2-dimensional Gaussian
distribution with standard deviation σ and mean 0. We call the instance Y a
σ -perturbed point set.

We mainly exploit two properties of Gaussian distributions in our smoothed
analysis. First, their maximum density is bounded. Second, a 2-dimensional Gaussian
distribution can be viewed as superposition of two 1-dimensional Gaussian distribu-
tions in any two orthonormal directions.

Our approach is as described earlier. First, we show that the initial tour has a length
of O(n) with high probability. Second, we show that the probability that there exists
any 2-opt step that decreases the objective function by less than ε is bounded from
above by ε times a polynomial in n and 1/σ . Finally, we combine these two ingredients
together with the worst-case upper bound of n! for the number of iterations to obtain
a smoothed polynomial bound for the number of iterations.

Technical Preliminaries and Assumptions
In the following, we assume that σ ≤ 1

2
√

n ln n
. This is without loss of generality by

Exercise 13.2.

288

SMOOTHED ANALYSIS OF LOCAL SEARCH

The following lemma is a standard tail bound for Gaussian random variables.
A proof can be found in many textbooks on probability theory.

Lemma 13.1 (Tail Bound for Gaussians) Let X be a random variable with
Gaussian distribution with mean μ ∈ R and standard deviation σ > 0. Then

P(X ≥ μ + σ t) = P(X ≤ μ − σ t) ≤ 1

t
√

2π
· exp

(
− t2

2

)
.

Lemma 13.2 (Interval Lemma for Gaussians) Let X be distributed according
to a Gaussian distribution with arbitrary mean and standard deviation σ > 0. Let
t ∈ R, and let ε > 0. Then

P
(
X ∈ (t,t + ε]

) ≤ ε

2σ
.

Proof This follows from the fact that the density of a Gaussian random
variable with standard deviation σ is bounded from above by 1

2σ . �

Upper Bound for the Initial Tour
The following lemma gives a quite trivial upper bound for the length of an initial
tour.

Lemma 13.3 We have Linit ≤ 18n with a probability of at least 1 − 1
n! .

Proof If Y ⊆ [−1,2]d , then the longest distance between any two points in Y
(measured in squared Euclidean distance) is at most 18. Thus, any tour has a
length of at most 18n in this case.

If Y �⊆ [−1,2]2, then there exists an i such that ‖gi‖∞ ≥ 1. Thus, there must
exist an i ∈ {1, . . . ,n} and a coordinate j ∈ {1,2} such that the absolute value
of the jth entry of gi is at least 1. We use Lemma 13.1 with σ ≤ 1

2
√

n ln n
and

t = 1/σ . This yields that the probability for a single entry to be of absolute
value at least 1 is bounded from above by

1

2
√

2πn ln n
· exp

(−2n ln n
) ≤ n−2n ≤ (n!)−2.

A union bound over the n choices of i and the two choices of j and the (very
loose) bound 2n ≤ n! yields the lemma. �

For the remainder of this section, let
a,b(c)=‖c−a‖2−‖c−b‖2. The improvement
of a 2-opt step, where {y1,y2} and {y3,y4} are replaced by {y1,y3} and {y2,y4}, can thus
be written as
y2,y3(y1) −
y2,y3(y4).

Let
min be the smallest positive improvement by any possible 2-opt step. For the
analysis of
min, the following lemma is useful.

289

B. MANTHEY

Lemma 13.4 Let a,b ∈ R
2 with a �= b, and let c ∈ R

2 be drawn according to
a Gaussian distribution with standard deviation σ . Let I ⊆ R be an interval of
length ε. Then

P
(

a,b(c) ∈ I

) ≤ ε

4σ · ‖a − b‖ .

Proof Since Gaussian distributions are rotationally symmetric and translation
invariant, we can assume without loss of generality that a = (0,0) and b = (δ,0)
with δ = ‖a−b‖. Let c = (c1,c2)

T. Then
a,b(c) = (c2
1 +c2

2)− ((c1 −δ)2 +c2
2) =

2c1δ−δ2. Since δ2 is a constant (independent of a, b, and c), we have
a,b(c) ∈ I
if and only if 2c1δ falls into an interval of length ε. This is equivalent to c1 falling
into an interval of length ε

2δ .
Since c1 is a 1-dimensional Gaussian random variable with a standard

deviation of σ , the lemma follows from Lemma 13.2. �

With this lemma, we can bound the probability that any improving 2-opt step yields
only a small improvement.

Lemma 13.5 P(
min ≤ ε) = O
(n4ε
σ 2

)
.

Proof Consider any four distinct points y1,y2,y3,y4 ∈ Y and the 2-opt step,
where the two edges {y1,y2} and {y3,y4} are replaced by {y1,y3} and {y2,y4}. We
prove that the probability that this 2-opt step yields a positive improvement of
at most ε is bounded by O(ε/σ 2). Then the lemma follows by a union bound
over the choices of the four points y1,y2,y3,y4 ∈ Y .

The improvement caused by this 2-opt step equals
y2,y3(y1) −
y2,y3(y4).
We use the principle of deferred decision: first, let an adversary fix the position
of y2, y3, and y4 arbitrarily. This fixes α =
y2,y3(y4) as well as the distance
δ = ‖y2 − y3‖ between y2 and y3. Thus, the improvement caused by this 2-opt
step is only in the interval (0,ε] if
y2,y3(y1) ∈ (α,α+ ε], which is an interval of
size ε. The probability that this happens is bounded from above by ε

4σδ according
to Lemma 13.4.

Let f be the probability density function of δ=‖y2 −y3‖. Then the probabil-
ity that the 2-opt step considered yields an improvement of at most ε is bounded
from above by ∫ ∞

δ=0

ε

4σδ
· f (δ) dδ.

Now we observe that the distribution of 1/δ is stochastically dominated by
1/X , where X is chi-distributed. This is because ε

4σδ is decreasing in δ. Thus,
the “worst-case” is that x3 – the unperturbed version of y3 – is located exactly
at y2. The chi-distribution describes the length of a vector that is distributed
according to a Gaussian distribution with mean 0. In the 2-dimensional case,
the density of the chi-distribution is given by x

σ 2 · exp
(− x2

2σ 2

)
.

290

SMOOTHED ANALYSIS OF LOCAL SEARCH

From this observation, we obtain that we can replace f by the density
function of the chi-distribution to get an upper bound for the probability that
we have an improvement of at most ε:∫ ∞

δ=0

ε

4σδ
· δ

σ 2 · exp

(
− δ2

2σ 2

)
dδ =

∫ ∞

δ=0

ε

4σ 3 · exp

(
− δ2

2σ 2

)
dδ = O

(ε

σ 2

)
.

To finish the proof, we take a union bound over the O(n4) choices for the points
y1, y2, y3, and y4. �

The previous lemma can be turned into a tail bound for the number of iterations
that 2-opt needs to converge to a local optimum, which yields our first theorem.

Theorem 13.6 Let Y ⊆ R
2 be a σ -perturbed point set, and let σ ≤ 1

2
√

n ln n
.

Then the expected maximum number of iterations that the 2-opt heuristic needs
to compute a locally optimal TSP tour with respect to squared Euclidean distances
is bounded from above by O(n6 log n/σ 2).

Proof If 2-opt runs for at least t steps, then we must have Linit ≥ 18n or

min ≤ 18n/t. The probability that any of these events happens is at most
1
n! + O

(n5

σ 2t

)
by Lemmas 13.3 and 13.5, where the probability is taken over the

random perturbation.
Since no TSP tour shows up twice in any run of 2-opt, we know that the

number of iterations is upper-bounded by n!. Let T be the random variable
that is the maximum possible number of iterations that 2-opt can need on the
(random) point set Y . Then

E(T) =
n!∑

t=1

P(T ≥ t) ≤
n!∑

t=1

(
1
n!

+ O

(
n5

σ 2t

))
= O

(
n6 log n

σ 2

)
.

�

13.2.3 Possibilities for Improving the Bound

Very roughly, the analysis of the running time of 2-opt in the previous section worked
as follows:

� We have used the objective function as a potential function, and we have proved a
(very simple) upper bound for the length of any initial tour.

� We have divided the possible steps that the algorithm can take into classes. In our
case, every 2-opt step is exactly described by four points, namely the four endpoints
of the edges involved. The rest of the tour does not play a role.

� For each such class, we have proved that it is unlikely that any iteration of this class
yields only a small improvement.

� By taking a union bound over all classes, we turned this into a tail bound for the
number of iterations and used this to obtain a bound on the expected number of
iterations.

291

B. MANTHEY

This immediately gives the following options for improving the bound:

� We could show a smaller bound for the length of the initial tour. This would
immediately improve the bound.

� We could try to divide the possible iterations of the 2-opt heuristic into fewer
classes. Then it would suffice to take the union bound over fewer classes.

� We could try to prove a stronger upper bound for the probability that any iteration
of a class yields a small improvement. This would yield a stronger tail bound for
the number of iterations and therefore improve the final bound.

In fact, avoiding the naive application of the union bound and instead cleverly
partitioning the iterations into groups that can be analyzed simultaneously is usually
the key ingredient of a smoothed analysis. In the remainder of this subsection, we
sketch ideas how to improve the bound for the smoothed number of iterations of
2-opt.

Improving the Initial Tour Length
So far, we did not make any assumptions on how the initial tour was constructed.
In practice, however, one would probably start with some reasonable approximation
instead of an arbitrary (bad) tour. For instance, one can find an initial tour of length
O(1) (Yukich, 1998), which immediately decreases our bound by a linear factor. (This
holds only for squared Euclidean distances in 2-dimensional space. For standard
Euclidean distances, one can guarantee only bounds of length O(

√
n).)

Linked Pairs of 2-Opt Steps
The idea behind analyzing so-called “linked pairs of 2-opt steps” is the observation
that taking into account only the smallest possible improvement is quite pessimistic.
In order to improve the bound, we consider pairs of 2-opt steps that share some
vertices. The two 2-opt steps of such a pair do not have to be executed next to each
other in a run of 2-opt. This improvement does not fall directly into one of the three
possibilities of improvement mentioned earlier. Indeed, we prove a stronger upper
bound for the probability that a class yields a small improvement, but not for single
iterations. Instead, we consider two iterations, which increases the number of classes.
It turns out that the stronger upper bound more than compensates the increase of
the number of different classes.

Sharing only a single vertex leaves the edges of the two 2-opt steps disjoint and,
thus, does not help to improve the bound. It turns out that the case in which all
four vertices are identical for both 2-opt steps is quite difficult to analyze because
of dependencies. Hence, we restrict ourselves to pairs of 2-opt steps that overlap in
two or three vertices. As at most six vertices are involved in such pairs, the number of
such pairs is at most O(n6). While this is worse than the number of simple 2-opt steps,
which is O(n4), it is compensated by the fact that the probability that both 2-opt
steps yield only a small improvement is much smaller than in the case of a single
2-opt step. Basically, although the improvements obtained from the two 2-opt steps
from such a pair are not independent, we can analyze them as if they were. The
following lemma, whose formal proof we omit, summarizes this.

292

SMOOTHED ANALYSIS OF LOCAL SEARCH

Lemma 13.7 The probability that there exists a linked pair of 2-opt steps that
have two or three vertices in common and such that both 2-opt steps improve the
tour, but only by at most ε > 0, is at most O

(n6ε2

σ 4

)
.

Crucial for this approach to work is that we encounter sufficiently many linked
pairs of 2-opt steps in any run of 2-opt. The following lemma basically states that
every sufficiently long sequence of 2-opt steps must contain a constant fraction of
2-opt steps that form disjoint linked pairs. We omit its proof, which is not difficult,
but a bit technical.

Lemma 13.8 (Röglin and Schmidt, 2018) Every sequence of t consecutive
2-opt steps contains at least (2t − n)/7 disjoint linked pairs of 2-opt steps that
share either two or three vertices.

Theorem 13.9 Let Y ⊆ R
2 be a σ -perturbed point set, and let σ ≤ 1

2
√

n ln n
.

Then the expected maximum number of iterations that the 2-opt heuristic needs
to compute a locally optimal TSP tour with respect to squared Euclidean distances
is O(n4/σ 2).

Proof Let T be the random variable that is the maximum possible number of
iterations that 2-opt can need on the (random) point set Y . By Lemma 13.8,
there exist constants c1,c2 > 0 such that every sequence of at least t ≥ c1n2

iterations contains at least c2t disjoint pairs of linked 2-opt steps sharing two or
three vertices.

Then T ≥ t only if t ≤ c1n2 or if Linit ≥ 18n or if there is a pair of linked 2-
opt steps that yields an improvement of at most 18n

c2t . Thus, there exist constants
c3,c4 > 0 such that, by Lemma 13.7, we have

E(T) ≤ c1n2 +
∑

t≥c1n2

P(T ≥ t) ≤ c1n2 +
∑

t≥c1n2

min

{
1,c3 · n8

t2σ 4

}

≤ c4 · n4

σ 2 +
∑

t≥c4n4/σ 2

c3 · n8

t2σ 4 = O

(
n4

σ 2

)
. �

With the preceding discussion about the initial tour length, we can even improve
the bound of Theorem 13.9 to O(n3/σ 2).

13.2.4 A Bound for the k-Means Method

The second example of a local search heuristic whose running time we want to analyze
in the framework of smoothed analysis is the k-means method for clustering.

Description of the k-Means Method
Before doing the smoothed analysis, let us first describe k-means clustering and the
k-means method.

We are given a finite set X ⊆ R
d of n data points and the number k ∈ N of clusters.

The goal of k-means clustering is to partition these points into k clusters C1, . . . ,Ck.

293

B. MANTHEY

In addition to the clusters, we want to compute cluster centers c1, . . . ,ck ∈ R
d that

are the representatives of their clusters. The centers do not have to be data points.
The goal of k-means clustering is to find clusters and centers that minimize the sum
of squared distances of data points to cluster centers:

k∑
i=1

∑
x∈Ci

‖x − ci‖2.

If we already know the cluster centers, then this specifies (up to tie-breaking) a
clustering: every point is assigned to a cluster whose center is closest to it. The other
way round, if we have clusters C1, . . . ,Ck, then each cluster center ci should be chosen
as the center of mass

cm(Ci) = 1
|Ci| ·

∑
x∈Ci

x

of Ci. This is a direct consequence of the following lemma, the proof of which we
leave as Exercise 13.4.

Lemma 13.10 Let C ⊆ R
d be a finite set of points, let c = cm(C) be the center

of mass of C, and let z ∈ R
d be arbitrary. Then∑

x∈C

‖x − z‖2 =
∑
x∈C

‖x − c‖2 + |C| · ‖c − z‖2.

The key idea of the k-means method is to exploit that clustering and centers
mutually imply each other: the k-means method alternates between optimizing the
clustering based on the given centers and optimizing the centers based on the given
clustering. More formally, it works as follows:

1. Choose initial cluster centers c1, . . . ,ck.
2. Construct a clustering C1, . . . ,Ck from the current cluster centers.
3. Set ci = cm(Ci) for all i ∈ {1, . . . ,k}.
4. If anything changed in steps 13.2.4 or 13.2.4, return to step (13.2.4).

The k-means method is one of the most popular clustering algorithms. Its popular-
ity stems from two facts: first, it is very simple. Second, it is very fast on practical data
sets. This second fact allows one to rerun it several times with different initializations
in order to obtain a good clustering.

However, in contrast to practical performance, the worst-case running time of the
k-means method is exponential in the number k of clusters. We can choose k = �(n),
which shows that the worst-case number of iterations can be exponential. This lower
bound construction works already in the Euclidean plane, i.e., if d = 2 is fixed.

The only known worst-case upper bound for the number of iterations is based on
counting the number of different clusterings and the trivial fact that no clustering
occurs twice in a run of the k-means method. The number of different clusterings of
n points in d-dimensional space into k clusters, where clusters have to be separated
by hyperplanes, is upper-bounded by n3kd .

294

SMOOTHED ANALYSIS OF LOCAL SEARCH

Model and Approach
In the following, we apply smoothed analysis to the running time of the k-means
method. More specifically, our goal is to prove an upper bound that is polynomial
in nk and 1/σ , which removes a factor of d from the exponent compared to the
worst-case running time. While such a bound surely does not explain the observed
performance of the algorithm, it conveys the basic ideas of the analysis. To keep the
analysis relatively simple, we combine the first poly(nk,1/σ) bound with techniques
that were used later in the proof of a truly polynomial bound.

In comparison to the 2-opt heuristic, we have to address two technical challenges
in the smoothed analysis of the k-means method:

� Iterations of the 2-opt heuristic can be compactly represented by the four vertices
involved. For the k-means method, such a compact representation of iterations is
much less obvious.

� In order to obtain a polynomial bound for the smoothed running time of the 2-opt
heuristic, it was sufficient to consider the improvement caused by a single iteration.
This does not seem to be the case for the k-means method.

The model that we use for the smoothed analysis is the same as for the 2-opt
heuristic: an adversary specifies a set X ⊆ [0,1]d of n points. Then these points are
perturbed by independent Gaussian random variables of standard deviation σ . We
call the resulting point set Y ⊆ R

d again a σ -perturbed point set, and we run the
k-means method on this point set Y .

Again, restricting X to the unit hypercube is just a matter of scaling and does not
restrict generality. And again, we restrict our analysis to the case σ ≤ 1 because of
Exercise 13.2.

In the following, we also make the (natural) assumption that k,d ≤ n. In many
applications, k and d are even considered to be constant. Using the upper bound of
n for k and d sometimes simplifies calculations.

The main idea is similar to the 2-opt heuristic: we use the objective function as a
potential function and show that it has to decrease sufficiently quickly. However, as
noted already at the beginning of this section, there are two issues that make this more
difficult than for the 2-opt heuristic: first, a compact description of iterations does
not seem to exist for the k-means method. Second, we cannot rule out that there are
iterations in which the objective function decreases by only a negligible amount. This
makes it necessary to consider longer sequences of iterations, similar to the analysis
of linked pairs of 2-opt steps. But while the analysis of linked pairs of 2-opt steps
was necessary only to improve the bound, here this seems unavoidable.

For the first issue, it turns out that we can describe iterations by O(kd) points
sufficiently precisely. For the second issue, considering sequences of 2k iterations
suffices in order to make it unlikely that all of them yield only a small improvement.

Decrease of the Objective Function
In order to analyze the decrease of the objective function, we first have to understand
what causes it to decrease. The objective function gets smaller (1) by moving cluster
centers and (2) by reassigning data points.

Lemma 13.10 implies that moving a cluster center ci by a distance of ε to the center
of mass of its point set Ci decreases the objective value by ε2 · |Ci| ≥ ε2.

295

B. MANTHEY

δ

ε

Figure 13.2 If we reassign the leftmost light point – which is at a distance of ε from the bisecting
hyperplane – to the dark cluster, then this decreases the objective function by 2εδ, where δ is the distance
between the two centers.

For a hyperplane H and a point z, we denote by dist(z,H) the Euclidean distance
of z to H. For analyzing the decrease of the objective value caused by reassigning a
point, we need the notion of a bisecting hyperplane: for two points x,y ∈ R

d with
x �= y, we call a hyperplane H the bisector of x and y if H is orthogonal to x − y and
dist(x,H) = dist(y,H). This means that

H = {
z ∈ R

d | 2zT(x − y) = (x + y)T(x − y)
}
.

The decrease of the objective function caused by reassigning a data point to a
different cluster depends on the distance of this point from the corresponding
bisecting hyperplane and the distance between the two cluster centers involved. The
following lemma makes this more precise – see also Figure 13.2. We leave its proof as
Exercise 13.5.

Lemma 13.11 Let ci and cj be two cluster centers with bisector H, and let y ∈ Ci.
If ‖y − cj‖ < ‖y − ci‖; then reassigning y to Cj decreases the objective value by

2 · dist(y,H) · ‖ci − cj‖.

The rough idea for the smoothed analysis is as follows: if many points are
reassigned to a new cluster, then it is unlikely that all of them are close to their
corresponding bisecting hyperplane. If only a few points are reassigned, then at least
one cluster center must move significantly. This hope turns out to be wrong for a
single iteration, so we have to consider longer sequences of iterations.

Dense Iterations
We call an iteration of the k-means method dense if there is at least one cluster that
gains or loses in total at least 2kd points. According to Lemma 13.11, we have to
show that in a dense iteration, it is unlikely that all these points are close to their
corresponding bisecting hyperplanes or that centers are too close to each other.

We call the point set Y ε-separated if, for all hyperplanes H ⊆ R
d , there are fewer

than 2d points y ∈ Y with dist(y,H) ≤ ε. The following lemma quantifies the minimal
improvement caused by any dense iteration, provided that Y is ε-separated.

Lemma 13.12 If Y is ε-separated, then the potential decreases by at least 2ε2/n
in every dense iteration.

Proof Since the iteration is dense, there must be a cluster Ci that exchanges
at least 2kd points with other clusters in this iteration. Hence, there must be

296

SMOOTHED ANALYSIS OF LOCAL SEARCH

another cluster Cj with which Ci exchanges at least 2d + 1 points. Since Y
is ε-separated, at least one point y ∈ Y that switches between Ci and Cj is at
a distance of at least ε from the hyperplane bisecting ci = cm(Ci) and cj =
cm(Cj), where Ci and Cj are the clusters before the switch.

In order to bound the decrease of the objective value from below by 2ε2/n,
we need a lower bound of ε/n for ‖ci − cj‖. There exists a hyperplane H ′ (the
bisector from the previous iteration) that separates Ci from Cj. Among all at
least 2d +1 points that want to switch in the current iteration, at least one point
y must be at a distance of at least ε from H ′, since Y is ε-separated. Assume
without loss of generality that y ∈ Ci. Then, since (i) |Ci| ≤ n; (ii) y is at least ε
away from H ′, since Y is ε-separated; and (iii) all points of Ci are on the same
side of H ′, the center of mass ci = cm(Ci) must be at least ε/n away from H ′.
Hence, ε

n ≤ dist(ci,H ′) ≤ ‖ci − cj‖. (Note that this argument does not work
with the bisector of ci and cj instead of H ′, as some points are on the “wrong
side” of this bisector.) �

A simple union bound together the following lemma yields an upper bound for the
probability that Y is not ε-separated (Lemma 13.14).

Lemma 13.13 Let P ⊆ R
d be any finite set of at least d points, and let H ⊆ R

d

be an arbitrary hyperplane. Then there exists a hyperplane H ′ ⊆ R
d that contains

at least d points of P such that

max
p∈P

(
dist(p,H ′)

) ≤ 2d · max
p∈P

(
dist(p,H)

)
.

We skip the proof of Lemma 13.13 and refer to Arthur and Vassilvitskii’s
paper (Arthur and Vassilvitskii, 2009, Lemma 5.8). The intuition of this lemma
is as follows: if there is any hyperplane H such that all points of some set P ⊆ R

d

are close to H, then there is also a hyperplane H ′ that contains d points of P and all
other points in P are close to H ′. Lemma 13.13 is useful because of the dependency
between the location of the bisecting hyperplanes and the data points. Using it, we
can use d points to fix some hyperplane and then use the independent randomness
of another d points to show that they are not close to this hyperplane.

Lemma 13.14 The probability that Y is not ε-separated is at most n2d · (2dε
σ

)d.

Proof According to Lemma 13.13, it suffices to show that the probability that
there are two disjoint sets P and P′ consisting of d points of Y each such that
all points of P′ are (2dε)-close to the hyperplane through P is bounded by n2d ·(2dε

σ

)d .
Fix any sets P and P′ of d points. Using the principle of deferred decisions, we

fix the position of the points in P arbitrarily. Then the probability that all points
of P′ are within distance 2dε of the hyperplane through P is at most (2dε/σ)d ,
because perturbations of the points in P′ are independent and the probability
that a point is within a distance of 2dε of a fixed hyperplane is bounded from
above by 2dε/σ by Lemma 13.2. The lemma follows by a union bound over the
at most n2d choices for P and P′. �

297

B. MANTHEY

By combining Lemmas 13.12 and 13.14, we obtain the following result about dense
iterations.

Lemma 13.15 For d ≥ 2 and σ ≤ 1, the probability that there exists a dense
iteration in which the potential decreases by less than ε is bounded from above by(

2n3.5√ε

σ

)d

.

Proof According to Lemma 13.12, if there is a dense iteration in which
the potential decreases by less than ε, then Y is not

√
nε/2-separated. By

Lemma 13.14 and d ≤ n, this happens with a probability of at most

n2d ·
(

2d
√

nε/2
σ

)d

≤
(

2dn2.5√ε

σ

)d

≤
(

2n3.5√ε

σ

)d

. �

Sparse Iterations
We call an iteration sparse if every cluster gains or loses in total at most 2kd points.

Let Ct
i be the set of points in the ith cluster in iteration t of the k-means method.

We define an epoch to be a sequence of consecutive iterations t,t+1, . . . ,t+� in which
no cluster assumes more than two different point sets. This means that |{Ca

i | t ≤ a ≤
t+�}| ≤ 2 for all i ∈ {1,2, . . . ,k}. A trivial upper bound for the length of every epoch
is given in the following lemma. In fact, it is possible to show that the length of every
epoch is at most 3 (see Exercise 13.6), but this is not needed for the bound that we
aim for.

Lemma 13.16 The length of every epoch is bounded by 2k.

Proof After 2k iterations, at least one cluster must have assumed a third set of
points. Otherwise, a clustering would show up a second time. This is impossible
as the objective value strictly decreases in every iteration. �

We call a set Y ⊆ R
d of data points η-coarse for some number η > 0 if, for all

triples P1,P2,P3 ⊆ Y of different subsets with |P1)P2| ≤ 2kd and |P2)P3| ≤ 2kd,
we have ‖ cm(Pi) − cm(Pi+1)‖ > η for at least one i ∈ {1,2}. Here, “)” denotes the
symmetric difference of two sets.

Lemma 13.17 Assume that Y is η-coarse and consider a sequence of 2k consec-
utive iterations of the k-means method. If each of these iterations is sparse, then
the potential decreases by at least η2.

Proof After 2k iterations, at least one cluster has assumed a third configuration
(Lemma 13.16). Since the iterations are sparse, there are sets P1, P2, and P3
such that |P1)P2|,|P2)P3| ≤ 2kd such that this cluster switches from point
set P1 to P2 and later to P3 (directly from P2 or after switching back to P1 –
not necessarily in consecutive iterations). Since the instance is η-coarse, we have

298

SMOOTHED ANALYSIS OF LOCAL SEARCH

‖ cm(P1)− cm(P2)‖ > η or ‖ cm(P2)− cm(P3)‖ > η. Thus, the corresponding
cluster center must have moved by at least η in one iteration, which decreases
the potential by at least η2 according to Lemma 13.10. �

Lemma 13.18 The probability that Y is not η-coarse is bounded from above by
(7n)4kd · (4nkdη/σ)d.

Proof Let P1,P2,P3 ⊆ Y be three sets with |P1)P2| ≤ � and |P2)P3| ≤ �.
Let A = P1 ∩ P2 ∩ P3, and let B1, B2, and B3 be sets such that Pi = A ∪ Bi for
i ∈ {1,2,3} and B1, B2, and B3 are disjoint to A. We have |B1 ∪ B2 ∪ B3| ≤ 2�
and B1 ∩ B2 ∩ B3 = ∅.

We perform a union bound over the choices of the sets B1, B2, and B3. The
number of possible choice for these sets is upper-bounded by 72� · (n

2�

) ≤ (7n)2�:
we select 2� elements of Y . Then we choose for each element in which of the
three sets it should belong. None of these elements belongs to all sets, but there
can be elements that belong to no set. We need this possibility, since we can have
|B1 ∪ B2 ∪ B3| < 2�.

For i ∈ {1,2,3}, we have

cm(Pi) = |A|
|A| + |Bi| · cm(A) + |Bi|

|A| + |Bi| · cm(Bi).

Hence, for i ∈ {1,2}, we can write cm(Pi) − cm(Pi+1) as

cm(Pi) − cm(Pi+1) =
(|A|

|A| + |Bi| − |A|
|A| + |Bi+1|

)
· cm(A)

+ |Bi|
|A| + |Bi| · cm(Bi) − |Bi+1|

|A| + |Bi+1| · cm(Bi+1).

We distinguish three cases. The first case is that |Bi| = |Bi+1| for some
i ∈ {1,2}. Then the preceding equation simplifies to

cm(Pi) − cm(Pi+1) = |Bi|
|A| + |Bi| · cm(Bi) − |Bi|

|A| + |Bi| · cm(Bi+1)

= 1
|A| + |Bi| ·

⎛⎝ ∑
y∈Bi\Bi+1

y −
∑

y∈Bi+1\Bi

y

⎞⎠ .

Since Bi �= Bi+1 and |Bi| = |Bi+1|, there exists a point y ∈ Bi \ Bi+1.
We use the principle of deferred decisions. We first fix all points in (Bi ∪

Bi+1)\ {y} arbitrarily. Then ‖ cm(Pi)− cm(Pi+1)‖ ≤ η is equivalent to the event
that y assumes a position in a hyperball of radius (|A| + |Bi|) · η ≤ nη. The
probability that this happens is bounded from above by the maximum density
of a Gaussian distribution times the volume of the hyperball, which is at most
(nη/σ)d ≤ (2nη�/σ)d .

The second case is that A = ∅. This case is in fact identical to the first case.

299

B. MANTHEY

The third case is that |B1| �= |B2| �= |B3|. We denote by B(c,r) = {x ∈ R
d |

‖x − c‖ ≤ r} the hyperball of radius r around c. For i ∈ {1,2}, let

ri =
(|A|

|A| + |Bi| − |A|
|A| + |Bi+1|

)−1

= (|A| + |Bi|) · (|A| + |Bi+1|)
|A| · (|Bi+1| − |Bi|)

and

Zi = |Bi+1|
|A| + |Bi+1| cm(Bi+1) − |Bi|

|A| + |Bi| cm(Bi).

We observe that the event ‖ cm(Pi) − cm(Pi+1)‖ < η is equivalent to the event
that cm(A) ∈ Bi = B(riZi,|ri|η). Consequently, a necessary condition that the
event ‖ cm(Pi) − cm(Pi+1)‖ < η occurs for both i ∈ {1,2} is that the hyperballs
B1 and B2 intersect.

The two hyperballs intersect if and only if their centers are at a distance of
at most (|r1| + |r2|) · η of each other. Hence,

P
(‖ cm(P1) − cm(P2)‖ ≤ η and ‖ cm(P2) − cm(P3)‖ ≤ η

)
≤ P

(‖r1Z1 − r2Z2‖ ≤ (|r1| + |r2|
)
η
)

.

With some tedious but not too insightful calculations, we can see that the
probability of this event is bounded as desired. �

The main technical problem in the proof of Lemma 13.18 is that we cannot
control the position of cm(A). The reason is that there are too many possible choices
for points in A. Because of this, we cannot simply apply a union bound over all
possibilities for A.

The first case in the proof of Lemma 13.18 shows that for the case that the same
number of points leaves and enters a cluster, it is already quite likely that the potential
decreases significantly. In this case, no epochs are needed. The reason is that the
influence of cm(A) cancels out in cm(Pi) − cm(Pi+1) if |Bi| = |Bi+1|. In this way,
the difficulty that we have to say something about cm(A) disappears.

If |Bi| �= |Bi+1|, then cm(A) shows up with different coefficients in cm(Ci) and
cm(Ci+1) and, hence, with a nonzero coefficient in cm(Pi) − cm(Pi+1). This implies
that for any position of cm(Bi) and cm(Bi+1), there exists a location for cm(A) such
that cm(Pi) and cm(Pi+1) are close. However, this is possible only if cm(A) assumes
a position in some hyperball of a certain radius. The center of this hyperball depends
only on cm(Bi) and cm(Bi+1). We conclude that we can have ‖ cm(P1)−cm(P2)‖ ≤ η

and ‖ cm(P2) − cm(P3)‖ ≤ η simultaneously only if these hyperballs intersect.
Lemmas 13.17 and 13.18 imply the following.

Lemma 13.19 The probability that there is a sequence of 2k consecutive sparse
improving iterations such that the potential decreases by less than ε over this
sequence is at most

(7n)4kd ·
(

4nkd
√
ε

σ

)d

≤
(

csparsen4k+4√ε

σ

)d

for some sufficiently large constant csparse.

300

SMOOTHED ANALYSIS OF LOCAL SEARCH

Putting Everything Together
To get a smoothed bound for the number of iterations, we need an upper bound for
the objective function of the initial clustering. The proof of the following lemma is
almost identical to the proof of Lemma 13.3 and therefore omitted. Here we exploit
our assumption that σ ≤ 1.

Lemma 13.20 Let σ ≤ 1, let D = 10
√

kd ln n, and let Y be a σ -perturbed point
set. Then P(Y �⊆ [−D,D]d) ≤ n−3kd.

A consequence of Lemma 13.20 is that after the first iteration, the potential is
bounded by ndD2 = cinitnd2k ln n ≤ cinitn5 for some constant cinit. (The upper bound
of cinitn5 is very poor, but simplifies the bounds.)

Theorem 13.21 For d ≥ 2, the smoothed number of iterations of the k-means
method is at most O(2kn14k+12/σ 2).

Proof We choose ε= σ 2 ·n−14k−8. By Lemma 13.15, the probability that there
is a dense iteration that decreases the potential by at most ε is at most cn−3kd for
some constant c > 0. By Lemma 13.19, the probability that there is a sequence
of 2k consecutive sparse iterations that decrease the potential in total by at
most ε is also at most c′n−3kd for some constant c′ > 0. By Lemma 13.20, the
probability that the initial potential is more than O(n5) is also at most n−3kd .

If any of these events happens nevertheless, we bound the number of
iterations by its worst-case bound of n3kd (Inaba et al., 2000). This contributes
only O(1) to the expected value. Otherwise, the number of iterations is bounded
by O(2kn14k+13/σ 2). �

Toward a Truly Polynomial Bound
The bound obtained in Theorem 13.21 is still quite poor. In particular, it has the
number k of clusters in the exponent. It can be shown that the smoothed number
of iterations of k-means is bounded by a polynomial in n and 1/σ (without k or d
in the exponent). The idea for this improved analysis is to refine the partitioning of
iterations into more types, not only into sparse and dense iterations. However, the
analysis becomes technically quite involved, while the analysis presented here already
conveys the key ideas.

13.3 Smoothed Analysis of the Approximation Ratio

Local search heuristics are popular not only because they are fast, but also because
they succeed relatively often in finding local optima that are not much worse than
global optima. In order to understand this theoretically, we would like to analyze the
ratio of the objective value of the local optimum found and of a global optimum.
However, there are several issues to this:

� Which local optimum the heuristic finds depends on the initial solution. In fact, a
local search heuristic is fully specified only if we also say how the initial solution is
computed. For the running time, we have avoided this issue by taking a worst-case

301

B. MANTHEY

approach, i.e., analyzing the maximum running time if we always make the worst
possible choice.

For the approximation ratio, we avoid this issue in the same way by comparing
the global optimum with the worst local optimum. However, the downside of this
is that we obtain approximation ratios much worse than the results obtained by
using quite simple heuristics to construct the initial solution, rendering the results
purely theoretical.

� While local search heuristics often perform very well with respect to speed, their
performance in terms of approximation ratio is somewhat mixed. In fact, worst-
case examples for the approximation ratio are often quite robust against small
perturbations.

� A pure technical issue is that, in order to analyze the approximation ratio, we have
to analyze the ratio of two random variables, namely the length of an optimal
tour and the length of the tour computed by the algorithm, that are highly
dependent.

We consider again the 2-opt heuristic for the TSP, but this time, we use the
(standard) Euclidean distances to measure the tour length.

We do not give full proofs in the remainder of this section, as most proofs are too
lengthy and technical to be presented here. Instead, we restrict ourselves to giving
some intuition of the proof ideas.

13.3.1 A Simple Bound for the Approximation Ratio of 2-Opt

We call a TSP tour through a point set 2-optimal if it cannot be shortened by a 2-
opt step. For a point set Y , we denote by WLO(Y) (worst local optimum) the length
of the longest 2-optimal tour through Y . We denote by TSP(Y) the length of the
shortest TSP tour.

Our goal here is to prove a smoothed approximation ratio of O(1/σ). This means
that E(WLO(Y)/TSP(Y)) = O(1/σ). The idea to prove this is as follows:

� Prove that TSP(Y) = �(σ · √n) with high probability.
� Prove that WLO(Y) = O(

√
n) with high probability.

� If either bound does not hold (which happens only with negligible probability),
then we use the trivial upper bound of n/2 for the approximation ratio.

The following lower bound for the length of an optimal tour is given without
a proof (see also Chapter 8). It follows from concentration of measure results for
Euclidean optimization problems.

Lemma 13.22 There exists a constant c > 0 such that TSP(Y) ≥ c · σ√
n with

a probability of at least 1 − exp(−c′n).

In particular, Lemma 13.22 implies that E(TSP(Y)) = �(σ
√

n), which we leave as
Exercise 13.3.

Next, we state an upper bound for the length of any locally optimal tour. The key
insight here is that if a tour is too long, then it must contain two almost parallel edges

302

SMOOTHED ANALYSIS OF LOCAL SEARCH

that are not too far away. These edges can then be replaced by a 2-opt step. Hence,
the original tour was not locally optimal.

Lemma 13.23 Let Y ⊆ [a,b]2 be a set of n points for some a < b, and let T be
any 2-optimal tour through Y. Then the length L(T) of T is bounded from above
by O

(
(b − a) · √n

)
.

Combining Lemma 13.23 with the fact that not too many points can be too far
outside of the unit hypercube, we obtain the following lemma.

Lemma 13.24 There exist constants c,c′ > 0 such that, for all σ ≤ 1, the following
holds: the probability that there exists a 2-optimal tour T through Y that has a
length of more than c · √n is bounded by exp(−c′√n).

The upper bound for the length of local optima plus the lower bound for the
length of optimal tours together with the trivial worst-case bound of n/2 of 2-opt’s
approximation ratio yield the following result.

Theorem 13.25 Let Y ⊆ R
2 be σ -perturbed point set. Then

E

(
WLO(Y)

TSP(Y)

)
= O

(
1
σ

)
.

13.3.2 Improved Smoothed Approximation Ratio of 2-Opt

In the previous section, we have sketched a bound of O(1/σ) for the smoothed
approximation ratio of 2-opt. This bound is still far away from explaining the
observed approximation performance of 2-opt, which usually finds a solution only
a few percent worse than the optimal solution.

The most striking reason that the bound is so poor is the following: we have
analyzed the objective value of the globally optimal and locally optimal solution
completely independently. The obvious advantage of this is that it avoids all depen-
dencies between the two quantities. The obvious disadvantage is that it only yields a
very poor bound: both the upper bound for the length of a locally optimal solution
and the lower bound for the length of a globally optimal solution are tight, but the
former is achieved if the unperturbed points are spread evenly over [0,1]d , whereas
the latter is achieved by putting all unperturbed points at exactly the same location.

By taking the positions of the unperturbed points into account, it is possible to
improve the smoothed approximation ratio of 2-opt to O

(
log(1/σ)

)
.

This seems to be almost tight, as there exist instances X of n points such that

E

(
WLO(Y)
TSP(Y)

)
= �

(
log n

log log n

)
for σ = O(1/

√
n). The idea to prove this smoothed lower

bound for the approximation ratio is to show that the known worst-case lower bound
example for the ratio WLO /TSP of �(log n/ log log n) can be made robust against
perturbations with σ = O(1/

√
n).

However, even the improved bound of O
(
log(1/σ)

)
requires σ to be constant to

achieve some constant approximation ratio. Such results are also easily obtained by
many simple heuristics for the TSP.

303

B. MANTHEY

13.4 Discussion and Open Problems

13.4.1 Running Time

Both smoothed analyses that we have presented in Section 13.2 have in common
that they are based on analyzing the smallest possible improvement of either a single
iteration or a few iterations.

This has been extended to longer sequences of iterations for the flip heuristic for
the Max-Cut problem. An instance of Max-Cut is given by an undirected graph
G = (V,E) with edge weights w : E → [−1,1]. The goal is to find a partition
σ : V → {−1,1} of the vertices of maximum cut weight

1
2

·
∑

e={u,v}∈E

w(e) · (1 − σ(u)σ (v)
)
.

The flip heuristic for MaxCut starts with an arbitrary partition. Then it iteratively
flips the sign of a vertex if this would increase the cut weight, until it has converged
to a local optimum.

The flip heuristic for MaxCut has been a notoriously difficult problem for a few
years because it eluded a smoothed analysis despite its simplicity. In order to make
the smoothed analysis of its running time possible, it was necessary to consider much
longer sequences of iterations, namely sequences of length linear in the number of
vertices. The main challenge then was to find enough independent randomness in
such sequences.

In summary, the feature that all smoothed analyses of the running time of local
search heuristics have in common seems to be that it is unlikely that iterations
cause only very small improvements. In contrast, the worst-case constructions to
show an exponential lower bound for the running time of these heuristics are quite
fragile. They are usually based on implementing a “binary counter,” where each bit
is represented by some small gadget. The gadgets for the different bits are scaled
versions of each other, which implies that all but the gadgets for the most significant
bits are tiny and easily break under small perturbations.

We conclude this section with three open problems: first, prove that the
Lin-Kernighan heuristic for the TSP has polynomial smoothed running time. This
heuristic has incredible performance in practice, much better than 2-opt. However,
it seems to be difficult to find a compact representation of the iterations. The reason
for this is that each iteration replaces an unbounded number of edges.

Second, devise general techniques for the smoothed analysis of local search
heuristics. Despite all the similarities, each smoothed analysis of a local search
heuristic so far is tailored to the specific algorithm. Is it possible to develop a general
framework or general conditions that imply smoothed polynomial running time?

Third, all smoothed analyses of local search heuristics use the decrease of the
objective function by showing that it is unlikely that any iteration (or all iterations
in some sequence) yields only a small improvement. This still seems to be rather
pessimistic, as it is unlikely that a local search heuristic performs very often iterations
that yield only the smallest possible improvement. Is it possible to do a smoothed
analysis “beyond the smallest improvement” in order to get improved bounds? In
particular, the polynomial bounds obtained in the smoothed analyses of the k-means

304

SMOOTHED ANALYSIS OF LOCAL SEARCH

method and the flip heuristic for MaxCut have quite large degree. We assume that
considerably improving these bounds requires new ideas.

13.4.2 Approximation Ratio

Given the relatively strong results for local search heuristics with respect to running
time and the quite poor results with respect to approximation ratio, the question
arises why this is the case. In fact, the results for the approximation ratio that
we have presented here are only of purely theoretical interest, as – in case of the
TSP – even a simple insertion heuristic achieves an approximation ratio of 2 in the
worst case.

For the k-means method, the situation is different: the approximation performance
of the k-means method is not very good in the first place. In fact, the main reason
why the k-means method is so popular is its speed. This allows us to run it many
times on the same data set with different initializations. The hope is that for at least
one initialization, we get a good clustering. In general, only very poor guarantees are
possible, even in the framework of smoothed analysis (Exercise 13.8).

Thus, the question arises if smoothed analysis is the right tool for analyzing the
approximation ratio of algorithms. The few successes – although nontrivial – are
merely of theoretical interest. A reason for this could be that the worst-case examples
for the approximation ratio seem to be much more robust against small perturbations.

We conclude this section with three open problems: first, prove a nontrivial bound
for the approximation performance of the Lin–Kernighan heuristic for the TSP
mentioned in the previous section.

Second, apply smoothed analyses to “hybrid heuristics.” The smoothed analysis
so far have only been applied to “pure” local search heuristics. However, in particular
the approximation ratio depends heavily on a good initialization. Hence, we have to
take into account two algorithms (the initialization and the actual heuristic) instead
of only one. Is it possible to show improved bounds in this setting? For instance, the
k-means method as described in this chapter has a poor approximation performance.
Is it possible to prove a good approximation performance, when initialized cleverly?

Third, find a meaningful way to do smoothed analysis of approximation ratios
or devise a different approach toward “approximation ratio beyond the worst case”
that really explains the approximation performance of such heuristics in practice.
One of the strong points of smoothed analysis is that it is a relatively problem-
independent semirandom input model. Essentially the only property that is needed
for a smoothed analysis is that the concept of “small perturbations” make sense for
the problem considered. However, this advantage is also a disadvantage: because
of problem independence, smoothed analysis completely ignores any structure that
interesting instances might have. Thus, in order to address this question, it might be
necessary to come up with more problem-specific input models for “non-worst-case”
instances.

13.5 Notes

Smoothed analysis has been introduced by Spielman and Teng (2004) in order to
explain the performance of the simplex method for linear programming. Arthur and

305

B. MANTHEY

Vassilvitskii (2009) were the first to apply smoothed analysis to local search heuristics,
namely to the k-means method and to the Iterative Closest Point (ICP) algorithm.

The original smoothed analysis of 2-opt, both for running time and approximation
ratio and including the concept of linked pairs, was done by Englert et al. (2014)
(see Röglin and Schmidt (2018) for a corrected version of Lemma 13.8). They also
provided a Euclidean instance on which 2-opt needs an exponential number of
iterations to compute a local optimum. Furthermore, they provided a smoothed
analysis of 2-opt for TSP in (non-Euclidean) general graphs (Englert et al., 2016).
The analysis of the running time under Gaussian noise using squared Euclidean
distances presented here follows a simplified proof by Manthey and Veenstra (2013).
The improved smoothed analysis of the approximation ratio is due to Künnemann
and Manthey (2015). The absolute length of locally optimal tours is by Chandra
et al. (1999). They also proved a worst-case bound of O(log n) for the approximation
ratio of 2-opt. The high-probability statement in Lemma 13.22 follows from Rhee’s
isoperimetric inequality (Rhee, 1993). Johnson and McGeoch provide experimental
evidence for the performance of 2-opt and the Lin–Kernighan heuristic (Johnson and
McGeoch, 1997, 2002).

Arthur and Vassilvitskii (2009) proved a bound polynomial in nk and 1/σ for the
smoothed running time of the k-means method and a polynomial bound for the
so-called ICP algorithm. The bound for the k-means method has been improved to a
polynomial bound by Arthur et al. (2011). The proof presented here combines the two
proofs to simplify the argument. A weaker bound can be obtained for more general
distance measures (Manthey and Röglin, 2013). Vattani (2011) provided an example
in 2-dimensional space for which k-means needs exponential time to compute a local
optimum. The upper bound for the worst-case running time is by Inaba et al. (2000).

The first smoothed analysis of the running time of the flip heuristic for the
Max-Cut problem for graphs of bounded degree has been done by Elsässer and
Tscheuschner (2011) (see Exercise 13.9). Etscheid and Röglin (2014) proved a quasi-
polynomial bound in general graphs. For the special case of complete graphs, this has
been improved by Angel et al. (2017) to a polynomial bound with high probability.

References

Angel, Omer, Bubeck, Sébastien, Peres, Yuval, and Wei, Fan. 2017. Local max-cut in smoothed
polynomial time. In Proceedings of the 49th Annual ACM Symposium on Theory of
Computing (STOC), pp. 429–437. ACM.

Arthur, David, and Vassilvitskii, Sergei. 2009. Worst-case and smoothed analysis of the ICP
algorithm, with an application to the k-means method. SIAM Journal on Computing,
39(2), 766–782.

Arthur, David, Manthey, Bodo, and Röglin, Heiko. 2011. Smoothed analysis of the k-means
method. Journal of the ACM, 58(5).

Chandra, Barun, Karloff, Howard, and Tovey, Craig. 1999. New results on the old k-opt
algorithm for the traveling salesman problem. SIAM Journal on Computing, 28(6), 1998–
2029.

Elsässer, Robert, and Tscheuschner, Tobias. 2011. Settling the complexity of local max-cut
(almost) completely. In Proceedings of the 38th International Colloqium on Automata,
Languages and Programming (ICALP). Lecture Notes in Computer Science, vol. 6755.
Springer.

306

SMOOTHED ANALYSIS OF LOCAL SEARCH

Englert, Matthias, Röglin, Heiko, and Vöcking, Berthold. 2014. Worst case and probabilistic
analysis of the 2-opt algorithm for the TSP. Algorithmica, 68(1), 190–264.

Englert, Matthias, Röglin, Heiko, and Vöcking, Berthold. 2016. Smoothed analysis of the
2-opt algorithm for the general TSP. ACM Transactions on Algorithms, 13(1),
10:1–10:15.

Etscheid, Michael, and Röglin, Heiko. 2017. Smoothed analysis of local search for the
maximum-cut problem. ACM Transactions on Algorithms, 13(2), 25:1–25:12.

Inaba, Mary, Katoh, Naoki, and Imai, Hiroshi. 2000. Variance-based k-clustering algorithms
by Voronoi diagrams and randomization. IEICE Transactions on Information and Sys-
tems, E83-D(6), 1199–1206.

Johnson, David S., and McGeoch, Lyle A. 1997. The traveling salesman problem: A case study.
In Emile Aarts and Jan Karel Lenstra (eds), Local Search in Combinatorial Optimization.
John Wiley & Sons.

Johnson, David S., and McGeoch, Lyle A. 2002. Experimental analysis of heuristics for the
STSP. In Gregory Gutin and Abraham P. Punnen (eds.), The Traveling Salesman Problem
and Its Variations, pp. 215–310. Kluwer Academic Publishers.

Künnemann, Marvin, and Manthey, Bodo. 2015. Towards understanding the smoothed
approximation ratio of the 2-opt heuristic. Proceedings of the 42nd International Collo-
qium on Automata, Languages and Programming (ICALP), pp. 369–443. Lecture Notes
in Computer Science, vol. 9134. Springer.

Manthey, Bodo, and Röglin, Heiko. 2013. Worst-case and smoothed analysis of k-means
clustering with Bregman Divergences. Journal of Computational Geometry, 4(1), 94–132.

Manthey, Bodo, and Veenstra, Rianne. 2013. Smoothed analysis of the 2-opt heuristic for the
TSP: Polynomial bounds for Gaussian noise. Proceedings of the 24th Annual International
Symposium on Algorithms and Computation (ISAAC). Lecture Notes in Computer
Science, vol. 8283. Springer.

Rhee, WanSoo T. 1993. A matching problem and subadditive Euclidean functionals. The
Annals of Applied Probability, 3(3), 794–801.

Röglin, Heiko, and Schmidt, Melanie. 2018. Randomized Algorithms and Probabilistic Analy-
sis. Technical Report, University of Bonn.

Schäffer, Alejandro A., and Yannakakis, Mihalis. 1991. Simple local search problems that are
hard to solve. SIAM Journal on Computing, 20(1), 56–87.

Spielman, Daniel A., and Teng, Shang-Hua. 2004. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. Journal of the ACM, 51(3), 385–463.

Vattani, Andrea. 2011. k-Means requires exponentially many iterations even in the plane.
Discrete and Computational Geometry, 45(4), 596–616.

Yukich, Joseph E. 1998. Probability Theory of Classical Euclidean Optimization Problems.
Lecture Notes in Mathematics, vol. 1675. Springer.

Exercises

Exercise 13.1 Consider the following probabilistic model for the TSP: given a finite
set V of n vertices, the distance d(u,v) between any u,v ∈ V is drawn independently
and uniformly at random from the interval [0,1].

Prove that the expected number of iterations that the 2-opt heuristic needs on
such instances is at most O(n6 log n).

Exercise 13.2 In the analysis of the 2-opt heuristic and the k-means method, we have
restricted ourselves to “reasonably small”σ and claimed that this does not pose any

307

B. MANTHEY

severe restriction. Justify this by showing that the smoothed number of iterations
for both algorithms is monotonically decreasing in σ .

More formally, let T(n,σ) denote the smoothed number of iterations of either
local search algorithm on instances of n points perturbed by Gaussians of standard
deviation σ . Show that T(n,σ) is nonincreasing in σ .

Exercise 13.3 Let X ⊆ R
2 be a set of n points in the Euclidean plane and let Y be a

perturbation of X as described in Section 13.2.2.
Prove that E(TSP(Y)) = �(σ · √n).
[Hint: For any y ∈ Y , estimate the distance to a closest neighbor of y in Y \{y}.]

Exercise 13.4 Prove Lemma 13.10.

Exercise 13.5 Prove Lemma 13.11.

Exercise 13.6 Prove the following stronger version of Lemma 13.16: the length of
every epoch is bounded by 3.

Exercise 13.7 Consider the following variant of the k-means method, which we call
“lazy k-means”: in every iteration, only one point is reassigned to a new cluster.
Ties are broken arbitrarily. After reassigning a single point, the two cluster centers
involved are adjusted.

Show that the smoothed running time of lazy k-means is bounded by a
polynomial in n and 1/σ , without any exponential dependency on d or k .
[Hint: Consider epochs and adjust the concept of η-coarseness appropriately. In
order to avoid a factor of 2k, you have to use the result of Exercise 13.6.]

Exercise 13.8 For the approximation ratio of the k-means method, we consider the
ratio of objective value of the worst local optimum divided by objective value of
a global optimum.

(a) Give a simple instance that shows that the approximation ratio of the k-means
method cannot be bounded by a constant.

(b) Let σ � 1. Show that the smoothed approximation ratio of k-means is not
o(1/σ 2). Here, smoothed approximation ratio refers again to the expected ratio
of the worst local optimum to a global optimum.

Exercise 13.9 For graphs with maximum degree O(log n), proving a smoothed poly-
nomial bound for the flip heuristic for Max-Cut is much easier than for general
graphs.

For a graph G = (V,E), let
 be the maximal degree of G, let n = |V |, and let
m = |E|. Let φ ≥ 1, and let fe : [0,1] → [0,φ] be a density function for e ∈ E.
Let we be drawn according to fe. We consider the flip heuristic for Max-Cut on
the instance (G,w). Let δmin be the smallest possible improvement caused by any
possible iteration of the flip heuristic. Let T be the maximum number of iterations
that the flip heuristic needs on the instance (G,w).

(a) Prove that P(δmin ≤ ε) ≤ 2
nφε.
(b) Prove that P(T ≥ t) ≤ 2
nmφ/t for all t ∈ N with t ≥ 1.
(c) Prove that E(T) = O(2
n2mφ).

308

CHAPTER FOURTEEN

Smoothed Analysis of the
Simplex Method

Daniel Dadush and Sophie Huiberts

Abstract: In this chapter, we give a technical overview of smoothed
analyses of the shadow vertex simplex method for linear program-
ming. We first review the properties of the shadow vertex simplex
method and its associated geometry. We begin the smoothed analysis
discussion with an analysis of the successive shortest path algorithm
for the minimum-cost maximum-flow problem under objective per-
turbations, a classical instantiation of the shadow vertex simplex
method. Then we move to general linear programming and give an
analysis of a shadow vertex based algorithm for linear programming
under Gaussian constraint perturbations.

14.1 Introduction

We recall that a linear program (LP) in n variables and m constraints is of the form

max cTx (14.1)

Ax ≤ b,

where x ∈ R
n are the decision variables. The data of the LP are the objective

c ∈ R
n, the constraint matrix A ∈ R

m×n, and the corresponding right-hand side
vector b ∈ R

m. We shall refer to P = {x ∈ R
n : Ax ≤ b} as the feasible polyhedron.

Throughout the chapter, we will assume that the reader is familiar with the basics
of linear programming and polyhedral theory (the reader may consult the excellent
book by Matousek and Gärtner (2007) for a reference).

The simplex method, introduced by Dantzig in 1947, is the first procedure devel-
oped for algorithmically solving LPs. It is a class of local search based LP algorithms,
which solve LPs by moving from vertex to vertex along edges of the feasible
polyhedron until an optimal solution or unbounded ray is found. The methods differ
by the rule they use for choosing the next vertex to move to, known as the pivot
rule. Three popular pivot rules are Dantzig’s rule, which chooses the edge for which
the objective gain per unit of slack is maximized (with respect to the current tight
constraints), and Goldfarb’s steepest edge rule together with its approximate cousin,
Harris’ Devex rule, which chooses the edge whose angle to the objective is minimized.

Organization In Section 14.2, we give a detailed overview the shadow vertex simplex
method and its associated geometry. In Section 14.3, we analyze the successive

309

D. DADUSH AND S. HUIBERTS

shortest path algorithm for minimum-cost maximum-flow under objective perturba-
tions. In Section 14.4, we give an analysis for general LPs under Gaussian constraint
perturbations.

14.2 The Shadow Vertex Simplex Method

The shadow vertex simplex algorithm is a simplex method that, given two objectives
c,d and an initial vertex v maximizing c, computes a path corresponding to vertices
that are optimal (maximizing) for any intermediary objective λc+ (1−λ)d,λ ∈ [0,1].

While the shadow vertex rule is not generally used in practice, e.g., the steepest
descent rule is empirically far more efficient, it is much easier to analyze from the
theoretical perspective, as it admits a tractable characterization of the vertices it visits.
Namely, a vertex can be visited only if it optimizes an objective between c and d, which
can be checked by solving an LP.

In what follows, we overview the main properties of the shadow vertex simplex
method together with how to implement it algorithmically. For this purpose, we will
need the following definitions.

Definition 14.1 (Optimal Face) For P ⊆ R
n a polyhedron and c ∈ R

n, define
P[c] := {x ∈ P : cTx = supz∈P cTz} to be the face of P maximizing c. If
supz∈P cTz = ∞, then P[c] = ∅ and we say that P is unbounded w.r.t. c.

Note that, in this notation, if P[c] = P[d] �= ∅, for d ∈ R
n, then P[c] = P[λc+ (1−

λ)d] for all λ ∈ [0,1].

Definition 14.2 (Tangent Cone) Let P = {x ∈ R
n : Ax ≤ b}, A ∈ R

m×n,
b ∈ R

m, be a polyhedron. For x ∈ P, define tightP(x) = {i ∈ [m] : aT
i x = bi}

to be the tight constraints at x. The tangent cone at x w.r.t. P is TP(x) := {w ∈
R

n : ∃ε > 0 s.t. x + εw ∈ P}, the set of movement directions around x in P. In
terms of the inequality representation, TP(x) := {w ∈ R

n : ABw ≤ 0} where
B = tightP(x).

The Structure of the Shadow Path The following lemma provides the general structure
of any shadow path, which will generically induce a valid simplex path.

Lemma 14.3 (Shadow Path) Let P ⊆ R
n be a polyhedron and c,d ∈ R

n. Then
there exists a unique sequence of faces P(c,d) := (v0,e1,v1, . . . ,ek,vk) of P, k ≥ 0,
known as the shadow path of P w.r.t. (c,d), and scalars 0 = λ0 < λ1 < · · · < λk <

λk+1 = 1 such that

1. For all 1 ≤ i ≤ k, we have ei = P[(1−λi)c+λid] �= ∅, and moreover e1, . . . ,ek
are distinct faces of P.

2. For all 0 ≤ i ≤ k and λ ∈ (λi,λi+1), vi = P[(1 − λ)c + λd].
3. For all 0 < i < k, the faces satisfy vi = ei ∩ei+1 �= ∅, and if k ≥ 1 then v0 ⊂ e1

and vk ⊂ ek.

Furthermore, the first face is v0 = P[c][d], the face of P[c] maximizing d, and the
last face is vk = P[d][c]. For every i ∈ [k], we have vi−1 = ei[c] = ei[−d] and
vi = ei[−c] = ei[d].

310

SMOOTHED ANALYSIS OF THE SIMPLEX METHOD

d

c

Figure 14.1 In (c,d) space, a shadow path starts at the highest vertex and moves to the rightmost vertex
if it exists.

Note that, as a set, the shadow path P(c,d) exactly corresponds to the set of
faces {P[(1 − λ)c + λd] : λ ∈ (0,1)} optimizing an objective in (c,d). Lemma 14.3
shows that these faces have a useful connectivity structure that we will exploit
algorithmically.

Definition 14.4 (Shadow Path Properties) Given a polyhedron P, c,d ∈ R
n,

letting P(c,d) = (v0,e1,v1, . . . ,ek,vk), we use PV (c,d) to denote the subsequence
of nonempty faces of (v0,v1, . . . ,vk) and PE(c,d) = (e1,e2, . . . ,ek). We call
each face F ∈ P(c,d) a shadow face. We define the shadow path P(c,d) to
be nondegenerate if dim(v0) ≤ 0 and e1, . . . ,ek are edges of P. Note that this
automatically enforces that v1, . . . ,vk−1 are vertices of P and that dim(vk) ≤ 0.
We say that P(c,d) is proper if P[c][d] �= ∅.

We are interested in the case when shadow paths are proper and nondegenerate.
For a proper nondegenerate path P(c,d) = (v0, . . . ,ek,vk), the set v0 ∪ ∪k

i=1ei is a
connected polygonal path that begins at the vertex v0 = P[c][d] and follows edges
of P, and thus forms a valid simplex path. The final face vk will be nonempty iff P
is bounded w.r.t. d. In this case, vk = P[d][c] is the vertex of P[d] maximizing c. If
vk = ∅, then ek will be an unbounded edge of the form ek = vk−1 + [0,∞) · wk for
which wT

k d > 0, yielding a certificate of the unboundedness of P w.r.t. d.
A useful way to interpret the shadow path is via a 2-dimensional projection

induced by c,d. We index this projection by πc,d , where πc,d(z) := (dTz,cTz), and
define ex := (1,0),ey := (0,1) to be the generators of the x- and y- axes in R

2

respectively. Under this map, the faces of the shadow path trace a path along the
upper hull of πc,d(P). The projection interpretation is the reason why Borgwardt
(1977) called the parametric objective method the shadow vertex simplex method
(schatteneckenalgoritmus), which is the most common name for it today.

Lemma 14.5 Let P be a polyhedron, c,d ∈ R
n. For P(c,d) = (v0,e1,v1, . . . ,ek,vk),

the shadow path satisfies πc,d(P)(ey,ex) = (πc,d(v0), . . . ,πc,d(ek),πc,d(vk)).
Furthermore, the shadow path πc,d(P)(ey,ex) is nondegenerate and P(c,d) is
nondegenerate iff dim(v0) = dim(πc,d(v0)) and dim(ei) = dim(πc,d(ei)) = 1 for
all i ∈ [k].

311

D. DADUSH AND S. HUIBERTS

Lemma 14.5 in fact implies that nondegeneracy can be restated as requiring πc,d

to be a bijection between S = v0 ∪⋃k
i=1 ei and its projection πc,d(S). Nondegeneracy

of a shadow path is in fact a generic property. That is, given any pointed polyhedron
P ⊆ R

n and objective d, the set of objectives c for which P(c,d) is degenerate has
measure 0 inR

n. As a consequence, given any c and d, one may achieve nondegeneracy
by infinitessimally perturbing either c or d.

Under the πc,d projection, the faces v0, . . . ,vk, except possibly v0,vk which may be
empty, always map to vertices of πc,d(P), and the faces e1, . . . ,ek always map to edges
of πc,d(P). Assuming v0,vk �= ∅, then πc,d(v0),πc,d(vk) are the vertices of maximum
y and x coordinate respectively in πc,d , and the edges πc,d(e1), . . . ,πc,d(ek) follow
the upper hull of πc,d(P) between πc,d(v0) and πc,d(vk) from left to right. In this
view, one can interpret the multipliers λ1 < · · · < λk ∈ (0,1) from Lemma 14.3
in terms of the slopes of e1, . . . ,ek under πc,d . Precisely, if we define the c,d slope
sc,d(ei) := cT(x1 − x0)/dT(x1 − x0), i ∈ [k], where x1,x0 ∈ ei are any two points with
dTx1 �= dTx0 , then sc,d(ei) = −λi/(1 − λi). This follows directly from the fact that
the objective (1 − λi)c + λid, λi ∈ (0,1), is constant on ei. From this, we also see that
0 > sc,d(e1) > · · · > sc,d(ek), i.e., the slopes are negative and strictly decreasing.

The Shadow Vertex Simplex Algorithm A shadow vertex pivot, i.e., a move across
an edge of P, will correspond to moving in a direction of largest (c,d) slope
from the current vertex. Computing these directions will be achieved by solving
linear programs over the tangent cones. In the context of the successive shortest
path algorithm, these LPs are solved via a shortest path computation, while in the
Gaussian constraint perturbation model, they are solved explicitly by computing the
extreme rays of the tangent cone. An abstract implementation of the shadow vertex
simplex method is provided in Algorithm 1. While there is technically freedom in the
choice of the maximizer on line 3, under nondegeneracy the solution will in fact be
unique. We state the main guarantees of the following algorithm.

Theorem 14.6 Algorithm 1 is correct and finite. On input P,c,d,v0 ∈ P[c][d] �= ∅,
the vertex–edge sequence v0,e1,v1, . . . ,ek,vk computed by the algorithm visits
every face of P(c,d) and the computed multipliers λ1, . . . ,λk ∈ (0,1) form a
nondecreasing sequence that satisfies ei ⊆ P[(1 − λi)c + λid] for every i ∈ [k].
If P(c,d) is nondegenerate, then (v0,e1,v1, . . . ,ek,vk) = P(c,d). Furthermore, the
number of simplex pivots performed is then |PE(c,d)|, and the complexity of the
algorithm is that of solving |PV (c,d)| tangent cone programs.

In regard to slopes, the value of the program on line 3 equals the (c,d)-slope
sc,d(ei+1).

While Algorithm 1 still works in the presence of degeneracy, one can no longer
characterize the number of pivots by |PE(c,d)|, though this always remains a lower
bound. This is because it may take multiple pivots to cross a single face of PE(c,d), or
equivalently, there can be a consecutive block [i,j] of iterations where λi = · · · = λj.

As is evident from the theorem and the algorithm, the complexity of each iteration
depends on the difficulty of solving the tangent cone programs on line 3. One instance
in which this is easy, is when the inequality system is nondegenerate.

312

SMOOTHED ANALYSIS OF THE SIMPLEX METHOD

Algorithm 1 The shadow vertex simplex algorithm
Require: P = {x ∈ R

n : Ax ≤ b}, c,d ∈ R
n, initial vertex v0 ∈ P[c][d] �= ∅.

Ensure: Return vertex of P[d][c] if non-empty or e ∈ edges(P) unbounded w.r.t. d.
1: i ← 0
2: loop
3: wi+1 ← vertex of argmax{cTw : w ∈ TP(vi),dTw = 1} or ∅ if infeasible
4: if wi+1 = ∅ then
5: return vi
6: end if
7: λi+1 ← −wT

i+1c/(1 − wT
i+1c)

8: si+1 ← sup{s ≥ 0 : vi + swi+1 ∈ P}
9: ei+1 ← vi+1 + [0,si+1] · wi+1

10: i ← i + 1
11: if si = ∞ then
12: vi ← ∅
13: return ei
14: else
15: vi ← vi−1 + siwi
16: end if
17: end loop

Definition 14.7 (Nondegenerate Inequality System) We say that the system
Ax ≤ b, A ∈ R

m×n, b ∈ R
m, m ≥ n, describing a polyhedron P is nondegenerate

if P is pointed and if for every vertex v ∈ P the set tightP(v) is a basis of A.

When the description of P is clear, we say that P is nondegenerate to mean that
its describing system is. We call B ⊆ [m], |B| = n, a basis of A if AB, the submatrix
corresponding to the rows in B, is invertible. A basis B is feasible if A−1

B bB is a vertex
of P. For a nondegenerate polyhedron P and v ∈ vertices(P), the extreme rays of
the tangent cone at v are simple to compute. More precisely, letting B = tightP(v)
denote the basis for v, the extreme rays of the tangent cone TP(v) are generated by
the columns of −A−1

B . Knowing this explicit description of the extreme rays of TP(v),
the program on line 3 is easy to solve because wi+1 is always a scalar multiple of a
generator of an extreme ray.

The Shadow Plane and the Polar In the previous subsection, we examined the shadow
path P(c,d) induced by two objectives, c,d. This is enough for the result we prove in
Section 14.3. For the sake of Section 14.4, we generalize the shadow path slightly
by examining the shadow on the plane W = span(c,d). Letting πW denote the
orthogonal projection onto W , we will work with πW (P), the shadow of P on W .
This will be useful to capture somewhat more global shadow properties. In particular,
it will allow us to relate to the geometry of the corresponding polar, and allow us to
get bounds on the lengths of shadow paths having knowledge of W , but not of the
exact objectives c,d ∈ W whose shadow path we will follow.

313

D. DADUSH AND S. HUIBERTS

a4

a1

a5

a2
a6

a3

Figure 14.2 On the left, we see a polyhedron P projected on a plane W . The boundary of the projection
uniquely lifts into the polyhedron. On the right, we see the corresponding polar polytope Q = P◦ with the
intersection Q ∩ W marked. Every facet of Q intersected by W is intersected through its relative interior.

Definition 14.8 (Shadow on W) Let P ⊆ R
n be a polyhedron and let W ⊆ R

n

be a 2-dimensional linear subspace. We define the shadow faces of P w.r.t. W by
P[W] = {P[c] : c ∈ W \ {0}}, that is the set of faces of P optimizing a nonzero
objective in W . Let PV [W],PE [W] denote the set of faces in P[W] projecting to
vertices and edges of πW (P) respectively. We define P[W] to be nondegenerate
if every face F ∈ P[W] satisfies dim(F) = dim(πW (F)).

The following lemma provides the straightforward relations between shadow paths
on W and the number of vertices of πW (P).

Lemma 14.9 Let P ⊆ R
n be a polyhedron, W ⊆ R

n, dim(W) = 2. Then for
c,d ∈ W, if the path P(c,d) is nondegenerate and proper, then the number of
pivots performed by Algorithm 1 on input P,c,d,P[c][d] is bounded by |PV [W]| =
|vertices(πW (P))|. Furthermore, if P[W] is nondegenerate and span(c,d) = W,
then P(c,d) is nondegenerate.

Moving to the polar view, we assume that we start with a polyhedron of the
form P = {x ∈ R

n : Ax ≤ 1}. Define the polar polytope as Q = conv(a1, . . . ,am),
where a1, . . . ,am are the rows of the constraint matrix A. We use a slightly different
definition of the polar polytope than is common. The standard definition takes the
polar to be

P◦ := {y ∈ R
n : yTx ≤ 1,∀x ∈ P} = conv(Q,0).

We have P◦ �= Q exactly when P is unbounded. We depict a polyhedron and its polar
polytope in Figure 14.2.

The following lemma, which follows from relatively standard polyhedral duality
arguments, tells us that one can control the vertex count of the shadow using the
corresponding slice of the polar. It provides the key geometric quantity we will bound
in Section 14.4. Proving the lemma is Exercise 14.2.

Lemma 14.10 Let P = {x ∈ R
n : Ax ≤ 1} be a polyhedron with a nondegenerate

shadow on W and Q its polar polytope. Then

|vertices(πW (P))| ≤ |edges(Q ∩ W)|.
If P is bounded then the inequality is tight.

314

SMOOTHED ANALYSIS OF THE SIMPLEX METHOD

14.3 The Successive Shortest Path Algorithm

In this section, we will study the classical successive shortest path (SSP) algorithm for
the minimum-cost maximum-flow problem under objective perturbations.

The Flow Polytope Given a directed graph G = (V,E) with source s ∈ V and sink
t ∈ V , a vector of positive arc capacities u ∈ R

E+, and a vector of arc costs c ∈ (0,1)E ,
we want to find a flow f ∈ R

E+ satisfying∑
ij∈E

fij −
∑
ji∈E

fji = 0,∀i ∈ V \ {s,t} (14.2)

0 ≤ fij ≤ uij,∀ij ∈ E

that maximizes the amount of flow shipped from s to t, and among such flows
minimizes the cost cTf . We denote the set of feasible flows, that is, those satisfying
(14.2), by P.

For simplicity of notation in what follows, we assume that G does not have
bidirected arcs, that is E contains at most one of any pair {ij,ji}. To make the
identification with the shadow vertex simplex method easiest, we consider only the
case in which every shortest s–t path is unique.

The SSP Algorithm We now describe the algorithm. For this purpose, we introduce
some notation. Letting

←−
ij = ji, we define the reverse arcs

←−
E := {ji : ij ∈ E}, and

extend c to
←−
E by letting cji = −cij for ji ∈ ←−

E . For w ∈ {−1,0,1}E , we define its
associated subgraph R = {a ∈ E : wa = 1} ∪ {←−a : a ∈ E,wa = −1} and vice versa,
noting that cTw = ∑

a∈R ca. Given a feasible flow f ∈ P, the residual graph N[f] has
the same node set V and arc set A[f] = F [f] ∪ R[f] ∪ B[f], where F [f] = {a ∈ E :
fa = 0}, R[f] = {←−a : a ∈ E : fa = ua}, B[f] = {a,←−a : a ∈ E,0 < fa < ua} are
called forward, reverse, and bidirected arcs w.r.t. f respectively. The combinatorial
description of the SSP algorithm is:

1. Initialize f to 0 on E.
2. While N[f] contains an s–t path: compute a shortest s-t path R in N[f] with respect

to the costs c with associated vector wR ∈ {−1,0,1}E . Augment f along R until
a capacity constraint becomes tight, that, is update f ← f + sRwR where sR =
max{s ≥ 0 : f + sRwR ∈ P}. Repeat.

3. Return f .

We recall that a shortest s–t path is well defined if and only if N[f] does not contain
negative cost cycles.

For the SSP algorithm to take many iterations to find the optimum solution, the
difference between the path lengths in each iteration should be very small. As long as
the costs are not adversarially chosen, it seems unlikely that this should happen. That
is what we formalize and prove in the remainder of this chapter.

The SSP as Shadow Vertex We now show that the SSP algorithm corresponds to
running the shadow vertex simplex algorithm on P applied to the starting objective

315

D. DADUSH AND S. HUIBERTS

being −c and the target objective d being the flow from s to t, that is dTf := ∑
sj∈E fsj.

This correspondence will also show correctness of the SSP.
To see the link to the shadow vertex simplex algorithm, we reinterpret prior

observations polyhedrally. Firstly, it is direct to check that the face P[d] is the set
of maximum s–t flows. In particular, the maximum-flow of minimum cost is then
P[d][−c]. Since the arc costs are positive on E, any nonzero flow f ∈ P must
incur positive cost. Therefore, the zero flow is the unique cost minimizer, that is,
{0} = P[−c] = P[−c][d]. Thus, by Theorem 14.6, one can run the shadow vertex
simplex algorithm on the flow polytope P, objectives −c,d and starting vertex 0 and
get a vertex v ∈ P[d][−c] as output.

To complete the identification, one need only show that the tangent cone LPs
correspond to shortest s–t path computations. This is a consequence of the following
lemma, whose proof is left as Exercise 14.3.

Lemma 14.11 For f ∈ P with residual graph N[f], the following hold:

1. The tangent cone can be explicitly described using flow conservation and tight
capacity constraints as TP(f) := {w ∈ R

A :
∑

ij∈A wij −∑
ji∈A wji = 0 ∀i ∈

V \ {s,t},wa ≥ 0 ∀a ∈ F [f],wa ≤ 0 ∀a ∈ R[f]}.
2. If N[f] does not contain negative cost cycles, then any vertex solution to the

program inf{cTw : w ∈ TP(f),dTw = δ}, δ ∈ {±1} corresponds to a minimum-
cost s-t path for δ = 1 and t-s path for δ = −1, which by convention has cost
∞ if no such path exists.

3. If f is a shadow vertex and the shadow path is nondegenerate, the value of the
above program for δ = 1 equals the slope sc,d(e) of the shadow edge e leaving f
and the value of the program for δ = −1 equals the slope sc,d(e′) of the shadow
edge e′ entering f .

It will be useful to note here that since we interpolate from −c, that is minimizing
cost, the shadow P(−c,d) will in fact follow edges of the lower hull of πc,d(P) from
left to right. In particular, the (c,d) slopes (cost per unit of flow) of the corresponding
edges will all be positive and form an increasing sequence. The (c,d) slope of a shadow
edge is always equal to the cost of some s–t path

←→
E . Since any such path uses at most

n − 1 edges of cost between (−1,1), the slope of any shadow edge is strictly less than
n − 1, which will be crucial to the analysis in the next section. By the correspondence
of slopes with multipliers, the slope bound implies the rather strong property that any
maximizer of −c + n−1

n d in P, is already on the optimal face P[d][−c].

14.3.1 Smoothed Analysis of the SSP

As shown by Zadeh (1973), there are inputs where the SSP algorithm requires
an exponential number of iterations to converge. In what follows, we explain the
main result of Brunsch et al. (2015), which shows that exponential behavior can be
remedied by slightly perturbing the edge costs.

The perturbation model is known as the one-step model, which is a general model
where we only control the support and maximum density of the perturbations.
Precisely, each edge cost ce will be a continuous random variable supported on (0,1),
whose maximum density is upper bounded by a parameter φ ≥ 1. The upper bound

316

SMOOTHED ANALYSIS OF THE SIMPLEX METHOD

on φ is equivalent to the statement that for any interval [a,b] ⊆ [0,1], the inequality
Pr[ce ∈ [a,b]] ≤ φ|b − a|, known as the interval lemma, holds. Note that as φ → ∞,
the cost vector c can concentrate on a single vector and thus converge to a worst-case
instance. The main result of this section is as follows.

Theorem 14.12 (Brunsch et al., 2015) Let G = (V,E) be a graph with n nodes
and m arcs, a source s ∈ V and sink t ∈ V, and positive capacities u ∈ R

E+. Then for
a random cost vector c ∈ (0,1)E with independent coordinates having maximum
density φ ≥ 1, the expected number of iterations of the SSP algorithm on G is
bounded by O(mnφ).

As with many smoothed analysis results, we want to quantify some form of
“expected progress” per iteration, and the difficulty lies in identifying enough “inde-
pendent randomness” such that not all randomness is used up in the first iteration.

To prove the theorem, we will upper bound the expected number of edges on
the random shadow path followed by the SSP. The main idea will be to bound the
expected number of times an arc of G can used by the s–t paths found by the SSP
algorithm.

For the analysis, we maintain the notation from the previous section together with
the following definitions. For f ∈ P, we identify the tight constraints tightP(f) with
arcs in

←→
E , namely a ∈ tightP(f) iff a ∈ E and fij = 0 or a ∈ ←−

E and fij = uij.
Similarly, we define Pa = {f ∈ P : a ∈ tightP(f)}. To identify (c,d) slopes, for any
f ∈ P, we use ps,t(f),pt,s(f) ∈ R∪{±∞} to denote the cost of the shortest s–t and t–s
path in N[f]. Similarly, for a ∈ ←→

E , we use pa±
s,t (f),p

a±
t,s (f) to denote the corresponding

minimum-cost paths not using arc a (superscript a−) and using arc a (superscript a+).

Proof of Theorem 14.12 To prove the theorem, we show that Ec[|PE(−c,d)|],
the expected shadow vertex count, is bounded by O(mnφ). Since the cost vector
c is generic, the shadow path P(−c,d) is nondegenerate with probability 1. By
Theorem 14.6, this will establish the desired bound on the number of shadow
vertex pivots.

Let (v0,e1,v1, . . . ,ek,vk) denote the random shadow path P(−c,d), and
similarly for a ∈ ←→

E , let (va
0,e

a
1,v

a
1, . . . ,e

a
ka
,va

ka
) be the shadow path Pa(−c,d),

which we may assume to be nondegenerate with probability 1. Note that since
P is a polytope, each shadow path is either ∅ (if the corresponding facet is
infeasible) or contains no empty faces. By the natural extension of Lemma 14.11
to facets of P, we have that for a ∈ ←→

E and i ∈ [ka], the (c,d) slope of edge ea
i is

equal to sc,d(ea
i) = pa−

s,t (v
a
i−1) = −pa−

t,s (v
a
i), i.e., the corresponding shortest path

length restricted to not using arc a.
Since each vertex vi−1 ⊂ ei, i ∈ [k], is contained in its outgoing edge, there

must exist a tight constraint a ∈ tightP(vi−1) such that a /∈ tightP(ei). This yields
the following direct inequality:

|PE(−c,d)| =
k∑

i=1

1 ≤
∑

a∈←→
E

k∑
i=1

1[a ∈ tightP(vi),a /∈ tightP(ei)]. (14.3)

317

D. DADUSH AND S. HUIBERTS

Fixing a ∈ ←→
E , we now show that the corresponding term in (14.3) is bounded

on expectation over c by O(nφ). For i ∈ [k], since the (c,d) slope satisfies
sc,d(ei) = ps,t(vi−1), we know that a ∈ tightP(vi−1) \ tightP(ei) implies that the
minimum-cost s-t path in N[vi] uses arc a. In particular, ps,t(vi−1) = pa+

s,t (vi−1).
Since −pt,s(vi−1) is the (c,d) slope of the incoming edge at vi−1, by the increasing
property of slopes we also have the inequality −pt,s(vi−1) ≤ pa+

s,t (vi−1). Putting
this information together,

k∑
i=1

1[a ∈ tightP(vi−1),a /∈ tightP(ei)]

≤
k−1∑
i=0

1[a ∈ tightP(vi), − pt,s(vi) ≤ pa+
s,t (vi) ≤ ps,t(vi)]

≤
k−1∑
i=0

1[a ∈ tightP(vi), − pa−
t,s (vi) ≤ pa+

s,t (vi) ≤ pa−
s,t (vi)],

where last inequality follows from the trivial inequalities pa−
s,t (vi) ≥ ps,t(vi) and

pa−
t,s (vi) ≥ pt,s(vi). We now make the link to the shadow of Pa. Since vi is a

shadow face in P(−c,d), a ∈ tightP(vi) implies that vi is also a shadow face
of Pa(−c,d). By this containment and the characterization of edge slopes in
Pa(−c,d) as shortest path lengths, we have that

k−1∑
i=0

1[a ∈ tightP(vi), − pa−
t,s (vi) ≤ pa+

s,t (vi) ≤ pa−
s,t (vi)]

=
k−1∑
i=0

1[vi ∈ Pa(−c,d), − pa−
t,s (vi) ≤ pa+

s,t (vi) ≤ pa−
s,t (vi)]

≤
ka∑

i=0

1[−pa−
t,s (v

a
i) ≤ pa+

s,t (v
a
i) ≤ pa−

s,t (v
a
i)]

≤ 2 +
ka−1∑
i=1

1[sc,d(e
a
i) ≤ pa+

s,t (v
a
i) ≤ sc,d(e

a
i+1)].

We may now usefully take an expectation with respect to ca. The crucial
observation here is that by independence of the components of c, the shadow
path Pa(−c,d) is independent of the cost ca, noting that the flow along arc a
is fixed in Pa. Furthermore, expressing a = pq ∈ ←→

E , we may usefully decom-
pose pa+

s,t (v
a
i) = ca + ra+

s,t (v
a
i), where ra+

s,t (v
a
i) is the sum of the cost of the

shortest s–p and q–t paths in N[va
i]. Noting that N[va

i] does not contain ←−a ,
we see that ra+

s,t (v
a
i) is clearly independent of ca. Using that edge slopes satisfy

0 < sc,d(ea
1) < · · · < sc,d(ea

ka
) ≤ n−1, where the last inequality follows as before

318

SMOOTHED ANALYSIS OF THE SIMPLEX METHOD

Pa(c,d) P(c,d)

Figure 14.3 Any vertex of P(c,d) is a vertex of some Pa(c,d), and the outgoing edge on P(c,d) has slope
between the slopes of the adjacent edges of Pa(c,d).

by the correspondence with s–t path lengths, together with the interval lemma,
we bound the expectation as follows:

Eca

⎡⎣ka−1∑
i=1

1[sc,d(e
a
i) ≤ pa+

s,t (v
a
i) ≤ sc,d(e

a
i+1)]

⎤⎦
=

ka−1∑
i=1

Pr
ca

[ca + ra+
s,t (v

a
i) ∈ [sc,d(e

a
i),sc,d(e

a
i+1)]]

≤
ka−1∑
i=1

φ
(
sc,d(e

a
i+1) − sc,d(e

a
i)
)

= φ
(
sc,d(e

a
ka
) − sc,d(e

a
1)
) ≤ (n − 1)φ.

Putting it all together, using that |←→E | = 2m, we derive the desired expected
bound

Ec[|PE(−c,d)|] ≤
∑

a∈←→
E

Ec

⎡⎣ k∑
i=1

1[a ∈ tightP(vi−1),a /∈ tightP(ei)]

⎤⎦
≤ 4m +

∑
a∈←→

E

Ec

⎡⎣ka−1∑
i=1

1[sc,d(e
a
i) ≤ pa+

s,t (v
a
i) ≤ sc,d(e

a
i+1)]

⎤⎦
≤ 4m + 2mφ(n − 1) = O(mnφ). �

14.4 LPs with Gaussian Constraints

The Gaussian constraint perturbation model in this section was the first smoothed
complexity model to be studied and was introduced by Spielman and Teng (2004).
While not entirely realistic, since it does not preserve for example the sparsity
structure seen in most real-world LPs, it does show that the worst-case behavior of the
simplex method is very brittle. Namely, it shows that a shadow vertex simplex method

319

D. DADUSH AND S. HUIBERTS

efficiently solves most LPs in any big enough neighborhood around a base LP. At
a very high level, this because an average shadow vertex pivot covers a significant
fraction of the “distance” between the initial and target objective.

The Gaussian Constraint Perturbation Model In this perturbation model, we start
with any base LP

max cTx, Āx ≤ b̄, (Base LP)

Ā ∈ R
m×n, b̄ ∈ R

m, c ∈ R
n \ {0}, where the rows of (Ā,b̄) are normalized to have �2

norm at most 1. From the base LP, we generate the smoothed LP by adding Gaussian
perturbations to both the constraint matrix Ā and the right-hand side b̄. Precisely, the
data of the smoothed LP are A = Ā + Â,b = b̄ + b̂, and c, where the perturbations
Â, b̂ have i.i.d. mean 0, variance σ 2 Gaussian entries. The goal is to solve

max cTx, Ax ≤ b. (Smoothed LP)

Note that we do not need to perturb the objective in this model, though we do
require that c �= 0. The base LP data must be normalized for this definition to make
sense, since otherwise one could scale the base LP data up to make the effective
perturbation negligible.

As noted earlier, the strength of the shadow vertex simplex algorithm lies in it being
easy to characterize whether a basis is visited given the starting and final objective
vectors. There is no dependence on decisions made in previous pivot steps. To preserve
this independence, we have to be careful with how we find our initial vertex and
objective. On the one hand, if we start out knowing a feasible basis B ⊂ [m] of
the smoothed LP, we cannot just set d = ∑

i∈B ai, where a1, . . . ,am denote the rows
of A. This would cause the shadow plane span(c,d) to depend on A and make our
calculations rather more difficult. On the other hand, we cannot choose our starting
objective d independently of A,b and find the vertex optimizing it, because that is the
very problem that we aim to solve. We resolve this by analyzing the expected shadow
vertex count on a plane that is independent of A,b and designing an algorithm that
uses the shadow vertex simplex method as a subroutine only on objectives that lie
inside such prespecified planes.

Smoothed Unit LPs As a further simplification of the probabilistic analysis, we
restrict our shadow bounds to LPs with right-hand side equal to 1 and only A
perturbed with Gaussian noise:

max cTx, Ax ≤ 1. (Smoothed Unit LP)

This assumption guarantees that 0 is a feasible solution. In the rest of this subsection,
we reduce solving (Smoothed LP) to solving (Smoothed Unit LP) and show how to
solve (Smoothed Unit LP).

The next theorem is the central technical result of this section and will be proven
in subsection 14.4.2. The bound carries over to the expected number of pivot steps of
the shadow vertex simplex method on a smoothed unit LP with c,d in a fixed plane
using Lemma 14.9 and Lemma 14.10.

320

SMOOTHED ANALYSIS OF THE SIMPLEX METHOD

Theorem 14.13 Let W ⊂ R
n be a fixed 2-dimensional subspace, m ≥ n ≥ 3 and

let a1, . . . ,am ∈ R
n be independent Gaussian random vectors with variance σ 2 and

expectations of norm at most 1. Then the expected number of edges is bounded by

E[|edges(conv(a1, . . . ,am) ∩ W)|]
= O(n2

√
ln m σ−2 + n2.5 ln m σ−1 + n2.5 ln1.5 m).

The linear programs we solve and their shadows are nondegenerate with probability 1,
so Theorem 14.13 will also bound the expected number of pivot steps of a run of the
shadow vertex simplex method.

First, we describe an algorithm that builds on this shadow path length bound to
solve general smoothed LPs. After that, we will sketch the proof of Theorem 14.13.

Two-Phase Interpolation Method Given data A,b,c, define the Phase I Unit LP:

max cTx (Phase I Unit LP)

Ax ≤ 1

and the Phase II interpolation LP with parametric objective for γ ∈ (−∞,∞)

max cTx + γ λ (Int. LP)

Ax + (1 − b)λ ≤ 1

0 ≤ λ ≤ 1.

We claim that, if we can solve smoothed unit LPs, then we can use the pair (Phase
I Unit LP) and (Int. LP) to solve general smoothed LPs.

Writing P for the feasible set of (Int. LP) and eλ for the basis vector in the direction
of increasing λ, the optimal solution to (Phase I Unit LP) corresponds to P[−eλ][c].
Assuming that (Smoothed LP) is feasible, its optimal solution corresponds to P[eλ][c].
Both (Phase I Unit LP) and (Int. LP) are unit LPs. We first describe how to solve
(Smoothed LP) given a solution to (Phase I Unit LP).

If (Smoothed LP) is unbounded (i.e., the system cTx > 0,Ax ≤ 0 is feasible), this
will be detected during Phase I as (Unit LP) is also unbounded.

Let us assume for the moment that (Smoothed LP) is bounded and feasible (i.e., has
an optimal solution). We can start the shadow vertex simplex method from the vertex
P[−eλ][c] at objective γ eλ + c, for some γ < 0 small enough, and move to maximize
eλ to find P[eλ][c].

If (Smoothed LP) is infeasible but bounded, then the shadow vertex run will
terminate at a vertex having λ < 1. Thus, all cases can be detected by the two-phase
procedure.

We bound the number of pivot steps taken to solve (Int. LP) given a solution to
(Unit LP), and after that we describe how to solve (Unit LP).

Consider polyhedron P′ = {(x,λ) ∈ R
n+1 : Ax + (1 − b)λ ≤ 1}, the slab H =

{(x,λ) ∈ R
d+1 : 0 ≤ λ ≤ 1} and let W = span(c,eλ). In this notation, P = P′ ∩ H is

the feasible set of (Int. LP) and W is the shadow plane of (Int. LP). We bound the
number of vertices in the shadow πW (P) of (Int. LP) by relating it to πW (P′).

The constraint matrix of P′ is (A,1−b), so the rows are Gaussian distributed with
variance σ 2 and means of norm at most 2. After rescaling by a factor 2 we satisfy all
the conditions for Theorem 14.13 to apply.

321

D. DADUSH AND S. HUIBERTS

Since the shadow plane contains the normal vector eλ to the inequalities 0 ≤ λ ≤ 1,
these constraints intersect the shadow plane W at right angles. It follows that πW (P′∩
H) = πW (P′)∩ H. Adding two constraints to a 2D polyhedron can add at most two
new edges, hence the constraints on λ can add at most four new vertices. By combining
these observations, we directly derive the following lemma.

Lemma 14.14 If (Unit LP) is unbounded, then (Smoothed LP) is unbounded. If
(Unit LP) is bounded, then given an optimal solution to (Unit LP) one can solve
(Smoothed LP) using an expected O(n2

√
ln m σ−2 +n2.5 ln m σ−1 +n2.5 ln1.5 m)

shadow vertex simplex pivots over (Int. LP).

Given the Lemma 14.14, our main task is now to solve (Unit LP), i.e., either to
find an optimal solution or to determine unboundedness. The simplest algorithm that
can operate using only predetermined shadow planes is Borgwardt’s dimension-by-
dimension (DD) algorithm.

DD Algorithm The DD algorithm solves Unit LP by iteratively solving the
restrictions:

max ckT
x (Unit LPk)

Ax ≤ 1

xi = 0, ∀i ∈ {k + 1, . . . ,n},

where k ∈ {1, . . . ,n} and ck := (c1, . . . ,ck,0, . . . ,0). We assume that c1 �= 0 without
loss of generality. The crucial observation in this context is that the optimal vertex
v∗ of (Unit LPk), k ∈ {1, . . . ,n − 1}, is generically on an edge w∗ of the shadow
of (Unit LPk+1) with respect to ck and ek+1. To initialize the (Unit LPk+1) solve,
we move to a vertex v0 of the edge w∗ and compute an objective d ∈ span(ck,ek+1)

uniquely maximized by v0. Noting that ck+1 ∈ span(ck,ek+1), we then solve (Unit
LPk+1) by running the shadow vertex simplex method from v0 with starting objective
d and target objective ck+1.

We note that Borgwardt’s algorithm can be applied to any LP with a known feasible
point as long as appropriate nondegeneracy conditions hold (which occur with
probability 1 for smoothed LPs). Furthermore, (Unit LP1) is trivial to solve, since
the feasible region is an interval whose endpoints are straightforward to compute. By
combining these arguments, we get the following theorem.

Theorem 14.15 Let Sk, k ∈ {2, . . . ,n}, denote the shadow of (Unit LPk) on
Wk = span(ck−1,ek). Then, if each (Unit LPk) and shadow Sk is nondegen-
erate for k ∈ {2, . . . ,n}, the DD algorithm solves (Unit LP) using at most∑n

k=2|vertices(Sk)| number of pivots.

To bound the number of vertices of Sk, we first observe that the feasible set of
(Unit LPk) does not depend on coordinates k + 1, . . . ,n of the constraints vectors.
Ignoring those, it is clear that there is an equivalent unit LP to (Unit LPk) in just
k variables. This equivalent unit LP has Gaussian distributed rows with variance σ 2

and means of norm at most 1.

322

SMOOTHED ANALYSIS OF THE SIMPLEX METHOD

Using Theorem 14.15 with the shadow bounds in Theorem 14.13, for k ≥ 3, and
Theorem 14.18 (proven in Section 14.4.1), for k = 2, we get the following complexity
estimate for solving (Smoothed Unit LP).

Corollary 14.16 The program (Smoothed Unit LP) can be solved by the DD
algorithm using an expected number of shadow vertex pivots bounded by

n∑
k=2

E[|edges(conv(a1, . . . ,am) ∩ Wk)|]

= O(n3
√

ln m σ−2 + n3.5σ−1 ln m + n3.5 ln3/2 m).

14.4.1 The Shadow Bound in Two Dimensions

As a warm-up before the proof sketch of Theorem 14.13, we look at the easier
2-dimensional case. We bound the expected complexity of the convex hull of Gaus-
sian perturbed points. The proof is much simpler than the shadow bound in higher
dimensions but it contains many of the key insights we need.

First, we state a simple lemma. Proving this lemma is Exercise 14.4.

Lemma 14.17 Let X ∈ R be a random variable with E [X] = μ and Var(X) =
τ 2. Then X satisfies

E
[
X2
]

E [|X |] ≥ (|μ| + τ)/2.

Theorem 14.18 For points a1, . . . am ∈ R
2 independently Gaussian distributed,

each with covariance matrix σ 2I2 and ‖E[ai]‖ ≤ 1 for all i ∈ [m], the convex hull
Q := conv(a1, . . . ,am) has O(σ−1 + √

ln m) edges in expectation.

Proof We will prove that, on average, the edges of Q are long and the perimeter
of Q is small. This is sufficient to bound the expected number of edges.

For i,j ∈ [m],i �= j, let Ei,j denote the event that ai and aj are the endpoints
of an edge of Q. By linearity of expectation we have the following equality:

E[perimeter(Q)] =
∑

1≤i<j≤m

E[‖ai − aj‖ | Ei,j] Pr[Ei,j].

We lower bound the right-hand side by taking the minimum over all conditional
expectations and get∑

1≤i<j≤m

E[‖ai − aj‖ | Ei,j] Pr[Ei,j] ≥ min
k �=l

E[‖ak − al‖ | Ek,l]
∑

1≤i<j≤m

Pr[Ei,j].

Dividing on both sides, we can estimate the expected number of edges

E[|edges(Q)|] =
∑

1≤i<j≤m

Pr[Ei,j] ≤ E[perimeter(Q)]
mink �=l E[‖ak − al‖ | Ek,l]

. (14.4)

323

D. DADUSH AND S. HUIBERTS

We are left to bound the numerator and denominator on the right-hand side.
For the first, we observe that Q is convex and thus has perimeter at most that
of any containing disc. This yields the bound

E[perimeter(Q)] ≤ E[2π max
i

‖ai‖] ≤ 2π(1 + 6σ
√

ln m), (14.5)

using standard Gaussian tail bounds.
We are left to lower bound the denominator. Fix k = 1,l = 2 without loss of

generality. The quantity of interest is

E[‖a1 − a2‖ | E1,2] =
∫
R2

∫
R2‖a1 − a2‖ Pr[E1,2]μ1(a1)μ2(a2)da1da2∫
R2

∫
R2 Pr[E1,2]μ1(a1)μ2(a2)da1da2

,

where μi is the probability density of ai and the probability of E1,2 :=
E1,2(a1, . . . ,an) is taken over the randomness in a3,a4, . . . ,am. To get control
on the event E1,2, we perform a change of coordinates from a1,a2 ∈ R

2 to
t ∈ [0,∞],θ ∈ S

1,h1,h2 ∈ R satisfying

a1 = tθ + Rθ (h1)

a2 = tθ + Rθ (h2),

where Rθ : R → θ⊥ is the isometric linear embedding of R into the linear
subspace orthogonal to θ , with Rθ (1) having positive first coordinate. This
transformation is uniquely defined and continuous whenever a1 and a2 are
linearly independent and θ has nonzero first coordinate, which happens with
probability 1. The Jacobian of this transformation is |h1−h2| and we can rewrite
the above fraction as∫∞

0

∫
S1

∫∞
−∞

∫∞
−∞|h1− h2|2 Pr[E1,2]μ1(tθ+Rθ (h1))μ2(tθ+Rθ (h2))dh1dh2dθdt∫∞

0

∫
S1

∫∞
−∞

∫∞
−∞|h1 − h2| Pr[E1,2]μ1(tθ+Rθ (h1))μ2(tθ+Rθ (h2))dh1dh2dθdt

.

The event E1,2 is equivalent to asking that either θTai ≤ t for all i = 3,4, . . . ,m
or θTai ≥ t for all i = 3,4, . . . ,m. This makes E1,2 a function of only a3, . . . ,am
and θ and t, i.e. its value does not depend on h1,h2.

Now, we use that
∫

g(p)h(p)dp∫
g(p)dp ≥ infp h(p) for any positive integrable g,h and

find

E[‖a1 − a2‖ | E1,2]

≥ inf
t,θ

∫∞
−∞

∫∞
−∞|h1 − h2|2μ1(tθ + Rθ (h1))μ2(tθ + Rθ (h2))dh1dh2∫∞

−∞
∫∞
−∞|h1 − h2|μ1(tθ + Rθ (h1))μ2(tθ + Rθ (h2))dh1dh2

= inf
t,θ

∫∞
−∞ z2

(∫∞
−∞ μ1(Rθ (h1))μ2(Rθ (h1 − z))dh1

)
dz∫∞

−∞|z| (∫∞
−∞ μ1(Rθ (h1))μ2(Rθ (h1 − z))dh1

)
dz

,

substituting z = h1 − h2 and simplifying. For fixed t,θ , we can reinterpret the
last fraction as E[Z2]/E[|Z|] for Z a random variable with probability density
proportional to ∫ ∞

−∞
μ1(Rθ (h1))μ2(Rθ (h1 − z))dh1.

324

SMOOTHED ANALYSIS OF THE SIMPLEX METHOD

This is the same probability density as that of the difference of two independent
Gaussian random variables each of variance σ 2, which means that Z has
variance 2σ 2. If we apply Lemma 14.17 to Z, we deduce E[‖a1 − a2‖ | E1,2] ≥
σ/

√
2. We conclude that the expected total number of edges is bounded from

above by

E[edges(Q)] ≤ 2π
1 + 6σ

√
ln m

σ/
√

2
≤ 9σ−1 + 54

√
ln m. �

14.4.2 The Shadow Bound in Higher Dimensions

In this section we sketch the proof of Theorem 14.13. For the remainder of this
section, let a1, . . . ,am ∈ R

n be independent variance σ 2 Gaussian random vectors,
Q := conv(a1, . . . ,am) and W ⊆ R

n be a fixed 2D plane.
Our task is to bound E[|edges(Q ∩ W)|]. The strategy will be the same as in

Theorem 14.18, namely to relate the perimeter and expected minimum edge length. A
first observation is that an edge of Q ∩ W w.p. 1 takes the form conv(ai : i ∈ B)∩ W ,
where B ⊆ [m], |B| = n, and conv(ai : i ∈ B) is a facet of Q (see Figure 14.2). From
here, an identical argument as for (14.4) yields the following edge counting lemma.

Lemma 14.19 For a basis B ⊆ [m], |B| = n, let EB denote the event that conv(ai :
i ∈ B) ∩ W is an edge of Q ∩ W. Then, the following bound holds:

E[|edges(Q ∩ W)|] ≤ E[perimeter(Q ∩ W)]
minB⊆[m],|B|=n E[length(conv(ai : i ∈ B) ∩ W) | EB]

.

The numerator in Lemma 14.19 can be bounded along the same lines as in
Theorem 14.18.

Lemma 14.20 E[perimeter(Q∩W)] ≤ E[perimeter(πW (Q))] ≤ O(1+σ
√

ln m).

We now restrict our attention to lower bounding E[length(conv(ai : i ∈ B) ∩ W) |
EB] for a fixed basis B ⊆ [m], where w.l.o.g. we may assume that B = {1, . . . ,n}.

Just like we did in the proof of Theorem 14.18, we perform a change of variables.
The first part of the new parameterization of a1, . . . ,an consists of their containing
affine subspace H, described by θ ∈ S

n−1,t ≥ 0 satisfying

aff(a1, . . . ,an) =: H = {x ∈ R
n : θTx = t for all i ∈ [n]}.

This is depicted in Figure 14.4, with conv(ai : i ∈ B) ∩ W marked by the line
segment K.

To describe the location of the points inside the hyperplane H, we use a family
of orthonormal embeddings R := Rθ : R

n−1 → θ⊥, where the points b1, . . . ,bn
satisfy tθ + Rθ (bi) = ai, ∀i ∈ [n]. A simple choice for Rθ is Rθ (b) := (b,0) − (en + θ)

(θT(b,0))/(1 + θn), which first sends b → (b,0) ∈ (en)
⊥ and composes it with the

rotation which sends en to θ and fixes span(en,θ)
⊥. The properties of this change of

variables are given in Theorem 14.21.

325

D. DADUSH AND S. HUIBERTS

H

W

a3

a2

a1

K
K ′

Figure 14.4 The vectors a1, . . . ,an are conditioned for conv(a1, . . . ,an) to intersect W and lie in H. The
short dotted line segment K = W ∩ H ∩ conv(a1,a2,a3) is the edge of Q ∩ W induced by the basis and
the longer dotted line segment K ′ is the longest chord of the simplex parallel to the line H ∩ W . We aim to
lower bound the expected length of the line segment K .

Theorem 14.21 The change of variables is well defined with probabil-
ity 1 and has Jacobian (n − 1)! vol(conv(b1, . . . ,bn)). If we fix θ,t then
the induced probability density function of b1, . . . ,bn is proportional to
vol(conv(b1, . . . ,bn))

∏n
i=1 μi(Rbi), where μi is the probability density function

of ai for each i ∈ [n].

Define the line � ⊂ R
n−1 to satisfy H ∩ W = tθ + R�. In this notation we get

conv(a1, . . . ,an)∩W = tθ+R(conv(b1, . . . ,bn)∩�). The event EB holds when θTai > t
for all i = n + 1, . . . ,m or θTai < t for all i = n + 1, . . . ,m (i.e., conv(a1, . . . ,an) is
a facet of Q), which we denote by EB,f , and conv(bi : i ∈ B) ∩ � has positive length,
which we denote by EB,l. Just like in the 2-dimensional case, after conditioning on θ,t,
the events EB,f and EB,l become independent. In particular, after this conditioning,
EB,l only depends on b1, . . . ,bn and EB,f is independent of b1, . . . ,bn.

Given this independence, we may restrict our attention to proving a lower bound
on E[length(conv(b1, . . . ,bn) ∩ �) | EB,l], where b1, . . . ,bn are conditioned on a fixed
θ and t. To analyze the expected edge length, we will need the following concepts.

Definition 14.22 Let ω ∈ R
n, ‖ω‖2 = 1 and p ∈ ω⊥ such that � = p + Rω

and let L := conv(bi : i ∈ B) ∩ �. For any q ∈ ω⊥, define the set of convex
combinations

C(q) :=
{
λ ∈ R

n
+ :

n∑
i=1

λi = 1,
n∑

i=1

λiπ
⊥
ω (bi) = q

}
,

whose �1 diameter we denote by ‖C(q)‖1, which is 0 by convention if C(q)=∅.
Let γ := ‖C(p)‖1. Define z ∈R

n to be the unique up to sign solution to∑n
i=1 ziπω⊥(bi) = 0 with ‖z‖1 = 1 (uniqueness holds w.p. 1).

326

SMOOTHED ANALYSIS OF THE SIMPLEX METHOD

Some preliminary remarks on the above definitions. ω is the direction of the line �
and {p} = πω⊥(�) is its intersection with ω⊥. L is the tentative edge whose expected
length we wish to lower bound. The set C(q), q ∈ ω⊥, is a line segment in the direction
of z, noting that the difference of any two points in C(q) must be a multiple of z.
In particular, if C(p) �= ∅, one may express C(p) = [λ0,λ0 + γ z], for some convex
combination λ0, where γ := ‖C(p)‖1 as above. One may equivalently define

C(p) =
{
λ ∈ R

n
+ :

n∑
i=1

λi = 1,
n∑

i=1

λibi ∈ L
}
,

that is, C(p) is the set of convex combination representing the edge L. It is now direct
to see that L has positive length iff γ > 0, that is, EB,l is equivalent to γ > 0.

The following lemma, whose proof is Exercise 14.6, encapsulates the properties of
C(q) that we will need.

Lemma 14.23 Let y := ∑n
i=1|zi|πω⊥(bi) and h1 = ωTb1, . . . ,hn = ωTbn. Then

the following hold:

1. ‖C(q)‖1 is a nonnegative concave function of q ∈ conv(πω⊥(bi) : i ∈ [n]).
2. maxq∈conv(π

ω⊥ (bi):i∈[n])‖C(q)‖1 = ‖C(y)‖1 = 2.
3. length(L) = γ

∣∣∑n
i=1 zihi

∣∣.
The factors on the right-hand side in the last item of Lemma 14.23 have identifiable

meanings. The sum 2
∣∣∑n

i=1 zihi
∣∣ is the length of the longest chord of conv(b1, . . . ,bn)

parallel to �. In Figure 14.4, this longest chord is represented by the line segment K ′.
It is the analogue of h1 −h2 from the 2-dimensional case. The remaining term, γ /2, is
the ratio of the length of the edge L to the length of the longest chord. In Figure 14.4
this is the ratio of the length of the line segment K to the length of the line segment
K ′. We note that this term has no analogue in 2 dimensions and so lower bounding it
will require new ideas. We can now lower bound the expected length of L as follows:

E

[
γ

∣∣∣∣∣
n∑

i=1

zihi

∣∣∣∣∣ | γ > 0

]
≥ E[γ | γ > 0] inf

π
ω⊥ (bi):i∈[n]

E

[∣∣∣∣∣
n∑

i=1

zihi

∣∣∣∣∣ | πω⊥(bi) : i ∈ [n]

]
,

(14.6)

noting that (πω⊥(bi) : i ∈ [n]) determine z and γ .
We first lower bound the latter term, the expected maximum chord length, for

which we will need the induced probability density on h1, . . . ,hn. This is given by
the following lemma, whose proof is a straightforward manipulation of the Jacobian
in Theorem 14.21.

Lemma 14.24 For any fixed values of the projections πω⊥(b1), . . . ,πω⊥(bn), the
inner products h1, . . . ,hn have joint probability density proportional to∣∣∣∣∣

n∑
i=1

zihi

∣∣∣∣∣
n∏

i=1

μi(R(hiω)).

327

D. DADUSH AND S. HUIBERTS

Using Lemma 14.24 and an analoguous argument to that in Theorem 14.18, we can
express E

[∣∣∑n
i=1 zihi

∣∣ | πω⊥(bi) : i ∈ [n]
]

as the ratio E[(
∑n

i=1 zixi)
2]/E[|∑n

i=1 zixi|],
where x1, . . . ,xn are independent and each xi is distributed according to μi(R(xiω)).
Since

∑n
i=1 zixi has variance σ 2‖z‖2

2 ≥ σ 2‖z‖2
1/n = σ 2/n, we may apply Lemma 14.17

to deduce the following lower bound.

Lemma 14.25 Fixing πω⊥(b1), . . . ,πω⊥(bn), we have E[|∑n
i=1 zihi|] ≥ σ/(2

√
n).

The remaining task is to lower bound E[γ | γ > 0]. This will require a number of
new ideas and some simplifying assumptions, which we sketch below.

The main intuitive observation is that γ > 0 is small essentially only when p ∈
conv(πω⊥(bi) : i ∈ [n]) is close to the boundary of the convex hull. To show that this
does not happen on average, the main idea will be to show that for any configuration
πω⊥(b1), . . . ,πω⊥(bn) for which γ is tiny, there is a nearly equiprobable one for which
γ is lower bounded a function of n,m, and σ . Here the move to the improved
configuration will correspond to pushing the “center” y of conv(πω⊥(bi) : i ∈ [n])
toward p, where y is as in Lemma 14.23.

To be able to argue near-equiprobability, we will make the simplifying assumption
that the original densities μ1, . . . ,μm are L-log-Lipschitz, for L = �(

√
n ln m/σ),

where we recall that f : R
n → R+ is L-log-Lipschitz if f (x) ≤ f (y)eL‖x−y‖, ∀x,y.

While a variance σ 2 Gaussian is not globally log-Lipschitz, it can be checked that is
L-log-Lipschitz within distance σ 2L of its mean. By standard Gaussian tail bounds
the probability that any ai is at distance σ 2L = �(σ

√
n ln m) from its mean is at

most m−�(n). Since an event occurring w.p. less than
(m

n

)−1 contributes at most 1 to
E[|edges(Q ∩ W)|], noting that

(m
n

)
is a deterministic upper bound, it is intuitive that

we can assume L-log-Lipschitzness “wherever it matters,” though a rigorous proof of
this is beyond the scope of this chapter.

Using log-Lipschitzness, we will only be able to argue that close-by configura-
tions are equiprobable. For this to make a noticeable impact on γ , we will need
πω⊥(b1), . . . ,πω⊥(bn) to not be too far apart to begin with. For this purpose, we let ED

denote the event that maxi,j‖πω⊥(bi)−πω⊥(bj)‖ ≤ D, for D = �(1 +σ
√

n ln m). It is
useful to note that the original a1, . . . ,am, which are farther apart, already satisfy this
distance requirement w.p. 1 − m−�(n) using similar tail bound arguments as above.

With these concepts, we will be able to lower bound E[γ | γ > 0,ED] in
Lemma 14.26. For this to be useful, we would like

E[γ | γ > 0] ≥ E[γ | γ > 0,ED]/2. (14.7)

While this may not be true in general, the main reason it can fail is if the starting basis
B has probability less than m−�(n) of forming an edge to begin with, in which case it
can be safely ignored anyway. We henceforth assume inequality (14.7).

Lemma 14.26 With L = �(
√

n ln m/σ),D = �(1 + σ
√

n ln m) we have that
E[γ | γ > 0,ED] ≥ �(1

nDL).

Proof Sketch Let us start by fixing si := πω⊥(bi) − πω⊥(b1) for all 2 ≤ i ≤ n,
for which the condition ‖si‖ ≤ D, ‖si − sj‖ ≤ D, for all i,j ∈ {2, . . . ,n} holds.
Note that this condition is equivalent to ED. Let S = conv(0,s2, . . . ,sn) denote

328

SMOOTHED ANALYSIS OF THE SIMPLEX METHOD

the resulting shape of the projected convex hull. Let us now additionally fix
h1, . . . ,hn arbitrarily.

At this point, the only degree of freedom left is in the position of πω⊥(b1).
The condition γ > 0 is now equivalent to p ∈ πω⊥(b1)+ S ⇔ πω⊥(b1) ∈ p − S.
From here, the conditional density μ of πω⊥(b1) satisfies

μ ∝ μ1(R(πω⊥(b1)))

n∏
i=2

μi(R(πω⊥(b1) + si)),

where we note that fixing h1, . . . ,hn,s2, . . . ,sn makes the Jacobian in Theorem
14.21 constant.

As we mentioned earlier, we assume that μ1, . . . ,μn are L-log-Lipschitz
everywhere. This makes μ be nL-log-Lipschitz. Since p−S has diameter at most
D and γ is a concave function of πω⊥(b1) with maximum 2 by Lemma 14.23,
we can use Lemma 14.27 to finish the sketch. �

The final lemma is Exercise 14.7.

Lemma 14.27 For a random variable x ∈ S ⊂ R
n having L-log-Lipschitz density

supported on a convex set S of diameter D and f : S → R+ concave, one has

E[f (x)] ≥ e−2 maxy∈S f (y)

max(DL,n)
.

Putting together Lemmas 14.19, 14.20, 14.25, 14.26, and inequality 14.7, we get
the desired result

E[|edges(Q ∩ W)|] ≤ O(1 + σ
√

ln m)

σ

2
√

n
· �(1

nDL)

= O(n2σ−2
√

ln m(1 + σ
√

n ln m)(1 + σ
√

ln m)).

14.5 Discussion

We saw smoothed complexity results for linear programming in two different per-
turbation models. In the first model, the feasible region was highly structured and
“well-conditioned,” namely a flow polytope, and only the objective was perturbed. In
the second model, the feasible region was a general linear program whose constraint
data was perturbed by Gaussians.

While the latter model is the more general, the LPs it generates differ from real-
world LPs in many ways. Real-world LPs are often highly degenerate, due to the
combinatorial nature of many practical problems, and sparse, typically only 1% of the
constraint matrix entries are nonzero. The Gaussian constraint perturbation model
has neither of these properties. Second, it is folklore that the number of pivot steps it
takes to solve an LP is roughly linear in m or n. At least from the perspective of
the shadow vertex simplex method, this provably does not hold for the Gaussian
constraint perturbation model. Indeed, Borgwardt (1987) proved that as m → ∞
and n is fixed, the shadow bound for Gaussian unit LPs (where the means are all 0)
is �(n1.5

√
ln m).

329

D. DADUSH AND S. HUIBERTS

There are plenty of concrete open problems in this area. The shadow bound
of Theorem 14.13 is likely to be improvable, as it does not match the known
�(n1.5

√
ln m) bound for Gaussian unit LPs mentioned earlier. Already in two dimen-

sions, the correct bound could be much smaller, as discussed in Devillers et al.
(2016). In the i.i.d. Gaussian case, the edge counting strategy in Lemma 14.19 is
exact, but our lower bound on the expected edge length is much smaller than the
true value. In the smoothed case, the edge counting strategy seems too lossy already
when n = 2.

The proof of Theorem 14.13 also works for any log-Lipschitz probability distribu-
tion with sufficiently strong tail bounds. However, nothing is known for distributions
with bounded support or distributions that preserve some meaningful structure of
the LP, such as most zeroes in the constraint matrix. One difficulty in extending the
current proof lies in it considering even very unlikely hyperplanes for the basis vectors
to lie in.

In practice the shadow vertex pivot rule is outperformed by the commonly used
most-negative reduced cost rule, steepest edge rule, and Devex rule. However, there
are currently no theoretical explanations for why these rules would perform well.
The analyses discussed here do not extend to such pivot rules, due to making
heavy use of the local characterization of whether a given vertex is visited by the
algorithm.

We note that a major reason for the popularity of the simplex method is its
unparalleled effectiveness at solving sequences of related LPs, where after each solve
a column or row may be added or deleted from the current program. In this context,
the simplex method is easy to “warm start” from either the primal or dual side,
and typically only a few additional pivots solve the new LP. This scenario occurs
naturally in the context of integer programming, where one must solve many related
LP relaxations within a branch and bound tree or during the iterations of a cutting
plane method. Current theoretical analyses of the simplex method don’t say anything
about this scenario.

14.6 Notes

The shadow vertex simplex method was first introduced by Gass and Saaty (1955) to
solve bi-objective linear programming problems and is also known as the parametric
simplex algorithm.

Families of LPs on which the shadow vertex simplex method takes an exponential
number of steps were constructed by Murty (1980), Goldfarb (1983, 1994), Amenta
and Ziegler (1998), and Gärtner et al. (2013). One such construction is the subject
of Exercise 14.1. A very interesting construction was given by Disser and Skutella
(2018), who gave a flow network on which it is NP-complete to decide whether the
SSP algorithm will ever use a given edge. Hence, the shadow vertex simplex algorithm
implicitly spends its exponential running time to solve hard problems.

The first probabilistic analysis of the simplex method is due Borgwardt, see
(Borgwardt, 1987), who studied the complexity of solving max cTx,Ax ≤ 1 when the
rows of A are sampled from a spherically symmetric distribution. He proved a tight
shadow bound of �(n2m1/(n−1), which is valid for any such distribution, as well as
the tight limit for the Gaussian distribution mentioned earlier. Both of these bounds
can be made algorithmic, losing a factor n, using Borgwardt’s DD algorithm.

330

SMOOTHED ANALYSIS OF THE SIMPLEX METHOD

The smoothed analysis of the SSP algorithm is due to Brunsch et al. (2015). They
also proved that the running time bound holds for the SSP algorithm as applied to
the minimum-cost flow problem, and they showed a nearly matching lower bound.

The first smoothed analysis of the simplex method was by Spielman and Teng
(2004), who introduced the concept of smoothed analysis and the perturbation model
of Section 14.4. They achieved a bound of O(n55m86σ−30 + n70m86). This bound
was subsequently improved by Deshpande and Spielman (2005), Vershynin (2009),
Schnalzger (2014), and Dadush and Huiberts (2018).

In this chapter, we used the DD algorithm for the Phase I unit LP, traversing n − 1
shadow paths. Another algorithm for solving (Phase I Unit LP), which traverses an
expected O(1) shadow paths, can bring the smoothed complexity bound down to
O(n2σ−2

√
ln m + n3 ln3/2 m). This procedure, which is a variant of an algorithm of

Vershynin (2009), as well as a rigorous proof of Theorem 14.13, can be found in
Dadush and Huiberts (2018).

The 2-dimensional convex hull complexity of Gaussian perturbed points from
Theorem 14.18 was studied before by Damerow and Sohler (2004), Schnalzger (2014),
and Devillers et al. (2016). The best general bound among them is O(

√
ln n +

σ−1
√

ln n), asymptotically slightly worse than the bound in Theorem 14.18.
The DD algorithm was first used for smoothed analysis by Schnalzger (2014). The

edge counting strategy based on the perimeter and minimum edge length is due to
Kelner and Spielman (2006). They proved that an algorithm based on the shadow
vertex simplex method can solve linear programs in weakly polynomial time. The
two-phase interpolation method used here was first introduced and analyzed in the
context of smoothed analysis by Vershynin (2009). The coordinate transformation in
Theorem 14.21 is called a Blaschke–Petkantschin identity. It is a standard tool in the
study of random convex hulls.

The number of pivot steps in practice is surveyed by Shamir (1987). More recent
experiments such as Makhorin (2017) remain bounded by a small linear function of
n+m, though a slightly super-linear function better fits the data according to Andrei
(2004).

References

Amenta, Nina, and Ziegler, Günter M. 1998. Deformed products and maximal shadows.
Contemporary Mathematics, 223, 57–90.

Andrei, Neculai. 2004. On the complexity of MINOS package for linear programming. Studies
in Informatics and Control, 13(1), 35–46.

Borgwardt, Karl-Heinz. 1977. Untersuchungen zur Asymptotik der mittleren Schrittzahl von
Simplexverfahren in der linearen Optimierung. Ph.D. thesis, Universität Kaiserslautern.

Borgwardt, Karl-Heinz. 1987. The Simplex Method: A Probabilistic Analysis. Algorithms and
Combinatorics: Study and Research Texts, vol. 1. Springer-Verlag.

Brunsch, Tobias, Cornelissen, Kamiel, Manthey, Bodo, Röglin, Heiko, and Rösner, Clemens.
2015. Smoothed analysis of the successive shortest path algorithm. SIAM Journal on
Computing, 44(6), 1798–1819. Preliminary version in SODA ‘13.

Dadush, Daniel, and Huiberts, Sophie. 2018. A friendly smoothed analysis of the simplex
method. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing. ACM, pp. 390–403.

Damerow, Valentina, and Sohler, Christian. 2004. Extreme points under random noise. In
European Symposium on Algorithms, pp. 264–274. Springer.

331

D. DADUSH AND S. HUIBERTS

Deshpande, Amit, and Spielman, Daniel A. 2005. Improved smoothed analysis of the shadow
vertex simplex method. Proceedings of the 46th Annual IEEE Symposium on Foundations
of Computer Science, pp. 349–356. FOCS ‘05.

Devillers, Olivier, Glisse, Marc, Goaoc, Xavier, and Thomasse, Rémy. 2016. Smoothed com-
plexity of convex hulls by witnesses and collectors. Journal of Computational Geometry,
7(2), 101–144.

Disser, Yann, and Skutella, Martin. 2018. The simplex algorithm is NP-mighty. ACM Trans-
actions on Algorithms (TALG), 15(1), 5.

Gärtner, Bernd, Helbling, Christian, Ota, Yoshiki, and Takahashi, Takeru. 2013. Large
shadows from sparse inequalities. arXiv preprint arXiv:1308.2495.

Gass, Saul, and Saaty, Thomas. 1955. The computational algorithm for the parametric
objective function. Naval Research Logistics Quarterly, 2, 39–45.

Goldfarb, Donald. 1983. Worst case complexity of the shadow vertex simplex algorithm.
Technical report. Columbia University, New York.

Goldfarb, Donald. 1994. On the Complexity of the Simplex Method, pp. 25–38. Springer
Netherlands.

Kelner, Jonathan A., and Spielman, Daniel A. 2006. A randomized polynomial-time simplex
algorithm for linear programming. In Proceedings of the 38th Annual ACM Symposium
on Theory of Computing, pp. 51–60. STOC ‘06. ACM, New York.

Makhorin, Andrew. 2017. GLPK (GNU Linear Programming Kit) documentation.
Matousek, Jiri, and Gärtner, Bernd. 2007. Understanding and Using Linear Programming.

Springer Science+Business Media.
Murty, Katta G. 1980. Computational complexity of parametric linear programming. Math-

ematical Programming, 19(2), 213–219.
Schnalzger, Emanuel. 2014. Lineare Optimierung mit dem Schatteneckenalgorithmus im Kon-

text probabilistischer Analysen. PhD thesis, Universität Augsburg. Original in German.
English translation by K.H. Borgwardt available at www.math.uni-augsburg.de/prof/opt/
mitarbeiter/Ehemalige/borgwardt/Downloads/Abschlussarbeiten/Doc_Habil.pdf.

Shamir, Ron. 1987. The efficiency of the simplex method: A survey. Management Science,
33(3), 301–334.

Spielman, Daniel A., and Teng, Shang-Hua. 2004. Smoothed analysis of algorithms: why
the simplex algorithm usually takes polynomial time. Journal of ACM, 51(3), 385–463
(electronic).

Vershynin, Roman. 2009. Beyond Hirsch conjecture: walks on random polytopes and
smoothed complexity of the simplex method. SIAM Journal on Computing, 39(2), 646–
678. Preliminary version in FOCS ‘06.

Zadeh, Norman. 1973. A bad network problem for the simplex method and other minimum
cost flow algorithms. Mathematical Programming, 5, 255–266.

Exercises

Exercise 14.1 In this exercise we show that the projection of an LP can have 2n

vertices on instances with n variables and 2n constraints. The Goldfarb cube in
dimension n is the LP

max xn

0 ≤ x1 ≤ 1

αx1 ≤ x2 ≤ 1 − αx1

α(xk−1 − βxk−2) ≤ xk ≤ 1 − α(xk−1 − βxk−2) for 3 ≤ k ≤ n,

where α < 1/2 and β < α/4.

332

http://www.math.uni-augsburg.de/prof/opt/mitarbeiter/Ehemalige/borgwardt/Downloads/Abschlussarbeiten/Doc_Habil.pdf
http://www.math.uni-augsburg.de/prof/opt/mitarbeiter/Ehemalige/borgwardt/Downloads/Abschlussarbeiten/Doc_Habil.pdf

SMOOTHED ANALYSIS OF THE SIMPLEX METHOD

(a) Prove that the LP has 2n vertices.
(b) Prove that every vertex is optimal for some range of linear combinations

αen−1 + βen. [Hint: A vertex maximizes an objective if that objective can be
written as a nonnegative linear combination of the constraint vectors of tight
constraints.]

(c) Show that it follows that the shadow vertex simplex method has worst-case
running time exponential in n.

(d) Can you adapt the instance such that the expected shadow vertex count
remains exponential when the shadow plane is randomly perturbed?

(e) Define zero-preserving perturbations to perturb only the nonzero entries of
the constraint matrix. Do the worst-case instances still have shadows with
exponentially many vertices after Gaussian zero-preserving perturbations of
variance O(1) are applied?

Exercise 14.2 Prove Lemma 14.10. Specifically, show that if a basis B ⊂ [m] induces
the optimal vertex of P for some objective c, then B induces a facet of Q
intersecting the ray cR++. Then, prove that this fact implies the lemma.

Exercise 14.3 Prove Lemma 14.11.

Exercise 14.4 Prove Lemma 14.17.

Exercise 14.5 Verify that the Jacobian of the coordinate transformation in Theorem
14.18 is |h1 − h2|.

Exercise 14.6 Prove Lemma 14.23.

Exercise 14.7 Prove Lemma 14.27. [Hint: Let y = argmaxy∈S f (y) and define S′ :=
y + α(S − y). Prove that Pr[x ∈ S′] ≥ e−2 for α = 1 − 1

max(DL,n) , and that f (x) ≥
(1 − α)f (y) for all x ∈ S′.]

333

CHAPTER FIFTEEN

Smoothed Analysis of Pareto Curves
in Multiobjective Optimization

Heiko Röglin

Abstract: In a multiobjective optimization problem a solution is
called Pareto-optimal if no criterion can be improved without dete-
riorating at least one of the other criteria. Computing the set of
all Pareto-optimal solutions is a common task in multiobjective
optimization to filter out unreasonable trade-offs.

For most problems the number of Pareto-optimal solutions
increases only moderately with the input size in applications.
However, for virtually every multiobjective optimization problem
there exist worst-case instances with an exponential number of
Pareto-optimal solutions. In order to explain this discrepancy,
we analyze a large class of multiobjective optimization problems
in the model of smoothed analysis and prove a polynomial bound
on the expected number of Pareto-optimal solutions.

We also present algorithms for computing the set of Pareto-
optimal solutions for different optimization problems and discuss
related results on the smoothed complexity of optimization
problems.

15.1 Algorithms for Computing Pareto Curves

Suppose you would like to book a flight to your favorite conference. Your decision is
then probably guided by different factors, such as the price, the number of stops, and
the arrival time. Usually you won’t find a flight that is optimal in every respect and
you have to choose the best trade-off. This is characteristic for many decisions faced
every day by people, companies, and other economic entities.

The notion of “best trade-off” is hard to formalize and often there is no consensus
on how different criteria should be traded off against each other. However, there is
little disagreement that in a reasonable outcome no criterion can be improved without
deteriorating at least one of the other criteria. Outcomes with this property are called
Pareto-optimal and they play a crucial role in multicriteria decision making as they
help to filter out unreasonable solutions. In this section we discuss algorithms for
computing the set of Pareto-optimal solutions for different problems.

334

SMOOTHED ANALYSIS OF PARETO CURVES IN MULTIOBJECTIVE OPTIMIZATION

15.1.1 Knapsack Problem

The knapsack problem is a well-known NP-hard optimization problem. An instance
of this problem consists of a set of items, each with a profit and a weight, and
a capacity. The goal is to find a subset of the items that maximizes the total
profit among all subsets whose total weight does not exceed the capacity. Let
p = (p1, . . . ,pn)

T ∈ R
n
≥0 and w = (w1, . . . ,wn)

T ∈ R
n
≥0 denote the profits and weights,

respectively, and let W ∈ R≥0 denote the capacity. Formally the knapsack problem
can be stated as follows:

maximize pT x = p1x1 + · · · + pnxn

subject to wT x = w1x1 + · · · + wnxn ≤ W,

and x = (x1, . . . ,xn)
T ∈ {0,1}n.

The knapsack problem has attracted a great deal of attention, both in theory and
in practice. Theoreticians are interested in the knapsack problem because of its simple
structure; it can be expressed as a binary program with one linear objective function
and one linear constraint. On the other hand, knapsack-like problems often occur in
applications, and practitioners have developed numerous heuristics for solving them.
These heuristics work very well on random and real-world instances and they usually
find optimal solutions quickly even for very large instances.

In the following, we assume that an arbitrary instance I of the knapsack problem
is given. We use the term solution to refer to a vector x ∈ {0,1}n, and we say that a
solution is feasible if wT x ≤ W . We say that a solution x contains item i if xi = 1 and
that it does not contain item i if xi = 0.

One naive approach for solving the knapsack problem is to enumerate all feasible
solutions and to select the one with maximum profit. This approach is not efficient,
as there are typically exponentially many feasible solutions. In order to decrease the
number of solutions that have to be considered, we view the knapsack problem as
a bicriteria optimization problem and restrict the enumeration to only the Pareto-
optimal solutions.

Definition 15.1 A solution y dominates a solution x if pT y ≥ pT x and wT y ≤
wT x, with at least one of these inequalities being strict. A solution x is called
Pareto-optimal if it is not dominated by any other solution. The Pareto set or
Pareto curve is the set of all Pareto-optimal solutions.

Once the Pareto set is known, the given instance of the knapsack problem can
be solved optimally in time linear in the size of this set due to the following
observation.

Lemma 15.2 There always exists an optimal solution that is also Pareto-optimal.

Proof Take an arbitrary optimal solution x and assume that it is not Pareto-
optimal. There cannot be a solution y with pT y > pT x and wT y ≤ wT x because
then y would be a better solution than x. Hence, if x is not Pareto-optimal then
it is dominated by a solution y with pT y = pT x and wT y < wT x. Then either y
is Pareto-optimal or we repeat the argument to find a solution z with pT z = pT y

335

H. RÖGLIN

and wT z < wT y. This construction terminates after a finite number of iterations
with an optimal solution that is also Pareto-optimal. �

We denote the Pareto set by P ⊆ {0,1}n. It can happen that there are two or
more Pareto-optimal solutions with the same profit and the same weight. Then P
is assumed to contain only one of these solutions, which can be chosen arbitrarily.
Due to the previous lemma the solution

x� = arg max
x∈P

{pT x | wT x ≤ W},

is an optimal solution of the given instance of the knapsack problem.
In the following we present an algorithm invented by Nemhauser and Ullmann

(1969) to compute the Pareto set of a given instance of the knapsack problem. We will
refer to this algorithm, which is based on dynamic programming, as the Nemhauser–
Ullmann algorithm. For each i ∈ {0,1, . . . ,n} it computes the Pareto set Pi of the
restricted instance Ii that contains only the first i items of the given instance I.
Then Pn = P is the set we are looking for. Let

Si = {x ∈ {0,1}n | xi+1 = . . . = xn = 0}
denote the set of solutions that do not contain the items i + 1, . . . ,n. Formally,
solutions of the instance Ii are binary vectors of length i. We will, however, represent
them as binary vectors of length n from Si. For a solution x ∈ {0,1}n and an
item i ∈ {1, . . . ,n} we denote by x+i the solution that is obtained by adding item i
to solution x:

x+i
j =

{
xj if j �= i,
1 if j = i.

Furthermore, for a set S ⊆ {0,1}n of solutions let

S+i = {y ∈ {0,1}n | ∃x ∈ S : y = x+i}.
If for some i ∈ {1, . . . ,n}, the set Pi−1 is known then the set Pi can be computed with
the help of the following lemma. For the lemma we assume a consistent tie-breaking
between solutions that have the same profit and the same weight. In particular, if
pT x = pT y and wT x = wT y for two solutions x and y and the tie-breaking favors x
over y then it should also favor x+i over y+i for any i.

Lemma 15.3 For every i ∈ {1, . . . ,n}, the set Pi is a subset of Pi−1 ∪ P+i
i−1.

Proof Let x ∈ Pi. Based on the value of xi we distinguish two cases.
First we consider the case xi = 0. We claim that in this case x ∈ Pi−1. Assume

for contradiction that x /∈ Pi−1. Then there exists a solution y ∈ Pi−1 ⊆ Si−1 ⊆
Si that dominates x. Since y ∈ Si, solution x cannot be Pareto-optimal among
the solutions in Si. Hence, x /∈ Pi, contradicting the choice of x.

Now we consider the case xi = 1. We claim that in this case x ∈P+i
i−1. Since

x ∈ Si and xi = 1, there exists a solution y ∈ Si−1 such that x = y+i. We need
to show that y ∈ Pi−1. Assume for contradiction that there exists a solution

336

SMOOTHED ANALYSIS OF PARETO CURVES IN MULTIOBJECTIVE OPTIMIZATION

profit

weight

Pi− 1

wi

pi

P+ i
i− 1 profit

weight

Pi

Figure 15.1 Illustration of one iteration of the for-loop of the Nemhauser–Ullmann algorithm: The set P+i
i−1

is a copy of the set Pi−1 that is shifted by (wi,pi). The set Pi is obtained by removing dominated solutions.

z ∈ Pi−1 that dominates y. Then pT z ≥ pT y and wT z ≤ wT y and one of these
inequalities is strict. By adding item i to the solutions y and z, we obtain pT z+i ≥
pT y+i and wT z+i ≤ wT y+i, with one of these inequalities being strict. Hence, the
solution z+i dominates the solution x = y+i. Since z+i ∈ Si, this implies x /∈ Pi,
contradicting the choice of x. �

Due to the previous lemma, the Pareto set Pi can be computed easily if the Pareto
set Pi−1 is already known. For this one only needs to compute the set Pi−1 ∪P+i

i−1 and
remove solutions from this set that are dominated by other solutions from this set.
Using additionally that P0 = S0 = {0n}, we obtain the following algorithm to solve
the knapsack problem optimally (see Figure 15.1 for an illustration).

Algorithm 1 Nemhauser–Ullmann algorithm
1: P0 := {0n};
2: for i = 1, . . . ,n do
3: Qi := Pi−1 ∪ P+i

i−1;
4: Pi := {x ∈ Qi |� ∃y ∈ Qi : y dominates x};
5: return x� := arg maxx∈Pn

{pT x | wT x ≤ W};

In line 4 a tie-breaking is assumed so that Pi does never contain two solutions with
identical profits and weights.

Observe that all steps of the Nemhauser–Ullmann algorithm except for line 5 are
independent of the capacity W . In order to speed up the algorithm, one could remove
solutions with weights larger than W already from Qi in line 3.

We analyze the running time of the Nemhauser–Ullmann algorithm using the
model of a unit-cost RAM. In this model, arithmetic operations such as adding and
comparing two numbers can be performed in constant time regardless of their bit-
lengths. We use this model for the sake of simplicity and in order to keep the focus
on the important details of the running time analysis.

Theorem 15.4 The Nemhauser–Ullmann algorithm solves the knapsack problem
optimally. There exists an implementation with running time �(

∑n−1
i=0 |Pi|).

337

H. RÖGLIN

Proof The correctness of the algorithm follows immediately from the previous
discussion. In order to achieve the claimed running time, we do not compute the
setsPi explicitly, but only the values of the solutions in these sets. That is, instead
of Pi only the set val(Pi) := {(pT x,wT x) | x ∈ Pi} is computed. Analogously to
the computation of Pi, one can compute val(Pi) easily if val(Pi−1) is known. If
we store for each element of val(Pi) a pointer to the element of val(Pi−1) from
which it originates, then in step 5 the solution x� can be efficiently reconstructed
from the sets val(Pi) and these pointers.

The running times of steps 1 and 5 are O(1) and O(n + |P|), respectively,
where the term n accounts for the running time of reconstructing the solution x�

once its value (pT x�,wT x�) is determined. In every iteration i of the for-loop,
the running time of step 3 to compute val(Qi) is �(|Pi−1|) because on a unit-
cost RAM the set val(P+i

i−1) can be computed in time �(|Pi−1|) from the
set val(Pi−1).

In a straightforward implementation, the running time of step 4 is�(|Qi|2) =
�(|Pi−1|2) because we need to compare every pair of values from val(Qi) and
each comparison takes time O(1). Step 4 can be implemented more efficiently.
For this, we store the values in each set val(Pi) sorted in nondecreasing order
of weights. If val(Pi−1) is sorted in this way, then, without any additional
computational effort, the computation of the set val(Qi) in step 3 can be
implemented such that val(Qi) is also sorted: The sorted set val(P+i

i−1) can be
computed in time �(|Pi−1|). Then, in order to compute the set val(Qi), only the
two sorted sets val(Pi−1) and val(P+i

i−1) need to be merged in time �(|Pi−1|). If
the set val(Qi) is sorted, step 4 can be implemented to run in time �(|Qi|) as a
sweep algorithm going once through val(Qi) in nondecreasing order of weights
(see Exercise 15.1). �

Theorem 15.4 ensures that the Nemhauser–Ullmann algorithm solves the knap-
sack problem efficiently if all Pareto sets Pi have polynomial size.1 As the knapsack
problem is NP-hard, it is not surprising that there are instances with exponentially
many Pareto-optimal solutions. If one sets pi = wi = 2i for each item i ∈ {1, . . . ,n}
then even every solution from {0,1}n is Pareto-optimal.

15.1.2 Shortest Path Problem

Shortest path problems often come naturally with multiple objectives. Think for
example of automotive navigation systems in which one can usually choose between
the shortest, cheapest, and fastest route. Let us consider the bicriteria single-source
shortest path problem. An instance of this problem is described by a directed
graph G = (V,E) with costs c : E → R>0, weights w : E → R>0, and a source
vertex s ∈ V . The goal is to compute for each v ∈ V the set Pv of Pareto-optimal s–v
paths according to the following definition.

1 Let us remark that the sizes of the Pareto sets are in general not monotone and there are instances
where |Pi+1| < |Pi| for some i. Hence, it does not suffice if only the Pareto set P = Pn has polynomial
size. However, we are not aware of any class of instances where |Pn| is polynomially bounded while |Pi| is
superpolynomial for some i.

338

SMOOTHED ANALYSIS OF PARETO CURVES IN MULTIOBJECTIVE OPTIMIZATION

Definition 15.5 For an s–v path P we denote by w(P) = ∑
e∈P w(e) its weight

and by c(P) = ∑
e∈P c(e) its costs. An s–v path P1 dominates an s–v path P2 if

w(P1) ≤ w(P2) and c(P1) ≤ c(P2), with at least one of these inequalities being
strict. An s–v path P is called Pareto-optimal if it is not dominated by any other
s–v path.

A well-known algorithm for the single-criterion single-source shortest path prob-
lem (with only weights but no costs on the edges) is the Bellman–Ford algorithm. It
stores a distance label for each vertex which is initially set to infinity for each vertex
except the source s for which it is set to zero. Then it performs a sequence of relax
operations on the edges as shown in the following pseudocode.

Algorithm 2 Bellman–Ford algorithm
1: dist(s) = 0;
2: for v ∈ V \ {s} do dist(v) = ∞;
3: for i = 1, . . . ,|V | − 1 do
4: for each (u,v) ∈ E do
5: RELAX(u,v);
6: procedure RELAX(u,v)
7: if dist(v) > dist(u) + w(u,v) then
8: dist(v) := dist(u) + w(u,v);

It can be shown that after termination the distance label dist(v) of each vertex v
equals the length of the shortest s–v path in G. By standard methods one can adapt
the algorithm so that for each vertex the actual shortest s–v path is computed. One can
also easily adapt this algorithm to the bicriteria shortest path problem if one replaces
each distance label dist(v) by a list Lv of s–v paths. Initially Ls contains only the trivial
path of length 0 from s to s and all other lists Lv are empty. In every relax operation
for an edge (u,v) a new set L+(u,v)

u is obtained from Lu by appending the edge (u,v) to
each path from Lu. Then the paths from L+(u,v)

u are added to Lv. Finally Lv is cleaned
up by removing all paths from Lv that are dominated by other paths from this list.
This is shown in the following pseudocode.

Algorithm 3 Bicriteria Bellman–Ford algorithm
1: Ls = {path of length 0 from s to s};
2: for v ∈ V \ {s} do Lv = ∅;
3: for i = 1, . . . ,|V | − 1 do
4: for each (u,v) ∈ E do
5: RELAX(u,v);
6: procedure RELAX(u,v)
7: Obtain L+(u,v)

u from Lu by appending the edge (u,v) to each path from Lu.
8: Lv := Lv ∪ L+(u,v)

u ;
9: Remove dominated paths from Lv.

Analogously to the Nemhauser–Ullmann algorithm, the running time of the
bicriteria Bellman–Ford algorithm depends crucially on the sizes of the lists Lv

339

H. RÖGLIN

that appear throughout the algorithm. We have to look at the algorithm in slightly
more detail to give an upper bound on its running time. The algorithm performs
M := (|V | − 1) · |E| relax operations, which we denote by R1, . . . ,RM . For a relax
operation Rk that relaxes the edge (u,v), we define u(Rk)= u and v(Rk) = v. Let
k ∈ [M] and consider the first k relax operations. These define for every vertex v ∈ V
a set Sk

v of s–v paths that can be discovered by the first k relax operations. To
be more precise, Sk

v contains exactly those s–v paths that appear as a subsequence
in (u(R1),v(R1)), . . . ,(u(Rk),v(Rk)). In the single-criterion version, after k relax
operations the distance label dist(v) contains the length of the shortest path in Sk

v .
In the bicriteria version, the list Lv contains after k relax operations all paths from Sk

v
that are Pareto-optimal within this set (i.e., that are not dominated by other paths
from this set). We will denote the list Lv after k relax operations by Lk

v in the following.

Theorem 15.6 After termination of the bicriteria Bellman–Ford algorithm the
list Lv equals for every vertex v ∈ V the set of Pareto-optimal s–v paths. There

exists an implementation with running time �
(∑M

k=1

(
|Lk−1

u(Rk)
| + |Lk−1

v(Rk)
|
))

.

Proof The correctness of the algorithm follows by an inductive argument
along the lines of the analysis of the single-criterion version (see Exercise 15.4).
The analysis of the running time is similar to the proof of Theorem 15.4. The
dominating factor is the time to remove dominated paths from Lv in line 9 of
the pseudocode. A naive implementation has running time �(|Lk−1

u(Rk)
| · |Lk−1

v(Rk)
|)

for the kth relax operation, while the running time �(|Lk−1
u(Rk)

| + |Lk−1
v(Rk)

|) can be
achieved by sweeping through the lists when they are sorted in nondecreasing
order of weight. �

While in applications where the bicriteria shortest path problem occurs, it has
been observed that the number of Pareto-optimal solutions is usually not very large,
one can easily construct instances of the bicriteria shortest path problem in which
the number of Pareto-optimal paths is exponential in the size of the graph (see
Exercise 15.3).

The reader might wonder why we adapted the Bellman–Ford algorithm and not
Dijkstra’s algorithm to the bicriteria single-source shortest path problem. Indeed
there is a generalization of Dijkstra’s algorithm to the bicriteria shortest path problem
due to Hansen (1979), which also performs a sequence of operations similar to
the relax operations of the Bellman–Ford algorithm. However, in contrast to the
Bellman–Ford algorithm the sequence of relax operations is not fixed beforehand
but it depends on the actual costs and weights of the edges. For this reason, it is not
clear how to analyze the expected running time and in particular the analysis that we
present in Section 15.2 does not apply to the generalization of Dijkstra’s algorithm.

15.1.3 Multiple Objectives and Other Optimization Problems

For the sake of simplicity, we have discussed only problems with two objectives above.
However, one can easily adapt the definition of Pareto-optimal solutions and both
presented algorithms to more than two objectives. Consider the multidimensional

340

SMOOTHED ANALYSIS OF PARETO CURVES IN MULTIOBJECTIVE OPTIMIZATION

knapsack problem, a version of the knapsack problem in which every item still has
a single profit but instead of a single weight, it has a weight vector from R

d−1
≥0 for

some d ≥ 2, and also the capacity is a vector from R
d−1
≥0 . This problem gives rise to a

multiobjective optimization problem with d objectives: maximize the profit pT x and
minimize for each i ∈ [d − 1] the ith weight (w(i))T x. Similarly it is often natural to
consider multiobjective shortest path problems with more than two objectives.

In order to compute the Pareto set of an instance of the multidimensional
knapsack problem or the multiobjective shortest path problem, no modification to the
pseudocode of the Nemhauser–Ullmann algorithm (Algorithm 1) and the bicriteria
Bellman–Ford algorithm (Algorithm 3) are necessary. However, the implementation
and the analysis of the running time have to be adapted. The crucial difference is
that the removal of dominated solutions from Qi and Lv cannot be implemented
in time linear in the sizes of these sets anymore because the sweeping approach,
which assumes that the solutions are sorted with respect to one of the objectives,
fails for more than two objectives. If one uses the naive implementation, which
pairwisely compares the solutions, then the running times of the algorithms become
�(
∑n−1

i=0 |Pi|2) and O(
∑M

i=1 |Li−1
u(Ri)

| · |Li−1
v(Ri)

|), respectively.
Asymptotically one can do better by using known algorithms for the maximum

vector problem to filter out the dominated solutions. In this problem a set of m vectors
in R

k is given and one wants to compute the set of Pareto-optimal vectors among
them. The fastest known algorithm for this problem is due to Kung et al. (1975). It
relies on divide and conquer and its running time is O(m logk−2 m). For d objectives

this yields running times of �
(∑n−1

i=0 |Pi| logd−2(|Pi|)
)

and

O

(
M∑

i=1

(|Li−1
u(Ri)

| + |Li−1
v(Ri)

|) · logd−2(|Li−1
u(Ri)

| + |Li−1
v(Ri)

|)
)

for the Nemhauser–Ullmann algorithm and the Bellman–Ford algorithm,
respectively.

The Nemhauser–Ullmann algorithm and the Bicriteria Bellman–Ford algorithm
are only two examples of many algorithms in the literature for computing Pareto
sets of various multiobjective optimization problems. Similar algorithms exist, for
example, for the multiobjective network flow problem. As a rule of thumb, algo-
rithms that solve the single-criterion version of an optimization problem by dynamic
programming can usually be adapted to compute the Pareto set of the multiobjective
version.

On the other hand, there are also problems for which it is unknown if there exist
algorithms that compute the Pareto set in time polynomial in its size and the sizes
of the Pareto sets of appropriate subproblems. The multiobjective spanning tree
problem is one such example, where the best known way to compute the Pareto set
is essentially to first compute the set of all spanning trees and then to remove the
dominated ones. An even stronger requirement is that of an efficient output-sensitive
algorithm, which computes the Pareto set in time polynomial in its size and the input
size. Bkler et al. (2017) show that such an algorithm exists for the multiobjective
version of the minimum-cut problem and that no such algorithm exists for the
bicriteria shortest path problem, unless P = NP. For many other multiobjective

341

H. RÖGLIN

problems, including the knapsack problem and the multiobjective spanning tree
problem, it is an open question whether efficient output-sensitive algorithms exist.

15.1.4 Approximate Pareto Curves

For virtually every multiobjective optimization problem the number of Pareto-
optimal solutions can be exponential in the worst case. One way of coping with this
problem is to relax the requirement of finding the complete Pareto set. A solution x
is ε-dominated by a solution y if y is worse than x by at most a factor of 1 + ε in each
objective (i.e., w(y)/w(x) ≤ 1 + ε for each criterion w that is to be minimized and
p(x)/p(y) ≤ 1 + ε for each criterion p that is to be maximized). We say that Pε is an
ε-approximation of a Pareto set P if for any solution in P , there is a solution in Pε

that ε-dominates it.
In his pioneering work, Hansen (1980) presents an approximation scheme for

computing ε-approximate Pareto sets of the bicriteria shortest path problem.
Papadimitriou and Yannakakis (2000) show that for any instance of a multiobjective
optimization problem, there is an ε-approximation of the Pareto set whose size is
polynomial in the input size and 1/ε but exponential in the number of objectives.
Furthermore, they define the gap version of a multiobjective optimization problem
with d objectives as follows: given an instance of the problem and a vector b ∈ R

d ,
either return a solution whose objective vector dominates b or report (correctly) that
there does not exist any solution whose objective vector is better than b by more
than a (1 + ε) factor in all objectives. They show that an FPTAS for approximating
the Pareto set of a multiobjective optimization problem exists if and only if the gap
version of the problem can be solved in polynomial time. In particular, this implies
that if the exact single-criterion version of a problem (i.e., the question “Is there a
solution with weight exactly x?”) can be solved in pseudopolynomial time, then its
multiobjective version admits an FPTAS for approximating the Pareto set. This is the
case, for example, for the spanning tree problem, the all-pair shortest path problem,
and the perfect matching problem.

Vassilvitskii and Yannakakis (2005) show how to compute ε-approximate Pareto
sets whose size is at most three times as large as the smallest such set for bicriteria
problems whose gap versions can be solved in polynomial time. Diakonikolas and
Yannakakis (2007) improve this factor to two and show that this is the best possible
that can be achieved in polynomial time, unless P = NP.

15.2 Number of Pareto-optimal Solutions

Both for the knapsack problem and the bicriteria shortest path problem, the number
of Pareto-optimal solutions increases only moderately with the input size in applica-
tions. This is in contrast to the exponential worst-case behavior (see Exercise 15.3).
To explain this discrepancy, we will analyze the number of Pareto-optimal solutions
in the framework of smoothed analysis. First we will focus on the knapsack problem
but we will see afterwards that the proven bound also holds for a much larger class
of problems including the bicriteria shortest path problem and many other natural
bicriteria optimization problems. We will then also briefly discuss known results for
problems with more than two objectives.

342

SMOOTHED ANALYSIS OF PARETO CURVES IN MULTIOBJECTIVE OPTIMIZATION

15.2.1 Knapsack Problem

Let us consider the knapsack problem. In a worst-case analysis the adversary is
allowed to choose the profits p1, . . . ,pn and the weights w1, . . . ,wn exactly (he can
also choose the capacity but the number of Pareto-optimal solutions is independent
of this). This makes him very powerful and makes it possible to choose an instance in
which every solution is Pareto-optimal. In order to limit the power of the adversary
to construct such artificial instances that do not resemble typical inputs, we add some
randomness to his decisions.

Let φ ≥ 1 be a parameter. In the following analysis, we assume that the adversary
can still determine the profits exactly while for each weight it can only choose an
interval of length 1/φ from which it is chosen uniformly at random independently of
the other weights. This means that the adversary can specify each weight only with a
precision of 1/φ. We normalize the weights and restrict the adversary to intervals that
are subsets of [0,1]. This normalization is necessary to ensure that the effect of the
noise cannot be ruled out by scaling all weights in the input by some large number.

Observe that the parameter φ measures the strength of the adversary. If φ = 1 then
all weights are chosen uniformly at random from [0,1], which resembles an average-
case analysis. On the other hand, in the limit for φ → ∞ the adversary can determine
the weights (almost) exactly and the model approaches a classical worst-case analysis.
Hence, it is not surprising that the bound that we will prove for the expected number
of Pareto-optimal solutions grows with φ. However, we will see that it grows only
polynomially with n and φ, which implies that already a small amount of random
noise suffices to rule out the worst case and to obtain a benign instance in expectation.

Theorem 15.7 Consider an instance I of the knapsack problem with arbitrary
profits p1, . . . ,pn ∈ R≥0 in which every weight wi is chosen uniformly at random
from an arbitrary interval Ai ⊆ [0,1] of length 1/φ independently of the other
weights. Then the expected number of Pareto-optimal solutions in I is bounded
from above by n2φ + 1.

The rest of this section presents the proof of Theorem 15.7 in detail. Here is a
brief summary. Since all weights take values between 0 and 1, all solutions have
weights between 0 and n. We divide the interval [0,n] uniformly into a large number k
of subintervals of length n/k each. For large enough k it is unlikely that there exist
two Pareto-optimal solutions whose weights lie in the same subinterval because the
weights are continuous random variables. Assuming that this does not happen, the
number of Pareto-optimal solutions equals the number of subintervals that contain
a Pareto-optimal solution. The most important and nontrivial step is then to bound,
for each subinterval, the probability that it contains a Pareto-optimal solution. Once
we have proven an upper bound for this, the theorem follows by summing up this
upper bound over all subintervals due to linearity of expectation.

Before we prove the theorem, we state one simple but crucial property of the
random variables that we consider.

Lemma 15.8 Let X be a random variable that is chosen uniformly at random
from some interval A of length 1/φ. Furthermore let I be an interval of length ε.
Then Pr[X ∈ I] ≤ φε.

343

H. RÖGLIN

Proof Since X is chosen uniformly at random from A, we obtain

Pr[X ∈ I] = |A ∩ I|
|A| ≤ |I|

|A| ≤ ε

1/φ
= φε. �

Proof of Theorem 15.7 Every solution x ∈ {0,1}n has a weight wT x in the
interval [0,n] because each weight wi lies in [0,1]. We partition the interval (0,n]
uniformly into k ∈ N intervals Ik

0 , . . . ,I
k
k−1 for some large number k to be chosen

later. Formally, let Ik
i = (ni/k,n(i+1)/k]. We say that the interval Ik

i is nonempty
if there exists a Pareto-optimal solution x ∈ P with wT x ∈ Ik

i .
We denote by Xk the number of nonempty intervals Ik

i plus one. The
term +1 accounts for the solution 0n, which is always Pareto-optimal and
does not belong to any interval Ik

i . Nevertheless, the variable Xk can be much
smaller than |P| because many Pareto-optimal solutions could lie in the same
interval Ik

i . We will ensure that every interval Ik
i contains at most one Pareto-

optimal solution with high probability by choosing k sufficiently large. Then,
with high probability, |P| = Xk.

In the following, we make this argument more formal. For k ∈N, let Fk
denote the event that there exist two different solutions x,y ∈ {0,1}n with |wT x−
wT y| ≤ n/k. Since each interval Ik

i has length n/k, every interval Ik
i contains at

most one Pareto-optimal solution if Fk does not occur.

Lemma 15.9 For every k ∈ N, Pr [Fk] ≤ 22n+1nφ
k .

Proof There are 2n choices for x and y each. We prove the lemma by a
union bound over all these choices. Let x,y ∈ {0,1}n with x �= y be fixed.
Then there exists an index i with xi �= yi. Assume without loss of generality
that xi = 0 and yi = 1. We use the principle of deferred decisions and
assume that all weights wj except for wi are already fixed. Then wT x −
wT y = α − wi for some constant α that depends on x and y and the fixed
profits wj. It holds that

Pr
[
|wT x − wT y| ≤ n

k

]
≤ sup

α∈R
Pr
wi

[
|α − wi| ≤ n

k

]
= sup

α∈R
Pr
wi

[
wi ∈

[
α − n

k
,α + n

k

]]
≤ 2nφ

k
,

where the last inequality follows from Lemma 15.82. Now a union bound
over all choices for x and y concludes the proof. �

The most nontrivial part in the analysis is the following lemma, which states
for an arbitrary interval an upper bound for the probability that it contains a
Pareto-optimal solution. We defer the proof of this lemma to the end of this
section.

2 Formally, we condition on the outcome of the wj with j �= i. This outcome determines the value of α. Then
we apply the law of total probability, but instead of integrating over all possible outcomes of the wj with j �= i,
we derive an upper bound by looking only at the worst choice for α.

344

SMOOTHED ANALYSIS OF PARETO CURVES IN MULTIOBJECTIVE OPTIMIZATION

Lemma 15.10 For every t ≥ 0 and every ε > 0,

Pr[∃x ∈ P | wT x ∈ (t,t + ε]] ≤ nφε.

The following lemma is the main building block in the proof of the theorem.

Lemma 15.11 For every k ∈ N, E
[
Xk
] ≤ n2φ + 1.

Proof Let Xk
i denote a random variable that is 1 if the interval Ik

i is
nonempty and 0 otherwise. Then

Xk = 1 +
k−1∑
i=0

Xk
i

and by linearity of expectation

E
[
Xk
]

= E

⎡⎣1 +
k−1∑
i=0

Xk
i

⎤⎦ = 1 +
k−1∑
i=0

E
[
Xk

i

]
. (15.1)

Since Xk
i is a 0–1 random variable, its expected value can be written as

E
[
Xk

i

]
= Pr[Xk

i = 1] = Pr[∃x ∈ P | wT x ∈ Ik
i]. (15.2)

Using that each interval Ik
i has length n/k, Lemma 15.10 and (15.2)

imply

E
[
Xk

i

]
≤ n2φ

k
.

Together with (15.1) this implies

E
[
Xk
]

= 1 +
k−1∑
i=0

E
[
Xk

i

]
≤ 1 + k · n2φ

k
= n2φ + 1. �

With the help of Lemmas 15.9 and 15.11, we can finish the proof of the
theorem as follows:

E [|P|] =
2n∑

i=1

(
i · Pr[|P| = i]

)
=

2n∑
i=1

(
i · Pr[|P| = i ∧ Fk] + i · Pr[|P| = i ∧ ¬Fk]

)
(1)=

2n∑
i=1

(
i · Pr[Fk] · Pr[|P| = i | Fk]

)+ 2n∑
i=1

(
i · Pr[Xk = i ∧ ¬Fk]

)
≤ Pr[Fk] ·

2n∑
i=1

(
i · Pr[|P| = i | Fk]

)+ 2n∑
i=1

(
i · Pr[Xk = i]

)

345

H. RÖGLIN

(2)≤ 22n+1nφ
k

·
2n∑

i=1

(
2n · Pr[|P| = i | Fk]

)+ E
[
Xk
]

(3)≤ 23n+1nφ
k

+ n2φ + 1. (15.3)

Let us comment on some of the steps in the previous calculation.

• The upper bound 2n on the indices of the sums follows because |P| can never
exceed the total number of solutions, which is 2n.

• The rewriting of the first term in (1) follows from the definition of the condi-
tional probability and the rewriting of the second term follows because Xk =
|P| when the event ¬Fk occurs.

• (2) follows from Lemma 15.9 and the definition of the expected value.
• (3) follows from the identity

∑2n

i=1 Pr[|P| = i | Fk] = 1 and Lemma 15.11.

Since (15.3) holds for every k ∈ N, it must be E [|P|] ≤ n2φ + 1. �

It only remains to prove Lemma 15.10. An easy way to derive an upper bound for
the probability that there exists a Pareto-optimal solution in the interval (t,t + ε] is
to apply a union bound over all solutions. Since there is an exponential number of
solutions, this does not lead to a useful bound. The key improvement in the proof of
Lemma 15.10 is to apply the union bound only over the n dimensions.

Proof of Lemma 15.10 Fix t ≥ 0 and ε > 0. First of all we define a random
variable �(t). In order to define �(t), we define the winner x� to be the most
valuable solution satisfying wT x ≤ t, i.e.,

x� = arg max{pT x | x ∈ {0,1}n and wT x ≤ t}.
For t ≥ 0, such a solution x� must always exist. We say that a solution x is a
loser if it has a higher profit than x�. By the choice of x�, losers do not satisfy
the constraint wT x ≤ t (hence their name). We denote by x̂ the loser with the
smallest weight (see Figure 15.2), i.e.,

x̂ = arg min{wT x | x ∈ {0,1}n and pT x > pT x�}.
If there does not exist a solution x with pT x > pT x�, then x̂ is undefined, which
we denote by x̂ =⊥. Based on x̂, we define the random variable �(t) as

�(t) =
{

wT x̂ − t if x̂ �=⊥ ,

∞ if x̂ =⊥.

The random variable �(t) satisfies the following equivalence:

�(t) ≤ ε ⇐⇒ ∃x ∈ P : wT x ∈ (t,t + ε]. (15.4)

To see this, assume that there exists a Pareto-optimal solution whose weight
lies in (t,t + ε], and let y denote the Pareto-optimal solution with the smallest
weight in (t,t + ε]. Then y = x̂ and hence �(t) = wT x̂ − t ∈ (0,ε]. Conversely,

346

SMOOTHED ANALYSIS OF PARETO CURVES IN MULTIOBJECTIVE OPTIMIZATION

profit

weight

x

x̂

t

Λ(t)

Figure 15.2 Definitions of the winner x�, the loser x̂ , and the random variable �(t).

if �(t) ≤ ε, then x̂ must be a Pareto-optimal solution whose weight lies in the
interval (t,t + ε]. Together this yields equivalence (15.4). Hence,

Pr[∃x ∈ P | wT x ∈ (t,t + ε]] = Pr[�(t) ≤ ε]. (15.5)

It only remains to bound the probability that �(t) does not exceed ε. In
order to analyze this probability, we define a set of auxiliary random vari-
ables �1(t), . . . ,�n(t) such that �(t) is guaranteed to always take a value also
taken by at least one of the auxiliary random variables. Then we analyze the
auxiliary random variables and use a union bound to conclude the desired
bound for �(t).

Let i ∈ [n] be fixed. The random variable �i(t) is defined similarly to �(t),
but only solutions that do not contain item i are eligible as winners and only
solutions that contain item i are eligible as losers. We make this more formal in
the following. For j ∈ {0,1}, we define

Sxi=j = {x ∈ {0,1}n | xi = j},
and we define x�,i to be

x�,i = arg max{pT x | x ∈ Sxi=0 and wT x ≤ t}.
That is, x�,i is the winner among the solutions that do not contain item i. We
restrict our attention to losers that contain item i and define

x̂i = arg min{wT x | x ∈ Sxi=1 and pT x > pT x�,i}.

If there does not exist a solution x ∈ Sxi=1 with pT x > pT x�,i, then x̂i is
undefined, i.e., x̂i =⊥. Based on x̂i, we define the random variable �i(t) as

�i(t) =
{

wT x̂i − t if x̂i �=⊥ ,

∞ if x̂i =⊥.

Lemma 15.12 For every choice of profits and weights, either �(t) = ∞ or
there exists an index i ∈ [n] such that �(t) = �i(t).

347

H. RÖGLIN

Proof Assume that �(t) �= ∞. Then there exist a winner x� and a loser x̂.
Since x� �= x̂, there must be an index i ∈ [n] with x�

i �= x̂i. Since all weights
are nonnegative and wT x� < wT x̂, there must even be an index i ∈ [n] with
x�

i = 0 and x̂i = 1. We claim that for this index i, �(t) = �i(t). In order
to see this, we first observe that x� = x�,i. This follows because x� is the
solution with the highest profit among all solutions with weight at most t.
Since it belongs to Sxi=0, it is in particular the solution with the highest
profit among all solutions that do not contain item i and have weight at
most t. Since x� = x�,i, by similar arguments it follows that x̂ = x̂i. This
directly implies that �(t) = �i(t). �

Lemma 15.13 For every i ∈ [n] and every ε ≥ 0,

Pr[�i(t) ∈ (0,ε]] ≤ φε.

Proof In order to prove the lemma, it suffices to exploit the randomness
of the weight wi. We apply the principle of deferred decisions and assume
that all other weights are fixed arbitrarily. Then the weights of all solutions
from Sxi=0 and hence also the solution x�,i are fixed because wi does not
influence the solutions in Sxi=0 and the profits p1, . . . ,pn are fixed. If the
solution x�,i is fixed, then also the set of losers L = {x ∈ Sxi=1 | pT x >

pT x�,i} is fixed. Since, by definition, all solutions from L contain item i
the identity of the solution x̂i does not depend on wi. (Of course, the
weight wT x̂i depends on wi. However, which solution will become x̂i is
independent of wi.) This implies that, given the fixed values of the weights
wj with j �= i, we can rewrite the event �i(t) ∈ (0,ε] as wT x̂i − t ∈ (0,ε] for
a fixed solution x̂i. For a constant α ∈ R depending on the fixed values of
the weights wj with j �= i, we can rewrite this event as wi ∈ (α,α + ε].
By Lemma 15.8, the probability of this event is bounded from above
by φε. �

Combining Lemmas 15.12 and 15.13 yields

Pr[�(t) ≤ ε] ≤ Pr

[
∃i ∈ [n] : �i(t) ∈ (0,ε]] ≤

n∑
i=1

Pr[�i(t) ∈ (0,ε]

]
≤ nφε.

Together with (15.5) this proves the lemma. �

Theorem 15.7 implies the following result on the running time of the Nemhauser–
Ullmann algorithm.

Corollary 15.14 Consider an instance I of the knapsack problem with arbitrary
profits p1, . . . ,pn ∈ R≥0 in which every weight wi is chosen uniformly at random
from an arbitrary interval Ai ⊆ [0,1] of length 1/φ independently of the other
weights. Then the expected running time of the Nemhauser–Ullmann algorithm
is O(n3φ).

348

SMOOTHED ANALYSIS OF PARETO CURVES IN MULTIOBJECTIVE OPTIMIZATION

Proof It follows from Theorem 15.4 that the expected running time of the
Nemhauser–Ullmann algorithm is bounded from above by

O

(
E

[
n−1∑
i=0

|Pi|
])

,

where Pi denotes the Pareto set of the restricted instance that consists only of
the first i items. Using linearity of expectation and Theorem 15.7, we obtain that
this term is bounded from above by

O

(
n−1∑
i=0

E [|Pi|]
)

= O

(
n−1∑
i=0

(i2φ + 1)

)
= O(n3φ). �

The decision to add randomness only to the weights is arbitrary. Of course if
both the profits and the weights are chosen independently uniformly at random from
intervals of length 1/φ then the upper bound still applies. With minor modifications,
the analysis can also be adapted to the case that only the profits are random while the
weights are adversarial.

15.2.2 General Model

Theorem 15.7 can be extended in several ways. First of all, the noise model can be
generalized to a much wider class of distributions. In fact the only property that we
used about the random weights is Lemma 15.8, which says that the probability to
fall into any interval of length ε is at most φε. This is true for every random variable
that is described by a probability density function that is bounded from above by φ.
Hence instead of allowing the adversary to choose an interval of length 1/φ for each
weight wi, we could also allow it to choose a density function fi : [0,1] → [0,φ]
according to which wi is chosen independently of the other weights. This includes as
a special case the uniform distribution in an interval of length 1/φ but it also allows
different types of random noise. Observe that we have restricted the density functions
to [0,1] to normalize the weights.

In the following we will use the term φ-perturbed random variable to refer to a
random variable described by a density f : R → [0,φ]. If we replace all occurrences of
Lemma 15.8 in the proof of Theorem 15.7 by the following lemma then Theorem 15.7
follows also for general φ-perturbed weights from [0,1].

Lemma 15.15 Let X be a φ-perturbed random variable that is described by a
density function f : [0,1] → [0,φ]. For any interval I of length ε, Pr[X ∈ I] ≤ φε.

Proof The lemma follows by the following simple calculation:

Pr[X ∈ I] =
∫

I
f (x) dx ≤

∫
I
φ dx = φε. �

Next we state an even more general version of Theorem 15.7. The first general-
ization compared to Theorem 15.7 is that an arbitrary set S ⊆ {0,1}n of solutions

349

H. RÖGLIN

is given. In the case of the knapsack problem, every vector from {0,1}n is a solution,
i.e., S = {0,1}n. The second generalization is that the adversarial objective function p
does not have to be linear. In fact, it can be an arbitrary function that maps every
solution to some real value. The third generalization is that we extend the range of
the φ-perturbed weights from [0,1] to [−1,1].

Theorem 15.16 Let S ⊆ {0,1}n and p : S → R be arbitrary. Let w1, . . . ,wn
be arbitrary φ-perturbed numbers from the interval [−1,1]. Then the expected
number of solutions x ∈ S that are Pareto-optimal with respect to the objective
functions p(x) and wT x is O(n2φ). This upper bound holds regardless of whether
the objective functions are to be maximized or minimized.

We will not prove Theorem 15.16, but let us remark that its proof is very similar
to the proof of Theorem 15.7. In fact we never used in the proof that S = {0,1}n and
that p is linear. The fact that all weights wi are positive was used only to argue that
there must be an index i with x�

i = 0 and x̂i = 1. For general wi, it could also be the
other way round. Handling this issue is the only modification of the proof that is not
completely straightforward.

To illustrate the power of Theorem 15.16, let us discuss its implications on graph
problems. For a given graph with m edges e1, . . . ,em, one can identify every vector
x ∈ {0,1}m with a subset of edges E′ = {ei | xi = 1}. Then x is the so-called incidence
vector of the edge set E′. If, for example, there is a source vertex s and a target vertex v
given, one could choose the set S of feasible solutions as the set of all incidence
vectors of paths from s to v in the given graph. This way, Theorem 15.16 implies
that the expected number of Pareto-optimal s–v paths in the bicriteria shortest-path
problem is O(m2φ). Similarly, one could choose S as the set of incidence vectors of all
spanning trees of a given graph. Then the result implies that in expectation there are
only O(m2φ) Pareto-optimal spanning trees in the bicriteria spanning tree problem.
In the traveling salesman problem (TSP) we are given an undirected graph with edge
weights and the goal is to find a shortest tour (i.e., Hamiltonian cycle) that visits every
vertex exactly once. As for the bicritera shortest path problem, Theorem 15.16 implies
that in expectation there are only O(m2φ) Pareto-optimal tours in the bicriteria
version of the TSP.

For the bicriteria Bellman–Ford algorithm we obtain the following corollary.

Corollary 15.17 Consider an instance of the bicriteria shortest-path problem
with arbitrary costs and nonnegative φ-perturbed weights from the interval [0,1].
Let n and m denote the number of vertices and edges, respectively. Then the
expected running time of the bicriteria Bellman–Ford algorithm is O

(
nm3φ

)
.

Proof We can use Theorem 15.16 to bound the expected size of each list Li
v

that occurs throughout the algorithm by O(m2φ), where m denotes the number
of edges in the graph. Using linearity of expectation and Theorem 15.6 yields
that the expected running time is

�

(
M∑

i=1

(
E
[
|Li−1

u(Ri)
|
]
+ E

[
|Li−1

v(Ri)
|
]))

.

350

SMOOTHED ANALYSIS OF PARETO CURVES IN MULTIOBJECTIVE OPTIMIZATION

Using that the expected length of each list is O(m2φ) and M = (n−1)·m implies
the claimed bound. �

Let us finally remark that Theorem 15.16 can also be adapted to the setting where
the set S of feasible solutions is an arbitrary subset of {0, . . . ,k}n for some k ∈ N.
Then the expected number of Pareto-optimal solutions is O(n2k2φ). This is useful to
model, for example, the bounded knapsack problem, in which a number of identical
copies of every item is given.

15.2.3 Multiobjective Optimization Problems

Even though Theorem 15.16 is quite general, it still has one severe restriction: it
only applies to optimization problems with two objective functions. The extension
to optimization problems with more than two objectives is rather challenging and
requires different methods. In this section, we summarize the main results.

In Theorem 15.16 one of the objective functions is assumed to be arbitrary while
the other is linear with φ-perturbed coefficients. We consider now optimization
problems with one arbitrary objective function and d linear objective functions
with φ-perturbed coefficients. Röglin and Teng (2009) were the first to study this
model. They proved an upper bound of O((n2φ)f (d)) for the expected number of
Pareto-optimal solutions where f is a rapidly growing function (roughly 2dd!). This
has been improved by Moitra and O’Donnell (2012) to O(n2dφd(d+1)/2). Brunsch and
Röglin (2015) improved the upper bound further to O(n2dφd) under the assumption
that all density functions are unimodal, where a function f : R → R is called uni-
modal if there exists some x ∈R such that f is monotonically increasing on (−∞,x]
and monotonically decreasing on [x,∞).

The cth moment of a random variable X is the expected value E [Xc] if it exists.
Brunsch and Röglin (2015) also prove upper bounds on the moments of the number
of Pareto-optimal solutions. In particular they show that for any constant c the cth
moment is bounded from above by O((n2dφd(d+1)/2)c) and O((n2dφd)c) for general
and unimodal densities, respectively. Upper bounds for the moments give rise to non-
trivial tail bounds. Consider the case d = 1. Then the cth moment is bounded from
above by bc(n2φ)c for some constant bc depending on c. Applying Markov’s inequality
to the cth moment yields for every α ≥ 1

Pr[|P| ≥ α · (n2φ)] = Pr[|P|c ≥ αc(n2φ)c] = Pr
[
|P|c ≥ αc

bc
· bc(n2φ)c

]
≤ bc

αc ,

while applying Markov’s inequality directly to |P| yields only a bound of (roughly)
1/α. Upper bounds for the moments are also important for another reason: If the
running time of an algorithm depends polynomially but not linearly on the number
of Pareto-optimal solutions (like the running time of the Nemhauser–Ullmann
algorithm for more than two objective functions), then Theorem 15.16 cannot be used
to derive any bound on its expected running time. This is because a bound on E [|P|]
does not imply any bound on, for example, E

[|P|2]. Only with the result of Brunsch
and Röglin about the moments of |P| a polynomial bound follows for the expected
running time of these algorithms.

351

H. RÖGLIN

Improving earlier work of Brunsch et al. (2014), Brunsch (2014) shows lower
bounds for the expected number of Pareto-optimal solutions of �(n2φ) for d = 1 and
�(nd−1.5φd) for d ≥ 2. Hence the upper bound in Theorem 15.16 for the bicriteria
case is asymptotically tight.

A φ-perturbed number is nonzero with probability 1. This implies that each of
the d objective functions depends on all the variables. This limits the expressibility
of the model because there are many examples of problems in which some objective
function depends only on a certain subset of the variables. Brunsch and Röglin (2015)
discuss this subtle issue in more detail and they also give concrete examples. To
circumvent this problem, they introduce zero-preserving perturbations. In their model,
the adversary can decide for each coefficient whether it should be a φ-perturbed
number or is deterministically set to zero. For this model they prove upper bounds
of O(nO(d3)φd) and O((nφ)O(d3)) for unimodal and general φ-perturbed coefficients,
respectively, for the expected number of Pareto-optimal solutions.

15.3 Smoothed Complexity of Binary Optimization Problems

The results on the expected number of Pareto-optimal solutions imply that the
knapsack problem can be solved in expected polynomial time on instances with
φ-perturbed weights or φ-perturbed profits (Corollary 15.14). A natural question is
whether or not similar results also hold for other NP-hard optimizations problems.
Does, for example, the TSP admit an algorithm with expected polynomial running
time if all distances are φ-perturbed? Instead of studying each problem separately, we
will now present a general characterization due to Beier and Vöcking (2006) of which
combinatorial optimization problems can be solved efficiently on instances with
φ-perturbed numbers.

While most smoothed analyses in the literature focus on the analysis of specific
algorithms, this section instead considers problems in the sense of complexity theory.
We will study linear binary optimization problems. In an instance of such a problem �,
a linear objective function cT x = c1x1 + · · · + cnxn is to be minimized or maximized
over an arbitrary set S ⊆ {0,1}n of feasible solutions. The problem � could, for
example, be the TSP and the coefficients ci could be the edge lengths. (See also
the discussion in Section 15.2.2 on how graph problems can be encoded as binary
optimization problems.) One could also encode the knapsack problem as a linear
binary optimization problem. Then S contains all subsets of items whose total weight
does not exceed the capacity.

We will study the smoothed complexity of linear binary optimization problems, by
which we mean the complexity of instances in which the coefficients c1, . . . ,cn are φ-
perturbed numbers from the interval [−1,1]. We will assume without loss of generality
that the objective function cT x is to be minimized. Since φ-perturbed numbers have
infinite encoding length with probability 1, we have to discuss the machine model that
we will use in the following. One could change the input model and assume that the
φ-perturbed coefficients are discretized by rounding them after a polynomial number,
say n2, of bits. The effect of this rounding is so small that it does not influence our
results. We will, however, not make this assumption explicit and use, for the sake
of simplicity, the continuous random variables in our probabilistic analysis. When

352

SMOOTHED ANALYSIS OF PARETO CURVES IN MULTIOBJECTIVE OPTIMIZATION

defining the input size we will not take the encoding length of the coefficients ci into
account. Instead we assume that the coefficients c1, . . . ,cn contribute in total only n
to the input length.

To state the main result, let us recall two definitions from computational complex-
ity. We call a linear binary optimization problem strongly NP-hard if it is already
NP-hard when restricted to instances with integer coefficients ci in which the largest
absolute value C := maxi |ci| of any of the coefficients is bounded by a polynomial
in the input length. The TSP is, for example, strongly NP-hard because it is already
NP-hard when all edges have length either 1 or 2. The knapsack problem, on the other
hand, is not strongly NP-hard because instances in which all profits are integers and
polynomially bounded in the input size can be solved by dynamic programming in
polynomial time.

A language L belongs to the complexity class ZPP (zero-error probabilistic
polynomial time) if there exists a randomized algorithm A that decides for each
input x in expected polynomial time whether or not x belongs to L. That is, A always
produces the correct answer but its running time is a random variable whose expected
value is bounded polynomially for every input x. Let us point out that the expectation
is only with respect to the random decisions of the algorithm and not with respect to
a randomly chosen input. It is yet unclear whether or not P = ZPP. In any case,
languages that belong to ZPP are generally considered to be easy to decide and
NP-hard problems are believed to not lie in ZPP.

Theorem 15.18 Let � be a linear binary optimization problem that is strongly
NP-hard. Then there does not exist an algorithm for � whose expected running
time is polynomially bounded in N and φ for instances with φ-perturbed coeffi-
cients from [−1,1], where N denotes the input length, unless NP ⊆ ZPP.

The main idea of the proof of this theorem can be summarized as follows: An
algorithm A for � with expected running time polynomial in N and φ can be used
to solve worst-case instances of � with polynomially bounded numbers optimally in
expected polynomial time. Given such a worst-case instance, one could add a small
amount of random noise to all the numbers and then solve the resulting instance
with A in expected time polynomial in N and φ. If this random noise is small enough
(φ = �(C)) then it does not change the optimal solution. This way, we obtain an
algorithm that solves worst-case instances with polynomially bounded numbers in
expected polynomial time, implying that NP ⊆ ZPP.

Theorem 15.18 shows that φ-perturbed instances of strongly NP-hard optimiza-
tion problems are not easier to solve than worst-case instances. Hence, these problems
stay hard also in the model of smoothed analysis. One consequence of this result is
that there is no hope that the TSP can be solved efficiently when the edge lengths
are randomly perturbed. This is in clear contrast to the knapsack problem, which
is easy to solve on randomly perturbed inputs. We will now state a more general
positive result. We say that a linear binary optimization problem � can be solved in
pseudo-linear time if there exists an algorithm whose running time on instances with
integer coefficients is bounded from above by p(N) ·C, where p denotes a polynomial,
N denotes the input length, and C denotes the largest absolute value of any of the
coefficients.

353

H. RÖGLIN

Theorem 15.19 A linear binary optimization problem � that can be solved in
pseudo-linear time in the worst case can be solved in expected polynomial time
(with respect to the input length and φ) on instances with φ-perturbed numbers
from [−1,1].

Let Ap be an algorithm that solves integral instances of � in pseudo-linear time. In
the proof of Theorem 15.19, the algorithm Ap is used to construct an algorithm A that
solves instances with φ-perturbed numbers in expected polynomial time. Algorithm A
first rounds all φ-perturbed coefficients after some number b of bits after the
binary point. Then it uses the algorithm Ap to solve the rounded instance. One can
prove that for b = �(log n) rounding all coefficients does not change the optimal
solution with high probability. This is based on the observation that in instances with
φ-perturbed numbers usually the best solution is significantly better than the second
best solution and hence it stays optimal even after rounding all coefficients (see
Exercise 15.8). For b = �(log n) the running time of Ap to solve the rounded instance
optimally is polynomial. This yields an algorithm that always runs in polynomial time
and solves φ-perturbed instances of � with high probability correctly. It is possible
to adapt this approach to obtain an algorithm that always computes the optimal
solution and whose expected running time is polynomial.

15.4 Conclusions

We have proven bounds on the expected number of Pareto-optimal solutions and we
have studied the complexity of linear binary optimization problems in the framework
of smoothed analysis. Our results are in many cases consistent with empirical
observations. The knapsack problem is, for example, easy to solve in applications and
has few Pareto-optimal solutions while solving large-scale TSP instances optimally is
computationally still expensive despite a lot of progress that has been made in the
last decades and great speedups in the common solvers.

The models that we considered in this chapter are very general, in particular
because the set S of feasible solutions can be arbitrarily chosen, both in Section 15.2
and in Section 15.3. However, this generality is also a drawback of our results because
the adversary is still rather powerful and can exactly determine the combinatorial
structure of the problem. Often problems are easier in applications than in the
worst case because the instances obey certain structural properties. Depending on
the problem and application, input graphs might be planar or have small degree,
distances might satisfy the triangle inequality etc. Such structural properties are not
considered in our general model. Hence, often it is advisable to look in more detail
into the instances that are really relevant in applications instead of only assuming
that some coefficients are random.

An illustrative experimental study of the multiobjective shortest path problem is
due to Müller-Hannemann and Weihe (2006). They consider a graph that is obtained
from the daily train schedule of the German railway network and observe that the
number of Pareto-optimal train connections in view of travel time, fare, and number
of train changes is very small (for no pair of nodes there were more than 8 Pareto-
optimal connections in the experiments). This is much smaller than suggested by
Theorem 15.16. One possible explanation is that in this and many other applications,
the objective functions are not independent but to some degree correlated, which

354

SMOOTHED ANALYSIS OF PARETO CURVES IN MULTIOBJECTIVE OPTIMIZATION

might reduce the number of Pareto-optimal solutions. It would be interesting to find
a formal model for correlated objective functions that explains the extremely small
number of Pareto-optimal solutions observed in this setting.

15.5 Notes

The bicriteria Bellman–Ford algorithm was described by Corley and Moon (1985).
The analysis of its running time presented in this chapter can also be found in Beier
(2004). Beier and Vöcking (2004) initiated the study of the number of Pareto-optimal
solutions in the framework of smoothed analysis. The proof of Theorem 15.7 in
this chapter follows an improved and simplified analysis due to Beier et al. (2007).
This analysis also generalizes the original work of Beier and Vöcking to integer
optimization problems. The bound stated in Beier et al. (2007) is O(n2k2 log(k)φ)
if S ⊆ {0, . . . ,k}n. It has been improved to O(n2k2φ) by Röglin and Rösner (2017).

The results in Section 15.3 can be found in Beier and Vöcking (2006). Theorems
15.18 and 15.19 do not give a complete characterization of the smoothed complexity
of linear binary optimization problems because Theorem 15.19 applies only to
pseudo-linear and not to general pseudo-polynomial algorithms. Beier and Vöcking
circumvent this problem by introducing a notion of polynomial smoothed complexity
that is not based on expected running times (similar to polynomial average-case
complexity). Later Röglin and Teng (2009) showed that all problems that can be
solved in pseudo-polynomial time in the worst case can be solved in expected
polynomial time on φ-perturbed instances, which completes the characterization.

References

Beier, René. 2004. Probabilistic Analysis of Discrete Optimization Problems. PhD thesis,
Universität des Saarlandes.

Beier, René, and Vöcking, Berthold. 2004. Random knapsack in expected polynomial time.
Journal of Computer and System Sciences, 69(3), 306–329.

Beier, René, and Vöcking, Berthold. 2006. Typical properties of winners and losers in discrete
optimization. SIAM Journal on Computing, 35(4), 855–881.

Beier, René, Röglin, Heiko, and Vöcking, Berthold. 2007. The smoothed number of Pareto
optimal solutions in bicriteria integer optimization. In Proceedings of the 12th Interna-
tional Conference on Integer Programming and Combinatorial Optimization (IPCO), pp.
53–67.

Brunsch, Tobias. 2014. Smoothed Analysis of Selected Optimization Problems and Algorithms.
PhD thesis, Universität Bonn.

Brunsch, Tobias, and Röglin, Heiko. 2015. Improved smoothed analysis of multiobjective
optimization. Journal of the ACM, 62(1), 4:1–4:58.

Brunsch, Tobias, Goyal, Navin, Rademacher, Luis, and Röglin, Heiko. 2014. Lower bounds
for the average and smoothed number of Pareto-optima. Theory of Computing, 10,
237–256.

Bkler, Fritz, Ehrgott, Matthias, Morris, Christopher, and Mutzel, Petra. 2017. Output-
sensitive complexity of multiobjective combinatorial optimization. Journal of Multi-
Criteria Decision Analysis, 24(1-2), 25–36.

Corley, H. William, and Moon, I. Douglas. 1985. Shortest paths in networks with vector
weights. Journal of Optimization Theory and Application, 46(1), 79–86.

Diakonikolas, Ilias, and Yannakakis, Mihalis. 2007. Small approximate Pareto sets for bi-
objective shortest paths and other problems. Proceedings of the 10th International

355

H. RÖGLIN

Workshop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX), pp. 74–88.

Hansen, Pierre. 1980. Bicriterion path problems. In Multiple Criteria Decision Making: Theory
and Applications. Lecture Notes in Economics and Mathematical Systems, vol. 177, pp.
109–127. Springer-Verlag.

Kung, H. T., Luccio, Fabrizio, and Preparata, Franco P. 1975. On finding the maxima of a set
of vectors. Journal of the ACM, 22(4), 469–476.

Moitra, Ankur, and O’Donnell, Ryan. 2012. Pareto optimal solutions for smoothed analysts.
SIAM Journal on Computing, 41(5), 1266–1284.

Müller-Hannemann, Matthias, and Weihe, Karsten. 2006. On the cardinality of the Pareto set
in bicriteria shortest path problems. Annals of Operations Research, 147(1), 269–286.

Nemhauser, George L., and Ullmann, Zev. 1969. Discrete dynamic programming and capital
allocation. Management Science, 15(9), 494–505.

Papadimitriou, Christos H., and Yannakakis, Mihalis. 2000. On the approximability of
trade-offs and optimal access of Web sources. In Proceedings of the 41st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 86–92.

Röglin, Heiko, and Rösner, Clemens. 2017. The smoothed number of Pareto-optimal solutions
in non-integer bicriteria optimization. Proceedings of the 14th Annual Conference on
Theory and Applications of Models of Computation (TAMC), pp. 543–555.

Röglin, Heiko, and Teng, Shang-Hua. 2009. Smoothed analysis of multiobjective optimiza-
tion. In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 681–690.

Vassilvitskii, Sergei, and Yannakakis, Mihalis. 2005. Efficiently computing succinct trade-off
curves. Theoretical Computer Science, 348(2–3), 334–356.

Exercises

Exercise 15.1 Implement the Nemhauser–Ullmann algorithm so that your imple-
mentation achieves a running time of �(

∑n−1
i=0 |Pi|).

Exercise 15.2 Find an instance of the knapsack problem with |Pi+1| < |Pi| for
some i.

Exercise 15.3 Construct instances for the bicriteria shortest path problem with an
exponential number of Pareto-optimal s–v paths for some vertices s and v.

Exercise 15.4 Prove that the bicriteria Bellman–Ford algorithm is correct, i.e., that
after termination the list Lv equals for every vertex v ∈ V the set of Pareto-optimal
s–v paths

Exercise 15.5 A famous algorithm for the single criterion all-pairs shortest path
problem is the Floyd–Warshall algorithm. Adapt this algorithm to the bicriteria
all-pairs shortest path problem (given a graph G with costs and weights, compute
for each pair (u,v) of vertices the set of Pareto-optimal u–v paths in G). State
a bound on its running time in the same fashion as Theorem 15.6. What is the
expected running time if the weights are φ-perturbed?

Exercise 15.6 The concept of zero-preserving perturbations could also be applied to
the bicriteria case with one adversarial objective function and one linear objective
function with φ-perturbed coefficients. Show that, in contrast to the multiobjective

356

SMOOTHED ANALYSIS OF PARETO CURVES IN MULTIOBJECTIVE OPTIMIZATION

case, for bicriteria optimization problems it does not increase the expressibility.
For this, show that zero-preserving perturbations for the bicriteria case can be
simulated by φ-perturbed coefficients if the set S of feasible solutions is adapted
appropriately. Why does this simulation not work for problems with three or more
objectives?

Exercise 15.7 Prove that the expected number of Pareto-optimal points among
n points drawn independently and uniformly at random from the unit square
is O(log n).

Exercise 15.8 Given an instance I of some linear binary optimization problem �

with a set S ⊆ {0,1}n of feasible solutions, the winner gap is defined as

 = cT x�� − cT x�,

where

x� = arg min{cT x | x ∈ S} and x�� = arg min{cT x | x ∈ S \ {x�}}
denote the best and second best solution of I, respectively. Let I be an instance
of � with φ-perturbed coefficients c1, . . . ,cn. Prove that, for every ε > 0,

Pr[
 ≤ ε] ≤ 2nφε.

[Hint: This statement follows by similar arguments as Lemma 15.10.]

357

PART FIVE

Applications in Machine Learning and Statistics

CHAPTER SIXTEEN

Noise in Classification
Maria-Florina Balcan and Nika Haghtalab

Abstract: This chapter considers the computational and statistical
aspects of learning linear thresholds in the presence of noise. When
there is no noise, several algorithms exist that efficiently learn near-
optimal linear thresholds using a small amount of data. However,
even a small amount of adversarial noise makes this problem noto-
riously hard in the worst case. We discuss approaches for dealing with
these negative results by exploiting natural assumptions on the data-
generating process.

16.1 Introduction

Machine learning studies automatic methods for making accurate predictions and
useful decisions based on previous observations and experience. From the application
point of view, machine learning has become a successful discipline for operating
in complex domains such as natural language processing, speech recognition, and
computer vision. Moreover, the theoretical foundations of machine learning have led
to the development of powerful and versatile techniques, which are routinely used in
a wide range of commercial systems in today’s world. However, a major challenge of
increasing importance in the theory and practice of machine learning is to provide
algorithms that are robust to adversarial noise.

In this chapter, we focus on classification where the goal is to learn a classification
rule from labeled examples only. Consider, for example, the task of automatically
classifying social media posts as either appropriate or inappropriate for publication.
To achieve this one can examine past social media posts and their features – such
as the author, bag of words, and hashtags –and whether they were appropriate for
publication. These data can be used to learn a classifier that best decides whether a
newly posted article is appropriate for publication, e.g., by finding the best parameters
for a linear classifier that makes such predictions. While classification is one of the
most commonly used paradigms of machine learning in practice, from the worst-case
perspective, it is often computationally hard and requires an amount of information
that is seldom available. One of the main challenges in classification is the presence
of noise in data sets. For example, a labeler may be making mistakes when deciding
whether a post is appropriate for publication. It is also possible that the correct
decision is not a linear separator or even that there is no perfect classification rule. The
latter can happen when, for example, one appropriate post and one inappropriate post

361

M.-F. BALCAN AND N. HAGHTALAB

map to the same feature vector. Indeed, when the noise in classification is adversarially
designed, classification is believed to be hard. On the other hand, there is an increasing
need for learning algorithms that can withstand intentionally adversarial behavior in
their environment, e.g., a large fraction of inappropriate social media posts are made
with the intention to pass through the deployed classifier. Therefore, it is essential to
provide a theoretical grounding for the performance of learning algorithms in the
presence of real-life adversaries.

In this chapter, we go beyond the worst case in studying noise in classification
with a focus on learning linear threshold classifiers. Learning linear thresholds is
a canonical problem in machine learning that serves as a backbone for several
other learning problems, such as support vector machines and neural networks.
In the absence of noise, several computationally efficient algorithms exist that can
learn highly accurate linear thresholds. However, introducing even a small amount
of adversarial noise makes this problem notoriously intractable with a runtime
that is prohibitively large in the number of features. In this chapter, we present
some of the recent progress on learning linear thresholds in the presence of noise
under assumptions on the data-generating process. The first approach considers
restrictions on the marginal distribution of instances, e.g., log-concave or Gaussian
distributions. The second approach additionally considers how the true classification
of instances match those expressed by the most accurate classifier one is content
with, e.g., assuming that the Bayes optimal classifier is also a linear threshold.
At a technical level, many of the results in this chapter contribute to and draw
insights from high-dimensional geometry to limit the effects of noise on learning
algorithms.

We describe the formal setup in Section 16.2. In Section 16.3, we overview the
classical worst-case and best-case results on computational and statistical aspects
of classification. In Section 16.4 we showcase general assumptions on the marginal
distribution of instances that lead to improved computational performance. In
Section 16.5 we obtain further computational and statistical improvements by inves-
tigating additional assumptions on the nature of the label noise. We end this chapter
by putting the work into a broader context.

16.2 Model

We consider an instance space X and a set of labels Y ={−1,+1}. A classifier
is a function f : X →Y that maps an instance x ∈X to its classification y. For
example, x can represent a social media post and y can indicate whether the post
was appropriate for publication. We consider a set of classifiers F . We denote
the Vapnik–Chervonenkis (VC) dimension of F , which measures the expressibility
of F , by dim(F).1 We further consider a distribution D over X × Y . While D is
assumed to be unknown, we assume access to a set S of i.i.d. samples from D.
For a classifier f , we represent its expected and empirical error, respectively, by
errD(f) = Pr(x,y)∼D [y �= f (x)] and errS(f) = 1

|S|
∑

(x,y)∈S 1(y �=f (x)). Classification is
the task of learning a classifier with near optimal error from a set of classifiers F , i.e.,
finding f such that errD(f) ≤ opt+ε, where opt = minf ∗∈F errD(f ∗). Classification
is considered under a number of settings. Agnostic learning refers to a setting in

1 VC dimension is the size of the largest X ⊆ X that can be labeled in all possible ways using functions in F .

362

NOISE IN CLASSIFICATION

which no additional assumptions are made regarding the set of classifiers F or the
distribution of instances D. Realizable learning refers to a setting where there is
f ∗ ∈ F such that errD(f ∗) = 0, in which case, one is looking for a classifier f with
errD(f) ≤ ε.

In parts of this chapter, we work with the class of linear threshold classifiers. That
is, we assume that the input space is X = R

d for some d ∈ N and refer to an instance
by its d-dimensional vector representation &x ∈ R

d . A homogeneous linear threshold
classifier, also called a halfspace through the origin, is a function h&w(&x)= sign(&w · &x)
for some unit vector &w ∈R

d . The VC dimension of the class of d-dimensional
homogeneous linear thresholds is dim(F) = d.

16.3 The Best Case and the Worst Case

In this section, we review the computational and statistical aspects of classification
at the opposite ends of the difficulty spectrum – the realizable and agnostic settings.

16.3.1 Sample Complexity

It is well known that to find a classifier of error ε in the realizable setting, all one
needs to do is to take a set of �̃(dim(F)/ε) i.i.d. samples from D and choose f ∈ F
that perfectly classifies all of these samples.2 Formally, for any ε,δ ∈ (0,1), there is

mreal
ε,δ ∈ O

(
1
ε

(
dim(F) ln

(
1
ε

)
+ ln

(
1
δ

)))
such that with probability 1 − δ over S ∼ Dmreal

ε,δ , if errS(f) = 0 then errD(f) ≤ ε.
In most applications of machine learning, however, either the perfect classifier

is much more complex than those included in F or there is no way to perfectly
classify instances. This is where agnostic learning comes in. With no assumptions on
the performance of classifiers one instead chooses f ∈F with least empirical error.
One way to make this work is to estimate the error of all classifiers within ε with
high probability over the draw of the samples. This is called uniform convergence and
requires �(dim(F)/ε2) samples. More formally, for any ε,δ ∈ (0,1), there is

mε,δ ∈ O
(

1
ε2

(
dim(F) + ln

(
1
δ

)))
such that with probability 1 − δ over the sample set S ∼Dmε,δ , for all f ∈ F ,
|errD(f) − errS(f)| ≤ ε. These sample complexities are known to be nearly tight.
We refer the reader to Anthony and Bartlett (1999) for more details.3

It is evident from these results that in the worst case agnostic learning requires
significantly, i.e., about a factor of 1/ε, more data than realizable learning. Unfor-
tunately, such large amount of data may not be available in many applications

2 We use notation �̃ to hide logarithmic dependence on 1/ε and 1/δ.
3 Informally speaking, the VC dimension of a function class controls the number of samples needed for

learning. This is because if the number of samples is much smaller than the VC dimension, it is possible to have
two functions that perform identically on the training set but there is a large gap between their performance
on the true distributions. The surprising aspect of these results is that the VC dimension also characterizes the
number of samples sufficient for learning.

363

M.-F. BALCAN AND N. HAGHTALAB

and domains, e.g., medical imaging. On the other hand, day-to-day applications
of machine learning rarely resemble worst-case instances of agnostic learning. In
Section 16.5, we show how the sample complexity of agnostic leaning significantly
improves when we make additional assumptions on the nature of the noise.

16.3.2 Computational Complexity

Given a sufficiently large sample set, the computational complexity of classification
is concerned with whether one can efficiently compute a classifier of good quality
on the samples. In the realizable setting, this involves computing a classifier f that
makes no mistakes on the sample set. More generally, in the agnostic setting one
needs to compute a classifier f ∈ F of (approximately) least error. This can be done
in poly(|F |) runtime. However, in most cases F is infinitely large or, even in cases that
it is finite, it is exponential in the natural representation of the problem, e.g., the set
of all linear threshold functions, decision trees, boolean functions, etc. In this section,
we focus on a setting where F is the set of homogeneous linear thresholds, which is
one of the most popular classifiers studied in machine learning.

Consider the realizable setting where f&w ∈ F exists that is consistent with the set S
sampled from D, i.e., y = sign(&w · &x) for all (&x,y) ∈ S. Then such a vector &w = &v

‖&v‖2
can be computed in time poly(d,|S|) by finding a solution &v to the following linear
program with a dummy objective

minimize&v∈Rd 1
subject to y(&v · &x) ≥ 1, ∀(&x,y) ∈ S.

(16.1)

Can one use this linear program in the agnostic case? The answer depends on how
much noise, measured by the error of the optimal classifier, exists in the data set.
After all, if the noise is so small that it does not appear in the sample set, then one
can continue to use the above linear program. To see this more formally, let OF be
an oracle for the realizable setting that takes sample set S and returns a classifier
f ∈ F that is perfect on S if one exists. Note that the aforementioned linear program
achieves this by returning &w that satisfies the constraints or certifying that no such
vector exists. In the following algorithm, we apply this oracle that is designed for the
realizable setting to the agnostic learning problem where the noise level is very small.
Interestingly, these guarantees go beyond learning linear thresholds and apply to any
learning problem that is efficiently solvable in the realizable setting.

Algorithm 1 Efficient agnostic learning for small noise

Input: Sampling access to D, set of classifiers F , oracle OF , ε, and δ.

1. Let m = mreal
ε
4 ,0.5 and r = m2 ln(2/δ).

2. For i = 1, . . . ,r, take a sample set Si of m i.i.d. samples from D. Let fi = OF (Si)

or fi = “none” if there is no perfect classifier for Si.
3. Take a fresh sample set S of m′ = 1

ε
ln(r/δ) i.i.d. samples from D.

4. Return fi with minimum errS(fi).

364

NOISE IN CLASSIFICATION

Theorem 16.1 (Kearns and Li, 1988) Consider an agnostic learning prob-
lem with distribution D and set of classifiers F such that minf ∈F errD(f) ≤
cε/dim(F) for a sufficiently small constant c. Algorithm 1 makes poly

(
dim(F), 1

ε
,

ln(1
δ
)
)

calls to the realizable oracle OF , and with probability 1 − δ, returns a
classifier f with errD(f) ≤ ε.

Proof Sketch It is not hard to see that step 2 of the algorithm returns at least
one classifier fi ∈ F , which perfectly classifies Si of size m = �̃(dim(F)/ε)

with high probability, and therefore has error at most ε/4 on D. Since
m = �(ε−1dim(F) ln(1/ε)), for a fixed i, the probability that Si is perfectly
labeled by the optimal classifier is (1 − cε/dim(F))m ≥ 1

m2 . Repeating this

r = m2 ln(2/δ) times, with probability at least 1 − δ
2 at least one sample set is

perfectly labeled by the optimal classifier
We use the Chernoff bound to estimate the error within a multiplicative

factor of 2.4 With probability 1 − δ over the choice of m′ samples S, any such
classifier fi with errD(fi) ≤ ε/4 has errS(fi) ≤ ε/2 and any such classifier with
errD(fi) > ε has errS(fi) > ε/2. Therefore, Algorithm 1 returns a classifier of
error ε. �

Theorem 16.1 shows how to efficiently learn a d-dimensional linear threshold in
the agnostic setting when the noise level is O

(
ε
d

)
. At its heart, Theorem 16.1 relies

on the fact that when the noise is small, linear program (16.1) is still feasible with a
reasonable probability. On the other hand, significant noise in agnostic learning leads
to unsatisfiable constraints in linear program (16.1). Indeed, in a system of linear
equations where one can satisfy (1−ε) fraction of the equations, it is NP-hard to find
a solution that satisfies �(1) fraction of them. Guruswami and Raghavendra (2009)
use this to show that even if there is a near-perfect linear threshold f ∗ ∈ F with
errD(f ∗) ≤ ε, finding any classifier in F with error ≤ 1

2 −�(1) is NP-hard. Agnostic
learning of linear thresholds is hard even if the algorithm is allowed to return a
classifier f /∈ F . This setting is called improper learning and is generally simpler
than the problem of learning a classifier from F . But, even in improper learning,
when the optimal linear threshold has a small constant error opt, it is hard to learn a
classifier of error O(opt) (Daniely, 2016), assuming that refuting Random Constraint
Satisfaction Problems is hard under a certain regime.

These hardness results demonstrate a gap between what is efficiently learnable in
the agnostic setting and the realizable setting, even if one has access to unlimited data.
In Sections 16.4 and 16.5, we circumvent these hardness results by simple assumptions
on the shape of the marginal distribution or the nature of the noise.

16.4 Benefits of Assumptions on the Marginal Distribution

In this section, we show how additional assumptions on the marginal distribution
of D on instance space X improve the computational aspects of classification.

4 Here, a multiplicative approximation rather than an additive one needs fewer samples than is discussed in
Section 16.3.1.

365

M.-F. BALCAN AND N. HAGHTALAB

A commonly used class of distributions in the theory and practice of machine
learning is the class of log-concave distributions, which includes the Gaussian dis-
tribution and uniform distribution over convex sets. Formally,

Definition 16.2 A distribution P with density p is log-concave if log(p(·)) is
concave. It is isotropic if its mean is at the origin and has a unit covariance
matrix.

Throughout this section, we assume that the marginal distribution of D is
log-concave and isotropic. Apart from this we make no further assumptions
and allow for arbitrary label noise. Let us first state several useful properties of
isotropic log-concave distributions. We refer the interested reader to (Lovász and
Vempala, 2007; Balcan and Long, 2013; Awasthi et al., 2017b) for the proof of these
properties.

Theorem 16.3 Let P be an isotropic log-concave distribution over X = R
d.

1. All marginals of P are also isotropic log-concave distributions.
2. For any r, Pr[‖&x‖ ≥ r

√
d] ≤ exp(−r + 1).

3. There are constants C1 and C1, such that for any two unit vectors &w and &w′,
C1θ(&w, &w′) ≤ Pr&x∼P [sign(&w · &x) �= sign(&w′ · &x)] ≤ C1θ(&w, &w′), where θ(&w, &w′)
is the angle between vectors &w and &w′.

4. There are constants C2 and C2, such that for any unit vector &w and γ , C2γ ≤
Pr&x∼P

[∣∣&x · &w∣∣ ≤ γ
] ≤ C2γ .

5. For any constant C3 there is a constant C′
3 such that for any two unit vectors

&w and &w′ such that θ(&w, &w′)≤α < π/2, we have Pr&x∼P [
∣∣&x · &w∣∣ ≥ C′

3α and sign
(&w · &x) �= sign(&w′ · &x)] ≤ αC3.

Part 1 of Theorem 16.3 is useful in establishing the other properties of log-
concave distributions. For example, projection of &x on any orthonormal subspace
is equivalent to the marginal distribution over the coordinates of the new subspace
and thus forms an isotropic log-concave distribution. This allows one to prove
the rest of Theorem 16.3 by analyzing the projections of &x on the relevant unit
vectors &w and &w′. Part 1 and the exponential tail property of log-concave distri-
butions (as expressed in Part 2) are used in Section 16.4.1 to show that linear
thresholds can be approximated using low degree polynomials over log-concave
distributions.

Part 3 allows one to bound the error of a candidate classifier in terms of its angle
to the optimal classifier. In addition, the exponential tail of log-concave distributions
implies that a large fraction of the distribution is in a band around the decision
boundary of a classifier (Part 4). Furthermore, the exponential tail property – when
applied to regions that are progressively farther from the origin and are captured
within the disagreement region – implies that only a small part of the disagreement
between a candidate classifier and the optimal classifier falls outside of this band
(Part 5). Sections 16.4.2 and 16.5.2 use these properties to localize the learning
problem near a decision boundary of a candidate classifier and achieve strong
computational results for learning linear thresholds.

366

NOISE IN CLASSIFICATION

16.4.1 Computational Improvements via Polynomial Regression

One of the reasons behind the computational hardness of agnostic learning is that it
involves a nonconvex and nonsmooth function, sign(·). Furthermore, sign(·) cannot
be approximated uniformly over all &x by low degree polynomials or other convex
and smooth functions that can be efficiently optimized. However, one only needs
to approximate sign(·) in expectation over the data-generating distribution. This is
especially useful when the marginal distribution has exponential tail, e.g., log-concave
distributions, because it allows one to focus on approximating sign(·) close to its
decision boundary, at the expense of poorer approximations far from the boundary,
but without reducing the (expected) approximation factor overall.

This is the idea behind the work of Kalai et al. (2008) that showed that if D
has a log-concave marginal, then one can learn a classifier of error opt + ε in time
poly

(
dκ(1/ε)

)
, for a fixed function κ. Importantly, this result establishes that a low-

degree polynomial threshold approximates sign(·) in expectation. We state this claim
below and refer the interested reader to Kalai et al. (2008) for its proof.

Theorem 16.4 (Kalai et al., 2008) There is a function κ such that for any log-
concave (not necessarily isotropic) distribution P on R, for any ε and θ , there is a
polynomial q : R→R of degree κ(1/ε) such that Ez∼P [|q(z) − sign(z − θ)|] ≤ ε.

This result suggests a learning algorithm that fits a polynomial, in L1 distance,
to the set of samples observed from D. This algorithm is formally presented in
Algorithm 2. At a high level, for a set S of labeled instances, our goal is to compute
a polynomial p : Rd → R of degree κ(1/ε) that minimizes E(&x,y)∼S [|p(&x) − y|]. This
can be done in time poly(dκ(1/ε)), by expanding each d-dimensional instance &x to
a poly(dκ(1/ε))-dimensional instance &x′ that includes all monomials with degree at
most κ(1/ε) of &x. We can then perform an L1 regression on (&x′,y)s to find p in time
poly(dκ(1/ε)) – for example by using a linear program. With p in hand, we then choose
a threshold θ so as to minimize the empirical error of sign

(
p(&x) − θ

)
. This allows us

to use Theorem 16.4 to prove the following result.

Algorithm 2 L1 Polynomial regresssion

Input: Set S of poly
(

1
ε
dκ(1/ε)

)
samples from D

1. Find polynomial p of degree κ(1/ε) that minimizes E(&x,y)∼S [|p(&x) − y|] .
2. Let f (&x) = sign

(
p(&x) − θ

)
for θ ∈ [−1,1] that minimizes the empirical error on S.

Theorem 16.5 (Kalai et al., 2008) The L1 Polynomial regression algorithm
(Algorithm 2) achieves errD(f) ≤ opt + ε/2 in expectation over the choice of S.

Proof Let f (&x) = sign(p(&x) − θ) be the outcome of Algorithm 2 on sample
set S. It is not hard to see that the empirical error of f is at most half of the L1
error of p, i.e., errS(f) ≤ 1

2ES [|y − p(&x)|], where ES denotes expectation taken
with respect to the empirical distribution (&x,y) ∼ S. To see this, note that f (&x)

367

M.-F. BALCAN AND N. HAGHTALAB

is wrong only if θ falls between p(&x) and y. If we were to pick θ uniformly at
random from [−1,1], then in expectation f (&x) is wrong with probability |p(&x)−
y|/2. But θ is specifically picked by the algorithm to minimize errS(f); therefore,
it beats the expectation and also achieves errS(f) ≤ 1

2ES [|y − p(&x)|] .
Next, we use Theorem 16.4 to show that there is a polynomial p∗ that approx-

imates the optimal classifier in expectation over a log-concave distribution. Let
h∗ = sign(&w∗ · &x) be the optimal linear threshold for distribution D. Note that
&w∗ · &x is a one-dimensional isotropic log-concave distribution (By Theorem 16.3
part 1). Let p∗(&x) = q(&x· &w∗) be a polynomial of degree κ(2/ε) that approximates
h∗ according to Theorem 16.4, i.e., ED[|p∗(&x) − h∗(&x))|] ≤ ε/2. Then, we have

err
S
(f) ≤ 1

2
ES[|y − p(&x)|] ≤ 1

2
ES[|y − p∗(&x)|]

≤ 1
2

(
ES[|y − h∗(&x)|] + ES[|p∗(&x) − h∗(&x)|]) .

Consider the expected value of the final expression 1
2 (ES[|y − h∗(&x)|] +

ES[|p∗(&x) − h∗(&x)|]) over the draw of a set S of m samples from D. Since
|y − h∗(&x)| = 2 whenever y �= h∗(&x), we have ES∼Dm [1

2ES[|y − h∗(&x)|]] = opt.
Moreover, ES∼Dm [1

2ES[|p∗(&x) − h∗(&x)|]] ≤ ε/4 since E&x∼D[|p∗(&x) − h∗(&x)|] ≤
ε/2. So, the expected value of the final expression is at most opt + ε/4. The
expected value of the initial expression errS(f) is the expected empirical error
of the hypothesis produced. Using the fact that the VC dimension of the class
of degree-κ(1/ε) polynomial thresholds is O

(
dκ(1/ε)

)
and Algorithm 2 uses

m = poly
(
ε−1dκ(1/ε)

)
samples, the expected empirical error of h is within ε/4

of its expected true error, proving the theorem. �

Note that Theorem 16.5 bounds the error in expectation over S ∼ Dm, rather
than with high probability. This is because |p∗(&x)− h∗(&x)| is small in expectation but
unbounded in the worst case. However, this is sufficient to show that a single run
of the Algorithm 2 has errD(f) ≤ opt + ε with probability �(ε). To achieve a high-
probability bound, we run this algorithm O(1

ε
log 1

δ
) times and evaluate the outcomes

on a separate sample of size Õ(1
ε2 log 1

δ
). This is formalized as follows.

Corollary 16.6 For any ε and δ, repeat Algorithm 2 on O
(
ε−1 ln(1/δ)

)
indepen-

dently generated sample sets Si to learn fi. Take an additional Õ
(
ε−2 ln(1/δ)

)
samples from D and return f ∗

i that minimizes the error on this sample set. With
probability 1 − δ, this classifier has errD(f ∗

i) ≤ opt + ε.

An interesting aspect of Algorithm 2 is that it is improper, i.e., it uses a polynomial
threshold function to learn over the class of linear threshold functions. Furthermore,
this algorithm runs in polynomial time and learns a classifier of error O(opt) when
opt = errD(h∗) is an arbitrarily small constant. As discussed in Section 16.3.2, no
computationally efficient algorithm could have obtained this guarantee for general
distributions (Daniely, 2016). This highlights the need to use structural properties of
log-concave distributions for obtaining improved learning guarantees.

368

NOISE IN CLASSIFICATION

While L1 polynomial regression is an extremely powerful algorithm and can obtain
error of opt + ε in poly(dκ(1/ε)) time for any value of ε, its runtime is polynomial
only when ε is a constant. There is a different simple and efficient algorithm, called
Averaging, that achieves nontrivial learning guarantees for any ε that is sufficiently
larger than opt. The averaging algorithm (Servedio, 2001) returns the average of label
weighted instances5

classifier h&w where &w = ES[y&x]
‖ES[y&x]‖ . (Averaging Algorithm)

The idea behind the averaging algorithm is simple – if a distribution is realizable and
symmetric around the origin (such as a Gaussian) then E[y&x] points in the direction
of the perfect classifier. However, even a small amount of adversarial noise can create
a vector component that is orthogonal to &w∗. Nevertheless, Kalai et al. (2008) show
that the averaging algorithm recovers &w∗ within angle ε when opt is sufficiently smaller
than ε.

Theorem 16.7 (Based on Kalai et al., 2008) Consider a distribution D with a
Gaussian and unit variance marginal. There is a constant c such that for any δ and

ε > c opt
√

ln(1/opt), there is m ∈ O
(

d2

ε2 ln
(d
δ

))
such that with probability 1− δ,

the outcome of the averaging algorithm on a set of m samples has errD(h&w) ≤
opt + ε. Furthermore the averaging algorithm runs in time poly(d, 1

ε
).

This theorem shows that when ε ∈ �(opt
√

ln(1/opt)) one can efficiently learn a
linear threshold of error opt+ ε. In the next section, we present a stronger algorithm
that achieves the same learning guarantee for ε ∈ �(opt) based on an adaptive
localization technique that limits the power of adversarial noise further.

16.4.2 Computational Improvements via Localization

One of the challenges we face in designing computationally efficient learning algo-
rithms is that an algorithm’s sensitivity to noise is not the same throughout the
distribution. This is often a byproduct of the fact that easy-to-optimize surrogate
loss functions, which approximate the nonconvex sign function, have nonuniform
approximation guarantee over the space. This poses a challenge since an adversary
can corrupt a small fraction of the data in more sensitive regions and degrade the
quality of the algorithm’s outcome disproportionately. Identifying and removing
these regions typically require knowing the target classifier and therefore cannot be
fully done as a preprocessing step. However, when a reasonably good classifier is
known in advance it may be possible to approximately identify these regions and
localize the problem to learn a better classifier. This is the idea behind the work
of Awasthi et al. (2017b) which creates an adaptive sequence of carefully designed
optimization problems based on localization both on the instance space and the
hypothesis space, i.e., focusing on the data close to the current decision boundary
and on classifiers close to the current guess. Localization on instances close to the

5 Interestingly, the averaging algorithm is equivalent to L2 polynomial regression of degree 1 over the
Gaussian distribution.

369

M.-F. BALCAN AND N. HAGHTALAB

Figure 16.1 Demonstrating localization and margin-based analysis. Part (a) demonstrates the partition
of disagreement of h &w and h &w∗ to instances within the band and outside the band. Parts (b) and (c)
demonstrate the search for &wk within αk angle of &wk−1 that has error of at most c0 and the band in the
subsequent iteration of step (2) of Algorithm 3.

current decision boundary reduces the impact of adversarial noise on the learning
process, while localization on the hypothesis space ensures that the history is not
forgotten. Using this, Awasthi et al. (2017b) learns a linear separator of error opt + ε

for ε ∈ �(opt) in time poly(d, 1
ε
) when D has an isotropic log-concave marginal.

Key Technical Ideas. At its core, localization leverages the fact that a large fraction
of the disagreement between a reasonably good classifier and the optimal classifier is
close to the decision boundary of the former classifier over an isotropic log-concave
distribution. To see this, consider Figure 16.1a that demonstrates the disagreement
between classifiers h&w and h&w∗ as wedges of the distribution with total probability,

err
D
(h&w) − err

D
(h&w∗) ≤ Pr [h&w(&x) �= h&w∗(&x)] ≤ C1θ(&w, &w∗), (16.2)

where C1 is a constant according to property 3 of Theorem 16.3. This region can
be partitioned to instances that are within some γ -boundary of &w (red vertical
stripes) and those that are far (blue horizontal stripes). Since the distribution is log-
concave, �(γ) fraction of it falls within distance γ of the decision boundary of
h&w (see Theorem 16.3, part 4). Moreover, instances that are far from the decision
boundary and are classified differently by h&w and h&w∗ form a small fraction of the total
disagreement region. Formally, using properties 4 and 5 of Theorem 16.3, for chosen

constant C3 = C1/8 and γ := α · max
{

C′
3,

C1
C2

}
, for any &w such that θ(&w, &w∗) ≤ α

Pr [|&w · &x| ≤ γ and h&w(&x) �= h&w∗(&x)] ≤ Pr [|&w · &x| ≤ γ] ≤ C2γ, and (16.3)

Pr [|&w · &x| > γ and h&w(&x) �= h&w∗(&x)] ≤ C3α ≤ C2

8
γ . (16.4)

Since h&w has low disagreement far from its decision boundary as shown in
Equation 16.4, this suggests that to improve the overall performance one can focus
on reducing the error near the decision boundary of h&w. Consider &w, such that
θ(&w, &w∗) ≤ α, and any &w′ within angle α of &w. Focusing on instances close to the
boundary {(&x,y) : |&w · &x| ≤ γ }, hereafter called the band, and the corresponding

370

NOISE IN CLASSIFICATION

distribution of labeled instances in the band denoted by D&w,γ , if the disagreement

of h&w′ with h&w∗ in the band is at most c0 = min
{

1
4,

C1
4C2C′

3

}
then using the rightmost

inequality of Equation 16.3 and the leftmost inequality of Equation 16.4, and the fact
that {&x : |&w · &x| > γ,h&w′(&x) �= h&w∗(&x)} ⊆ {&x : |&w · &x| > γ,h&w(&x) �= h&w∗(&x) or h&w(&x) �=
h&w′(&x)}, we have

Pr
D

[h&w′(&x) �= h&w∗(&x)] ≤ C2γ · Pr
D&w,γ

[h&w′(&x) �= h&w∗(&x)] + 2αC3 ≤ αC1

2
. (16.5)

Thus, θ(&w′, &w∗) ≤ α/2, by property 3 of Theorem 16.3. That is, given a classifier h&w
that is at angle at most α to the optimal classifier, one can find an even better classifier
that is at angle at most α/2 by searching over classifiers that are within angle α of &w
and have at most a constant disagreement c0 with the optimal classifier over the band.
This shows that localization reduces the problem of agnostically learning a linear
threshold with error opt + ε on an isotropic log-concave distribution to a learning
problem within the band.

In more detail, for the moment let us assume that we have an oracle for the band
that returns &w′ within angle α of &w∗ such that the disagreement of h&w′ with h&w∗ is
at most the previously defined constant c0, whenever the error of h&w∗ in the band is
small enough compared to c0, i.e., for some fixed function g(·), errD&w,γ (h&w∗) ≤ g(c0).

Oracle O(&w,γ ,α,δ): Given &w, γ , α, δ, and a fixed error tolerance function g(·), such
that θ(&w, &w∗) ≤ α and errD&w,γ (h&w∗) ≤ g(c0), the oracle takes m(γ,δ,α) samples from
D and returns h&w′ such that θ(&w′, &w) ≤ α and with probability 1−δ, PrD&w,γ [h&w′(&x) �=
h&w∗(&x)] ≤ c0.

Algorithm 3 uses this oracle repeatedly to find a classifier of error opt + ε. We
note that as we localize the problem in narrower bands we may increase the overall
noise in the conditional distribution of the band. This inherently makes learning
more challenging for the oracle. Therefore, we use function g(·) to emphasize the
preconditions under which the oracle should succeed.

Algorithm 3 Localization with an oracle

Input: Given ε,δ, sample access to D, an in-band optimization oracle O, and an initial
classifier h&w1 such that θ(&w1, &w∗) < π/2.

1. Let constant cγ = max
{
C′

3,C1/C2
}
, αk = 2−kπ and γk = αk · cγ , for all k.

2. For k = 1, . . . , log
(C1π

ε

)− 1 = r, let h&wk+1 ← O
(&wk,γk,αk,

δ
r

)
.

3. Return h&wr .

Lemma 16.8 (Margin-Based Localization) Assume that oracle O and a cor-
responding error tolerance function g(·) exist that satisfy the post-conditions of
the oracle on the sequence of inputs (&wk,γk,αk,δ/r) used in Algorithm 3. There
is a constant c such that for any distribution D with an isotropic log-concave
marginal, δ, and ε ≥ c opt, Algorithm 3, takes

371

M.-F. BALCAN AND N. HAGHTALAB

m =
log(C1/ε)∑

k=1

m
(
γk,αk,

δ

log(C1/ε)

)
samples fromD and returns h&w such that with probability 1−δ, errD(h&w) ≤ opt+ε.

Proof Algorithm 3 starts with &w1 of angle at most α1 to &w∗. Assume for
now that errD&wk,γk

(h&w∗) ≤ g(c0) for all &wk and γk used by the algorithm, so
that the preconditions of the oracle are met. Then, every time the algorithm
executes step (2), the oracle returns &wk+1 ← O(&wk,γk,αk,δ/r) such that with
probability 1 − δ/r, PrD&wk,γk

[h&wk+1(&x) �= h&w∗(&x)] ≤ c0. Using Equation 16.5,
θ(&wk+1, &w∗) ≤ θ(&wk, &w∗)/2 ≤ αk+1, i.e., angle of the candidate classifier to &w∗ is
halved. After r = log(C1π/ε) − 1 iterations, we have θ(&wr, &w∗) ≤ ε/C1. Using
the relationship between the error of h&w and its angle to h&w∗ as described in
Equation 16.2, errD(h&wr) ≤ errD(h&w∗)+ C1θ(&w∗, &wr) ≤ opt + ε. This approach
works for all noise types.

Now, we use the properties of the (adversarial) noise to show that the
preconditions of the oracle are met as long as the width of the band is not much
smaller than opt. That is, for all k ≤ r, errD&wk,γk

(h&w∗) < g(c0) when ε > c opt.
As we focus on a band of width γk we may focus on areas where h&w∗ is wrong.
But, any band of width γk constitutes at least C2γk ∈ �(ε) fraction of D for
k ≤ r. Hence, there is constant c for which errD&wk,γk

(h&w∗) ≤ opt
C2γk

≤ g(c0), for
all ε ≥ c opt. �

Lemma 16.8 shows that to get a computationally efficient algorithm for learning
over a log-concave distribution, it is sufficient to implement oracle O efficiently. We
use hinge loss minimization for this purpose. Formally, hinge loss with parameter τ is

defined by �τ (&w,&x,y) = max
{

0,1 − y(&w·&x)
τ

}
. Note that whenever h&w makes a mistake

on (&x,y) the hinge loss is at least 1. Therefore, err(h&w) ≤ E [�τ (&w,&x,y)] . Thus, it suffices
to show that for any distributionD&wk,γk we can find &wk+1 whose expected τk hinge loss
is at most c0. Since hinge loss is a convex function, we can efficiently optimize it over
the band using Algorithm 4. So, the main technical challenge is to show that there is
a classifier, namely h&w∗ , whose hinge loss is sufficiently smaller than c0, and therefore,
Algorithm 4 returns a classifier whose hinge loss is also less than c0. This is done via
a series of technical steps, where first the hinge loss of h&w∗ is shown to be small when

Algorithm 4 Hinge loss minimization in the band

Input: Unit vector &wk, γk, αk, δ, and sampling access to D.

1. Take a set S of �̃
(

d2

γkc2
0

ln
(1
ε

)
ln
(1
δ

))
samples and let Sk = {

(&x,y) | |&wk · &x| ≤ γk
}
.

2. Let τk = γkc0C2/4C2 and for the convex set K = {&v | ‖&v‖ ≤ 1 and θ(&v, &w) ≤ αk}
let &vk+1 ← argmin&v∈KES

[
�τk(&v,&x,y)

]
.

3. Return &wk+1 = &vk+1
‖&vk+1‖ .

372

NOISE IN CLASSIFICATION

the distribution has no noise and then it is shown that noise can increase the hinge
loss of h&w∗ by a small amount only. We refer the reader to the work of Awasthi et al.
(2017b) for more details.

Lemma 16.9 (Hinge Loss Minimization) There is a function g(z) ∈ �(z4), such
that for any distribution D with an isotropic log-concave marginal, given &wk, γk,
and αk used by Algorithm 3, such that θ(&wk, &w∗) ≤ αk and errD&wk,γk

(h&w∗) ≤ g(c0),

Algorithm 4 takes nk = �̃
(

d2

γkc2
0

ln(1/ε) ln(1/δ)
)

samples from D and returns

&wk+1 such that θ(&wk+1, &wk) ≤ αk and with probability 1 − δ, PrD&wk,γk
[h&wk+1(&x) �=

h&w∗(&x)] ≤ c0.

Lemmas 16.8 and 16.9 prove the main result of this section.

Theorem 16.10 (Awasthi et al., 2017b) Consider distribution D with an
isotropic log-concave marginal. There is a constant c such that for all δ and

ε ≥ c opt, there is m ∈ Õ
(

d2

ε
ln
(1
δ

))
for which with probability 1−δ, Algorithm 3

using Algorithm 4 for optimization in the band, takes m samples from D, and
returns a classifier h&w whose error is errD(h&w) ≤ opt + ε.

The Surprising Power of Localization. The localization technique can also be used
with stronger malicious adversaries that not only can change the label of a fraction
of instances, but also can change the shape of the underlying distribution. This noise is
commonly referred to as malicious noise or poisoning attack.

Consider applying Algorithm 3 in the presence of malicious noise when the origi-
nal distribution has an isotropic log-concave marginal. Since malicious noise changes
the marginal distribution of instances, it is not clear if hinge-loss minimization of
Lemma 16.9 can find a suitable classifier h&wk+1 . To deal with this Awasthi et al.
(2017b) introduce a soft outlier removal technique that is applied before hinge loss
minimization in every step of Algorithm 3. At a high level, this procedure assigns
weights to instances in the band, which indicate the algorithm’s confidence that these
instance were not introduced by “malicious noise.” These weights are computed by
a linear program that takes into account the variance of instances in the band in
directions that are close to &wk in angle. The algorithm uses weighted hinge loss
minimization to find &wk+1 with similar guarantees to those stated in Lemma 16.9.
This shows that when the original distribution has an isotropic log-concave marginal,
a variant of Algorithm 3 can deal with malicious adversaries.

Theorem 16.11 (Awasthi et al., 2017b) Consider a realizable distributionD with
an isotropic log-concave marginal and consider a setting where (1 − opt) fraction
of the data comes i.i.d. from D and the other opt fraction is chosen by a malicious
adversary. There is a constant c such that for all δ and ε ≥ c opt, there is an
algorithm that takes m ∈ poly(d, 1

ε
) samples and runs in time poly(d, 1

ε
) and with

probability 1 − δ returns a classifier h&w whose error is errD(h&w) ≤ ε.

Theorem 16.11 shows that localization can extend the guarantees of Theo-
rem 16.10 against stronger adversaries. This result improves over the previously

373

M.-F. BALCAN AND N. HAGHTALAB

known result of Klivans et al. (2009), which handles only a smaller amount
of dimension-dependent noise. Chapter 17 considers malicious noise in the
unsupervised setting.

In Section 16.5.2, we will see that localization is also useful in obtaining much
stronger learning guarantees in the presence of real-life (and weaker) adversaries that
are further constrained in the type of noise they can induce in the data.

16.5 Benefits of Assumptions on the Noise

Learning halfspaces can also be studied in a number of intermediate noise settings.
A natural assumption on the noise in classification is that the Bayes optimal classifier
belongs to the set of classifiers one considers. That is, any instance is more likely to
appear with its correct label rather than the incorrect one, in other words, fbayes(&x) =
sign

(
E[y|&x]

) = h&w∗(&x) for some &w∗ in the case of learning linear thresholds. This
type of noise and its variants are often used to model the noise that is found
in crowdsourced data sets, where the assumption on the noise translates to the
belief that any given instance would be correctly labeled by majority of labelers.
Random classification noise with parameter ν < 1

2 considers a setting where for all &x,
E[yh&w∗(&x)|&x] = (1−2ν). More generally, bounded noise with parameter ν < 1

2 requires
only that for all &x, E[yh&w∗(&x)|&x] ≥ (1 − 2ν). Equivalently, random classification noise
and bounded noise can be described as noise that is added to a realizable distribution
where every instance &x is assigned the wrong label with probability ν or ν(&x) ≤ ν,
respectively. Unless stated otherwise, we assume that ν is bounded away from 1

2 by a
constant.

In this section, we explore how assumptions on the niceness of the noise allows us
to obtain better computational and statistical learning guarantees.

16.5.1 Statistical Improvements for Nicer Noise Models

A key property of random classification and bounded noise is that it tightly upper
and lower bounds the relationship between the excess error of a classifier and its
disagreement with the optimal classifier. That is, for any classifier h,

(1 − 2ν)Pr
D

[h(&x) �= h&w∗(&x)] ≤ err
D
(h) − err

D
(h&w∗) ≤ Pr

D
[h(&x) �= h&w∗(&x)] . (16.6)

The right-hand side of this inequality holds by triangle inequality regardless of
the noise model. However, the left-hand side of this inequality crucially uses the
properties of bounded and random classification noise to show that if h and h&w∗
disagree on &x, then &x and its expected label E[y|&x] contribute to the error of both
classifiers. This results in h incurring only a small excess error over the error of h&w∗ .

Equation 16.6 is particularly useful because its right-hand side, which denotes the
disagreement between h and h&w∗ , is also the variance of h’s excess error, i.e.,

ED

[(
err
(&x,y)

(h) − err
(&x,y)

(h&w∗)

)2
]

= Pr
D

[h(&x) �= h&w∗(&x)] .

Therefore, an upper bound on the disagreement of h also bounds the variance of
its excess error and allows for stronger concentration bounds. For example, using

374

NOISE IN CLASSIFICATION

Bernstein’s inequality and the VC theory, with probability 1 − δ over the choice of a
set S of m i.i.d. samples from D, for all linear thresholds h we have

err
D
(h)− err

D
(h&w∗) ≤ err

S
(h)− err

S
(h&w∗)+

√
(errD(h)− errD(h&w∗)) (d + ln(1

δ
))

(1 − 2ν)m
+O

(
1
m

)
.

That is, there is m ∈ O
(

d+ln(1/δ)
(1−2ν)ε

)
such that with probability 1−δ the classifier h′ that

minimizes the empirical error on m samples has errD(h) ≤ opt + ε.
This shows that if D demonstrates bounded or random classification noise it can

be learned with fewer samples than needed in the agnostic case. This is due to the
fact that we directly compare the error of h and that of h&w∗ (and using stronger
concentration bounds) instead of going through uniform convergence. While we need
�(d/ε2) samples to learn a classifier of error opt + ε in the agnostic case, we only
need O(d/ε) samples to learn in the presence of random classification or bounded
noise. We note that this result is purely information theoretical; i.e., it does not imply
existence of a polynomial-time algorithm that can learn in the presence of this type
of noise. In the next section, we discuss the issue of computational efficiency in the
presence of random classification and bounded noise in detail.

16.5.2 Further Computational Improvements for Nicer Noise Models

In this section, we show that in the presence of random classification or bounded
noise there are computationally efficient algorithms that enjoy improved noise robust-
ness guarantees compared to their agnostic counterparts. In particular, one can
efficiently learn linear thresholds in the presence of random classification noise.

Theorem 16.12 (Blum et al., 1998) For any distribution D that has random
classification noise, there is an algorithm that runs in time poly(d, 1

ε
, ln(1/δ)) and

with probability 1 − δ learns a vector &w such that errD(h&w) ≤ opt + ε.

We refer the interested reader to the work of Blum et al. (1998) for more details
on the algorithm that achieves the guarantees in Theorem 16.12. Let us note that
when in addition to random classification noise, which is a highly symmetric noise, the
marginal distribution is also symmetric several simple algorithms can learn a classifier
of error opt + ε. For example, when the distribution is Gaussian and has random
classification noise the averaging algorithm of Section 16.4.1 recovers &w∗ ∝ ED[&xy].

While the random classification noise leads to a polynomial-time learning algo-
rithm, it does not present a convincing model of learning beyond the worst case.
In particular, the highly symmetric nature of random classification noise does not
lend itself to real-world settings where parts of data may be less noisy than others.
This is where bounded noise comes into play – it relaxes the symmetric nature of
random classification noise, yet assumes that no instance is too noisy. As opposed to
the random classification noise, however, no efficient algorithms are known to date
that can learn a classifier of error opt + ε in the presence of bounded noise when
the marginal distribution is unrestricted. Therefore, in the remainder of this section
we focus on a setting where, in addition to having bounded noise, D also has a nice
marginal distribution, specifically an isotropic log-concave marginal distribution.

375

M.-F. BALCAN AND N. HAGHTALAB

Let us first consider the iterative localization technique of Section 16.4.2. Given
that bounded noise is a stronger assumption than adversarial noise, Theorem 16.10
implies that for small enough opt ∈ O(ε), we can learn a linear threshold of error
opt + ε. Interestingly, the same algorithm achieves a much better guarantee for
bounded noise and the key to this is that errD&w,γ (h&w∗) ≤ ν for any &w and γ .

Lemma 16.13 (Margin-Based Localization for Bounded Noise) Assume that
oracle O and a corresponding error tolerance function g(·) exist that satisfy the
post-conditions of the oracle on the sequence of inputs (&wk,γk,αk,δ/r) used in
Algorithm 3. For any distribution D with an isotropic log-concave marginal and
ν-bounded noise such that ν ≤ g(c0) and any ε, δ, Algorithm 3 takes

m =
log(C1/ε)∑

k=1

m
(
γk,αk,

δ

log(C1/ε)

)
samples from D, and returns h&w such that with probability 1 − δ, errD(h&w) ≤
opt + ε.

The proof follows that of Lemma 16.8, with the exception that the noise in the
band never increases beyond ν ≤ g(c0). This is due to the fact that the probability
that an instance &x is noisy in any band of D is at most ν ≤ g(c0). Note that the
preconditions of the oracle are met for arbitrarily small bands when the noise is
bounded, as opposed to the adversarial setting where the preconditions are met
only when the width of the band is larger than �(opt). So, by using hinge loss
minimization in the band (Lemma 16.9) one can learn a linear threshold of error
opt + ε when the noise parameter ν < g(c0) is a small constant. This is much better
than our adversarial noise guarantee where the noise has to be at most opt < ε/c.

How small g(c0) is in Lemma 16.9 and how small is ν as a result? As Awasthi et al.
(2015) showed, ν has to be almost negligible, of the order of 10−6. So, we ask whether
an alternative algorithm can handle bounded noise for any ν ≤ 1

2 − �(1). Note that
the key property needed for applying hinge loss minimization in the band is that the
noise in D&wk,γk is at most g(c0), regardless of the value of ν. So a natural approach
for guaranteeing this property is to de-noise the data in the band and reduce the
noise from an arbitrary constant ν to a smaller constant g(c0). Polynomial regression
(Algorithm 2) can be used here, as it can learn a polynomial threshold fk+1 that has a
small constant error in polynomial time. Had fk+1 been a linear threshold, we would
have set h&wk+1 = fk+1 and continued with the next round of localized optimization.
However, for general polynomial thresholds we need to approximate fk+1 with a
linear threshold. Fortunately, fk+1 is already close to h&w∗ . Therefore, the hinge loss
minimization technique of Algorithm 4 can be used to learn a linear threshold h&wk+1
whose predictions are close to fk+1, and thus is close to h&w∗ . This is formalized in
Algorithm 5 and the following lemma.

Lemma 16.14 (Polynomial Regression with Hinge Loss Minimization) Con-
sider distribution D with an isotropic log-concave marginal and bounded noise
with parameter ν. For any ε, δ, &wk, γk, and αk stated in Algorithm 3, such

that θ(&wk, &w∗)≤αk, Algorithm 5 takes nk = poly
(

dpoly
(

1
1−2ν

)
, 1
ε
, ln

(1
δ

))
samples

376

NOISE IN CLASSIFICATION

Figure 16.2 Part (a) demonstrates that the averaging algorithm performs poorly on bounded noise,
even when the distribution is symmetric. Part (b) demonstrates step 1 of Algorithm 5 where polynomial
regression is used to learn fk+1. Part (c) demonstrates the use of hinge loss minimization in step 2 of
Algorithm 5 on the distribution labeled by fk+1, where horizontal and vertical stipes denote regions labeled
as positive and negative by fk+1.

Algorithm 5 Polynomial regression and hinge loss minimization in the band

Input: Unit vector &wk, γk, αk, δ, c0, and sampling access to D.

1. Take nk = poly
(

dpoly
(

1
1−2ν

)
, 1
ε
, ln

(1
δ

))
i.i.d. samples from D and let Sk include the

samples for which
{&x | |&wk · &x| ≤ γk

}
. Let fk+1 be the outcome of Algorithm 2 with

excess error of (1 − 2ν)g(c0).

2. Take �̃
(

d2

γkc2
0

ln
(1
ε

)
ln
(1
δ

))
i.i.d. samples from D and let S′

k include the samples

(&x,fk+1(&x)) for which
{&x | |&wk · &x| ≤ γk

}
. Let τk = c0C2

4C2
γk and for the convex set

K = {&v | ‖&v‖ ≤ 1 and θ(&v, &w) ≤ αk} let &vk+1 ← argmin&v∈KES′
k

[
�τk(&v,&x,y)

]
.

3. Return &wk+1 = &vk+1
‖&vk+1‖ .

from D and returns &wk+1 such that θ(&wk+1, &wk) ≤ αk and with probability 1 − δ,
PrD&wk,γk

[h&wk+1(&x) �= h&w∗(&x)] ≤ c0.

Proof Let g(c0) ∈ �(c4
0) be the error tolerance function of hinge loss mini-

mization according to Lemma 16.9. Note that for log-concave distribution D,
the distribution in any band is also log-concave. Therefore, step 1 of Algorithm 5
uses polynomial regression to learn a polynomial threshold fk+1 such that
errD&wk,γk

(fk+1) ≤ opt + (1 − 2ν)g(c0). Now let distribution P be the same
as D, except that all instances are labeled according to fk+1. Since the noise
is bounded, by Equation 16.6

err
P&wk,γk

(h&w∗) = Pr
D&wk,γk

[fk+1(&x) �= h&w∗(&x)]

≤ 1
1 − 2ν

(
err

D&wk,γk

(fk+1) − err
D&wk,γk

(h&w∗)

)
≤ g(c0).

377

M.-F. BALCAN AND N. HAGHTALAB

Then, distribution P meets the conditions of Lemma 16.9. Therefore, Algo-
rithm 5 returns a h&wk+1 such that

Pr
D&wk,γk

[
h&wk+1(&x) �= h&w∗(&x)] = Pr

P&wk,γk

[
h&wk+1(&x) �= h&w∗(&x)] ≤ c0.

This completes the proof of the lemma. �

Using margin-based localization iteratively while applying polynomial regression
paired with hinge loss minimization in the band proves the following theorem.

Theorem 16.15 (Awasthi et al., 2016) Let D be a distribution with an isotropic
log-concave marginal and bounded noise with parameter ν. For any ε and δ there

is m = poly
(

dpoly
(

1
1−2ν

)
, 1
ε
, ln

(1
δ

))
such that Algorithm 3 that uses Algorithm 5

for optimization in the band takes m samples from D, runs in time poly(m), and
with probability 1 − δ returns a classifier h&w whose error is errD(h&w) ≤ opt + ε.

Theorem 16.15 shows that as long as ν ≤ 1
2 − �(1), there is a polynomial-time

algorithm that learns a linear threshold of error opt + ε over isotropic log-concave
distributions. However, the sample complexity and runtime of this algorithm is
inversely exponential in 1 − 2ν. Note that this sample complexity is exponentially
larger than the information theoretic bounds presented in Section 16.5.1. It remains
to be seen if there are computationally efficient algorithms that match the information
theoretic bound for general log-concave distributions.

16.6 Final Remarks and Current Research Directions

Connecting this chapter to the broader vision of machine learning, let us note that
machine learning’s effectiveness in today’s world was directly influenced by early
works on foundational aspects that moved past the worst case and leveraged proper-
ties of real-life learning problems, e.g., finite VC dimension and margins (Cristianini
and Shawe-Taylor, 2000). We next highlight some of the current research directions
in connection to the beyond the worst-case analysis of algorithms.

Adversarial Noise. The polynomial regression of Section 16.4.1 is due to Kalai
et al. (2008). The a results of Theorem 16.7 are a variant of the original results of
Kalai et al. (2008) that applied to the uniform distribution. Klivans et al. (2009)
showed that a variant of the averaging algorithm with a hard outlier removal
technique achieves error of opt + ε for opt ∈ O(ε3/ ln(1/ε)) when the distribution is
isotropic log-concave. The margin-based localization technique of Lemma 16.8 and
its variants first appeared in Balcan et al. (2007) in the context of active learning. The
combination of margin-based localization technique and hinge loss minimization of
Section 16.4.2 is due to Awasthi et al. (2017b), which also works in the active learning
setting. Daniely (2015) used this technique with polynomial regression to obtain a
polynomial-time approximation scheme (PTAS) for learning linear thresholds over
the uniform distribution. Diakonikolas et al. (2018) further extended the margin-
based localization results to nonhomogeneous linear thresholds. Going forward,
generalizing these techniques to more expressive hypothesis classes is an impor-
tant direction for future work. The key challenge here is to define an appropriate

378

NOISE IN CLASSIFICATION

localization area. For linear separators, we derived margin-based localization ana-
lytically. In more general settings, however, such as deep neural networks, a closed-
form derivation may not be possible. It would be interesting to see if one can instead
algorithmically compute a good localization area using the properties of the problem
at hand, e.g., by using unlabeled data.

Bounded Noise. The results of Section 16.5.2 for log-concave distributions with
bounded noise are due to Awasthi et al. (2015, 2016). Yan and Zhang (2017) used a
variant of this algorithm with improved sample complexity and runtime dependence
on 1/(1−2ν) for the special case of uniform distribution over the unit ball. Recently,
Diakonikolas et al. (2019) presented a polynomial-time algorithm for distribution-
independent error bound of ν + ε when noise is ν-bounded and also showed that
their techniques and variants thereof fall short of learning a classier of error opt+ ε.
This is a significantly weaker guarantee because in typical applications opt is much
smaller than ν, which indicates the maximum amount of noise on a given point.
To date, the question of whether there are computationally efficient algorithms or
hardness results for getting distribution-independent error of opt + ε in the presence
of bounded noise remains an important open problem in the theory of machine
learning. On the other hand, one of the main motivations of bounded noise and
its variants is crowdsourcing, where every instance is correctly labeled by at least
1 − ν fraction of labelers. If one designs the data collection protocol as well as the
learning algorithm, Awasthi et al. (2017a) showed that any set of classifiers F that
can be efficiently learned in the realizable setting using mreal

ε,δ samples can be learned
efficiently by making O(mreal

ε,δ) queries to the crowd. This effectively shows that the
computational and statistical aspects of nonpersistent bounded noise are the same as
those of the realizable setting.

In addition to the real-life motivation for this noise model, bounded noise is also
related to other notions of beyond the worst-case analysis of algorithms. For example,
Equation 16.6, which relates the excess error of a classifier to how its predictions differ
from that of the optimal classifier, is a supervised analogue of the “approximation
stability” assumption used in clustering, which states that any clustering that is close
in objective value to the optimal classifier should also be close to it in classification.
See Chapter 6 for more details on approximation stability.

Robustness to Other Adversarial Attacks. As mentioned, the localization technique
introduced in this chapter can also handle malicious noise (Awasthi et al., 2017b).
A related model considers poisoning attacks where an adversary inserts maliciously
crafted fake data points into a training set in order to cause specific failures to
a learning algorithm. It would be interesting to provide additional formal guar-
antees for such adversaries. Another type of attack, called adversarial examples,
considers a type of corruption that affects the distribution only at test time, thereby
requiring one to learn a classifier f ∈F on distribution D that still achieves a
good performance when D is corrupted by some noise (Goodfellow et al., 2015).
By and large, this learning model draws motivation from audio-visual attacks on
learning systems, where the goal is to secure learning algorithms against an adversary
that is intent on causing harm through misclassification (Kurakin et al., 2017).
A beyond the worst-case perspective on test-time robustness could also improve the
robustness of learning algorithms to several nonadversarial corruptions, such as dis-
tribution shift and misspecification, and therefore is a promising direction for future
research.

379

M.-F. BALCAN AND N. HAGHTALAB

References

Anthony, Martin, and Bartlett, Peter L. 1999. Neural Network Learning: Theoretical Founda-
tions. Cambridge University Press.

Awasthi, Pranjal, Balcan, Maria-Florina, Haghtalab, Nika, and Urner, Ruth. 2015. Efficient
learning of linear separators under bounded noise. Proceedings of the 28th Conference on
Computational Learning Theory, pp. 167–190.

Awasthi, Pranjal, Balcan, Maria-Florina, Haghtalab, Nika, and Zhang, Hongyang. 2016.
Learning and 1-bit compressed sensing under asymmetric noise. In Proceedings of the
29th Conference on Computational Learning Theory, pp. 152–192.

Awasthi, Pranjal, Blum, Avrim, Haghtalab, Nika, and Mansour, Yishay. 2017a. Efficient
PAC learning from the crowd. In Proceedings of the 30th Conference on Computational
Learning Theory, pp. 127–150.

Awasthi, Pranjal, Balcan, Maria Florina, and Long, Philip M. 2017b. The power of
localization for efficiently learning linear separators with noise. Journal of the ACM,
63(6), 50.

Balcan, Maria-Florina, and Long, Phil. 2013. Active and passive learning of linear separators
under log-concave distributions. In Proceedings of the 26th Conference on Computational
Learning Theory, pp. 288–316.

Balcan, Maria-Florina, Broder, Andrei, and Zhang, Tong. 2007. Margin based active learning.
In Proceedings of the 20th Conference on Computational Learning Theory, pp. 35–50.

Blum, Avrim, Frieze, A., Kannan, Ravi, and Vempala, Santosh. 1998. A polynomial-time
algorithm for learning noisy linear threshold functions. Algorithmica, 22(1–2), 35–52.

Cristianini, Nello, and Shawe-Taylor, John. 2000. An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge University Press.

Daniely, Amit. 2015. A PTAS for agnostically learning halfspaces. In Proceedings of the 28th
Conference on Computational Learning Theory, pp. 484–502.

Daniely, Amit. 2016. Complexity theoretic limitations on learning halfspaces. In Proceedings
of the 48th Annual ACM Symposium on Theory of Computing, pp. 105–117.

Diakonikolas, Ilias, Kane, Daniel M, and Stewart, Alistair. 2018. Learning geometric con-
cepts with nasty noise. Proceedings of the 50th Annual ACM Symposium on Theory of
Computing, pp. 1061–1073.

Diakonikolas, Ilias, Gouleakis, Themis, and Tzamos, Christos. 2019. Distribution-
independent PAC learning of halfspaces with Massart noise. In Proceedings
of 32nd Annual Conference on Neural Information Processing System, pp. 4751–
4762.

Goodfellow, Ian J., Shlens, Jonathon, and Szegedy, Christian. 2015. Explaining and harnessing
adversarial examples. In Proceedings of the 3rd International Conference on Learning
Representations.

Guruswami, Venkatesan, and Raghavendra, Prasad. 2009. Hardness of learning halfspaces
with noise. SIAM Journal on Computing, 39(2), 742–765.

Kalai, Adam Tauman, Klivans, Adam R, Mansour, Yishay, and Servedio, Rocco A. 2008.
Agnostically learning halfspaces. SIAM Journal on Computing, 37(6), 1777–1805.

Kearns, Michael J., and Li, M. 1988. Learning in the presence of malicious errors. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp. 267–280.

Klivans, Adam R., Long, Philip M., and Servedio, Rocco A. 2009. Learning halfspaces with
malicious noise. Journal of Machine Learning Research, 10, 2715–2740.

Kurakin, Alexey, Goodfellow, Ian J., and Bengio, Samy. 2017. Adversarial examples in
the physical world. In Fifth International Conference on Learning Representations
(Workshop).

Lovász, László, and Vempala, Santosh. 2007. The geometry of logconcave functions and
sampling algorithms. Random Structures and Algorithms, 30(3), 307–358.

380

NOISE IN CLASSIFICATION

Servedio, Rocco Anthony. 2001. Efficient algorithms in computational learning theory. PhD
thesis, Harvard University.

Yan, Songbai, and Zhang, Chicheng. 2017. Revisiting Perceptron: Efficient and label-optimal
learning of halfspaces. In Proceedings of the 31st Annual Conference on Neural Informa-
tion Processing Systems, pp. 1056–1066.

Exercises

Exercise 16.1 Prove the properties of log-concave distributions, as described in
Theorem 16.3, for D that is a Gaussian distributions with unit variance.

Exercise 16.2 Prove that distribution D has ν-bounded noise if and only if
E[yh&w∗(&x)|&x] ≥ (1 − 2ν) for all &x in the instance space (except for a measure zero
subset). Similarly, prove that D has random classification noise with parameter ν
if an only if E[yh&w∗(&x)|&x] = (1 − 2ν) for all &x.

Exercise 16.3 For a distribution with ν-bounded noise prove Equation 16.6.

381

CHAPTER SEVENTEEN

Robust High-Dimensional Statistics
Ilias Diakonikolas and Daniel M. Kane

Abstract: Learning in the presence of outliers is a fundamental
problem in statistics. Until recently, all known efficient unsupervised
learning algorithms were very sensitive to outliers in high dimen-
sions. In particular, even for the task of robust mean estimation
under natural distributional assumptions, no efficient algorithm was
known. A recent line of work gave the first efficient robust estimators
for a number of fundamental statistical tasks, including mean and
covariance estimation. This chapter introduces the core ideas and
techniques in the emerging area of algorithmic high-dimensional
robust statistics with a focus on robust mean estimation.

17.1 Introduction

Consider the following basic statistical task: Given n independent samples from an
unknown mean spherical Gaussian distribution N (μ,I) on Rd , estimate its mean
vector μ within small �2-norm. It is not hard to see that the empirical mean has
�2-error at most O(

√
d/n) from μ with high probability. Moreover, this error upper

bound is best possible among all n-sample estimators.
The Achilles heel of the empirical estimator is that it crucially relies on the assump-

tion that the observations were generated by a spherical Gaussian. The existence
of even a single outlier can arbitrarily compromise this estimator’s performance.
However, the Gaussian assumption is only ever approximately valid, as real datasets
are typically exposed to some source of contamination. Hence, any estimator that is
to be used in practice must be robust in the presence of outliers.

Learning in the presence of outliers is an important goal in statistics and has been
studied in the robust statistics community since the 1960s (Huber, 1964). Classical
work in statistics pinned down the sample complexity of high-dimensional robust
estimation in several settings of interest. In contrast, until very recently, even the most
basic computational questions in this field were poorly understood. For example, the
Tukey median (Tukey, 1975) is a sample-efficient robust mean estimator for spherical
Gaussian distributions. However, it is NP-hard to compute in general (Johnson and
Preparata, 1978) and the heuristics proposed to approximate it degrade in the quality
of their approximation as the dimension scales.

Until recently, all known computationally efficient high-dimensional estimators
could only tolerate a negligible fraction of outliers, even for the basic statistical task

382

ROBUST HIGH-DIMENSIONAL STATISTICS

of mean estimation. Recent work by Diakonikolas, Kamath, Kane, Li, Moitra, and
Stewart (Diakonikolas et al., 2016), and by Lai, Rao, and Vempala (Lai et al., 2016)
gave the first efficient robust estimators for various high-dimensional unsupervised
tasks, including mean and covariance estimation. Specifically, Diakonikolas et al.
(2016) obtained the first robust estimators with dimension-independent error, i.e.,
with error scaling only with the fraction of corrupted samples and not with the
dimensionality of the data. Since then, there has been significant research activity
on designing computationally efficient robust estimators in a variety of settings.

Contamination Model. Throughout this chapter, we focus on the following model of
robust estimation that generalizes several other existing models:

Definition 17.1 Given 0 < ε < 1/2 and a distribution family D on Rd , the
adversary operates as follows: The algorithm specifies a number of samples n,
and n samples are drawn from some unknown D ∈ D. The adversary is allowed
to inspect the samples, remove up to εn of them and replace them with arbitrary
points. This modified set of n points is then given to the algorithm. We say that
a set of samples is ε-corrupted if it is generated by this process.

The contamination model of Definition 17.1 is qualitatively similar to the semi-
random models studied in Chapters 9 and 10 of this book: First, nature draws a
set S of i.i.d. samples from a statistical model of interest, and then an adversary
is allowed to change the set S in a bounded way to obtain an ε-corrupted set T .
The parameter ε is the proportion of contamination and quantifies the power of the
adversary. Intuitively, among our samples, a (1 − ε) fraction are generated from a
distribution of interest and are called inliers, and the rest are called outliers.

One can consider less powerful adversaries, giving rise to weaker contamination
models. An adversary may be (1) adaptive or oblivious to the inliers, and (2) allowed
only to add corrupted points, or allowed only to remove existing points, or allowed to
do both. For example, in Huber’s contamination model (Huber, 1964), the adversary
is oblivious to the inliers and is allowed only to add outliers.

In the context of robust mean estimation, given an ε-corrupted set of samples
from a well-behaved distribution (e.g., N (μ,I)), we want to output a vector μ̂ such
that the �2-error is minimized. The goal here is to achieve dimension-independent error,
i.e., error that scales only with the fraction of outliers ε.

Sample Efficient Robust Estimation. The problem of robust mean estimation seems
so innocuous that one could naturally wonder why simple approaches do not work.
In the one-dimensional case, it is well-known that the median is a robust estimator
of the mean in the Gaussian setting. It is easy to show (see Exercise 17.1) that
several natural high-dimensional generalizations of the median (e.g., coordinate-wise
median, geometric median, etc.) lead to �2-error of �(ε

√
d) in d dimensions.

It should also be noted that, in contrast to the uncorrupted i.i.d. setting, in the
contaminated setting it is not possible to obtain consistent estimators – that is,
estimators with error converging to zero in probability as the sample size increases
indefinitely. Typically, there is an information-theoretic limit on the minimum error
that depends on ε and structural properties of the underlying distribution family. In
particular, for the one-dimensional Gaussian case, we have:

383

I. DIAKONIKOLAS AND D. M. KANE

Fact 17.2 Any robust estimator for the mean of N (μ,1), must have �2-error
�(ε), even in Huber’s contamination model.

To prove this fact, we proceed as follows: Given two distributions N (μ1,1) and
N (μ2,1) with |μ1 − μ2| = �(ε), the adversary constructs two noise distributions
N1,N2 such that (1 − ε)N (μ1,1)+ εN1 = (1 − ε)N (μ2,1)+ εN2 (see Exercise 17.2).

Ignoring computational considerations, it is not difficult to obtain a sample-
efficient robust estimator matching this error guarantee in any dimension:

Proposition 17.3 There exists an (inefficient) algorithm that, on input an
ε-corrupted set of samples from N (μ,I) of size �((d + log(1/τ))/ε2), outputs
μ̂ ∈ Rd such that with probability at least 1 − τ , it holds that ‖μ̂ − μ‖2 = O(ε).

The algorithm underlying Proposition 17.3 relies on the following simple idea,
which is the underlying idea in Tukey’s median (Tukey, 1975): It is possible to
reduce the high-dimensional robust mean estimation problem to a collection of
(exponentially many) one-dimensional robust mean estimation problems. In more
detail, the algorithm proceeds by using a one-dimensional robust mean estimator to
estimate v ·μ, for an appropriate net of 2O(d) unit vectors v ∈ Rd , and then combines
these estimates to obtain an accurate estimate of μ (see Exercise 17.2). Tukey’s median
gives the same guarantee for a spherical Gaussian and can be shown to be robust
for more general symmetric distributions. On the other hand, the aforementioned
estimator is applicable to nonsymmetric distributions as well, as long as there is an
accurate robust mean estimator for each univariate projection.

Structure of this Chapter. In Section 17.2 we present efficient algorithms for robust
mean estimation. Section 17.2 is the main technical section of this chapter and
showcases a number of core ideas and techniques that can be applied to several
high-dimensional robust estimation tasks. Section 17.3 provides a high-level overview
of recent algorithmic progress for more general robust estimation tasks. Finally, in
Section 17.4 we conclude with a few remarks on the relevant literature.

17.2 Robust Mean Estimation

In this section, we illustrate the main insights underlying recent algorithms for high-
dimensional robust estimation by focusing on the problem of robust mean estimation.
The objective of this section is to provide the intuition and background required to
develop robust learning algorithms in an accessible way. As such, we will not attempt
to optimize the sample or computational complexities of the algorithms presented,
other than to show that they are polynomial in the relevant parameters.

In the problem of robust mean estimation, we are given an ε-corrupted set of
samples from a distribution X on Rd and our goal is to approximate the mean of X ,
within small error in �2-norm (Euclidean distance). In order for such a goal to be
information-theoretically possible, it is required that X belongs to a suitably well-
behaved family of distributions. A typical assumption is that X belongs to a family
whose moments are guaranteed to satisfy certain conditions, or equivalently, a family
with appropriate concentration properties. In our initial discussion, we will use the
running example of a spherical Gaussian, although the results presented here hold in

384

ROBUST HIGH-DIMENSIONAL STATISTICS

greater generality. That is, the reader is encouraged to imagine that X is of the form
N (μ,I), for some unknown μ ∈ Rd .

Structure of this Section. In Section 17.2.1 we discuss the basic intuition underlying
the presented approach. In Section 17.2.2 we will describe a stability condition that is
necessary for the algorithms in this chapter to succeed. In the subsequent subsections,
we present two related algorithmic techniques taking advantage of the stability
condition in different ways. Specifically, in Section 17.2.3 we describe an algorithm
that relies on convex programming. In Section 17.2.4 we describe an iterative outlier
removal technique, which has been the method of choice in practice.

17.2.1 Key Difficulties and High-Level Intuition

Arguably the most natural idea to robustly estimate the mean of a distribution would
be to identify the outliers and output the empirical mean of the remaining points.
The key conceptual difficulty is the fact that, in high dimensions, the outliers cannot
be identified at an individual level even when they move the mean significantly. In
many cases, we can easily identify the “extreme outliers” – via a pruning procedure
exploiting the concentration properties of the inliers. Alas, such naive approaches
typically do not suffice to obtain nontrivial error guarantees.

The simplest example illustrating this difficulty is that of a high-dimensional
spherical Gaussian. Typical samples will be at �2-distance approximately�(

√
d) from

the true mean. That is, we can certainly identify as outliers all points of our dataset at
distance more than �(

√
d) from the coordinate-wise median of the dataset. All other

points cannot be removed via such a procedure, as this could result in removing many
inliers as well. However, by placing an ε-fraction of outliers at distance

√
d in the same

direction from the unknown mean, an adversary can corrupt the sample mean by as
much as �(ε

√
d).

This leaves the algorithm designer with a dilemma of sorts. On the one hand,
potential outliers at distance �(

√
d) from the unknown mean could lead to large

�2-error, scaling polynomially with d. On the other hand, if the adversary places
outliers at distance approximately �(

√
d) from the true mean in random directions,

it may be information-theoretically impossible to distinguish them from the inliers.
The way out is the realization that it is in fact not necessary to detect and remove all
outliers. It is required only that the algorithm can detect the “consequential outliers,”
i.e., the ones that can significantly impact our estimates of the mean.

Let us assume without loss of generality that there no extreme outliers (as these
can be removed via preprocessing). Then the only way that the empirical mean can be
far from the true mean is if there is a “conspiracy” of many outliers, all producing errors
in approximately the same direction. Intuitively, if our corrupted points are at distance
O(

√
d) from the true mean in random directions, their contributions will on average

cancel out, leading to a small error in the sample mean. In conclusion, it suffices to
be able to detect these kinds of conspiracies of outliers.

The next key insight is simple and powerful. Let T be an ε-corrupted set of
points drawn from N (μ,I). If such a conspiracy of outliers substantially moves the
empirical mean μ̂ of T , it must move μ̂ in some direction. That is, there is a unit
vector v such that these outliers cause v · (μ̂ − μ) to be large. For this to happen,

385

I. DIAKONIKOLAS AND D. M. KANE

it must be the case that these outliers are on average far from μ in the v-direction.
In particular, if an ε-fraction of corrupted points in T move the sample average of
v · (X − μ), where X is the uniform distribution on T , by more than δ (δ should be
thought of as small, but substantially larger than ε), then on average these corrupted
points x must have v · (x − μ) at least δ/ε. This in turn means that these corrupted
points will have a contribution of at least ε · (δ/ε)2 = δ2/ε to the variance of v · X .
Fortunately, this condition can actually be algorithmically detected! In particular, by
computing the top eigenvector of the sample covariance matrix, we can efficiently
determine whether or not there is any direction v for which the sample variance of
v · X is abnormally large.

The aforementioned discussion leads us to the overall structure of the algorithms
we will describe in this chapter. Starting with an ε-corrupted set of points T (perhaps
weighted in some way), we compute the sample covariance matrix and find the
eigenvector v∗ with largest eigenvalue λ∗. If λ∗ is not much larger than what it should
be (in the absence of outliers), by the above discussion, the empirical mean is close
to the true mean, and we can return that as an answer. Otherwise, we have obtained
a particular direction v∗ for which we know that the outliers play an unusual role,
i.e., behave significantly differently than the inliers. The distribution of the points
projected in the v∗-direction can then be used to perform some sort of outlier removal.
The outlier removal procedure can be quite subtle and crucially depends on our
distributional assumptions about the clean data.

17.2.2 Good Sets and Stability

In this section, we give a deterministic condition on the uncorrupted data that
is necessary for the algorithms in this chapter to succeed (Definition 17.4). We
also provide an efficiently checkable condition under which the empirical mean is
certifiably close to the true mean (Lemma 17.6).

Let S be a set of n i.i.d. samples drawn from X . We will typically call these sample
points good. The adversary can select up to an ε-fraction of points in S and replace
them with arbitrary points to obtain an ε-corrupted set T , which is given as input to
the algorithm. To establish correctness of an algorithm, we need to show that with
high probability over the choice of the set S, for any choices the adversary makes, the
algorithm will output an accurate estimate of the target mean.

To carry out such an analysis, it is convenient to explicitly state a collection of
sufficient deterministic conditions on the set S. Specifically, we will define a notion
of a “good” or “stable” set, quantified by the proportion of contamination ε and
the distribution X . The precise stability conditions vary considerably based on the
underlying estimation task and the assumptions on the distribution family of the
uncorrupted data. Roughly speaking, we require that the uniform distribution over
a stable set S behaves similarly to the distribution X with respect to higher moments
and, potentially, tail bounds. Importantly, we require that these conditions hold even
after removing an arbitrary ε-fraction of points in S.

The notion of a stable set must have two critical properties: (1) A set of N i.i.d.
samples from X is stable with high probability, when N is at least a sufficiently large
polynomial in the relevant parameters; and (2) if S is a stable set and T is obtained
from S by changing at most an ε-fraction of the points in S, then the algorithm when
run on the set T will succeed.

386

ROBUST HIGH-DIMENSIONAL STATISTICS

The robust mean estimation algorithms that will be presented in this chapter
crucially rely on considering sample means and covariances. The following
stability condition is an important ingredient in the success criteria of these
algorithms:

Definition 17.4 (Stability Condition) Fix 0 < ε < 1/2 and δ ≥ ε. A finite set
S ⊂ Rd is (ε,δ)-stable (with respect to a distribution X) if for every unit vector
v ∈ Rd and every S′ ⊆ S with |S′| ≥ (1 − ε)|S|, the following conditions hold:

1.
∣∣∣ 1
|S′|
∑

x∈S′ v · (x − μX)

∣∣∣ ≤ δ, and

2.
∣∣∣ 1
|S′|
∑

x∈S′(v · (x − μX))2 − 1
∣∣∣ ≤ δ2/ε.

The aforementioned stability condition or a variant thereof is used in almost
every known robust mean estimation algorithm. Definition 17.4 requires that after
restricting to a (1− ε)-density subset S′, the sample mean of S′ is within δ of μX and
the sample variance of S′ is 1±δ2/ε in every direction. The fact that these conditions
must hold for every large subset S′ of S might make it unclear if they can hold with
high probability. However, it is not difficult to show the following:

Proposition 17.5 A set of i.i.d. samples from a spherical Gaussian of size
�(d/ε2) is (ε,O(ε

√
log(1/ε))-stable with high probability.

We sketch a proof of Proposition 17.5. The only property required for the proof
is that the distribution of the uncorrupted data has identity covariance and sub-
gaussian tails in each direction; i.e., the tail probability of each univariate projection
is bounded from above by the Gaussian tail.

Fix a direction v. To show the first condition, we note that we can maximize
1

|S′|
∑

x∈S′ v · (x −μX) by removing from S the ε-fraction of points x for which v · x is
smallest. Since the empirical mean of S is close toμX with high probability, we need to
understand how much this quantity is altered by removing the ε-tail in the v-direction.
Given our assumptions on the distribution of the uncorrupted data, removing the
ε-tail only changes the mean by O(ε

√
log(1/ε)). Therefore, if the empirical distribu-

tion of v · x, x ∈ S, behaves like a spherical Gaussian in this way, the first condition
is satisfied.

The second condition follows via a similar analysis. We can minimize the relevant
quantity by removing the ε-fraction of points x ∈ S with |v · (x − μX)| as large as
possible. If v·x is distributed like a unit-variance Gaussian, the total mass of its square
over the ε-tails is O(ε log(1/ε)). We have thus established that both conditions hold
with high probability for any fixed direction. Showing that the conditions hold with
high probability for all directions simultaneously can be shown by an appropriate
covering argument.

More generally, one can show quantitatively different stability conditions under
various distributional assumptions. In particular, if the distribution of the uncor-
rupted data is only assumed to have covariance matrix bounded by the identity (in
the Loewner order), then it can be shown that an �̃(d/ε) sized sample is (ε,O(

√
ε))

stable with high probability. (See Exercise 17.3 for additional examples.)

387

I. DIAKONIKOLAS AND D. M. KANE

The aforementioned notion of stability is powerful and suffices for robust mean
estimation. For some of the algorithms that will be presented in this chapter, a good
set will be identified with a stable set, while others require the good set to satisfy
additional conditions beyond stability.

The main reason why stability suffices is quantified in the following lemma:

Lemma 17.6 (Certificate for Empirical Mean) Let S be an (ε,δ)-stable set with
respect to a distribution X, for some δ ≥ ε > 0. Let T be an ε-corrupted version
of S. Let μT and �T be the empirical mean and covariance of T. If the largest
eigenvalue of �T is at most 1 + λ, then ‖μT − μX‖2 ≤ O(δ + √

ελ).

Roughly speaking, Lemma 17.6 states that if we consider an ε-corrupted ver-
sion T of any stable set S such that the empirical covariance of T has no large
eigenvalues, then the empirical mean of T closely approximates the true mean. This
lemma, or a variant thereof, is a key result in all known robust mean estimation
algorithms.

Proof of Lemma 17.6 Let S′ = S ∩ T and T ′ = T \ S′. We can assume w.l.o.g.
that |S′| = (1 − ε)|S| and |T ′| = ε|S|. Let μS′,μT ′,�S′,�T ′ represent the
empirical means and covariance matrices of S′ and T ′. A simple calculation
gives that

�T = (1 − ε)�S′ + ε�T ′ + ε(1 − ε)(μS′ − μT ′)(μS′ − μT ′)T .

Let v be the unit vector in the direction of μS′ − μT ′ . We have that

1 + λ ≥ vT�T v = (1 − ε)vT�S′v

+ εvT�T ′v + ε(1 − ε)vT (μS′ − μT ′)(μS′ − μT ′)T v

≥ (1 − ε)(1 − δ2/ε) + ε(1 − ε)‖μS′ − μT ′‖2
2

≥ 1 − O(δ2/ε) + (ε/2)‖μS′ − μT ′‖2
2,

where we used the variational characterization of eigenvalues, the fact that �T ′
is positive semidefinite, and the second stability condition for S′. By rearranging,
we obtain that ‖μS′ − μT ′‖2 = O(δ/ε + √

λ/ε). Therefore, we can write

‖μT − μX‖2 = ‖(1 − ε)μS′ + εμT ′ − μX‖2 = ‖μS′ − μX + ε(μT ′ − μS′)‖2

≤ ‖μS′ − μX‖2 + ε‖μS′ − μT ′‖2 = O(δ) + ε · O(δ/ε +
√
λ/ε)

= O(δ +
√
λε),

where we used the first stability condition for S′ and our bound on
‖μS′ − μT ′‖2. �

Lemma 17.6 says that if our input set of points T is an ε-corrupted version of
a stable set S and has bounded covariance, the sample mean of T must be close to
the true mean. Unfortunately, we are not always guaranteed that the set T we are
given has this property. In order to deal with this, we will want to find a subset of
T with bounded covariance and large intersection with S. However, for some of the

388

ROBUST HIGH-DIMENSIONAL STATISTICS

algorithms presented, it will be convenient to find a probability distribution over T
rather than a subset. For this, we will need a slight generalization of Lemma 17.6.

Lemma 17.7 Let S be an (ε,δ)-stable set with respect to a distribution X, for
some δ ≥ ε > 0 with |S| > 1/ε. Let W be a probability distribution on S that
differs from US, the uniform distribution over S, by at most ε in total variation
distance. Let μW and �W be the mean and covariance of W. If the largest
eigenvalue of �W is at most 1 + λ, then ‖μW − μX‖2 ≤ O(δ + √

ελ).

Note that this subsumes Lemma 17.6 by letting W be the uniform distribution
over T . The proof is essentially identical to that of Lemma 17.6, except that we
need to show that the mean and variance of the conditional distribution W | S are
approximately correct, whereas in Lemma 17.6 the bounds on the mean and variance
of S ∩ T followed directly from stability.

Lemma 17.7 clarifies the goal of our outlier removal procedure. In particular, given
our initial ε-corrupted set T , we will attempt to find a distribution W supported on
T so that �W has no large eigenvalues. The weight W(x), x ∈ T , quantifies our belief
whether point x is an inlier or an outlier. We will also need to ensure that any such
W we choose is close to the uniform distribution over S.

More concretely, we now describe a framework that captures our robust mean
estimation algorithms. We start with the following definition:

Definition 17.8 Let S be a (3ε,δ)-stable set with respect to X and let T be an
ε-corrupted version of S. Let C be the set of all probability distributions W
supported on T , where W(x) ≤ 1

|T |(1−ε)
, for all x ∈ T .

We note that any distribution in C differs from US, the uniform distribution on S,
by at most 3ε. Indeed, for ε ≤ 1/3, we have that

dTV(US,W) =
∑
x∈T

max{W(x) − US(x),0}

=
∑

x∈S∩T

max{W(x) − 1/|T |,0} +
∑

x∈T\S

W(x)

≤
∑

x∈S∩T

ε

|T |(1 − ε)
+
∑

x∈T\S

1
|T |(1 − ε)

≤ |T |
(

ε

|T |(1 − ε)

)
+ ε|T |

(
1

|T |(1 − ε)

)
= 2ε

1 − ε
≤ 3ε.

Therefore, if we find W ∈ C with�W having no large eigenvalues, Lemma 17.7 implies
that μW is a good approximation to μX . Fortunately, we know that such a W exists!
In particular, if we take W to be W∗, the uniform distribution over S ∩ T , the largest
eigenvalue is at most 1 + δ2/ε, and thus we achieve �2-error O(δ).

At this point, we have an inefficient algorithm for approximating μX : Find any
W ∈ C with bounded covariance. The remaining question is how we can efficiently

389

I. DIAKONIKOLAS AND D. M. KANE

find one. There are two basic algorithmic techniques to achieve this, which we present
in the subsections that follow.

The first algorithmic technique we will describe is based on convex programming.
We will call this the unknown convex programming method. Note that C is a convex set
and that finding a point in C that has bounded covariance is almost a convex program.
It is not quite a convex program, because the variance of v · W , for fixed v, is not a
convex function of W . However, one can show that given a W with variance in some
direction significantly larger than 1 + δ2/ε, we can efficiently construct a hyperplane
separating W from W∗ (recall that W∗ is the uniform distribution over S ∩ T)
(Section 17.2.3). This method has the advantage of naturally working under only
the stability assumption. On the other hand, as it relies on the ellipsoid algorithm, it
is quite slow (although polynomial time).

Our second technique, which we will call filtering, is an iterative outlier removal
method that is typically faster, as it relies on spectral techniques. The main idea of
the method is the following: If �W does not have large eigenvalues, then the empirical
mean is close to the true mean. Otherwise, there is some unit vector v such that
Var(v · W) is substantially larger than it should be. This can be the case only if W
assigns substantial mass to elements of T \ S that have values of v · x very far from
the true mean of v · μ. This observation allows us to perform some kind of outlier
removal, in particular by removing (or down-weighting) the points x that have v · x
inappropriately large. An important conceptual property is that one cannot afford
to remove only outliers, but it is possible to ensure that more outliers are removed
than inliers. Given a W where �W has a large eigenvalue, one filtering step gives a
new distribution W ′ ∈ C with dTV(W ′,W∗) < dTV(W,W∗). Repeating the process
eventually gives a W with no large eigenvalues. The filtering method and its variations
are discussed in Section 17.2.4.

17.2.3 The Unknown Convex Programming Method

By Lemma 17.7, it suffices to find a distribution W ∈ C with �W having no large
eigenvalues. We note that this condition almost defines a convex program. This is
because C is a convex set of probability distributions and the bounded covariance
condition says that Var(v · W) ≤ 1 + λ for all unit vectors v. Unfortunately, the
variance Var(v · W) = E[|v · (W −μW)|2] is not quite linear in W . (If we instead had
E[|v · (W − ν)|2], where ν is some fixed vector, this would be linear in W .) However,
we will show that finding a unit vector v for which Var(v ·W) is too large, can be used
to obtain a separation oracle, i.e., a linear function on W that is violated.

Suppose that we identify a unit vector v such that Var(v · W) = 1 + λ, where
λ > c(δ2/ε) for a sufficiently large universal constant c > 0. Applying Lemma 17.7 to
the one-dimensional projection v ·W , gives |v ·(μW −μX)| ≤ O(δ+√

ελ) = O(
√
ελ).

Let L(Y) := EY [|v · (Y − μW)|2] and note that L is a linear function of the
probability distribution Y with L(W) = 1 + λ. We can write

L(W∗) = EW∗ [|v · (W∗ − μW)|2] = Var(v · W∗) + |v · (μW − μW∗)|2

≤ 1 + δ2/ε + 2|v · (μW − μX)|2 + 2|v · (μW∗ − μX)|2

≤ 1 + O(δ2/ε + ελ) < 1 + λ = L(W).

390

ROBUST HIGH-DIMENSIONAL STATISTICS

In summary, we have an explicit convex set C of probability distributions from
which we want to find one with eigenvalues bounded by 1 + O(δ2/ε). Given any
W ∈ C which does not satisfy this condition, we can produce a linear function L that
separates W from W∗. Using the ellipsoid algorithm, we obtain the following general
theorem:

Theorem 17.9 Let S be a (3ε,δ)-stable set with respect to a distribution X and
let T be an ε-corrupted version of S. There exists a polynomial time algorithm
that given T returns μ̂ such that ‖μ̂ − μX‖2 = O(δ).

17.2.4 The Filtering Method

As in the convex programming method, the goal of the filtering method is to find a
distribution W ∈ C so that �W has bounded eigenvalues. Given a W ∈ C, �W either
has bounded eigenvalues (in which case the weighted empirical mean works) or there
is a direction v in which Var(v · W) is too large. In the latter case, the projections
v · W must behave very differently from the projections v · S or v · X . In particular,
since an ε-fraction of outliers are causing a much larger increase in the standard
deviation, this means that the distribution of v · W will have many “extreme points”
– more than one would expect to find in v · S. This fact allows us to identity a non-
empty subset of extreme points, the majority of which are outliers. These points can
then be removed (or down-weighted) in order to “clean up” our sample. Formally,
given a W ∈ C without bounded eigenvalues, we can efficiently find a W ′ ∈ C so that
dTV(W ′,W∗) ≤ dTV(W,W∗)− γ , where γ > 0 is bounded from below. Iterating this
procedure eventually terminates giving a W with bounded eigenvalues.

We note that while it may be conceptually useful to consider the aforementioned
scheme for general distributions W over points, in most cases it suffices to consider
only W given as the uniform distribution over some set T of points. The filtering step
in this case consists of replacing the set T by some subset T ′ = T \ R, where R ⊂ T .
To guarantee progress toward W∗ (the uniform distribution over S ∩ T), it suffices
to ensure that at most a third of the elements of R are also in S, or equivalently that
at least two-thirds of the removed points are outliers (perhaps in expectation). The
algorithm will terminate when the current set of points T ′ has bounded empirical
covariance, and the output will be the empirical mean of T ′.

Before we proceed with a more detailed technical discussion, we note that there are
several possible ways to implement the filtering step, and that the method used has a
significant impact on the analysis. In general, a filtering step removes all points that
are “far” from the sample mean in a large variance direction. However, the precise
way that this is quantified can vary in important ways.

Basic Filtering
In this subsection, we present a filtering method that applies to identity covariance (or,
more generally, known covariance) distributions whose univariate projections satisfy
appropriate concentration bounds. For the purpose of this section, we will restrict
ourselves to the Gaussian setting. We note that this method immediately extends
to distributions with weaker concentration properties, e.g., subexponential or even
inverse polynomial concentration, with appropriate modifications.

391

I. DIAKONIKOLAS AND D. M. KANE

We note that the filtering method presented here requires an additional condition
on our good set of samples, on top of the stability condition. This is quantified in the
following definition:

Definition 17.10 A set S ⊂ Rd is tail-bound-good (with respect to X =
N (μX,I)) if for any unit vector v, and any t > 0, we have

Pr
x∼uS

(|v · (x − μX)| > 2t + 2) ≤ e−t2/2. (17.1)

Since any projection of X is distributed like a standard Gaussian, Equation (17.1)
should hold if the uniform distribution over S were replaced by X . It can be shown
that this condition holds with high probability if S consists of i.i.d. random samples
from X of a sufficiently large size.

Intuitively, the additional tail condition of Definition 17.10 is needed to guar-
antee that the filter will remove more outliers than inliers. Formally, we have the
following:

Lemma 17.11 Let ε > 0 be a sufficiently small constant. Let S ⊂ Rd be both
(2ε,δ)-stable and tail-bound-good with respect to X = N (μX,I), with δ = cε√

log(1/ε), for c> 0 a sufficiently large constant. Let T ⊂ Rd be such that |T ∩
S| ≥ (1 − ε)min(|T |,|S|) and assume we are given a unit vector v ∈ Rd for which
Var(v · T) > 1 + 2δ2/ε. There exists a polynomial time algorithm that returns a
subset R ⊂ T satisfying |R ∩ S| < |R|/3.

Proof Let Var(v · T) = 1 + λ. By applying Lemma 17.6 to the set T , we get
that |v · μX − v · μT | ≤ c

√
λε. By (17.1), it follows that Prx∼uS(|v · (x − μT)| >

2t + 2 + c
√
λε) ≤ e−t2/2. We claim that there exists a threshold t0 such that

Pr
x∼uT

(|v · (x − μT)| > 2t0 + 2 + c
√
λε) > 4e−t2

0/2, (17.2)

where the constants have not been optimized. Given this claim, the set R = {x ∈
T : |v · (x − μT)| > 2t0 + 2 + c

√
λε} will satisfy the conditions of the lemma.

To prove our claim, we analyze the variance of v · T and note that much of
the excess must be due to points in T \ S. In particular, by our assumption on
the variance in the v-direction,

∑
x∈T |v·(x−μT)|2 = |T |Var(v·T) = |T |(1+λ),

where λ > 2δ2/ε. The contribution from the points x ∈ S ∩ T is at most∑
x∈S

|v · (x − μT)|2 = |S|(Var(v · S) + |v · (μT − μS)|2) ≤ |S|(1 + δ2/ε + 2c2λε)

≤ |T |(1 + 2c2λε + 3λ/5),

where the first inequality uses the stability of S, and the last uses that |T | ≥
(1 − ε)|S|. If ε is sufficiently small relative to c, it follows that

∑
x∈T\S |v · (x −

μT)|2 ≥ |T |λ/3. On the other hand, by definition we have∑
x∈T\S

|v · (x − μT)|2 = |T |
∫ ∞

0
2t Pr

x∼uT
(|v · (x − μT)| > t,x �∈ S)dt. (17.3)

392

ROBUST HIGH-DIMENSIONAL STATISTICS

Assume for the sake of contradiction that there is no t0 for which Equation
(17.2) is satisfied. Then the right-hand side of (17.3) is at most

|T |
(∫ 2+c

√
λε+10

√
log(1/ε)

0
2t Pr

x∼uT
(x �∈ S)

+
∫ ∞

2+c
√
λε+10

√
log(1/ε)

2t Pr
x∼uT

(|v · (x − μT)| > t)dt

)

≤ |T |
(
ε(2 + c

√
λε + 10

√
log(1/ε))2 +

∫ ∞

5
√

log(1/ε)
16(2t + 2 + c

√
λε)e−t2/2dt

)
≤ |T |

(
O(c2λε2 + ε log(1/ε)) + O(ε2(

√
log(1/ε) + c

√
λε))

)
≤ |T |O(c2λε2 + (δ2/ε)/c) < |T |λ/3,

which is a contradiction. Therefore, the tail bounds and the concentration
violation together imply the existence of such a t0 (which can be efficiently
computed). �

We note that although exponentially many samples are required to ensure that
(17.1) holds with high probability, one can carefully weaken (17.1) so that it can
be achieved with polynomially many samples without breaking the aforementioned
analysis.

Randomized Filtering
The basic filtering method of the previous subsection is deterministic, relying on
the violation of a concentration inequality satisfied by the inliers. In some settings,
deterministic filtering seems to fail and we require the filtering procedure to be
randomized. A concrete such setting is when the uncorrupted distribution is assumed
only to have bounded covariance.

The main idea of randomized filtering is simple: Suppose we can identify a
nonnegative function f (x), defined on the samples x, for which (under some high-
probability condition on the inliers) it holds that

∑
T f (x) ≥ 2

∑
S f (x), where T is

an ε-corrupted set of samples and S is the corresponding set of inliers. Then we can
create a randomized filter by removing each sample point x ∈ T with probability
proportional to f (x). This ensures that the expected number of outliers removed is
at least the expected number of inliers removed. The analysis of such a randomized
filter is slightly more subtle, so we will discuss it in the following paragraphs.

The key property the aforementioned randomized filter ensures is that the sequence
of random variables (# Inliers removed)− (# Outliers removed) (where “inliers” are
points in S and “outliers” points in T\S) across iterations is a supermartingale. Since
the total number of outliers removed across all iterations accounts for at most an ε-
fraction of the total samples, this means that with probability at least 2/3, at no point
does the algorithm remove more than a 2ε-fraction of the inliers. A formal statement
follows:

Theorem 17.12 Let S ⊂ Rd be a (3ε,δ)-stable set (with respect to X). Suppose
that T is an ε-corrupted version of S. Suppose furthermore that given any T ′ ⊂ T

393

I. DIAKONIKOLAS AND D. M. KANE

with |T ′ ∩ S| ≥ (1 − 3ε)|S| for which Cov(T ′) has an eigenvalue bigger than
1 + λ, there is an efficient algorithm that computes a nonzero function f : T ′ →
R+ such that

∑
x∈T ′ f (x) ≥ 2

∑
x∈T ′∩S f (x). Then there exists a polynomial-time

randomized algorithm that computes a vector μ̂ that with probability at least 2/3
satisfies ‖μ̂ − μ‖2 = O(δ + √

ελ).

The pseudocode for the algorithm is

Algorithm 1 Randomized Filtering

1. Compute Cov(T) and its largest eigenvalue ν.
2. If ν ≤ 1 + λ, return μT .
3. Else

� Compute f as guaranteed in the theorem statement.
� Remove each x ∈ T with probability f (x)/maxx∈T f (x) and return to Step 1

with the new set T .

Proof of Theorem 17.12 First, it is easy to see that this algorithm runs in
polynomial time. Indeed, as the point x ∈ T attaining the maximum value of
f (x) is definitely removed in each filtering iteration, each iteration reduces |T | by
at least one. To establish correctness, we will show that, with probability at least
2/3, at each iteration of the algorithm it holds |S ∩ T | ≥ (1 − 3ε)|S|. Assuming
this claim, Lemma 17.6 implies that our final error will be as desired.

To prove the desired claim, we consider the sequence of random variables
d(T) = |S \ T | + |T \ S| across the iterations of the algorithm. We note that,
initially, d(T) = 2ε|S| and that d(T) cannot drop below 0. Finally, we note
that at each stage of the algorithm d(T) increases by (# Inliers removed) −
(# Outliers removed), and that the expectation of this quantity is∑

x∈S∩T

f (x) −
∑

x∈T\S

f (x) = 2
∑

x∈S∩T

f (x) −
∑
x∈T

f (x) ≤ 0.

This means that d(T) is a supermartingale (at least until we reach a point where
|S ∩ T | ≤ (1 − 3ε)|S|). However, if we set a stopping time at the first occasion
where this condition fails, we note that the expectation of d(T) is at most 0.
Since it is at least −ε|S|, this means that with probability at least 2/3 it is never
more than 2ε|S|, which would imply that |S ∩ T | ≥ (1 − 3ε)|S| throughout the
algorithm. This completes the proof. �

Methods of Point Removal. The randomized filtering method requires only that each
point x is removed with probability f (x)/maxx∈T f (x), without any assumption of
independence. Therefore, given an f , there are several ways to implement this scheme.
A few natural ones are given here:

� Randomized Thresholding: Perhaps the easiest method for implementing our ran-
domized filter is generating a uniform random number y ∈ [0, maxx∈T f (x)] and
removing all points x ∈ T for which f (x) ≥ y. This method is practically useful

394

ROBUST HIGH-DIMENSIONAL STATISTICS

in many applications. Finding the set of such points is often fairly easy, as this
condition may well correspond to a simple threshold.

� Independent Removal: Each x ∈ T is removed independently with probability
f (x)/maxx∈T f (x). This scheme has the advantage of leading to less variance in
d(T). A careful analysis of the random walk involved allows one to reduce the
failure probability to exp(−�(ε|S|)).

� Deterministic Reweighting: Instead of removing points, this scheme allows for
weighted sets of points. In particular, each point will be assigned a weight in
[0,1] and we will consider weighted means and covariances. Instead of removing a
point with probability proportional to f (x), we can remove a fraction of x’s weight
proportional to f (x). This ensures that the appropriate weighted version of d(T)

is definitely nonincreasing, implying correctness of the algorithm.

Universal Filtering
In this subsection, we show how to use randomized filtering to construct a universal
filter that works under only the stability condition (Lemma 17.4) – not requiring the
tail-bound condition of the basic filter (Lemma 17.11). Formally, we show:

Proposition 17.13 Let S ⊂ Rd be an (ε,δ)-stable set for ε,δ > 0 sufficiently
small constants and δ at least a sufficiently large multiple of ε. Let T be an
ε-corrupted version of S. Suppose that Cov(T) has largest eigenvalue 1 + λ >

1+8δ2/ε. Then there exists an algorithm that, on input ε,δ,T, computes a function
f : T → R+ satisfying

∑
x∈T f (x) ≥ 2

∑
x∈T∩S f (x).

Proof The algorithm to construct f is the following: We start by computing
the sample mean μT and the top (unit) eigenvector v of Cov(T). For x ∈ T , we
let g(x) = (v · (x−μT))

2. Let L be the set of ε · |T | elements of T on which g(x)
is largest. We define f to be f (x) = 0 for x �∈ L, and f (x) = g(x) for x ∈ L.

The basic plan of attack is as follows: First, we note that the sum of g(x)
over x ∈ T (which is the variance of v · Z, Z ∼u T) is substantially larger than
the sum of g(x) over S (which is approximately the variance of v · Z, Z ∼u S).
Therefore, the sum of g(x) over the ε|S| elements of T \ S must be quite large.
In fact, using the stability condition, we can show that the latter quantity must
be larger than the sum of the largest ε|S| values of g(x) over x ∈ S. However,
since |T \ S| ≤ |L|, we have that

∑
x∈T f (x) = ∑

x∈L g(x) ≥ ∑
x∈T\S g(x) ≥

2
∑

x∈S f (x).
We now proceed with the detailed analysis. First, note that∑

x∈T

g(x) = |T |Var(v · T) = |T |(1 + λ).

Moreover, for any S′ ⊆ S with |S′| ≥ (1 − 2ε)|S|, we have that∑
x∈S′

g(x) = |S′|(Var(v · S′) + (v · (μT − μ′
S))

2). (17.4)

By the stability condition, we have that |Var(v · S′) − 1| ≤ δ2/ε. Furthermore,
the stability condition and Lemma 17.6 give

‖μT − μ′
S‖2 ≤ ‖μT − μ‖2 + ‖μ − μ′

S‖2 = O(δ +
√
ελ).

395

I. DIAKONIKOLAS AND D. M. KANE

Since λ ≥ 8δ2/ε, this implies that
∑

x∈T\S g(x) ≥ (2/3)|S|λ. Moreover, since
|L| ≥ |T \ S| and since g takes its largest values on points x ∈ L, we have that∑

x∈T

f (x) =
∑
x∈L

g(x) ≥
∑

x∈T\S

g(x) ≥ (16/3)|S|δ2/ε.

Comparing the results of Equation (17.4) with S′ = S and S′ = S \ L, we find
that∑

x∈S∩T

f (x) =
∑

x∈S∩L

g(x) =
∑
x∈S

g(x) −
∑

x∈S\L

g(x)

= |S|(1 ± δ2/ε + O(δ2 + ελ)) − |S\L|(1 ± δ2/ε + O(δ2 + ελ))

≤ 2|S|δ2/ε + |S|O(δ2 + ελ).

The latter quantity is at most (1/2)
∑

x∈T f (x) when δ and ε/δ are sufficiently
small constants. This completes the proof of Proposition 17.13. �

Practical Considerations. While the aforementioned point removal methods have
similar theoretical guarantees, recent implementations (Diakonikolas et al., 2018c)
suggest that they have different practical performance on real datasets. The determin-
istic reweighting method is somewhat slower in practice as its worst-case runtime and
its typical runtime are comparable. In more detail, one can guarantee termination by
setting the constant of proportionality so that at each step at least one of the nonzero
weights is set to zero. However, in practical circumstances, we will not be able to do
better. That is, the algorithm may well be forced to undergo ε|S| iterations. On the
other hand, the randomized versions of the algorithm are likely to remove several
points of T at each filtering step.

Another reason why the randomized versions may be preferable has to do with
the quality of the results. The randomized algorithms produce bad results only
when there is a chance that d(T) ends up being very large. However, since d(T) is a
supermartingale, this will only ever be the case if there is a corresponding possibility
that d(T) will be exceptionally small. Thus, although the randomized algorithms
may have a probability of giving worse results some of the time, this will happen
only if a corresponding fraction of the time, they also give better results than the
theory guarantees. This consideration suggests that the randomized thresholding
procedure might have advantages over the independent removal procedure precisely
because it has a higher probability of failure. This has been observed experimentally
in (Diakonikolas et al., 2018c): In real datasets (poisoned with a constant fraction
of adversarial outliers), the number of iterations of randomized filtering is typically
bounded by a small constant.

17.3 Beyond Robust Mean Estimation

In this section, we provide a brief overview of the ideas behind recently developed
robust estimators for more general statistical tasks.

396

ROBUST HIGH-DIMENSIONAL STATISTICS

17.3.1 Robust Stochastic Optimization

A simple and powerful idea is that efficient algorithms for robust mean estimation
can be used in essentially a black-box manner to obtain robust learners for a
range of stochastic optimization problems. Consider the following general stochastic
optimization problem: There is some unknown true distribution p∗ over (convex)
functions f : W → R, and the goal is to find an approximate minimizer of F(w) =
Ef ∼p∗ [f (w)]. Here W ⊆ Rd is a space of possible parameters. As an example, the
problem of linear regression fits in this framework for f (w) = (1/2)(w · x − y2) and
(x,y)∈ Rd × R is drawn from the data distribution.

Given a set of clean samples, i.e., i.i.d. set of functions f1, . . . , fn ∼ p∗, this
problem can be efficiently solved by (stochastic) gradient descent. In the robust
setting, we have access to an ε-corrupted training set of functions f1, . . . ,fn drawn
from p∗. Unfortunately, even a single corrupted sample can completely compromise
standard gradient descent. Charikar et al. (2017) first studied the robust version of
this problem in the presence of a majority of outliers. The vanilla outlier-robust
setting, where ε < 1/2, was studied in two concurrent works (Diakonikolas et al.,
2018c; Prasad et al., 2018). The main intuition present in both these works is
that robustly estimating the gradient of the objective function can be viewed as a
robust mean estimation problem. Diakonikolas et al. (2018c) take this connection
a step further: Instead of using a robust gradient estimator as a black box, they
apply a filtering step each time the vanilla SGD reaches an approximate critical
point of the empirical risk. The correctness of this method relies on properties of
the filtering algorithm. Importantly, it turns out that this method is more efficient
in practice.

17.3.2 Robust Covariance Estimation

The robust estimation techniques described in this chapter can be generalized to
robustly estimate the covariance of high-dimensional distributions. For concreteness,
here we consider the Gaussian case; specifically we assume that the inliers are
drawn from G = N (0,�). (Note that by considering the differences of independent
samples we can reduce to the centered case, and that this reduction works in the
robust setting as well.) The high-level idea is to filter based on the empirical fourth
moment tensor. In more detail, let X be the random variable GGT and note that
Cov(G) = E[X].

We can attempt to use the described robust mean estimation techniques on X .
However, these techniques require a priori bounds on its covariance, Cov(X). To
handle this issue, we leverage the fact that the covariance of X can be expressed as a
function of the covariance of G. Although it might appear that we run into a chicken-
and-egg problem, it is in fact possible to bootstrap better and better approximations
to the covariance Cov(X).

In particular, any upper bound on the covariance of G will imply an upper bound
on the covariance of X , which can in turn be used to robustly estimate the mean of X ,
providing a better estimate of Cov(G). Via a careful iterative refinement, one can show
that is possible to learn the covariance Cov(G) within relative error O(ε log(1/ε)) with
respect to the Frobenius norm, which corresponds to robustly estimating G within
error O(ε log(1/ε)) in total variation distance.

397

I. DIAKONIKOLAS AND D. M. KANE

17.3.3 List-Decodable Learning

In this chapter, we focused on the classical robust setting where the outliers constitute
the minority of the dataset, quantified by the fraction of corruptions ε < 1/2, and the
goal is to obtain estimators with error scaling as a function of ε (and is independent of
the dimension d). A related setting of interest focuses on the regime when the fraction
α of real data is small – strictly smaller than 1/2. That is, we observe n samples, an
α-fraction of which (for some α < 1/2) are drawn from the distribution in question,
but the rest are arbitrary.

This model was first studied in the context of mean estimation in Charikar et al.
(2017). A first observation is that, in this regime, it is information-theoretically
impossible to estimate the mean with a single hypothesis. Indeed, an adversary can
produce �(1/α) clusters of points each drawn from a good distribution with different
mean. Even if the algorithm could learn the distribution of the samples exactly, it still
would not be able to identify which of the clusters is the correct one. To circumvent
this, the definition of learning must be somewhat relaxed. In particular, the algorithm
should be allowed to return a small list of hypotheses with the guarantee that at least
one of the hypotheses is close to the true mean. Moreover, as opposed to the small
ε regime, it is often information-theoretically necessary for the error to increase as α
goes to 0. In summary, given polynomially many samples, we would like to output
O(1/α) many hypotheses, with the guarantee that with high probability at least one
hypothesis is within f (α) of the true mean, where f (α) depends on the concentration
properties of the distribution in question.

Charikar et al. (2017) used an semidefinite programming-based approach to solve
this problem. We note that the techniques discussed in this chapter can be adapted
to work in this setting. In particular, if the sample covariance matrix has no large
eigenvalues, this certifies that the true mean and sample mean are not too far apart.
However, if a large eigenvalue exists, the construction of a filter is more elaborate.
To some extent, this is a necessary difficulty because the algorithm must return more
than one hypotheses. To handle this issue, one needs to construct a multifilter, which
may return several subsets of the original sample set with the guarantee that at least
one of them is cleaner than the original dataset. Such a multifilter was introduced
in Diakonikolas et al. (2018a).

17.3.4 Robust Sparse Estimation

The task of leveraging sparsity in high-dimensional parameter estimation is a well-
studied problem in statistics. In the context of robust estimation, this problem was
first considered in Balakrishnan et al. (2017), which adapted the unknown convex
programming method of Diakonikolas et al. (2016) described in this chapter. Here
we describe the filtering method in this setting for the problem of robust sparse mean
estimation.

Formally, given ε-corrupted samples from N (μ,I), where the mean μ is unknown
and assumed to be k-sparse, i.e., supported on an unknown set of k coordinates, we
would like to approximate μ, in �2-distance. Without corruptions, this problem is
easy: We draw O(k log(d/k)/ε2) samples and output the empirical mean truncated in
its largest magnitude k entries. The goal is to obtain similar sample complexity and
error guarantees in the robust setting.

398

ROBUST HIGH-DIMENSIONAL STATISTICS

At a high level, we note that the truncated sample mean should be accurate as long
as there is no k-sparse direction in which the error between the true mean and sample
mean is large. This condition can be certified, as long as we know that the sample
variance of v · X is close to 1 for all unit, k-sparse vectors v. This would in turn allow
us to create a filter-based algorithm for k-sparse robust mean estimation that uses
only O(k log(d/k)/ε2) samples. Unfortunately, the problem of determining whether
or not there is a k-sparse direction with large variance is computationally hard. By
considering a convex relaxation of this problem, one can obtain a polynomial time
version of this algorithm that requires O(k2 log(d/k)/ε2) samples. Moreover, there is
evidence (Diakonikolas et al., 2017b), in the form of a lower bound in the Statistical
Query model (a restricted but powerful computational model), that this increase in
the sample complexity is necessary.

More recently, Diakonikolas et al. (2019) developed iterative spectral algorithms
for robust sparse estimation tasks (including sparse mean estimation and sparse
principal component analysis). These algorithms achieve the same error guarantees
as Balakrishnan et al. (2017), while being significantly faster.

17.3.5 Robust Estimation of High-Degree Moments

Suppose we are interested in robustly estimating the kth order moments of a
distribution X . In some sense, this problem is equivalent to estimating the mean of
the random variable Y = X⊗k. Unfortunately, in order to estimate the mean of Y
robustly, one needs concentration bounds on it, which are rarely directly available.
Typically, concentration bounds on Y are implied by upper bounds on the higher
moments of X . In particular, upper bounds on the k′th central moments of X
for some k′ > k, imply concentration bounds on Y . Unfortunately, just knowing
bounds on the central moments of X is often hard to leverage computationally.
Given a set of points, even determining whether or not they have bounded central
moments is a computationally intractable problem. Instead, known algorithmic
approaches (Hopkins and Li, 2018; Kothari et al., 2018) generally require some
kind of efficiently certifiable bounded moment conditions (e.g., via a sum of squares
proof). This allows one to search for subsets of sample points whose central moments
can be similarly certified as bounded, and these will allow us to approximate higher
moments of X .

17.4 Notes

The convex programming and filtering methods described in this chapter appeared
in (Diakonikolas et al., 2016, 2017a). The idea of removing outliers by projecting on
the top eigenvector of the empirical covariance goes back to Klivans et al. (2009), who
used it in the context of robustly learning linear separators. Klivans et al. (2009) use
a “hard” filtering step which only removes outliers and consequently leads to errors
that scale logarithmically with the dimension, even in Huber’s model.

The work of Lai et al. (2016) developed a recursive dimension-halving technique
for robust mean estimation. Their technique leads to error O(ε

√
log(1/ε)

√
log d) for

Gaussian robust mean estimation in Huber’s contamination model. Diakonikolas
et al. (2016) and Lai et al. (2016) obtained robust estimators for various other
statistical tasks, including robust covariance estimation, robust density estimation

399

I. DIAKONIKOLAS AND D. M. KANE

for mixtures of spherical Gaussians and product distributions, and independent
component analysis.

The algorithmic approaches described in this chapter robustly estimate the mean
of a spherical Gaussian within error O(ε

√
log(1/ε)) in the strong contamination

model of Definition 17.1. Diakonikolas et al. (2018b) developed a more sophisticated
filtering technique that achieves the optimal error of O(ε) in the additive contamina-
tion model. For the strong contamination model, it was shown in Diakonikolas et al.
(2017b) that any improvement on the O(ε

√
log(1/ε)) error requires superpolynomial

time in the Statistical Query model. Steinhardt et al. (2018) gave an efficient algorithm
for robust mean estimation with respect to all �p-norms.

Finally, we note that ideas from Diakonikolas et al. (2016) have led to proof-of-
concept improvements in the analysis of genetic data (Diakonikolas et al., 2017a)
and in adversarial machine learning (Diakonikolas et al., 2018c).

References

Balakrishnan, S., Du, S. S., Li, J., and Singh, A. 2017. Computationally efficient robust
sparse estimation in high dimensions. Pages 169–212 of: Proc. 30th Annual Conference
on Learning Theory.

Charikar, M., Steinhardt, J., and Valiant, G. 2017. Learning from untrusted data. Pages 47–60
of: Proc. 49th Annual ACM Symposium on Theory of Computing.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra, A., and Stewart, A. 2016. Robust
estimators in high dimensions without the computational intractability. In Proceedings of
the 57th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 655–664.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra, A., and Stewart, A. 2017a. Being
robust (in high dimensions) can be practical. In Proceedings of the 34th International
Conference on Machine Learning (ICML), pp. 999–1008.

Diakonikolas, I., Kane, D. M., and Stewart, A. 2017b. Statistical query lower bounds for robust
estimation of high-dimensional Gaussians and Gaussian mixtures. In Proceedings of the
58th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 73–84.

Diakonikolas, I., Kane, D. M., and Stewart, A. 2018a. List-decodable robust mean estimation
and learning mixtures of spherical Gaussians. In Proceedings of the 50th Annual ACM
Symposium on Theory of Computing (STOC), pp. 1047–1060.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra, A., and Stewart, A. 2018b. Robustly
learning a Gaussian: Getting optimal error, efficiently. In Proceedings of the 29th Annual
Symposium on Discrete Algorithms, pp. 2683–2702.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Steinhardt, J., and Stewart, A. 2018c. Sever:
A robust meta-algorithm for stochastic optimization. CoRR, abs/1803.02815. Conference
version in ICML 2019.

Diakonikolas, I., Karmalkar, S., Kane, D., Price, E., and Stewart, A. 2019. Outlier-robust high-
dimensional sparse estimation via iterative filtering. In Advances in Neural Information
Processing Systems 33, NeurIPS 2019, pp. 10688–10699.

Hopkins, S. B., and Li, J. 2018. Mixture models, robustness, and sum of squares proofs. Proc.
50th Annual ACM Symposium on Theory of Computing (STOC), pp. 1021–1034.

Huber, P. J. 1964. Robust estimation of a location parameter. Annals of Mathematical
Statistics, 35(1), 73–101.

Johnson, D. S., and Preparata, F. P. 1978. The densest hemisphere problem. Theoretical
Computer Science, 6, 93–107.

Klivans, A., Long, P., and Servedio, R. 2009. Learning halfspaces with malicious noise. Journal
of Machine Learning Research, 10, 2715–2740.

400

ROBUST HIGH-DIMENSIONAL STATISTICS

Kothari, P. K., Steinhardt, J., and Steurer, D. 2018. Robust moment estimation and improved
clustering via sum of squares. In Proceedings of the 50th Annual ACM Symposium on
Theory of Computing (STOC), pp. 1035–1046.

Lai, K. A., Rao, A. B., and Vempala, S. 2016. Agnostic estimation of mean and covariance. In
Proceedings of the 57th IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 665–674.

Prasad, A., Suggala, A. S., Balakrishnan, S., and Ravikumar, P. 2018. Robust estimation via
robust gradient estimation. arXiv preprint arXiv:1802.06485.

Steinhardt, J., Charikar, M., and Valiant, G. 2018. Resilience: A criterion for learning in the
presence of arbitrary outliers. Proceedings of the 9th Innovations in Theoretical Computer
Science Conference (ITCS), pp. 45:1–45:21.

Tukey, J. W. 1975. Mathematics and picturing of data. Proceedings of ICM 6, pp. 523–531.

Exercises

Exercise 17.1 Let S be an ε-corrupted set of samples from N (μ,I) of sufficiently
large size.

(a) The geometric median of a discrete set of points is the point that minimizes
the sum of the Euclidean distances to these points. Show that the geometric
median of S has �2-distance O(ε

√
d) from μ with high probability.

(b) Show that this upper bound is tight for a worst-case adversary.

Exercise 17.2 (Sample complexity of Robust Mean Estimation)

(a) Prove Fact 17.2 and Proposition 17.3.
(b) How do Fact 17.2 and Proposition 17.3 change when the distribution of the

uncorrupted data has bounded kth moments, for even k?

Exercise 17.3 For what values of (ε,δ) do the following distribution families satisfy
the stability condition of Definition 17.4: bounded covariance (� " I), bounded
covariance and sub-gaussian tails in every direction, identity covariance and log-
concave (i.e., the logarithm of probability density function is concave), identity
covariance with bounded kth central moments?

Exercise 17.4 Prove Lemma 17.7.

Exercise 17.5 (Diakonikolas et al., 2016) Let S be a sufficiently large ε-corrupted
set of samples from a binary product distribution on {±1}d . Modify the basic
filter algorithm of Section 17.2.4 to obtain an estimate of the mean with
�2-distance error O(ε

√
log(1/ε)). [Hint: Use the modified empirical covariance

with its diagonal zeroed out.]

Exercise 17.6 (Robust Estimation of Heavy-Tailed Distributions) Let X be a product
distribution on Rd that is centrally symmetric about a center m. Suppose that, for
some constant c > 0, each marginal distribution has probability density function
bounded below by c at all x within distance one of its median. Give a polynomial-
time algorithm that estimates m to within �2 error Õ(ε) in the presence of an
ε-fraction of corruptions. (The Õ(·) notation hides poly-logarithmic factors in its
argument.)

401

I. DIAKONIKOLAS AND D. M. KANE

Remark This algorithm applies to distributions that may not even have well-
defined means, e.g., products of Cauchy distributions.

[Hint: Reduce the problem to robust mean estimation of a binary product distri-
bution and use the previous exercise.]

Exercise 17.7 (Robust Estimation of a 2-Mixture of Spherical Gaussians) In this
exercise, we will adapt the filtering method to robustly learn a 2-mixture of spher-
ical Gaussians. Let F = (1/2)N (μ1,I) + (1/2)N (μ2,I) be an unknown balanced
mixture of two identity covariance Gaussians with unknown means. Let T be an
ε-corrupted set of samples from F .

(a) Show that if the eigenvalue of the empirical covariance in a given direction is
1 + δ, then both means in this direction are accurate within Õ(

√
ε + δ).

(b) Show that if the empirical covariance has only one large eigenvalue, then there
is a simple procedure to learn the means to small error.

(c) Show that if empirical covariance has at least two large eigenvalues, then we
can construct a filter.

(d) Combine the above to give a polynomial-time algorithm that with high prob-
ability learns the means to error Õ(

√
ε).

(Remark: This accuracy is essentially best possible information-theoretically.
One can have have two mixtures F (i) = (1/2)N (μ

(i)
1 ,I) + (1/2)N (μ

(i)
2 ,I),

i = 1,2 that have dTV(F (1),F (2)) = ε, where μ
(2)
1 , μ(2)

2 are at distance �(
√
ε)

from μ
(1)
1 , μ(1)

2 .)

402

CHAPTER EIGHTEEN

Nearest Neighbor Classification
and Search

Sanjoy Dasgupta and Samory Kpotufe

Abstract: In both algorithmic analysis of nearest neighbor search
and statistical rates of convergence for nearest neighbor classifica-
tion, the simplest worst-case bounds are pessimistic and discourag-
ing, and do not accurately reflect performance in practice. In this
chapter, we discuss some of the more refined types of analysis that
have been attempted, and argue that much remains to be done.

18.1 Introduction

Nearest neighbor search is a basic tool of information retrieval: given a new data item
(such as the medical record of a new patient, or the latest measurements from a space
mission), the task is to find the most similar items encountered in the past. These help
to place the new item in context, for instance to determine whether it is something
familiar that can be handled easily or something novel that demands special attention.
In particular, knowledge of the outcomes, or labels, of the nearest neighbors can be
used to predict an outcome for the new instance.

Nearest neighbor search raises both algorithmic and statistical questions. How
can the nearest neighbor(s) be found quickly? And what is the quality of predictions
made using these neighbors? These questions have been studied for many decades,
yet remain rich areas of research. A large part of the difficulty is that the simplest
worst-case bounds for these problems are so loose as to be meaningless, in the sense
that they provide little insight into the behavior observed in reality. Thus it is of great
interest to develop methods of analysis that are more refined, that gain accuracy by
taking the structure or distribution of data into account.

18.2 The Algorithmic Problem of Nearest Neighbor Search

Given a set S of n points, the nearest neighbor of a query q is the point in S that is
closest to q under some distance function of interest. Finding the nearest neighbor
naively takes O(n) time, which can be a serious deterrent in many practical settings
with large n.1 To speed this up, can a data structure be built from S that will permit
subsequent queries q to be answered quickly?

1 This ignores the time taken to compute distances between points, which is O(d) in d-dimensional Euclidean
space, and can be a significant factor when d is large. There is quite a bit of work on mitigating this, for instance
using dimensionality reduction, but it is mostly orthogonal to our discussion here and has less of the “beyond
worst case” flavor.

403

S. DASGUPTA AND S. KPOTUFE

For one-dimensional data, there is an easy solution: The data structure is simply
a sorted version of S, using which the nearest neighbor of any query can be found
in O(log n) time by binary search. But generalizing this to higher dimension is not
straightforward. An especially tricky case is when the points S and query q are all
chosen uniformly at random from the surface of the unit sphere in R

D. If D � log n,
a simple calculation shows that all the points, including the query, will with high
probability lie at distance

√
2 ± o(1) from each other. Thus all points are just a tiny

bit further from q than its very nearest neighbor. It is hard to imagine what kind of
data structure might permit the nearest neighbor to quickly be identified amid such
miniscule differences. In what follows, we will refer to this example as the canonical
bad case.

There are two ways to banish this nightmare scenario. The first is to be content
with a c-approximation to the nearest neighbor, for some small constant c: that is,
any point that is at most c times further away from q than its nearest neighbor. For
data distributed uniformly on a high-dimensional sphere, anything in S is then an
acceptable answer. The second recourse is to think of this particular example as being
pathological and unlikely to occur in practice, and to make assumptions about the
configuration of the data under which efficient search is possible.

18.2.1 Hashing for Approximate Nearest Neighbor Search

A hugely popular and successful method for nearest neighbor search has been
locality-sensitive hashing (LSH), first introduced in the late 1990s (Indyk and Mot-
wani, 1998; Charikar, 2002; Andoni and Indyk, 2008). This is not a specific algorithm
but rather a framework for boosting the performance of simple randomized hash
functions. The most common instantiation, for data in R

D, uses random linear
projections for hashing:

� A point x ∈ R
D is mapped to the integer �(u · x)/b�, where u is a direction chosen

at random from the unit sphere and b is the bucket width.
� Taking m such mappings h1, . . . ,hm, point x then gets stored in an m-dimensional

table at location (h1(x), . . . ,hm(x)); the value of m can be thought of as O(log n),
but would in practice typically be tuned using a set of sample queries. Regardless
of m, the table can be stored in O(n) space using standard hashing techniques.

� A query q is answered by looking at all points falling at location (h1(q), . . . ,hm(q))
and selecting the nearest neighbor among them.

The probability that this fails to return a c-approximate nearest neighbor can be
bounded; and by having multiple independently built tables, the failure probability
can be made as small as desired.

For n data points in Euclidean space, LSH can be used to create a data structure
of size O(n1+1/c2

) that is then subsequently able to answer c-approximate nearest
neighbor queries in time O(n1/c2

) with failure probability that is an arbitrarily small
constant (Andoni and Indyk, 2008). For c = 2, this translates to space O(n5/4) and
query time O(n1/4). Numerous other variants of LSH have been developed, some that
handle other distance and similarity functions (Charikar, 2002; Datar et al., 2004;
Andoni et al., 2018), and some that adapt to the particular data distribution (Andoni
and Razenshteyn, 2015), but the Euclidean scheme is a useful representative case.

404

NEAREST NEIGHBOR CLASSIFICATION AND SEARCH

A striking feature of the analysis of LSH is that all the problem-specific character-
istics that undoubtedly affect the hardness of NN search – such as the dimension of
the data – are swept under the rug and a bound is given entirely in terms of the number
of points n and the approximation factor c. This factor itself is somewhat hard to
interpret because it means different things for different data sets. Take c = 2, for
example (values much smaller than this lead to unreasonably large data structures):
For some data sets, 2-approximation might yield points very close to the true
nearest neighbor and produce usually correct classifications, while on other data sets,
2-approximation might mean that the returned point is essentially a random draw
from the data set. In short, this guarantee is not inherently reassuring.

By way of example, here is a table showing the classification error rate of
c-approximate nearest neighbors, as a function of c, on the MNIST data set of
handwritten digits:

c 1.0 1.2 1.4 1.6 1.8 2.0

Error rate (%) 3.1 9.0 18.4 29.3 40.7 51.4

For each value of c, the error rate shown is that of a classifier that picks a random
c-approximate nearest neighbor and predicts with its label. In this case, even a small
value like c = 1.2 leads to a substantial degradation in classification performance
over the true nearest neighbor.

Having a bound that depends only on c is elegant, but the absence of other relevant
parameters makes it likely to be too loose to provide guidance on specific data sets of
interest. Looking back at the table for MNIST, we might be inclined to believe that
we need something like a c = 1.1 approximation and that LSH is thus a bad choice
because it will require close to quadratic space. But this is far from the truth, which is
that even with a much larger setting of c, the LSH scheme described above typically
returns the exact nearest neighbor on this data set.

Locality-sensitive hashing is a beautiful algorithmic framework that is highly
effective in practice. But there is scope for improvement in its analysis. It
would be helpful to know the probability with which this data structure returns
the exact nearest neighbor, or perhaps one of the 1% closest neighbors. This
would likely depend on the configuration of the data points, and it would be
interesting to understand what structural properties of the data make for efficient
search.

18.2.2 Tree Structures for Exact Nearest Neighbor Search

There is an extensive literature on data structures for exact nearest neighbor search.
Perhaps the most widely-used of these is the k-d tree (Bentley, 1975), a partition of
R

D into hyper-rectangular cells, based on a given set S ⊆ R
D of data points. The root

of the tree is a single cell corresponding to the entire space. A coordinate direction is
chosen, and the cell is split at the median of the data along this direction (Figure 18.1).
The process is then recursively invoked on the two newly created cells, and continues
until all leaf cells contain at most some predetermined number no of points. When
there are n data points, the depth of the tree is about log2(n/no).

405

S. DASGUPTA AND S. KPOTUFE

function MakeTree(S)
If |S| < no: return (Leaf)
Rule = ChooseRule(S)
LeftTree = MakeTree({x ∈ S : Rule(x) = true})
RightTree = MakeTree({x ∈ S : Rule(x) = false})
return (Rule, LeftTree, RightTree)

function ChooseRule(S)
Choose a coordinate direction i
Rule(x) = (xi ≤ median({zi : z ∈ S}))
return (Rule)

Figure 18.1 The k -d tree: example and pseudocode. In the example, the split at the root of the tree is
vertical, the two splits at the next level are horizontal, and the next four are a mix of horizontal and vertical.
A query point q is marked by a cross.

Given a k-d tree built from data points S, there are two ways to answer a
nearest neighbor query q. The quick-and-dirty option is to move q down the tree
to its appropriate leaf cell and then return the nearest neighbor in that cell. This
defeatist search takes time just O(no + log(n/no)), which is O(log n) for constant
no. The problem is that q’s nearest neighbor may well lie in a different cell, as is
the case in Figure 18.1. Consequently, the failure probability of this scheme (taken
over a random choice of queries, say) can be unacceptably high. The alternative is
comprehensive search, which uses geometric reasoning to decide which other leaf cells
might also need to be probed and always returns the true nearest neighbor, but in the
worst case can take O(n) time.

Popular prejudice holds that k-d tree performance – whether measured by the
success probability of defeatist search or the query time of comprehensive search –
deteriorates rapidly with dimension. This remains to be mathematically justified,
however. What would be especially interesting is to identify simple conditions on
high-dimensional data under which the k-d tree functions well.

Numerous variants of the k-d tree have been developed, attempting to compensate
for its perceived weaknesses. One notable such example is the principal component
analysis (PCA) tree (Sproull, 1991; McFee and Lanckriet, 2011), which splits data
along directions of largest variance rather than along individual coordinates. Once
again, the rigorous analysis of its query complexity remains an open problem,
although there have been some attempts in this direction (Abdullah et al., 2014).

In the 1980s and 1990s, a variety of tree structures were introduced that guaranteed
running times proportional to log n but exponential in D; a survey can be found in
Clarkson (1999). Notice that this is in line with the canonical bad case described
earlier. In R

D, it is possible to have 2D points that are roughly equidistant from each
other, and thus query times proportional to this are not surprising, in the worst case.
Interestingly, some of these data structures also work in arbitrary metric spaces. More
recent incarnations have tried to move past the pessimism of these worst-case bounds
by adapting to situations in which the intrinsic dimension of the data is low, even much
if its apparent dimension is higher. Before delving into this work, we briefly discuss
notions of dimension.

406

NEAREST NEIGHBOR CLASSIFICATION AND SEARCH

18.2.3 Notions of Intrinsic Dimension

Measures of intrinsic dimension have arisen in a variety of different fields (Cutler,
1993; Clarkson, 2006). The most common notions aim to either quantify the com-
plexity of a (data) space X , or that of a measure μ supported on X (usually the
data-generating distribution). We now look at two such quantities that appear most
frequently in analyses of nearest neighbor methods.

For intuition behind the first such quantity, consider the fact that a d-dimensional
hypercube of side-length r can be covered by 2d hypercubes of side length r/2.

Definition 18.1 A metric space (X,ρ) is said to have doubling dimension d if,
for all r > 0 and x ∈ X , the ball B(x,r) can be covered by 2d balls of radius r/2.

Here are some common types of low-dimensional structure that are captured by
doubling dimension; see Dasgupta and Freund (2008) for further details.

1. Any k-dimensional affine subspace X ⊆ R
D has doubling dimension ≤ cok, for

some absolute constant co.
2. Any set X ⊆ R

D in which each element has at most k nonzero coordinates (that is,
a sparse set) has doubling dimension at most cok + k log D. The same holds when
X is of arbitrary dimension but can be sparsely represented under an unknown
dictionary of size D, i.e., if there exist vectors {ai}D

i=1 such that any x ∈ X is a
linear combination of at most k of them.

3. Let M be a k-dimensional Riemannian submanifold in R
D with reach τ (this is a

measure of curvature: It means that every point at distance < τ of M has a unique
nearest neighbor in M). Then every neighborhood of M of radius τ has doubling
dimension O(k).

It is also worth remarking that if X , of doubling dimension d, is bounded (i.e.,
supx,x′ ρ(x,x′) < ∞), then for any r > 0, X can be covered by Cd · r−d balls of
radius r, for some constant Cd (Exercise 18.1). Any (X,ρ) with this property is said
to have metric dimension d.

There is a similar-sounding notion, doubling measure, that attempts to capture
the intrinsic dimension of a measure (usually a probability measure) on a met-
ric space, by looking at how quickly the measure of a ball grows as its radius
increases.

Definition 18.2 A measure μ on (X,ρ) is said to be doubling with exponent d,
whenever for any x in the support of μ (henceforth denoted supp(μ)), and any
r > 0, we have μ(B(x,r)) ≤ 2d · μ(B(x,r/2)).

Unlike the doubling dimension, which depends only on the set X , this varies
according to the measure placed on X . The relationship between the two notions
is explored in Exercise 18.2.

Remark also that if (X,ρ) with doubling measure μ is bounded, then for any r > 0
and x ∈ supp(μ), we have μ(B(x,r)) ≥ Cdrd for some constant Cd (Exercise 18.1).
We then say that μ is homogeneous (on supp(μ)) with parameters (Cd,d).

407

S. DASGUPTA AND S. KPOTUFE

18.2.4 Adaptivity to Intrinsic Dimension in Nearest Neighbor Search

One way of going beyond the pessimism of worst-case analysis is to identify families
of instances that occur in practice and are also “easier” in the sense of admitting
better bounds. For nearest neighbor search, this enterprise has mostly focused on
analyzing data sets of low intrinsic dimension. The hope is that the exponential
dependence on dimension in worst-case bounds for exact nearest neighbor search
can be replaced by a similar dependence on intrinsic dimension, which might be
much smaller.

The excellent survey of Clarkson (2006) describes ways in which nearest neighbor
data structures can be made adaptive to different types of intrinsic dimension.
Perhaps the easiest assumption to work with is a finite-sample version of doubling
measure, which we now introduce. Suppose the data lie in a metric space X . We say
that a subset T ⊆ X has expansion constant c if for any point p ∈ X and any radius
r > 0, we have |T ∩ B(p,2r)| ≤ c|T ∩ B(p,r)|. The assumption on the data set S is
that there exists a small c such that S ∪ {q} has expansion constant at most c for any
query point q. The intrinsic dimension can then be viewed as log c.

One widely used data structure that has been analyzed under this condition is the
cover tree (Beygelzimer et al., 2006), which can be used for exact nearest neighbor
search in any metric space. It works by maintaining a hierarchical covering of the data
set, which we will now describe in more detail. Say the data points are x1, . . . ,xn, and
assume for simplicity that all interpoint distances are ≤ 1. Then any point xi serves as
a 1-cover of the entire set; take it to be the root of the tree. The next level will consist
of a subset of the xi’s that constitute a (1/2)-cover, and the following level will be a
(1/4)-cover, and so on. Given level j − 1, level j can be built as follows: take all the
points from level j − 1, and repeatedly add in a data point that is not within distance
1/2j of those already chosen. The resulting cover tree on data points x1, . . . ,xn is a
rooted infinite tree with the following properties:

� Each node of the tree is associated with one of the data points xi.
� If a node is associated with xi, then one of its children is also associated with xi.
� All nodes at depth j are at distance at least 1/2j from each other.
� Each node at depth j + 1 is within distance 1/2j of its parent (at depth j).

See Figure 18.2 for an example. In practice, there is no need to duplicate a node as its
own child, so the tree takes up O(n) space. Moreover, it is not hard to build the tree
on-line, adding one point at a time.

When a query q needs to be answered, it is moved down the tree, one level at a time.
At the jth level (call it Lj), geometric reasoning is used to identify a subset of nodes
Sj ⊆ Lj whose descendants could possibly include the nearest neighbor of q; this is
based on the distance from q to the closest point in Lj, combined with the triangle
inequality. At the next level, Lj+1, only the children of Sj are examined and these
are further restricted to a subset Sj+1, and so on. It turns out that with expansion
constant c, only |Sj| = O(poly(c)) nodes need to be considered at each level, and the
total time to find the exact nearest neighbor is O(poly(c) log n).

The cover tree is a popular and effective data structure, especially for non-
Euclidean distance metrics. Its analysis, however, is marred by the brittleness of the

408

NEAREST NEIGHBOR CLASSIFICATION AND SEARCH

x2

0

1

2

3

depthx1

x4

x5

x3

x1

x2 x1

x1

x1x2x3 x4

x5

x5 x4

x5

x2

Figure 18.2 A cover tree for a data set of five points. From the structure of the tree we can conclude, for
instance, that x1,x2,x5 are all at distance ≥ 1/2 from each other, since they are all at depth 1, and that the
distance between x2 and x3 is ≤ 1/4.

expansion constant assumption. To get a sense of this, observe that even data in R
D,

under Euclidean distance, can have arbitrarily high c, unbounded by any function
of D. It is thus of interest to devise more reasonable conditions under which to study
this scheme.

A weaker and more realistic assumption on a data set is that it has low doubling
dimension d. In this case, there are data structures of size O(n) that either yield a
(1+ε)-approximate nearest neighbor in time O(2O(d) log n+(1/ε)O(d)) (Krauthgamer
and Lee, 2004), or, when the query distribution matches the data distribution, yield
the correct nearest neighbor in time O(2d log n) (Clarkson, 1999, 2006). We will
discuss another such data structure in more detail in the next section.

Adaptivity to doubling dimension is nontrivial: k-d trees, for instance, do not have
this property (Dasgupta and Sinha, 2015). This makes it technically interesting and
has led to quite a bit of computational geometry work around this notion. However,
it is really just one specialized way of moving beyond the worst case in nearest
neighbor search. The field of unsupervised learning has identified many varieties of
geometric structure that commonly exist in data. A few of these, such as manifold
structure, are captured by intrinsic dimension; but many others, like cluster structure,
are not. Thus it would be useful to move beyond intrinsic dimension when positing
structural “niceness”assumptions under which nearest neighbor search can efficiently
be performed.

An alternative to bounding the query time of a nearest neighbor data structure
in terms of prespecified geometric parameters like intrinsic dimension is to explicitly
characterize the types of data on which it is efficient. Ideally, one would be able to
achieve tight, instance-specific results in this way. We now turn to such a scheme.

18.2.5 A Randomized Tree Structure with Instance-Specific Bounds

Locality-sensitive hashing has brought a simple and highly effective paradigm to
the field of nearest neighbor search: design a data structure that is quick-and-dirty
and has nonzero probability of success on any instance; and then boost the success
probability by making multiple copies. We now discuss a way of bringing much the
same sensibility to k-d trees.

409

S. DASGUPTA AND S. KPOTUFE

function ChooseRule(S)
Pick U uniformly at random from the unit sphere
Pick β uniformly at random from [1/4,3/4]
Let v = β-fractile point of the projection of S on U
Rule(x) = (x · U ≤ v)
return (Rule)

Figure 18.3 The random projection tree (RP tree): example and pseudocode. Again, a sample query point
is marked with a cross.

The random projection (RP) tree (Figure 18.3) injects two forms of randomness
into a k-d tree: (1) instead of splitting cells along coordinate axes, it picks split
directions uniformly at random from the unit sphere, and (2) instead of putting the
split point exactly at the median, it is placed at a fractile chosen uniformly at random
from the range [1/4,3/4].

The idea is to answer nearest neighbor queries using defeatist search on this
randomized tree structure, which takes time O((log(n/no)) + no), where no is an
upper bound on the number of data points in any leaf. For any data set x1, . . . ,

xn ∈ R
D and any query q ∈ R

D, the probability of not finding the nearest neighbor,
over the randomness in the data structure, can be bounded using an elementary
argument (Dasgupta and Sinha, 2015). The bound turns out to be proportional to a
simple function of the point configuration,

�(q,{x1, . . . ,xn}) = 1
n

n∑
i=2

‖q − x(1)‖
‖q − x(i)‖ ,

where x(1),x(2), . . . denotes an ordering of the xi by increasing distance from q.
Let’s take a closer look at this potential function. If � is close to 1, then all the

points are roughly the same distance from q, and so we can expect that the NN query
is not easy to answer. This is what we get in the canonical bad case discussed at the
beginning of Section 18.2. On the other hand, if � is close to 0, then most of the
points are much further away than the nearest neighbor, so the latter should be easy
to identify. Thus the potential function is an intuitively reasonable measure of the
difficulty of an instance of nearest neighbor search.

It is not hard to give upper bounds on � in situations in which the data have low
doubling measure or doubling dimension. This leads to the following results:

� When x1, . . . ,xn are drawn i.i.d. from a doubling measure with exponent d, the
RP tree is able to answer arbitrary exact nearest neighbor queries in time O(d)d +
O(log n), with a probability of error that is an arbitrarily small constant.

� When the query q is exchangeable with the data x1, . . . ,xn – that is, q is a random
draw from {x1, . . . ,xn,q} – and they together form a set of bounded doubling
dimension, then a similar result holds, but with an additional dependence on the
aspect ratio of the data.

410

NEAREST NEIGHBOR CLASSIFICATION AND SEARCH

These are close to the best results that have been obtained using other data structures.
The failure probability is over the randomization in the tree structure and can be
reduced by building multiple trees to get an RP forest.

Although RP forests have been found effective in practice (Hyvonen et al., 2016),
one would hope to do better by having trees that are still randomized – so that error
probability can be reduced by building a forest – but are more attuned to the data,
in much the same way that a single PCA tree is (in practice) superior to a single RP
tree. It is an interesting open problem to find a way of doing this that both works well
empirically and admits a clean analysis.

18.2.6 Wrap-up: Analyzing Nearest Neighbor Search Algorithms

Nearest neighbor search has been the subject of algorithmic research since the
1970s, and many data structures have been developed for it. Some of these, such as
locality-sensitive hash tables, k-d trees, and cover trees, are fairly easy to implement
and seem to be effective in practice. But in order to understand their relative
strengths and weaknesses – to gauge, for instance, which might be preferable for
a given type of data – and to develop better algorithms, it is important to have
ways of analyzing these schemes. The current state-of-the-art is lacking in this
regard.

For some data structures, such as the k-d tree, there is no characterization of the
types of data on which it works well. On others, there is analysis that is beautiful
but fails to give insight into when and why the scheme works; examples include the
bounds for LSH, which are given solely in terms of an approximation factor and are
thus very loose, and those for the cover tree, which are based on a dimensionality
assumption that is brittle to the point of straining plausibility.

One good open problem is to identify other structural assumptions on data –
beyond low doubling dimension – that are likely to hold in many situations and
that make nearest neighbor search efficient. A second is to pick any existing practical
nearest neighbor algorithm, and to rigorously formulate conditions on the data under
which it will work well.

18.3 Statistical Complexity of k-Nearest Neighbor Classification

We now turn to a different aspect of nearest neighbor: its statistical performance when
used as a classification strategy. While statistical and computational questions are
fundamentally different, and in fact are studied in different communities – machine
learning and statistics on one hand, and algorithms on the other – we will see that
some of the same ideas were developed to capture notions of favorable structure in
data with similar upsides and downsides as discussed above.

Nearest neighbor classification is a form of nonparametric estimation: That is, it is
a prediction strategy whose complexity (e.g., size) is potentially unbounded, and it is
capable of modeling any decision boundary. The statistics community has developed
a standard framework for analyzing nonparametric estimators, and has obtained
basic bounds that provide some insights into general behavior.

411

S. DASGUPTA AND S. KPOTUFE

18.3.1 The Statistical Learning Framework

Let X be the space in which data lie, and Y the space of labels. We will assume for
simplicity that Y = {0,1}. The standard model of statistical learning is that there is
some (unknown) underlying distribution PX,Y on X ×Y from which all data – past,

present, and future – is drawn i.i.d. The training data {Xi,Yi}n
1

i.i.d∼ PX,Y is useful
precisely because it provides some information about PX,Y , and any model we build
is evaluated according to its performance on PX,Y .

A classifier is any function h : X → Y . It can be evaluated by the 01-risk

R(h) = PX,Y (h(X) �= Y) .

There need not exist any classifier with zero risk: consider any scenario with inherent
uncertainty, such as a medical prediction problem in which x is a patient’s medical
record and y is whether the person will suffer a stroke in the next year. Formally, this
corresponds to cases in which the conditional distribution of Y given X = x, denoted
PY |x, assigns nonzero probability to both outcomes, 0 and 1.

Let η(x) = PY |x(1) = E[Y |x]; the 01-risk is minimized by the so-called Bayes
classifier, which predicts the most likely label at each point x:

h∗(x) .= arg max
{
PY |x(1),PY |x(0)

} = 1 {η(x) ≥ 1/2} .

We will henceforth evaluate any classifier h by how much its risk exceeds that of h∗,
the so-called excess-risk,

E(h) .= R(h) − R(h∗), depending on PX,Y .

Now consider any learning procedure that takes n data points sampled i.i.d. from
PX,Y and produces a classifier ĥn. The most basic condition we could demand of this
procedure is consistency: that as n grows to ∞, the excess risk E(ĥn) goes to zero. With
this assured, the next order of business is to establish the rate of convergence of the
excess risk as a function of n and other problem parameters.

Because decision boundaries can be arbitrarily complex, it is well known that
in nonparametric estimation there are no universal rates of convergence without
conditions on the data distribution (Devroye et al., 1997). But what are reason-
able assumptions to make on PX,Y ? Over the past few decades, a certain set of
assumptions has become entrenched in the statistics literature, perhaps more for
mathematical convenience than anything else, and has become the standard backdrop
for convergence rates. We will talk about these, about the resulting bounds and the
estimators that achieve them, and about whether this theory provides an adequate
picture of when nearest neighbor classification works well.

18.3.2 Minimax Optimality

We are interested in the limits of performance, assessed in terms of excess risk E(ĥ)
(as a function of sample size n) achievable by any procedure2 ĥ having little to no

2 We often will not distinguish between the classification procedure ĥ, which maps data in X n to a classifier
X → Y , and the classifier that it returns. In other words, E(ĥ) is the excess risk of the classifier returned by the
procedure ĥ.

412

NEAREST NEIGHBOR CLASSIFICATION AND SEARCH

information on the Bayes classifier h∗, i.e., little information on PX,Y . Assuming PX,Y
belongs to some classP , encoding information on h∗, performance limits are captured
by the minimax classification risk

E∗(P)
.= inf

ĥ
sup

PX,Y ∈P
EPn

X,Y
E(ĥ).

The sup denotes the worst-case excess risk over P achievable by any given ĥ. Any
classifier ĥ achieving excess risk O(E∗) for all PX,Y ∈ P is called minimax-optimal for
P . As a classical example, P .= {PX,Y } corresponds to assuming X ⊂ RD, while η(x)
is λ-Lipschitz over X , i.e., |η(x) − η(x′)| ≤ λ‖x − x′‖, for some λ > 0 – encoding
the hope that nearby points in X have similar Y values. Under these assumptions,
E∗(P) is known to be of order n−1/(2+D); such rate is achieved for instance by
k-nearest neighbor (k-NN) classification with a suitable choice of k ∝ n2/(2+D).
Unfortunately, this is a rather slow rate whenever D is large, since a number of
samples n = �

(
ε−(2+D)

)
seems required to achieve excess risk 0 < ε < 1, a curse

of dimensionality. While this rate is unavoidable in the worst case over P , one would
hope that there are more favorable distributions PX,Y in P where procedures such as
k-NN would do much better. This is indeed the case and is the focus of the rest of
this section.

18.3.3 Adaptive Rates versus Worst-Case Rates

As in the preceding discussion, let P denote the class of all distributions PX,Y ,
with marginal PX supported on X ⊂ RD (X perhaps unknown), with λ-Lipschitz
regression function η(x). For simplicity, in the following discussion, we will let X be
bounded; hence, w.l.o.g., let supx,x′∈X ‖x − x′‖ = 1.

Now note that, P contains – among other favorable distributions – subclasses Pd
of those distributions PX,Y such thatX .= supp(PX) (or PX itself) is of lower intrinsic
dimension d � D, where intrinsic dimension is formalized as any of the concepts
defined in Section 18.2.3. If we knew a priori that PX,Y ∈ Pd ⊂ P , we could do
much better than the minimax rate E∗(P) ∝ n−1/(2+D): This is immediate to see
when d stands for Euclidean dimension, i.e., X is an affine subspace of dimension
d, since as per the preceding discussion, we would then have E∗(Pd) ∝ n−1/(2+d) �
n−1/(2+D), which is achieved, e.g., by k-NN with k ∝ n2/(2+d). The question is
therefore whether such a better rate is achievable (1) under general notions of intrinsic
dimension d where X is nonlinear (e.g., a manifold of dimension d that lies in RD),
and (2) without the knowledge that PX,Y ∈ Pd . A classification procedure which
(nearly) achieves the rates E∗(Pd) simultaneously for all Pd ⊂ P (i.e., under (2))
is called minimax adaptive over the collection {Pd}d≤D, or colloquially, adaptive to
intrinsic d.

In the sequel, we will show that this is indeed the case for k-NN for any of the
notions of intrinsic dimension d of Section 18.2.3, as it happens that key quantities
controlling performance – namely, typical distances to nearest neighbors – depend
only on d rather than on the ambient dimension D. To develop this theme, let us first
assume that PX is homogeneous on X with parameters (Cd,d), i.e., balls of radius r
have PX -mass at least Cdrd (Section 18.2.3).

413

S. DASGUPTA AND S. KPOTUFE

In this case we have the following theorem. Throughout we assume that the k-NN
estimate at any x is defined on exactly k ≤ n points; i.e., either there are no ties in
distances to x, or a deterministic rule is employed to break ties (e.g. pick the first k
ordered indices); we let kNN(x) be the retained set of k closest neighbors to x.

With this notation, k-NN classification is given by ĥ .= 1
{
η̂ ≥ 1/2

}
, where

η̂(x) .= 1
k

∑
Xi∈kNN(x)

Yi. (18.1)

Theorem 18.3 Let PX be (Cd,d) homogeneous on bounded support X ⊂ RD,
and let η(x) be λ-Lipschitz. Let ĥ denote a k-NN estimate with k ∝ n2/(2+d). We
have

E E(ĥ) ≤ C

(
1√
k

+
(

k
n

)1/d
)

≤ C′n−1/(2+d),

where the expectation is over the random draw of {Xi,Yi}n
i=1, and C,C′ depend on

Cd,d, and λ, but not on D.

Without further distributional assumption, the rate is tight; as it matches the
minimax rate for distributions on Rd . The result is obtained by a reduction from
classification to regression, where we recall the fact that the Bayes classifier is given by
h∗ =1 {η ≥ 1/2}, η(x) .= E[Y |x]. Hence, k-NN performance can be assessed through
how well η̂ estimates the regression function η. Let ‖η̂ − η‖1

.= E |η̂ − η|:

Proposition 18.4 (Regression to Classification) E(ĥ) ≤ 2‖η̂ − η‖1.

Proof Let X �=
.= {x ∈ X : ĥ(x) �= h(x)}, and notice that

E(ĥ) =
∫
X �=

|PY |x(1) − PY |x(0)| dPX =
∫
X �=

|2η(x) − 1| dPX,

while, whenever ĥ �= h, we necessarily have |η̂ − η| ≥ |η − 1/2|. �

Now we aim to bound E ‖η̂ − η‖1, one approach being to bound ‖η̂ − η‖1 by
‖η̂ − η‖2

.= (
EX |η̂(X) − η(X)|2)1/2

. We will first condition on X .= {Xi}n
i=1 while

considering just the randomness in Y .= {Yi}n
i=1. Let η̃(x) denote the conditional

expectation EY|Xη̂ = 1
k

∑
Xi∈kNN(x) η(Xi). Clearly, η̃ relates most directly to η. Using

the fact that, for any random variable Z, E[Z − c]2 = E(Z −EZ)2 + (EZ − c)2, we
have the following bias-variance decomposition:

EY|X|η̂(x) − η(x)|2 = EY|X|η̂(x) − η̃(x)|2︸ ︷︷ ︸
Variance

+ |η̃(x) − η(x)|2︸ ︷︷ ︸
Squared Bias

. (18.2)

414

NEAREST NEIGHBOR CLASSIFICATION AND SEARCH

Variance Bound. Using the independence of Yi values upon conditioning, we have

EY|X|η̂(x) − η̃(x)|2 = 1
k2

∑
Xi∈kNN(x)

Var(Yi) ≤ 1
k

. (18.3)

Bias Bound. Given the Lipchitz assumption on η, we have that

|η̃(x) − η(x)| ≤ 1
k

∑
Xi∈kNN(x)

|η(Xi) − η(x)| ≤ max
Xi∈kNN(x)

λ‖Xi − x‖.

Nearest Neighbor Distances. Let rk(x)
.= maxXi∈kNN(x) ‖Xi − x‖ denote the distance

from x to its kth closest neighbor in X. As it turns out, typical values of rk depend on d
rather than on the ambient dimension D. For intuition, notice that the ball B(x,rk(x))
will likely have mass at most c · k

n (since it has empirical mass at least k
n); we will

therefore have the inequality c · k
n ≥ PX (B(x,rk(x))) ≥ Cdrd

k(x) (following from PX

being (Cd,d) homogeneous), implying that rk(x) ≤ C′
d

(
k
n

)1/d
. This is formalized as

follows.
Let r∗k(x) = inf

{
1 ≥ r > 0 : PX (B(x,r)) ≥ 2 k

n

}
. First notice that we must have

PX (B(x,r∗k(x))) ≥ 2 k
n (by continuity of PX over monotone sequences of events).

Also, since PX (B(x, 1
2 r∗k(x))) < 2 k

n , we must have that r∗k(x) ≤ C′
d

(
k
n

)1/d
. Now, we

just need to argue that rk(x) ≤ r∗k(x) with high probability, in other words, that the
ball B(x,r∗k(x)) contains at least k points; this is certainly the case since empirical
masses of balls concentrate around their expectation. Namely, let PX,n denote the
empirical distribution induced by X, by a multiplicative Chernoff bound:

P

(
PX,n(B(x,r∗k(x))) <

k
n

≤ 1
2

PX (B(x,r∗k(x))
)

≤ exp
{
−1

8
n · PX (B(x,r∗k(x))

}
≤ exp

{
−k

4

}
≤ 4

k
.

It follows that

EX
[
r2

k(x)
] ≤ r∗2

k (x) + P
(
rk(x) > r∗k(x)

) ≤ C′
d

2
(

k
n

)2/d

+ 4
k

. (18.4)

Combining (18.4) and (18.3) by invoking the bias-variance decomposition in (18.2),
and then taking expectation over X yields the result of Theorem 18.3. �

Thus, k-NN classification achieves an excess risk that depends only on d � D (for
even nonlinear support X) provided k is set according to d. A loose end is therefore
whether the parameter k can be set, optimally, without knowledge of d.

Data-Driven Choice of k. The simplest approach is cross-validation, i.e., splitting
the sample into two (nearly) equal size independent subsamples, where one sub-
sample is used to define classifiers – corresponding to choices of k – and the other
is used to test their performance. W.l.o.g., assume both samples are of size n;
define ĥk as a classifier on subsample {Xi,Yi}n

i=1 using the parameter choice k ∈ [n]
(admitting a choice of k ∝ n2/(2+d), for unknown d). Now, define the empirical

415

S. DASGUPTA AND S. KPOTUFE

risk R′
n(hk)

.= 1
n

∑
i 1
{
h(X ′

i) �= Y ′
i

}
on validation sample

{
X ′

i ,Y
′
i

}n
i=1, and the choice

k̂ .= arg mink∈[n] R′
n(ĥk). Let k∗ .= arg mink∈[n] R(ĥk); notice that

R(ĥk̂) ≤ R(ĥk∗) + 2 max
k∈[n]

|R(hk) − R′
n(hk)|.

Combining Chernoff and union bounds, we have that, with probability at least 1− δ:

max
k∈[n]

|R(hk) − R′
n(hk)| ≤

√
log(2n/δ)

2n
, of lower order than n−1/(2+d).

In other words, picking δ = 1/n, we have with probability at least 1−1/n that E(ĥk̂) ≤
E(ĥk∗) + 2

√
2 log(2n)

2n . Now, use the fact that E E(ĥk∗) ≤ mink∈[n] E E(ĥk):

Corollary 18.5 Under the assumptions of Theorem 18.3, the empirical k̂ satisfies

E E(ĥk̂) ≤ C′n−1/(2+d).

Similar arguments extend to more general settings, overviewed next.

General Metrics and Notions of Intrinsic Dimension. First, notice that the pre-
ceding arguments extend directly to any metric space (X,ρ) admitting a (Cd,d)-
homogeneous measure PX . Also, we could have assumed PX to be doubling, since it
is then homogeneous (Section 18.2.3). Suppose instead we only assumed that (X,ρ)

has metric dimension d (allowing spaces of doubling dimension d). The adaptive rate
of n−1/(2+d) still holds. However, such a result requires a more refined analysis of
k-NN distances rk: While at any given point x, rk(x) might not scale with d, it can
be shown that E rk(X) is of the order (k/n)1/d (by adapting a covering argument of
Györfi et al. (2006) to metric X), which is sufficient.

Smoothness Conditions on η. The preceding arguments extend easily to the case in
which η is Hölder continuous, i.e., |η(x) − η(x′)| ≤ λρα(x,x′) for some 0 < α ≤ 1,
λ > 0; we would instead obtain the minimax rate n−1/(2+d/α), attained by setting
k ∝ n2/(2+d/α) (or using k̂ as defined earlier). This is obtained by bounding the bias
by λrαk(x). Notice that the rate n−1/(2+d/α) worsens as α → 0, attesting to the fact
that classification is hardest when η changes too fast over X .

While Hölder or Lipschitz conditions on η capture the desired condition that
Y should not change too fast over X , they do not allow discontinuities in η,
which goes against practical intuition in classification. One way to address this is
to instead assume that η is piecewise Hölder, or likely to be locally Hölder over X ,
appropriately formalized (see, e.g., Willett et al., 2006; Urner et al., 2011). More
recently Chaudhuri and Dasgupta (2014) formalized the intuition that, all that is
needed for k-NN success – irrespective of continuity of η – is that the average Y
value in a neighborhood of any x be close to η(x) (the average Y at x), especially
as the PX -mass of the neighborhood gets small. This intuition is parameterized as
follows: For any set B ⊂ X , let η(B) = E [η | B], then it is assumed that

416

NEAREST NEIGHBOR CLASSIFICATION AND SEARCH

∀x ∈ X,r > 0, |η(B(x,r)) − η(x)| ≤ Cγ · PX (B(x,r))γ , for some Cγ ,γ > 0.

Intuitively, letting r = rk(x), we would have η̃(x) ≈ η(B(x,r)), while PX (B(x,r)) ≈
k/n, that is, the bias |η̃(x) − η(x)| would be of order (k/n)γ ; this together with a
variance of order 1/k yields an excess risk of order n−1/(2+γ) by optimizing over k.

In particular, under our earlier Hölder conditions, it can be shown that γ = α/d
holds. This more general condition therefore yields a similar bias bound of order
(k/n)α/d and recovers the above minimax rates.

Inhomogeneous Data, and Extensions of k-NN. The preceding distributional condi-
tions, while classical, do not account for spatial variations in PX,Y . For instance the
density of PX (e.g., with respect to Lebesgue on X = Rd) might vary significantly
over space; X might be made up of subregions Xi of varying intrinsic dimension di �
D, and varying complexity in PY |X (e.g. η might satisfy different Hölder conditions
across Xi’s). The support X might be unbounded, allowing for far outliers. While
these situations might be common in practice, they have only now started receiving
theoretical attention. In particular, they are commonly handled by extensions of
k-NN such as local k-NN, where a local choice of k = k(x) is made at every x ∈ X .
While these procedures in essence have an infinite number of hyperparameters, e.g.
{k(x) : x ∈ X }, they can be shown to generalize, i.e., attain nearly minimax rates
of convergence, even under data-driven choices of k(x) (see, e.g., Kpotufe, 2011;
Samworth et al., 2012; Gadat et al., 2016 for general treatments, that extend to
weighted versions of k-NN prediction, under relaxations of traditional assumptions
on the marginal PX).

18.3.4 Low-Noise Conditions and Fast Rates

Another favorable situation in classification is one in which Y labels are deterministic
(or nearly so). In particular, suppose η(x) has a margin away from 1/2 at some point
x, i.e., |η(x)−1/2| > τ for some 0 < τ < 1/2. Recall that the Bayes classifier satisfies
h∗(x) = 1 {η(x) ≥ 1/2}, while the k-NN estimate ĥ(x) = 1

{
η̂(x) ≥ 1/2

}
, where η̂

estimates η. Thus, if |η̂(x)−η(x)| ≤ τ , we must have ĥ(x) = h∗(x); i.e., the excess risk
at x is then 0.

Under the conditions of Theorem 18.3, for k ∝ n2/(2+d), and n sufficiently large,
we will have |η̂(x)− η(x)| ≤ Cn−1/(2+d) ≤ τ with high probability: This follows from
|η̂(x) − η(x)| ≤ |η̂(x) − η̃(x)| + |η̃(x) − η(x)|, and bounding the variance and bias
terms in high probability (by order of (1/k) and (k/n)1/d), rather than in expectation.
As it turns out, such a result holds uniformly over x ∈ X : let 0 < δ < 1,

P

(
sup

x
|η̂(x) − η(x)| ≤ C

(
log(n/δ)

n

)1/(2+d)
)

≥ 1 − δ. (18.5)

One way to obtain Equation 18.5 is to use uniform Vapnik–Chervonenkis (VC)
concentration arguments over the class of balls centered at x ∈ X ; the constant C
now also depends on the VC dimension of this class (see, e.g., Kpotufe, 2011).

417

S. DASGUPTA AND S. KPOTUFE

Now assume the so-called Massart’s noise condition that ∀x ∈ X , |η(x)− 1/2|>τ .
It then follows from (18.5) that, if n is greater than some n0(τ), there is high
probability that E(ĥ) = 0, which is remarkable. This corresponds to an exponentially
fast rate in expectation, i.e., E E(ĥ) ≤ δ, for large n, provided δ = ω(e−n).

A common relaxation of Massart’s condition is the so-called Tsybakov noise
condition which parameterizes the likelihood of having a margin τ :

∀ 0 < τ < 1/2, PX (x : |η(x) − 1/2| ≤ τ) ≤ Cβτ
β, for some Cβ,β > 0.

Now, define τn,δ
.= C

(
log(n/δ)

n

)1/(2+d)
< 1/2, for n sufficiently large. Under the event

of (18.5), the excess risk is 0 at all points in X>
.= {

x : |η(x) − 1/2| > τn,δ
}
. Let X≤

.=
X \ X>. We therefore have that, with probability at least 1 − δ,

E(ĥ) ≤
∫
X≤

2|η(x) − 1/2| dPX ≤ 2τn,δ ·
∫
X≤

dPX ≤ 2Cβ · τβ+1
n,δ .

Thus, we have E E(ĥ) ≤ C
(

log(n/δ)
n

)(β+1)/(2+d) + δ. In other words, the rate is much

faster than n−1/(2+d) for large β. For example, let δ = 1/n, and β ≥ d/2, and the rates
are at most n−1/2.

Remark (Tension between Parameters) Larger values of β > d happen only
in restricted situations where η crosses 1/2 outside of int(X), due to the
fact that the Lipschitz assumption on η prohibits sharp transitions from 1/2
(see Audibert and Tsybakov, 2007). Such tension disappears for more general
distributions than homogeneous PX (which corresponds to so-called strong
density conditions). However, assuming more general conditions on PX , e.g.,
only that it has support X of metric dimension d, minimax rates are slower of
the form n−(β+1)/(2+d+β).

Data-Dependent Choice of k. It remains unclear whether a global choice of k, e.g.,
by cross-validation, achieves the above rates in terms of β. In particular the above
arguments required pointwise guarantees over x as in (18.5), while cross-validation
only yields guarantees on global error. However, suitable local choices of k = k(x),
e.g., by variants of so-called ICI (Intersecting Confidence Levels), yield the above
rates – up to log terms – without prior knowledge of d or β (see, e.g., Kpotufe and
Martinet, 2018).

Multiclass Settings. In common classification problems, e.g., object detection, speech,
we are in fact dealing with a large number of classes. Therefore, let Y ∈ {1,2, . . . ,L},
and for convenience consider the equivalent encoding Ỹ ∈ {0,1}L, with coordinate
Ỹl =1 {Y = l} . We can now let the regression function η(x) .=E [Ỹ |x], with corre-
sponding k-NN estimate η̂(x) = 1

k

∑
Xi∈kNN(x) Ỹi.

Now the Bayes classifier is given by h∗(x) = arg max l∈[L] ηl(x), and similarly
obtain the k-NN classifier as ĥ(x) = arg max l∈[L] η̂l(x). Whether ĥ(x) �= h∗(x) has
to do with how well η̂(x) estimates η(x), as a function of how it is to distinguish the

418

NEAREST NEIGHBOR CLASSIFICATION AND SEARCH

largest coordinate of η(x) – say η(1)(x) – from the second largest, say η(2)(x). Hence,
a natural extension to the preceding noise conditions is as follows:

∀ 0 < τ < 1/2, PX
(
x : η(1)(x) ≤ η(2)(x) + τ

) ≤ Cβτ
β, for some Cβ,β > 0.

The resulting rates are similar under Lipschitz conditions on η (albeit, with an
additional log L term in the rates; see, e.g., Reeve and Brown, 2018).

18.3.5 Wrap-up: Statistical Complexity

We presented an overview of conditions, or parameterizations of data spaces, going
from worst case to more favorable statistical performance:

(a) Notions of dimension similar to those used in analyzing nearest neighbor search
algorithms. These are not enough on their own; i.e., rates of convergence can
be arbitrarily slow even with this condition, since η (or PY |X) can be arbitrarily
complex.

(b) Lipschitz or Holder conditions on the smoothness of η, together with (a), can
give bounds of the form n−1/(2+d) that are adaptive to d � D for X ∈ RD.

(c) Massart/Tsybakov conditions on the “margin”: how much of η stays away from
1/2. Under these conditions, much better rates are possible, e.g., 1/

√
n.

Condition (a) is sometimes verifiable, e.g., by appealing to manifold structure or
sparsity. But (b) and (c) can be hard to check in practice, although they might be
expected to approximately hold.

Together, these conditions alleviate the worst-case nature of the minimax-
approach by identifying favorable distributional parameters. Yet, they are still not
refined enough, given that many predictors can be shown to be rate-optimal under
these conditions (e.g., k-NN, ε-NN, various classification trees) but are observed to
achieve rather different performance in practice.

Tradeoffs with Fast Search. It is interesting to note that the foregoing analysis and
rates remain relevant – up to constants – whenever fast search methods return
approximate nearest neighbors, since in any case we needed to bound nearest neighbor
distances only approximately to obtain these rates. However, changes in constants
matter in practice (cf. the discussion of MNIST in Section 18.2.1), but unfortunately
are not captured by the type of analysis outlined earlier. There is also a general need
for statistical considerations in the design of fast search methods – which largely
involve decisions based on marginal X and do not take signal in Y into account,
e.g., how slowly labels Y change over X space.

18.4 Notes

References for algorithmic aspects of nearest neighbor search are mostly provided in
the main text. The article of Clarkson (1999) on nearest neighbor methods in metric
spaces is especially recommended, as is the survey of Cutler (1993) on notions of
dimension. For recent developments in locality-sensitive hashing, there is a webpage
maintained by Andoni, at www.mit.edu/~andoni/LSH/.

419

www.mit.edu/~{}andoni/LSH/

S. DASGUPTA AND S. KPOTUFE

Universal consistency of nearest neighbor methods are first established in Fix and
Hodges (1951), Stone (1977), and Devroye et al. (1994) with recent generalizations
by Chaudhuri and Dasgupta (2014) and Hanneke et al. (2019) to metric spaces and
beyond. Early rates of convergence were given by Cover (1968), Wagner (1971), Fritz
(1975), Kulkarni and Posner (1995), and Gyorfi (1981). Various other predictors –
local in nature – can be shown to converge at rates adaptive to the unknown intrinsic
dimension of data; see, e.g., Scott and Nowak (2006), Bickel and Li (2007), Kpotufe
and Dasgupta (2012), Yang and Dunson (2016), and Madrid Padilla et al. (2020).
Finally, a recent book of Chen et al. (2018) gives a comprehensive theoretical survey
of nearest neighbor methods.

References

Abdullah, A., Andoni, A., Kannan, R., and Krauthgamer, R. 2014. Spectral approaches to
nearest neighbor search. In 55th Annual Symposium on Foundations of Computer Science,
pp. 581–590.

Andoni, A., and Indyk, P. 2008. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Communications of the ACM, 51(1), 117–122.

Andoni, A., and Razenshteyn, I. 2015. Optimal data-dependent hashing for approximate near
neighbors. In ACM Symposium on Theory of Computing, pp. 793–801.

Andoni, A., Naor, A., Nikolov, A., Razenshteyn, I., and Waingarten, E. 2018. Data-dependent
hashing via nonlinear spectral gaps. In ACM Symposium on Theory of Computing, pp.
787–800.

Audibert, J.-Y., and Tsybakov, A. B. 2007. Fast learning rates for plug-in classifiers. Annals of
Statistics, 35(2), 608–633.

Bentley, J. L. 1975. Multidimensional binary search trees used for associative Searching.
Communications of the ACM, 18(9), 509–517.

Beygelzimer, A., Kakade, S., and Langford, J. 2006. Cover trees for nearest neighbor. In
Proceedings of the 23rd International Conference on Machine Learning, pp. 97–104.

Bickel, P. J., and Li, B. 2007. Local polynomial regression on unknown manifolds. In Complex
Datasets and Inverse Problems. Institute of Mathematical Statistics, pp. 177–186.

Charikar, M. 2002. Similarity estimation techniques from rounding algorithms. In Proceedings
of the 34th ACM Symposium on Theory of Computing, pp. 380–388.

Chaudhuri, K., and Dasgupta, S. 2014. Rates of convergence for nearest neighbor classifica-
tion. In Advances in Neural Information Processing Systems, pp. 3437–3445.

Chen, George H., Shah, Devavrat, et al. 2018. Explaining the success of nearest neigh-
bor methods in prediction. Foundations and Trends in Machine Learning, 10(5-6),
337–588.

Clarkson, K. 1999. Nearest neighbor queries in metric spaces. Discrete and Computational
Geometry, 22, 63–93.

Clarkson, K. 2006. Nearest-neighbor searching and metric space dimensions. In Nearest-
Neighbor Methods for Learning and Vision: Theory and Practice, pp. 15–59. MIT Press.

Cover, T. M. 1968. Rates of convergence for nearest neighbor procedures. In Proceedings of
the Hawaii International Conference on System Sciences, pp. 413–415.

Cutler, C. 1993. A review of the theory and estimation of fractal dimension. In Tong, H. (ed),
Dimension Estimation and Models, pp. 1–107. World Scientific.

Dasgupta, S., and Freund, Y. 2008. Random projection trees and low dimensional manifolds.
In ACM Symposium on Theory of Computing, pp. 537–546.

Dasgupta, S., and Sinha, K. 2015. Randomized partition trees for nearest neighbor search.
Algorithmica, 72(1), 237–263.

420

NEAREST NEIGHBOR CLASSIFICATION AND SEARCH

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. 2004. Locality-sensitive hashing
based on p-stable distributions. In Proceedings of the Twentieth Annual Symposium on
Computational Geometry, pp. 253–262.

Devroye, L., Gyorfi, L., Krzyzak, A., Lugosi, G., et al. 1994. On the strong universal
consistency of nearest neighbor regression function estimates. Annals of Statistics, 22(3),
1371–1385.

Devroye, L., Gyorfi, L., and Lugosi, G. 1997. A Probabilistic Theory of Pattern Recognition.
Springer.

Fix, E., and Hodges, J. 1951. Discriminatory analysis, nonparametric discrimination. USAF
School of Aviation Medicine, Randolph Field, Texas, Project 21-49-004, Report 4, Contract
AD41(128)-31.

Fritz, J. 1975. Distribution-free exponential error bound for nearest neighbor pattern classifi-
cation. IEEE Transactions on Information Theory, 21(5), 552–557.

Gadat, S., Klein, T., Marteau, C., et al. 2016. Classification in general finite dimensional spaces
with the k-nearest neighbor rule. The Annals of Statistics, 44(3), 982–1009.

Gyorfi, L. 1981. The rate of convergence of kn-NN regression estimates and classification
rules. IEEE Transactions on Information Theory, 27(3), 362–364.

Györfi, L., Kohler, M., Krzyzak, A., and Walk, H. 2006. A Distribution-Free Theory of
Nonparametric Regression. Springer Science+Business Media.

Hanneke, S., Kontorovich, A., Sabato, S., and Weiss, R. 2019. Universal Bayes consistency in
metric spaces. arXiv preprint arXiv:1906.09855.

Hyvonen, V., Pitkanen, T., Tasoulis, S., Jaasaari, E., Tuomainen, R., Wang, L., Corander, J.,
and Roos, T. 2016. Fast nearest neighbor search through sparse random projections
and voting. In Proceedings of the 2016 IEEE International Conference on Big Data,
pp. 881–888.

Indyk, P., and Motwani, R. 1998. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of the 30th Annual ACM Symposium on Theory
of Computing, pp. 604–613.

Kpotufe, S. 2011. k-NN regression adapts to local intrinsic dimension. In Advances in Neural
Information Processing Systems, pp. 729–737.

Kpotufe, S., and Dasgupta, S. 2012. A tree-based regressor that adapts to intrinsic dimension.
Journal of Computer and System Sciences, 78(5), 1496–1515.

Kpotufe, S., and Martinet, G. 2018. Marginal singularity, and the benefits of labels in
covariate-shift. In Proceedings of the Conference on Learning Theory (COLT), pp. 1882–
1886.

Krauthgamer, R., and Lee, J.R. 2004. Navigating nets: Simple algorithms for proximity search.
In ACM-SIAM Symposium on Discrete Algorithms, pp. 798–807.

Kulkarni, S., and Posner, S. 1995. Rates of convergence of nearest neighbor estimation under
arbitrary sampling. IEEE Transactions on Information Theory, 41(4), 1028–1039.

Luukkainen, J., and Saksman, E. 1998. Every complete doubling metric space car-
ries a doubling measure. Proceedings of the American Mathematical Society, 126(2),
531–534.

Madrid Padilla, O. H., Sharpnack, J., Chen, Y., & Witten, D. M. (2020). Adaptive nonpara-
metric regression with the K-nearest neighbour fused lasso. Biometrika, 107(2), 293–310.

McFee, B., and Lanckriet, G. 2011. Large-scale music similarity search with spatial trees. In
12th Conference of the International Society for Music Retrieval, pp. 55–60.

Reeve, H. W. J., and Brown, G. 2018. Minimax rates for cost-sensitive learning on manifolds
with approximate nearest neighbours. arXiv preprint arXiv:1803.00310.

Saksman, E. 1999. Remarks on the nonexistence of doubling measures. In Annales-Academiae
Scientiarum Fennicae Series A1 Mathematica, vol. 24, pp. 155–164. Academia Scien-
tiarum Fennicae.

Samworth, R. J., et al. 2012. Optimal weighted nearest neighbour classifiers. Annals of
Statistics, 40(5), 2733–2763.

421

S. DASGUPTA AND S. KPOTUFE

Scott, C., and Nowak, R.D. 2006. Minimax-optimal classification with dyadic decision trees.
IEEE Transactions on Information Theory, 52(4), 1335–1353.

Sproull, R.F. 1991. Refinements to nearest-neighbor searching in k-dimensional trees. Algo-
rithmica, 6(1), 579–589.

Stone, C.J. 1977. Consistent nonparametric regression. Annals of Statistics, 5(4), 595–620.
Urner, R., Shalev-Shwartz, S., and Ben-David, S. 2011. Access to unlabeled data can speed up

prediction time. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pp. 641–648.

Wagner, T. J. 1971. Convergence of the nearest neighbor rule. IEEE Transactions on Informa-
tion Theory, 17(5), 566–571.

Willett, R., Nowak, R., and Castro, R. M. 2006. Faster rates in regression via active learning.
In Advances in Neural Information Processing Systems, pp. 179–186.

Yang, Y., and Dunson, D. B. 2016. Bayesian manifold regression. Annals of Statistics, 44(2),
876–905.

Exercises

Exercise 18.1 Implications of doubling properties.

(a) Show that if (X,ρ) is a bounded metric, with doubling dimension d, then it
has metric dimension d.

(b) Show that if μ is a doubling measure with exponent d on a bounded metric
(X,ρ), then it is homogeneous (on its support) with parameters (Cd,d) for
some Cd .

Exercise 18.2 Relation between doubling measures and metrics.

(a) Show that if there exists a doubling measure μ on the metric (X,ρ) with
exponent d, then (X,ρ)must be doubling, with doubling dimension O(d). Hint:
Consider maximal packings of a ball by smaller balls.
The reverse is often true, i.e., every complete doubling metric admits a doubling
measure (Luukkainen and Saksman, 1998; Saksman, 1999).

(b) Show that if there exists a doubling measure μ on the metric (X,ρ) with
exponent d, then (X,ρ) has metric dimension d (in fact every ball B(x,r) can
be covered by Cdε

−d balls of radius εr, ∀ε ∈ (0,1] and some constant Cd
independent of x and r).

Exercise 18.3 Comprehensive search for k-d trees. Given a k-d tree built on a data set
S ⊂ R

D and a query q, a comprehensive search begins by finding the nearest point
in the leaf cell containing q; call this point xo. It then expands its search to other
leaf cells that might potentially contain an even closer point: namely, those that
intersect the ball B(q,r), where r = ‖q − xo‖. Along the way, it keeps updating
its current-best nearest neighbor and search radius r, and is guaranteed to return
the true nearest neighbor. Flesh out an algorithm that implements this logic via a
suitable tree traversal.

Exercise 18.4 ε-NN classification. Under the assumptions of Theorem 18.3, let
ε = Cn−1/(2+d), for some C > 0. Let ĥ(x) = 1

{
η̂(x) ≥ 1/2

}
, where, for nε(x)

.=
|X ∩ B(x,ε)|,

422

NEAREST NEIGHBOR CLASSIFICATION AND SEARCH

η̂(x) = 1
nε(x)

∑
Xi∈B(x,ε)

Yi · 1 {nε(x) ≥ 1} , ∀x ∈ supp(PX).

(a) Argue that EY|X‖η̂(x) − η(x)‖2 ≤ 1
nε(x)

1 {nε(x) ≥ 1} + λε2 + 1 {nε(x) = 0}.
(b) Argue that EX1 {nε(x) = 0} ≤ C′/(nPX (B(x,ε)) for suitable C,C′.
(c) Using the fact that for a binomial random variable Z s.t. EZ ≥ 1, we have

E1{Z≥1}
Z ≤ 3/EZ (Lemma 4.1 of Györfi et al., 2006), bound E E(〈̂), and

conclude that ĥ achieves the same rates as derived for k-NN in Theorem 18.3.

423

CHAPTER NINETEEN

Efficient Tensor Decomposition
Aravindan Vijayaraghavan

Abstract: This chapter studies the problem of decomposing a tensor
into a sum of constituent rank one tensors. While tensor decom-
positions are very useful in designing learning algorithms and data
analysis, they are NP-hard in the worst case. We will see how to
design efficient algorithms with provable guarantees under mild
assumptions, and using beyond worst-case frameworks such as
smoothed analysis.

19.1 Introduction to Tensors

Tensors are multidimensional arrays and constitute natural generalizations of matri-
ces. Tensors are fundamental linear algebraic entities and widely used in physics,
scientific computing, and signal processing to represent multidimensional data or
capture multiwise correlations. The different dimensions of the array are called the
modes and the order of a tensor is the number of dimensions or modes of the array,
as shown in Figure 19.1. The order of a tensor also corresponds to the number of
indices needed to specify an entry of a tensor. Hence every (i1,i2,i3) ∈ [n1]× [n2]× [n3]
specifies an entry of the tensor T that is denoted by T(i1,i2,i3) in Figure 19.1.

While we have a powerful toolkit of algorithms such as low-rank approximations
and eigenvalue decompositions for matrices, our algorithmic understanding in the
tensor world is limited. As we will see soon, many basic algorithmic problems such as
low-rank decompositions are NP-hard in the worst case for tensors (of order 3 and
above). But on the other hand, many higher order tensors satisfy powerful structural
properties that are simply not satisfied by matrices. This makes them particularly
useful for applications in machine learning and data analysis. In this chapter, we
will see how we can indeed overcome this worst-case intractability under some
natural nondegeneracy assumptions or using smoothed analysis, and also exploit
these powerful properties for designing efficient learning algorithms.

19.1.1 Low-Rank Decompositions and Rank

We start with the definition of a rank one tensor. An order � tensor T ∈ R
n1×···×n�

is rank one if and only if it can be written as an outer product v1 ⊗ v2 ⊗ · · · ⊗ v� for
some vectors v1 ∈ R

n1, . . . ,v� ∈ R
n� , i.e.,

T(i1,i2, . . . ,i�) = v1(i1)v2(i2) . . . v�(i�) ∀(i1, . . . ,i�) ∈ [n1] × · · · × [n�].

424

EFFICIENT TENSOR DECOMPOSITIONS

Figure 19.1 A matrix M that is a tensor of order 2 and a tensor T of order 3 with n1 = 7,n2 = 6,n3 = 5.
The position of the entry T (7,4,2) is highlighted. An order 1 tensor corresponds to a vector, and an order
0 tensor is a scalar.

Note than when � = 2, this corresponds to being expressible as v1vT
2 .

Definition 19.1 (Rank-k decomposition) A tensor T is said to have a decom-
position of rank k iff it is expressible as the sum of k rank one tensors, i.e.,

∃{u(j)i |i ∈ [k],j ∈ [�]}, s.t. T =
k∑

i=1

u(1)i ⊗ u(2)i ⊗ · · · ⊗ u(�)i .

Moreover, T has rank k if and only if k is the smallest natural number for which
T has a rank k decompostion.

The vectors {u(j)i : i ∈ [k],j ∈ [�]} are called the factors of the decomposition. To
keep track of how the factors across different modes are grouped, we will use
U(j) = (u(j)i : i ∈ [k]) for j ∈ [�] to represent the factors. These “factor matrices”
all have k columns, one per term of the decomposition. Finally, we will also con-
sider symmetric tensors – a tensor T of order � is symmetric iff T(i1,i2, . . . ,ir) =
T(iσ(1),iσ(2), . . . ,iσ(r)) for every permutation σ over {1,2, . . . ,r} (see Exercise 19.1 for
an exercise about decompositions of symmetric tensors).

Differences from Matrix Algebra and Pitfalls. Observe that the definitions of rank
and of a low-rank decompositions specialize to the standard notions for matrices
(� = 2). However, it is dangerous to use the intuition we have developed from matrix
algebra to reason about tensors because of several fundamental differences. First, an
equivalent definition for rank of a matrix is the dimension of the row space, or column
space. This is not true for tensors of order 3 and above. In fact, for a tensor of order
� in R

n×�
, the rank as we defined it could be as large as n�−1, while the dimension

of the span of n dimensional vectors along any of the modes can be at most n. The
definition that we study in Definition 19.1 (as opposed to other notions such as Tucker
decompositions) is motivated by its applications to statistics and machine learning.

Second, much of the spectral theory for matrices involving eigenvectors and
eigenvalues does not extend to tensors of higher order. For matrices, we know that
the best rank-k approximation consists of the leading k terms of the singular value
decomposition (SVD). However, this is not the case for tensor decompositions. The
best rank-1 approximation may not be a factor in the best rank-2 approximation.
Finally, and most importantly, the algorithmic problem of finding the best rank-k

425

A. VIJAYARAGHAVAN

approximation of a tensor is NP-hard in the worst case, particularly for large k;1 for
matrices, this is of course solved using the SVD. In fact, this worst-case NP-hardness
for higher order tensors is true for most tensor problems including computing the
rank, computing the spectral norm, etc. (Håstad, 1990; Hillar and Lim, 2013).

For all of these reasons, and more,2 it is natural to ask, why bother with tensor
decompositions at all? We will now see a striking property (uniqueness) satisfied by
low-rank decompositions of most higher order tensors (but not satisfied by matrices),
which also motivates many interesting uses of tensor decompositions.

Uniqueness of Low-Rank Decompositions. A remarkable property of higher order
tensors is that (under certain conditions that hold typically) their minimum rank
decompositions are unique up to trivial scaling and permutation. This is in sharp
contrast to matrix decompositions. For any matrix M with a rank k ≥ 2 decom-
position M = UVT = ∑k

i=1 uivT
i , there exist several other rank k decompositions

M = U ′(V ′)T , where U ′ = UO and V ′ = VO for any rotation matrix O, i.e.,
OOT = Ik; in particular, the SVD is one of them. This rotation problem is a common
issue when using matrix decompositions in factor analysis (since we can find the
factors only up to a rotation).

The first uniqueness result for tensor decompositions was due to Harshman
(1970)(who in turn credits it to Jennrich), assuming what is known as the “full rank
condition.” In particular, if T ∈ R

n×n×n has a decomposition

T =
k∑

i=1

ui ⊗ ui ⊗ ui, s.t. {ui : i ∈ [k]} ⊂ R
n are linearly independent,

(or the factor matrix U is full rank), then this is the unique decomposition of rank k
up to permuting the terms. (The statement is actually a little more general and also
handles nonsymmetric tensors; see Theorem 19.4). Note that the full rank condition
requires k ≤ n (moreover, it holds when the vectors are in general position in n ≥ k
dimensions). What makes this above result even more surprising is that the proof is
algorithmic! We will in fact see the algorithm and proof in Section 19.3.1. This will
serve as the workhorse for most of the algorithmic results in this chapter. Kruskal
(1977) gave a more general condition that guarantees uniqueness up to rank 3n/2−1,
using a beautiful nonalgorithmic proof. Uniqueness is also known to hold for generic
tensors of rank k = �(n2) (here “generic” means all except a measure zero set of
rank k tensors). We will now see how this remarkable property of uniqueness will be
very useful for applications such as learning latent variable models.

19.2 Applications to Learning Latent Variable Models

A common approach in unsupervised learning is to assume that the data (input) that
are given to us are drawn from a probabilistic model with some latent variables and/or
unknown parameters θ that is appropriate for the task at hand, i.e., the structure

1 For small k, there are algorithms that find approximately optimal rank-k approximations in time exponen-
tial in k (see, e.g., Bhaskara et al., 2014b; Song et al., 2019).

2 There are other definitional issues with the rank – there are tensors of a certain rank that can be arbitrarily
well approximated by tensors of much smaller rank; i.e., the “limit rank” (or formally, the border rank) may not
be equal to the rank of the tensor. See Exercise 19.2 for an example.

426

EFFICIENT TENSOR DECOMPOSITIONS

we want to find. This includes mixture models such as mixtures of Gaussians, topic
models for document classification, etc. A central learning problem is the efficient
estimation of such latent model parameters from observed data.

A necessary step toward efficient learning is to show that the parameters are indeed
identifiable after observing polynomially many samples. The method of moments
approach, pioneered by Pearson, infers model parameters from empirical moments
such as means, or pairwise correlations and other higher order correlations. In
general, very high order moments may be needed for this approach to succeed,
and the unreliability of empirical estimates of these moments leads to large sample
complexity (see, e.g., Moitra and Valiant, 2010; Belkin and Sinha, 2015). In fact,
for latent variable models such as mixtures of k Gaussians, an exponential sample
complexity of exp(�(k)) is necessary, if we make no additional assumptions.

On the computational side, maximum likelihood estimation, i.e., argmaxθ Prθ [data]
is NP-hard for many latent variable models (see, e.g., Tosh and Dasgupta, 2018).
Moreover, iterative heuristics like expectation maximization (EM) tend to get stuck in
local optima. Efficient tensor decompositions, when possible, present an algorithmic
framework that is both statistically and computationally efficient for recovering the
parameters.

19.2.1 Method-of-Moments via Tensor Decompositions: A General Recipe

The method-of-moments is the general approach of inferring parameters of a
distribution, by computing empirical moments of the distribution and solving for
the unknown parameters. The moments of a distribution over R

n are naturally
represented by tensors. The covariance or the second moment is an n × n matrix,
the third moment is represented by a tensor of order 3 in R

n×n×n (the (i1,i2,i3)th
entry is E[xi2xi2xi3]), and in general the �th moment is a tensor of order �. More
crucially for many latent variable models D(θ̄) with parameters θ̄ , the moment
tensor, or a suitable modification of it, has a low-rank decomposition (perhaps up
to some small error) in terms of the unknown parameters θ̄ of the model. Low-rank
decompositions of the tensor can then be used to implement the general method-
of-moments approach, with both statistical and computational implications. The
uniqueness of the tensor decomposition then immediately implies identifiability of
the model parameters (in particular, it implies a unique solution for the parameters)!
Moreover, a computationally efficient algorithm for recovering the factors of the
tensor gives an efficient algorithm for recovering the parameters θ̄ .

General Recipe. Here is an algorithmic framework for parameter estimation. Con-
sider a latent variable model with model parameters θ̄ = (θ1,θ2, . . . ,θk). These could
be one parameter each for the k possible values of the latent variable (for example,
in a mixture of k Gaussians, the θi could represent the mean of the ith Gaussian
component of unit variance).

1. Define an appropriate statistic T of the distribution (typically based on moments)
such that the expected value of T has a low-rank decomposition

T = ED(θ)[T] =
k∑

i=1

λiθ
⊗�
i , for some � ∈ N, and (known) scalars {λi : i ∈ [k]}.

427

A. VIJAYARAGHAVAN

2. Obtain an estimate T̃ of the tensor T = E[T] from the data (e.g., from empirical
moments) up to small error (denoted by the error tensor E).

3. Use tensor decompositions to solve for the parameters θ̄ = (θ1, . . . ,θk) in the
system

∑k
i=1 λiθ

⊗�
i ≈ T̃ , to obtain estimates θ̂1, . . . ,θ̂k of the parameters.

The last step involving tensor decompositions is the technical workhorse of this
approach, both for showing identifiability and getting efficient algorithms. Many
of the existing algorithmic guarantees for tensor decompositions (that hold under
certain natural conditions about the decomposition, e.g., Theorems 19.4 and 19.8)
provably recover the rank-k decomposition, thereby giving algorithmic proofs of
uniqueness as well. However, the first step of designing the right statistic T with a low-
rank decomposition requires a great deal of ingenuity and creativity. In Section 19.2.2
we will see two important latent variable models that will serve as our case studies.
You will see another application in the next chapter on topic modeling.

Need for Robustness to Errors. So far, we have completely ignored sample complexity
considerations by assuming access to the exact expectation T =E[T], so the error
E = 0 (this requires infinite samples). In polynomial time, the algorithm can access
only a polynomial number of samples. Estimating a simple 1D statistic up to
ε = 1/poly(n) accuracy typically requires �(1/ε2) samples; the �th moment of a
distribution requires nO(�) samples to estimate up to inverse polynomial error (in
Frobenius norm, say). Hence, to obtain polynomial-time guarantees for parameter
estimation, it is vital for the tensor decomposition guarantees to be noise tolerant,
i.e., robust up to inverse polynomial error (this is even assuming no model mis-
specification). Fortunately, such robust guarantees do exist – in Section 19.3.1, we will
show a robust analogue of Harshman’s uniqueness theorem and related algorithms
(see also Bhaskara et al., 2014b, for a robust version of Kruskal’s uniqueness
theorem). Obtaining robust analogues of known uniqueness and algorithmic results
is quite nontrivial and open in many cases (see Section 19.6).

19.2.2 Case Studies

Case Study 1: Mixtures of Spherical Gaussians. Our first case study is on mixtures
of Gaussians. They are perhaps the most widely studied latent variable model in
machine learning for clustering and modeling heterogeneous populations. We are
given random samples, where each sample point x ∈ R

n is drawn independently from
one of k Gaussian components according to mixing weights w1,w2, . . . ,wk, where
each Gaussian component j ∈ [k] has a mean μj ∈ R

n and a covariance σ 2
j I ∈ R

n×n.
The goal is to estimate the parameters {(wj,μj,σj) : j ∈ [k]} up to required accuracy
ε > 0 in time and number of samples that are polynomial in k,n,1/ε. Existing
algorithms based on method of moments have sample complexity and running time
that is exponential in k in general (Moitra and Valiant, 2010; Belkin and Sinha,
2015). However, we will see that as long as certain nondegeneracy conditions are
satisfied, tensor decompositions can be used to get tractable algorithms that have
only a polynomial dependence on k (in Theorem 19.6 and Corollary 19.16).

For the sake of exposition, we will restrict our attention to the uniform case when
the mixing weights are all equal and variances σ 2

i = 1, ∀i ∈ [k]. Most of these ideas

428

EFFICIENT TENSOR DECOMPOSITIONS

also apply in the more general setting (see Hsu and Kakade, 2013). For the first step
of the recipe, we will design a statistic that has a low-rank decomposition in terms of
the means {μi : i ∈ [k]}.

Proposition 19.2 For any integer � ≥ 1, one can compute efficiently a statistic
T� from the first � moments such that E[T] = T� := ∑k

i=1 μ
⊗�
i .

Let η ∼ N(0,I) denote a Gaussian r.v. The expected value of the statistic x⊗� is

Mom� := E[x⊗�] =
∑

i

wiEη[(μi + η)⊗�] = 1
k

k∑
i=1

∑
xj∈{μi,η}
∀j∈[�]

Eη

⎡⎣ �⊗
j=1

xj

⎤⎦ . (19.1)

Now the first term in the inner expansion (where every xj = μi) is the one we
are interested in, so we will try to “subtract” out the other terms using the first
(� − 1) moments of the distribution. Let us consider the case when � = 3 to gain
more intuition. As odd moments of η are zero, we have

Mom3 := E[x⊗3]

= 1
k

k∑
i=1

(
μ⊗3

i + Eη[μi ⊗ η ⊗ η] + Eη[η ⊗ η ⊗ μi] + Eη[η ⊗ μi ⊗ η]
)

= T3 + (Mom1 ⊗ I + two other known terms
)
.

Hence, we can obtain the required tensor T3 using a combination of Mom3 and
Mom1; the corresponding statistic is x⊗3 − (x ⊗ I + two other known terms). We
can use a similar inductive approach for obtaining T� (or use Iserlis identity that
expresses higher moments of a Gaussian in terms of the mean and covariance).3

Case Study 2: Learning Hidden Markov Models (HMMs). Our next example is
HMMs, which are extensively used for data with a sequential structure. In an HMM,
there is a hidden state sequence Z1,Z2, . . . ,Zm taking values in [k] that forms a
stationary Markov chain Z1 → Z2 → · · · → Zm with transition matrix P and
initial distribution w = {wj}j∈[k] (assumed to be the stationary distribution). The
observation Xt is represented by a vector in x(t) ∈ R

n. Given the state Zt at time t, Xt
is conditionally independent of all other observations and states. The observation
matrix is denoted by O ∈R

n×k; the columns of O represent the means of the
observation Xt ∈ R

n conditioned on the hidden state Zt, i.e., E[Xt|Zt = i] = Oi,
where Oi represents the ith column of O. We also assume that Xt satisfies strong
enough concentration bounds to use empirical estimates. The parameters are P,O,w.

We now define appropriate statistics following Allman et al. (2009). Let m = 2�+1
for some � to be chosen later. The statistic T is X2�+1 ⊗ X2� ⊗ · · · ⊗ X1. We can also
view this (2� + 1) moment tensor as a 3-tensor of shape n� × n × n�. The first mode
corresponds to X� ⊗X�−1 ⊗ . . .⊗X1, the second mode is X�+1, and the third mode is
X�+2 ⊗ X�+3 ⊗ . . . X2�+1. Why does it have a low-rank decomposition? We can think
of the hidden state Z�+1 as the latent variable that takes k possible values.

3 An alternate trick to obtain a statistic T� that loses only constant factors in the dimension involves looking
at an off-diagonal block of the tensor Mom� after partitioning the n coordinates into � equal sized blocks.

429

A. VIJAYARAGHAVAN

Proposition 19.3 The aforementioned statistic T has a low-rank decomposition∑k
i=1 Ai ⊗ Bi ⊗ Ci with factor matrices A ∈ R

n�×k, B ∈ R
n×k, and C ∈ R

n�×k

s.t. ∀i ∈ [k],

Ai = E[⊗1
j=�Xj|Z�+1 = i], Bi = E[X�+1|Z�+1 = i], and

Ci = E[⊗2�+1
j=�+2Xj|Z�+1 = i].

Moreover, O,P, and w can be recovered from A,B,C.

For � = 1, C = OP,B = O,A = OP′, where P′ = diag(w)PT diag(w)−1 is the
reverse transition matrix. Tensor decompositions will allow for efficient recovery of
O,P,w in Theorem 19.7 and Section 19.4.4. We leave the proof of Proposition 19.3
as Exercise 19.4. See Allman et al. (2009) for more details.

19.3 Efficient Algorithms in the Full-Rank Setting

19.3.1 Simultaneous Diagonization (Jennrich’s Algorithm)

We now study Jennrich’s algorithm (first described in Harshman, 1970), that gives the-
oretical guarantees for finding decompositions of third-order tensors under a natural
nondegeneracy condition called the full-rank setting. Moreover, this algorithm also
has reasonable robustness properties and can be used as a building block to handle
more general settings and for many machine learning applications. Consider a third-
order tensor T ∈ R

n×m×p that has a decomposition of rank k:

T =
k∑

i=1

ui ⊗ vi ⊗ wi.

Our algorithmic goal is to recover the unknown factors U,V,W . Of course, we hope
to recover the factors only up to some trivial scaling of vectors (within a rank-one
term) and permuting terms. Note that our algorithmic goal here is much stronger than
usual. This is possible because of uniqueness of tensor decompositions – in fact, the
proof of correctness of the algorithm will also give a uniqueness proof!

The algorithm considers two matrices Ma,Mb that are formed by taking random
linear combinations of the slices of the tensor as shown in Figure 19.2. We will

Figure 19.2 A tensor T , and a particular matrix slice highlighted (corresponding to i3 = 2). The linear
combination of the slices T (·, · ,a) takes a linear combination of these matrix slices weighted according to
a ∈ R

p . The algorithm considers two matrices Ma = T (·, · ,a),Mb = T (·, · ,b) for two randomly chosen
vectors a,b ∈ R

p .

430

EFFICIENT TENSOR DECOMPOSITIONS

show later in (19.2) that Ma,Mb both have low-rank decompositions in terms of the
unknown factors {ui,vi}. Hence, the algorithm reduces the problem of decomposing
one third-order tensor into the problem of obtaining a “simultaneous” decomposi-
tion of the two matrices Ma,Mb (this is also called simultaneous diagonalization).

In Jennrich’s Algorithm, M† refers to the pseudoinverse or the Moore–Penrose
inverse of M (if a rank-k matrix M has a singular value decomposition M = U�VT ,
where � is a k × k diagonal matrix, then M† = V�−1UT).

Jennrich’s Algorithm
Input: Tensor T ∈ R

n×m×p.

1. Draw a,b ∼ N(0, 1
p)

p ∈ R
p independently. Set Ma = T(·, · ,a),Mb = T(·, · ,b).

2. Set {ui : i ∈ [k]} to be the eigenvectors corresponding to the k largest (in magnitude) eigenvalues
of Ma(Mb)

†. Similarly let {vi : i ∈ [k]} be the eigenvectors corresponding to the k largest (in

magnitude) eigenvalues of
(
(Mb)

†Ma
)T .

3. Pair up ui,vi if their corresponding eigenvalues are reciprocals (approximately).
4. Solve the linear system T = ∑k

i=1 ui ⊗ vi ⊗ wi for the vectors wi.

5. Return factor matrices U ∈ R
n×k,V ∈ R

m×k,W ∈ R
p×k.

In what follows, ‖T‖F denotes the Frobenius norm of the tensor (‖T‖2
F is the sum

of the squares of all the entries), and the condition number κ of matrix U ∈ R
n×k

is given by κ(U) = σ1(U)/σk(U), where σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0 are the singular
values. The guarantees (in terms of the error tolerance) will be inverse polynomial in
the condition number κ, which is finite only if the matrix has rank k (full rank).

Theorem 19.4 Suppose we are given tensor T̃ = T + E ∈ R
m×n×p, where T has

a decomposition T = ∑k
i=1 ui ⊗ vi ⊗ wi satisfying the following conditions:

1. Matrices U = (ui : i ∈ [k]),V = (vi : i ∈ [k]) have condition number at most κ,
2. For all i �= j, ‖ wi

‖wi‖ − wj
‖wj‖‖2 ≥ δ.

3. Each entry of E is bounded by ‖T‖F · ε/poly(κ, max{n,m,p}, 1
δ
).

Then Jennrich’s Algorithm on input T̃ runs in polynomial time and returns a
decomposition {(̃ui,̃vi,w̃i) : i ∈ [k]} s.t. there is a permutation π : [k] → [k]
with

∀i ∈ [k], ‖̃ui ⊗ ṽi ⊗ w̃i − uπ(i) ⊗ vπ(i) ⊗ wπ(i)‖F ≤ ε‖T‖F .

We start with a simple claim that leverages the randomness in the Gaussian
linear combinations a,b (in fact, this is the only step of the argument that uses
randomization). Let Da := diag(aT w1,aT w2, . . . ,aT wk) and Db := diag(bT w1,

bT w2, . . . ,bT wk).

Lemma 19.5 With high probability over the randomness in a,b, the diagonal
entries of DaD−1

b are separated from each other, and from 0, i.e.,

∀i ∈ [k]

∣∣∣∣ 〈wi,a〉
〈wi,b〉

∣∣∣∣ > 1
poly(p)

, and ∀i �= j

∣∣∣∣ 〈wi,a〉
〈wi,b〉 − 〈wj,a〉

〈wj,b〉
∣∣∣∣ > 1

poly(p)
.

431

A. VIJAYARAGHAVAN

The proof just uses simple anti-concentration of Gaussians and a union bound.
We now proceed to the proof of Theorem 19.4.

Proof of Theorem 19.4 We first prove that when E = 0, the preceding algo-
rithm recovers the decomposition exactly. The robust guarantees when E �= 0
uses perturbation bounds for eigenvalues and eigenvectors.

No-noise Setting (E = 0). Recall that T has a rank k decomposition in terms
of the factors U,V,W . Hence

Ma =
k∑

i=1

〈a,wi〉uivT
i = UDaVT, and similarly Mb = UDbVT . (19.2)

Moreover U,V are full rank by assumption, and diagonal matrices Da,Db have
full column rank of k with high probability (Lemma 19.5). Hence

Ma(Mb)
† = UDaVT (VT)†D†

bU† = UDaD†
bU†

and MT
a (MT

b)† = VDaD†
bV†.

Moreover, from Lemma 19.5, the entries of DaD†
b are distinct and nonzero

with high probability. Hence the column vectors of U are eigenvectors of
Ma(Mb)

† with eigenvalues (〈wi,a〉/〈wi,b〉 : i ∈ [k]). Similarly, the columns of V
are eigenvectors of (M†

b Ma)
T with eigenvalues (〈wi,b〉/〈wi,a〉 : i ∈ [k]). Hence,

the eigendecompositions of MaM†
b and (M†

b Ma)
T are unique (up to scaling of

the eigenvectors), with the corresponding eigenvalues being reciprocals of each
other.

Finally, once we know {ui,vi : i ∈ [k]} (up to scaling), step 4 of the algorithm
solves a linear system in the unknowns {wi : i ∈ [k]}. A simple claim shows that
the corresponding co-efficient matrix given by {uivT

i : i ∈ [k]} has “full” rank,
i.e., rank of k. Hence the linear system has a unique solution W and algorithm
recovers the decomposition.

Robust Guarantees (E Is Nonzero). When E �= 0, we will need to analyze
how much the eigenvectors of M1 := MaM†

b can change, under the (worst-
case) perturbation E. The proof uses perturbation bounds for eigenvectors
of matrices (which are much more brittle than eigenvalues) to carry out this
analysis. We now give a high-level description of the approach, while pointing
out a couple of subtle issues and difficulties. The primary issue comes from
the fact that the matrix M1 = MaM†

b is not a symmetric matrix (for which
one can use the Davis–Kahan theorem for singular vectors). In our case,
while we know that M1 is diagonalizable, there is no such guarantee about
M ′

1 = MaM†
b + E′, where E′ is the error matrix that arises at this step due to

E. The key property that helps us here is Lemma 19.5, which ensures that all of
the nonzero eigenvalues of M1 are separated. In this case, we know the matrix
M ′

1 is also diagonalizable using a standard strengthening of the Gershgorin disc
theorem. One can then use the separation in the eigenvalues of M1 to argue
that the eigenvectors of M1,M ′

1 are close, using ideas from the perturbation

432

EFFICIENT TENSOR DECOMPOSITIONS

theory of invariant subspaces (see Chapter 5 of Stewart and Sun, 1990). See
also Goyal et al. (2014) and Bhaskara et al. (2014a) for a self-contained proof
of Theorem 19.4. �

19.3.2 Implications in Learning Applications

These efficient algorithms that (uniquely) recover the factors of a low-rank tensor
decomposition give polynomial time guarantees for learning nondegenerate instances
of several latent variable models using the general recipe given in Section 19.2.1. This
approach has been used for several problems including, but not limited to, parameter
estimation of hidden Markov models, phylogeny models, mixtures of Gaussians,
independent component analysis, topic models, mixed community membership mod-
els, ranking models, crowdsourcing models, and even certain neural networks (see
Anandkumar et al., 2014; Moitra, 2018 for excellent expositions on this topic).

For illustration, we give the implications for our two case studies. For Gaussian
mixtures, the k means are assumed to be linear independent (hence n ≥ k). We apply
Theorem 19.4 to the � = 3 order tensor obtained from Proposition 19.2.

Theorem 19.6 (Hsu and Kakade, 2013) Given samples from a mixture of k
spherical Gaussians, there is an algorithm that learns the parameters up to ε error
in poly(n,1/ε,1/σk(M)) time (and samples), where M is the n × k matrix of
means.

For hidden Markov models, we assume that the columns of the observation matrix
O and the transition matrix P are linear independent (hence n ≥ k). We apply
Theorem 19.4 to the � = 3 order tensor obtained from Proposition 19.3.

Theorem 19.7 (Mossel and Roch, 2006; Hsu et al., 2012) Given samples with
m = 3 consecutive observations (corresponding to any fixed window of length 3)
from an HMM model as in Section 19.2.2, with σk(O) ≥ 1/poly(n) and σk(P) ≥
1/poly(n), we can recover P,O up to ε error in poly(n,1/ε) time (and samples).

19.4 Smoothed Analysis and the Overcomplete Setting

The tensor decomposition algorithm we have seen in the previous section requires
that the factor matrices have full column rank. As we have seen in Section 19.3.2,
this gives polynomial-time algorithms for learning a broad variety of latent variable
models under the full-rank assumption. However, there are many applications in
unsupervised learning in which it is crucial that the hidden representation has much
higher dimension (or number of factors k) than the dimension of the feature space n.
Obtaining polynomial-time guarantees for these problems using tensor decomposi-
tions requires polynomial-time algorithmic guarantees when the rank is much larger
than the dimension (in the full-rank setting k ≤ n, even when the k factors are random
or in general position in R

n). Can we hope to obtain provable guarantees when the
rank k � n?

433

A. VIJAYARAGHAVAN

This challenging setting when the rank is larger than the dimension is often referred
to as the overcomplete setting. The tensor decomposition problem in the overcomplete
setting is NP-hard in general. However for tensors of higher order, we will see in the
rest of this section how Jennrich’s algorithm can be adapted to get polynomial-time
guarantees even in very overcomplete settings for nondegenerate instances – this will
be formalized using smoothed analysis.

19.4.1 Smoothed Analysis Model

The smoothed analysis model for tensor decompositions models the situation when
the factors in the decomposition are not worst case.

� An adversary chooses a tensor T = ∑k
i=1 u(1)i ⊗ u(2)i ⊗ · · · ⊗ u(�)i .

� Each vector u(j)i is randomly “ρ-perturbed” using an independent Gaussian
N(0,ρ2/n)n with mean 0 and variance ρ2/n in each direction4.

� Let T̃ = ∑k
i=1 ũ(1)i ⊗ ũ(2)i ⊗ · · · ⊗ ũ(�)i .

� The input instance is T̂ = T̃ + E, where E is some small potentially adversarial
noise.

Our goal is to recover (approximately when E �= 0) the � sets of factors U(1), . . . ,U(�)

(up to rescaling and relabeling), where U(j) = (̃u(j)i : i ∈ [k]). The parameter setting of
interest is ρ being at least some inverse polynomial in n, and the maximum entry of E
being smaller than some sufficiently small inverse polynomial 1/poly(n,1/ρ). We will
also assume that the Euclidean lengths of the factors {u(j)i } are polynomially upper
bounded. We remark that when k ≤ n (as in the full-rank setting), Theorem 19.4
already gives smoothed polynomial-time guarantees when ε < ρ/poly(n), since the
condition number κ ≤ poly(n)/ρ with high probability.

Remarks There is an alternate smoothed analysis model in which the random
perturbation is to each entry of the tensor itself, as opposed to randomly
perturbing the factors of a decomposition. The two random perturbations
are very different in flavor. When the whole tensor is randomly perturbed, we
have n� “bits” of randomness, whereas when only the factors are perturbed
we have �n “bits” of randomness. On the other hand, the model in which the
whole tensor is randomly perturbed is unlikely to be easy from a computational
standpoint, since this would likely imply randomized algorithms with good
worst-case approximation guarantees.

Why do we study perturbations to the factors? In most applications each factor
represents a parameter, e.g., a component mean in Gaussian mixture models. The
intuition is that if these parameters of the model are not chosen in a worst-case
configuration, we can potentially obtain vastly improved learning algorithms with
such smoothed analysis guarantees.

4 Many of the results in the section also hold for other forms of random perturbations, as long as the
distribution satisfies a weak anti-concentration property, similar to the setting in Chapters 13–15; see Anari
et al. (2018) for details.

434

EFFICIENT TENSOR DECOMPOSITIONS

The smoothed analysis model can also be seen as the quantitative analogue of
“genericity” results that are inspired by results from algebraic geometry, particularly
when we need robustness to noise. Results of this generic flavor give guarantees for
all except a set of instances of zero measure. However, such results are far from being
quantitative; as we will see later we typically need robustness to inverse polynomial
error with high probability for polynomial-time guarantees.

19.4.2 Adapting Jennrich’s Algorithm for Overcomplete Settings

We will give an algorithm in the smoothed analysis setting for overcomplete tensor
decompositions with polynomial-time guarantees. In the following theorem, we
consider the model in Section 19.4.1 where the low-rank tensor T̃ = ∑k

i=1 ũ(1)i ⊗
ũ(2)i ⊗ · · · ⊗ ũ(�)i , and the factors {ũ(j)i } are ρ-perturbations of the vectors {u(j)i }, which
we will assume are bounded by some polynomial of n. The input tensor is T̃ + E,
where E represents the adversarial noise.

Theorem 19.8 Let k ≤ n� �−1
2 �/2 for some constant � ∈ N, and ε ∈ [0,1). There is

an algorithm that takes as input a tensor T̂ = T̃+E as described in Section 19.4.1,
with every entry of E being at most ε/(n/ρ)O(�) in magnitude, and runs in time
(n/ρ)O(�) to recover all the rank one terms {⊗�

i=1ũ(j)i : i ∈ [k]} up to an additive ε

error measured in Frobenius norm, with probability at least 1 − exp(−�(n)).

To describe the main algorithmic idea, let us consider an order-5 tensor
T ∈ R

n×n×n×n×n. We can “flatten” T to get an order-3 tensor

T =
k∑

i=1

u(1)i ⊗ u(2)i︸ ︷︷ ︸
factor

⊗ u(3)i ⊗ u(4)i︸ ︷︷ ︸
factor

⊗ u(5)i︸︷︷︸
factor

.

This gives us an order-3 tensor T ′ of size n2 × n2 × n. The effect of the “flattening”
operation on the factors can be described succinctly using the following operation.

Definition 19.9 (Khatri–Rao Product) The Khatri–Rao product of A ∈ R
m×k

and B ∈ R
n×k is an mn × k matrix U 3 V whose ith column is ui ⊗ vi.

Our new order-3 tensor T ′ also has a rank k decomposition with factor matri-
ces U ′ = U(1) 3 U(2),V ′ = U(3) 3 U(4) and W ′ = U(5) respectively. Note that the
columns of U ′ and V ′ are in n2 dimensions (in general they will be n�(�−1)/2� dimen-
sional). We could now hope that the assumptions on the condition number U ′,V ′ in
Theorem 19.4 are satisfied for k = ω(n). This is not true in the worst case (see
Exercise 19.3 for the counterexample). However, we will prove this is true w.h.p. in
the smoothed analysis model!

As the factors in U(1), . . . ,U(�) are all polynomially upper bounded, the maximum
singular value is also at most a polynomial in n. The following proposition shows
high-confidence lower bounds on the minimum singular value after taking the
Khatri–Rao product of a subset of the factor matrices; this of course implies that
the condition number has a polynomial upper bound with high probability.

435

A. VIJAYARAGHAVAN

Proposition 19.10 Let δ ∈ (0,1) be constants such that k ≤ (1− δ)n�. Given any
U(1),U(2), . . . ,U(�) ∈ R

n×k, then for their random ρ-perturbations, we have

P

[
σk(Ũ

(1) 3 Ũ(2) 3 · · · 3 Ũ(�)) <
c1(�)ρ

�

n�

]
≤ k exp

(− c2(�)δn
)
,

where c1(�),c2(�) are constants that depend only on �.

The proposition implies that the conditions of Theorem 19.4 hold for the flattened
order-3 tensor T ′; in particular, the condition number of the factor matrices is
now polynomially upper bounded with high probability. Hence running Jennrich’s
algorithm to the order-3 tensor T ′ recovers the rank-one factors w.h.p. as required in
Theorem 19.8. The rest of the section outlines the proof of Proposition 19.10.

Failure Probability. We remark on a technical requirement about the failure prob-
ability (that is satisfied by Proposition 19.10) for smoothed analysis guarantees.
We need our bounds on the condition number or σmin to hold with a sufficiently
small failure probability, say n−ω(1), or even exponentially small (over the ran-
domness in the perturbations). This is important because in smoothed analysis
applications, the failure probability essentially describes the fraction of points around
any given point that are bad for the algorithm. In many of these applications, the
time/sample complexity has an inverse polynomial dependence on the minimum
singular value. For example, if we have a guarantee that σmin ≥ γ with probability
at least 1 − γ 1/2, we have that the probability of the running time exceeding T
(upon perturbation) is at most 1/

√
T . Such a guarantee does not suffice to show

that the expected running time is polynomial (also called polynomial smoothed
complexity).

Note that our matrix Ũ(1)3Ũ(2)3· · ·3Ũ(�) is a random matrix in which the entries
are highly dependent; e.g., there are only kn� independent variables but kn� matrix
entries. This presents very different challenges compared to well-studied settings in
random matrix theory, where every entry is independent.

While the least singular value can be hard to handle directly, it is closely related to
the leave-one-out distance, which is often much easier to deal with.

Definition 19.11 Given a matrix M ∈ R
n×k with columns M1, . . . ,Mk, the

leave-one-out distance of M is

�(M)=min
i∈[k]

‖�⊥
−iMi‖2, where �⊥

−i is the projection orthogonal to span({Mj : j �= i}).

The leave-one-out distance is closely related to the least singular value, up to a factor
polynomial in the number of columns of M, by the following simple lemma.

Lemma 19.12 For any matrix M ∈ R
n×k, we have

�(M)√
k

≤ σmin(M) ≤ �(M). (19.3)

The following (more general) core lemma that lower bounds the projection onto any
given subspace of a randomly perturbed rank-one tensor implies Proposition 19.10.

436

EFFICIENT TENSOR DECOMPOSITIONS

Lemma 19.13 Let � ∈ N and δ ∈ (0, 1
�
) be constants, and let W ⊆ R

n×�
be an

arbitrary subspace of dimension at least δn�. Given any x1, . . . ,x� ∈ R
n, then their

random ρ-perturbations x̃1, . . . ,x̃� satisfy

Pr
[
‖�W (x̃1 ⊗ x̃2 ⊗ · · · ⊗ x̃�)‖2 <

c1(�)ρ
�

n�

]
≤ exp

(− c2(�)δn
)
,

where c1(�),c2(�) are constants that depend only on �.

The polynomial of n in the exponent of the failure probability is tight; however,
it is unclear what the right polynomial dependence of n in the least singular value
bound, and the right dependence on � should be. Lemma 19.13 can be used to lower
bound the least singular value of the matrix Ũ(1) 3 · · · 3 Ũ(�) in Proposition 19.10
as follows: We can lower bound the leave-one-out distance of Lemma 19.12 by
applying Lemma 19.13 for each column i ∈ [k], with W being the subspace given
by �⊥

−i and x1, . . . ,x� being u(1)i , . . . ,u(�)i ; a union bound over the k columns gives
Proposition 19.10. The first version of this lemma was proven in Bhaskara et al.
(2014a) with worse polynomial dependencies both in lower bound on the condition
number and in the exponent of the failure probability. The improved statement
presented here and proof sketched in Section 19.4.3 are based on Anari et al. (2018).

Relation to Anti-concentration of Polynomials. We now briefly describe a connection
to anti-concentration bounds for low-degree polynomials and describe a proof
strategy that yields a weaker version of Lemma 19.13. Anti-concentration inequalities
(e.g., the Carbery–Wright inequality) for a degree-� polynomial g : R

n → R with
‖g‖2 ≥ η, and x ∼ N(0,1)n are of the form

Pr
x∼N(0,1)n

[
|g(x) − t| < εη

]
≤ O(�) · ε1/�. (19.4)

This can be used to derive a weaker version of Lemma 19.13 with an inverse
polynomial failure probability, by considering a polynomial whose coefficients “lie” in
the subspace W . As we discussed in the previous section, this failure probability does
not suffice for expected polynomial running time (or polynomial smoothed complex-
ity). On the other hand, Lemma 19.13 manages to get an inverse polynomial lower
bound with exponentially small failure probability, by considering n�(1) different
polynomials. In fact one can flip this around and use Lemma 19.13 to show a vector-
valued variant of the Carbery–Wright anti-concentration bounds, where if we have
m ≥ δn� “sufficiently different” polynomials g1,g2, . . . ,gm : Rn → R each of degree
�, then we can get εc(�)δn for some constant c(�) > 0 for the bound in (19.4). The
advantage is that while we lose in the “small ball” probability with the degree �, we
gain an δn factor in the exponent on account of having a vector valued function with
m coordinates. See (Bhaskara et al., 2019) for a statement and proof.

19.4.3 Proof Sketch of Lemma 19.13

The proof of Lemma 19.13 is a careful inductive proof. We will sketch the proof
for � ≤ 2 to give a flavor of the arguments involved. See Anari et al. (2018) for the
complete proof. For convenience, let x̃ := x̃(1) and ỹ := x̃(2). The high-level outline is

437

A. VIJAYARAGHAVAN

now the following. We will show that there exist n × n matrices M1,M2, . . . ,Mr ∈ W
of bounded length measured in Frobenius norm (for general � these would be order
� tensors of length at most n�/2) that additionally satisfy certain “orthogonality”
properties (r will be ��(δn�)). We will use the orthogonality properties to extract
enough “independence” across 〈Mi,(x̃ ⊗ ỹ)〉 for i ∈ [r] using the randomness in the
perturbations; this will allow us to conclude that at least one of these r inner products
is at least ρ/

√
n in magnitude with probability ≥ 1 − exp(−�(δn)).

What orthogonality property do we want?

Case � = 1. Let us start with � = 1. In this case we have a subspace W ⊂ R
n of

dimension at least δn. Here we could just choose the r vectors v1, . . . ,vr ∈ R
n to be

an orthonormal basis for W , to conclude the lemma, since 〈vi,g〉 are independent.
However, let’s consider a slightly different construction where v1, . . . vr are not
orthonormal, which will allow us to generalize to higher � > 1.

Claim 19.14 (for � = 1) There exists a set of v1, . . . ,vr ∈ W, and a set of
distinct indices i1,i2, . . . ,ir ∈ [n], for r = dim(W) such that for all j ∈ {1,2, . . . ,r}:

(a) ‖vj‖∞ ≤ 1, (b) |vj(ij)| = 1, (c) vj(ij′) = 0 for all j′ < j.

Hence, each of the vectors vj has a nonnegligible component orthogonal to the
span of vj+1, . . . ,vr. This will give us sufficient independence across the random
variables 〈v1,x̃〉, . . . ,〈vr,x̃〉. Consider the r inner products in reverse order, i.e.,
〈vr,x̃〉,〈vr−1,x̃〉, . . . ,〈v1,x̃〉. Let x̃ = x + z, where z ∼ N(0,ρ2/n)n. First 〈vr,x̃〉 =
〈vr,x〉 + 〈vr,z〉, where 〈vr,z〉 is an independent Gaussian N(0,ρ2/n) due to the
rotational invariance of Gaussians. Hence for some absolute constant c > 0,
from simple Gaussian anti-concentration |〈vr,x〉| < cρ/

√
n with probability 1/2.

Now, let us analyze the event 〈vj,x〉 is small, after conditioning on the values of
〈vj+1,x̃〉, . . . ,〈vr,x̃〉. By construction, |vj(ij)| = 1, whereas vj+1(ij) = · · · = vr(ij) = 0.
Hence

Pr
[
|〈vj,x̃〉| < cρ√

n

∣∣∣∣ 〈vj+1,x̃〉, . . . ,〈vr,x̃〉
]

≤ supt∈R Pr
[
|z(ij) − t| < cρ√

n

]
≤ 1

2
.

Hence Pr
[
∀j ∈ [r], |〈vj,x̃〉| < cρ√

n

]
≤ exp(−r), as required.

Proof of Claim 19.14 We will construct the vectors iteratively. For the first
vector, pick any vector v1 in W and rescale it so that ‖v1‖∞ = 1; let i1 ∈ [n]
be an index where |v1(i1)| = 1. For the second vector, consider the restricted
subspace {x ∈ W : x(i1) = 0}. This has dimension dim(W)− 1; so we can again
pick an arbitrary vector in it and rescale it to get the necessary v2. We can repeat
this until we get r = dim(W) vectors (when the restricted subspace becomes
empty). �

Proof Sketch for � = 2. We can use a similar argument to come up with an analogous
set of matrices M1, . . . ,Mr inductively. It will be convenient to identify each of these
matrices Mj with an (row,column) index pair Ij = (ij,i′j) ∈ [n] × [n]. We will also have
a total order among all of the index pairs as follows. We first have a ordering among

438

EFFICIENT TENSOR DECOMPOSITIONS

all the valid row indices R = {ij : j ∈ [r]} (say i1 ≺ i2 ≺ · · · ≺ ir). Moreover, among all
index pairs Ri∗ in the same row i∗ (i.e., Ri∗ := {Ij = (i∗,i′j)}), we have a total ordering
(note that it could be the case that (2,4) ≺ (2,7) and (3,7) ≺ (3,4), since the orderings
for i∗ = 2 and i∗ = 3 could be different).

Claim 19.15 (for �= 2) Given any subspace W ⊂ R
n×n of dimension

dim(W) ≥ δn2, there exists r many (row,column) index pairs I1 ≺ I2 ≺ · · · ≺ Ir
as outlined earlier, and a set of associated matrices M1,M2 . . . ,Mr such that for
all j ∈ {1,2, . . . ,r}: (a) ‖Mj‖∞ ≤ 1, (b) |Mj(Ij)| = 1, (c) Mj(Ij′) = 0 for all
j′ < j and Mj(i1,i2) = 0 for any i1 ≺ ij and for all i2 ∈ [n] where Ij = (ij,i′j).

Further there are at least |R| = �(δn) valid row indices, and each of these
indices has �(δn) index pairs associated with it.

The approach to proving the above claim is broadly similar to that of Claim 19.14.
The proof repeatedly treats the vectors in W as vectors inR

n2
and applies Claim 19.14

to extract a valid row with �(δn) valid column indices, and iterates. We leave the
formal proof as Exercise 19.5.

Once we have Claim 19.15, the argument for Lemma 19.13 is as follows. First,
‖Mj‖2 ≤ n since ‖Mj‖∞ ≤ 1. Hence, we just need to show that there exists j ∈ [r] s.t.
|〈Mj,x̃⊗ ỹ〉| ≥ cρ/n in magnitude with probability ≥ 1− exp(−�(δn)). Consider the
vectors {M1ỹ,M2ỹ, . . . ,Mrỹ} ⊂ R

n obtained by applying just ỹ. For each valid row
i∗ ∈ R, consider only the corresponding vectors with row index i∗ from {Mjỹ : j ∈ [r]}
and set vi∗ to be the vector with the largest magnitude entry in coordinate i∗. By
our argument for � = 1 we can see that with probability at least 1 − exp(−�(δn)),
|vi∗(i∗)| > τ := cρ/

√
n, for some constant c > 0. Now by scaling these vectors

{vi : i ∈ [R]} by at most 1/τ each, we see that they satisfy Claim 19.14. Hence, using
the argument for � = 1 again, we get Lemma 19.13. Extending this argument to
higher � > 2 is technical, and we skip the details.

19.4.4 Implications for Applications

The smoothed polynomial-time guarantees for overcomplete tensor decompositions
in turn imply polynomial-time smoothed analysis guarantees for several learning
problems. In the smoothed analysis model for these parameter estimation problems,
the unknown parameters θ of the model are randomly perturbed to give θ̃ , and
samples are drawn from the model with parameters θ̃ .

However, as we alluded to earlier, the corresponding tensor decomposition prob-
lems that arise, e.g., from Propositions 19.2 and 19.3, do not always fit squarely in the
smoothed analysis model in Section 19.4.1. For example, the random perturbations
to the factors {u(j)i : i ∈ [k],j ∈ [�]} may not all be independent. In learning mixtures of
spherical Gaussians, the factors of the decomposition are μ̃⊗�

i for some appropriate
� > 1, where μ̃i is the mean of the ith component. In learning hidden Markov models
(HMMs), each factor is a sum of appropriate monomials of the form ãi1 ⊗ ãi2 ⊗· · ·⊗
ãi� , where i1i2 · · · i� correspond to length-� paths in a graph.

Fortunately the bounds in Proposition 19.10 can be used to derive similar high-
confidence lower bounds on the least singular value for random matrices that arise
from such applications using decoupling inequalities. For example, one can prove such

439

A. VIJAYARAGHAVAN

bounds (as in Proposition 19.10) for the k×n�, matrix where the ith column is μ̃⊗�
i (as

required for mixtures of spherical Gaussians). Such bounds also hold for other broad
classes of random matrices that are useful for other applications like HMMs (see
Bhaskara et al., 2019, for details).

In the smoothed analysis model for mixtures of spherical Gaussians, the means
{μi : i ∈ [k]} are randomly perturbed. The following corollary gives polynomial-time
smoothed analysis guarantees for estimating the means of a mixture of k spherical
Gaussians. See Anderson et al. (2014) and Bhaskara et al. (2014a) for details.

Corollary 19.16 (Mixture of k Spherical Gaussians in n ≥ kε Dimensions)
For any ε > 0,η > 0, there is an algorithm that in the smoothed analysis setting
learns the means of a mixture of k spherical Gaussians in n ≥ kε dimensions up to
accuracy η > 0 with running time and sample complexity poly(n,1/η,1/ρ)O(1/ε)

and succeeds with probability at least 1 − exp(−�(n)).

In the smoothed analysis setting for HMMs, the model is generated using a ran-
domly perturbed observation matrix Õ, obtained by adding independent Gaussian
random vectors drawn from N(0,ρ2/n)n to each column of O. These techniques also
give similar smoothed analysis guarantees for learning HMMs in the overcomplete
setting when n ≥ kε dimensions (using O(1/ε) consecutive observations), and under
sufficient sparsity of the transition matrix. See Bhaskara et al. (2019) for details.
Smoothed analysis results have also been obtained for other problems such as
overcomplete independent component analysis (Goyal et al., 2014), learning mixtures
of general Gaussians (Ge et al., 2015), other algorithms for higher-order tensor
decompositions (Ma et al., 2016; Bhaskara et al., 2019), and recovering assemblies
of neurons (Anari et al., 2018).

19.5 Other Algorithms for Tensor Decompositions

The algorithm we have seen (based on simultaneous diagonalization) has provable
guarantees in the quite general smoothed analysis setting. However, there are other
considerations such as running time and noise tolerance, for which the algorithm
is suboptimal – for example, iterative heuristics such as alternating least-squares or
alternating minimization are more popular in practice because of faster running
times (Kolda and Bader, 2009). There are several other algorithmic approaches for
tensor decompositions that work under different conditions on the input. The natural
considerations are the generality of the assumptions and the running time of the
algorithm. The other important consideration is the robustness of the algorithm to
noise or errors. I will briefly describe a selection of these algorithms and comment
along these axes. As we will discuss in the next section, the different algorithms are
incomparable because of different strengths and weaknesses along these three axes.

Tensor Power Method. The tensor power method gives an alternate algorithm for
symmetric tensors in the full-rank setting that is inspired by the matrix power method.
The algorithm is designed for symmetric tensors T ∈ R

n×n×n with an orthogonal
decomposition of rank k ≤ n of the form

∑k
i=1 λiv

⊗3
i , where the vectors v1, . . . ,vk

are orthonormal. Note that not all matrices need to have such an orthogonal
decomposition. However, in many learning applications (where we have access to

440

EFFICIENT TENSOR DECOMPOSITIONS

the second moment matrix), one can use a trick called whitening to reduce to the
orthogonal decomposition case by a simple basis transformation.

The main component of the tensor power method is an iterative algorithm to find
one term in the decomposition that repeats the following power iteration update
(after initializing randomly) until convergence z ← T(·,z,z)

‖T(·,z,z)‖2
. Here the vector

T(·,z,z) = u, where u(i) = ∑
i2,i3 T(i,i2,i3)zi2zi3 . The algorithm then removes this

component and recurses on the remaining tensor. This method is also known to
be robust to inverse polynomial noise, and is known to converge quickly after the
whitening. See Anandkumar et al. (2014) for such guarantees.

FOOBI Algorithm and Variants. In a series of works, Cardoso and others (see
e.g., Cardoso, 1991; De Lathauwer et al., 2007) devised an algorithm, popularly
called the fourth-order blind only identification (FOOBI) algorithm for symmetric
decompositions of overcomplete tensors of order 4 and above. At a technical level,
the FOOBI algorithm finds rank-one tensors in a linear subspace, by designing a
“rank-1 detecting gadget.” Recently, the FOOBI algorithm and generalizations have
been shown to be robust to inverse polynomial error in the smoothed analysis setting
for order-2� tensors up to rank k ≤ n� (see Ma et al., 2016; Bhaskara et al., 2019).

Alternating Minimization and Iterative Algorithms. Recently, Anandkumar et al.
(2017) analyzed popular iterative heuristics such as alternating minimization for
overcomplete tensors of order 3 and gave some sufficient conditions for both local
convergence and global convergence. Finally, a closely related nonconvex problem is
that of computing the “spectral norm,” i.e., maximizing 〈T,x⊗�〉 subject to ‖x‖2 = 1;
under certain conditions one can show that the global maximizers are exactly the
underlying factors. The optimization landscape of this problem for tensors has also
been studied recently (see Ge and Ma, 2017). But these results all mainly apply to the
case when the factors of the decomposition are randomly chosen, which is much less
general than the smoothed analysis setting.

Sum-of-Squares Algorithms. The sum-of-squares (SoS) hierarchy or the Lasserre
hierarchy is a powerful family of algorithms based on semidefinite programming.
Algorithms based on SoS typically consider a related polynomial optimization prob-
lem with polynomial inequalities. A key step in these arguments is to give a low-degree
SoS proof of uniqueness; this is then “algorithmicized” using the SoS hierarchy. SoS-
based algorithms are known to give guarantees that can go to overcomplete settings
even for order-3 tensors (when the factors are random), and are known to have higher
noise tolerance. In particular, they can handle order-3 symmetric tensors of rank
k = Õ(n1.5), when the factors are drawn randomly from the unit sphere (see Ma et al.,
2016). The SoS hierarchy also gives robust variants of the FOOBI algorithm, and get
quasi-polynomial time guarantees under other incomparable conditions (Ma et al.,
2016). SoS based algorithms are too slow in practice because of large polynomial
running times. Some recent works explore an interesting middle ground; they design
spectral algorithms that are inspired by these SoS hierarchies, but have faster running
times (see, e.g., Hopkins et al., 2016).

19.6 Discussion and Open Questions

The different algorithms for tensor decompositions are incomparable because of
different strengths and weaknesses. A major advantage of SoS-based algorithms is

441

A. VIJAYARAGHAVAN

their significantly better noise tolerance; in some settings it can go up to constant
error measured in spectral norm (of an appropriate matrix flattening), while other
algorithms can get inverse polynomial error tolerance at best. This is important
particularly in learning applications, since there are significant modeling errors in
practice. However, many of these results mainly work in restrictive settings where
the factors are random (or incoherent). On the other hand, the algorithms based
on simultaneous decompositions and variants of the FOOBI algorithm work in
the significantly more general smoothed analysis setting, but their error tolerance
is much poorer. Finally, iterative heuristics such as alternating minimization are the
most popular in practice because of their significantly faster running times; however,
known theoretical guarantees are significantly worse than the other methods.

Another direction where there is a large gap in our understanding is about
conditions and limits for efficient recovery. This is particularly interesting under
conditions that guarantee that the low-rank decomposition is (robustly) unique, as
they imply learning guarantees. We list a few open questions in this space.

For the special case of 3-tensors in R
n×n×n, recall that Jennrich’s algorithm needs

the factors to be linearly independent, hence k ≤ n. On the other hand, Kruskal’s
uniqueness theorem (and its robust analogue) guarantees uniqueness even up to
rank 3n/2 − 1. Kruskal (1977) in fact gave a more general sufficient condition for
uniqueness in terms of what is known as the Kruskal rank of a set of vectors. But
there is no known algorithmic proof!

Open Problem Is there a (robust) algorithm for decomposing a 3-tensor T under
the conditions of Kruskal’s uniqueness theorem?

We also do not know if there is any smoothed polynomial time algorithm that
works for rank (1 + ε)n for any constant ε > 0. Moreover, we know powerful state-
ments using ideas from algebraic geometry that generic tensors of order 3 have unique
decompositions up to rank n2/3 (Chiantini and Ottaviani, 2012). However, these
statements are not robust to even inverse polynomial error. Is there a robust analogue
of this statement in a smoothed analysis setting? These questions are also interesting
for order � tensors. Most known algorithmic results for tensor decompositions also
end up recovering the decomposition (thereby proving uniqueness). However, even
for order-3 tensors with random factors, there is a large gap between conditions that
guarantee uniqueness vs conditions that ensure tractability.

Open Problem Is there a (robust) algorithm for decomposing a 3-tensor T with
random factors for rank k = ω(n3/2)?

Acknowledgments

I thank Aditya Bhaskara, Rong Ge, Tim Roughgarden, and Paul Valiant for their
comments on an initial draft of the chapter.

References

Allman, Elizabeth S, Matias, Catherine, and Rhodes, John A. 2009. Identifiability of parame-
ters in latent structure models with many observed variables. The Annals of Statistics, 37,
3099–3132.

Anandkumar, Animashree, Ge, Rong, Hsu, Daniel, Kakade, Sham M., and Telgarsky, Matus.
2014. Tensor decompositions for learning latent variable models. Journal of Machine
Learning Research, 15(1), 2773–2832.

442

EFFICIENT TENSOR DECOMPOSITIONS

Anandkumar, Animashree, Ge, Rong, and Janzamin, Majid. 2017. Analyzing tensor power
method dynamics in overcomplete regime. Journal of Machine Learning Research, 18,
1–40.

Anari, Nima, Daskalakis, Constantinos, Maass, Wolfgang, Papadimitriou, Christos, Saberi,
Amin, and Vempala, Santosh. 2018. Smoothed analysis of discrete tensor decomposition
and assemblies of neurons. In 37th Conference on Neural Information Processing Systems
(NeurIPS), pp. 10880–10890.

Anderson, Joseph, Belkin, Mikhail, Goyal, Navin, Rademacher, Luis, and Voss, James R.
2014. The more, the merrier: The blessing of dimensionality for learning large Gaussian
mixtures. Journal of Machine Learning Research: Workshop and Conference Proceedings,
vol. 35, pp. 1–30.

Belkin, Mikhail, and Sinha, Kaushik. 2015. Polynomial learning of distribution families.
SIAM Journal on Computing, 44(4), 889–911.

Bhaskara, Aditya, Charikar, Moses, Moitra, Ankur, and Vijayaraghavan, Aravindan. 2014a.
Smoothed analysis of tensor decompositions. In Symposium on the Theory of Computing
(STOC), pp. 594–603.

Bhaskara, Aditya, Charikar, Moses, and Vijayaraghavan, Aravindan. 2014b. Uniqueness of
tensor decompositions with applications to polynomial identifiability. In Proceedings of
27th Conference on Learning Theory (Proceedings of Machine Learning Research 35,
742–748).

Bhaskara, Aditya, Chen, Aidao, Perreault, Aidan, and Vijayaraghavan, Aravindan. 2019.
Smoothed analysis in unsupervised learning via decoupling. In Foundations of Computer
Science (FOCS), pp. 582–610.

Cardoso, J. 1991. Super-symmetric decomposition of the fourth-order cumulant tensor. Blind
identification of more sources than sensors. In Proceedings of International Conference
on Acoustics, Speech, and Signal Processing (ICASSP’91)vol. 5, 3109–3112.

Chiantini, L., and Ottaviani, G. 2012. On generic identifiability of 3-tensors of small rank.
SIAM Journal on Matrix Analysis and Applications, 33 (3), 1018–1037.

De Lathauwer, L., Castaing, J., and Cardoso, J. 2007. Fourth-order cumulant-based blind
identification of underdetermined mixtures. IEEE Transactions on Signal Processing,
55(6), 2965–2973.

Ge, Rong, and Ma, Tengyu. 2017. On the optimization landscape of tensor decompositions.
In Annual Conference on Neural Information Processing Systems, pp. 3653–3663.

Ge, Rong, Huang, Qingqing, and Kakade, Sham M. 2015. Learning mixtures of Gaussians
in high dimensions. In: Proceedings of the 47th Annual ACM Symposium on Theory of
Computing, pp. 761–770.

Goyal, Navin, Vempala, Santosh, and Xiao, Ying. 2014. Fourier PCA and robust tensor
decomposition. In Proceedings of the 47th Annual ACM Symposium on Theory of
Computing, pp. 584–593.

Harshman, Richard A. 1970. Foundations of the PARAFAC procedure: Models and condi-
tions for an explanatory multimodal factor analysis. CLA Working Papers in Phonetics,
16, 1–84.

Håstad, Johan. 1990. Tensor rank is NP-complete. Journal of Algorithms, 11(4),
644–654.

Hillar, Christopher J., and Lim, Lek-Heng. 2013. Most tensor problems are NP-hard. Journal
of the ACM, 60. Article 45.

Hopkins, Samuel B., Schramm, Tselil, Shi, Jonathan, and Steurer, David. 2016. Fast spectral
algorithms from sum-of-squares proofs: Tensor decomposition and planted sparse vec-
tors. In Proceedings of the Forty-eight Annual ACM Symposium on Theory of Computing,
pp. 178–191.

Hsu, Daniel, and Kakade, Sham M. 2013. Learning mixtures of spherical Gaussians: Moment
methods and spectral decompositions. In: Proceedings of the 4th conference on Innovations
in Theoretical Computer Science pp. 11–20.

443

A. VIJAYARAGHAVAN

Hsu, Daniel, Kakade, Sham M., and Zhang, Tong. 2012. A spectral algorithm for learning
hidden Markov models. Journal of Computer and System Sciences, 78(5), 1460–1480.

Kolda, Tamara G, and Bader, Brett W. 2009. Tensor decompositions and applications. SIAM
Review, 51(3), 455–500.

Kruskal, Joseph B. 1977. Three-way arrays: Rank and uniqueness of trilinear decompositions,
with application to arithmetic complexity and statistics. Linear Algebra and Its Applica-
tions, 18(2).

Ma, Tengyu, Shi, Jonathan, and Steurer, David. 2016. Polynomial-time tensor decompositions
with sum-of-squares. In IEEE Symposium on the Foundations of Computer Science, pp.
438–446.

Moitra, Ankur. 2018. Algorithmic aspects of machine learning. Cambridge University Press.
Moitra, Ankur, and Valiant, Gregory. 2010. Settling the polynomial learnability of mixtures

of Gaussians. In Foundations of Computer Science (FOCS), pp. 93–102.
Mossel, Elchanan, and Roch, Sébastien. 2006. Learning nonsingular phylogenies and hidden

Markov models. The Annals of Applied Probability, 16(2), 583–614.
Song, Zhao, Woodruff, David P., and Zhong, Peilin. 2019. Relative error tensor low rank

approximation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA).

Stewart, G. W., and Sun, Ji-guang. 1990. Matrix perturbation theory. Academic Press.
Tosh, Christopher, and Dasgupta, Sanjoy. 2018. Maximum likelihood estimation for mixtures

of spherical Gaussians is NP-hard. Journal of Machine Learning Research, 18, 1–11 .

Exercises

Exercise 19.1 The symmetric rank of a symmetric tensor T is the smallest integer
r > 0 s.t., T can be expressed as T = ∑r

i=1 u⊗�
i for some {ui}k

i=1. Prove that for any
symmetric tensor of order �, the symmetric rank is at most 2��! times the rank of
the tensor.5 [Hint: For � = 2, if ui ⊗ vi was a term in the decomposition, we can
express ui ⊗ vi + vi ⊗ ui = 1

2 (ui + vi)
⊗2 − 1

2 (ui − vi)
⊗2.]

Exercise 19.2 Let u,v ∈ R
n be two orthonormal vectors, and consider the tensor

A = u ⊗ u ⊗ v + v ⊗ u ⊗ u + u ⊗ v ⊗ u. Prove that it has rank 3. Also prove that it
can be arbitrarily well approximated by a rank 2 tensor.
Hint: Try to express A as a difference of two symmetric rank one tensors with large
entries (Frobenius norm of �(m)), so that the error term is O(1/m).

Exercise 19.3 Construct an example of a matrix U such that the Kruskal-rank of
U 3 U is at most twice the Kruskal-rank of U . [Hint: Express the identity matrix
as
∑

i uiuT
i for two different orthonormal bases.]

Exercise 19.4 Prove Proposition 19.3.

Exercise 19.5 Complete the proof of Claim 19.15 and hence Lemma 19.13 for � = 2.

5 Comon’s conjecture asks if for every symmetric tensor, the symmetric rank is equal to the rank. A
counterexample was shown recently by Shitov. It is open what the best gap between these two ranks can be
as a function of �.

444

CHAPTER TWENTY

Topic Models and Nonnegative
Matrix Factorization

Rong Ge and Ankur Moitra

Abstract: In this chapter, we introduce nonnegative matrix factor-
ization and topic modeling. We will see that there is a natural struc-
tural assumption called separability that allows us to circumvent the
worst-case NP-hardness results for nonnegative matrix factorization.
We will devise a simple algorithm for separable nonnegative matrix
factorization and apply it to the problem of learning the parameters
of a topic model. Finally we will give an alternative algorithm for
topic modeling based on low-rank tensor decomposition.

20.1 Introduction

In this chapter, we introduce topic modeling and nonnegative matrix factorization,
which are two classic and interrelated problems where perspectives from beyond
worst-case analysis have led to significant algorithmic progress. The goal of topic
modeling is to make sense of a large collection of documents by extracting thematic
structure. See an example in Figure 20.1, where topics are automatically extracted
from a collection of New York Times articles. Topic models also have important
applications in population genetics and other areas, but in the interest of space, we
will not touch on those here.

At the heart of topic modeling is a simple generative model. First, each document
is represented as a vector of word frequencies. This may seem like an overly simplistic
view because it does not account for any notion of order or syntax. However,
intuitively even if you were given this so-called bag-of-words representation you
would still be able to tell what the document is about. In this way, the representation is
seemingly a good enough approximation for topic modeling. The central assumption
is that there is a fixed set of topics – numbering, say, a couple hundred – that are shared
and recur in different proportions in each document. For example, a news article
about legislation related to retirement accounts might be represented as a mixture
of 0.7 of the topic politics and 0.3 of the topic personal finance. Furthermore, each
topic is associated with a distribution on words. Note that a word such as account can
occur in several topics but the probability it is assigned would likely vary from topic
to topic. Finally, the topic proportions for each document are generated from some
distribution, and then each word is sampled from the document-specific distribution
on words.

Let us introduce some notion that we will use throughout the chapter. Let n be
the size of the vocabulary. Let k be the number of topics. Then there is an n × k

445

R. GE AND A. MOITRA

anthrax, official, mail, letter, worker, attack

president, clinton, white_house, bush, official, bill_clinton

father, family, elian, boy, court, miami

oil, prices, percent, million, market, united_states

microsoft, company, computer, system, window, software

government, election, mexico, political, vicente_fox, president

fight, mike_tyson, round, right, million, champion

right, law, president, george_bush, senate, john_ashcroft

Figure 20.1 Examples of topics automatically extracted from a collection of New York Times articles.
Each row contains words from one topic in descending order by probability. This is the result of running
the algorithm in Arora et al. (2018), which we introduce later in Section 20.3.4.

topic matrix A whose columns represent, for each topic, its distribution on words.
Furthermore, let m be the number of documents, and W be a k × m matrix where
each column represents, for each document, its composition as topics. Moreover,
we assume that the columns of W are sampled from some distribution on the
k-dimensional simplex. Under these notations, if we multiply A and W we can get
a document-word matrix M = AW . Every column Mi of M represents a document.
Since Mi =

∑k
j=1 Wi,jAj, we know the ith document can be represented as a combina-

tion (mixture) of topics. Finally, we do not directly observe M = AW . Instead for each
column of M, we observe L independent samples from the associated distribution.
This would correspond to the case in which each document is of length L. We
could just as easily allow different sizes, or perhaps sample the sizes from another
distribution, but we will suppress these sorts of complications in our discussion.

The basic question we are interested in is: Can we recover the topic matrix A
from the collection of documents generated by the topic model? It turns out that
there are a wide variety of algorithms that work in practice and extract interesting
and useful thematic structure. In this chapter, we will be mostly interested in the
theoretical aspects of topic modeling: Can we design efficient algorithms for topic
modeling with provable guarantees? For us, this quest will go hand-in-hand with
making further assumptions about the generative model that are motivated by
practical considerations.

The simplest setup is what is called a pure topic model:

Definition 20.1 (Pure Topic Model) There is an unknown n × k topic matrix
A and the columns of W are chosen by sampling a standard basis vector {ei}k

i
with probability p1, . . . ,pk.

In particular, each document is about just one topic. Pure topic models were also
studied under the name of probabilistic latent semantic indexing by Hoffman (1999).
The model is a mixture of k different monomial distributions. Later we will study
more complicated models where columns of W are not basis vectors – or to put it
another way, every document can have more than one topic – and we call these the
mixed models. The pure topic model is already nontrivial. In fact, we will make even
stronger assumptions to show our first algorithms for topic modeling. Let us assume

446

TOPIC MODELS AND NONNEGATIVE MATRIX FACTORIZATION

that L is infinite so that we really do observe M = AW and do not have to contend with
sampling noise. Furthermore, suppose that the columns of A have disjoint support, so
that each word appears in only one topic. Papadimitriou et al. (2000) showed that in
this setting the singular value decomposition works – it really does recover the topics
that were used to generate the documents.

Lemma 20.2 Suppose M = AW, and each column of W and each row of A have
exactly one nonzero entry. Furthermore, suppose that the support of each column
of A is disjoint. Finally, assume the nonzero singular values of M are distinct. Then
the left singular vectors of M are the columns of A (after rescaling).

Proof Consider the permutation matrix P that permutes the indices of the
words so that all the words that appear in the same topic are contiguous. Then

PMM!P!

is block diagonal. There is one block for each topic whose dimension is equal
to the number of words in that topic. Moreover, each document contributes
only to the block corresponding to its topic. And thus each block is rank one.
The columns of PM are eigenvectors of PMM!P!, which in turn implies that
the columns of A are left singular vectors of M. The fact that M has distinct
nonzero singular values means that the singular value decomposition is unique,
so the columns of A are the only left singular vectors of M. �

Papadimitriou et al. (2000) were the first to introduce the natural two-level
generative model for documents at the start of the chapter. This model has other
applications such as collaborative filtering, where we assume each user is represented
by a distribution on interests, and each interest is a distribution on items they may
buy. They also gave perturbation bounds that quantify how well the singular value
decomposition performs in the presence of sampling noise – i.e., when the documents
do not have infinite length. The method of applying the singular value decomposition
to the term by document matrix is called latent semantic indexing and was introduced
in a seminal paper of Deerwester et al. (1990).

There are many assumptions that we made in the preceding text, but perhaps the
most egregious is the assumption that the topics are disjoint. Real-world topics have
a high degree of overlap. So what happens when we remove this assumption?

Fundamentally, the singular value decomposition is just not the right thing to
do anymore. The vectors that it finds are necessarily orthogonal even though the
vectors that we are looking for – i.e., the columns of A – are not! The singular
value decomposition finds the span of A but the vectors that it spits out are typically
dense and often hard to interpret. This brings us to the notion of nonnegative matrix
factorization:

Definition 20.3 (Nonnegative Matrix Factorization) A nonnegative matrix
factorization of inner dimension k of an entrywise nonnegative n × m matrix
M is a decomposition

M = AW,

447

R. GE AND A. MOITRA

where A is n × k, W is k × m and both are entrywise nonnegative. Moreover,
let the nonnegative rank rank+(M) denote the minimum k so that such a
factorization exists.

Nonnegative matrix factorization has been introduced independently in many
different contexts. In combinatorial optimization, Yannakakis (1991) showed that
the nonnegative rank governs the extension complexity of a polytope. Lee and Seung
(1999) found applications in image segmentation. In fact, it was first introduced in
chemometrics under the name self-modeling curve resolution. While this looks like
exactly the right tool to use in the context of topic modeling (at least in the limit where
documents are long enough that we do not have to worry about sampling noise), there
is a catch. Vavasis (2009) proved:

Theorem 20.4 It is NP-hard to compute the nonnegative rank of a matrix.

This chapter is devoted to what you can do in spite of these computational
impediments. It turns out that there are natural assumptions we can make, that
are motivated by uniqueness and robustness considerations, for which we can give
simple algorithms for computing a nonnegative matrix factorization of minimum
inner dimension provably and efficiently. These algorithms will also have important
implications for topic modeling. There are other methods for topic modeling based
on tensor decomposition that we will also cover in detail here.

20.2 Nonnegative Matrix Factorization

In this section we will discuss nonnegative matrix factorization (NMF) in more detail.
Recall that a matrix M ∈ R

n×m has a nonnegative matrix factorization if we can write

M = AW,

where A ∈ R
n×k, W ∈ R

k×m are factors with nonnegative entries. The nonnegativity
constraints are natural for applications such as topic models. In this section we will
see that the nonnegativity constraints naturally lead to a geometric interpretation of
NMF. The geometric interpretation is a key step in the NP-hardness proof for NMF;
a similar interpretation also gives conditions in which NMF is unique and easy to
find and leads to fast algorithms for computing an NMF.

20.2.1 Hardness of Nonngegative Matrix Factorization

Vavasis (2009) showed that finding a nonnegative matrix factorization with smallest
possible inner-dimension is NP-hard. His proof revolves around a useful geometric
interpretation of NMF and various geometric gadgets.

Vavasis (2009) showed that NMF is in fact equivalent to a geometric problem that
is called Intermediate Simplex.

Problem 20.5 (Intermediate Simplex) Given a polyhedron P = {x ∈ R
k−1 :

Ax ≥ b}, where A ∈ R
n×(k−1) and b ∈ R

n are such that [A,b] has rank k. Also

448

TOPIC MODELS AND NONNEGATIVE MATRIX FACTORIZATION

Figure 20.2 Gadget for a variable in the NP-hardness reduction. Figure from Vavasis (2009).

given a set S ⊂ R
k−1 of m points that are all contained in P and that are not

all contained in any hyperplane (i.e., they affinely span R
k−1). The question is

whether there exists a (k − 1)-simplex T such that S ⊂ T ⊂ P.

Consider the Exact NMF problem, where we are given a matrix M and our goal
is to determine whether it has a nonnegative matrix factorization of rank k. Vavasis
(2009) proved the following:

Theorem 20.6 There is a polynomial-time reduction from Exact NMF to Inter-
mediate Simplex and vice versa.

Intuitively, Exact NMF is related to Intermediate Simplex because one can always
express a column of M by a nonnegative combination of columns in A:

Mi =
k∑

j=1

Wi,jAj.

If the Mi’s and Aj’s are normalized to have �1 norm 1 (which is always possible; see
Claim 20.9 later), then the column Mi is in the convex hull of {A1,A2, . . . ,Ak}. At a
high level, one can think of the columns {Mi}’s as the set S in Intermediate Simplex,
{Aj}’s as the vertices of T , and the set of all nonnegative vectors as the polyhedron P.
The actual reduction is more technical.

Since Exact NMF and Intermediate Simplex are equivalent (with respect to
polynomial time reductions), to prove the hardness of Exact NMF we only need
to prove the hardness of Intermediate Simplex. The key idea in Vavasis’ proof is to
construct Intermediate Simplex problems that have exactly two solutions, and use
these as gadgets.The gadget is shown in Figure 20.2. In this figure, the bounding box
represents the outer polyhedron P, the black dots represent the set S, and the dashed
lines represent two possible intermediate simplices.

20.2.2 Uniqueness of Nonnegative Matrix Factorization

In applications such as topic models, often one would hope to find a unique solution
that corresponds to the true underlying topics for the corpus of text. However,
for a matrix M ∈R

n×m, its nonnegative matrix factorization is not always unique.

449

R. GE AND A. MOITRA

In such cases there would still be uncertainty about whether one has found the
correct solution for the application, even if we had found the nonnegative matrix
factorization with smallest inner dimension. Therefore it is natural to ask: For a fixed
inner dimension, when is the nonnegative matrix factorization unique?

First, we observe that NMF has some inherent symmetries: If M = AW , then
there are at least two types of operations we can perform that lead to an NMF with
the same inner dimension: (1) we can permute the columns of A and and apply the
same permutation to the rows of W ; (2) also, we can scale one column of A by a
positive factor c and scale the corresponding row of W by 1/c.

These natural symmetries in NMF problems are usually not an issue for the specific
applications. If we again consider topic models, the permutation operation only
changes the ordering of the topics, which is not relevant to the actual topic model, as
we only care about the set of topics. Also, we do not have to worry about rescalings
because we are interested in one particular scaling where the sum of the entries of
each column of A is one. Later when we say an NMF is unique, we will always mean
that the NMF is unique up to permutations and scaling operations.

Donoho and Stodden (2004) considered an application to image datasets and gave
a set of sufficient conditions for NMF to be unique. Here we will restate their main
assumption – separability – in the context of general NMF.

Definition 20.7 (Separability) A nonnegative matrix A ∈ R
n×k is separable if

for every column i = 1,2, . . . ,k, there is a row ai ∈ [n] such that the only nonzero
entry in this row is at column i. That is, Ai,ai > 0, and Aj,ai = 0 for all j �= i.
Furthermore, we say an NMF M = AW is separable if A is separable.

Intuitively, separability requires every component of the NMF (every column of
the A matrix) to have a unique coordinate that indicates whether this component is
present or not in the NMF. When the matrix M has an exact NMF, separability alone
is sufficient to guarantee uniqueness:

Theorem 20.8 Suppose M = AW is an NMF of M with number of components
equal to rank+(M). If the matrix A is separable, then the NMF is unique up to
permutations and scaling.

A proof of this theorem can be found in Arora et al. (2016a), where they also gave
an algorithm for finding such an NMF efficiently. Although we will not prove the
theorem here, in the next section we will explain the geometric intuition behind the
proof, and later Theorem 20.11 implies a weaker version of this theorem.

20.2.3 Geometric Interpretation of Separability

Claim 20.9 If every row of M ∈ R
n×m has �1 norm 1, and M has nonnegative

rank k, then there is a nonnegative matrix factorization of M = AW where A ∈
R

n×k and W ∈ R
k×m such that every row of A or W also has �1 norm equal to 1.

We will use Ai,: to denote the ith row of A and similarly for matrices M,W . If A is
separable, then after normalization each row Aai,: will be equal to the basis vector ei.

450

TOPIC MODELS AND NONNEGATIVE MATRIX FACTORIZATION

Now, consider rows of M as points in R
m. Because we can write

Mi,: =
k∑

j=1

Ai,jWj,:,

we know every row Mi,: is a convex combination of rows in W . If in addition A is
separable, we know Mai,: = Wi,: – every row of W actually appears as a row in M!
This allows us to restate the problem as follows:

Claim 20.10 (Geometric Interpretation of Separable NMF) Suppose M = AW
is a separable NMF, and the rows of M are normalized to have �1 norm 1. The
NMF problem is equivalent to: Given n points in R

m (rows of M), find k points
(rows of W) out of these n points such that every point is in the convex hull of the
k points.

20.2.4 Algorithm for Separable NMF

Based on the geometric interpretation, there are many ways to design efficient
algorithms for finding the factorization M = AW . The first polynomial-time
algorithm was given in Arora et al. (2016a). Here we give a simpler and more efficient
algorithm that appeared in Arora et al. (2013) that also has appealing noise robustness
properties that we will discuss later. We will rely on the geometric picture established
in Claim 20.10.

Algorithm 1 Separable NMF
Require: n points v1,v2, . . . ,vn ∈ R

m that correspond to rows of M that has a
separable NMF M = AW .

Ensure: k points w1,w2, . . . ,wk ∈ R
m that correspond to rows of W .

Normalize {v1,v2, . . . ,vn} so that they have �1 norm 1.
Let w1 = arg minvj ‖vj‖2 (the vector with maximum �2 norm).
for i = 2 to k do

Let wi be the vector among {v1, . . . ,vn} that is furthest (in �2 distance) from the
affine span of {w1,w2, . . . ,wi−1}.

end for

In this algorithm, the affine span of a set of vectors {w1,w2, . . . ,wi} is defined as the
set aff({w1,w2, . . . ,wi}) = {w|w = ∑i

j=1 ajwj,
∑i

j=1 aj = 1}. The �2 distance between
a point v and the affine span is the minimum �2 distance from v to any point in the
span. Once the algorithm finds the wi’s, for every row Mi,: one can solve a simple
system of linear equations to recover the coefficients Ai,:.

An example run of Algorithm 1 is given in Figure 20.3. In the figure, the points
are the input points {vi}’s. The gray points represent vertices of the convex hull, which
are the desired outputs of the algorithm. In the second (top right) subfigure, the
first vector w1 is chosen to be the vector with largest �2 norm; in the third (bottom
left) subfigure, w2 is chosen to be the vector that is farthest from w1 (as the affine
hull aff({v1}) is just v1 itself); finally in the fourth (bottom right) subfigure, w3 is
chosen to be the vector that is farthest from the line passing through w1 and w2.

451

R. GE AND A. MOITRA

Figure 20.3 Example run of Algorithm 1. Figure from Arora et al. (2018).

The algorithm will run for another iteration after the last subfigure and pick up the
remaining grey vertex.

Now we are ready to give the guarantee for this algorithm:

Theorem 20.11 If M has a separable NMF M = AW of nonnegative rank k, and
the rank of W is equal to k, then Algorithm 1 returns k vectors that correspond to
the rows of W.

The theorem can be proved by a simple induction, we leave that as an exercise.
Something surprising that has happened here is that the same assumption (separa-
bility) that we initially introduced for understanding when NMF is unique turned
out to be useful for the seemingly orthogonal goal of designing efficient algorithms
for NMF. In fact, in contrast to other chapters in this book, the assumption we are
working with is used not merely to analyze some general purpose algorithm but to
inspire new algorithms that turn out to be highly practical!

Robustness of Algorithm 1 The analysis in Theorem 20.11 requires the observed
matrix M to have an exact NMF. This is a strong assumption: In practice often one
can only observe an approximate version of M. The same Algorithm 1 can also be
applied when we observe a matrix M̂, which is the true matrix M = AW with a small
perturbation. In this case we also need the additional assumption that the simplex
formed by rows of W is robust:

Definition 20.12 (Robust Simplex) A simplex P is γ -robust, if every vertex of
P has �2 distance at least γ with the convex hull of the rest of the vertices.

452

TOPIC MODELS AND NONNEGATIVE MATRIX FACTORIZATION

Of course, when the input is perturbed, we also cannot hope to recover an exact
solution. The goal is then to find a set of vertices that are close to the vertices of the
simplex, which can be formalized as:

Definition 20.13 (Cover) Let v1,v2, . . . ,vn ∈ R
m be a set of points whose

convex hull P is a simplex with vertices w1,w2, . . . ,wk. Then we say vi ε-covers
wj if when vi is written as a convex combination of the vertices: vi = ∑k

l=1 clwl,
the coefficient cj ≥ 1 − ε. Furthermore, we say a set of k points ε-covers the
vertices if each vertex is ε-covered by some vertex in the set.

It is easy to see that if ε = 0, a set that 0-covers the vertices must be the set of
vertices themselves. With these definitions, Arora et al. (2013) proved the following
robustness guarantee for Algorithm 1:

Theorem 20.14 Let v1,v2, . . . ,vn ∈ {v ∈ R
m,‖v‖2 ≤ 1} be a set of points whose

convex hull P is a simplex with vertices w1,w2, . . . ,wk. If the convex hull P is
γ -robust, and the input to Algorithm 1 are v′

i’s where ‖v′
i − vi‖2 ≤ ε for all

i = 1,2, . . . ,n, Algorithm 1 returns a subset {v′
i1
,v′

i2
, . . . ,v′

ik
} whose unperturbed

version {vi1,vi2, . . . ,vik} O(ε/γ)-covers the vertices {w1, . . . ,wk} provided that
20εk < γ 3.

20.2.5 Further Applications and Discussions

Most of our discussion so far revolved around the separability assumption. We
discussed how it leads to uniqueness for NMF, new algorithms for NMF, and has
applications to topic modeling. Here we briefly survey some of the other related
literature on NMF. First, if one does not make the separability assumption, Arora
et al. (2016a) showed that it is hard to compute an exact NMF in time (mn)o(k)

assuming the Exponential Time Hypothesis (Impagliazzo and Paturi, 2001); they also
give an algorithm that computes an exact NMF in (mn)O(k22k) time, using tools from
the first-order theory of the reals (Basu et al., 1996; Renegar, 1992). This was later
improved to (mn)O(k2) by Moitra (2016). Also, there are many other algorithms for
separable NMF that have provable guarantees, including for example Recht et al.
(2012) and Gillis and Vavasis (2013). These algorithms are based on the ideas we
presented but have different running time and robustness guarantees that are not
directly comparable. See more references in the survey by Gillis (2014).

Finally, separability turns out to be a natural assumption in other applications
beyond topic modeling. Separability was applied to hyperspectral unmixing (Winter,
1999) under the name of the pure pixel assumption, even before the line of work
introduced in this section started (see Ma et al., 2013, for more references). Halpern
and Sontag (2013) and Jernite et al. (2013) applied the separability assumptions
to noisy-or networks modeling disease–symptom interactions. Cohen and Collins
(2014) applied the separability assumptions to learn latent-variable probabilistic
context-free grammars, which are a popular model for problems such as parsing.
Motivated by applications in biomarkers, Ge and Zou (2016) extended the separa-
bility assumption to cases in which there are many points on low-dimensional faces
of the simplex (instead of requiring points to exist near vertices).

453

R. GE AND A. MOITRA

20.3 Topic Models

In this section, we will study the Latent Dirichlet Allocation (LDA) model of Blei et al.
(2003). Earlier in the chapter we introduced what we called a pure topic model where
each document is about only one topic. This is of course an unrealistic assumption
because many documents can be about multiple topics. Blei et al. (2003) proposed
that the columns of the topic by document matrix be sampled from a Dirichlet
distribution:

Definition 20.15 (Dirichlet Distribution) A Dirichlet distribution with param-
eters α1, . . . ,αk is a distribution on the k-dimensional simplex and with density
function

f (x1, . . . ,xk) =
∏k

i=1 xαi−1
i

B(α)
,

where B(α) is a normalizing constant.

On a more intuitive level, we can generate a sample by taking independent samples
from k gamma distributions and then renormalizing them so that their sum is
one. The expectation of the ith coordinate is equal to αi/α0, where α0 = ∑k

i=1 αi.
Conditioned on the same expectations, the distribution favors sparse vectors when α0
is small. One can think of α0 as an approximate sparsity of the vector (see Telgarsky,
2013). In topic models α0 is typically a small constant (like 1) which favors very
sparse topic vectors (i.e., documents that are about only a small number of different
topics). Just as before, the goal is to estimate the underlying topic matrix from a large
collection of documents generated by the model. We will give two different types
of algorithms – one based on tensor decomposition and one based on nonnegative
matrix factorization – which will have different strengths and weaknesses in terms
of the technical assumptions they make and their flexibility with respect to different
modeling assumptions.

20.3.1 Tensor Decomposition

In this subsection, we will introduce the basics of tensor decompositions as we will
need for building algorithms for learning mixed topic models. To keep it simple,
we will specialize our discussion to third-order tensors. We can think about these
a variety of ways but in their simplest form they are just 3-dimensional grids of
numbers {Ta,b,c}a,b,c. For us, the most important parameter associated with a tensor is
its rank:

Definition 20.16 (Tensor Rank) A rank one third-order tensor T is the tensor
product of three vectors u,v, and w and its entries are

Ta,b,c = uavbwc.

Moreover, the rank of a tensor T is the smallest integer r so that we can write T
as the sum of r rank one tensors.

454

TOPIC MODELS AND NONNEGATIVE MATRIX FACTORIZATION

There are numerous subtleties to the notion of rank – things that do not come up
with matrices. The most important consideration to keep in mind is that it is NP-hard
to compute the rank. Håstad (1990) proved:

Theorem 20.17 It is NP-hard to compute the rank of a tensor.

But it turns out that the types of tensors that arise in some machine learning
applications sometimes avoid these pathologies. This will be the case when we apply
it to topic modeling. In particular, there is an important algorithm called Jennrich’s
algorithm that was published in Harshman et al. (1970) that will be the building
block of some of our algorithms here. Jennrich’s algorithm is covered in detail in
Chapter 19, and we summarize its guarantees here:

Theorem 20.18 Suppose we are given a tensor T that is promised to be of the
form

T =
r∑

i=1

u(i) ⊗ v(i) ⊗ w(i),

where (1) the vectors {u(i)}i are linearly independent, (2) the vectors {v(i)}i
are linearly independent, and (3) every pair of vectors in {w(i)}i are linearly
independent. Then there is an algorithm that recovers the rank one tensors (up
to permutations) in the preceding decomposition in polynomial time.

There are some subtleties to how the guarantees are formulated. We cannot recover
the collections {u(i)}i, {v(i)}i, and {w(i)}i because T remains unchanged when we
permute the order of indices in the sum, and even when we rescale any triple of vectors
by α,β, and γ factors, where αβγ = 1.

It is also important to know that Jennrich’s algorithm works in the presence of
noise as well. In particular, if we are given an entrywise approximation to T we can
bound the error in how well we recover the rank one terms in terms of other properties
of the problem (like how well-conditioned the vectors {u(i)}i are). This is important to
us because we will use tensors to store information about the moments of our topic
model – how often triples of words co-occur with each other. We will not be able to
get these moments exactly with any finite number of samples, but we will be able to
approximate them well.

20.3.2 Applications to Pure Topic Models

In this subsection, we will give our first application of tensor methods to topic
modeling. These results first appeared in Mossel and Roch (2005), although they
studied the more general problem of learning phylogenetic trees and hidden Markov
models. Their results were rediscovered later. We will return to the pure topic model
setting. Let m be the number of words in the vocabulary. Let A be the topic matrix,
and pi be the probability that a document is about the ith topic. Now suppose we
sample a random document from the topic model along with a triple of three words
from it (w1,w2,w3). Let T be the m × m × m tensor, where Ta,b,c is the probability
that w1 = a,w2 = b and w3 = c.

455

R. GE AND A. MOITRA

First, we claim that T can be expressed in terms of the unknown topic matrix A.
Let A� be the �th column of A.

Lemma 20.19 In a pure topic model we have

T =
k∑

�=1

p�A� ⊗ A� ⊗ A�.

Now we can apply Jennrich’s algorithm to the tensor representing the third-order
moments of the topic model. Sweeping under the carpet issues about how many
samples we need and the perturbation bounds for applying Jennrich’s algorithm in
settings where there is some sampling noise, we get:

Theorem 20.20 There is a polynomial time algorithm to learn the topic matrix
A in a pure topic model provided that A has full rank.

The point is that if A has full rank the conditions we need to be able to apply
Jennrich’s algorithm to T will be satisfied. The algorithm will output an estimate of
A that converges to the true topic matrix (up to a permutation of its columns) and the
rate of convergence will depend polynomially on various parameters in the problem
such as the number of words, the number of topics, the condition number of A, etc.
But already we can compare the efficacy of tensor methods to spectral methods for
learning pure topic models: When we applied the singular value decomposition, we
were able to recover the topics only when we made strong assumptions such as having
the columns of A have disjoint support (see Lemma 20.2). Now we can get away with
a much more reasonable assumption that it has full column rank.

20.3.3 Extensions to Mixed Models

In this subsection, we will show how to apply tensor methods to mixed topic models
where a document is allowed to be about more than one topic. We will follow
Anandkumar et al. (2012). Recall that in the LDA model the composition of each
document is drawn from a Dirichlet distribution.

If we naively try to follow the same recipe as we did for pure topic models and
compute the tensor T (3) whose entries are the third-order moments, we would get
a different expression for T (3) in terms of A. (Here we have introduced the name
T (3) because we will ultimately have to work with a number of different third-
order tensors). Just as pi denoted the probability in a pure topic model that the
document is about the ith topic, let pa,b,c denote the probability that the three words
we sample were generated from the ath, bth, and cth topics respectively. Explicitly,
the correlations between three topics can be written as1

1 The computation of these correlations relies on the fact that the Dirichlet distribution is the conjugate
prior of categorical distributions, which is also part of the reason why the Dirichlet distribution was used in
Blei et al. (2003). See Wikipedia contributors (2019) for more information.

456

TOPIC MODELS AND NONNEGATIVE MATRIX FACTORIZATION

pa,b,c =

⎧⎪⎪⎨⎪⎪⎩
αa(αa+1)(αa+2)
α0(α0+1)(α0+2) a = b = c

αa(αa+1)αc
α0(α0+1)(α0+2) a = b �= c

αaαbαc
α0(α0+1)(α0+2) a,b,c distinct.

Lemma 20.21 In a Latent Dirichlet Allocation Model we have

T (3) =
∑
a,b,c

pa,b,cAa ⊗ Ab ⊗ Ac.

So we have now hit a roadblock. Before, our approach was to estimate the third-
order moments and then apply Jennrich’s algorithm. But in our present setting, T (3)

is not necessarily low rank. In fact, it is the sum of k3 rank one tensors. The key idea
is that we can form other sorts of third-order tensors that we can use to zero out the
off-diagonal entries of {pa,b,c}a,b,c. For example, if we take three documents sampled
from the generative model and select one word uniformly at random out of each of
them, their joint distribution can be written as the tensor

T (1) =
∑
a,b,c

papbpcAa ⊗ Ab ⊗ Ac,

where pi = αi/α0. These tensors are almost the same. They have the same factors
{Ai}i and they differ only in that T (3) puts comparatively more weight on triples with
repeated indices. (Intuitively, this is because when the first word comes from the ith
topic it makes it more likely for the second word to also come from the same topic.)

We need to introduce one last tensor in order to describe the algorithm. Suppose
we sample two documents and take two words uniformly at random from the first
and one word uniformly at random from the second. The resulting tensor is

T (2)
{1,2} =

∑
a,b,c

pa,bpcAa ⊗ Ab ⊗ Ac,

where we have

pa,b =
{

αa(αa+1)
α0(α0+1) a = b

αaαb
α0(α0+1) otherwise

.

Notice there is now an asymmetry between the indices a,b,c that comes from the fact
that the first and second words come from the same document. If instead we want to
take (say) the first and third words from the same document and compute the third-
order moments we write T (2)

{1,3}. First we introduce some helpful notation:

Definition 20.22 Let T = α0(α0 +1)(α0 +2)T (3) −α2
0(α0 +1)(T (2)

{1,2} +T (2)
{1,3} +

T (2)
{2,3}) + 2α3

0T (1).

Now we are ready to state the key lemma that will allow us to learn the parameters
of an LDA model:

457

R. GE AND A. MOITRA

Lemma 20.23 In a Latent Dirichlet Allocation model

T =
∑
a,b,c

Ra,b,cAa ⊗ Ab ⊗ Ac (20.1)

where Ra,b,c is nonzero iff a = b = c. In particular Ra,a,a = 2αa.

Now we are in a position where we can once again apply Jennrich’s algorithm. Let
T̂ (3) denote the empirical approximation to T (3) and similarly for the other tensors.
The overall algorithm is given as Algorithm 2.

Algorithm 2 Topic modeling via tensor decomposition
Require: m documents of length L generated by a topic model

Compute the tensors T̂ (1),T̂ (2)
{i,j},T̂

(2)
{i,k},T̂

(2)
{j,k} and T̂ (3).

Use them to construct T̂ .
Apply Jennrich’s algorithm, renormalize the factors so they sum to one, and collect
them into a matrix A.

The main result of Anandkumar et al. (2012) is:

Theorem 20.24 There is a polynomial time algorithm to learn the topic matrix A
in a Latent Dirichlet Allocation model provided that A has full rank and that all
the αi’s are nonzero.

Again, the algorithm will output an estimate of A that converges to the true topic
matrix (up to a permutation of its columns) and the rate of convergence depends
polynomially on related parameters such as the number of words, the number of
topics, the condition number of A, how close the αi’s are to zero, etc. While this
algorithm shows that tensor methods can be extended to some mixed models, there
is an important caveat that if we replace the Dirichlet distribution with some other
distribution the formula (20.1) would no longer work (and probably there is no way to
get a low-rank tensor using just the low-order moments). The main question that we
will address in the next subsection is: Are there algorithms for learning mixed models
that work without making brittle assumptions about the moments?

20.3.4 Anchor Words Algorithm

In the previous subsection, we showed how to learn parameters of an LDA model
by utilizing tensor decompositions. One limitation of this approach is that it requires
estimating correlations between a triple of words, which can be costly in practice. In
this section we introduce a new algorithm based on separable NMF that works on
pairwise correlations, and has the advantage that it works for more general families
of topic models.

Topic Models and NMF. Recall that in a topic model, M ∈ R
n×m denotes a matrix

whose columns represent the intrinsic word distributions of each document. How-
ever, we do not observe M in practice. Instead, for every document we observe L
words sampled independently from the distribution given by its corresponding col-
umn in M. These L words allow us to construct the empirical document word matrix

458

TOPIC MODELS AND NONNEGATIVE MATRIX FACTORIZATION

M̂, where M̂i,j is the relative frequency with which word i appears in document j. It is
easy to see that E[M̂] = M. However, in practice L (usually on the order of hundreds)
can be much smaller than the number of words in vocabulary n (usually at least on the
order of tens of thousands). Thus M̂ has sparse columns and is a poor approximation
of M in standard norms such as �1 and �2. This is far too much error to be tolerated
by even the robust NMF algorithms that we discussed in Section 20.2.4.

The trouble is that M̂ does not concentrate as we increase the number of docu-
ments. Instead we will work with the Gram matrix Q: Let w1,w2 be two words from
the same document, then for any pair of words i,j we have Qi,j = P[w1 = i,w2 = j].
Further, let R denote the topic by topic matrix whose entry in row i, column j is the
probability that w1 was sampled from topic i and w2 was sampled from topic j. One
can relate Q,R, and A using the following claim:

Claim 20.25 Q = A(RA!).

Now, Q is a matrix whose size does not increase as the number of documents
increase, so we can hope the empirical estimation Q̂ to converge to Q. Further,
Claim 20.25 shows that Q admits a convenient decomposition in terms of the matrices
we would like to estimate.

Throughout this section, we will assume that A is separable (we will also need to
strengthen it so that it is quantitative). Let us translate what this assumption means
into the setup of topic modeling:

Definition 20.26 (Anchor Words Assumption) A topic matrix A ∈ R
n×k sat-

isfies p-anchor words assumption if for every topic i = 1,2, . . . ,k, there is an
anchor-word π(i) such that Aπ(i),i ≥ p, and Aπ(i),j = 0 for all j �= i.

This does not say that every document about topic i must contain word π(i).
Rather, what it says is that when word π(i) appears the document must be at least
partially about that topic. For example, if the word 401k occurs in a document then
it is indeed a strong indicator that the document is at least partially about personal
finance. Natural language seems to contain many such unambiguous words. (And
in fact when the topic matrix is generated using a Dirichlet distribution, as is often
assumed, for natural settings of parameters it will produce a separable topic matrix;
see Ding et al., 2015.)

While so far we have thought about separability geometrically, we will now turn to
a probabilistic interpretation. Let w1 be the first word in a document and let t1 denote
the topic it was sampled from.

Lemma 20.27 A word j is an anchor word for topic i if and only if

P[t1 = i′|w1 = j] = 1i=i′ .

Intuitively, the lemma says that an anchor word j is an indicator that the word must
have come from topic i. Similarly we have:

Lemma 20.28 If j is an anchor word for topic i, w1,w2 are two words in the same
document, then P[w1 = j|t2 = i] = P[w1 = j|w2 = π(i)].

We leave the proof as an exercise to the reader.

459

R. GE AND A. MOITRA

The basic idea behind the algorithm is to use the Gram matrix to set up a system
of linear equations to solve for certain posterior probability from which we can
compute A. In particular, using the law of total probabilities and Lemma 20.28,
we have

P[w1 = j|w2 = j′] =
∑

i′
P[w1 = j|w2 = π(i′)]P[t2 = i′|w2 = j′]. (20.2)

Since the Gram matrix Q satisfies Q = A(RA!), we can view A as the first NMF
factor and RA! = W! as the second NMF factor. Therefore we can compute
scaled versions of rows of W = RA! by solving separable NMF. With these in
hand, using Algorithm 1 we can identify the rows that correspond to anchor words
π(1),π(2), . . . ,π(k). Now the terms P[w1 = j|w2 = π(i′)] in Equation (20.2) can
be estimated as Q̂j,π(i′)/

∑
j′ Q̂j′,π(i′). The left-hand side of Equation (20.2) can also

be estimated as Q̂j,j′/
∑

j′′ Q̂j′′,j′ . This gives us a system of equations to solve for the
unknowns P[t2 = i′|w2 = j′]. It turns out that if R has full rank the system has a
unique solution so we can solve for these unknowns.

Finally, we can now compute A by using Bayes’ Rule:

P[w = j|t = i] = P[t = i|w = j]P[w = j]
P[t = i]

= P[t = i|w = j]P[w = j]∑
j′ P[t = i|w = j′]P[w = j′]

.

In summary, the algorithm is the following:

Algorithm 3 Topic modeling via NMF
Require: m documents of length L generated by a topic model with anchor words

Compute the Gram matrix Q̂.
Compute the anchor words using Separable NMF (Algorithm 1).
Solve for P[t = i|w = j].
Compute P[w = j|t = i] using Bayes’ Rule.

The main theorem of Arora et al. (2012, 2013) is:

Theorem 20.29 There is a polynomial-time algorithm to learn the topic matrix
A in a general topic model provided that A satisfy the p-anchor words assumption
and R has full rank.

The full analysis requires bounding the errors in each step. The number of
documents can be used to bound the error between Q̂ and Q. We can then invoke
the guarantees of Separable NMF in the presence of noise to ensure that it finds
near-anchor words. We can analyze the stability of the system of linear equations for
solving for P[t = i|w = j] in terms of the condition number of R. Finally we can
bound how much the errors blow up when we apply Bayes’ Rule.

20.3.5 Further Discussions

Besides Latent Dirichlet Allocation, there are also many other variants of topic
models that capture correlations between topics, including Correlated Topic Models

460

TOPIC MODELS AND NONNEGATIVE MATRIX FACTORIZATION

(Blei and Lafferty, 2006) and Pachinko Allocation (Li and McCallum, 2006). It is
hard to generalize Algorithm 2 to these models, as their moment structures are more
complex. Algorithm 3 can be applied to these models and learns a correct topic matrix
(although it’s unclear how to learn the additional parameters for generating the topic
proportion vectors). There are more extensions to topic models that consider the
ordering of words or documents; see the survey by Blei (2012). Designig provable
algorithms for these extensions is still an open problem.

Bhattacharya et al. (2016) and Bansal et al. (2014) designed algorithms for topic
models that do not rely on the LDA model or the anchor words assumption. They
relaxed anchor words to catch words, which are words that appear with a higher
probability in one topic compared to all the other topics. The assumption on the
topic matrix is that every topic has a set of catch words that all together have a
large probability in the topic. With stronger assumptions on topic proportions (in
particular the existence of pure documents that concern only a single topic) their
algorithms can also learn topic models provably.

Even given the topic matrix and parameters for the Dirichlet distribution,
computing the posterior of topic proportions can still be a tricky problem. Sontag
and Roy (2011) showed that the maximum a posteriori (MAP) estimate problem
for LDA is NP-hard. In practice one often wants to compute the expectation
over the posterior distribution instead of MAP, but there is also no known algorithm
for this in the most general setting. Arora et al. (2016c) gave guarantees for
topic inference under conditions inspired by collaborative filtering (Kleinberg and
Sandler, 2008).

Variational inference was the algorithm developed in the original paper for LDA
(Blei et al., 2003). Similar techniques have been extended to many other probabilistic
models. Awasthi and Risteski (2015) gave initial guarantees for variational inference
under separability and other assumptions.

20.4 Epilogue: Word Embeddings and Beyond

A topic model can be viewed as mapping every word in the vocabulary to a
k-dimensional vector that represents the probabilities of this word in the k topics.
Recently, works such as Mikolov et al. (2013) and Pennington et al. (2014) constructed
new word embeddings, which also map words into vectors in low-dimensional spaces.
Unlike topic models, individual entries of these new word embeddings do not have
a probabilistic interpretation and are not necessarily nonnegative. The new word
embeddings are shown to be effective in a wide range of natural language processing
tasks. Perhaps the most interesting property of the new word embeddings is that
they can solve analogy tasks (Levy and Goldberg, 2014, Pennington et al., 2014): for
analogies like “man:woman::king:??”, one can just take the vectors vm,vw and vk for
words man, woman, king respectively, and construct a new vector v = vk − vm + vw.
The new vector v is very close to the embedding for queen, which is the correct answer
of the analogy. Arora et al. (2016b) constructed a model that partially explained some
properties of word embeddings.

More recently, even more complicated models for representing words using vectors
were proposed – such as ELMo in Peters et al. (2018) and BERT in Devlin et al.
(2019). These models are dependent on the context of the words and currently do

461

R. GE AND A. MOITRA

not have a theoretical understanding. We hope future theoretical insights can help
explain what information these embeddings might capture, and lead to new practical
variants for word embeddings.

References

Anandkumar, Anima, Foster, Dean P., Hsu, Daniel J., Kakade, Sham M., and Liu, Yi-
Kai. 2012. A spectral algorithm for latent Dirichlet allocation. In Advances in Neural
Information Processing Systems, pp. 917–925.

Arora, Sanjeev, Ge, Rong, and Moitra, Ankur. 2012. Learning topic models–going beyond
SVD. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pp.
1–10. IEEE.

Arora, Sanjeev, Ge, Rong, Halpern, Yonatan, Mimno, David, Moitra, Ankur, Sontag,
David, Wu, Yichen, and Zhu, Michael. 2013. A practical algorithm for topic mod-
eling with provable guarantees. In International Conference on Machine Learning,
pp. 280–288.

Arora, Sanjeev, Ge, Rong, Kannan, Ravi, and Moitra, Ankur. 2016a. Computing a nonnega-
tive matrix factorization – Provably. SIAM Journal on Computing, 45(4), 1582–1611.

Arora, Sanjeev, Li, Yuanzhi, Liang, Yingyu, Ma, Tengyu Ma, and Risteski, Andrej. 2016b.
A latent variable model approach to PMI-based word embeddings. Transactions of the
Association for Computational Linguistics, 4, pp. 385–399.

Arora, Sanjeev, Ge, Rong, Koehler, Frederic, Ma, Tengyu, and Moitra, Ankur. 2016c. Prov-
able algorithms for inference in topic models. In International Conference on Machine
Learning, pp. 2859–2867.

Arora, Sanjeev, Ge, Rong, Halpern, Yoni, Mimno, David, Moitra, Ankur, Sontag, David,
Wu, Yichen, and Zhu, Michael. 2018. Learning topic models – provably and efficiently.
Communications of the ACM, 61(4), 85–93.

Awasthi, Pranjal, and Risteski, Andrej. 2015. On some provably correct cases of variational
inference for topic models. In Advances in Neural Information Processing Systems, pp.
2098–2106.

Bansal, Trapit, Bhattacharyya, Chiranjib, and Kannan, Ravindran. 2014. A provable SVD-
based algorithm for learning topics in dominant admixture corpus. In Advances in Neural
Information Processing Systems, pp. 1997–2005.

Basu, Saugata, Pollack, Richard, and Roy, Marie-Françoise. 1996. On the combinatorial and
algebraic complexity of quantifier elimination. Journal of the ACM (JACM), 43(6),
1002–1045.

Bhattacharya, Chiranjib, Goyal, Navin, Kannan, Ravindran, and Pani, Jagdeep. 2016. Non-
negative matrix factorization under heavy noise. In International Conference on Machine
Learning, pp. 1426–1434.

Blei, David, and Lafferty, John. 2006. Correlated topic models. Advances in Neural Information
Processing Systems, 18, 147.

Blei, David M. 2012. Probabilistic topic models. Communications of the ACM, 55(4),
77–84.

Blei, David M, Ng, Andrew Y, and Jordan, Michael I. 2003. Latent Dirichlet allocation.
Journal of Machine Learning Research, 3(Jan), 993–1022.

Cohen, Shay B, and Collins, Michael. 2014. A provably correct learning algorithm for latent-
variable PCFGs. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Vol. 1: Long Papers), pp. 1052–1061.

Deerwester, Scott, Dumais, Susan T, Furnas, George W, Landauer, Thomas K, and Harshman,
Richard. 1990. Indexing by latent semantic analysis. Journal of the American Society for
Information Science, 41(6), 391–407.

462

TOPIC MODELS AND NONNEGATIVE MATRIX FACTORIZATION

Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton, and Toutanova, Kristina. 2019. BERT: Pre-
training of deep bidirectional transformers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol. 1 (Long and Short Papers), pp. 4171–
4186.

Ding, Weicong, Ishwar, Prakash, and Saligrama, Venkatesh. 2015. Most large topic models are
approximately separable. In 2015 Information Theory and Applications Workshop (ITA),
pp. 199–203. IEEE.

Donoho, David, and Stodden, Victoria. 2004. When does non-negative matrix factorization
give a correct decomposition into parts? In Advances in Neural Information Processing
Systems, pp. 1141–1148.

Ge, Rong, and Zou, James. 2016. Rich component analysis. In International Conference on
Machine Learning, pp. 1502–1510.

Gillis, Nicolas. 2014. The why and how of nonnegative matrix factorization. Regularization,
Optimization, Kernels, and Support Vector Machines, 12(257), 257–291.

Gillis, Nicolas, and Vavasis, Stephen A. 2013. Fast and robust recursive algorithmsfor separa-
ble nonnegative matrix factorization. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(4), 698–714.

Halpern, Yoni, and Sontag, David. 2013. Unsupervised learning of noisy-or Bayesian net-
works. In Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelli-
gence, p. 272–281. UAI’13. Arlington, VA: AUAI Press.

Harshman, Richard A., et al. 1970. Foundations of the PARAFAC procedure: Models and
conditions for an” explanatory” multimodal factor analysis. In UCLA Working Papers in
Phonetics, 16, 1–84.

Håstad, Johan. 1990. Tensor rank is NP-complete. Journal of Algorithms, 11(4), 644–654.
Hoffman, Thomas. 1999. Probabilistic latent semantic indexing. In Proceedings of the 22nd

Annual ACM Conference on Research and Development in Information Retrieval, 1999,
pp. 50–57.

Impagliazzo, Russell, and Paturi, Ramamohan. 2001. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2), 367–375.

Jernite, Yacine, Halpern, Yonatan, and Sontag, David. 2013. Discovering hidden variables
in noisy-or networks using quartet tests. In Advances in Neural Information Processing
Systems, pp. 2355–2363.

Kleinberg, Jon, and Sandler, Mark. 2008. Using mixture models for collaborative filtering.
Journal of Computer and System Sciences, 74(1), 49–69.

Lee, Daniel D, and Seung, H Sebastian. 1999. Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755), 788.

Levy, Omer, and Goldberg, Yoav. 2014. Linguistic regularities in sparse and explicit word
representations. In Proceedings of the Eighteenth Conference on Computational Natural
Language Learning, pp. 171–180.

Li, Wei, and McCallum, Andrew. 2006. Pachinko allocation: DAG-structured mixture models
of topic correlations. In Proceedings of the 23rd International Conference on Machine
Learning, pp. 577–584. ACM.

Ma, Wing-Kin, Bioucas-Dias, José M, Chan, Tsung-Han, Gillis, Nicolas, Gader, Paul, Plaza,
Antonio J, Ambikapathi, ArulMurugan, and Chi, Chong-Yung. 2013. A signal process-
ing perspective on hyperspectral unmixing: Insights from remote sensing. IEEE Signal
Processing Magazine, 31(1), 67–81.

Mikolov, Tomas, Chen, Kai, Corrado, Greg, and Dean, Jeffrey. 2013. Efficient estimation of
word representations in vector space. In: Proceedings of the International Conference on
Learning Representations.

Moitra, Ankur. 2016. An almost optimal algorithm for computing nonnegative rank. SIAM
Journal on Computing, 45(1), 156–173.

463

R. GE AND A. MOITRA

Mossel, Elchanan, and Roch, Sébastien. 2005. Learning nonsingular phylogenies and hidden
Markov models. In Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, pp. 366–375. ACM.

Papadimitriou, Christos H, Raghavan, Prabhakar, Tamaki, Hisao, and Vempala, Santosh.
2000. Latent semantic indexing: A probabilistic analysis. Journal of Computer and System
Sciences, 61(2), 217–235.

Pennington, Jeffrey, Socher, Richard, and Manning, Christopher. 2014. Glove: Global vectors
for word representation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1532–1543.

Peters, Matthew E., Neumann, Mark, Iyyer, Mohit, Gardner, Matt, Clark, Christopher,
Lee, Kenton, and Zettlemoyer, Luke. 2018. Deep contextualized word representations.
In Proceedings of the North American Chapter of the Association for Computational
Linguistics..

Recht, Ben, Re, Christopher, Tropp, Joel, and Bittorf, Victor. 2012. Factoring nonnegative
matrices with linear programs. In Advances in Neural Information Processing Systems,
pp. 1214–1222.

Renegar, James. 1992. On the computational complexity and geometry of the first-order theory
of the reals. Part I: Introduction. Preliminaries. The geometry of semi-algebraic sets. The
decision problem for the existential theory of the reals. Journal of Symbolic Computation,
13(3), 255–299.

Sontag, David, and Roy, Dan. 2011. Complexity of inference in latent Dirichlet allocation. In
Advances in Neural Information Processing systems.

Telgarsky, Matus. 2013. Dirichlet draws are sparse with high probability. arXiv preprint
arXiv:1301.4917.

Vavasis, Stephen A. 2009. On the complexity of nonnegative matrix factorization. SIAM
Journal on Optimization, 20(3), 1364–1377.

Wikipedia contributors. 2019. Dirichlet distribution. Wikipedia. [Online; accessed October 1,
2019].

Winter, Michael E. 1999. N-FINDR: An algorithm for fast autonomous spectral end-member
determination in hyperspectral data. In Imaging Spectrometry V, vol. 3753, pp. 266–275.
International Society for Optics and Photonics.

Yannakakis, Mihalis. 1991. Expressing combinatorial optimization problems by linear pro-
grams. Journal of Computer and System Sciences, 43(3), 441–466.

Exercises

Exercise 20.1 Prove Claim 20.9: If every row of M ∈ R
n×m has �1 norm 1, and M has

nonnegative rank k, then there is a nonnegative matrix factorization of M = AW ,
where A ∈ R

n×k and W ∈ R
k×m such that every row of A or W also has �1 norm

equal to 1.

Exercise 20.2 Prove Theorem 20.11: If M has a separable NMF M = AW of
nonnegative rank k, and the rank of W is equal to k, then Algorithm 1 returns
k vectors that correspond to the rows of W .

(a) Let v1, . . . ,vk ∈ R
m be k vectors and P be their convex hull. Show that every

of maxv∈P ‖v‖2 must be one of the k vertices.
(b) Use (a) to prove Theorem 20.11 by induction.

Exercise 20.3 Prove Lemma 20.28: If j is an anchor word for topic i and w1,w2 are
two words in the same document, then P[w1 = j|t2 = i] = P[w1 = j|w2 = π(i)].

464

CHAPTER TWENTY ONE

Why Do Local Methods Solve
Nonconvex Problems?

Tengyu Ma

Abstract: Nonconvex optimization is ubiquitous in modern machine
learning. Researchers devise nonconvex objective functions and opti-
mize them using off-the-shelf optimizers such as stochastic gra-
dient descent and its variants, which leverage the local geometry
and update iteratively. Even though solving nonconvex functions is
NP-hard in the worst case, the optimization quality in practice is
often not an issue – optimizers are largely believed to find approx-
imate global minima. We hypothesize a unified explanation for this
intriguing phenomenon: most of the local minima of the practically
used objectives are approximately global minima. We rigorously
formalize it for concrete instances of machine learning problems.

21.1 Introduction

Optimizing nonconvex functions has become the standard algorithmic technique in
modern machine learning and artificial intelligence. It is increasingly important to
understand the working of the existing heuristics for optimizing nonconvex functions,
so that we can design more efficient optimizers with guarantees. The worst-case
intractability result says that finding a global minimizer of a nonconvex optimization
problem – or even just a degree-4 polynomial – is NP-hard. Therefore, theoretical
analysis with global guarantees has to depend on the special properties of the target
functions that we optimize. To characterize the properties of the real-world objective
functions, researchers have hypothesized that many objective functions for machine
learning problems have the property that

all or most local minima are approximately global minima. (21.1)

Optimizers based on local derivatives can solve this family of functions in poly-
nomial time (under some additional technical assumptions that will be discussed).
Empirical evidence also suggests practical objective functions from machine learning
and deep learning may have such a property. In this chapter, we formally state the
algorithmic result that local methods can solve objective with property (21.1) in
Section 21.2, and then rigorously prove that this property holds for a few objectives
arising from several key machine learning problems: generalized linear models (Sec-
tion 21.3), principal component analysis (PCA; Section 21.4.1), matrix completion

465

T. MA

(Section 24.4.2), and tensor decompositions (Section 21.5). We will also briefly touch
on recent works on neural networks (Section 21.6).

21.2 Analysis Technique: Characterization of the Landscape

In this section, we will show that a technical and stronger version of the property
(21.1) implies that many optimizers can converge to a global minimum of the
objective function.

21.2.1 Convergence to a Local Minimum

We consider a objective function f , which is assumed to be twice-differentiable from
R

d to R. Recall that x is a local minimum of f (·) if there exists an open neighborhood
N of x in which the function value is at least f (x): ∀z ∈ N,f (z) ≥ f (x). A point
x is a stationary point if it satisfies ∇f (x) = 0. A saddle point is a stationary point
that is not a local minimum or maximum. We use ∇f (x) to denote the gradient of
the function and ∇2f (x) to denote the Hessian of the function (∇2f (x) is an d × d
matrix where [∇2f (x)]i,j = ∂2

∂xi∂xj
f (x)). A local minimum x must satisfy the first-

order necessary condition for optimality, that is, ∇f (x) = 0, and the second-order
necessary condition for optimality, that is, ∇2f (x) % 0. (Here A % 0 denotes that A
is a positive semidefinite matrix.) Thus, a local minimum is a stationary point, so is a
global minimum.

Under the following strict-saddle assumption, we can efficiently find a local
minimum of the function f . A strict-saddle function satisfies that every saddle point
must have a strictly negative curvature in some direction:

Definition 21.1 For α,β,γ ≥ 0, we say f is (α,β,γ)-strict saddle if every x ∈ R
d

satisfies at least one of the following three conditions:

1. ‖∇f (x)‖2 ≥ α.
2. λmin(∇2f) ≤ −β.
3. There exists a local minimum x� that is γ -close to x in Euclidean distance.

This condition is conjectured to hold for many real-world functions, and will be
proved to hold for various problems concretely. However, in general, verifying it math-
ematically or empirically may be difficult. Under this condition, many algorithms can
converge to a local minimum of f in polynomial time, as stated.1

Theorem 21.2 Suppose f is a twice differentiable (α,β,γ)-strict saddle function
from R

d → R. Then, various optimization algorithms (such as stochastic gradient
descent) can converge to a local minimum in with ε error in Euclidean distance in
time poly(d,1/α,1/β,1/γ,1/ε).

1 In this chapter, we allow polynomial dependence on 1/ε, where ε is the error. This makes sense for the
downstream machine learning applications because very high accuracy solutions are not necessary (there are
intrinsic statistical errors, anyway).

466

WHY DO LOCAL METHODS SOLVE NONCONVEX PROBLEMS?

21.2.2 Local Optimality vs. Global Optimality

If a function f satisfies the property that “all local minima are global” and the strict
saddle property, we can provably find one of its global minima.

Theorem 21.3 Suppose f satisfies “all local minima are global” and the strict
saddle property in a sense that all points satisfying approximately the necessary
first-order and second-order optimality condition should be close to a global
minimum:

There exist ε0,τ0 > 0 and a universal constant c > 0 such that if a point x
satisfies ‖∇f (x)‖2 ≤ ε ≤ ε0 and ∇2f (x) % −τ0 · I, then x is εc-close to a global
minimum of f .

Then, many optimization algorithms (including stochastic gradient descent and
cubic regularization), can find a global minimum of f up to δ error in �2 norm in
domain in time poly(1/δ,1/τ0,d).

The technical condition of the theorem is often succinctly referred to as “all local
minima are global,” but its precise form, which is a combination of “all local minima
are global” and the strict saddle condition, is crucial. There are functions that satisfy
“all local minima are global” but cannot be optimized efficiently. Ignoring the strict
saddle condition may lead to misleadingly strong statements.

The condition of Theorem 21.3 can be replaced by stronger ones that may
occasionally be easier to verify, if they are indeed true for the functions of interests.
One such condition is that “any stationary point is a global minimum.” The gradient
descent is known to converge to a global minimum linearly, as stated in Theorem 21.4.
However, because this condition effectively rules out the existence of multiple dis-
connected local minima, it can’t hold for many objective functions related to neural
networks, which guarantees to have multiple local minima and stationary points due
to a certain symmetry.

Theorem 21.4 Suppose a function f has L-Lipschitz continuous gradients and
satisfies the Polyak–Lojasiewicz condition: ∃ μ > 0 and x∗ such that for every x,

‖∇f (x)‖2
2 ≥ μ(f (x) − f (x∗)) ≥ 0. (21.2)

Then, the errors of gradient descent with step size less than 1/(2L) decay
geometrically.

It can be challenging to verify the Polyak–Lojasiewicz condition because the
quantity ‖∇f (x)‖2

2 is often a complex function of x. An easier-to-verify but stronger
condition is the quasi-convexity. Intuitively speaking, quasi-convexity says that at any
point x the gradient should be negatively correlated with the direction x∗−x pointing
toward the optimum.

Definition 21.5 (Weak Quasi-convexity) We say an objective function f is
τ -weakly quasi-convex over a domain B with respect to the global minimum
x∗ if there is a positive constant τ > 0 such that for all x ∈ B,

∇f (x)!(x − x∗) ≥ τ(f (x) − f (x∗)). (21.3)

467

T. MA

The following one is another related condition, which is sometimes referred to
as the restricted secant inequality (RSI):

∇f (x)!(x − x∗) ≥ τ‖x − x∗‖2
2. (21.4)

We note that convex functions satisfy (21.3) with τ = 1. Condition (21.4) is stronger
than (21.3) because for smooth function, we have ‖x − x∗‖2

2 ≥ L(f (x) − f (x∗)) for
some constant L.2 Conditions (21.2), (21.3), and (21.4) all imply that all stationary
points are global minimum because ∇f (x) = 0 implies that f (x) = f (x∗) or x = x∗.

21.2.3 Landscape for Manifold-Constrained Optimization

We can extend many of the results in the previous section to the setting of constrained
optimization over a smooth manifold. This section is useful only for problems in
Section 21.5 and casual readers can feel free to skip it.

Let M be a Riemannian manifold. Let TxM be the tangent space to M at x, and
let Px be the projection operator to the tangent space TxM. Let grad f (x) ∈ TxM
be the gradient of f at x on M and Hess f (x) be the Riemannian Hessian. Note that
Hess f (x) is a linear mapping from TxM onto itself.

Theorem 21.6 (Informal) Consider the constrained optimization problem
minx∼M f (x). Under proper regularity conditions, Theorems 21.2 and 21.3 still
hold when replacing ∇f and ∇2f by grad f and Hess f , respectively.

Backgrounds on Manifold Gradient and Hessian. Later in Section 21.5, the unit sphere
in d-dimensional space will be our constraint set, that is, M = Sd−1. We provide
some further background on how to compute the manifold gradients and Hessian
here. We view f as the restriction of a smooth function f̄ to the manifold M. In this
case, we have TxM = {z ∈ R

d : z!x = 0}, and Px = I − xx!. We derive the
manifold gradient of f on M: grad f (x) = Px∇ f̄ (x), where ∇ is the usual gradient
in the ambient space R

d . Moreover, we derive the Riemannian Hessian as Hess
f (x) = Px∇2f̄ (x)Px − (x!∇ f̄ (x))Px.

21.3 Generalized Linear Models

We consider the problem of learning a generalized linear model and we will show
that the loss function for it will be nonconvex, but all of its local minima are global.
Suppose we observe n data points {(xi,yi)}n

i=1, where xi’s are sampled i.i.d. from some
distribution Dx over Rd . In the generalized linear model, we assume the label yi ∈ R

is generated from

yi = σ(w!
� xi) + εi,

where σ : R → R is a known monotone activation function, εi ∈ R are i.i.d. mean-
zero noise (independent with xi), and w� ∈ R

d is a fixed unknown ground truth
coefficent vector. We denote the joint distribution of (xi,yi) by D.

2 Readers who are familiar with convex optimization may realize that condition (21.4) is an extension of
strong convexity.

468

WHY DO LOCAL METHODS SOLVE NONCONVEX PROBLEMS?

Our goal is to recover approximately w� from the data. We minimize the empirical
squared risk: L̂(w) = 1

2n

∑n
i=1(yi − σ(w!xi))

2. Let L(w) be the corresponding
population risk: L(w) = 1

2 E(x,y)∼D
[
(y − σ(w!x))2

]
.

We will analyze the optimization of L̂ via characterizing the property of its
landscape. Our road map consists of two parts: (1) all the local minima of the
population risk are global minima; and (2) the empirical risk L̂ has the same property.

When σ is the identity function, that is, σ(t) = t, we have the linear regression
problem and the loss function is convex. In practice, people have taken σ , e.g., to be
the sigmoid function and then the objective L̂ is no longer convex.

Throughout the rest of the section, we make the following regularity assumptions
on the problem. These assumptions are stronger than what’s necessary, for the ease
of exposition. However, we note that some assumptions on the data are necessary
because in the worst case, the problem is intractable (e.g., the generative assump-
tion (21.4) on yi’s is a key one).

Assumption 21.7 We assume the distribution Dx and activation σ satisfy that

1. The vectors xi are bounded and nondegenerate: Dx is supported in the ball
{x : ‖x‖2 ≤ B}, and Ex∼Dx [xx!] % λI for some λ > 0, where I is the identity.

2. The ground truth coefficient vector satisfies ‖w�‖2 ≤ R, and BR ≥ 1.
3. The activation function σ is strictly increasing and twice differentiable.

Furthermore, it satisfies the bounds

σ(t) ∈ [0,1], sup
t∈R

{|σ ′(t)|,|σ ′′(t)|} ≤ 1, and inf
t∈[−BR,BR]

σ ′(t) ≥ γ > 0.

4. The noise εi’s are mean zero and bounded: With probability 1, we have
|εi| ≤ 1.

21.3.1 Analysis of the Population Risk

In this section, we show that all the local minima of the population risk L(w) are
global minima. In fact, L(w) has a unique local minimum that is also global. (But
still, L(w) may likely be not convex for many choices of σ .)

Theorem 21.8 The objective L(·) has a unique local minimum, which is equal to
w� and is also a global minimum. In particular, L(·) is weakly quasi-convex.

The proof follows from directly checking the definition of the quasi-convexity.
The intuition is that generalized linear models behave very similarly to linear models
from the lens of quasi-convexity: Many steps of the inequalities of the proof involve
replacing σ by an identity function effectively (or replacing σ ′ by 1).

Proof Sketch Using the property that E[y|x] = σ(w!
� x), we have the follo-

wing bias-variance decomposition (which can be derived by elementary
manipulation):

L(w) = 1
2
E[(y − σ(w!x))2] = 1

2
E[(y − σ(w!

� x))2]+ 1
2
E[(σ (w!

� x) − σ(w!x))2].

(21.5)

469

T. MA

The first term is independent of w, and the second term is nonnegative and
equals zero at w = w�. Therefore, we see that w� is a global minimum of L(w).

Towards proving that L(·) is quasi-convex, we first compute ∇L(w):

∇L(w) = E[(σ (w!x) − y)σ ′(w!x)x] = E[(σ (w!x) − σ(w!
� x))σ ′(w!x)x],

where the last equality used the fact that E[y|x] = σ(w!
� x). It follows that

〈∇L(w),w − w�〉 = E[(σ (w!x) − σ(w!
� x))σ ′(w!x)〈w − w�,x〉].

Now, by the mean value theorem, and bullet 3 of Assumption 21.7, we have that

(σ (w!x) − σ(w!
� x))〈w − w�,x〉 ≥ γ (w!x − w!

� x)2.

Using |σ ′(t)| ≥ γ and |σ ′(t)| ≤ 1 for every |t| ≤ BR, and the monotonicity of σ ,

〈∇L(w),w − w�〉 = E[(σ (w!x) − σ(w!
� x))σ ′(w!x)〈w − w�,x〉]

≥ γE(σ (w!x) − σ(w!
� x))(w!x − w!

� x)] (21.6)

≥ γE[(σ (w!x) − σ(w!
� x))2] ≥ 2γ (L(w) − L(w�))

where the last step uses the decomposition (21.5) of the risk L(w). �

21.3.2 Concentration of the Empirical Risk

We next analyze the empirical risk L̂(w). We will show that with sufficiently many
examples, the empirical risk L̂ is close enough to the population risk L so that L̂ also
satisfies that all local minima are global.

Theorem 21.9 (The empirical risk has no bad local minimum) Under the
problem assumptions, with probability at least 1 − δ, for all w with ‖w‖2 ≤ R,
the empirical risk has no local minima outside a small neighborhood of w�: For
any w such that ‖w‖2 ≤ R, if ∇L̂(w) = 0, then

‖w − w�‖2 ≤ C1B
γ 2λ

√
d(C2 + log(nBR)) + log 1

δ

n
,

where C1,C2 > 0 are universal constants that do not depend on (B,R,d,n,δ).

Theorem 21.9 shows that all stationary points of L̂(w) have to be within a small
neighborhood of w�. Stronger landscape property can also be proved though: There
is a unique local minimum in the neighborhood of w�.

The main intuition is that to verify quasi-convexity or restricted secant inequality
for L̂, it suffices to show that with high probability over the randomness of the data,
∀w with ‖w‖2 ≤ R

〈∇L(w),w − w�〉 ≈ 〈∇L̂(w),w − w�〉. (21.7)

Various tools to prove such concentration inequalities have been developed in sta-
tistical learning theory and probability theory community, and a thorough exposition
of them is beyond the scope of this chapter.

470

WHY DO LOCAL METHODS SOLVE NONCONVEX PROBLEMS?

21.4 Matrix Factorization Problems

In this section, we will discuss the optimization landscape of two problems based on
matrix factorization: principal component analysis (PCA) and matrix completion.
The fundamental difference between them and the generalized linear models is that
their objective functions have saddle points that are not local minima or global min-
ima. It means that the quasi-convexity condition or Polyak–Lojasiewicz condition
does not hold for these objectives. Thus, we need more sophisticated techniques that
can distinguish saddle points from local minima.

21.4.1 Principal Component Analysis

One interpretation of PCA is approximating a matrix by its best low-rank approxi-
mation. Given a matrix M ∈ R

d1×d2 , we aim to find its best rank-r approximation (in
either Frobenius norm or spectral norm). For the ease of exposition, we take r = 1
and assume M to be symmetric positive semidefinite with dimension d by d. In this
case, the best rank-1 approximation has the form xx! where x ∈ R

d .
There are many well-known algorithms for finding the low-rank factor x. We are

particularly interested in the following nonconvex program that directly minimizes
the approximation error in Frobenius norm:

min
x

g(x) := 1
2

· ‖M − xx!‖2
F . (21.8)

We will prove that even though g is not convex, all the local minima of g are global,
and g also satisfies the strict saddle property. Therefore, local search algorithms can
solve (21.8) in polynomial time.3

Theorem 21.10 In the preceding setting, all the local minima of the objective
function g(x) are global minima.4

Our analysis consists of two main steps: (1) to characterize all the stationary points
of the function g, which turn out to be the eigenvectors of M; and (2) to examine each
of the stationary points and show that only the top eigenvector(s) of g can be a local
minimum. Step (2) implies the theorem because the top eigenvectors are also global
minima of g. We start with step (1) with the following lemma.

Lemma 21.11 In the setting of Theorem 21.10, all the stationary points of the
objective g() are the eigenvectors of M. Moreover, if x is a stationary point, then
‖x‖2

2 is the eigenvalue corresponding to x.

Proof By elementary calculus, we have that

∇g(x) = −(M − xx!)x = ‖x‖2
2 · x − Mx. (21.9)

3 In fact, local methods can solve it very quickly. See, e.g., Thereom 1.2 in Li et al. (2018).
4 The function g also satisfies the (α,β,γ)-strict-saddle property (Definition 21.1) with some α,β,γ > 0 (that

may depend on M). We skip the proof of this result for simplicity.

471

T. MA

Therefore, if x is a stationary point of g, then Mx = ‖x‖2
2 ·x, which implies that

x is an eigenvector of M with eigenvalue equal to ‖x‖2
2. �

Now we are ready to prove (2) and the theorem. The key intuition is the following.
Suppose we are at a point x that is an eigenvector but not the top eigenvector; moving
in either the top eigenvector direction v1 or the direction of −v1 will result in a second-
order local improvement of the objective function. Therefore, x cannot be a local
minimum unless x is a top eigenvector.

Proof of Theorem 21.10 By Lemma 21.11, we know that a local minimum x is
an eigenvector of M. If x is a top eigenvector of M with the largest eigenvalue,
then x is a global minimum. For the sake of contradiction, we assume that x is
an eigenvector with eigenvalue λ that is strictly less than λ1. By Lemma 21.11
we have λ = ‖x‖2

2. By elementary calculation, we have that

∇2g(x) = 2xx! − M + ‖x‖2
2 · I . (21.10)

Let v1 be the top eigenvector of M with eigenvalue λ1 and with �2 norm 1.
Then, because ∇2g(x) % 0, we have that

v!
1 ∇2g(x)v ≥ 0. (21.11)

It’s a basic property of eigenvectors of positive semidefinite matrix that any
pairs of eigenvectors with different eigenvalues are orthogonal to each other.
Thus we have 〈x,v1〉 = 0. It follows Equations (21.11) and (21.10) that

0 ≤ v!
1 (2xx! − M + ‖x‖2

2 · I)v1 = ‖x‖2
2 − v!

1 Mv1 (by 〈x,v1〉 = 0)

= λ − λ1 (because v1 has eigenvalue λ1 and λ = ‖x‖2
2)

< 0, (by the assumption)

which is a contradiction. �

21.4.2 Matrix Completion

Matrix completion is the problem of recovering a low-rank matrix from partially
observed entries, which has been widely used in collaborative filtering and recom-
mender systems, dimension reduction, and multiclass learning. Despite the existence
of elegant convex relaxation solutions, stochastic gradient descent on nonconvex
objectives are widely adopted in practice for scalability. We will focus on the rank-1
symmetric matrix completion in this chapter, which demonstrates the essence of the
analysis.

Rank-1 Case of Matrix Completion
Let M = zz! be a rank-1 symmetric matrix with factor z ∈ R

d that we aim to recover.
We assume that we observe each entry of M with probability p independently.5 Let
� ⊂ [d] × [d] be the set of entries observed.

5 Technically, because M is symmetric, the entries at (i,j) and (j,i) are the same. Thus, we assume that, with
probability p we observe both entries and otherwise we observe neither.

472

WHY DO LOCAL METHODS SOLVE NONCONVEX PROBLEMS?

Our goal is to recover from the observed entries of M the vector z up to sign flip
(which is equivalent to recovering M).

A known issue with matrix completion is that if M is “aligned” with standard
basis, then it’s impossible to recover it. For example, when M = eje!

j where ej is the
jth standard basis, we will very likely observe only entries with value zero, because M
is sparse. Such scenarios do not happen in practice very often though. The following
standard assumption will rule out these difficult and pathological cases:

Assumption 21.12 (Incoherence) without loss of generality, we assume that
‖z‖2 = 1. In addition, we assume that z satisfies ‖z‖∞ ≤ μ√

d
. We will think of μ

as a small constant or logarithmic in d, and the sample complexity will depend
polynomially on it.

In this setting, the vector z can be recovered exactly up to a sign flip provided �̃(d)
samples. However, for simplicity, in this subsection we aim only to recover z with an
�2 norm error ε � 1. We assume that p = poly(μ, log d)/(dε), which means that the
expected number of observations is on the order of d/ε · polylog d. We analyze the
following objective that minimizes the total squared errors on the observed entries:

argminx f (x) := 1
2

∑
(i,j)∈�

(Mij − xixj)
2 = 1

2
· ‖P�(M − xx!)‖2

F . (21.12)

Here P�(A) denotes the matrix obtained by zeroing out all the entries of A that are
not in�. For simplicity, we only focus on characterizing the landscape of the objective
in the following domain B of incoherent vectors that contain the ground-truth vector
z (with a buffer of factor of 2):

B =
{

x : ‖x‖∞ <
2μ√

d

}
. (21.13)

We note that the analyzing the landscape inside B does not suffice because the
iterates of the algorithms may leave the set B. We refer the readers to the original
paper (Ge et al., 2016) for an analysis of the landscape over the entire space.

The global minima of f (·) are z and −z with function value 0. In the rest of the
section, we prove that all the local minima of f (·) are O(

√
ε)-close to ±z.6

Theorem 21.13 In the aforementioned setting, there are only two local mimina
of the function f (·) inside the set B. They are O(

√
ε)-close to ±z.

It’s insightful to compare with the full observation case when � = [d] × [d]. The
corresponding objective is exactly the PCA objective g(x) = 1

2 · ‖M − xx!‖2
F defined

in Equation (21.8). Observe that f (x) is a sampled version of the g(x), and therefore
we expect that they share the same geometric properties. In particular, recall that g(x)
does not have spurious local minima and thus we expect neither does f (x).

6 It’s also true that the only local minima are exactly ±z, and that f has strict saddle property. However, their
proofs are involved and beyond the scope of this chapter.

473

T. MA

However, its nontrivial to extend the proof of Theorem 21.10 to the case of partial
observation, because it uses the properties of eigenvectors heavily. Indeed, suppose we
imitate the proof of Theorem 21.10, we will first compute the gradient of f (·):

∇f (x) = P�(zz! − xx!)x. (21.14)

Then, we run into an immediate difficulty – how shall we solve the equation for
stationary points f (x) = P�(M − xx!)x = 0? Moreover, even if we could have a
reasonable approximation for the stationary points, it would be difficult to examine
their Hessians without using the exact orthogonality of the eigenvectors.

The lesson from this discussion is that we may need to have an alternative proof for
the PCA objective (full observation) that relies less on solving the stationary points
exactly. Then more likely the proof can be extended to the matrix completion (partial
observation) case. In the sequel, we follow this plan by first providing an alternative
proof for Theorem 21.10, which does not require solving the equation ∇g(x) = 0,
and then extend it via concentration inequality to a proof of Theorem 21.13. The
key intuition is:

Proofs that consist of inequalities that are linear in 1� are often easily generalizable
to partial observation case.

Here statements that are linear in 1� mean the statements of the form
∑

ij 1(i,j)∈�
Tij ≤ a. We will call these kinds of proofs “simple” proofs in this section. Indeed,
by the law of large numbers, when the sampling probability p is sufficiently large, we
have that ∑

(i,j)∈�
Tij︸ ︷︷ ︸

partial observation

=
∑
i,j

1(i,j)∈�Tij ≈ p
∑
i,j

Tij︸ ︷︷ ︸
full observation

. (21.15)

Then, the mathematical implications of p
∑

Tij ≤ a are expected to be similar to
the implications of

∑
(i,j)∈� Tij ≤ a/p, up to some small error introduced by the

approximation. More precisely, we will use concentration inequalities such as the
following theorem:

Theorem 21.14 Let ε > 0 and p = poly(μ, log d)/(dε). Then, with high proba-
bility of the randomness of �, we have that for all A = uu!,B = vv! ∈ R

d×d,
where ‖u‖2 ≤ 1,‖v‖2 ≤ 1 and ‖u‖∞,‖v‖∞ ≤ 2μ/

√
d.

|〈P�(A),B〉 − p〈A,B〉| ≤ pε. (21.16)

We will provide two claims in the text that follows, the combination of which proves
Theorem 21.10. In the proofs of these two claims, all the inequalities are of the form
of the left-hand side of Equation (21.15). Following each claim, we will immediately
provide its extension to the partial observation case.

Claim 1f Suppose x ∈ B satisfies ∇g(x) = 0, then 〈x,z〉2 = ‖x‖4
2.

474

WHY DO LOCAL METHODS SOLVE NONCONVEX PROBLEMS?

Proof By elementary calculation

∇g(x) = (zz! − xx!)x = 0

⇒ 〈x,∇g(x)〉 = 〈x,(zz! − xx!)x〉 = 0 (21.17)

⇒ 〈x,z〉2 = ‖x‖4
2.

Intuitively, a stationary point x’s norm is governed by its correlation with z. �

The following claim is the counterpart of Claim 1f in the partial observation case.

Claim 1p Suppose x ∈ B satisfies ∇f (x) = 0, then 〈x,z〉2 = ‖x‖4 − ε.

Proof Imitating the proof of Claim 1f,

∇f (x) = P�(zz! − xx!)x = 0

⇒ 〈x,∇f (x)〉 = 〈x,P�(zz! − xx!)x〉 = 0 (21.18)

⇒ 〈x,∇g(x)〉 = |〈x,(zz! − xx!)x〉| ≤ ε (21.19)

⇒ 〈x,z〉2 ≥ ‖x‖4 − ε,

where derivation from line (21.18) to (21.19) follows the fact that line (21.18) is
a sampled version of (21.19). Technically, we can obtain it by applying Theorem
21.9 twice with A = B = xx! and A = xx! and B = zz! respectively. �

Claim 2f If x ∈ B has positive Hessian ∇2g(x) % 0, then ‖x‖2 ≥ 1/3.

Proof By the assumption on x, we have that 〈z,∇2g(x)z〉 ≥ 0. Calculating the
quadratic form of the Hessian (which can be done by elementary calculus and
is skipped for simplicity), we have

〈z,∇2g(x)z〉 = ‖zx! + xz!‖2
F − 2z!(zz! − xx!)z ≥ 0. (21.20)

This implies that

⇒ ‖x‖2 + 2〈z,x〉2 ≥ 1

⇒ ‖x‖2 ≥ 1/3 (since 〈z,x〉2 ≤ ‖x‖2). �

Claim 2p If x ∈ B has positive Hessian ∇2f (x) % 0, then ‖x‖2 ≥ 1/3 − ε.

Proof Imitating the proof of Claim 2f, calculating the quadratic form over the
Hessian at z, we have

〈z,∇2f (x)z〉 = ‖P�(zx! + xz!)‖2
F − 2z!P�(zz! − xx!)z ≥ 0. (21.21)

475

T. MA

Note that Equation is just a sampled version of Equation (21.20), applying
Theorem 21.14 for various times (and note that 〈POmega(A),P�(B)〉= 〈P�(A),B〉,
we can obtain that

‖P�(zx! + xz!)‖2
F − 2z!P�(zz! − xx!)z

= p · (‖zx! + xz!‖2
F − 2z!(zz! − xx!)z ± O(ε)

)
.

Then following the derivation in the proof of Claim 2f, we achieve the same
conclusion of Claim 2f up to approximation: ‖x‖2 ≥ 1/3 − ε. �

With these claims, we are ready to prove Theorem 21.10 (again) and Theorem 21.13.

Proof of Theorem 21.10 (again) and Theorem 21.13 By Claims 1f and 2f, we
have x satisfies 〈x,z〉2 ≥ ‖x‖4 ≥ 1/9. Moreover, we have that ∇g(x) = 0 implies

〈z,∇g(x)〉 = 〈z,(zz! − xx!)x〉 = 0 (21.22)

⇒ 〈x,z〉(1 − ‖x‖2) = 0

⇒ ‖x‖2 = 1. (by 〈x,z〉2 ≥ 1/9)

Then by Claim 1f again we obtain 〈x,z〉2 = 1, and therefore x = ±z. The proof
of Theorem 21.13 is analogous (and note that such analogy was by design.) �

21.5 Landscape of Tensor Decomposition

In this section, we analyze the optimization landscape for another machine learning
problem, tensor decomposition. The fundamental difference of tensor decomposition
from matrix factorization problems or generalized linear models is that the nonconvex
objective function here has multiple isolated local minima, and therefore the set of
local minima does not have rotational invariance (whereas in matrix completion
or PCA, the set of local minima is rotation-invariant). This essentially prevents
us to only use linear algebraic techniques, because they are intrinsically rotational
invariant.

21.5.1 Nonconvex Optimization for Orthogonal Tensor Decomposition
and Global Optimality

We focus on one of the simplest tensor decomposition problems, orthogonal fourth-
order tensor decomposition. Suppose we are given the entries of a symmetric fourth-
order tensor T ∈ R

d×d×d×d that has a low-rank structure in the sense that

T =
n∑

i=1

ai ⊗ ai ⊗ ai ⊗ ai, (21.23)

where a1, . . . ,an ∈ R
d . Our goal is to recover the underlying components a1, . . . ,an.

We assume in this subsection that a1, . . . ,an are orthogonal vectors in R
d with unit

norm (and thus implicitly we assume n ≤ d.) Consider the objective function

476

WHY DO LOCAL METHODS SOLVE NONCONVEX PROBLEMS?

argmax f (x) := 〈T,x⊗4〉 (21.24)

s.t. ‖x‖2
2 = 1.

The optimal value function for the objective is the (symmetric) injective norm of a
tensor T . In our case, the global maximizers of the objective in (21.24) are exactly the
set of components that we are looking for.

Theorem 21.15 Suppose T satisfies Equation (21.23) with orthonormal compo-
nents a1, . . . ,an. Then, the global maximizers of the objective function (21.24) are
exactly ±a1, . . . , ± an.

21.5.2 All Local Optima Are Global

We next show that all the local maxima of the objective (21.24) are also global
maxima. In other words, we will show that ±a1, . . . , ± an are the only local maxima.
We note that all the geometry properties here are defined with respect to the manifold
of the unit sphere M = Sd−1. (Please see Section 21.2.3 for a brief introduction of
the notions of manifold gradient, manifold local maxima, etc.)

Theorem 21.16 In the same setting of Theorem 21.15, all the local maxima (w.r.t
the manifold Sd−1) of the objective (21.24) are global maxima.7

Toward proving Theorem 21.16, we first note that the landscape property of a
function is invariant to the coordinate system that we use to represent it. It’s natural
for us to use the directions of a1, . . . ,an together with an arbitrary basis in the
complement subspace of a1, . . . ,an as the coordinate system. A more convenient
viewpoint is that this choice of coordinate system is equivalent to assuming a1, . . . ,an
are the natural standard basis e1, . . . ,en. Moreover, one can verify that the remaining
directions en+1, . . . ,ed are irrelevant for the objective because it’s not economical to
put any mass in those directions. Therefore, for simplicity of the proof, we make the
following assumption without loss of generality:

n = d, and ai = ei, ∀i ∈ [n]. (21.25)

Then we have that f (x) = ‖x‖4
4. We compute the manifold gradient and manifold

Hessian using the formulas of grad f (x) and Hess f (x) in Section 21.2.3,

grad f (x) = 4Px∇ f̄ (x) = 4(Id×d − xx!)

⎡⎢⎣x3
1
...

x3
d

⎤⎥⎦ = 4

⎡⎢⎣x3
1
...

x3
d

⎤⎥⎦− 4‖x‖4
4 ·

⎡⎢⎣x1
...

xd

⎤⎥⎦ . (21.26)

Hess f (x) = Px∇2f̄ (x)Px − (x!∇ f̄ (x))Px

= Px
(
12 diag(x2

1, . . . ,x
2
d) − 4‖x‖4

4 · Id×d
)
Px, (21.27)

7 The function also satisfies the strict saddle property so that we can rigorously invoke Theorem 21.6.
However, we skip the proof of that for simplicity.

477

T. MA

where diag(v) for a vector v ∈ R
d denotes the diagonal matrix with v1, . . . ,vd on

the diagonal. Now we are ready to prove Theorem 21.16. In the proof, we will first
compute all the stationary points of the objective and then examine each of them and
show that only ±a1, . . . , ± an can be local maxima.

Proof of Theorem 21.16 We work under the foregoing assumptions and simpli-
fications. We first compute all the stationary points of the objective (21.24) by
solving grad f = 0. Using Equation (21.26), we have that the stationary points
satisfy that

x3
i = ‖x‖4

4 · xi,∀i. (21.28)

It follows that xi = 0 or xi = ±‖x‖1/2
4 . Assume that s of the xi’s are nonzero

and thus take the second choice; we have that

1 = ‖x‖2
2 = s · ‖x‖4

4, (21.29)

This implies that ‖x‖4
4 = 1/s, and xi = 0 or ±1/s1/2. In other words, all the

stationary points of f are of the form (±1/s1/2, . . . , ± 1/s1/2,0, . . . ,0) (where
there are s nonzeros) for some s ∈ [d] and all their permutations (over indices).

Next, we examine which of these stationary points are local maxima. Let
τ = 1/s1/2 for simplicity. This implies that ‖x‖4

4 = τ 2. Consider a stationary
point x = (σ1τ, . . . ,σsτ,0, . . . ,0), where σi ∈ {−1,1}. Let x be a local maximum.
Thus Hess f (X)" 0. We will prove that this implies s = 1. For the sake of
contradiction, we assume s ≥ 2. We will show that the Hessian cannot be
negative semidefinite by finding a particular direction in which the Hessian has
positive quadratic form.

The form of Equation (21.27) implies that for all v such that 〈v,x〉 = 0 (which
indicates that Pxv = v), we have

v!((12 diag(x2
1, . . . ,x

2
d) − 4‖x‖4

4I
)
v ≤ 0. (21.30)

We take v = (1/2, − 1/2) to be our test direction. Then left-hand side of
Equation (21.30) simplifies to

3x2
1 − 3x2

2 − 2‖x‖4
4 = 6τ 2 − 2‖x‖4

4 = 4τ 2 > 0, (21.31)

which contradicts Equation (21.30). Therefore, s = 1, and we conclude that all
the local maxima are ± e1. . . . , ± ed . �

21.6 Survey and Outlook: Optimization of Neural Networks

Theoretical analysis of algorithms for learning neural networks is highly challenging.
We still lack handy mathematical tools. We will articulate a few technical challenges
and summarize the attempts and progress.

We follow the standard setup in supervised learning. Let fθ be a neural network
parameterized by parameters θ .8 Let � be the loss function, and {(x(i),y(i))}n

i=1 be

8 For example, a two-layer neural network would be fθ (x) = W1σ(W2x), where θ = (W1,W2) and σ are
some activation functions.

478

WHY DO LOCAL METHODS SOLVE NONCONVEX PROBLEMS?

a set of i.i.d examples drawn from distribution D. The empirical risk is L̂(θ) =
1
n

∑n
i=1 �(fθ (x

(i)),y(i)), and the population risk is L(θ) = E(x,y)∼D [�(fθ (x),y)] .
The major challenge of analyzing the landscape property of L̂ or L stems from

the nonlinearity of neural networks – fθ (x) is neither linear in x, nor in θ . As a
consequence, L̂ and L are not convex in θ . Linear algebra is at odds with neural
networks – a neural network does not have good invariance properties with respect
to rotations of parameters or data points.

Linearized Neural Networks Early works for optimization in deep learning simplify
the problem by considering linearized neural networks: fθ is assumed to be a
neural network without any activation functions. For example, fθ = W1W2W3x with
θ = (W1,W2,W3) would be a three-layer feedforward linearized neural network.
Now, the model fθ is still not linear in θ , but it’s linear in x. This simplification
maintains the property that L̂ or L is still nonconvex function in θ , but allows the
use of linear algebraic tools to analyze the optimization landscapes of L̂ or L.

Baldi and Hornik (1989) and Kawaguchi (2016) show that all the local minima of
L(θ) are global minima when � is the squared loss and fθ is a linearized feed-forward
neural network (but L(θ) does have degenerate saddle points so that it does not satisfy
the strict saddle property). Hardt et al. (2018) and Hardt and Ma (2016) analyzed the
landscape of learning linearized residual and recurrent neural networks and showed
that all the stationary points (in a region) are global minima. We refer the readers
to Arora et al. (2018) and references therein for some recent works along this line.

There are various results on another simplification: neural networks with quadratic
activation functions with two hidden layers. In this case, the model fθ (x) is linear in
x ⊗ x and quadratic in the parameters, and linear algebraic techniques allow us to
obtain relatively strong theory. See Li et al. (2018), Soltanolkotabi et al. (2018), Du
and Lee (2018) and references therein.

Changing the Landscape, by, e.g., Over-parameterization Somewhat in contrast to the
clean case covered in earlier sections of this chapter, people have empirically found
that the landscape properties of neural networks depend on various factors including
the loss function, the model parameterization, and the data distribution. In particular,
changing the model parameterization and the loss functions properly could ease the
optimization.

An effective approach to changing the landscape is to over-parameterize the neural
networks – using a large number of parameters by enlarging the width, often not
necessary for expressivity and often bigger than the total number of training samples.
It has been empirically found that wider neural networks may alleviate the problem of
bad local minima that may occur in training narrower nets. This motivates numerous
studies on the optimization landscape of over-parameterized neural networks. Please
see Safran and Shamir (2016), Venturi et al. (2018), Soudry and Carmon (2016),
Haeffele and Vidal (2015) and the references therein.

Two extremely empirically successful approaches in deep learning, residual neural
networks (He et al., 2016) and batch normalization (Ioffe and Szegedy, 2015), are
both conjectured to be able to change the landscape of the training objectives and
lead to easier optimization. This is an interesting and promising direction with the
potential of circumventing certain mathematical difficulties, but existing works often
suffer from strong assumptions such as the linearized assumption in Hardt and Ma
(2017) and the Gaussian data distribution assumption in Ge et al. (2017).

479

T. MA

Connection Between Over-parameterized Model and Kernel Method: The Neural
Tangent Kernel (NTK) View Another recent line of work studied the optimization
dynamics of learning over-parameterized neural networks (instead of characterizing
the full landscape of the objective function.) See Li and Liang (2018), Du et al. (2018),
Jacot et al. (2018), and Allen-Zhu et al. (2019) and the references therein. The main
conclusion is that, for certain initializations and parameterizations, optimizing over-
parameterized neural networks with gradient descent can converge to a zero training
error solution.

We dive into a bit more detail to flesh out the strength and limitations of this
approach. The key idea is to start with random initialization on a particular scale, and
then to optimize the neural networks somewhat locally around the neighborhood of
the initialization. Consider a nonlinear model fθ (·) and an initialization θ0. We can
approximate the model by a linear model by Taylor expansion at θ0:

fθ (x) ≈ gθ (x) � 〈θ − θ0,∇fθ0(x)〉 + fθ0(x) = 〈θ,∇fθ0(x)〉 + c(x), (21.32)

where c(x) depends only on x but not on θ . Ignoring the nonessential shift c(x), the
model gθ can be viewed as a linear function over the feature vector ∇fθ0(x).

Therefore, suppose the approximation in (21.32) is accurate enough throughout
the training; then we are essentially optimizing the linear model gθ (x). The catch
here is that, for certain settings of initialization and parameterization, the linear
approximation is indeed accurate enough. (We will discuss in the text that follows
whether and how much these settings are realistic.)

A concrete and simple setting is the following. Suppose fθ (x) = ∑m
i=1 ai[w!

i x]+,
where ai ∈ R, wi ∈ R

d and [t]+ is a shorthand for max{t,0}, a.k.a the ReLU activation.
Assume that ai’s are generated independently and uniformly from {±1/

√
m}, and are

fixed throughout the training. (So the model variable θ = [w1, . . . ,wm].) We will let
m go to infinity and treat the input dimension as constant. We assume the loss is the
mean-squared loss.

We initialize the weights w1, . . . ,wm by uniform random vectors on the unit sphere,
and denote the initialization as θ0. The following two statements, which can be
obtained by standard tools for linear models, are the keys of the analysis.

1. Suppose that we only optimize the approximated model gθ (x); then the loss
function is a quadratic function over θ . The Hessian of the loss is the kernel matrix,
H � [∇fθ0(x

i),∇fθ0(x
(j))]i,j∈[n], induced by the feature map x → ∇fθ0(x). By standard

concentration inequality, we can show that it is well conditioned for sufficiently large
m. Therefore, we have a geometric decay of the loss following standard results about
the gradient descent. Moreover, a direct calculation shows that the total movement
of each of the weight vectors wi is of norm on the order of 1/

√
m. (We can intuitively

makes sense of this claim as well – the more neurons we have, the less that each of
them needs to move to fit the data.)

2. Within the 1/
√

m neighborhood of the initialization (where the distance is
measured by the maximum change of individual weight vectors), the approxima-
tion (21.32) is sufficiently good as m goes to infinity. More concretely, for a θ

within the neighborhood, let H(θ)� [∇fθ (xi),∇fθ (x(j))]i,j∈[n] be the kernel matrix that
governs the update of the neural network at θ . We can show that H(θ) is sufficiently
close to H as m goes to infinity, which suggests that the approximation (21.32) is
accurate enough within the neighborhood.

480

WHY DO LOCAL METHODS SOLVE NONCONVEX PROBLEMS?

The final analysis of optimizing fθ (x) will make use of (1) and (2) of the preceding
list inductively at every step. We use (2) to show that approximation is accurate, and
then use (1) to show that the iterate θ does not leave the neighborhood of 1/

√
m.

Discussions about the NTK Approach A common limitation of these analyses based
on NTK is that they analyze directly the empirical risk whereas they do not necessarily
provide good enough generalization guarantees. This is partially caused by the fact
that the approach cannot handle regularized neural networks and the particular
learning rate used in practice. In practice, typically the parameter θ does not stay
close to the initialization either. When the number of parameters in θ is bigger than
n, without any regularization, we cannot expect that L̂ uniformly concentrates around
the population risk. This raises the question of whether the obtained solution simply
memorizes the training data and does not generalize to the test data. A generalization
bound can be obtained by the NTK approach, by bounding the norm of the differ-
ence between the final solution and the initialization. However, such a generalization
bound can only be effectively as good as what a kernel method can provide. In fact,
Wei et al. (2019) show that, for a simple distribution, NTK has fundamentally worse
sample complexity than a regularized objective for neural networks.

Regularized Neural Networks Analyzing the landscape or optimization of a regu-
larized objective is more challenging than analyzing the unregularized ones. In the
latter case, we know that achieving zero training loss implies that we reach a global
minimum, whereas in the former case, we know little about the function value of the
global minima. Some progresses had been made for infinite-width two-layer neural
networks (Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden,
2018; Sirignano and Spiliopoulos, 2018; Wei et al., 2019). For example, Wei et al.
(2019) show that a polynomial number of iterations of perturbed gradient descent
can find a global minimum of an �2 regularized objective function for infinite-width
two-layer neural networks with homogeneous activations. However, likely the same
general result won’t hold for polynomial-width neural networks, if we make no
additional assumptions on the data.

Algorithmic or Implicit Regularization Empirical findings suggest, somewhat sur-
prisingly, that even unregularized neural networks with over-parameterization can
generalize (Zhang et al., 2017). Moreover, different algorithms apparently converge
to essentially differently global minima of the objective function, and these global
minima have different generalization performance! This means that the algorithms
have a regularization effect, and fundamentally there is a possibility to delicately
analyze the dynamics of the iterates of the optimization algorithm to reason about
exactly which global minimum it converges to. Such types of results are particular
challenging because they requires fine-grained control of the optimization dynamics,
and rigorous theory can often be obtained only for relatively simple models such
as linear models (Soudry et al., 2018; Woodworth et al., 2019) or matrix sens-
ing (Gunasekar et al., 2017), quadratic neural networks (Li et al., 2018), and special
cases of two-layer neural nets with ReLU activations (Li et al., 2019).

Assumptions on Data Distributions The author of the chapter and many others
suspect that in the worst case, obtaining the best generalization performance of
neural networks may be computationally intractable. Beyond worst case analysis,
people have made stronger assumptions on the data distribution such as Gaussian

481

T. MA

inputs (Brutzkus and Globerson, 2017; Ge et al., 2017) and mixture of Gaussians or
linearly separable data (Brutzkus et al., 2017). The limitations of making Gaussian
assumptions on the inputs are twofold: (1) they are not realistic assumption; b) it
may both overestimate and underestimate the difficulties of learning real-world data
in different aspects. It is probably not surprising that Gaussian assumptions can
oversimplify the problem, but there could be other non-Gaussian assumptions that
may make the problem even easier than Gaussians; e.g., see the early work in deep
learning theory (Arora et al., 2014).

21.7 Notes

Hillar and Lim (2013) show that a degree polynomial is NP-hard to optimize and
Murty and Kabadi (1987) show that it’s also NP-hard to check whether a point is not
a local minimum. Our quantitative definition of quasi-convexity (Definition 21.5) is
from (Hardt et al., 2018). Polyak–Lojasiewicz condition was introduced by (Polyak,
1963), and see a recent work (Karimi et al., 2016) for a proof of Theorem 21.4 . The
RSI condition was originally introduced in Zhang and Yin (2013).

The strict saddle condition was originally defined in Ge et al. (2015), and we use
a variant of the definition formalized in Lee et al. (2016) and Agarwal et al. (2017).
Formal versions of Theorems 21.2 and 21.3 for various concrete algorithms can be
found in e.g., Nesterov and Polyak (2006), Ge et al. (2015), Agarwal et al. (2017),
and Carmon et al. (2018).

Theorem 21.6 is due to Boumal et al. (2019) Theorem 12. We refer readers to the
book by Absil et al. (2007) for the definition of gradient and Hessian on the manifolds
in Section 21.2.3.9

The results covered in Section 21.3 are due to Kakade et al. (2011) and Hazan
et al. (2015). The particular exposition was first written by Yu Bai for the statistical
learning theory course at Stanford.

The analysis of the landscape of the PCA objective was derived in Baldi and
Hornik (1989) and Srebro and Jaakkola (2013). The main result covered in Sec-
tion 21.4.2 is based on the work of Ge et al. (2016). Please see the reference in Ge
et al. (2016) for more references on the matrix completion problem.

Section 21.5 is based on the work of Ge et al. (2015). Recently, there has been work
on analyzing more sophisticated cases of tensor decomposition, e.g., using the Kac–
Rice formula (Ge and Ma, 2017) for random overcomplete tensors. Please see Ge and
Ma (2017) for more references regarding the tensor problems.

References

Absil, P. A., Mahony, R., and Sepulchre, R. 2007. Optimization Algorithms on Matrix
Manifolds. Princeton University Press.

Agarwal, Naman, Allen Zhu, Zeyuan, Bullins, Brian, Hazan, Elad, and Ma, Tengyu. 2017.
Finding approximate local minima faster than gradient descent. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1195–1199.

9 For example, the gradient is defined in Absil et al. (2007), Section3.6, Equation (3.31), and the Hessian
is defined in Absil et al. (2007), Section 5.5, Definition 5.5.1. Absil et al. (2007), Example 5.4.1) gives the
Riemannian connection of the sphere Sd−1, which can be used to compute the Hessian.

482

WHY DO LOCAL METHODS SOLVE NONCONVEX PROBLEMS?

Allen-Zhu, Zeyuan, Li, Yuanzhi, and Song, Zhao. 2019. On the convergence rate of train-
ing recurrent neural networks. In Annual Conference on Neural Information Processing
Systems (NeurIPS), pp. 6673–6685.

Arora, Sanjeev, Bhaskara, Aditya, Ge, Rong, and Ma, Tengyu. 2014. Provable bounds for
learning some deep representations. International Conference on Machine Learning, pp.
584–592.

Arora, Sanjeev, Cohen, Nadav, and Hazan, Elad. 2018. On the optimization of deep networks:
Implicit acceleration by overparameterization. In Proceedings of the 35th International
Conference on Machine Learning (ICML), pp. 244–253.

Baldi, Pierre, and Hornik, Kurt. 1989. Neural networks and principal component analysis:
Learning from examples without local minima. Neural Networks, 2(1), 53–58.

Boumal, N., Absil, P.-A., and Cartis, C. 2019. Global rates of convergence for nonconvex
optimization on manifolds. IMA Journal of Numerical Analysis, 39(1), 1–33.

Brutzkus, Alon, and Globerson, Amir. 2017. Globally optimal gradient descent for a ConvNet
with Gaussian inputs. In Proceedings of the 34th International Conference on Machine
Learning (ICML), pp. 605–614.

Brutzkus, Alon, Globerson, Amir, Malach, Eran, and Shalev-Shwartz, Shai. 2017. SGD learns
over-parameterized networks that provably generalize on linearly separable data. arXiv
preprint arXiv:1710.10174.

Carmon, Yair, Duchi, John C, Hinder, Oliver, and Sidford, Aaron. 2018. Accelerated methods
for non-convex optimization. SIAM Journal on Optimization, 28(2), 1751–1772.

Chizat, Lenaic, and Bach, Francis. 2018. On the global convergence of gradient descent for
over-parameterized models using optimal transport. In Annual Conference on Neural
Information Processing Systems (NeurIPS), pp. 3040–3050.

Du, Simon S, and Lee, Jason D. 2018. On the power of over-parametrization in neural
networks with quadratic activation. In Proceedings of the 35th International Conference
on Machine Learning (ICML), pp. 1328–1337.

Du, Simon S, Zhai, Xiyu, Poczos, Barnabas, and Singh, Aarti. 2018. Gradient descent provably
optimizes over-parameterized neural networks. arXiv preprint arXiv:1810.02054.

Ge, Rong, and Ma, Tengyu. 2017. On the optimization landscape of tensor decompo-
sition. In Annual Conference on Neural Information Processing Systems (NIPS), pp.
3653–3663.

Ge, Rong, Huang, Furong, Jin, Chi, and Yuan, Yang. 2015. Escaping from saddle points—
online stochastic gradient for tensor decomposition. In Proceedings of the 28th Conference
on Learning Theory (COLT), pp. 797–842.

Ge, Rong, Lee, Jason D, and Ma, Tengyu. 2016. Matrix completion has no spurious local
minimum. In Annual Conference on Neural Information Processing Systems (NIPS), pp.
2973–2981.

Ge, Rong, Lee, Jason D, and Ma, Tengyu. 2017. Learning one-hidden-layer neural networks
with landscape design. arXiv preprint arXiv:1711.00501.

Gunasekar, Suriya, Woodworth, Blake E, Bhojanapalli, Srinadh, Neyshabur, Behnam, and
Srebro, Nati. 2017. Implicit regularization in matrix factorization. Advances in Neural
Information Processing Systems, pp. 6151–6159.

Haeffele, Benjamin D, and Vidal, René. 2015. Global optimality in tensor factorization, deep
learning, and beyond. arXiv preprint arXiv:1506.07540.

Hardt, Moritz, and Ma, Tengyu. 2016. Identity matters in deep learning. arXiv preprint
arXiv:1611.04231.

Hardt, Moritz, Ma, Tengyu, and Recht, Benjamin. 2018. Gradient descent learns linear
dynamical systems. Journal of Machine Learning Research, 19, 29:1–29:44.

Hazan, Elad, Levy, Kfir, and Shalev-Shwartz, Shai. 2015. Beyond convexity: Stochastic
quasi-convex optimization. Advances in Neural Information Processing Systems, pp. 1594–
1602.

483

T. MA

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. 2016. Deep residual learning
for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778.

Hillar, Christopher J., and Lim, Lek-Heng. 2013. Most tensor problems are NP-hard. Journal
of the ACM, 60(6), 45.

Ioffe, Sergey, and Szegedy, Christian. 2015. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 32nd International
Conference on Machine Learning (ICML), pp. 448–456.

Jacot, Arthur, Gabriel, Franck, and Hongler, Clément. 2018. Neural tangent kernel: Con-
vergence and generalization in neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 8580–8589.

Kakade, Sham M, Kanade, Varun, Shamir, Ohad, and Kalai, Adam. 2011. Efficient learning
of generalized linear and single index models with isotonic regression. Advances in Neural
Information Processing Systems, pp. 927–935.

Karimi, Hamed, Nutini, Julie, and Schmidt, Mark. 2016. Linear convergence of gradient
and proximal-gradient methods under the polyak-łojasiewicz condition. Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pp. 795–811.
Springer.

Kawaguchi, Kenji. 2016. Deep learning without poor local minima. In Advances in Neural
Information Processing Systems (NIPS), pp. 586–594.

Lee, Jason D, Simchowitz, Max, Jordan, Michael I, and Recht, Benjamin. 2016. Gradient
descent only converges to minimizers. In Proceedings of the 29th Conference on Learning
Theory (COLT), pp. 1246–1257.

Li, Yuanzhi, and Liang, Yingyu. 2018. Learning overparameterized neural networks via
stochastic gradient descent on structured data. Advances in Neural Information Processing
Systems, pp. 8157–8166.

Li, Yuanzhi, Ma, Tengyu, and Zhang, Hongyang. 2018. Algorithmic regularization in over-
parameterized matrix sensing and neural networks with quadratic activations. In Pro-
ceedings of the 31st Conference on Learning Theory (COLT), pp. 2–47.

Li, Yuanzhi, Wei, Colin, and Ma, Tengyu. 2019. Towards explaining the regularization effect
of initial large learning rate in training neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 11669–11680.

Mei, Song, Montanari, Andrea, and Nguyen, Phan-Minh. 2018. A mean field view of
the landscape of two-layers neural networks. Proceedings of the National Academy of
Sciences, E7665–E7671.

Murty, Katta G, and Kabadi, Santosh N. 1987. Some NP-complete problems in quadratic and
nonlinear programming. Mathematical Programming, 39(2), 117–129.

Nesterov, Yurii, and Polyak, Boris T. 2006. Cubic regularization of Newton method and its
global performance. Mathematical Programming, 108(1), 177–205.

Polyak, Boris Teodorovich. 1963. Gradient methods for minimizing functionals. Zhurnal
Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 3(4), 643–653.

Rotskoff, Grant M, and Vanden-Eijnden, Eric. 2018. Neural networks as interacting particle
systems: Asymptotic convexity of the loss landscape and universal scaling of the approx-
imation error. arXiv preprint arXiv:1805.00915.

Safran, Itay, and Shamir, Ohad. 2016. On the quality of the initial basin in overspecified neural
networks. International Conference on Machine Learning, pp. 774–782.

Sirignano, Justin, and Spiliopoulos, Konstantinos. 2018. Mean field analysis of neural net-
works: A law of large numbers. arXiv preprint arXiv:1805.01053.

Soltanolkotabi, Mahdi, Javanmard, Adel, and Lee, Jason D. 2018. Theoretical insights into
the optimization landscape of over-parameterized shallow neural networks. IEEE Trans-
actions on Information Theory, 65(2), 742–769.

484

WHY DO LOCAL METHODS SOLVE NONCONVEX PROBLEMS?

Soudry, Daniel, and Carmon, Yair. 2016. No bad local minima: Data independent training
error guarantees for multilayer neural networks. arXiv preprint arXiv:1605.08361.

Soudry, Daniel, Hoffer, Elad, Nacson, Mor Shpigel, Gunasekar, Suriya, and Srebro, Nathan.
2018. The implicit bias of gradient descent on separable data. The Journal of Machine
Learning Research, 19(1), 2822–2878.

Srebro, Nathan, and Jaakkola, Tommi. 2013. Weighted low-rank approximations. In Pro-
ceedings of the Twentieth International Conference on Machine Learning (ICML), pp.
720–727.

Venturi, Luca, Bandeira, Afonso, and Bruna, Joan. 2018. Neural networks with finite intrinsic
dimension have no spurious valleys. arXiv preprint arXiv:1802.06384.

Wei, Colin, Lee, Jason D., Liu, Qiang, and Ma, Tengyu. 2019. Regularization matters:
Generalization and optimization of neural nets v.s. their induced kernel. arXiv e-prints,
Oct, In Advances in Neural Information Processing Systems (NeurIPS), pp. 9709–9721.

Woodworth, Blake, Gunasekar, Suriya, Lee, Jason, Moroshko, Edward, Savarese, Pedro, H.
P., Golan, Itay, Soudry, Daniel, and Srebro, Nathan. 2019. Kernel and deep regimes in
overparametrized models. arXiv preprint arXiv:1906.05827.

Zhang, Chiyuan, Bengio, Samy, Hardt, Moritz, Recht, Benjamin, and Vinyals, Oriol. 2017.
Understanding deep learning requires rethinking generalization. In 5th International
Conference on Learning Representations (ICLR).

Zhang, Hui, and Yin, Wotao. 2013. Gradient methods for convex minimization: better rates
under weaker conditions. arXiv preprint arXiv:1303.4645.

485

CHAPTER TWENTY TWO

Generalization in Overparameterized
Models
Moritz Hardt

Abstract: Simply put, the goal of generalization is to relate the
performance of a learned model on seen examples to its perfor-
mance on unseen examples. Traditional generalization bounds relate
the gap between the two to various measures of model complexity.
In practice, models can generalize well even if they do not enjoy a
useful complexity bound by virtue of counting model parameters.
Such overparameterized models have conquered the state-of-the-
art in numerous machine learning benchmarks today. We examine
the intriguing empirical phenomena related to overparameterization
and generalization in today’s machine learning practice. We then
review available theory – some old and some emerging – to better
understand and anticipate what drives generalization performance.

22.1 Background and Motivation

Generalization in machine learning is an area in which the algorithmic paradigm
of worst-case analysis is typically hard to instantiate. When models generalize
successfully in practice, it is often due to a subtle interplay of data and algorithm.
In this chapter, we will explore why generalization is beyond worst-case analysis and
what theory we have to reason about generalization nonetheless.

Our focus is on the standard formal setup of supervised learning. We assume
there is an underlying distribution D over labeled examples relevant to our learning
problem. A labeled example is a pair (x,y) ∈ X × Y, where X is a space of possible
data points and Y is some discrete set of class labels. For example, the set X might
represent images of a certain dimension, while the set Y contains labels that describe
what objects are in an image.

A predictor (synonymously, here, classifier) is a mapping f : X → Y from points to
labels. Predictors are usually specified by a vector of real-valued parameters w ∈ R

d .
We use the term model to describe the relationship between parameters and predictor.
A linear model, for example, refers to a binary predictor fw(x)= sign(〈w,x〉), specified
by parameters w ∈ R

d , that outputs 1 if the inner product 〈w,x〉 is positive and
outputs −1 otherwise. That said, the term “model” has become a colloquialism in
machine learning that could refer to either the predictor in its functional form or the
parameters describing the predictor.

486

GENERALIZATION IN OVERPARAMETERIZED MODELS

We measure the quality of a predictor with the help of a loss function � : Y ×
Y → R≥0 that maps a pair of labels to a nonnegative real number. An example is the
0/1-loss �01(y,y′) = 1{y �= y′}, which corresponds to classification error. It’s often
convenient to abuse notation by letting �(f ,(x,y)) = �(f (x),y) denote the loss of
predictor f on a labeled example (x,y). Abusing notation one step further, we will
use �(w,z) denote the loss of the predictor described by the parameters w on labeled
example z.

Definition 22.1 (Risk) Define the risk of a predictor f : X → Y as

R(f) = E
(x,y)∼D

[�(f (x),y)].

The goal of supervised learning is to find a predictor that minimizes risk. One
way to accomplish this is to directly minimize risk, for example, using the stochastic
gradient method applied to the model parameters with respect to a random sample:

wt+1 = wt − η∇�(wt,zt) where zt ∼ D.

The scalar η> 0 is called step size. The stochastic gradient method in its many variants
is the workhorse of modern machine learning and in recent developments in deep
learning. We cannot directly optimize the 0/1-loss using the gradient method. We
therefore use suitable “surrogate” losses during training.

Example 22.2 (Perceptron) The well-known Perceptron algorithm corre-
sponds to the stochastic gradient method applied to linear models with the
hinge loss:

�hinge(w,(x,y)) = max{1 − 〈w,x〉y,0}.
Discovered in 1958 by Rosenblatt, the New York Times then described the
Perceptron as “the embryo of an electronic computer that [the Navy] expects
will be able to walk, talk, see, write, reproduce itself and be conscious of its
existence.”

22.1.1 Empirical Risk and Generalization Gap

It is possible to apply stochastic optimization directly to the risk objective by drawing
one fresh example at every step of the algorithm. However, in practice we typically
use each training example multiple times. This creates a disconnect between the
performance of the model on the training examples compared with its performance
on a fresh example. To analyze this gap, we introduce some more terminology.

Definition 22.3 (Empirical Risk) Consider a tuple of n labeled examples,

S = ((x1,y1), ,(xn,yn)) ∈ (X × Y)n,

where zi = (xi,yi) represents the ith labeled example. The empirical risk is
defined as

487

MORITZ HARDT

RS(f) = 1
n

n∑
i=1

�(f (xi),yi).

Empirical risk minimization seeks to find a predictor f ∗ in a specified class F that
minimizes the empirical risk:

f ∗ = arg min
f ∈F

RS(f). (22.1)

In the context of empirical risk minimization, the empirical risk is often called training
error or training loss, as it corresponds to the loss achieved by some optimization
methods. However, depending on the optimization problem, we may not be able to
find an exact empirical risk minimizer and it may not be unique.

Empirical risk minimization is commonly used as a proxy for minimizing the
unknown population risk. But how good is this proxy?

Ideally, we would like that the predictor f we find via empirical risk minimization
satisfies RS(f)≈ R(f). However, this may not be the case, since the risk R(f)
captures loss on unseen examples, while the empirical risk RS(f) captures loss on
seen examples.

Generally, we expect to do much better on seen examples than unseen exam-
ples. This performance gap between seen and unseen examples is what we call
generalization gap.

Definition 22.4 (Generalization Gap) Define the generalization gap of a
predictor f with respect to a data set S as

gen(f) = R(f) − RS(f).

This quantity is sometimes also called generalization error or excess risk. Note the
following tautological, yet important identity:

R(f) = RS(f) +
gen(f) (22.2)

What this shows in particular is that if we manage to make the empirical risk
RS(f) small through optimization, then all that remains to worry about is the
generalization gap.

22.2 Tools to Reason About Generalization

So, how can we bound the generalization gap? We will first see a tight characteri-
zation in terms of an algorithmic robustness property we call algorithmic stability.
Intuitively, algorithmic stability measures how sensitive an algorithm is to changes in
a single training example. It will give us one powerful and intuitive way of reasoning
about generalization.

22.2.1 Algorithmic Stability

To introduce the idea of stability, we introduce two independent samples
S = (z1, . . . ,zn) and S′ = (z′

1, . . . ,z
′
n), each drawn independently and identically from

the distribution D. We call the second sample S′ a ghost sample, as it is solely an
analytical device. We never actually collect this second sample or run any algorithm
on it.

488

GENERALIZATION IN OVERPARAMETERIZED MODELS

We introduce n hybrid samples S(i), for i ∈ {1, . . . ,n} as

S(i) = (z1, . . . , zi−1, z′
i, zi+1, . . . ,zn),

where the ith example comes from S′, while all others come from S.
With this notation at hand, we can introduce a data-dependent notion of average

stability of an algorithm. For this definition, we think of an algorithm as a determin-
istic map A that takes a training sample in (X × Y)n to some set model parameters
in some output space � ⊆ R

d .

Definition 22.5 (Average Stability) The average stability of an algorithm
A : (X × Y)n → �:

(A) = E
S,S′

[
1
n

n∑
i=1

(
�(A(S),z′

i) − �(A(S(i)),z′
i)
)]

.

To parse this definition, note that from the perspective of A(S), the example z′
i

is unseen, since it is not part of S. But from the perspective of A(S(i)) the example
z′

i is seen, since it is part of S(i). This shows that the instrument
(A) measures the
average sensitivity of the algorithm to replacing one of its training examples by a
fresh draw from the distribution. This is the intuition why average stability, in fact,
equals expected generalization gap.

Proposition 22.6 (Expected Gap Equals Average Stability)

E[
gen(A(S))] =
(A).

Proof By linearity of expectation,

E[
gen(A(S))] = E [R(A(S)) − RS(A(S))]

= E

[
1
n

n∑
i=1

�(A(S),z′
i)

]
− E

[
1
n

n∑
i=1

�(A(S),zi)

]
.

Here, we used that z′
i is an example drawn from the distribution that does not

appear in the set S, while zi does appear in S. At the same time, zi and z′
i are

identically distributed and independent of the other examples. Therefore,

E �(A(S),zi) = E �(A(S(i)),z′
i).

Applying this identity to each term in the empirical risk espression, and
comparing with the definition of
(A), we conclude E[R(A(S))−RS(A(S))] =

(A). �

22.2.2 Uniform Stability

While average stability gave us an exact characterization of generalization error, it
can be hard to work with the expectation over S and S′. Uniform stability replaces
the averages by suprema, leading to a stronger but useful notion.

489

MORITZ HARDT

Definition 22.7 (Uniform Stability) The uniform stability of an algorithm A is
defined as

sup(A) = sup
S,S′∈(X×Y)n

sup
1≤i≤n

|�(A(S),z′
i) − �(A(S(i),z′

i)|.

Since uniform stability upper bounds average stability, we know that uniform
stability upper bounds the generalization gap (in expectation).

Corollary 22.8 E[
gen(A(S))] ≤
sup(A).

This corollary turns out to be surprisingly useful because many algorithms are
uniformly stable. For example, strong convexity of the loss function is sufficient for
the uniform stability of empirical risk minimization, as we will see next.

22.2.3 Stability of Empirical Risk Minimization

The next theorem shows that empirical risk minimization generalizes provided that
the loss function �(w,z) is strongly convex in the model parameters w for every
example z. A case that meets this assumption would be linear models with the squared
loss �(w,(x,y)) = (〈w,x〉 − y)2 assuming ‖w‖ ≤ 1 and ‖x‖ ≤ 1.

Theorem 22.9 Assume that for every z, �(w,z) is α-strongly convex in w over the
domain�, i.e., �(w′,z) ≥ �(w,z)+〈∇�(w,z),w−w′〉+ α

2 ‖w−w′‖2 for all w,w′ ∈ �.
Further assume that, �(w,z) is L-Lipschitz in w for every z, i.e., ‖∇�(w,z)‖ ≤ L.

Then, empirical risk minimization (ERM) satisfies

sup(ERM) ≤ 4L2

αn
.

Proof Let ŵS = arg minw∈� 1
n

∑n
i=1 �(w,zi) denote the empirical risk mini-

mizer on the sample S. Fix arbitrary samples S,S′ of size n and an index
i ∈ {1, . . . ,n}. We need to show that

|(�(ŵS(i),z′
i) − �(ŵS,z

′
i))| ≤ 4L2

αn
.

On the one hand, it follows from strong convexity that

RS(ŵS(i)) − RS(ŵS) ≥ α

2
‖ŵS − ŵS(i)‖2. (22.3)

On the other hand,

RS(ŵS(i)) − RS(ŵS)

= 1
n
(�(ŵS(i),zi) − �(ŵS,zi)) + 1

n

∑
i �=j

(�(ŵS(i),zj) − �(ŵS,zj))

490

GENERALIZATION IN OVERPARAMETERIZED MODELS

= 1
n
(�(ŵS(i),zi) − �(ŵS,zi)) + 1

n
(�(ŵS,z

′
i) − �(ŵS(i),z′

i))

+ (RS(i) (ŵS(i)) − RS(i) (ŵS)
)

≤ 1
n
|�(ŵS(i),zi) − �(ŵS,zi)| + 1

n
|(�(ŵS,z

′
i) − �(ŵS(i),z′

i))|

≤ 2L
n

‖ŵS(i) − ŵS‖. (22.4)

Here, we used that

RS(i) (ŵS(i)) − RS(i) (ŵS)) ≤ 0

and the fact that � is L-Lipschitz.
Putting together (22.3) and (22.4), we find ‖ŵS(i) − ŵS‖ ≤ 4L

αn . Applying the
Lipschitz condition again,

1
n
|(�(ŵS(i),z′

i) − �(ŵS,z
′
i))| ≤ L‖ŵS(i) − ŵS‖ ≤ 4L2

αn
.

Hence,
sup(ERM) ≤ 4L2

αn . �

An interesting point about this result is that there is no explicit reference to the
complexity of the model class referenced by �.

22.2.4 Regularization

Some empirical risk minimization problems, such as the Perceptron we saw earlier,
are convex but not strictly convex. We can turn convex problems into strongly convex
problems by adding an �2-regularization term to the loss function:

r(w,z) = �(w,z) + α

2
‖w‖2. (22.5)

The regularized loss r(w,z) is α-strongly convex. The last term is named
�2-regularization, weight decay, or Tikhonov regularization depending on field
and context. Regularization gives us the following chain of implications valid
for convex empirical risk minimization: regularization ⇒ strong convexity ⇒
uniform stability ⇒ generalization.

A simple argument further shows that solving the regularized objective also
solves the unregularized objective. The idea is that assuming ‖w‖≤ B we can set the
regularization parameter α ≈ L2

B2n
so that the minimizer of the regularized risk also

minimizes the unregularized risk up to error O
(LB√

n

)
. Moreover, after plugging this

choice of α into Theorem 22.9 the generalization gap will also be O
(LB√

n

)
.

Stability analysis combined with explicit regularization and convexity thus give an
appealing conceptual and mathematical approach to reasoning about generalization.
However, empirical risk minimization involving nonlinear models is increasingly
successful in practice and generally leads to nonconvex optimization problems.

491

MORITZ HARDT

22.2.5 Uniform Convergence

We briefly review other useful tools to reason about generalization. Arguably, the
most basic is based on counting the number of different functions that can be
described with the given model parameters.

Given a sample S of n independent draws from the same underlying distribution,
the empirical risk RS(f) for a fixed function f is an average of n random variables,
each with mean equal to the risk R(f). Assuming for simplicity that the range of
our loss function is bounded in the interval [0,1], Hoeffding’s bound gives us the
tail bound

Pr {RS(f) > R(f) + t} ≤ exp(−2nt2).

By applying the union bound to a finite set of functions F we can guarantee that with
probability 1 − δ, we have for all functions f ∈ F that

gen(f) ≤
√

ln |F | + ln(1/δ)
n

. (22.6)

The cardinality bound |F | is a basic measure of the complexity of the model
family F . We can think of the term ln(F) as a measure of complexity of the
function class F , albeit a rather coarse one. The gestalt of the generalization bound
as “

√
complexity/n” routinely appears with varying measures of complexity.

Bounding the generalization gap from above for all functions in a function class
is called uniform convergence. A classical tool to reason about uniform conver-
gence is the Vapnik–Chervonenkis dimension (VC dimension) of a function class
F ⊆ X → Y , denoted VC(F). It’s defined as the size of the largest set Q ⊆ X
such that for any Boolean function h : Q → {−1,1}, there is a predictor f ∈ F such
that f (x) = g(x) for all x ∈ Q. In other words, if there is a size-d sample such that the
functions of F induce all 2d possible binary labelings of S, then the VC dimension
of F is at least d.

The VC dimension measures the ability of the model class to conform to an
arbitrary labeling of a set of points. The so-called VC inequality implies that with
probability 1 − δ, we have for all functions f ∈ F

gen(f) ≤
√

VC(F) ln n + ln(1/δ)
n

. (22.7)

We can see that the complexity term VC(F) refines our earlier cardinality bound,
since VC(F) ≤ log |F |+1. However, the VC dimension also applies to infinite model
classes. Linear models over Rd have VC dimension d, corresponding to the number
of model parameters. Generally speaking, the VC dimension tends to grow with the
number of model parameters for many model families of interest. In such cases,
the bound in (22.7) becomes useless once the number of model parameters exceeds
the size of the sample.

The generalization bound we saw here is worst-case with respect to the data
distribution insofar as it only depends on the model class and does not take into
account data-dependent properties.

492

GENERALIZATION IN OVERPARAMETERIZED MODELS

22.2.6 Rademacher Complexity

A weakness of VC dimension is that it’s a property of the model class alone that
does not take data or problem-specific aspects into mind, such as restrictions on the
distribution family or properties of the loss function. Rademacher complexity gives
a flexible tool that can mitigate some of these shortcomings. To get a generalization
bound in terms of Rademacher complexity, we typically apply the definition not to
the model class F itself but to the class of functions L of the form h(z) = �(f ,z)
for some f ∈ F and a loss function �. By varying the loss function, we can derive
different generalization bounds.

Fix a function class L ⊆ Z → R, which will later correspond to the composition
of a predictor with a loss function, which is why we chose the symbol L. Think of the
domain Z as the space of labeled examples z = (x,y). Fix a distribution P over the
space Z.

The empirical Rademacher complexity of a function class L ⊆ Z → R with respect
to a sample Q = {z1, . . . ,zn} ⊆ Z drawn i.i.d. from the distribution P is defined as

R̂n(L) = E
σ∈{−1,1}n

[
1
n

sup
h∈L

∣∣∣∣∣
n∑

i=1

σih(zi)

∣∣∣∣∣
]

. (22.8)

We obtain the Rademacher complexity Rn(L) = E
[
R̂n(L)

]
by taking the expectation

of the empirical Rademacher complexity with respect to the sample. Rademacher
complexity measures the ability of a function class to interpolate a random sign
pattern assigned to a point set.

One application of Rademacher complexity concerns loss functions that are
L-Lipschitz in the parameterization of the model class for every example z. This
bound shows that with probability 1 − δ for all functions f ∈ F, we have

gen(f) ≤ 2LRn(F) + 3

√
log(1/δ)

m
. (22.9)

Rademacher complexity often leads to better bounds than the VC dimension alone.
For example, it depends on both the distribution of the data and the properties of the
loss function.

22.3 Overparameterization: Empirical Phenomena

Classical uniform convergence bounds give us no reason to expect good generaliza-
tion performance when the model complexity exceeds the number of data points.
We will now see that such overparameterized models often do generalize well in
practice. By taking a tour of the relevant empirical observations we can begin to
appreciate what challenges a theory of generalization for overparameterized models
must grapple with and why such a theory must go beyond worst-case analysis.

22.3.1 Effects of Model Complexity

Figure 22.1 describes the traditional conception of the so-called bias-variance trade-
off. As model complexity increases the empirical risk (training risk) decreases due to
the model’s improved ability to interpolate the training data. However, increasing

493

MORITZ HARDT

R
is

k

Training risk

Test risk

Capacity of H
sweet spot

under-fitting over-fitting

Figure 22.1 The so-called bias-variance trade-off represents a traditional view of generalization consistent
with uniform convergence bounds in Section 22.2.5.

R
is

k

Training risk

Test risk

Capacity of H

underparameterized

“modern”
interpolating regime

interpolation threshold

overparameterized

“classical”
regime

Figure 22.2 An extended picture with a “double descent” shape accounting for the overparameterized
regime.

the model complexity too far eventually leads to an increase in risk (test risk)
corresponding to signs of overfitting.

This kind of picture has been drawn in several textbooks and courses on machine
learning. However, practitioners have observed that complex models can often simul-
taneously achieve close to zero training loss and still generalize well. Moreover,
in many cases risk continues to decrease as model complexity grows and training
data are interpolated exactly down to (nearly) zero training loss. This empirical
relationship between overparameterization and risk appears to be robust and is
obtained in numerous model classes, including overparameterized linear models,
ensemble methods, and neural networks.

In the absence of regularization and for certain model families, the empirical
relationship between model complexity and risk is more accurately captured by a
picture like the one in Figure 22.2. There is an interpolation threshold at which
a model of the given complexity can fit the training data exactly. The complexity
range below the threshold is the underparameterized regime, while the one above is
the overparameterized regime. Increasing model complexity in the overparameterized
regime continues to decrease risk indefinitely, albeit at decreasing marginal returns,
toward some convergence point. The double descent curve is not universal. In

494

GENERALIZATION IN OVERPARAMETERIZED MODELS

many cases, in practice we observe a single descent curve throughout the entire
complexity range.

22.3.2 Optimization versus Generalization

Training neural networks with stochastic gradient descent, as is commonly done
in practice, attempts to solve a nonconvex optimization problem. Reasoning about
nonconvex optimization is known to be difficult. As such, theoreticians see a worthy
goal in trying to prove mathematically that stochastic gradient methods successfully
minimize the training objective of large artificial neural networks. The previous
chapter discussed some of the progress that has been made toward this goal.

It is widely believed that what makes optimization easy crucially depends on the
fact that models in practice have many more parameters than there are training
points. While making optimization tractable, overparameterization puts a burden on
generalization.

We can force a disconnect between optimization and generalization in a simple
experiment that we will see next. One consequence is that even if a mathematical
proof established the convergence guarantees of stochastic gradient descent for
training some class of large neural networks, it would not necessarily on its own tell
us much about why the resulting model generalizes well to the test objective.

Indeed, consider the following experiment. Fix training data (x1,y1), . . . ,(xn,yn)

and fix a training algorithm A that achieves zero training loss on these data and
achieves good test loss as well.

Now replace all the labels y1, . . . ,yn by randomly and independently drawn labels
ỹ1, . . . ,ỹn. What happens if we run the same algorithm on the training data with noisy
labels (x1,ỹ1), . . . ,(xn,ỹn))?

One thing is clear. If we choose from k discrete classes, we expect the model trained
on the random labels to have no more than 1/k test accuracy, that is, the accuracy
achieved by random guessing. After all, there is no statistical relationship between
the training labels and the test labels that the model could learn.

What is more interesting is what happens to optimization. The left panel of
Figure 22.3 shows the outcome of this kind of randomization test on the popular

Figure 22.3 Randomization test on CIFAR-10. (Left) How randomization affects training loss. Training still
converges to zero loss even on fully randomized labels. (Right) How increasing the fraction of corrupted
training labels affects classification error on the test set. At full randomization, the test error degrades to
90%, as good as guessing one of the 10 classes.

495

MORITZ HARDT

Table 22.1 The training and test accuracy (in percentage) with and without data augmentation and
�2-regularization on a representative model architecture called Inception. Explicit regularization helps,
but is not necessary for non-trivial generalization performance.

No. of params Random crop �2-Regularization Train accuracy Test accuracy

1,649,402 yes yes 100.0 89.05
yes no 100.0 89.31
no yes 100.0 86.03
no no 100.0 85.75

CIFAR-10 image classification benchmark for a standard neural network architec-
ture. What we can see is that the training algorithm continues to drive the training
loss to zero even if the labels are randomized. Moreover, the same is true for various
other kinds of randomizations. We can even replace the original images by random
pixels so as to get a randomly labeled random pixel images (x̃i,ỹi). The algorithm will
continue to successfully minimize the loss function.

The randomization experiment shows that optimization continues to work well
even when generalization performance is no better than random guessing, i.e.,
10% accuracy in the case of the CIFAR-10 benchmark that has 10 classes. The
optimization method is moreover insensitive to the labeling of the data, since it works
even on random labels. A consequence of this simple experiment is that a proof of
convergence for the optimization method may not reveal any insights into the nature
of generalization.

22.3.3 The Diminished Role of Explicit Regularization

Regularization plays an important role in the theory of convex empirical risk
minimization. The most common form of regularization used to be �2-regularization
corresponding to adding a scalar of the squared Euclidean norm of the parameter
vector to the objective function as we saw in Equation (22.5).

A more radical form of regularization, called data augmentation, is common in
the practice of deep learning. Data augmentation transforms each training point
repeatedly throughout the training process by some operation, such as a random crop
of the image. Training on such randomly modified data points is meant to reduce
overfitting, since the model never encounters the exact same data point twice.

Regularization continues to be a component of training large neural networks in
practice. However, the nature of regularization is not clear. We can see a representative
empirical observation in Table 22.1.

Table 22.1 shows the performance of a common neural model architecture, called
Inception, on the standard CIFAR-10 image classification benchmark. The model
has more than 1.5 million trainable parameters, even though there are only 50,000
training examples spread across 10 classes. The training procedure uses two explicit
forms of regularization. One is a form of data augmentation with random crops.
The other is �2-regularization. With both forms of regularization the fully trained
model achieves close to 90% test accuracy. But even if we turn both of them off,
the model still achieves close to 86% test accuracy (without even readjusting any
hyperparameters such as the learning rate of the optimizer). At the same time, the

496

GENERALIZATION IN OVERPARAMETERIZED MODELS

model fully interpolates the training data in the sense of making no misclassification
errors whatsoever on the training data.

These findings suggest that while explicit regularization may help generalization
performance, it is by no means necessary for strong generalization of heavily overpa-
rameterized models.

22.4 Generalization Bounds for Overparameterized Models

We turn to some old and some recent theoretical approaches that have the potential
to shed light on generalization performance in overparameterized settings.

22.4.1 Margin Bounds for Ensemble Methods

Ensemble methods work by combining many weak predictors into one strong pre-
dictor. The combination step usually involves taking a weighted average or majority
vote of the weak predictors. Boosting and random forests are two ensemble methods
that continue to be highly popular and competitive in various settings. Both methods
train a sequence of small decision trees, each on its own achieving modest accuracy
on the training task. However, so long as different trees make errors that aren’t too
correlated, we can obtain a higher accuracy model by taking, say, a majority vote over
the individual predictions of the trees.

Researchers in the 1990s already observed that boosting often continues to improve
test accuracy as more weak predictors are added to the ensemble. The complexity
of the entire ensemble was thus often far too large to apply standard uniform
convergence bounds.

A proffered explanation was that boosting, while growing the complexity of the
ensemble, also improved the margin of the ensemble predictor. Expressing the final
ensemble as a function f : X → R, its margin on an example (x,y) is defined as the
value yf (x). The larger the margin the more “confident” the ensemble is about the
label of the data point. A margin yf (x) just above 0 shows that the weak predictors
in the ensemble were nearly split evenly in their weighted votes.

An elegant generalization bound relates the risk of any predictor f to the fraction
of correctly labeled training examples at a given margin θ . Below let R(f) be the risk
of f w.r.t. classification error. However, let Rθ

S(f) be the empirical risk with respect
to margin errors at level θ , i.e., the loss 1(yf (x) ≤ θ) that penalizes errors where the
predictor is within an additive θ margin of making a mistake.

Theorem 22.10 With probability 1 − δ, every convex combination f of base
classifiers in a given family H satisfies the following bound for every θ > 0 :

R(f) − Rθ
S(f) ≤ O

(
1√
n

(
VC(H) log n

θ2 + log(1/δ)
)1/2

)
.

The theorem can be proved using Rademacher complexity we saw in Section 22.2.6.
Crucially, the bound only depends on the VC dimension of the base class H but not
the complexity of the ensemble. Moreover, the bound holds for all θ > 0 and so we
can choose θ after knowing the margin that manifested during training.

497

MORITZ HARDT

22.4.2 Margin Bounds for Linear Models

Margins also play a fundamental role for linear classification. We’ll state the result
here for a simple least squares problem:

w∗ = arg min
w : ‖w‖≤B

1
n

n∑
i=1

(〈xi,w〉 − y)2 .

In other words, we minimize the empirical risk w.r.t. the squared loss over norm
bounded linear separators; call this class WB. Further assume that all data points
satisfy ‖xi‖ ≤ 1 and y ∈ {−1,1}. Analogous to the margin bound in Theorem 22.10,
it can be shown that with probability 1 − δ for every linear predictor f specified by
weights in WB we have

R(f) − Rθ
S(f) ≤ 4

R(WB)

θ
+ O

(
log(1/δ)√

n

)
.

Moreover, given the assumptions on the data and model class we made, the
Rademacher complexity satisfies R(W) ≤ B/

√
n. What we can learn from this

bound is that the relevant quantity for generalization is the ratio of complexity to
margin B/θ . Margin is a scale-sensitive notion and it makes sense to talk about it
only after suitable normalization of the parameter vector. For linear predictors the
Euclidean norm provides a natural and often suitable normalization. Other standard
norms make sense and variants of the above result hold.

22.4.3 Margin Bounds for Neural Networks

The margin theory for linear models conceptually extends to neural networks. The
definition of margin is unchanged. It simply quantifies how close the network is to
making an incorrect prediction. What changes is that for multilayer neural networks
the choice of a suitable norm is substantially more delicate.

To see why, a little bit of notation is necessary. We consider multilayer neural
networks specified by a composition of L layers. Each layer is a linear transformation
of the input, followed by a coordinate-wise nonlinear map:

Input x → Ax → σ(Ax).

The linear transformation has trainable parameters, while the nonlinear map does
not. For notational simplicity, we assume we have the same nonlinearity σ at each
layer scaled so that the map is 1-Lipschitz. For example, the popular coordinate-wise
ReLU max{x,0} operation satisfies this assumption.

Given L weight matrices A = (A1, . . . ,AL) let fA : Rd → R
k denote the function

computed by the corresponding network:

fA(x) := ALσ(AL−1 · · · σ(A1x) · · ·)). (22.10)

The network output FA(x) ∈ R
k is converted to a class label in {1, . . . ,k} by taking

the arg max over components, with an arbitrary rule for breaking ties. We assume
d ≥ k only for notational convenience.

Our goal now is to define a complexity measure of the neural network that will
allow us to prove a margin bound. Recall that margins are meaningless without a

498

GENERALIZATION IN OVERPARAMETERIZED MODELS

suitable normalization of the network. Unfortunately, the complexity measure that
we are about to define is somewhat cumbersome and requires a fair bit of notation.

Let ‖ · ‖op denote the spectral norm. Also, let ‖A‖2,1 = ∥∥(‖A:,1‖2, . . . ,‖A:,m‖2)
∥∥

1
the matrix norm, where we apply the �2-norm to each column of the matrix and then
take the �1-norm of the resulting vector.

The spectral complexity RA of a network FA with weights A is defined as

RA :=
(

L∏
i=1

‖Ai‖op

)⎛⎝ L∑
i=1

(
‖A!

i − M!
i ‖2,1

‖Ai‖op

)2/3
⎞⎠3/2

. (22.11)

Here, the “reference matrices” M1, . . . ,ML are free parameters that we can choose to
minimize the bound. Random matrices tend to be good choices.

The following theorem provides a generalization bound for neural networks with
fixed nonlinearities and weight matrices A of bounded spectral complexity RA.

Theorem 22.11 Given data (x1,y1), . . . ,(xn,yn) drawn i.i.d. from any probability
distribution over R

d × {1, . . . ,k}, with probability at least 1 − δ, for every
margin θ > 0 and every network fA : Rd → R

k,

R(fA) − Rθ
S(fA) ≤ Õ

⎛⎝RA
√∑

i ‖xi‖2
2 ln(d)

θn
+
√

ln(1/δ)
n

⎞⎠ ,

where Rθ
S(f) ≤ n−1∑

i 1
[
f (xi)yi ≤ θ + maxj �=yi f (xi)j

]
.

The proof of the theorem involves Rademacher complexity and so-called data-
dependent covering arguments. Although it can be shown empirically that the
complexity measure in RA Equation 22.11 somewhat correlated with generalization
performance in some cases, there is no reason to believe that it is the “right” com-
plexity measure. The bound has other undesirable properties, such as, an exponential
dependence on the depth of the network as well as an implicit dependence on
the size of the network. In Section 22.7, we discuss some work that improves on
this bound.

22.4.4 Implicit Regularization

In Section 22.3.3 we saw that explicit regularization is not necessary for excellent
generalization performance. Researchers therefore believe that a combination of
data-generating distribution and optimization algorithm perform implicit regular-
ization. Implicit regularization describes the tendency of an algorithm to seek out
solutions that generalize well on their own on a given a data set without the need
for explicit correction. Since the empirical phenomena we reviewed are all based
on gradient methods, it makes sense to study implicit regularization of gradient
descent. While a general theory for nonconvex problems remains elusive, there has
been progress for linear models.

The theorem holds applies to gradient descent with the logistic loss function, a
standard loss function whose formal definition we omit.

499

MORITZ HARDT

Theorem 22.12 For almost all datasets (i.e., except for a measure zero set) which
are strictly linearly separable, unregularized gradient descent with the logistic loss
and small enough step sizes converges to the maximum margin solution. That is,

lim
t→∞

wt

‖wt‖ = w∗

‖w∗‖,

where w∗ = arg minw∈Rd ‖w‖2 s.t. yi〈w,xi〉 ≥ 1.

A simple exercise shows that the optimizer w∗ corresponds to the maximum margin
solution when the data are linearly separable, i.e, 0 classification error is possible.
What this theorem shows is that gradient descent, on its own, maximizes margin
without the need for explicit regularization.

Recent work and ongoing efforts aim to extend this kind of result from the linear
case to multilayer neural networks. The key challenge is to establish a norm that
induces generalization given margin and to show that gradient descent is biased
towards small solutions under this norm.

22.4.5 Interpolation Bounds

Most tools to reason about generalization have the property that they relate risk to
empirical risk and end up showing that the generalization gap goes to 0 with more
data. Such tools aren’t necessarily useful when we expect the learning algorithm to
always achieve zero training error, while the risk is bounded away from 0.

An important exception is the theory of nearest neighbor classification that we saw
in Chapter 18. To recall, a nearest neighbor classifier, given a test input x, predicts
the label of the training point closest to x. Formally, the predicted label for input
x ∈ R

d is the label yi such that i ∈ arg minj ‖x − xj‖. We’ll take the norm here to
be Euclidean, although a nearest neighbor classifier could use any other nonnegative
distance measure between points.

A remarkable classical result is that asymptotically (as the number of examples
tends to infinity) the risk achieved by the nearest neighbor classifier is at most twice
the Bayes optimal risk, i.e., the risk achieved by the classifier that assigns a label based
on the conditional expectation E[y | x].

It is tempting to use nearest neighbor classification as a guiding case for reasoning
about other model classes, such as neural networks. However, an analogous theory
for neural networks is largely missing.

22.5 Empirical Checks and Holdout Estimates

Since theoretical generalization bounds continue to be a weak guide to practical
modeling choices, the machine learning community heavily relies on empirical gener-
alization estimates, primarily using a tool called the holdout method.

22.5.1 Holdout Method

We can always empirically estimate the risk of a classifier by collecting fresh data
and computing the empirical risk of the classifier on the collected data. This leads

500

GENERALIZATION IN OVERPARAMETERIZED MODELS

to the common practice of setting aside a test set used for estimating the risk of
classifiers trained on a separate training set. Sometimes practitioners divide their data
into multiple splits, training, holdout, and test. However, for our discussion here that
won’t be necessary.

The cardinality bound (Equation 22.6) implies that the error of the holdout
method on k models is upper bounded by O(

√
log(k)/n) with high probability,

assuming the loss function is bounded. This bound seems to allow for a massive
number of classifiers to be evaluated against the test data.

However, there is a catch. The cardinality bound assumed that the k classifiers
f1, . . . ,fk were fixed independently of the test data. In practice, models incorporate
what the analyst learned from previous evaluations against the test data. Model build-
ing is an iterative process in which the performance of a model informs subsequent
design choices. This iterative process creates a feedback loop between the analyst and
the test set. In particular, the classifiers the analyst chooses are not independent of
the test set, but rather adaptive.

Adaptivity can be interpreted as a form of overparameterization. In an adap-
tively chosen sequence of classifiers f1, . . . ,fk, the kth classifier had the ability to
incorporate at least k − 1 bits of information about the performance of previously
chosen classifiers. This suggests that as k ≥ n, the statistical guarantees of the
holdout method become vacuous. This intuition proves correct. Indeed, there is a
fairly natural sequence of k adaptively chosen models, resembling the practice of
ensembling, on which the holdout estimate is off by at least �(

√
k/n). A matching

upper bound shows that the error is never worse.
If this pessimistic bound manifested in practice, holdout data would quickly lose

their value. But does it?

22.5.2 Machine Learning Benchmarks

The holdout method is central to the scientific and industrial activities of the machine
learning community. In many areas of machine learning, progress is measured on
benchmarks based on the holdout method. In computer vision, the CIFAR-10
benchmark is a data set of 50,000 training images from 10 classes, and 10,000 test
images. The ImageNet benchmark has 1.2 million training examples from 1,000
classes, and 50,000 test images.

Collectively, these test sets have been used tens of thousands of times. So, it makes
sense to ask how much analysts have overfit to these test sets over the years.

In recent replication efforts, researchers carefully recreated new test sets for the
CIFAR-10 and ImageNet classification benchmarks, created according to the very
same procedure as the original test sets. The researchers then took a large collection
of representative models proposed over the years and evaluated all of them on the
new test sets. The results are shown in Figure 22.4.

Note that newer models, i.e., those with higher performance on the original test
set, had more time to adapt to the test set and incorporate more information about it.
Nonetheless, the better a model performed on the old test set the better it performs on
the new set. Moreover, on CIFAR-10 we can clearly see that the absolute performance
drops diminishes with increasing accuracy on the old test set.

These benign effects of adaptivity, as well as the cause of the performance drop,
are the subject of ongoing investigation.

501

MORITZ HARDT

y x

Figure 22.4 Model accuracy on the original test sets vs. new test sets. Each data point corresponds to one
model in a test bed of representative models (shown with 95% Clopper–Pearson confidence intervals). The
plots reveal two main phenomena: (1) There is generally a significant drop in accuracy from the original to
the new test sets. (2) The model accuracies closely follow a linear function with slope greater than 1 (1.7
for CIFAR-10 and 1.1 for ImageNet). This means that every percentage point of progress on the original
test set translates into more than one percentage point on the new test set. The two plots are drawn so
that their aspect ratio is the same, i.e., the slopes of the lines are visually comparable. The narrow shaded
region is a 95% confidence region for the linear fit from 100,000 bootstrap samples.

22.6 Looking Ahead

Despite significant effort and many recent advances, the theory of generalization
in overparameterized models still lags behind the empirical phenomenology. What
governs generalization remains a matter of debate in the research community.

Existing generalization bounds often do not apply directly to practice by virtue of
their assumptions, are quantitatively too weak to apply to heavily overparameterized
models, or fail to explain important empirical observations. However, it is not just a
lack of quantitative sharpness that limits our understanding of generalization.

Conceptual questions remain open: What is it a successful theory of generalization
should do? What are formal success criteria? Even a qualitative theory of generaliza-
tion, that is not quantitatively precise in concrete settings, may be useful if it leads to
the successful algorithmic interventions. But how do we best evaluate the value of a
theory in this context?

Our focus in this chapter was decidedly narrow. We discussed how to relate risk and
empirical risk. This perspective can capture only questions that relate performance
on a sample to performance on the very same distribution that the sample was drawn
from. What is left out are important questions of extrapolation from a training envi-
ronment to testing conditions that differ from training. Overparameterized models
that generalize well in the narrow sense can fail dramatically even with small changes
in the environment. We saw one example in Figure 22.4, where even a carefully
collected new test set caused model performance to drop significantly.

22.7 Notes

The tight characterization of generalization gap in terms of average stability, as well
as stability of the ERM and regularization, is due to Shalev-Shwartz et al. (2010).

502

GENERALIZATION IN OVERPARAMETERIZED MODELS

Uniform stability is due to Bousquet and Elisseeff (2002). For additional background
on VC dimension and Rademacher, see, for example, Shalev-Shwartz and Ben-David
(2014).

The figures in Section 22.3.1 are due to Belkin et al. (2019b). Earlier work pointed
out similar empirical risk–complexity relationships (Neyshabur et al., 2014). The
empirical findings and figures in Section 22.3.2 are due to Zhang et al. (2017b).

The results in Section 22.4.1 are due to Schapire et al. (1998). Later work showed
theoretically that boosting maximizes margin (Zhang and Yu, 2005; Telgarsky,
2013). Results in Section 22.4.2 follow from more general results in Kakade et al.
(2009) building on Bartlett and Mendelson (2002) and Koltchinskii et al. (2002).
Section 22.4.3 is from Bartlett et al. (2017). See also early work along these lines
by Bartlett (1998), and more recent work exploring how other norms shed light on
generalization (Neyshabur et al., 2017). Golowich et al. (2018) improve on the bound
in Theorem 22.11.

For more on interpolation bounds we discussed in Section 22.4.5, see Belkin et al.
(2018, 2019a).

The result on implicit regularization in Section 22.4.4 is due to Soudry et al. (2018).
See also Hardt et al. (2016) and subsequent work for attempts to explain the gener-
alization performance stochastic gradient descent in terms of its stability properties.
There has been an explosion of work on generalization and overparameterization
in recent years. Our exposition is by no means a representative survey of the broad
literature on this topic. There are several ongoing lines of work we did not cover:
PAC-Bayes bounds (Dziugaite and Roy, 2017), compression bounds (Arora et al.,
2018), and arguments about the properties of the optimization landscape (Zhang
et al., 2017a).

Adaptivity in holdout reuse was the subject of Dwork et al. (2015) and subsequent
work. The results and figures in Section 22.5.2 are due to Recht et al. (2019).

Acknowledgments

We thank Mikhail Belkin for helpful comments and providing Figures 22.1 and 22.2.
Ludwig Schmidt generously provided Figure 22.4 as well helpful comments. Thanks
to Daniel Soudry and Matus Telgarsky for helpful feedback and comments. The
material on stability is in part based on lecture notes from Berkeley’s class EE 227C
(Spring 2018) – thanks to the student scribes.

References

Arora, Sanjeev, Ge, Rong, Neyshabur, Behnam, and Zhang, Yi. 2018. Stronger generalization
bounds for deep nets via a compression approach. In Proceedings of the 35th International
Conference on Machine Learning (ICML), pp. 254–263.

Bartlett, Peter L. 1998. The sample complexity of pattern classification with neural networks:
The size of the weights is more important than the size of the network. IEEE Transactions
on Information Theory, 44(2), 525–536.

Bartlett, Peter L, and Mendelson, Shahar. 2002. Rademacher and Gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 3(Nov), 463–482.

Bartlett, Peter L, Foster, Dylan J, and Telgarsky, Matus J. 2017. Spectrally-normalized margin
bounds for neural networks. In Proceedings of the 31st Conference on Neural Information
Processing Systems (NeurIPS), pp. 6240–6249.

503

MORITZ HARDT

Belkin, Mikhail, Hsu, Daniel J, and Mitra, Partha. 2018. Overfitting or perfect fitting? risk
bounds for classification and regression rules that interpolate. In Proceedings of the 32nd
Conference on Neural Information Processing (NeurIPS), pp. 2300–2311.

Belkin, Mikhail, Rakhlin, Alexander, and Tsybakov, Alexandre B. 2019a. Does data interpo-
lation contradict statistical optimality? In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), pp, 1611–1619.

Belkin, Mikhail, Hsu, Daniel, Ma, Siyuan, and Mandal, Soumik. 2019b. Reconciling modern
machine-learning practice and the classical bias–variance trade-off. Proceedings of the
National Academy of Sciences of the USA, 116(32) 15849–15854.

Bousquet, Olivier, and Elisseeff, André. 2002. Stability and generalization. JMLR, 2(Mar),
499–526.

Dwork, Cynthia, Feldman, Vitaly, Hardt, Moritz, Pitassi, Toniann, Reingold, Omer, and
Roth, Aaron. 2015. The reusable holdout: Preserving validity in adaptive data analysis.
Science, 349(6248), 636–638.

Dziugaite, Gintare Karolina, and Roy, Daniel M. 2017. Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters than training
data. In Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI).

Golowich, Noah, Rakhlin, Alexander, and Shamir, Ohad. 2018. Size-independent sample
complexity of neural networks. In Proceedings of the 31st Conference on Learning Theory
(COLT), pp. 207–299.

Hardt, Moritz, Recht, Benjamin, and Singer, Yoram. 2016. Train faster, generalize better: Sta-
bility of stochastic gradient descent. In Proceedings of the 33rd International Conference
on Machine Learning (ICML), pp. 1225–1234.

Kakade, Sham M, Sridharan, Karthik, and Tewari, Ambuj. 2009. On the complexity of linear
prediction: Risk bounds, margin bounds, and regularization. In Proceedings of the 23rd
Conference on Neural Information Processing (NeurIPS), pp. 793–800.

Koltchinskii, Vladimir, Panchenko, Dmitry, et al. 2002. Empirical margin distributions and
bounding the generalization error of combined classifiers. The Annals of Statistics, 30(1),
1–50.

Neyshabur, Behnam, Tomioka, Ryota, and Srebro, Nathan. 2014. In search of the real
inductive bias: On the role of implicit regularization in deep learning. arXiv preprint
arXiv:1412.6614.

Neyshabur, Behnam, Bhojanapalli, Srinadh, McAllester, David, and Srebro, Nati. 2017.
Exploring generalization in deep learning. In Proceedings of the 31st Conference on Neural
Information Processing (NeurIPS), pp. 5947-5956.

Recht, Benjamin, Roelofs, Rebecca, Schmidt, Ludwig, and Shankar, Vaishaal. 2019. Do
ImageNet classifiers generalize to ImageNet? In Proceedings of the 36th International
Conference on Machine Learning (ICML), pp. 5389–5400.

Schapire, Robert E, Freund, Yoav, Bartlett, Peter, Lee, Wee Sun, et al. 1998. Boosting the
margin: A new explanation for the effectiveness of voting methods. Annals of Statistics,
26(5), 1651–1686.

Shalev-Shwartz, Shai, and Ben-David, Shai. 2014. Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press.

Shalev-Shwartz, Shai, Shamir, Ohad, Srebro, Nathan, and Sridharan, Karthik. 2010. Learn-
ability, stability and uniform convergence. JMLR, 11(Oct), 2635–2670.

Soudry, Daniel, Hoffer, Elad, Nacson, Mor Shpigel, Gunasekar, Suriya, and Srebro,
Nathan. 2018. The implicit bias of gradient descent on separable data. JMLR, 19(1),
2822–2878.

Telgarsky, Matus. 2013. Margins, shrinkage, and boosting. In Proceedings of the 36th Interna-
tional Conference on Machine Learning (ICML), pp. 307–315.

Zhang, Chiyuan, Liao, Qianli, Rakhlin, Alexander, Sridharan, Karthik, Miranda, Brando,
Golowich, Noah, and Poggio, Tomaso. 2017a. Theory of deep learning III: Generalization

504

GENERALIZATION IN OVERPARAMETERIZED MODELS

properties of SGD. Tech. rept. Discussion paper, Center for Brains, Minds and Machines
(CBMM). Preprint.

Zhang, Chiyuan, Bengio, Samy, Hardt, Moritz, Recht, Benjamin, and Vinyals, Oriol. 2017b.
Understanding deep learning requires rethinking generalization. In Proceedings of the 5th
International Conference on Learning Representations (ICLR).

Zhang, Tong, and Yu, Bin. 2005. Boosting with early stopping: Convergence and Consistency.
Annals of Statistics, 33, 1538–1579.

Exercises

Exercise 22.1 Reproduce the empirical findings of Section 22.3.1.

Exercise 22.2 Reproduce the empirical findings of Section 22.3.2 with a neural
network architecture of your choice.

Exercise 22.3 Consider empirical risk minimization for linear models in the case
in which the dimension d is greater than the number of samples n. Experiment
with the presence and absence of �2-regularization and its effect on generalization
performance.

505

CHAPTER TWENTY THREE

Instance Optimal Distribution Testing
and Learning

Gregory Valiant and Paul Valiant

Abstract: This chapter considers the challenge of saying as much
as possible about a probability distribution given a limited number
of samples. Traditionally, work has focused on either developing
algorithms that are optimal in an asymptotic sense as the amount of
data goes to infinity, or developing algorithms that are optimal in a
worst-case sense when parameterized by relevant quantities such as
the support size. This chapter, by contrast, considers two standard
settings – learning a discrete distribution from samples, and testing
whether a set of samples was drawn from a specific distribution – and
develops algorithms that are near optimal on every instance.

23.1 Testing and Learning Discrete Distributions

This chapter revisits some of the most basic distributional learning and hypothesis
testing problems, with the goal of designing algorithms for these tasks that are
optimal in stronger senses than classical worst-case analysis. The first portion of
the chapter considers the problem of learning a discretely supported distribution
from independent draws. To motivate the results presented here, it is worth first
considering the naive approach that simply returns the empirical distribution of
the samples. The empirical distribution is optimal in a strong worst-case sense: For
every error parameter ε > 0 and integer k, given n = k/ε2 independent draws from a
distribution supported on ≤ k elements, the expected total variation distance between
the true distribution and the empirical distribution of the samples is bounded by O(ε).
Furthermore, for worst-case distributions supported on k elements, there is no algo-
rithm that can achieve expected error ε with n = o(k/ε2) samples. However, despite
this worst-case optimality of the empirical estimator, one might hope to do signif-
icantly better than this naive algorithm for the many non-worst-case distributions
that have exploitable structure. Indeed, this chapter presents an “instance-optimal”
algorithm which, in a concrete sense, optimally leverages whatever structure is present
in the distribution in question, even without any prior knowledge of this structure.

The second portion of this chapter considers the following basic hypothesis testing
problem, sometimes referred to as “identity testing”: Given the description of a
distribution, p, error tolerance ε > 0, and n independent draws from an unknown
distribution, q, distinguish the case that p = q versus the case that p and q have
total variation distance at least ε. Pearson’s classical chi-squared test is one of the

506

INSTANCE OPTIMAL DISTRIBUTION TESTING AND LEARNING

most commonly used algorithms for this problem, though it is far from optimal in
the regime in which one expects many domain elements to be observed zero or once
among the n samples. Beginning in the early 2000s, new algorithms were developed
that pinned down the optimal sample size necessary for performing this test, for
worst-case distributions, p, parameterized in terms of their support size. This chapter
instead provides a variant of Pearson’s chi-squared test that is optimal for every distri-
bution, p, defined over a discrete countable support, and error parameter ε. Analyzing
this algorithm yields a clean expression representing the sample complexity of testing
the identity of a distribution p, as a function of p and ε.

Both the instance optimal learning, and the identity testing portions of this
chapter, require some machinery that is conceptually and technically interesting
beyond the direct applications to the problems at hand. This chapter provides
self-contained treatments of this material. Section 23.2.3 describes an algorithm
that, given n samples from distribution p, accurately recovers the multiset of the
probabilities of the distribution, essentially as accurately as the empirical estimate
would be when given n log n samples. Section 23.4 describes an efficient algorithm for
proving inequalities of a certain form; such inequalities arise in the analysis of the
identity testing algorithm and in many other settings in theoretical computer science.

23.2 Instance Optimal Distribution Learning

Given independent draws from an unknown distribution over an unknown discrete
support, what is the best way to aggregate those samples into an approximation
of the distribution? The most obvious approach is to simply return the empirical
distribution of the samples. To what extent can one improve over this naive approach?

If one knew, a priori, that the distribution in question possessed some special
structure, then that information could plausibly be leveraged to “denoise” the empir-
ical distribution. For example, if one knew that the distribution is uniform over
its domain, then one simply needs to identify the support of the distribution and
estimate the support size. Both of these tasks may seem easier than estimating the
probability of each element. A more realistic scenario might be where one knows
that the distribution has a discrete power-law probability profile (where the ith most
likely domain element has probability roughly proportional to 1/is for some constant,
s, such as in Zipfian distributions); such information could plausibly be leveraged to
“correct” the empirical distribution, by nudging empirical probabilities so that they
fit with our prior knowledge of the overall power-law shape.

Is there an algorithm that, for every input distribution, optimally leverages what-
ever “structure” is present, without any prior information about the type of structure?
This chapter shows that the answer is yes, up to a subconstant additive term, if one
interprets the “structure” of a distribution to mean any property, such as support size
or entropy, that is invariant to permuting or relabeling the domain elements – namely
any function of the multiset of probabilities with which elements occur.

For the sake of both the construction of this instance-optimal learning algorithm,
as well as its analysis, we will first define an unachievably good benchmark that will
quantify how helpful the structure in the given instance actually is. This benchmark
will correspond to the expected performance of an algorithm that receives extra
information about the distribution in addition to the samples, and then uses this extra
information and samples optimally. Specifically, this extra information will be the

507

G. VALIANT AND P. VALIANT

complete description of the distribution in question, with the labels removed. This
extra information can be canonically represented as access to the sorted vector of
probabilities with which domain elements occur: p1 ≥ p2 ≥ p3 ≥ As it turns
out, it will not be too difficult to reason about the structure of an algorithm that uses
this extra information optimally. The analysis proceeds by designing an algorithm
that does not receive this extra information, yet still emulates this unachievably good
benchmark. The analysis concludes by showing that this algorithm, on every input
distribution, performs nearly as well as the unachievably good benchmark.

Definition 23.1 Let ErrOpt∗(p,n) be the minimum expected �1 error that any
algorithm could achieve on the following learning task: Given the description
of p, and n samples drawn independently from a distribution p′ that is identical
to p up to an arbitrary relabeling of the domain, learn the distribution p′. Let
Opt∗ be the corresponding algorithm, which takes as input both the samples
and the vector of (permuted) probabilities.

The following theorem summarizes the sense in which an instance-optimal algo-
rithm will, for every discrete distribution, learn nearly as well as if it already knew the
distribution, up to relabeling the domain.

Theorem 23.2 The Instance Optimal Learning Algorithm, outlined in Algo-
rithm 1, when given n independent draws from any distribution p of discrete
support, outputs a labeled vector q, such that with probability at least 1 − n−ω(1),

||p − q||1 ≤ ErrOpt∗(p,n) + 1/polylog(n).

The proof of Theorem 23.2 boils down to arguing that if there are sufficient sam-
ples for Opt∗ to accurately assign the labels of domain elements to the ground truth
(unlabeled) vector of probabilities, then one has enough samples to approximately
learn the vector of unlabeled probabilities from only the samples. From there the
Instance Optimal Learning Algorithm may emulate Opt∗, losing only a 1/polylog(n)
additive error in comparison to this benchmark. It turns out that the 1/polylog(n)
additive error term is necessary in the preceding statement. If, however, one allows a
multiplicative constant in front of ErrOpt∗, then a slightly different algorithm allows
the 1/polylog(n) error term to be improved to O(1/poly(n)). In both cases, this error
term is a function of n only, and in particular is independent of the distribution in
question.

Theorem 23.3 The Good–Turing Denoising Algorithm, described in Algorithm 2,
when given n independent draws from any distribution p of discrete support,
outputs a labeled vector q, such that with probability at least 1 − n−ω(1),

||p − q||1 ≤ 2 · ErrOpt∗(p,n) + Õ(1/n1/6).

One surprising implication of Theorems 23.2 and 23.3 is that for large sample sizes,
n, prior knowledge of the “shape” of the distribution, or knowledge of the rate of
decay of the tails of the distribution, cannot significantly improve the accuracy of the
learning task. For example, Theorem 23.2 implies that typical Bayesian assumptions

508

INSTANCE OPTIMAL DISTRIBUTION TESTING AND LEARNING

that the frequency of words in natural language satisfy Zipf distributions, or that
the frequencies of different species of bacteria in the human gut satisfy gamma
distributions or various other power-law distributions, can improve the expected error
of the learned distribution by at most a vanishing function of the sample size.

The following two examples highlight the limits and power of these results.

Example 23.4 Let p = Unif (2) denote a distribution supported on two domain
elements, with each element having probability 1/2. The unattainable bench-
mark Opt∗ just needs to learn the support, and hence for n ≥ 1 the error
is simply 1/2 times the probability of not having observed both elements,
namely ErrOpt∗(Unif (2),n) = 1

2
1

2n−1 = 2−n. On the other hand, without prior
knowledge of the probabilities, no algorithm can use n coin flips to learn the
probabilities of a (possibly biased) coin to error o(1/

√
n).

Example 23.4 illustrates that prior knowledge of the vector of probabilities can
be very helpful, reducing the expected error from inverse polynomial to inverse
exponential. This demonstrates that, in general, one should not hope to achieve a
result of the form of Theorem 23.2 without an additive error term. The fact that the
error term of Theorem 23.2 vanishes as a function of the sample size, independent
of the distribution, implies that for sufficiently large n there is no distribution
for which prior knowledge of the probabilities can be leveraged to improve the
expected error by a constant. The following example examines a natural extension
of the preceding setting, where both Opt∗, as well as the instance-optimal algorithm,
achieves significantly less error than the naive algorithm that returns the empirical
distribution of the samples.

Example 23.5 Let p = Unif (k) correspond to a uniform distribution over k
elements. The Opt∗ benchmark needs to learn the support of the distribution,
as it knows, a priori, that every domain element that occurs with nonzero
probability occurs with probability 1/k. Hence, given n samples, the expected
error is 1/k times the expected number of unobserved domain elements:

ErrOpt∗(Unif (k),n) = Pr[Binomial(n,1/k) = 0] ≈ e−n/k.

In comparison, the empirical distribution of the samples will have expected
error

ErrEmp(Unif (k),n) = k
n

E[|Binomial(n,1/k) − n/k|] ≈ min(
√

k/n,1).

When n = c · k, these two expected errors differ drastically, with ErrOpt∗ ≈
exp(−c) versus ErrEmp ≈ 1/

√
c. For example, if c = 10, then each domain

element will show up 10 times in expectation; if a domain element shows
up 9 or 11 times, then the empirical estimator will over- or underestimate its
probability respectively, while the optimal estimator will treat such over- or
under representation in the samples identically, making an error only in the
exponentially (≈ e−10) unlikely case that such a domain element is entirely
absent from the samples.

Theorem 23.2 shows that the Instance Optimal Learning Algorithm achieves
error exp(−c) + on(1), which will be close to ErrOpt∗ as long as n is large.

509

G. VALIANT AND P. VALIANT

23.2.1 Understanding the Benchmark, Opt∗

Rather than directly trying to understand Opt∗, the analysis will instead consider an
algorithm that receives even more additional information. Suppose you were given a
set of samples, and, for each integer i ≥ 1, you were told the multiset of probabilities
of the domain elements observed exactly i times. With this additional information,
the optimal algorithm is easy to describe.

First, for all integers i, the optimal algorithm will assign the same probability to
all domain elements that are observed exactly i times. If this was not the case, it is
not hard to show that there would exist a labeled distribution on which the algorithm
would perform suboptimally. Given this, the question is what probability to assign?
The following fact, whose proof is left as an exercise (Exercise 23.1), provides the
answer.

Fact 23.6 Given a multiset of real numbers, S ={s1, . . . ,sm}, setting x =
median(S) minimizes the sum of absolute differences between elements of S
and x:

m∑
i=1

|si − median(S)| = inf
x∈R

m∑
i=1

|si − x|.

Hence we arrive at the following high-level sketch of the instance-optimal algo-
rithm emulating Opt∗:

Algorithm 1 Sketch of the Instance Optimal Learning Algorithm that emulates Opt∗,
achieving the instance-optimal guarantees of Theorem 23.2

Input: A set of n independent draws from an unknown distribution.
Output: A labeled vector of probabilities.

1. Use the samples to accurately reconstruct the unlabeled vector of probabilities, as
described in Section 23.2.3.

2. For each i ≥ 1, leverage the reconstructed vector to approximate the expected
median probability of elements occurring i times, and assign that probability to
all domain elements that occurred i times.

The most involved component of Algorithm 1 is reconstructing the unlabeled
vector of probabilities. This is an extremely useful primitive, independent of
our current goals of instance-optimal learning. Section 23.2.3 sketches the
approach to this reconstruction problem, and describes some of the other
applications of this subroutine. The complete proof of Theorem 23.2 is quite
involved, though can be interpreted as arguing that, up to the additive 1/polylog n
error term, one can always recover an approximation of the unlabeled vector of
probabilities more accurately than one can disambiguate and label such a vector.
This chapter will not cover the details of this proof, and we refer the interested reader
to Valiant and Valiant (2016).

One of the difficulties in proving Theorem 23.2 is that the median is not especially
well behaved, and it is tricky to design unbiased (or little-biased) estimators for

510

INSTANCE OPTIMAL DISTRIBUTION TESTING AND LEARNING

the median of a distribution. The mean, however, is extremely well behaved, and can
be leveraged to construct a simple algorithm that is easy to analyze, which achieves
the guarantees of Theorem 23.3. The following fact summarizes the crucial property
of the mean used in the analysis (see Exercise 23.2 for its proof):

Fact 23.7 Given a multiset of numbers, S = {s1, . . . ,sm}, setting x = mean(S)
is at most a factor of 2 from minimizing the sum of absolute differences between
elements of S and x:

∑m
i=1 |si − mean(S)| ≤ 2 infx∈R

∑m
i=1 |si − x|.

The following section describes the Good–Turing frequency estimation scheme,
which provides an extremely simple estimator for the expected average probability
of elements observed i times. This estimator leads to the simple algorithm achieving
the guarantees of Theorem 23.3.

23.2.2 Good–Turing Frequency Estimation and Proof of Theorem 23.3

In the context of the British World War II code breaking efforts at Bletchley Park, I. J.
Good and Alan Turing developed a slick approach to estimating simple functionals of
discrete distributions, including the amount of “missing mass” – the total probability
mass comprised by elements that have not been observed in a given set of samples.
At a high level, their approach is to write an expression for the quantity of interest,
and then reexpress that as a linear combination of terms,

∑
j≥1 cjE[Fj], where Fj

denotes the number of elements observed exactly j times. Given that Fj will be
tightly concentrated about its expectation, this will yield a good estimate, provided
the coefficients, cj, are not too large.

We begin by instantiating this approach for the task of estimating the expected
total probability mass comprised of elements observed exactly i times, yielding a
variant of what is often referred to as Good–Turing Frequency Estimation.

Proposition 23.8 Given n independent draws from a distribution p, let Fi denote
the number of elements observed exactly i times, and let mi denote the total
probability mass comprised by such elements. Then for i < n,

E[mi] = i + 1
n − i

E[Fi+1] + O((i + 1)/(n − i)).

Proof We begin by rewriting the expression for E[mi] in terms of E[Fi+1]. In
the following, the summations are over the domain of the distribution, and p(x)
denotes the probability that the distribution assigns to element x.

E[mi] =
∑

x

p(x)Pr[Binomial(n,p(x)) = i]

=
∑

x

p(x)(p(x))i(1 − p(x))n−i
(

n
i

)
= i + 1

n − i

∑
x

(p(x))i+1(1 − p(x))n−i
(

n
i + 1

)

511

G. VALIANT AND P. VALIANT

= i + 1
n − i

∑
x

(1 − p(x))Pr[Binomial(n,p(x)) = i + 1]

= i + 1
n − i

E[Fi+1] − i + 1
n − i

∑
x

p(x)Pr[Binomial(n,p(x)) = i + 1].

The second term on the last line is bounded by 1, since
∑

x p(x) = 1 and each
binomial probability is at most 1, yielding the proposition. �

We are now prepared to describe the algorithm to which Theorem 23.3 applies. For
elements observed many times, it uses their empirical probabilities, and for elements
observed few times, it leverages the above Good–Turing estimate for the expected
amount of probability mass comprised by such elements.

Algorithm 2 The Good–Turing Denoising Algorithm, achieving the instance-optimal
guarantees of Theorem 23.3

Input: A set of n independent draws from an unknown distribution.
Output: A labeled vector of probabilities.

1. For each i ≥ n1/3, for every domain element observed exactly i times in the n
samples, assign its empirical probability, i/n.

2. For each i < n1/3, assign probability i+1
n−i · Fi+1

Fi
to each of the Fi elements observed

exactly i times, where Fj denotes the number of domain elements observed exactly
j times in the n samples.

The proof of Theorem 23.3 will rely on the following intuitive concentration
results.

Lemma 23.9 With probability 1 − n−ω(1), for any distribution, p, we have the
following tail bounds:

� The contribution to the error due to elements occurring more than n1/3 times is
small:

∑
x: freq(x)≥n1/3

|p(x) − p̂(x)| ≤
∑

x: freq(x)≥n1/3

√
freq(x)

n
polylogn ≤ Õ(n−1/6),

where p̂(x) = freq(x)/n denotes the empirical probability of x.
� For i ≥ 1, |Fi − E[Fi]| ≤ √

1 + Fi polylogn, and the mass comprised of
elements seen i times, mi satisfies |mi − E[mi]| ≤ i

n

√
1 + E[Fi] polylogn, and

the contribution to the error from our approximation of the mean probability
mi/Fi ≈ i+1

n−i · Fi+1
Fi

is bounded as

Fi

∣∣∣∣mi

Fi
− (i + 1)Fi+1

(n − i)Fi

∣∣∣∣ = ∣∣∣∣mi − (i + 1)Fi+1

n − i

∣∣∣∣ ≤ i
n

√
1 + E[Fi] polylogn.

512

INSTANCE OPTIMAL DISTRIBUTION TESTING AND LEARNING

The proof of Lemma 23.9 is left as an exercise. Proving these concentration bounds
is complicated by the fact that the quantities in question cannot be easily represented
as a sum of independent random variables – even the quantity Fi representing the
number of elements observed exactly i times involves dependencies. Hence, instead
of using basic Chernoff bounds to analyze this, which only apply to sums of
independent random variables, one must instead apply Azuma’s inequality – the
standard analogue for martingales and analyze the Doob martingale that considers
the expectation of the quantities in question as each of the n draws is successively
revealed.

We now complete the proof that the Good–Turing Denoising Algorithm of
Algorithm 2 achieves the guarantees of Theorem 23.3. Specifically, with high prob-
ability over the choice of the n independent samples, the error of this algorithm
is at most 2 · ErrOpt∗ + Õ(1/n1/6), where ErrOpt∗ is the expected error of the
optimal algorithm that receives the description of the true distribution without labels,
in addition to the samples. We will prove the slightly stronger statement that with
high probability, Algorithm 2 achieves an error at most 2 · ErrOpt′ + Õ(1/n1/6),

where ErrOpt′ is the expected error of an optimal algorithm that receives a vector
of probabilities for each i ≥ 0, corresponding to the unlabeled vector of probabilities
of all elements that occurred exactly i times.

Proof of Theorem 23.3 From Fact 23.6, this even better benchmark algorithm,
Opt′, simply computes the median of each vector of probabilities and by
Fact 23.7, if we instead computed the mean, μi of each vector, for i ≥ 1, and
assign μi to each element observed i times, we would incur an expected error at
most 2ErrOpt′. The first part of Lemma 23.9 guarantees that the contribution
to the error from elements occurring at least n1/3 times is bounded by Õ(n−1/6).
The second part of Lemma 23.9 shows that the discrepancy between the true
and estimated means contribute at most the following quantity to the error:∑

i∈{1,...,n1/3}
i
n

√
1 + E[Fi] polylog(n). Because of the constraint that

∑
i≥1 i

Fi = n, this expression is maximized, up to a constant factor, when E[Fi] ≈ n1/3

for all i ≤ n1/3, in which case the bound becomes∑
i∈{1,...,n1/3}

i
n

√
1 + E[Fi] polylogn ≤ n1/3 n1/3

n

√
1 + n1/3 polylogn = Õ(n−1/6).

�

23.2.3 Estimating the Unseen: Reconstructing a Distribution up to Permutation

In this section we describe an algorithm that accurately approximates the unlabeled
vector of probabilities of a distribution, given access to independent samples. This
is the main subroutine in the Instance Optimal Learning Algorithm satisfying the
guarantees of Theorem 23.2, sketched in Algorithm 1. We also briefly discuss some
applications of this subroutine beyond its use in instance-optimal learning.

The recovery guarantee for this reconstruction roughly states that, for any distri-
bution, p, given n independent draws, one can accurately recover the portion of the
unlabeled vector of true probabilities comprised of probabilities above c/n log n, for
a suitable constant c. This is despite the fact that all the empirical probabilities of
elements we observe are integer multiples of 1/n, and for the elements with probability

513

G. VALIANT AND P. VALIANT

� 1/n, we cannot hope to learn the labels for most of them, as the vast majority of
such elements will not be observed in the n samples. The following theorem formalizes
the recovery guarantees.

Theorem 23.10 Let c denote an absolute constant. For a distribution p, let p1 ≥
p2 ≥ . . . represent the sorted vector of probabilities assigned to domain elements.
For sufficiently large n and any w ∈ [1, log n], given n independent draws from p,

a. One can recover a vector q = (q1 ≥ q2 ≥ . . .) such that with probability
1 − e−n�(1)

∑
i:pi≥w/(n log n)

|pi − qi| ≤ c√
w

.

b. Letting cdfp(v) = ∑
x:p(x)≤v p(x) represent that cumulative density function of

p, one can recover a distribution q such that with probability 1 − e−n�(1)

∫ 1

v=w/(n log n)

1
v
|cdfp(v) − cdfq(v)| dv ≤ c√

w
.

In the case that w is a large constant, Theorem 23.10 guarantees that one can
accurately learn the multiset of probabilities of the domain elements that occur with
probability at least �(1/n log n). Although many of these elements might not occur
in the sample, Theorem 23.10 asserts that one can robustly detect the presence of
such elements.

Beyond being interesting in its own right, the ability to reconstruct the unlabeled
vector of probabilities as accurately as is guaranteed by Theorem 23.10 has a number
of immediate applications for estimating label-invariant properties of the distribution
(often referred to as symmetric properties). Indeed, any property that is Lipschitz
continuous with respect to the distance metrics of Theorem 23.10, can be estimated
by evaluating that property value on the recovered distribution, q. Such continuous
properties include the expected value of functions of a larger set of independent
draws. For example, an easy corollary of Theorem 23.10 is that one can accurately
estimate the number of distinct elements that would be observed in a set of m > n
independent draws, for m up to O(n log n):

Corollary 23.11 Given n samples from an arbitrary distribution p, with probabil-
ity 1 − e−n�(1)

over the randomness of the samples, one can estimate the expected
number of unique elements that would be seen in a set of m samples drawn from
p, to within error m · c

√
m

n log n for some universal constant c.

From a practical standpoint, this corollary has a number of implication for the
many settings where data collection is expensive. In (Zou et al., 2016), for example,
this framework was fruitfully used to estimate the number of new, medically relevant
genetic mutations that would likely be discovered if larger genetic cohorts were
sequenced.

514

INSTANCE OPTIMAL DISTRIBUTION TESTING AND LEARNING

The algorithm for learning the unlabeled vector of probabilities will solve an
optimization problem that returns a distribution, q, with the property that if the
n samples had been drawn from q, one would expect to see similar statistics to the
observed statistics of the actual samples. Specifically, the optimization problem will
be a linear program, which returns a distribution with the property that the expected
number of elements observed once, twice, etc. in a set of n independent draws will
closely match the observed quantities F1,F2, Discrepancies between Fi and the
expectation of Fi under the returned distribution, are penalized proportionately to
the inverse of the standard deviation, which is approximated as 1/

√
Fi + 1. This

approximation is reasonable because the variance of Fi is roughly equal to the
expectation of Fi, as is the case for Poisson random variables.

The linear program will be described in terms of a fine ε-mesh of probability
values, x1, . . . ,x� ∈ (0,1] that discretely approximate the potential probability values
with which elements of the returned distribution may occur. The variables of the
linear program, h1, . . . ,h� will be interpreted so that hi represents the number of
domain elements that occur with probability xi. Because the goal is to return a
distribution, the total probability mass is constrained to equal 1, namely

∑
i hixi = 1,

which is a linear constraint in terms of the variables hi. Additionally, by linearity
of expectation, the expected values of Fj are also linear in the variables hi, namely
E[Fi] = ∑

j hj Pr[Binomial(n,xj) = i], where the expectation is with respect to the
distribution represented by the variable {hi}. For the time being, we ignore the fact that
the linear program is allowed to return nonintegral values of hi – as an additional step,
the algorithm could perform a rounding/truncation step to deal with this minor issue.

One final subtlety is that this linear program will be used only for the portion
of the distribution corresponding to domain elements that are not seen too many
times. For large values of i, one would not actually expect Fi to be concentrated
about its expectation. For example, even if there is a domain element that occurs
with probability 1/2, one would not expect Fn/2 to be too tightly concentrated about
its expectation – indeed Fn/2 will either be 0 or 1 (or 2). Fortunately, for elements that
occur often, their empirical probabilities are likely to be accurate. Hence, for elements
seen frequently (at least nα times for some appropriately chosen absolute constant
α > 0) the algorithm can simply use their empirical probabilities. For the potentially
large number of elements each observed few times (at most nα times), the linear
program is used to recover the corresponding portion of the distribution. The fact
that the linear program will be responsible only for the small portion of the potential
distribution means that the linear program will be small, with only O(nα) constraints
corresponding to enforcing that E[Fi] ≈ Fi for i ≤ nα. This will ensure that, both
in theory and in practice, the linear program could be solved in time sublinear in
the number of samples, n. For the purposes of this exposition, however, we omit the
minor modifications necessary to achieve sublinear runtime.

The algorithm is presented in terms of two positive constants, B,C, which can be
defined arbitrarily provided the following inequalities hold: 0.1 > B > C > B

2 > 0.
The proof of correctness of Algorithm 3, establishing Theorem 23.10 is quite

involved, and proceeds by directly relating the objective value of the linear program
to an appropriate notion of distance between the distribution represented by the
returned (xi,hi) pairs, and the true vector of probabilities. We refer the reader to the
treatment in Valiant and Valiant (2017b) for the details of this analysis.

515

G. VALIANT AND P. VALIANT

Algorithm 3 The Frequency Spectrum Recovery Algorithm for reconstructing the
unlabeled vector of probabilities, achieving the guarantees of Theorem 23.10

Input: Vector F1,F2, . . . where Fi denotes the number of domain elements observed
exactly i times in a set of n samples.
Output: Vector of pairs (x1,h1), . . . ,(xt,ht).

1. Define the set X = { 1
n2 ,

2
n2 ,

3
n2 , . . . ,

n(nB+nC)

n2 }.
2. For each x ∈ X, define the associated variable hx, and solve the LP:

Minimize
nB∑
i=1

1√
Fi + 1

∣∣∣∣∣Fi −
∑
x∈X

hx Pr[Binomial(n,x) = i]

∣∣∣∣∣
Subject to:

· ∑
x∈X x · hx +∑n

i>nB+2nC
i
n Fi = 1 (total prob. mass = 1)

· ∀x ∈ X,hx ≥ 0.
3. Return the set of pairs (xi,hxi), together with pairs (i/n,Fi) for those domain

elements occuring i > nB + 2nC times.

23.3 Identity Testing

We now turn to a basic distributional hypothesis testing problem: Given the descrip-
tion of a distribution p over a discrete support, error tolerance ε > 0, and n indepen-
dent draws from an unknown distribution, q, distinguish the case that p = q versus the
case that p and q have total variation distance at least ε, with probability of success
at least 2/3 over the randomness of the samples. This success probability of 2/3 is
standard in this literature, and can be exponentially amplified if needed by repeating
the test with new samples and returning the majority outcome.

23.3.1 Overview

In contrast to the results of Section 23.2 in which the algorithms presented were
instance optimal in terms of the unknown distribution from which the samples were
drawn, in this section we will strive for an algorithm that is optimal in terms of the
known distribution, p, in a worst-case sense over unknown distributions, q. Since
distribution p is known to the algorithm, we will assume, without loss of generality,
that it is supported on the positive integers, and will use pi to denote the probability
assigned to element i.

The classic approach to this hypothesis testing problem is via Pearson’s chi-squared
test. Letting Xi denote the number of times element i appears in the set of n samples,
the chi-squared test accepts or rejects according to whether the following quantity

exceeds a given threshold:
∑

i
(Xi−npi)

2

pi
. For distributions p with large support, this

test is far from optimal. For example, if p is a uniform distribution over k elements,
for constant ε, the chi-squared test requires k samples as compared to the optimal

√
k

516

INSTANCE OPTIMAL DISTRIBUTION TESTING AND LEARNING

samples (see Exercise 23.5). Can one develop an identity test that is optimal for every
distribution, p, and every error parameter, ε?

The answer is yes, and the optimal algorithm is a modification of the chi-squared
test. As a bonus, the analysis of this algorithm yields an expression, as a function
of p and ε, characterizing the necessary and sufficient amount of data required
to perform this hypothesis test. Before summarizing this result, we introduce the
following notation that will be used for the rest of this section.

Notation Given a distribution p, let p− max refer to the vector of probabilities of the
distribution after removing the single highest-probability element; let p−ε refer to
the distribution after removing the lowest-probability elements, one-by-one, stopping
just before ε total probability mass has been removed. We use standard notation for
�p norms, where for real vector, v, and real number a, the �a norm of v is ‖v‖a =(∑

i |vi|a
)1/a; however, unusually, instead of the standard �1 or �2 norms, the a = 2/3

norm is crucial to the analysis. We slightly abuse notation by using p both to refer to
the distribution and to its vector of probabilities, p = (p1,p2, . . .).

Theorem 23.12 Define the function f (p,ε) = max{ 1
ε
,
‖p− max

−ε ‖2/3

ε2 }. There exists a
tester and constants c1,c2 > 0 such that for any ε > 0 and any distribution p,
given samples from any unknown distribution q,

a. The tester will distinguish q = p from ‖p − q‖1 ≥ ε with probability ≥ 2/3
when run on a set of at least f (p,c1 ε) samples drawn from q; and

b. No tester can accomplish this task with a set of fewer than f (p,c2 ε) samples.

23.3.2 Interpretation of the Sample Complexity, f (p,ε)

The function f (p,ε) defined in Theorem 23.12 expresses the optimal sample com-
plexity of hypothesis testing distribution p. While the expression may look odd, the
fact that it is constant-factor optimal for each and every distribution p means each

of the quirks of f (p,ε) = max{ 1
ε
,
‖p− max

−ε ‖2/3

ε2 } represents a real phenomenon, and this
definition is essentially a law of nature.

The 2/3 norm of p is perhaps the most mysterious part of this expression, though
is natural in light of the fact that when p is the uniform distribution on k elements,
||p||2/3 = √

k, matching the tight bounds for uniformity testing (Batu et al., 2013;
Paninski, 2008). Further, for distributions of support at most k, the 2/3 norm attains
its maximum for the uniform distribution, and the “−max”, “−ε” modifiers can only
decrease its value meaning that f (p,ε) ≤

√
k

ε2 for all such distributions, which is a tight
worst-case bound for distributions supported on at most k elements.

The 1
ε2 multiplier in f (p,ε) shows up repeatedly in statistics, representing the fact

that one needs 1
ε2 coin flips to estimate the bias of a coin to accuracy O(ε), because the

standard deviation of a sample mean decreases with the square root of the number
of samples. The maximum with 1

ε
reflects the fact that, no matter what distribution

we start with, it is impossible to distinguish a discrepancy of ε probability mass based
on fewer than �(1

ε
) samples; this term becomes relevant only in the “edge case” when

‖p− max
−ε ‖2/3 < ε, which can happen only when the maximum probability element has

mass at least 1 − 2ε.

517

G. VALIANT AND P. VALIANT

23.3.3 An Instance Optimal Algorithm

The testing algorithm satisfying Theorem 23.12, makes three crucial modifications,
term-by-term, to the quantities computed in Pearson’s chi-squared test,

∑
i(Xi −

npi)
2/pi: (1) subtract Xi from the numerator to reduce the variance due to rare

elements; (2) modify the denominator from pi to p2/3
i to reduce the penalty for

discrepancies in small probabilities; and (3) examine the smallest probability domain
elements only in aggregate, while also ignoring the single largest domain element.
Before formally stating the algorithm, we briefly motivate the first two of these

modifications, which result in the expression
∑

i
(Xi−npi)

2−Xi

p2/3
i

, which we refer to as

the (instance optimal) test statistic.
The numerator of the ith term, (Xi − npi)

2 − Xi, has two useful properties. First,
it gives an almost unbiased estimate of (pi − qi)

2, after scaling: since E[Xi] = nqi and
E[X2

i] = n2q2
i + nqi(1 − qi), we have

E[(Xi − npi)
2 − Xi] = E[X2

i] − 2npiE[Xi] + (npi)
2 − E[Xi] = n2(qi − pi)

2 − nq2
i

≈ n2(qi − pi)
2.

Second, domain elements i for which npi,nqi � 1 will contribute very little variance
to this expression. For such elements, (Xi − npi)

2 − Xi ≈ X2
i − Xi, which evaluates to

0 when Xi = 0 and when Xi = 1. Phrased differently, this expression is essentially
agnostic to whether a rare element occurs zero times, versus once. The standard
chi-squared statistic, by comparison, incurs a significant variance from such elements.

There is not an entirely clean motivation for scaling the ith term by 1/p2/3
i . Scaling

by 1/pi, as in the chi-squared test, compensates for the fact that the expectation of
the numerator is (pi − qi)

2, instead of the desired |pi − qi|. For example, if pi and qi
differed by a constant factor, then the expected contribution after this scaling would
also be proportional to |pi − qi|. The intuition for scaling by 1/pαi for some α < 1 is
that even when p = q, we expect proportionately larger deviations between npi and
Xi for smaller values of pi, and hence we must penalize such deviations less.

The lower bound construction, showing the optimality of this testing algorithm,
yields a different perspective on the 1/p2/3

i scaling of each term. Roughly speaking, for
any distribution p, the most difficult instance of this hypothesis test is distinguishing
whether p = q, versus a distribution where each element of q has a randomly
perturbed probability qi = pi ± δi for some choice of perturbations δi that sum to ε.
From a lower bound standpoint, the question is how to allocate the δ deviation to the
different elements. Setting δi = ε · pi, which would be the proportionate allocation,
is clearly suboptimal, since the relative accuracy of an empirical estimate of qi varies
inversely with qi , and thus proportional deviations would be easily detected for large
qi. This motivates setting the magnitude of δi = |qi − pi| to be proportional to pαi for

some α < 1. As it turns out, setting δi = p2/3
i is optimal, matching the 1/p2/3

i scaling

in the statistic
∑

i
(Xi−npi)

2−Xi

p2/3
i

.

We conclude by formally describing the testing algorithm in Algorithm 4, and
saying a word about the proof of Theorem 23.12.

The proof of Theorem 23.12a, establishing the performance guarantees of the
above testing algorithm, is conceptually simple. The core of the analysis is to apply
Chebyshev’s inequality to the expressions computed in steps 1 and 2 of the algorithm

518

INSTANCE OPTIMAL DISTRIBUTION TESTING AND LEARNING

Algorithm 4 The 2/3-Norm Testing Algorithm, which optimally tests whether p = q
versus ‖p − q‖1 ≥ ε

Input: Distribution p = (p1,p2, . . .), parameter ε > 0 and a vector X1,X2, . . . where
Xi denotes the number of times domain element i occurs in a set of n samples from
an unknown distribution q.
Output: Either “‖p − q‖1 ≥ ε” or “p = q.”

0. Assume wlog that the domain elements of p are sorted in nonincreasing order of
probability. Define s = min{i :

∑
j>i pj ≤ ε/8}, and let S = {s + 1,s + 2, . . .} (the

“small” elements) and M = {2, . . . ,s} (the “medium” elements).

1. Threshold the test statistic: if
∑

i∈M
(Xi−npi)

2−Xi

p2/3
i

> 4n‖pM‖1/3
2/3 output “‖p −

q‖1 ≥ ε.”
2. If

∑
i∈S Xi >

3
16εn output “‖p − q‖1 ≥ ε.”

3. Otherwise, output “p = q.”

to show that – with the claimed probability – we accept true hypotheses and reject
hypotheses that are far from true. (See Exercise 23.6 for analysis of the comple-
mentary roles of these two tests in the algorithm.) Chebyshev’s inequality states
that a random variable will be more than c standard deviations from its mean with
probability at most 1

c2 . The brunt of the algorithm analysis consists of showing that
the expectations of the expressions computed by the algorithm differ significantly
when p = q versus when ‖p − q‖1 ≥ ε, and that this difference is large in comparison
to the standard deviation of these quantities. Unfortunately, this simple approach
reduces (after some straightforward but tedious algebra that we omit for clarity) to
the problem of proving that an extremely messy inequality holds for all distributions
p, and all discrepancies from the hypothesis
 = (p1 − q1,p2 − q2, . . . ,):

∑
i∈M

⎛⎝p2/3
i ||
M ||41
||pM ||22/3

+ 2

i||
M ||31
||pM ||4/3

2/3

+ p−2/3
i
2

i ||
M ||21
||pM ||2/3

2/3

(23.1)

+ 2
p−1/3

i
2
i ||
M ||21

||pM ||2/3
+ 2

p−1
i
3

i ||
M ||1
||pM ||1/3

2/3

⎞⎠ ≤ 8

(∑
i∈M

2
i p−2/3

i

)2

.

In Section 23.4 we describe a way of automating the proofs of such inequalities:
this yields both a complete characterization of when such inequalities are true, along
with a polynomial time algorithm that either produces a proof if the inequality is
true, or a refutation if the inequality is not true.

23.4 Digression: An Automatic Inequality Prover

Given a sequence of triples, (ai,bi,ci), is it true that for all positive vectors
x = (x1, . . .),y = (y1, . . .) the following inequality holds?

r∏
i=1

⎛⎝∑
j

xai
j ybi

j

⎞⎠ci

≥ 1. (23.2)

519

G. VALIANT AND P. VALIANT

Several familiar inequalities, including Cauchy–Schwarz, Hölder, and the mono-
tonicity of �p norms, can be expressed in this form, as illustrated in the following
expressions. Additionally, the proof of the inequality of Equation 23.1 corresponds
to proving five inequalities of the above form – each inequality bounding one of the
terms on the left-hand side by the right-hand side.⎛⎝∑

j

x2
j

⎞⎠1/2⎛⎝∑
j

y2
j

⎞⎠1/2⎛⎝∑
j

xjyj

⎞⎠−1

≥ 1 (Cauchy–Schwarz)

⎛⎝∑
j

x1/λ
j

⎞⎠λ⎛⎝∑
j

y1/(1−λ)
j

⎞⎠1−λ⎛⎝∑
j

xjyj

⎞⎠−1

≥ 1 (Hölder)

⎛⎝∑
j

x1/λ
j

⎞⎠−λ⎛⎝∑
j

xj

⎞⎠ ≥ 1. (�p monotonicity)

In this section, we show that an inequality of the form of Equation 23.2 is true, if
and only if it is expressible as the product of positive powers of Hölder, and �p mono-
tonicity inequalities. Furthermore, there is an efficient algorithm for automatically
proving or disproving such an inequality: Given the triples (ai,bi,ci), the algorithm
either produces a derivation of the inequality, or produces a counterexample pair of
sequences x,y which falsify the inequality.

Theorem 23.13 For a sequence of triples (a,b,c)i = (a1,b1,c1), . . . (ar,br,cr),
the inequality

∏r
i=1
(∑

j xai
j ybi

j

)ci ≥ 1 holds for all finite sequences of positive
numbers (x)j,(y)j if and only if it can be expressed as a finite product of positive

powers of Hölder inequalities of the form
(∑

j xa′
j yb′

j

)λ· (∑j xa′′
j yb′′

j

)1−λ ≥∑
j xλa′+(1−λ)a′′

j yλb′+(1−λ)b′′
j , and �p monotonicity inequalities of the form(∑

j xa
j yb

j

)λ ≤ ∑
j xλa

j yλb
j , where λ∈ [0,1]. Such a derivation can be found in

polynomial time via linear programming whenever the inequality is true; and a
compact representation of a refutation can be found whenever the inequality is
false.

Example 23.14 Consider for some ε ≥ 0 the single-sequence inequality⎛⎝∑
j

x−2
j

⎞⎠−1⎛⎝∑
j

x−1
j

⎞⎠3⎛⎝∑
j

x0
j

⎞⎠−2−ε ⎛⎝∑
j

x1
j

⎞⎠3⎛⎝∑
j

x2
j

⎞⎠−1

≥ 1,

which can be expressed in the form of Equation 23.2 via the triples (ai,bi,ci) =
(−2,0, − 1), (−1,0,3), (0,0, − 2 − ε), (1,0,3), (2,0, − 1). This inequality is true
for ε = 0 but false for any positive ε. However, the shortest counterexample
sequences have length that grows as exp(1

ε
) as ε approaches 0. Counterexamples

are thus hard to write down, though easy to express—for example, letting
n = 641/ε , the sequence x of length 2 + n consisting of n, 1

n , followed by n ones
violates the inequality.

520

INSTANCE OPTIMAL DISTRIBUTION TESTING AND LEARNING

23.4.1 Proving Inequalities without Math: A Peg Game

Theorem 23.13 argues that there is a linear-programming based algorithm for effi-
ciently proving or refuting inequalities of the specified form. The intuition underlying
the proof of Theorem 23.13, however, can be used to formulate the task of proving
such an inequality as a simple and intuitive “peg game” played on a 2-d board. This
peg game interpretation allows one to use basic geometric intuitions to easily derive
a proof of many of these inequalities, using only a little bit of pencil and paper!

We describe this peg game in the concrete setting of proving the following inequal-
ity (which corresponds to the 4th component of Equation 23.1 from Section 23.3
where
 has been replaced by x and p has been replaced by y):⎛⎝∑

j

x2
j y−2/3

j

⎞⎠2⎛⎝∑
j

x2
j y−1/3

j

⎞⎠−1⎛⎝∑
j

xj

⎞⎠−2⎛⎝∑
j

y2/3
j

⎞⎠3/2

≥ 1, (23.3)

Expressing this inequality in the form of Theorem 23.13, we have the triples
(ai,bi,ci) = (2, − 2

3,2),(2, − 1
3, − 1),(1,0, − 2),(0, 2

3,
3
2). The peg game – as illustrated

in Figure 23.1 – begins by representing each triple (ai,bi,ci) as the number ci written
at location (ai,bi) in the plane. At any moment, the game board consists of some
numbers written on the plane (with the convention that every point without a number
is interpreted as having a 0), and you “win” if you can remove all the numbers from
the board via a combination of “moves” of the following two types:

1. (Hölder) Any two positive numbers can be moved to the weighted mean of their
locations. (For example, we can subtract 1 from one location in the plane, subtract
3 from a second location in the plane, and add 4 to a point 3

4 of the way from the
first location to the second location.)

2. (�p monotonicity) Any negative number can be moved toward the origin by a
factor λ ∈ (0,1) and scaled by 1

λ
. (For example, we can add 1 to one location

in the plane, and subtract 2 from a location halfway to the origin.)

The rules of the game allow just these two types of moves: you can push positive
numbers together, and push negative numbers towards the origin (scaling them).
Theorem 23.13 translates into the claim that this peg game can be won if, and only if,
the corresponding inequality is true; additionally, a small linear program can either
produce a winning combination of moves, or present a certificate that the game is
unwinnable. Nevertheless, our geometric intuition is quite good at solving these types
of puzzles, even for intricate counterintuitive inequalities like the current example.
(Try it!)

The intuition behind one winning sequence for the game corresponding to
Equation 23.3, illustrated in Figure 23.1, is to first realize that three of the points
lie on a line, with the “−2” halfway between the “ 3

2 ” and the “2.” Thus we take 1
unit from each of the endpoints and cancel out the “−2” via a “Hölder” move. Now,
no three points are collinear, so we need to move one point onto the line formed by
the other two: “−1,” being negative, can be moved toward the origin, so we move it
until it crosses the line formed by the two remaining numbers. This moves it 1

3 of the
way to the origin, thus increasing it from “−1” to “− 3

2 ”; amazingly, this number, at

521

G. VALIANT AND P. VALIANT

Figure 23.1 Depiction of a successful sequence of “moves” in the game corresponding to the inequality(∑
j x2

j y−2/3
j

)2 (∑
j x2

j y−1/3
j

)−1 (∑
j xj

)−2 (∑
j y2/3

j

)3/2 ≥ 1, showing that the inequality is true. The

first diagram illustrates the initial configuration of positive and negative weights, together with the “Hölder-
type move” that takes one unit of weight from each of the points at (0,2/3) and (2, − 2/3) and moves it
to the point (1,0), canceling out the weight of −2 that was initially at (1,0). The second diagram illustrates
the resulting configuration, together with the “�p monotonicity move” that moves the −1 weight at location
(2, − 1/3) toward the origin by a factor of 2/3 while scaling it by a factor of 3/2, resulting in a point at
(4/3, − 2/9) with weight −3/2, which is now collinear with the remaining two points. The third diagram
illustrates the final “Hölder-type move” that moves the two points with positive weight to their weighted
average, zeroing out all weights.

position 2
3 (2, − 1

3) = (4
3, − 2

9) is now 2
3 of the way from the remaining “ 1

2 ” at (0, 2
3)

to the number “1” at (2, − 2
3), meaning that we can remove the final three numbers

from the board in a single move, winning the game. We thus made three moves total,
two of the Hölder type, one of the �p monotonicity type. Reexpressing these moves
as inequalities yields the desired derivation of our inequality (Equation 23.3) as a
product of powers of Hölder and �p monotonicity inequalities, explicitly, as the
product of the following three inequalities, which are respectively (1) the square of a
Cauchy-Schwarz inequality, (2) the 3/2 power of an �p monotonicity inequality for
λ = 2/3, and (3) the 3/2 power of a Hölder inequalty for λ = 2/3:⎛⎝∑

j

x2
j y−2/3

j

⎞⎠⎛⎝∑
j

x0
j y2/3

j

⎞⎠⎛⎝∑
j

x1
j y0

j

⎞⎠−2

≥1

⎛⎝∑
j

x4/3
j y−2/9

j

⎞⎠3/2⎛⎝∑
j

x2
j y−1/3

j

⎞⎠−1

≥1

⎛⎝∑
j

x2
j y−2/3

j

⎞⎠⎛⎝∑
j

x0
j y2/3

j

⎞⎠1/2⎛⎝∑
j

x4/3
j y−2/9

j

⎞⎠−3/2

≥1.

23.5 Beyond Worst-Case Analysis for Other Testing Problems

There are a wide variety of testing and learning problems that can be considered from
perspectives other than worst-case analysis, beyond the two settings highlighted in
this chapter. In many cases, a significant part of the challenge is defining a reasonable
benchmark or notion of optimality that yields clean, conceptually appealing results
and practically meaningful algorithms.

To briefly describe one example, Section 23.3 considers the question of distinguish-
ing whether two distributions, p and q, are equal versus have significant distance,

522

INSTANCE OPTIMAL DISTRIBUTION TESTING AND LEARNING

given a description of p and samples drawn from q. The analogous question can
also be asked where both distributions p and q are unknown, and one wishes to
deduce if p = q versus ‖p − q‖1 ≥ ε given samples from both distributions. If
p and q are supported on at most n elements, this hypothesis can be tested using
O
(
max(n2/3/ε4/3,n1/2ε2)

)
, which is optimal in the worst case (Batu et al., 2013; Chan

et al., 2014).
Going beyond worst-case analysis, the works of Acharya et al. (2011, 2012) apply

the perspective of competitive analysis to this question. Instead of bounding the
sample size required for this task in terms of the support size of the distributions,
this work bounds the sample size as a (superlinear) function of the sample size that
would be required if distributions p and q were known to the algorithm, and the
algorithm needed to distinguish whether two sets of samples were drawn from the
pair p,q versus both drawn from a single distribution.

The work of Lam-Weil et al. (2019) takes a quite different approach toward this
problem of identity testing with two unknown distribution. The authors develop an
algorithm that, for every p,q, uses as few samples as would be necessary even if one
“approximately” knows distribution q. Specifically, given a vector of probabilities, π ,
they ask how difficult it is to distinguish p = q versus ‖p−q‖1 ≥ ε where distribution
q is obtained via the random process of sampling the probabilities of its elements
uniformly at random from the multiset π , and p is a worst-case distribution with
distance ε from q. Here, the goal is to get an optimal sample complexity as a function
of π , achieved via an algorithm that does not require knowledge of π .

23.6 Notes

Section 23.2 is based on results from Valiant and Valiant (2016), and Sections 23.3
and 23.4 are based on Valiant and Valiant (2017a). For the problem of instance
optimal learning discussed in Section 23.2, the work of Orlitsky and Suresh (2015),
which appeared contemporaneously with Valiant and Valiant (2016), considered
the problem of learning with respect to KL-divergence, instead of total variation
distance (L1 distance). In that setting, they showed a variant of the Good–Turing
Denoising Algorithm (Algorithm 2) is instance optimal for learning with respect to
KL-divergence in an analogous sense to the results discussed in Section 23.2.

For additional intuition on how the 2/3-norm arises in the sample complexity of
instance optimal testing (Theorem 23.12), we refer the reader to Diakonikolas and
Kane (2016), who obtained a similar expression with extra polylogarithmic factors,
via a general framework for reducing such hypothesis testing questions to the easier
task of performing analogous tests in terms of �2 distance.

For a general introduction to modern questions and perspectives on distributional
property testing and estimation, we refer the reader to the survey Canonne (2015), or
the slightly older survey Rubinfeld and Shapira (2011). These surveys also provide
some historical context for how these fundamental statistical questions came to
be studied by the theoretical computer science community, first in the context of
testing graph expansion – essentially the question of identity testing with respect to
the uniform distribution (Goldreich and Ron, 2011) – and subsequently abstracted
and generalized to hypothesis tests and estimates of �1 and �2 norms between
distributions (Batu et al., 2013).

523

G. VALIANT AND P. VALIANT

References

Acharya, J., Das, H., Jafarpour, A., Orlitsky, A., and Pan, S. 2011. Competitive closeness
testing. In Conference on Learning Theory (COLT), pp. 47–68.

Acharya, J., Das, H., Jafarpour, A., Orlitsky, A., and Pan, S. 2012. Competitive classification
and closeness testing. In Proceedings of the 25th Conference on Learning Theory (COLT),
23, 22.1–22.18.

Batu, T., Fortnow, L., Rubinfeld, R., Smith, W.D., and White, P. 2013. Testing closeness of
discrete distributions. Journal of the ACM, 60(1), 4: 1–4: 25.

Canonne, Clément L. 2015. A survey on distribution testing: Your data is big, but is it blue?
In Electronic Colloquium on Computational Complexity (ECCC), vol. 22.

Chan, Siu-On, Diakonikolas, Ilias, Valiant, Paul, and Valiant, Gregory. 2014. Optimal algo-
rithms for testing closeness of discrete distributions. In Proceedings of the Twenty-fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1193–1203. SIAM.

Diakonikolas, Ilias, and Kane, Daniel M. 2016. A new approach for testing properties of
discrete distributions. In 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 685–694. IEEE.

Goldreich, Oded, and Ron, Dana. 2011. On testing expansion in bounded-degree graphs. In
Studies in Complexity and Cryptography. Miscellanea on the Interplay between Random-
ness and Computation, pp. 68–75. Springer.

Lam-Weil, Joseph, Carpentier, Alexandra, and Sriperumbudur, Bharath K. 2019. Local
minimax rates for closeness testing of discrete distributions. arXiv preprint
arXiv:1902.01219.

Orlitsky, Alon, and Suresh, Ananda Theertha. 2015. Competitive distribution estimation: Why
is Good-Turing good. In Advances in Neural Information Processing Systems 28. Curran
Associates, pp. 2143–2151.

Paninski, L. 2008. A coincidence-based test for uniformity given very sparsely-sampled
discrete data. IEEE Transactions on Information Theory, 54, 4750–4755.

Rubinfeld, Ronitt, and Shapira, Asaf. 2011. Sublinear time algorithms. SIAM Journal on
Discrete Mathematics, 25(4), 1562–1588.

Valiant, Gregory, and Valiant, Paul. 2016. Instance optimal learning of discrete distributions.
In Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing, pp.
142–155. STOC ’16. ACM.

Valiant, Gregory, and Valiant, Paul. 2017a. An automatic inequality prover and instance
optimal identity testing. SIAM Journal on Computing, 46(1), 429–455.

Valiant, Gregory, and Valiant, Paul. 2017b. Estimating the unseen: Improved estimators for
entropy and other properties. Journal of ACM, 64(6), 37:1–37:41.

Zou, James, Valiant, Gregory, Valiant, Paul, Karczewski, Konrad, Chan, Siu On, Samocha,
Kaitlin, Lek, Monkol, Sunyaev, Shamil, Daly, Mark, and MacArthur, Daniel G. 2016.
Quantifying unobserved protein-coding variants in human populations provides a
roadmap for large-scale sequencing projects. Nature Communications, 7, 13293.

Exercises

Exercise 23.1 Prove Fact 23.6, that for any multiset of real numbers S = {s1, . . . ,sm},
the median minimizes the sum of the absolute distances to elements of S:

m∑
i=1

|si − median(S)| = inf
x∈R

m∑
i=1

|si − x|.

524

INSTANCE OPTIMAL DISTRIBUTION TESTING AND LEARNING

Exercise 23.2 Prove Fact 23.7, that for any multiset of real numbers S = {s1, . . . ,sm},
the sum of the absolute differences between the mean and elements of S is at most
a factor of two larger than the sum of distances to the median:

m∑
i=1

|si − mean(S)| ≤ 2 ·
m∑

i=1

|si − median(S)| = 2 · inf
x∈R

m∑
i=1

|si − x|.

Exercise 23.3 Given n independent draws from a distribution with discrete support,
for integers i ≥ 1, let Fi represent the number of domain elements that each appear
exactly i times in the samples. Prove that Fi is tightly concentrated about its mean,
namely for any c > 0, Pr[|Fi − E[Fi]| ≥ c

√
n] ≤ O(exp(−�(c2))). (Hint: Letting xi

denote the ith indepedent draw, consider the Doob martingale: X0 = E[Fi],X1 =
E[Fi|x1],X2 = E[Fi|x1,x2], . . . ,Xn = E[Fi|x1, . . . ,xn] = Fi, and apply Azuma’s
martingale concentration inequality.)

Exercise 23.4 Show that the concentration bound of the previous exercise can be
improved if E[Fi] � n: show that Pr[|Fi−E[Fi]| ≥ c

√
1 + E[Fi]] = O(exp(−�(c2))).

Exercise 23.5 Let p = (1/2, 1
2k,

1
2k, . . . ,

1
2k) denote the distribution that puts mass 1/2

on element 1, and distributes the remaining mass among elements 2, . . . ,k + 1; let
q = (1/2, 1

k, . . . ,
1
k) denote an analogous distribution that distributes the remaining

mass among 2, . . . ,k/2+1. Consider using the chi-squared statistic
∑

i(Xi−npi)/pi
to distinguish the case where n samples were drawn from p versus n samples were
drawn from q. Prove that this distinguisher would require n = �(k) samples to
have success probability at least 2/3.

Exercise 23.6 This exercise motivates the two steps of the algorithm of Algorithm 4,
with Step 1 detecting discrepancies in “medium” probability elements, and step 2
detecting if the “small” probability elements have too much total probability mass.
Recall that the set S of small elements is constructed so that

∑
i∈S pi ≤ ε

8 , and the
set M consists of the remaining elements, with the exception of pmax. Prove that if
‖p − q‖1 ≥ ε then at least one of the following must hold:

�

∑
i∈M |pi − qi||1 ≥ ε

8 (which will likely trigger step 1 of the algorithm), or
�

∑
i∈S qi ≥ ε

4 (which will likely trigger step 2 of the algorithm).

Exercise 23.7 Show the monotonicity of �p norms: for a vector x and λ ∈ (0,1),
||x||1 ≤ ||x||λ.

Exercise 23.8 Win the “peg game” of Figure 23.1 in a different way, where the first
move is different from zeroing out the −2 at location (1,0). Express your winning
strategy as a combination of Hölder and �p monotonicity inequalities.

Exercise 23.9 Prove the inequality of Example 23.14 for ε = 0 – or more generally,
for any ε ≤ 0 – via the “peg game” techniques of Section 23.4.1.

525

PART SIX

Further Applications

CHAPTER TWENTY FOUR

Beyond Competitive Analysis
Anna R. Karlin and Elias Koutsoupias

Abstract: Competitive analysis is frequently unrealistic, because
the inputs “in practice” rarely exhibit the worst-case characteristics
assumed by the pessimistic adversarial settings of competitive anal-
ysis. This chapter discusses approaches that go beyond competitive
analysis and attempt to bring the analysis of optimization problems
under incomplete information within a more realistic realm. We
consider various approaches from the literature including restricting
the set of inputs the adversary is allowed to provide, giving more
power to the online algorithm, changing the way performance is
measured, and directly comparing online algorithms.

24.1 Introduction

In competitive analysis, the performance of an online algorithm is compared against
an all-powerful adversary on a worst-case input. The competitive ratio of a problem –
the analog of worst-case asymptotic complexity for this area – is defined as

c = inf
A

sup
σ

A(σ)

OPT(σ)
(24.1)

Here A ranges over all online algorithms and σ over all “inputs”; OPT(σ) and A(σ)

denote the cost of an optimum offline algorithm OPT and the cost of the online
algorithm A when presented with input σ . This definition is usually adapted by
subtracting a constant term from the numerator to account for a possible initial
disadvantage of the online algorithm. This clever definition is both the weakness
and strength of competitive analysis. It is a strength because the setting is clear,
the problems are crisp and sometimes challenging, and the results often elegant
and striking. But it is also a weakness for several reasons. First, in the face of
the devastating comparison against an all-powerful off-line algorithm, a wide range
of online algorithms (good, bad, and mediocre) can fare equally badly; thus the
competitive ratio may not be very informative and it may fail to discriminate and
to suggest good approaches. Another aspect of the same problem is that, since a
worst-case input decides the performance of the algorithm, the optimal algorithms
are sometimes unnatural and impractical, and the bounds too pessimistic to be
informative in practice. The main argument for competitive analysis over expectation
maximization is that the distribution is usually not known. However, competitive

529

A.R. KARLIN AND E. KOUTSOUPIAS

analysis takes this argument way too far: It assumes that absolutely nothing is known
about the input and that any distribution of the inputs is in principle possible; the
worst-case “distribution” prevailing in competitive analysis is, of course, a worst-case
input with probability one. Such complete powerlessness seems unrealistic to both the
practitioner (we always know, or can learn, something about the distribution of the
inputs) and the theoretician (the absence of a prior distribution, or some information
about it, seems very unrealistic to a probabilist or mathematical economist).

In Chapter 1, we were introduced to the paging problem, one of the simplest,
most fundamental, and practically important online problems. We saw that an
unreasonably wide range of deterministic algorithms (both the good in practice
Least-Recently-Used, LRU; the empirically mediocre First-In-First-Out, FIFO; and
the ridiculous Flush-When-Full, FWF, which empties the cash at every page fault)
have the same competitive ratio – k, the amount of available memory. Even algo-
rithms within more powerful information regimes – for example, any algorithm with
lookahead � > 0 pages – provably can fare no better. One approach to improving the
competitive ratio of an algorithm is to incorporate randomization. For paging, this
brings the competitive ratio down to ln(k) (McGeoch and Sleator, 1991; Achlioptas
et al., 2000). However, this improvement doesn’t really address the shortcomings of
the competitive analysis research program nor has it affected the algorithms used in
practice.

We have already seen two ways of going beyond worst-case analysis: In Chapter 1,
we saw parameterized bounds in paging, and in Chapter 4, we saw resource augmen-
tation. In this chapter, we survey some of the other approaches that have been taken
in the literature.

At a high level, the literature on going beyond worst-case in online algorithms
takes three approaches: (1) modifying the resources available to the online algorithm,
(2) weakening the adversary/benchmark, and (3) changing the way we measure the
performance of the online algorithm.

In the rest of the chapter we give examples of these approaches, primarily in the
context of the paging problem. We refer the reader to Chapters 1 and 4 for a review
of the paging model, the basic results, and basic algorithms.

24.2 The Access Graph Model

Competitive analysis treats the interaction between algorithms and inputs as a zero-
sum game, where an adversary generates the inputs. One way to improve over the
worst case is to limit the set of inputs the adversary is allowed to provide, ideally in a
way that captures the kind of inputs that we are likely to see in practice.

Let’s focus on the paging problem and ask what kind of inputs are likely in practice.
A natural answer is that most programs exhibit locality of reference. Locality of
reference, which has been thought to explain the practical success of LRU, means that
if a page is referenced, it is more likely to be referenced in the near future (temporal
locality) and pages near it in memory are more likely to be referenced in the near
future as well (spatial locality). Indeed, a storage hierarchy is only useful if request
sequences are not arbitrary.

Thus, it is natural to ask how locality of reference can be incorporated into the
input model. In Chapter 1, we saw the approach taken by Albers et al. (2005). Borodin
et al. (1995) introduced another approach, the so-called access graph model, as a

530

BEYOND COMPETITIVE ANALYSIS

way of modeling locality of reference in paging. An access graph G = (V,E) for a
program is a graph with a vertex for each page that a program can reference. Locality
of reference is imposed by the edge relation – the pages that can be referenced after a
page p are just the neighbors of p in G or p itself. In the access graph model a request
sequence σ must be a walk on G.

Given an access graph, competitive analysis is unchanged, except for this restric-
tion on the request sequences to walks on G. We denote the competitive ratio of online
algorithm A with k pages of fast memory on the access graph G by

cA(G) := sup
σ walk on G

A(σ)

OPT(σ)
,

where, as before, A(σ) is the number of page faults algorithm A incurs on input σ
and OPT(σ) is the number of page faults OPT incurs on σ . We then define

c(G) = inf
online algorithms A

cA(G).

Thus c(G) is the best competitive ratio that any online algorithm can do on request
sequences that are walks on G. If G is an complete graph, then the request sequence is
unrestricted and c(G) is the standard competitive ratio. Thus, access graphs provide
a flexible way to interpolate between worst-case and highly structured inputs.

An access graph may be either directed or undirected. An undirected access graph
might be a suitable model when the page reference patterns are governed by the data
structure used by the program. For example, if a program performs operations on a
tree data structure, and the mapping of the tree nodes to pages of virtual memory
represents a contraction of a tree, then the appropriate access graph might be a tree.
Alternatively, if we were to completely ignore data and focus only on the flow of
control inherent in the structure of the program, a directed access graph might be a
suitable model.

Theorem 24.1 (Borodin et al., 1995) Let G be any undirected graph on at least
k + 1 nodes and let Hk+1 be the set of (k + 1)-node connected subgraphs of G.
Then the competitive ratio of any deterministic online algorithm on G is

c(T) ≥ max
T∈Tk+1(G)

(�(T) − 1),

where

Tk+1(G) = {T | ∃H ∈ Hk+1 s.t. T is a spanning tree of H}
and �(T) is the number of leaves of tree T.

To prove this theorem, it will be useful for us to partition of the request sequence
into phases, defined as follows.

Definition 24.2 (Phases) The first phase of a request sequence begins with the
first request. A phase ends just before the request to the (k + 1)st distinct node,
at which point a new phase begins.

Proof of Theorem 24.1 Let A be any deterministic algorithm and let T be any
tree of k + 1 nodes in Tk+1(G). The adversary strategy is the standard one,

531

A.R. KARLIN AND E. KOUTSOUPIAS

operating in phases. A phase begins with a request to a page p among the k + 1
pages covered by T that is not currently in the cache. Next request the pages
along the path in the tree between p and the page evicted by A. Repeat this until
all the pages in the tree have been requested. (The last page requested is the
first request of the next phase.) Assume that A and OPT start with the same
cache state. Then OPT incurs only one fault in the phase (by initially replacing
the page that will be requested furthest in the future). On the other hand, any
online algorithm A has at least �(T)−1 faults in the phase, since until all leaves
are requested, there is always some node in the tree that isn’t in A’s cache. �

The next theorem shows that LRU in fact has optimal competitive ratio for trees.

Theorem 24.3 (Borodin et al., 1995) If the access graph G is a tree, then LRU
is optimal, i.e., has competitive ratio equal to

max
T∈Tk+1(G)

(�(T) − 1).

Proof We sketch the proof in the special case that there are k + 1 nodes in the
tree. Consider the partition of the request sequence into phases. Notice that if
there are only k+1 nodes in total, then OPT incurs only one fault per phase, by
replacing the page that will be requested furthest in the future at the beginning
of each phase; this page will be the first request of the next phase. Thus, to prove
the theorem, it suffices to show that in each phase, LRU incurs at most �(T)− 1
faults. To see this, observe that the first request of any phase (other than the first)
must be to a leaf of the tree, and that the least recently used page at any time
during the phase is also a leaf of the tree. (See Figure 24.1 for an explanation.)

Figure 24.1 The left part of the figure illustrates why an internal node, say p, cannot be the first node
requested in a new phase. Since p is on the path between two leaves, e.g., � and �′, if p was the first node
requested in a new phase, both � and �′ would have had to be requested in the previous phase. But that is
not possible without requesting p, since the request sequence is a walk on the tree. Thus, the first request
in each phase after the first must be to a leaf. Now suppose that the new phase starts with a request, say
to �∗. The right figure illustrates why no internal node, say p, can be the least recently used page in the
new phase. First, observe that p was requested more recently than �′ in the previous phase (and more
recently than any of the leaves that are disconnected from �∗ by the removal of p.) This is because after
the last request to �′ in the previous phase, the walk continued back to �∗ to start the new phase. Finally,
p is requested in the new phase before �′, since the walk in the new phase starts at �∗. Thus, by the time
�′ is evicted and then requested again, p is no longer “eligible” to be the least recently requested node.

532

BEYOND COMPETITIVE ANALYSIS

Finally, since no page is evicted twice in the same phase and a new phase begins
when the final leaf in the tree is requested, LRU incurs at most �(T) − 1 faults
per phase. �

Thus, for example, if the graph is a line, LRU is optimal (has competitive ratio 1). In
contrast, on a line, FIFO has competitive ratio k. (See Exercise 24.1.) More generally,
on trees with few leaves, LRU has low competitive ratio. In contrast, it is possible to
show that for all graphs on at least k + 1 nodes, FIFO has a competitive ratio of at
least (k + 1)/2. Moreover, Chrobak and Noga (1998) showed that for every graph G,
LRU’s performance on inputs that are walks on G is at least as good as FIFO’s.

LRU does not have competitive ratio c(G) for all graphs though. For example,
suppose that G is a cycle on k+1 nodes and the request sequence consists of repeated
traversals of the cycle. Then after a short initial period, LRU will fault on every single
request! Notice that this request sequence is arguably realistic, e.g., in any application
(such as stochastic gradient descent in machine learning) where multiple passes are
taken over a data set.

An alternative to LRU that works well on a cycle is an algorithm introduced by
Borodin et al. (1995) known as FAR, which is a marking algorithm. (LRU is also a
marking algorithm.)

Definition 24.4 (Marking Algorithm) At any time, a page is either marked or
unmarked. Initially all pages are unmarked.

A marking algorithm is defined by the following rules: All pages are unmarked
immediately before the beginning of a phase. When a page is requested within
a phase, it is marked. No marked page is ever evicted within a phase.

The unmarked page that FAR chooses to evict on a cache miss is the page that is
furthest in the access graph from the set of marked nodes.

On a cycle with k + 1 nodes, after the first phase,1 FAR incurs O(log2 k) faults
per phase. To see this, observe that on the first request in the second phase, the
only marked page is the page that caused the new phase to begin. Therefore, the
farthest unmarked node is halfway around the cycle, and therefore k/2 pages will be
requested and marked before the next page fault. When this next page fault occurs,
the unmarked node furthest from the set of marked nodes will be about k/4 pages
away. Therefore k/4 additional pages will be marked before the next fault and so on.
See Exercise 24.2 for a matching lower bound.

In addition, the proof of Theorem 24.3 that LRU is optimal (in the sense of
competitive ratio) for trees applies nearly verbatim to show that FAR is also optimal
on trees. It turns out that these two simple cases, trees and cycles, capture pretty much
everything that needs to be dealt with when dealing with sequences that correspond
to walks on graphs. This is the basis for the proof due to Irani et al. (1996) that, in
fact, FAR has competitive ratio that is O(c(G)), i.e., matching within a constant factor
the performance of an optimal algorithm specialized on graph G. Thus, for instances
parameterized by graphs, FAR is an “instance-optimal” algorithm.

1 If the cache is empty initially, there will be a fault on each new page requested in the phase but no evictions.

533

A.R. KARLIN AND E. KOUTSOUPIAS

24.3 The Diffuse Adversary Model

The diffuse adversary model is a generalization of competitive analysis, which
attempts to take advantage of the available data for the given problem by assuming
that the input comes from a distribution. It departs from classical competitive analysis
by removing the assumption that we know nothing about the distribution – without
resorting to the equally unrealistic classical assumption that we know all about it. In
this model, we assume that the actual distribution D of the inputs is a member of
a known class
 of possible distributions. That is, we seek to determine, for a given
class of distributions
, the performance ratio

R(
) = inf
A

sup
D∈

ED(A(x))
ED(OPT(x))

. (24.2)

Here the adversary picks a distribution D among those in
, so that the comparison
between the expected performance of the algorithm and the offline optimum algo-
rithm is a bad as possible. Notice that, if
 is the class of all possible distributions,
(24.1) and (24.2) coincide, since the worst possible distribution is the one that assigns
probability one to the worst-case input and probability zero everywhere else.

Here we will consider again the paging problem and a particular simple class of
distributions
ε . This class of distributions essentially weakens the adversary to not
being able to select any particular page for next request with probability more than ε.
It contains those distributions D such that, for any request sequence s and any page a,
PrD(a|s) ≤ ε, where PrD(a|s) denotes the probability that the next request is a given
that the sequence so far is s. The parameter ε captures the inherent uncertainty of
the request sequence and it is assumed to be small, but not smaller that the inverse of
the cache size. Of course, a smaller value of this parameter corresponds to a weaker
adversary.

We study the competitive ratio of lazy marking algorithms, a class of algorithms
that contain LRU and FIFO. Lazy means that pages are evicted only when needed to
make space on a page fault. Thus, FWF is not lazy (but it is a marking algorithm).

Theorem 24.5 (Young, 2000) The competitive ratio of any lazy marking algo-
rithm is at most

2 + 2
k−1∑
m=1

1
max{ε−1 − m,1} . (24.3)

In particular, for kε = o(1), the competitive ratio is at most 2 + O(kε).

We give here an informal proof of this theorem ignoring subtle issues of condi-
tional probability. For a rigorous treatment, see the original paper by Young (2000).
To simplify the presentation, we will assume that 1/ε is an integer greater than k. This
is essentially equivalent to the model in which, at each step, the adversary selects a set
of 1/ε potential requests, and then the actual request is drawn uniformly at random
from this set.

Consider the execution of a generic lazy marking algorithm DMark that works
in phases; at the beginning of each phase all k pages in memory are unmarked;
during the phase, each requested page is marked; at a page fault, an unmarked page
is removed from memory to make space for the new request; if no such page exists, all

534

BEYOND COMPETITIVE ANALYSIS

pages in memory become unmarked and a new phase begins. There are two types of
requests that cause DMark to have a page fault: fresh pages and worrisome pages. Fresh
are the pages that do not appear in the previous or current phase, and worrisome are
the pages that were in the algorithm’s memory at the beginning of the phase but were
moved out to deal with some page fault.

One of the nice properties of partitioning the request sequence into phases is that
we can bound the optimal cost by the number of fresh pages in each phase. More
precisely, for a given request sequence, let fi be the number of pages that are requested
in phase i but not in phase i − 1. Then the optimal cost for servicing the request
sequence is between

∑
i fi/2 and

∑
i fi. The upper bound is obvious. To see the lower

bound note that there must be at least fi page faults during phases i−1 and i, because
together they contain k + fi requests.

In the analysis that follows, instead of comparing DMark against the optimal
algorithm, we will compare it against the optimal amortized cost

∑
i fi/2. With this

handle on the optimal offline cost, it is now intuitively clear that the adversary would
prefer to cause a page fault by a worrisome page instead of a fresh page, because
fresh pages increase also the optimal amortized cost. As usual, during a phase, we
say a page is marked if it has been requested during the phase.

To get some intuition, consider the situation when there are m pages marked and
w worrisome pages. How should the adversary select the next set of 1/ε potential
pages? Ideally, from the point of view of the adversary, this set must include only
worrisome pages, because they increase the cost of DMark without affecting the
optimal amortized cost. However, there may not be enough worrisome pages and
the adversary will be forced to select other pages as well. Observe also that requests
on marked pages are also fine for the adversary, because they don’t change anything.
But if 1/ε is sufficiently large, there will not be enough worrisome or marked pages
and the adversary will have to assign probability to other pages. This is exactly where
the power of the diffuse adversary model is manifested: The adversary has to deviate
from its winning strategy of the original model.

For the analysis, fix a phase and let F be a random variable that indicates the
number of requests that are fresh in the phase. The idea is to estimate the cost with
respect to F .

The optimal amortized cost of the phase is at least F/2. Let us now bound the
expected cost of DMark. Consider the situation when there are m marked pages and
w worrisome pages. Since the probability that the next request will be a marked page
is at most mε, the probability that one more page will be marked is at least 1 − mε.
Conditioned on the event that the request will increase the number of marked pages,
the probability that it will be worrisome is at most wε/(1 − mε). The trick is to
bound this from above by Fε/(1 − mε), because w ≤ F – the number of worrisome
requests – can increase only when servicing a fresh request. Therefore the expected
cost of DMark due to worrisome pages is at most E[

∑k−1
m=1 Fε/(1 − mε)]. If we add

to this the expected cost from fresh pages E[F], and divide by the expected amortized
cost E[F/2], we get a competitive ratio

2

⎛⎝1 +
k−1∑
m=1

ε

1 − mε

⎞⎠ = 2 + 2
k−1∑
m=1

1
ε−1 − m

, (24.4)

as in the statement of Theorem 24.5, when ε−1 ≥ k.

535

A.R. KARLIN AND E. KOUTSOUPIAS

Given that Ht = 1 + · · ·+ 1/t ≈ ln t and under the assumption that kε = o(1), the
above expression is approximately 2+2(ln(ε−1−1)/(ε−1−(k−1)) ≈ 2−2 ln(1−kε) ≈
2 + 2kε.

Theorem 24.5 does not differentiate between LRU and FIFO. However, it is not
known if the following statement from Koutsoupias and Papadimitriou (2000), which
holds for LRU, holds for FIFO.

Theorem 24.6 (Koutsoupias and Papadimitriou, 2000) LRU has the optimal
competitive ratio among all online algorithms for the
ε diffuse adversary model.

24.3.1 Discussion

Access graphs and diffuse adversaries are two different ways of restricting the inputs.
Both retained some of the worst-case flavor (and hence robustness) of competitive
analysis, while attempting to capture some aspects of real-world inputs, thereby
limiting the extent to which the results are worst case.

� Both models enabled us to interpolate between very simple and easy to handle
inputs and complex, worst-case inputs, thereby defining a hierarchy of ever more
powerful adversaries and higher competitive ratios. Putting it another way, both of
these are parameterized analyses (as discussed in Section 1.3 of Chapter 1): Inputs
are defined by a parameter (G for access graphs and ε for the diffuse adversary),
and the optimal solution for each parameter is provided.

� A unique feature of the access graph model is that it inspired several new and
arguably natural algorithms (e.g., FAR) that may in some settings outperform LRU.
Fiat and Rosen (1997) have experimented with truly online algorithms2 inspired by
FAR (and by the Markov paging algorithms in Section 24.4.1) and found that in
their simulations these new algorithms in fact did outperform LRU. In contrast,
the bulk of the research on paging has provided theoretical justification for the
beliefs of practitioners (e.g., that LRU is a very effective algorithm), but has not
led to new practical algorithms.

� Both the diffuse adversary model and the access graph model restrict the power of
the adversary to select the next request. In the access graph model, the restriction
forces the next request to come from the (small) set of the neighbors of the
most recent request, but in the diffuse adversary model the opposite happens; the
selection of the next request is a random page from a set of at least 1/ε pages. Thus,
in the context of paging, the specific choice of
ε does not necessarily capture
realistic page request sequences that exhibit locality of reference.

� FIFO has provably no better competitive ratio than LRU in both models. However,
in the access graph model there are graphs in which LRU is significantly superior
to FIFO, while in the
ε diffuse adversary model, their competitive ratios are
within a factor of 2; this follows from a lower bound that matches Theorem 24.5
within a factor of 2 (Young, 2000). The fact that the access graph model captures
locality of reference much better than the diffuse adversary model is a plausible

2 By truly online, we mean algorithms that do not know the graph ahead of time, but rather build it as they
see the input.

536

BEYOND COMPETITIVE ANALYSIS

explanation why the first model has more power to differentiate between these two
online algorithms.

� The access graph model is specific to the paging problem. The diffuse adversary
model, on the other hand, is a relevant and useful approach for any online problem.
One merely needs to choose an appropriate class of distributions
. The model is
also used in Chapter 26 with the same set of distributions
ε .

� Finally, a nice feature of both models, perhaps more than a mere coincidence,
is that there is a single optimal (LRU for diffuse adversaries) or almost optimal
algorithm (FAR for access graphs) for every value of the parameter. This is an
indication that the models as well as the corresponding algorithms are robust to
perturbations.

24.4 Stochastic Models

Of course, the standard alternative to worst-case analysis is to assume that the inputs
are drawn from some known or unknown prior distribution. Many online algorithms
have been analyzed from this perspective. The simplest stochastic model, say for
paging, is when the requests are i.i.d. draws from some prior distribution. Another
common model is to assume that the input is a random permutation of a worst-case
sequence chosen by the adversary, as discussed in Chapter 11.

24.4.1 Markov Model

The Markov model for paging is defined by a Markov chain P whose states are the
pages that program can reference, with transition probability Pij representing the
probability of requesting page j immediately after requesting page i. Notice that now,
in contrast to the adversarial setting, the notion of an optimal online algorithm is
well defined: It is the online algorithm with the smallest expected cost, where the
expectation is with respect to the assumed input distribution. In fact, since this is a
Markov decision process, it is possible to formulate the optimal policy as the solution
to a linear program.3 However, it has size O(knk+1), where n is the set of possible
pages that may be requested and k, as always, is the size of the cache; this sort of
running time is prohibitive.

This motivates the search for a simple and approximately optimal online algorithm
for the Markov setting. A natural idea is, on a page fault to page p, to find a page to
evict that is likely to be requested later than any other page in the cache, so as to
“simulate” the optimal offline policy. Recall from Chapter 1 that the optimal offline
policy is Furthest-in-the-future which, on a page fault, evicts the page that will be
requested furthest in the future. For example, one could consider (a) evicting the
page q such that the expected number of steps in the Markov chain until q is reached
from p is maximum, or (b) evicting the page q such that the probability that q will
be requested last is maximum. Unfortunately, it can be shown that both of these
algorithms incur �(k) times as many faults as the optimal online algorithm on some
Markov chains.

3 There is a variable for each possible cache state, page requested, and choice of page to evict.

537

A.R. KARLIN AND E. KOUTSOUPIAS

Lund et al. (1994) proposed using a randomized approach instead: Whenever there
is a page fault, select a page for eviction according to some distribution y = {yq}.
Thus, page q in the cache is evicted with probability yq.

The distribution y is chosen so that for any other page p that might have been
evicted instead of the randomly selected page q, the chance that q will be requested
before p is minimized; that is, we seek a distribution y so that for all pages p in the
cache (we use S to denote the set of pages that is in the cache),∑

q∈S

yqP [q ≺ p] is small where q ≺ p := q is requested before p.

(Define P(q ≺ q) := 0.) Equivalently, we seek the optimal strategy y in the two player
zero-sum game defined by

min
y={yq}

max
p

∑
q

P [q ≺ p] yq = min
y={yq}

max
x={xp}

∑
p

∑
q

xpP [q ≺ p] yq,

where x and y are both distributions over pages in the cache. By the Minimax
Theorem, this is the same as

max
x

min
y

∑
p

∑
q

xpP [q ≺ p] yq,

But the latter is at most 1/2 because if we choose y := x, we have∑
p

∑
q

xpP [q ≺ p] xq =
∑

{p,q} with p �=q

xpxq(P [q ≺ p] + P [p ≺ q])

≤ 1
2

∑
p

∑
q

xpxq = 1
2
,

since P [q ≺ p] + P [p ≺ q] = 1 (or 0 when p = q). We conclude that there is a
distribution y that guarantees that∑

q∈S

yqP [q ≺ p] ≤ 1
2
, ∀p in cache

and this distribution can be computed efficiently using linear programming. This
suggests the following approximately optimal online algorithm ALG:

Given the current cache contents, on a cache miss, select a page to evict according to the
distribution y computed as earlier for the current cache contents S.

Lund et al. (1994) show that the expected number of faults incurred by ALG is at
most four times4 that of the optimal online algorithm OptON.

4 Intuitively, half the time, on an eviction, the page ALG replaces is requested later than what OptON evicted,
in which case OptON would have a page fault before ALG. However, this statement is correct only if the cache
states of the two algorithms are the same, which of course they will rarely be. Hence, proving this bound on
the competitive ratio (against the optimal online) is tricky and requires setting up a charging scheme with the
property that each time ALG evicts a page p, that page p places a “charge” on some page q that OptON has
evicted but that is likely to be requested no later than p. The charging scheme has to be defined very carefully
so that no page has too many charges on it.

538

BEYOND COMPETITIVE ANALYSIS

Discussion
Stochastic models are perhaps the most obvious way to going beyond worst-case
analysis. The concern, as always, is whether or not the stochastic model captures
the properties of real-world inputs. Markov paging is a step in the right direction
from, say, i.i.d. sequences, but still has limited applicability because of its memoryless
nature.

As we discussed, the algorithm for Markov paging described previously was
competitive with the optimal online algorithm. No comparison was made to the
optimal offline. Although using the optimal online algorithm as a benchmark makes
perfect sense in stochastic settings, it is not so common in the litererature, largely
because we do not have many techniques for getting a handle on the optimal online
algorithm or comparing arbitrary online algorithms in stochastic settings.

24.4.2 Best of Both Worlds?

In Sections 24.2 and 24.3, we saw examples of parameterized analysis wherein we
considered input restrictions that interpolated between simple inputs and worst-case
inputs. However, even when the adversary was very weak, the input was worst-case;
we were merely restricting the subset of inputs the adversary could choose from.

An alternative is to try to interpolate between the optimism of stochastic models
and the pessimism of adversarial models.5 For example, one may seek an online
algorithm that has the best or nearly the best possible competitive ratio while
simultaneously achieving much better performance if the input happens to come from
a nice stochastic model. In one example in this direction, Albers and Mitzenmacher
(1998) consider the list update problem, which addresses the problem of how to
rearrange a linked list online in response to a sequence of access requests to items
in the list.6 They showed that an algorithm known as TimeStamp has the optimal
competitive ratio of 2 for worst-case inputs, but achieves much better performance
when inputs are generated from an i.i.d. source.

A more modern approach proposed by Lykouris and Vassilvitskii (2018) is to
augment online algorithms with a machine learned oracle, with an objective of
significantly reducing the competitive ratios in those cases where the oracle has low
error. See Chapter 30 for more on this approach.

One may also try to directly define input models that interpolate between stochastic
and adversarial inputs. For example, Blelloch et al. (2016) proposed the following
model for the list update problem: There is a probability distribution p = (p1, . . . ,pn)

over the items stored in the list and a parameter ε. The input is then generated as
follows: For each request, with probability ε, let an adversary choose the next item
to request and with probability 1 − ε sample from the distribution p. Here ε = 0
corresponds to pure average case analysis on inputs drawn from a static probability
distribution, and ε = 1 corresponds to standard worst-case competitive analysis.
The hope is to design an algorithm whose performance is better as our “knob”

5 This phrasing is due to R. Ravi (Blelloch et al., 2016).
6 The cost to access an item in the list is the number of pointers that need to be traversed to reach that item.

Once accessed, an item may be moved closer to the front of the list at no cost. In addition, the positions of
adjacent items in the list may be swapped at a cost of 1.

539

A.R. KARLIN AND E. KOUTSOUPIAS

moves toward the stochastic case, that is ε → 0. This approach is similar to other
semirandom models, such as those discussed in Chapters 16 and 17.

Finally, in Chapters 13–15, we saw smoothed analysis as an approach to going
beyond worst-case for offline problems. This notion has also recently been applied to
online algorithms: Becchetti et al. (2006) introduced the smoothed competitive ratio
defined as

c := sup
σ̃

Eσ :=pert(σ̃)

(A(σ)

OPT(σ)

)
,

where the supremum is taken over all possible inputs σ̃ and the expectation is
taken over all inputs σ that are obtained by perturbing σ̃ a bit according to some
probabilistic model. They applied this notion to the analysis of an online scheduling
algorithm.

24.5 Direct Comparison of Online Algorithms

Online algorithms are complicated objects. Evaluating them via projection onto
the single-dimensional space of competitive ratios is often uninformative or even
misleading. Wouldn’t it be better then to compare online algorithms directly rather
than through their competitive ratio? This section explores comparative analysis, one
specific way to do exactly this.

24.5.1 Comparative Analysis

Suppose that A and B are classes of algorithms – typically but not necessarily A ⊆ B;
that is,B is usually a broader class of algorithms, a more powerful information regime.
The comparative ratio R(A,B) is defined as follows:

R(A,B) = sup
B∈B

inf
A∈A

sup
σ

A(σ)

B(σ)
. (24.5)

This definition is best understood game-theoretically: B wants to demonstrate to
A that it is a more powerful class of algorithms. To this end, B proposes an algorithm
B among its own. In response, A comes up with an algorithm A. Then B chooses
an input σ . Finally, A pays B the ratio A(σ)/B(σ). The larger this ratio, the more
powerful B is in comparison to A. Notice that, if we let A be the class of online
algorithms and B the class of all algorithms – online or offline—then equations
(24.1) and (24.5) coincide, and R(A,B) is the same as the competitive ratio c. Hence
comparative analysis is a refinement of competitive analysis.

To illustrate the use of comparative analysis we consider the power of lookahead
in the paging problem. If L� is the class of all paging algorithms with lookahead � –
thus in particular L0 is the class of usual online algorithms – comparative analysis
for paging gives

R(L0,L�) = min{� + 1,k}.
It is straightforward to extend the lower bound for the paging problem to show

that the comparative ratio is at least � + 1 (when � + 1 ≤ k). Indeed consider an
algorithm with lookahead � that never evicts one of the next � requests. Thus, for

540

BEYOND COMPETITIVE ANALYSIS

every request sequence ρ, this algorithm suffers at most one page fault for every �+1
consecutive requests. On the other hand, for any algorithm A with no lookahead,
there is a request sequence ρ such that A suffers a page fault for every request.

The next theorem shows that this bound is actually tight.

Theorem 24.7 (Koutsoupias and Papadimitriou, 2000) For the paging problem

R(L0,L�) = min{� + 1,k}.

Proof Let m = min{�,k −1} and let B be an algorithm for the paging problem
in the class L�, that is, with lookahead �. Without loss of generality we assume
that B moves pages only to service requests. Consider the following online
algorithm A which is a generalization of LRU:

To service a request r not in its cache, A evicts a page that is not one of the
m most recent distinct requests (including r). Among the remaining pages,
A chooses to evict a page such that the resulting configuration is as close as
possible to the last known configuration of B. A does nothing for requests in
its fast memory.

To show that the comparative ratio of A is m + 1, it suffices to show that
for every m + 1 consecutive page faults of A, B suffers at least one page fault.
This can be achieved by showing that whenever A suffers m consecutive page
faults while B suffers no page fault, A converges to the configuration of B. To
do this, we show by induction on the number of requests the stronger claim that
if A suffers c consecutive page faults while B does not suffer any page fault, the
configurations of A and B differ by at most m − c pages.

Fix a request sequence ρ = r1r2 . . . and let A0,A1, . . . and B0 = A0,B1, . . . be
the configurations (i.e., set of pages in memory) of A and B that service ρ. The
base of the induction is trivial. Assume that the induction hypothesis holds for
t − 1. We have to deal with a few cases. We treat here the case in which the most
recent request rt is in Bt−1 − At−1 and algorithm A evicts page xt ∈ At−1 ∩ Bt−1
to service it. We leave the other cases for Exercise 24.3.

Since xt is not one of the m more recent requests, xt is also in Bt−m. It
follows that At ⊆ Bt−m + {rt−m+1, . . . ,rt−1,rt}. We also have Bt ⊆ Bt−m +
{rt−m+1, . . . ,rt−1,rt}. If algorithm B has no page fault in the last c requests, the
set Bt−m + {rt−m+1, . . . ,rt−1,rt} has cardinality at most k + m − c. We conclude
that |At − Bt| ≤ m − c. �

24.6 Where Do We Go from Here?

Competitive analysis provides a crisp and universal benchmark, the competitive
ratio, by which to evaluate the quality of online algorithms. Moreover, its rigorous
framework forces us to search the space of online algorithms and discover novel,
elegant, and occasionally surprising algorithms.

Nonetheless, there is much to do as we seek to move beyond worst-case analysis. We
have introduced a few of the approaches taken in the literature. As we move forward,
the key questions we must ask ourselves when evaluating research in this area are:

541

A.R. KARLIN AND E. KOUTSOUPIAS

� Does it help explain the performance of algorithms in practice and give us guidance
as to how to choose between algorithms?

� Does it suggest new algorithms that may work better than the currently used
algorithms?

� Does the model/benchmark enable an analysis that captures the performance as a
function of important parameters of the input?

� Does the performance degrade smoothly as we move from “nice” inputs to “worst-
case” inputs, and is the performance on “easy” inputs nearly optimal?

24.7 Notes

For an overview of results on the competitive analysis of online algorithms see the
book by Borodin and El-Yaniv (1998) and the surveys, e.g., Albers (2003) and Albers
and Leonardi (1999). For the basic models and results for paging and list update, see
the seminal paper of Sleator and Tarjan (1985), as well as the surveys by Irani (1998)
and Kamali and López-Ortiz (2013).

We can divide the literature on going beyond worst-case in online algorithms into
roughly three types: (1) modifying the resources available to the online algorithm, (2)
weakening the adversary, and (3) changing the way we measure the performance of
the online algorithm.

Modifying the Resources Available to the Online Algorithm In Chapter 4, resource
augmentation is covered in the context of paging; there, the online algorithm uses a
cache that is larger than that available to the offline algorithm. Perhaps the most
well-studied application of resource augmentation is online scheduling where the
online algorithm either has more machines or they are faster than those of the offline
algorithm, e.g., Kalyanasundaram and Pruhs (2000) and Phillips et al. (2002).

Other ways to modify the resources available include (1) giving the algorithm
access to some number of bits of advice (Dobrev et al., 2009; Boyar et al., 2016);
(2) giving the online algorithm a small budget to modify prior decisions or ignore
some requests , e.g., Albers and Hellwig (2012), Gupta et al. (2014, 2017), Gu et al.
(2016), Megow et al. (2016), Boyar et al. (2017), Cygan et al. (2018), Epstein et al.
(2018), Feldkord et al. (2018); (3) allowing the algorithm to delay service of some
requests, e.g., Emek et al. (2016) and Azar et al. (2017a,b); (4) allowing the algorithm
to reorder requests, e.g., Englert et al. (2007, 2008), Adamaszek et al. (2011), Azar
et al. (2014), and Englert and Räcke (2017); and (5) giving the online algorithm some
amount of lookahead, e.g., Albers (1998).

Weakening the Adversary In Sections 24.2 and 24.3, we discussed weakening the
adversary by restricting the set of possible inputs (e.g., using access graphs or diffuse
adversaries). Another example of this approach is the working set model from
Chapter 1. Panagiotou and Souza (2006) and Albers and Frascaria (2018) consider
restricting the adversary to generating inputs that satisfy certain conditions on the
inter-request distances between pages and analyze situations in which this leads
to improvements in LRU’s competitive ratio. Other parameterized analyses include
Albers and Lauer (2008) Dorrigiv et al. (2009), and Dorrigiv and López-Ortiz (2012).

Raghavan (1992) proposed the statistical adversary model, in which the adversary
is required to generate an input that satisfies certain statistical properties. (See also

542

BEYOND COMPETITIVE ANALYSIS

Chou et al., 1995.) Of course, the extreme version of limiting the adversary is to
assume a stochastic model. See Chapter 11 and the references therein.

Markov chain models of the type discussed in Section 24.4.1 were introduced by
Shedler and Tung (1972), Lewis and Shedler (1973), and Karlin et al. (1992).

Changing the Way We Measure the Performance of Online Algorithms A head-
spinning number of different ways of measuring the performance of online
algorithms have been introduced in the literature as alternatives to competitive
analysis. For example, the max/max ratio proposed by Ben-David and Borodin
(1994) considers the online algorithm’s maximum cost on any input of length n and
the optimal offline’s maximum cost on any input of length n, and then measures the
supremum of the ratio between them. Thus, it is not comparing the performance of
the algorithms on the same inputs. Kenyon et al. (1996) suggest using the random
order ratio, which considers the worst case over σ of the average cost of the online
algorithm on random permutations of σ and the optimal offline cost on σ . For a
survey of results in these models and a number of other measures, see the PhD thesis
of Dorrigiv (2010), as well as the surveys by Boyar et al. (2015) and Dorrigiv and
López-Ortiz (2005).

In Section 24.5, we discussed the comparative ratio as a way to directly compare
online algorithms. This is just one of many proposals in the literature. For example,
Angelopoulos et al. (2007) introduced bijective analysis, which compares algorithms
on permutations of the same input. Specifically, suppose that A and B are two
different online algorithms and let In denote the set of request sequences of length
n. Then A " B, that is, A is no worse than B if for all n sufficiently large, there is a
bijection π : In → In for which A(σ) ≤ B(π(σ)) for all σ ∈ In.

A number of interesting results have been obtained using this notion. For exam-
ple, Angelopoulos et al. (2007) showed that LRU with lookahead is strictly better
according to bijective analysis than LRU without lookahead and that all lazy paging
algorithms are equivalent. Angelopoulos and Schweitzer (2013) have shown that LRU
is no worse than any other online algorithm if locality is modeled by a concave
function (see Section 1.3.1 of Chapter 1).

In this chapter, we have borrowed language from some of our earlier papers
including from Karlin et al. (1992) and from Koutsoupias and Papadimitriou (2000).

References

Achlioptas, Dimitris, Chrobak, Marek, and Noga, John. 2000. Competitive analysis of
randomized paging algorithms. Theoretical Computer Science, 234(1-2), 203–218.

Adamaszek, Anna, Czumaj, Artur, Englert, Matthias, and Räcke, Harald. 2011. Almost tight
bounds for reordering buffer management. In Proceedings of the Forty-third Annual ACM
Symposium on Theory of Computing, ACM, pp. 607–616.

Albers, Susanne. 1998. A competitive analysis of the list update problem with lookahead.
Theoretical Computer Science, 197(1-2), 95–109.

Albers, Susanne. 2003. Online algorithms: A survey. Mathematical Programming, 97(1-2),
3–26.

Albers, Susanne, and Frascaria, Dario. 2018. Quantifying competitiveness in paging with
locality of reference. Algorithmica, 80(12), 3563–3596.

Albers, Susanne, and Hellwig, Matthias. 2012. On the value of job migration in online
makespan minimization. In European Symposium on Algorithms, pp. 84–95. Springer.

543

A.R. KARLIN AND E. KOUTSOUPIAS

Albers, Susanne, and Lauer, Sonja. 2008. On list update with locality of reference. In Interna-
tional Colloquium on Automata, Languages, and Programming, pp. 96–107. Springer.

Albers, Susanne, and Leonardi, Stefano. 1999. Online algorithms. ACM Computing surveys,
31(3), Article 4.

Albers, Susanne, and Mitzenmacher, Michael. 1998. Average case analyses of list update
algorithms, with applications to data compression. Algorithmica, 21(3), 312–329.

Albers, Susanne, Favrholdt, Lene M, and Giel, Oliver. 2005. On paging with locality of
reference. Journal of Computer and System Sciences, 70(2), 145–175.

Angelopoulos, Spyros, and Schweitzer, Pascal. 2013. Paging and list update under bijective
analysis. Journal of the ACM (JACM), 60(2), 7.

Angelopoulos, Spyros, Dorrigiv, Reza, and López-Ortiz, Alejandro. 2007. On the separation
and equivalence of paging strategies. In Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 229–237. Society for Industrial and
Applied Mathematics.

Azar, Yossi, Englert, Matthias, Gamzu, Iftah, and Kidron, Eytan. 2014. Generalized reorder-
ing buffer management. In 31st International Symposium on Theoretical Aspects of
Computer Science (STACS 2014), pp. 87–94. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.

Azar, Yossi, Ganesh, Arun, Ge, Rong, and Panigrahi, Debmalya. 2017a. Online service
with delay. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pp. 551–563. ACM.

Azar, Yossi, Chiplunkar, Ashish, and Kaplan, Haim. 2017b. Polylogarithmic bounds on the
competitiveness of min-cost perfect matching with delays. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1051–1061. SIAM.

Becchetti, Luca, Leonardi, Stefano, Marchetti-Spaccamela, Alberto, Schäfer, Guido, and
Vredeveld, Tjark. 2006. Average-case and smoothed competitive analysis of the multilevel
feedback algorithm. Mathematics of Operations Research, 31(1), 85–108.

Ben-David, Shai, and Borodin, Allan. 1994. A new measure for the study of on-line algorithms.
Algorithmica, 11(1), 73–91.

Blelloch, G., Dhamdhere, K.and Pongnumkul, S., and Ravi, R. 2016. Interpolating between
stochastic and worst-case optimization. Lecture at the Simons Institute of Computing.

Borodin, A., and El-Yaniv, R. 1998. Online Computation and Competitive Analysis. Cambridge
University Press.

Borodin, Allan, Irani, Sandy, Raghavan, Prabhakar, and Schieber, Baruch. 1995. Competitive
paging with locality of reference. Journal of Computer and System Sciences, 50(2),
244–258.

Boyar, Joan, Irani, Sandy, and Larsen, Kim S. 2015. A comparison of performance measures
for online algorithms. Algorithmica, 72(4), 969–994.

Boyar, Joan, Favrholdt, Lene M, Kudahl, Christian, Larsen, Kim S, and Mikkelsen, Jesper W.
2016. Online algorithms with advice: a survey. ACM SIGACT News, 47(3), 93–129.

Boyar, Joan, Favrholdt, Lene M, Kotrbčík, Michal, and Larsen, Kim S. 2017. Relaxing the
irrevocability requirement for online graph algorithms. In Workshop on Algorithms and
Data Structures, pp. 217–228. Springer.

Chou, Andrew, Cooperstock, Jeremy R, El-Yaniv, Ran, Klugerman, Michael, and Leighton,
Frank Thomson. 1995. The statistical adversary allows optimal money-making trading
strategies. In SODA, vol. 95, pp. 467–476.

Chrobak, Marek, and Noga, John. 1998. LRU is better than FIFO. In Proceedings of the 9th
Symposium on Discrete Algorithms (SODA), pp. 78–81. ACM/SIAM.

Cygan, Marek, Czumaj, Artur, Mucha, Marcin, and Sankowski, Piotr. 2018. Online facility
location with deletions. In Proceedings of the 26th Annual European Symposium on
Algorithms (ESA), pp. 21: 1–21: 15.

544

BEYOND COMPETITIVE ANALYSIS

Dobrev, Stefan, Královič, Rastislav, and Pardubská, Dana. 2009. Measuring the problem-
relevant information in input. RAIRO-Theoretical Informatics and Applications, 43(3),
585–613.

Dorrigiv, Reza. 2010. Alternative measures for the analysis of on-line algorithms. PhD
dissertation, University of Waterloo.

Dorrigiv, Reza, and López-Ortiz, Alejandro. 2005. A survey of performance measures for on-
line algorithms. SIGACT News, 36(3), 67–81.

Dorrigiv, Reza, and López-Ortiz, Alejandro. 2012. List update with probabilistic locality of
reference. Information Processing Letters, 112(13), 540–543.

Dorrigiv, Reza, Ehmsen, Martin R, and López-Ortiz, Alejandro. 2009. Parameterized analysis
of paging and list update algorithms. In International Workshop on Approximation and
Online Algorithms, pp. 104–115. Springer.

Emek, Yuval, Kutten, Shay, and Wattenhofer, Roger. 2016. Online matching: Haste makes
waste! In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing,
pp. 333–344. ACM.

Englert, Matthias, and Räcke, Harald. 2017. Reordering buffers with logarithmic diameter
dependency for trees. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 1224–1234. SIAM.

Englert, Matthias, Räcke, Harald, and Westermann, Matthias. 2007. Reordering buffers for
general metric spaces. In Proceedings of the Thirty-ninth Annual ACM Symposium on
Theory of Computing, pp. 556–564. ACM.

Englert, Matthias, Özmen, Deniz, and Westermann, Matthias. 2008. The power of reordering
for online minimum makespan scheduling. In 2008 49th Annual IEEE Symposium on
Foundations of Computer Science, pp. 603–612. IEEE.

Epstein, Leah, Levin, Asaf, Segev, Danny, and Weimann, Oren. 2018. Improved bounds for
randomized preemptive online matching. Information and Computation, 259, 31–40.

Feldkord, Björn, Feldotto, Matthias, Gupta, Anupam, Guruganesh, Guru, Kumar, Amit,
Riechers, Sören, and Wajc, David. 2018. Fully-dynamic bin packing with little repacking.
In 45th International Colloquium on Automata, Languages, and Programming (ICALP
2018), pp. 51:1-51-24.

Fiat, Amos, and Rosen, Ziv. 1997. Experimental studies of access graph based heuris-
tics: Beating the LRU standard? In ACM-SIAM Symposium on Discrete Algorithms,
pp. 63–72.

Gu, Albert, Gupta, Anupam, and Kumar, Amit. 2016. The power of deferral: maintaining a
constant-competitive steiner tree online. SIAM Journal on Computing, 45(1), 1–28.

Gupta, Anupam, Kumar, Amit, and Stein, Cliff. 2014. Maintaining assignments online:
Matching, scheduling, and flows. In Proceedings of the Twenty-fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 468–479. Society for Industrial and Applied
Mathematics.

Gupta, Anupam, Krishnaswamy, Ravishankar, Kumar, Amit, and Panigrahi, Debmalya. 2017.
Online and dynamic algorithms for set cover. In Proceedings of the 49th Annual ACM
Symposium on Theory of Computing, pp. 537–550. ACM.

Irani, Sandy. 1998. Competitive analysis of paging. In Online Algorithms, pp. 52–73.
Springer.

Irani, Sandy, Karlin, Anna R, and Phillips, Steven. 1996. Strongly competitive algorithms for
paging with locality of reference. SIAM Journal on Computing, 25(3), 477–497.

Kalyanasundaram, B., and Pruhs, K. 2000. Speed is as powerful as clairvoyance. Journal of
the ACM, 47(4), 617–643.

Kamali, Shahin, and López-Ortiz, Alejandro. 2013. A survey of algorithms and models for
list update. In Space-Efficient Data Structures, Streams, and Algorithms, pp. 251–266.
Springer.

545

A.R. KARLIN AND E. KOUTSOUPIAS

Karlin, Anna R, Phillips, Steven J, and Raghavan, Prabhakar. 1992. Markov paging. In
Proceedings, 33rd Annual Symposium on Foundations of Computer Science, pp. 208–217.
IEEE.

Kenyon, Claire, et al. 1996. Best-fit bin-packing with random order. In ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 359–364.

Koutsoupias, Elias, and Papadimitriou, Christos H. 2000. Beyond competitive analysis. SIAM
Journal on Computing, 30(1), 300–317.

Lewis, PAW, and Shedler, GS. 1973. Empirically derived micromodels for sequences of page
exceptions. IBM Journal of Research and Development, 17(2), 86–100.

Lund, Carsten, Phillips, Steven, and Reingold, Nick. 1994. IP over connection-oriented net-
works and distributional paging. In Proceedings 35th Annual Symposium on Foundations
of Computer Science, pp. 424–434. IEEE.

Lykouris, Thodoris, and Vassilvitskii, Sergei. 2018. Competitive caching with machine learned
advice. In Proceedings of the 35th International Conference on Machine Learning (ICML),
pp. 3302–3311.

McGeoch, Lyle A, and Sleator, Daniel D. 1991. A strongly competitive randomized paging
algorithm. Algorithmica, 6, 816–825.

Megow, Nicole, Skutella, Martin, Verschae, José, and Wiese, Andreas. 2016. The power of
recourse for online MST and TSP. SIAM Journal on Computing, 45(3), 859–880.

Panagiotou, Konstantinos, and Souza, Alexander. 2006. On adequate performance measures
for paging. Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of
Computing, pp. 487–496. ACM.

Phillips, C. A., Stein, C., Torng, E., and Wein, J. 2002. Optimal time-critical scheduling via
resource augmentation. Algorithmica, 32(2), 163–200.

Raghavan, Prabhakar. 1992. A statistical adversary for on-line algorithms. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, 7, 79–83.

Shedler, Gerald S., and Tung, C. 1972. Locality in page reference strings. SIAM Journal on
Computing, 1(3), 218–241.

Sleator, D. D., and Tarjan, R. E. 1985. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2), 202–208.

Young, Neal E. 2000. On-line paging against adversarially biased random inputs. Journal of
Algorithms, 37, 218–235. Preliminary version in SODA’98 titled “Bounding the Diffuse
Adversary.”

Exercises

Exercise 24.1 Show that in the undirected access graph model, FIFO has competive
ratio k when the graph is a line consisting of k + 1 nodes.

Exercise 24.2 Show that in the undirected access graph model, every online algorithm
has competitive ratio �(log k) on a cycle of length k + 1.

Exercise 24.3 Complete the proof of Theorem 24.7.

546

CHAPTER TWENTY FIVE

On the Unreasonable Effectiveness
of SAT Solvers

Vijay Ganesh and Moshe Y. Vardi

Abstract: Boolean satisfiability (SAT) is arguably the quintessential
NP-complete problem, believed to be intractable in general. Yet,
over the last two decades, engineers have designed and implemented
conflict-driven clause learning (CDCL) SAT solving algorithms that
can efficiently solve real-world instances with tens of millions of
variables and clauses in them. Despite their dramatic impact, SAT
solvers remain poorly understood. There are significant gaps in our
theoretical understanding of why these solvers work as well as they
do. This question of “why CDCL SAT solvers are efficient for many
classes of large real-world instances while at the same time perform
poorly on relatively small randomly generated or cryptographic
instances” has stumped theorists and practitioners alike for more
than two decades. In this chapter, we survey the current state of our
theoretical understanding of this question, future directions, as well
as open problems.

25.1 Introduction: The Boolean SAT Problem and Solvers

Boolean satisfiability (SAT) is one of the central problems in computer science and
mathematics, believed to be intractable in general. This problem has been studied
intensively by theorists since it was shown to be NP-complete by Cook (1971). The
problem can be stated as follows:

Problem Statement 25.1 (The Boolean Satisfiability Problem) Given a Boolean
formula φ(x1,x2, . . . ,xn) in conjunctive normal form (CNF) over Boolean vari-
ables x1,x2, . . . ,xn, determine whether it is satisfiable. We say that a formula
φ(x1,x2, . . . ,xn) is satisfiable if there exists an assignment to the variables of
φ(x1,x2, . . . ,xn) such that the formula evaluates to true under that assignment.
Otherwise, we say the formula is unsatisfiable. This problem is also sometimes
referred to as CNF-SAT.

There are many variations of the SAT problem that are all equivalent from a
worst-case complexity-theoretic perspective. By SAT, we always refer to the CNF-
SAT problem, unless otherwise stated. A SAT solver is a computer program aimed
at solving the Boolean satisfiability problem.

547

V. GANESH AND M. Y. VARDI

More recently, practitioners who work in software engineering (broadly construed
to include software testing, verification, program analysis, synthesis), computer
security, and artificial intelligence (AI) have shown considerable interest in SAT
solvers. This is due to the efficiency, utility, and impact of solvers on software
engineering (Cadar et al., 2006), verification (Clarke et al., 2001), and AI plan-
ning (Kautz et al., 1992). The success of SAT solvers can be attributed to the
fact that engineers have designed and implemented highly scalable conflict-driven
clause learning (CDCL) SAT solving algorithms (or simply, SAT solvers1) that are
able to efficiently solve multimillion variable instances obtained from real-world
applications. What is even more surprising is that these solvers often outperform
special-purpose algorithms designed specifically for the aforementioned applications.
Having said that, it is also known that SAT solvers perform poorly on relatively small
randomly generated or cryptographic instances (Balyo et al., 2017). Therefore, the key
question in SAT solver research is:
“Why are CDCL SAT solvers efficient for many classes of real-world instances while
at the same time perform poorly on randomly generated or cryptographic instances?”

This question has stumped theorists and practitioners alike for more than two
decades. In order to address this question we have to go beyond traditional worst-
case complexity and develop a parameterized complexity-theoretic understanding of
real-world formulas over which CDCL solvers perform well. In this chapter, we survey
the state of our knowledge vis-à-vis complexity-theoretic understanding of the power
of SAT solvers as well as empirical studies of industrial instances that shed light on
this central question.

25.1.1 The Central Questions

Here we list a set of key questions that are essential for a deeper understanding of
SAT solvers, followed by sections where we discuss answers to them.

1. Modeling SAT Solvers as Proof Systems Perhaps the most important question
in this context of understanding SAT solvers is the following: “What is an
appropriate mathematical model for CDCL SAT solvers that explains both their
efficacy as well as limitations?”This question is of paramount importance not only
from a theoretical point of view, but as we argue in the text that follows, critical
from a practical solver-design perspective as well. (We discuss detailed answers to
this question in Section 25.3.)

Over the past two decades, a consensus has developed among most theorists and
practitioners that SAT solvers are best modeled as proof systems, i.e., a collection
of proof rules and axioms. The history of this consensus is quite interesting
and goes back to folklore theorems about Davis–Putnam–Logemann–Loveland
(DPLL) SAT solvers (Davis et al., 1962) that state that they are essentially
equivalent to tree-like resolution (for unsatisfiable inputs). Given that DPLL SAT
solvers form the basis for the more powerful CDCL methods, the known connec-
tion between DPLL and tree-like resolution naturally led to the conjecture, and

1 While researchers have studied a variety of algorithms for the Boolean SAT problem, in this chapter we
focus only on sequential CDCL SAT solvers. The reason is that to date only these solvers seem to scale well for
large real-world industrial instances, which is the key mystery addressed here.

548

ON THE UNREASONABLE EFFECTIVENESS OF SAT SOLVERS

subsequent proof, that CDCL (with nondeterministic variable/value selection and
restarts) solvers are polynomially equivalent to general resolution, a proof system
known to be stronger than tree-like resolution (Atserias et al., 2011; Pipatsrisawat
and Darwiche, 2011). This result highlights the mathematical value of modeling
solvers as proof systems. First, the “solvers-as-proof-systems” abstraction enables
one to leverage powerful methods and results from proof complexity to obtain
lower and upper bounds on the length of proofs constructed by solvers. Second,
proof complexity suggests many different kinds of proof rules, e.g., extended
resolution (Krajíček, 2019), that can be incorporated into solvers, thus strength-
ening them further. Finally, and perhaps most importantly, proof complexity
enables a much deeper understanding of the power of certain solver heuristics
(e.g., clause learning), that are best understood in terms of proof rules (general
resolution).

While proof systems are a natural and elegant way to model SAT solvers, given
that they are designed to construct proofs for unsatisfiable formulas, it is quite
legitimate to ask whether they are suitable for studying solver behavior over satis-
fiable instances as well. It turns out that even when an input formula is satisfiable,
SAT solvers generate proofs that establish unsatisfiability of the parts of the search
space that do not contain satisfying assignments, thus guiding the solver away from
fruitless parts of the search space (the set of all assignments). Hence, one could
argue that proof systems are an excellent mathematical model for studying the
complexity of SAT solvers for both satisfiable and unsatisfiable instances.

2. Proof Search and SAT Solvers While modeling solvers as proof systems enables
us to prove upper and lower bounds, it does not quite address the issue of proof
search. Proof systems, by their very nature, are best defined as nondeterministic
objects. SAT solvers, however, are efficient implementations of proof systems.
Hence, in order to properly frame the notion of proof search, we need to
view solvers as optimization procedures that attempt to find the optimal (e.g.,
shortest) proof for a given input. Theorists refer to this as automatizability of
proof systems (Bonet et al., 2000). Informally, we say that a proof system is
automatizable if there exists an algorithm that can find a proof for a unsatisfiable
formula with only polynomial overhead (in the size of the formula) over the
optimal proof. (We address this in Section 25.4.)

3. Parameteric Understanding of Boolean Formulas The topic that has probably
received the most attention in the context of understanding solvers is that of
parameterization of Boolean formulas (i.e., parameters that enable us to classify
formulas as easy or hard for solvers). This question can be restated as “What is
a precise mathematical parametric characterization of real-world industrial or
application instances over which SAT solvers perform well, and dually, of families
of instances over which they perform poorly?” Examples of parameters that have
been extensively studied include the clause-variable ratio, backdoors, backbones,
community structure, and merge. We discuss the strengths and weaknesses of these
parameters. The crucial requirement that these parameters have to satisfy is that
they should be amenable to both theoretical analysis (i.e., enable parameterized
complexity-theoretic bounds) as well as be relevant in practice (i.e., empirically
explain the power of solvers and enable the design of better ones). We address
this in Section 25.5. (See also Chapter 2 for a general discussion on parameterized
complexity.)

549

V. GANESH AND M. Y. VARDI

4. Proof Complexity and Solver Design In addition to the aforementioned benefits
of the “solvers-as-proof-systems” model, proof complexity theory also enables
us to systematize practical solver design. Without the aid of proof complexity,
practical solvers can seem like an incredibly complicated jumble of heuristics.
When viewed, however, through the lens of proof systems, we can discern
that certain solver heuristics correspond to proof rules (e.g., clause learning
corresponds to the resolution proof rule), while other methods are aimed at
optimally sequencing/selecting proof rules (e.g., branching) or (re)-initializing
proof search (e.g., restarts). Further, solver heuristics that are aimed at sequencing
proof rules or initializing proof search, can be profitably implemented using
online, dynamic, and adaptive machine learning (ML) methods. In a series
of papers, Liang et al. (2016, 2018) make exactly this point by designing and
implementing a series of efficient ML-based CDCL SAT solvers. In Section 25.6,
we discuss how theoretical concepts (proof systems) and practical insights (ML-
based proof-rule sequencing/selection) can be brought together for better solver
design. (See also Chapter 30 for ML-based algorithm design.)

25.2 Conflict-Driven Clause Learning SAT Solvers

In this section, we briefly describe the CDCL SAT solver (Marques-Silva and
Sakallah, 1996; Moskewicz et al., 2001), whose pseudo code is presented in
Algorithm 1. The CDCL algorithm is built on top of the well known DPLL method
developed originally by Davis et al. (1962), and differs from it primarily in its use
of the following heuristics: conflict analysis and clause learning (Marques-Silva and
Sakallah, 1996), effective variable- and value-election heuristics (Moskewicz et al.,
2001; Liang et al., 2016), restarts (Liang et al., 2018), clause deletion (Audemard
and Simon, 2013), and lazy data structures (Moskewicz et al., 2001). The CDCL
algorithm is a sound, complete, and terminating backtracking decision procedure for
Boolean logic. It takes as input a Boolean formula φ in CNF and an initially empty
assignment μ (aka assignment trail), and outputs SAT if the input formula φ has a
solution, and outputs UNSAT otherwise.

Given the intricacies of the CDCL algorithm, it is difficult to describe its imple-
mentation in great detail in a few short pages. Instead, we focus on a conceptual
and theoretically interesting presentation. For example, we discuss subroutines such
as clause learning and Boolean constraint propagation (BCP) that are essential for
a theoretical explanation of why solvers are efficient, rather than implementation of
lazy data structures. Further, all our theoretical models have no clause deletion policy,
partly because we have virtually no theoretical understanding of the impact of such
policies on solver behavior.

Another important modelling decision often made is to assume that certain solver
heuristics (e.g., restarts and variable/value selection) are nondeterministic or all-
powerful. That is, for an unsatisfiable input, the dynamic choices made by these
heuristics enable the CDCL solver to find the shortest proof (in the number of proof
steps) of its unsatisfiability, with only a polynomial time overhead in proof search
over the optimal for that input. Such modeling choices are very valuable for two
reasons: First, they enable us to establish the strongest possible lower bounds (under
nondeterministic assumptions), and second, they simplify the theoretical analysis.

550

ON THE UNREASONABLE EFFECTIVENESS OF SAT SOLVERS

Algorithm 1 The CDCL SAT solving algorithm
1: function CDCL(φ, μ)
2: Input: A CNF formula φ, and an initially empty assignment trail μ
3: Output: SAT or UNSAT
4:

5: dl = 0; � : Initially, decision level dl is 0
6: if (CONFLICT == Boolean_Constraint_Propagation(φ,μ)) then
7: return UNSAT;
8: else if (all variables have been assigned) then
9: return SAT;

10: end if
11: do � The search loop
12: x = DecisionHeuristic(φ,μ); � Variable- and value-selection heuristic
13: dl = dl + 1; � : Increment dl
14: μ = μ

⋃
(x,dl); � Add literal x to the assignment trail μ

15: if (CONFLICT == Boolean_Constraint_Propagation(φ,μ)) then
16: {β,C} = ConflictAnalysis(φ,μ);
17: � Analyze conflict, learn clause C and backjump level β
18: AddLearnedClause(C)
19: if β < 0 then � β is the backjump level
20: return UNSAT; � Top-level conflict
21: else if (restart condition met) then
22: restart; � dl is set to 0, and assignment trail μ is emptied
23: else
24: backtrack(φ,μ,β); � Backjump to start search again
25: dl = β;
26: end if
27: end if
28: while (all variables have NOT been assigned)
29: return SAT;
30: end function

Boolean Constraint Propagation (BCP) The CDCL algorithm first calls the BCP
subroutine on input formulas without having branched on variables in it (line 6 in
Algorithm 1). If a conflict is detected at this level (i.e., a top-level conflict), then
CDCL returns UNSAT. The BCP subroutine (also referred to as unit propagation) is
an incomplete SAT solver that takes as input a Boolean formula in CNF, and outputs
SAT, CONFLICT, or UNKNOWN. It repeatedly applies the unit resolution rule to
the input formula until it reaches a fixpoint. The unit resolution rule is a special case
of the general resolution rule, where at least one of the clauses input to the rule is unit
(i.e., contains exactly one unassigned literal under the current partial assignment). For
example, consider the clauses (x) and (¬x∨α), which when resolved results in derived
clause (α) written as: (x) (¬x ∨α) 7 (α). (We choose to use the symbol 7 to denote
a derivation or proof step, with antecedents on its left side and consequent on its
right side.)

Repeated applications of the unit resolution rule to an input formula, until
reaching a fixpoint, amount to maintaining a queue of unit clauses, simplifying the

551

V. GANESH AND M. Y. VARDI

formula (along with all the learned clauses in the solver’s learned clause database)
with respect to the “current” unit clause (i.e., all occurrences of the current unit
literal in the formula are assigned true, the occurrences of the complement of this
unit literal are assigned false, and the clauses in the input formula are appropriately
simplified), popping the “current” unit literal from the queue and adding implied
units to the unit clause queue, and repeating this process until this queue is empty.
A variable x that is assigned a value (alternatively, a variable whose value is set) as a
result of applying BCP (one or more application of the unit resolution rule) is said
to be implied/propagated.

BCP may return CONFLICT (i.e., the current partial assignment is unsatisfying
for the input formula) or SAT (i.e., all variables have been assigned values true or
false) or UNKNOWN. If BCP returns CONFLICT at the top level, without having
made decisions (lines 7 and 20), then this means that the input formula is UNSAT. If,
on the other hand, all the variables of the input formula have been assigned, then this
means that the solver has found a satisfying assignment and it returns SAT (lines 9
and 29). Else, it means that the BCP subroutine returns UNKNOWN, i.e., it cannot
decide by itself whether the formula is SAT or UNSAT. This causes the variable and
value-selection heuristics to be invoked, that select an unassigned variable and assign
it a truth value (line 12),2 and iteratively search for a satisfying assignment to the
input formula by extending the current partial assignment (line 11).

Variable- and Value-Selection Heuristics Variable selection heuristics3 are subroutines
that take as input the partial state of the solver (e.g., learned clauses and current
partial assignment), compute a partial order over the unassigned variables of the
input formula, and output the highest ranked variable in this order (line 12). Value-
selection heuristics are subroutines that take as input a variable and output a truth
value. After a variable selection heuristic selects an unassigned variable to branch
on, the selected variable is then assigned a truth value given by a value-selection
heuristic and added to the current partial assignment (line 14). Solver researchers
have understood for a long time that both variable- and value-selection heuristics play
a crucial role in the performance of solvers and a considerable amount of research
has gone into their design (Liang et al., 2016, 2018). Unfortunately, due to space
limitations we will only present a very brief sketch of the work done on this topic.

Decision Levels, Assignment Trail, and Antecedents On line 5 of the CDCL
Algorithm 1, the solver initializes the variable dl (abbrev. for current decision level)
to 0. The variable dl keeps track of the number of decisions in the current partial
assignment as the solver traverses paths in the search tree of the input formula.
Whenever a variable in the input formula is branched on (a decision variable), the
variable dl in the CDCL algorithm is incremented by 1 (line 13). When the solver

2 The variable being assigned by the solver’s variable selection heuristic is sometimes also referred to as a
branching or decision variable.

3 Variable selection heuristics are sometimes also referred to as branching, with the variable output by them
referred to as branching or decision variables. The term decision heuristic typically refers to the combination
of variable- and value-selection heuristics. The literal returned by a decision heuristic is referred to simply as a
decision or decision literal. The term decision variable refers to the variable that corresponds to a decision.

552

ON THE UNREASONABLE EFFECTIVENESS OF SAT SOLVERS

backjumps after ConflictAnalysis, the current decision level is modified to the level
that the solver backjumps to (line 25).

The assignment trail (aka decision stack or partial assignment) μ is a stack data
structure, where every entry corresponds to a variable, its value assignment, and
its decision level. Whenever a variable x is branched or decided upon, an entry
corresponding to x is pushed onto the assignment trail. Further, whenever the solver
backjumps from level d to some level d − β, all entries with decision level higher
than d − β are popped from the assignment trail. The decision level of a variable is
computed as follows: for unassigned variables it is initialized to −1. Unit variables
in the input formula are assigned decision level 0. Whenever a variable is decided
or branched upon, its decision level is set to dl + 1. Finally, the decision level of an
implied literal xi is the same as the decision level of the current decision variable in
the assignment trail.

In addition to the decision level and the truth value assigned to a variable, the
solver maintains another dynamic object for every variable x, namely, its antecedent.
As the solver branches, propagates, backjumps, or restarts, the values this object takes
may change. The antecedent or the reason clause of a variable x is the unit clause c
(under the current partial assignment) used by BCP to imply x. For variables that are
decisions or unassigned, the antecedent is NIL.

The Search Loop in CDCL If there is no conflict at the top level, i.e., dl=0 (line 6), then
the algorithm checks whether all the variables of the input formula have been assigned
a value (line 8). If so, the solver simply returns SAT. Else, it enters the body of the
do-while loop on line 11, decides on a variable of the input formula using its
variable- and value-selection heuristics (the DecisionHeuristic subroutine on line 12),
increments the decision level (line 13), pushes the decision variable to the partial
assignment or the assignment trail μ, along with its decision level (line 14), and
performs BCP (line 15). If BCP returns CONFLICT (i.e., the current assignment
μ is unsatisfying for the input formula), then conflict analysis is triggered (line 17).

Conflict Analysis and Clause Learning The conflict analysis and clause learning
subroutine is perhaps the most important part of a CDCL SAT solver. The Con-
flictAnalysis subroutine (line 17) determines a reason or root cause for the conflict,
learns a corresponding conflict or learned clause, and computes the backjump level.
Most CDCL solvers implement what are known as asserting clause learning schemes,
i.e., ones that learn clauses containing exactly one variable from the highest decision
level (we discuss this in more detail in Section 25.3). If the backjump level is
below 0, then the solver returns UNSAT (line 20), since this corresponds to deriving
false. Otherwise, the CDCL solver may jump back several decision levels in the
search tree (line 24), unlike in the DPLL case where the solver backtracks only one
decision level.

One of the simplest forms of clause learning is the Decision Learning Scheme
(DLS). While it is not the most effective (that honor goes to the first-UIP method
by Moskewicz et al., 2001), DLS is certainly easy to explain. The key idea behind
DLS can be explained as follows: All solvers, irrespective of the asserting learning
scheme they implement, maintain a directed acyclic graph of implications whose
nodes are variables (either decision or propagated), and there is an edge from node a
to node b if setting a caused BCP to set b as well, under the current partial assignment.

553

V. GANESH AND M. Y. VARDI

Whenever the solver detects a conflict, this graph is analyzed by the ConflictAnalysis
subroutine with the goal of determining the root cause of said conflict. In DLS,
the ConflictAnalysis subroutine simply takes the negation of the conjunction of
decisions responsible for the conflict, and the learned clause thus computed is stored
in a learned clause database. Such learned clauses prevent subsequent invocations of
BCP from making the same combination of mistakes (i.e., decisions) that led to the
conflict. This process is repeated until the solver correctly determines the satisfiability
of the input formula.

Backjumping In its simplest form, the backtracking step in a DPLL solver works as
follows: on reaching a conflict, these solvers undo the last decision that led to the con-
flict, which leads the solver to backtrack to the previous decision level and continue
its search. In the context of CDCL solvers many backtracking methods have been
explored. Perhaps the most well known is called nonchronological backtracking (or
simply, backjumping), wherein the solver backjumps to the second-highest decision
level over all the variables in the asserting learned clause. Jumping to the second-
highest decision level has the benefit that the asserting clause is now unit under the
“current” partial assignment (post backjump).4

Restarts The original restart heuristic was first proposed by Gomes et al. (1998), in
the context of DPLL SAT solvers. The idea behind restart policies is very simple:
The assignment trail of a solver is erased at carefully chosen intervals during its run
(with the exception of learned unit clauses that are not deleted). It is well known that
restarts are a key solver heuristic, both empirically and theoretically. The original
idea behind restarts, referred to as the heavy-tailed distribution explanation, is that
SAT solvers have variance in their run time due to randomization, and may get
unlucky resulting in uncharacteristically long run times. A restart in such cases gives
the solver a second chance of getting a shorter run time. This explanation has now
been partially discarded in favor of an empirically more robust argument that restarts
enable solvers to learn better learned clauses, since they shorten the assignment trail at
several intervals during the solver’s run (Liang et al., 2018). On the theoretical front,
recent work by Bonet et al. (2014) showed that CDCL SAT solvers with no restart
(but with nondeterministic variable and value selection) are strictly more powerful
than regular resolution. Nevertheless, the question of why restarts are so important
for efficiency of CDCL SAT solvers remains open, both from the theoretical and
empirical perspectives.

25.3 Proof Complexity of SAT Solvers

25.3.1 Equivalence between CDCL and Resolution

In this subsection, we survey known results regarding the “SAT solver as a proof
system” model. Specifically, we discuss the seminal simulation result by Pipatsrisawat
and Darwiche (2011) and independently by Atserias et al. (2011), who showed that

4 While we do not discuss clause deletion policies at length, they do deserve mention, since they are an
important heuristic in the context of CDCL SAT solvers. The key purpose of deletion policies is removal of
derived or learned clauses that have outlived their utility vis-à-vis proof search. As is probably already clear to
the reader, predicting the utility of derived clauses is a very difficult problem in general.

554

ON THE UNREASONABLE EFFECTIVENESS OF SAT SOLVERS

CDCL SAT solvers (with nondeterministic branching, restarts, and asserting learning
scheme) are polynomially equivalent to the general resolution (Res) proof system.
The history of these simulation results go back to the paper by Beame et al. (2004),
who first showed that CDCL SAT solvers (under the assumption that a solver
can branch on a variable that is already assigned a truth value) are polynomially
equivalent to general resolution.

While theorists had long anticipated a polynomial equivalence between CDCL
SAT solvers and the general resolution proof system, it was not formally established
until 2011 (Atserias et al., 2011; Pipatsrisawat and Darwiche, 2011). In their seminal
work, Pipatsrisawat and Darwiche, as well as Atserias et al. realized that CDCL
solvers simulate Res not necessarily by producing the Res-proofs exactly, but rather
by “absorbing”the clauses of Res-proofs. One should think of the absorbed clauses as
being “learned implicitly” – absorbed clauses may not necessarily appear in a formula
F or its proof. If we assign, however, all but one of the literals in the clause to false
then unit propagation in CDCL will set the final literal to true. That is, even if the
absorbed clause C is not in F , the unit propagation subroutine behaves “as though”
the absorbed clause is actually in F . The dual of the notion of absorbed clauses is
the concept of 1-empowering clauses.5 Informally, 1-empowering clauses are ones
that have not been “learned implicitly,” and may enable BCP to make progress. We
now define these notions more precisely, followed by a sketch of the main idea behind
the simulation proof.

Definition 25.2 (Asserting Clause) Recall that an assignment trail is a sequence
of pairs σ = {(�1,d1), (�2,d2), . . ., (�t,dt)} where each literal �i is a literal from the
formula and each di ∈ {d,p}, indicating that the literal was set by the solver by
a decision or by a unit propagation, respectively. The decision level of a literal
�i in the branching sequence is the number of decision literals occurring in σ

up to and including �i. The state of a CDCL solver at a given point during its
run can be defined as (F,�,σ), where F is the input CNF formula, � is a set
of learned clauses, and σ is the assignment trail at the given point during the
solver’s run. Given an assignment trail σ and a clause C we say that C is asserting
if it contains exactly one literal occurring at the highest decision level in σ .
A clause learning scheme is asserting if all conflict clauses produced by the
scheme are asserting with respect to the assignment trail at the time of conflict.

Definition 25.3 (Extended Branching Sequence) An extended branching
sequence is an ordered sequence B = {β1,β2, . . . ,βt} where each βi is either
a branching literal, or a symbol R, denoting a restart. If A is a CDCL solver,
we use an extended branching sequence to dictate the operation of the solver
A on F : whenever the solver calls the branching scheme, we consume the
next βi from the sequence. If it is a literal, then we branch on that literal
appropriately; otherwise restart as dictated by the extended branching sequence.
If the branching sequence is empty, then simply proceed using the heuristics
defined by the algorithm.

5 The idea of 1-empowering clauses was first introduced by Pipatsrisawat and Darwiche (2011), while its
dual notion of absorbed clauses was introduced by Atserias et al. (2011).

555

V. GANESH AND M. Y. VARDI

Definition 25.4 (Unit Consistency) We say CNF formula F is unit inconsis-
tent if and only if there is a proof of the unsatisfiability of F using only unit
resolution (alternatively, via BCP). A formula that is not unit inconsistent is said
to be unit consistent (sometimes also written as 1-consistent).

Definition 25.5 (1-Empowering Clauses) Let F be a set of clauses and let A
be a CDCL solver. Let C = (α ⇒ �) be a clause, where α is a conjunction of
literals. We say that C is empowering with respect to F at � if the following holds:
(1) F |8 C, (2) F ∧ α is unit consistent, and (3) an execution of A on F that
falsifies all literals in α does not derive � via unit propagation (aka, BCP). The
literal � is said to be empowering. If item (1) is satisfied but one of (2) or (3) is
false then we say that the solver A and F absorbs C at �; if A and F absorbs C
at every literal then the clause is simply absorbed.

Definition 25.6 (General and Tree-like Resolution Proofs) A general resolu-
tion proof can be defined as a directed acyclic graph (DAG), whose nodes are
clauses which are either input or derived, and there is an edge from nodes A and
B to C if C is derived from A,B via the resolution proof rule. Let (α ∨ x)
and (¬x ∨ β) denote two clauses, where α,β are disjunction of literals. Then,
the resolution proof rule derives (α ∨ β), and is usually written as

(α ∨ x) (¬x ∨ β) 7 (α ∨ β).

We assume α,β do not contain opposing literals. A tree-like resolution proof
is a restricted form of general resolution proof where the proofs may not share
sub-proofs, i.e., they are tree-like.

In order for a clause C to be learned by a CDCL solver, it must be 1-empowering at
some literal � at the point in time it is learned by the solver during its run. To see this,
consider a trace of a CDCL solver, stopped right after it has learned a clause C. Since
we have learned C it is easy to see that it must be the case that F |8 C. Let σ be the
branching sequence leading to the conflict in which we learned C, and let � be the last
decision literal assigned in σ before the solver hit a conflict (if CDCL uses an asserting
clause learning scheme, such a literal must exist). We can write C ≡ (α ⇒ ¬�), and
clearly α ⊆ σ . Thus, at the point in the branching sequence σ before we assign �

it must be that F ∧ α is unit consistent, since we have assigned another literal after
assigning each of the literals in α. Finally, F ∧ α �71 �, since ¬� was chosen as a
decision literal after we set the literals in α. (By α 71 β we mean that the literal β is
derived from the set of clauses α using only BCP.)

Definition 25.7 (1-Provable Clauses) Given a CNF formula F , clause C is
1-provable with respect to F iff F ∧¬C 71 false. Put differently, we say a clause
C is 1-provable with respect to a CNF F , if C is derivable from F only using
BCP.

Theorem 25.8 CDCL is polynomially equivalent to general resolution (Res).

Proof Sketch The high level idea of the simulation is as follows: We need to
show that for a Res proof of unsatisfiability of an input formula F , the CDCL

556

ON THE UNREASONABLE EFFECTIVENESS OF SAT SOLVERS

solver (with nondeterministic extended branching sequence and asserting clause
learning scheme) can simulate that proof with only polynomial overhead in the
proof size (in terms of number of clauses). The crucial insight here is that for
formulas F for which BCP alone cannot establish unsatisfiability, there exist
empowering clauses implied by F that, when added to it (i.e., to the solver’s
database of learned clauses), cause BCP to correctly determine that the input
formula is UNSAT. Further, for a general resolution proof π of a 1-consistent
formulaF , there exists a clause C inπ that is both 1-empowering and 1-provable
with respect to the formula (at the point in the proof π that C is derived). Finally,
such a clause can be absorbed by a CDCL solver in time O(n4), where n is the
number of variables in the input formula. This process is repeated until there
are no more clauses that need to be absorbed, and thus we have that CDCL
polynomially simulates general resolution. (The reverse direction is trivial.) �

Discussion The value of Theorem 25.8 is threefold: First, we can easily lift lower
bounds from the proof complexity literature for Res to CDCL SAT solvers, thus
addressing the question of why solvers fail. Further, the polynomial equivalence
between CDCL and Res helps explain the power of clause learning, since clause
learning in CDCL corresponds to applications of the general resolution rule. In other
words, proof complexity enables an improved understanding of certain heuristics in
SAT solvers. Finally, proof complexity theory is a storehouse of knowledge on proof
systems that can be leveraged to build solvers with varying degrees of strength aimed
at different kinds of applications such as cryptography or verification.

25.3.2 Lower and Upper Bounds for Res and CDCL SAT Solvers

Considerable work has been done on the proof complexity of Res. Unfortunately,
we cannot possibly do justice to this subject in this chapter. We do, however, sketch
a few results that are relevant in the context of CDCL SAT solvers. The first
superpolynomial lower bound for resolution was proved by Haken (1985). To be more
precise, Haken proved that the family of formulas that encodes the Propositional
Pigeonhole Principle(PHP) requires resolution proofs of size at least cn, for some
c > 1. Another source of hardness for Res comes from randomly generated formulas.
Also, Urquhart showed that CNF formulas whose graphs are expanders are hard for
Res, and hence for CDCL (Urquhart, 1987).

There is a vast literature on the complexity of proof systems that we have not
covered here (Krajíček, 2019). For example, there are many powerful proof systems
such as extended resolution with no known lower bounds, that have been studied
extensively by theorists (Tseitin, 1983). While there are systems that are stronger
than Res, their implementations to date as solvers seem to be useful only in narrow
contexts, unlike CDCL SAT solvers that is widely applicable. This suggests that
strength of the proof system alone may not lead to powerful solvers. One also has to
look into proof search, which we turn to in the next section.

25.4 Proof Search, Automatizability, and CDCL SAT Solvers

Proof complexity gives us powerful tools that enable us to prove lower bounds
for SAT solvers (and thus characterize families of formulas where solvers fail

557

V. GANESH AND M. Y. VARDI

spectacularly). It does not, however, quite address the question of proof search.
The proof search question for a proof system is: Given an unsatisfiable formula F ,
does there exist an algorithm that finds proofs in the given proof system with only
polynomial overhead? In particular, if the formula F has a short proof, then the
question asks whether a solver can find a proof in polynomial time.

This idea of efficient proof search was first formalized by Bonet et al. (2000) via
the notion of automatizability of proof systems. (Although there is previous work
on proof search by Iwama (1997) in which it was shown that the problem of finding
the shortest Res proof is NP-hard.) Recall that the polynomial simulation result in
Section 25.3 shows that if there is a short proof π for some formula ϕ, then there
exists a run of a nondeterministic CDCL solver (i.e., a CDCL SAT solver with
nondeterministic variable/value selection and restarts) that can produce a proof of
size O(n4) ∗ |π |. The proof of the theorem relies on the fact that the CDCL solver
under consideration has nondeterministic power, yet real-life solvers do not have the
same luxury. So, it is natural to ask the following question: “For the class of formulas
that do have short proofs, does there exist a solver that always finds such proofs in
time polynomial in the size of the input formula?”

In their seminal paper, Bonet et al. (2000) defined the notion of the automatizability
of proof systems. A proof system P is said to be automatizable if there exists a
polynomially bounded deterministic algorithm A that takes as input an unsatisfiable
formula ϕ, and outputs a P-proof of ϕ of size at most polynomially larger (in the size
of ϕ) than the shortest P-proof of ϕ. There have been several attempts to tackle the
automatizability problem for resolution and tree-like resolution. For example, Ben-
Sasson and Wigderson (2001) showed that tree-like resolution is automatizable in
quasi-polynomial time. A more recent breakthrough result by Atserias and Müller
(2019) says that Res is not automatizable in quasi-polynomial time, unless NP is
included in SUBEXP.

Automatizability and CDCL SAT Solvers The value of studying the (parametric)
automatizability question is that it may eventually shed light on the key question of
upper bounds (i.e., why are solvers efficient for certain classes of industrial instances),
just as proof complexity of the Res system has helped us better understand lower
bounds for CDCL solvers. Automatizability gets to the heart of the proof search
question, precisely the task that solvers have been designed for. While we are far from
any conclusive answers, we do have promising leads. For example, based on the quasi-
automatizability result for tree-like resolution (equivalently, DPLL solvers), we know
that if an unsatisfiable formula has a polynomial-sized tree-like proof, DPLL solvers
can solve it in quasi-polynomial time. One could ask whether something similar is
also (parameterically) true for general resolution and equivalently for CDCL solvers.
This naturally leads us to a parameteric study of formulas and their proofs.

25.5 Parameteric Understanding of Boolean Formulas

So far we have addressed the issue of how best to model SAT solvers as proof systems,
discussed lower bounds vis-à-vis proof size obtained via an equivalence between
solvers and proof systems, and lower bounds for automatizability of Res. While these
give us insight into classes of instances over which SAT solvers perform poorly, they

558

ON THE UNREASONABLE EFFECTIVENESS OF SAT SOLVERS

do not quite address the central question of solver research, namely, why CDCL SAT
solvers are so efficient for instances obtained from real-world applications. In order
to better understand this question we need to turn our attention to parameterization
of Boolean formulas and their proofs.

There is widespread consensus among SAT researchers that solvers somehow
leverage the structure present in real-world CNF formulas (or in their proofs), and
that a characterization of this structure can be used to establish a parameteric proof-
complexity theoretic and proof search upper bounds. As a consequence, considerable
effort has been expended in studying the structure of real-world formulas. We already
know that parameterizations such as 2-SAT or Horn clauses that are known to be
easy for Res, do not really capture classes of real-world instances over which solvers
perform well.

In fact, the challenge for this line of research is to come up with parameters that
make sense both in practice (i.e., characterize the structure of real-world instances)
and theory (i.e., are amenable to theoretical analysis). While researchers have pro-
posed several parameters, none so far seems to be up to the task of addressing this
challenge. The parameters that are easy to work with in theory (e.g., backdoors) do
not seem to characterize real-world instances. The ones that do seem to characterize
real-world instances (e.g., community structure or modularity) are difficult to work
with from a theoretical point of view. Even so, there are many lessons one can
learn from the parameters studied so far that may eventually help prove the kind
of parameteric upper bounds on proof complexity and proof search that we seek.

Clause Variable Ratio Perhaps one of the first and certainly most widely studied
parameter is the Clause/Variable Ratio (CVR) or Clause Density, given its intuitive
appeal. The CVR of a k-CNF formula is defined as the ratio of the total number
of clauses to the number of variables in the formula. The earliest experiments in
regards to CVR were performed by Cheeseman et al. (1991), who showed that for
randomly generated fixed-width CNF formulas the probability of satisfiability of
such instances undergoes a phase-transition around a fixed CVR, which depends
only on clause-width (the phase-transition for randomly generated 3-CNF formulas
is 4.26). Formulas below the phase transition are more likely to be satisfiable (the
asymptotic probability approaches 1 as the CVR goes below 3.52 (Kaporis et al.,
2006)), and those above are more likely to be unsatisfiable (the asymptotic probability
approaches 1 as the CVR goes above 4.4898 (Díaz et al., 2009)). Further, it was
observed that formulas below and above the phase transition are easy to solve, while
those around the phase transition are hard (the so-called “easy-hard-easy pattern”)
(Mitchell et al., 1992).

These results caused a stir when first reported, for it seemed like there was a very
simple explanation for the worst-case complexity-theoretic hardness of the Boolean
satisfiability problem. It was soon, however, observed that there are many issues with
these results. First, it is known that phase transitions exists also for SAT problems
that are known to be easy, such as 2-SAT; cf. Chvátal and Reed (1992). Second,
when one takes a deeper look at the empirical “easy-hard-easy” pattern of difficulty
of solving instances around the phase transition, by keeping the CVR constant and
scaling the size of instances, the observed pattern is more like “easy-harder-less hard”
(Coarfa et al., 2003), with the transition from “easy” to “harder” occurring well in

559

V. GANESH AND M. Y. VARDI

the satisfiable region. This empirical finding was later confirmed in Achlioptas and
Coja-Oghlan (2008), who demonstrated a “shattering” of the solution space around
CVR of 3.8.

Treewidth The treewidth of a graph measures how close a given graph is to being a
tree (Bodlaender, 1994). A tree has treewidth 1. A cycle is the simplest graph that is
not a tree, but it can be “squashed” into a path of treewidth 2. A family of graphs
is of bounded treewidth if there some some k > 0 such that all graphs in the family
has treewidth at most k. It turns out that many graph problems that are NP-hard on
general graphs can be solved in polynomial time on bounded-treewidth families of
graphs (Freuder, 1990). This idea can also be applied to SAT. Given a CNF forumla
φ, we can construct a bipartite graph Gφ whose nodes are the clauses and the variables
of φ, and there is an edge between a clause c and a variable v when v occurs in c. The
treewidth of φ is then the treewidth of Gφ . It follows that that SAT can be solved in
polynomial time for a bounded-treewidth families of formulas.

If industrial formulas had bounded treewidth, that would perhaps explain the
success of CDCL solvers on such formulas. For example, formulas generated by
bounded model checkers are obtained by unrolling a circuit (Clarke et al., 2001),
which yields formulas that have bounded treewidth (in fact, even bounded pathwidth)
(Ferrara et al., 2005). It is not clear, however, that this explanation is satisfactory.
Polynomial-time algorithms for graph families of treewidth at most k, typically have
worst-case time complexity of the form nO(k) (Kolaitis and Vardi, 2000). Thus, such
polynomial-time algorithm are feasible in practice only for very small k’s, which does
not seem to be the case, for example, in bounded model checking.

Backdoors and Backbones The notion of backdoors for Boolean formulas was first
introduced by Williams et al. (2003). The intuition behind this notion is quite elegant,
namely, that for every Boolean formula there is a (small) subset of its variables, which
when assigned appropriate values, renders the said formula easy to solve. It was
further conjectured that industrial instances must have small backdoors. Williams et
al. introduced two kinds of backdoors, namely weak backdoors and strong backdoors.
A weak backdoor B of a satisfiable formula ϕ is a subset of variables of ϕ, where
there exists a mapping δ : B *→ {0,1}, such that the restricted formula ϕ[δ] can be
solved in polynomial time by some subsolver S (e.g., BCP). By contrast, a strong
backdoor B of a formula ϕ is a subset of variables from ϕ, such that for a mapping
δ : B *→ {0,1} from variables in B to truth values, the restricted formula ϕ[δ] can
be solved by a polynomial time subsolver. While weak backdoors are defined only
for satisfiable instances, strong backdoors are well defined for both satisfiable and
unsatisfiable ones. The backbone of a satisfiable Boolean formula ϕ can be defined as a
subset B of variables such that they take the same values in all satisfying assignments
and the set B is maximal. Kilby et al. (2005) theoretically proved that backbones
are hard to even approximate assuming P �= NP. Unfortunately, both backdoors
(and backbones) do not seem to explain why industrial instances are easy. Often
industrial instances seem to have large backdoors (Zulkoski et al., 2018b). Further,
the hypothesized correlation between the size of backdoors and solver runtime
(i.e., smaller the backdoor, easier the problem) seems weak at best for industrial
instances (Zulkoski et al., 2018b). It seems like CDCL SAT solvers are not able to
automatically identify and exploit small backdoors or backbones.

560

ON THE UNREASONABLE EFFECTIVENESS OF SAT SOLVERS

Modularity and Community Structure Another structure that has been extensively
studied is the community structure of the variable-incidence graph or VIG of
CNF formulas (formula variables correspond to nodes in the VIG, and there is
an edge between two nodes if the corresponding variables appear in the same
clause). Informally, community structure of a graph defines how “separable” the
clusters of a graph are. An ideal clustering for a VIG would be where every cluster
corresponds to a set of clauses that are easy to solve independently and the clusters
are “weakly connected” to other clusters. The concept of dividing graphs into natural
communities was developed by Clauset et al. (2004). On a high level, we say a graph
G has good community structure, that is, there is an optimal decomposition of G (we
call each subgraph/component a community/module) such that there are far more
intracommunity edges than there are intercommunity ones. Clauset et al. defined the
notion of modularity of a graph, denoted Q, more specifically, a graph with high Q
value is more “separable” (in the sense that the communities have few intercommunity
edges relative to the number of communities) comparing to a graph with low Q value
(which is closer to a randomly generated graph).

In their seminal paper, Ansótegui et al. (2012) established that industrial instances
have good community structure. Newsham et al. (2014) showed a strong correlation
between community structure and solver performance. Specifically, they showed that
formulas with good community structure (high Q) correlate with lower solver run
time relative to formulas with low Q. Subsequent work has taken advantage of
these results in coming up with better solver heuristics. Nevertheless, the promise
of community structure as a basis for a theoretical understanding of why solvers
perform well has not yet been realized.

Merge Resolution and Mergeability Aside from the parameters we have discussed so
far, “merge” is another interesting parameter that researchers have studied from both
theoretical (Andrews, 1968) and practical (Zulkoski et al., 2018a) points of view. We
motivate the study of merge parameter by recalling the resolution rule given above.
Let A denote the antecedent clause (α∨ x), B denote the antecedent clause (¬x ∨β),
and C denote the derived clause or consequent (α∨β). For a clause A, let | A | denote
the number of literals in it (the length of the clause). It is easy to see that the length
| C | of the consequent C is equal to |A|+|B|− l−2, where l =| A∩B | is the number
of literals overlapping in A and B. Put differently, the length of derived clauses in the
Res proof system decreases as the number of literals overlapping in the antecedents
increase. This number l of overlapping literals in the antecedent of a resolution proof
rule application is called merge.

We can further make the following observations about the relationship between
merge and the completeness of the Res proof system: First observe that derived
clauses in a resolution proof decrease in length proportional to the increase in merge
(i.e., the overlap between antecedent clauses). Additionally, in order for a Res proof
of unsatisfiability to terminate, the length of derived clauses have to start “shrinking”
(i.e., the derived clause is strictly smaller than at least one of its antecedent) at some
point in the proof, eventually ending in the empty clause. It turns out that repeated
application of the resolution rule over clauses with large merge is a powerful way
to obtain short clauses, eventually enabling the resolution proof system to obtain
complete proofs.

561

V. GANESH AND M. Y. VARDI

In fact, the power of merge was first observed by Andrews (1968), who defined
merge resolution as a refinement of the Res proof system. The merge resolution
proof system, which is sound and complete for propositional logic, is designed to
bias applications of the resolution proof rule over clauses that have high degree of
merge, and thus obtain shorter derived clauses faster relative to a proof system that is
not biased in this way. Intuitively, this is a powerful greedy heuristic since maximizing
merge likely implies that the resolution width of a proof (Ben-Sasson and Wigderson,
2001) also goes down during proof search. Nevertheless, a formal link between merge
and resolution width remains to be established.

On the empirical front, Zulkoski et al. (2018a) studied the link between merge
and efficiency of CDCL SAT solvers on randomly generated and industrial formulas.
They defined a new notion called mergeability as follows: Let m(A,B) be the number
of overlapping literals in some resolvable pair of clauses A and B, and define M to
be
∑

m(A,B) for all resolvable pairs of A and B. Additionally, let l be the number
of clauses in the input formula φ. Then the mergeability of φ is defined as M

l2 . The
empirical hypothesis they posed in their work was: “As the mergeability increases for
a formula φ (while most of its other key features remains unmodified), the formula
becomes easier to solve.”

In their paper, Zulkoski et al. (2018a) report that indeed this is the case. They
present a random industrial-like instance generator that takes as input a formula and
then increases the mergeability of the formula while maintaining other key properties
of the formula such as the distribution of variable occurrences, property of the under-
lying community structures, etc. It turns out, under their notion of mergeability, the
runtime of CDCL SAT solvers negatively correlates with mergeability over randomly-
generated unsatisfiable instances. Another observation they make is that the CDCL
solvers they used in their experiments produce shorter and shorter width clauses on
average as the mergeability of the input formula increases. These experiments strongly
suggest that merge might be a key parameter that can help explain the power of
CDCL solvers on industrial instances.

The jury is still out on how to prove a meaningful upper bound result that is
relevant in practice and illuminating from a theoretical point of view. It is clear that
we need parameterization. It is not, however, clear which of the aforementioned
parameters will do the trick. Our conjecture is that the upper bound is likely to
be exponential in both the parameter(s) and the size of the input (n, number of
variables). Nevertheless, the parameter(s) and size n may interact in such a way that
for relatively small values of n, the upper bound may behave like a polynomial, and
for large values of n, the upper bound may behave more like an exponential.

25.6 Proof Complexity, Machine Learning, and Solver Design

For most of this chapter we have focused on a proof-theoretic model of CDCL SAT
solvers and questions of lower/upper bounds of proof size and search. As we close,
it behooves us to reflect on how these theoretical investigations may help us with
practical solver design. If one were to investigate the source code of a typical CDCL
SAT solver, without the aid of proof complexity, it is likely they will see a difficult-to-
understand jumble of heuristics. Fortunately, a proof complexity-theoretic view can
help appropriately abstract solver design.

562

ON THE UNREASONABLE EFFECTIVENESS OF SAT SOLVERS

While SAT solvers are decision procedures, internally they are an interacting
set of complex optimization heuristics whose aim is to minimize solver runtime.
Many solver heuristics correspond to proof rules (e.g., BCP corresponds to repeated
application of the unit-resolution rule, while clause learning correspond to the
general resolution rule), while others such as branching heuristics correspond to
sequencing or selection of proof rules, and restarts correspond to initialization
of proof search. This view suggests a solver-design principle: Solvers are best
designed by understanding what kind of proof system best fits the application at
hand, and developing optimization procedures to sequence, select, and initialize
proof rules. These optimization procedures can be implemented using a rich set
of known online and adaptive machine-learning methods. This empirical principle
was properly articulated in a series of papers by Liang et al. (2016, 2018) that in
turn led to the design and development of MapleSAT, one of the fastest solvers in
recent years.

25.7 Conclusions and Future Directions

The question of why CDCL SAT solvers are efficient for industrial instances, while at
the same time perform poorly on certain families of crafted and randomly generated
instances, is one of the central questions in SAT-solver research (Vardi, 2014). We
discussed how proof and parameterized complexity provide the appropriate lens
through which we can hope to answer this question. The strongest result to date states
that CDCL solvers (with nondeterministic branching and restarts) are as powerful as
the Res proof systems. This simulation answers, to some extent, the question of why
solvers fail on certain classes of instances by lifting known lower bounds for Res to the
CDCL setting. Proof complexity also formalizes the question of proof search via the
notion of automatizability, which can be a powerful lens through which to understand
paramterized upper bounds on CDCL proof search. We also discussed the search for
parameters that may be relevant both in practice and theory. The most promising
among them are the merge and community structure parameters. Having said that,
much progress needs to be made for we still do not know the right parameterization(s)
for industrial instances. Finally, we discussed how solvers can be viewed as a collection
of interacting heuristics, some of which implement appropriate proof rules, while
others perform the task of proof rule sequencing, selection, and initialization, many
of which can be profitably implemented via online and adaptive machine-learning
techniques.

While much progress has been made, the central questions remain unanswered. We
hope that this chapter suitably captures the progress made thus far, and frames the
appropriate ideas that may lead to breakthrough results in the near future. Perhaps
the most important unanswered question is that of appropriate parameterization(s)
of industrial instances. Despite more than two decades of efforts by a number of
leading practitioners and theorists, we still do not have good candidate parameters
with which to upper bound the proof size and proof search for industrial instances.
Another open problem that has resisted all attempts at solving is the question of the
power of restarts (i.e., why are restarts so important in practice, and do they give
solvers proof-theoretic power?). Finally, there are mysteries such as power of local
branching (a la, the VSIDS heuristic) and first-UIP clause learning schemes. These
heuristics seem indispensable and yet no one can convincingly explain why.

563

V. GANESH AND M. Y. VARDI

References

Achlioptas, Dimitris, and Coja-Oghlan, Amin. 2008. Algorithmic barriers from phase transi-
tions. 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 793–
802. IEEE.

Andrews, Peter B. 1968. Resolution with merging. Automation of Reasoning, pp. 85–101.
Springer.

Ansótegui, Carlos, Giráldez-Cru, Jesús, and Levy, Jordi. 2012. The community structure
of SAT formulas. In Cimatti, Alessandro, and Sebastiani, Roberto (eds), Theory and
Applications of Satisfiability Testing – SAT 2012, pp. 410–423. Springer.

Atserias, Albert, and Müller, Moritz. 2019. Automating resolution is NP-hard. In 60th IEEE
Annual Symposium on Foundations of Computer Science (FOCS), pp. 498–509.

Atserias, Albert, Bonet, Maria Luisa, and Esteban, Juan Luis. 2002. Lower bounds for the
weak pigeonhole principle and random formulas beyond resolution. Information and
Computation, 176(2), 136–152.

Atserias, Albert, Fichte, Johannes Klaus, and Thurley, Marc. 2011. Clause-learning algo-
rithms with many restarts and bounded-width resolution. Journal of Artificial Intelligence
Research, 40, 353–373.

Audemard, Gilles, and Simon, Laurent. 2013. Glucose 2.3 in the SAT 2013 competition. In
Proceedings of SAT Competition 2013, pp. 42–43.

Balyo, Tomás, Heule, Marijn J. H., and Järvisalo, Matti. 2017. SAT competition 2016:
Recent developments. In Singh, Satinder P., and Markovitch, Shaul (eds), Proceed-
ings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 5061–5063.
AAAI Press.

Beame, Paul, Kautz, Henry, and Sabharwal, Ashish. 2004. Towards understanding and
harnessing the potential of clause learning. Journal of Artificial Intelligence Research, 22,
319–351.

Ben-Sasson, Eli, and Wigderson, Avi. 2001. Short proofs are Resolution made simple. Journal
of the ACM, 48(2), 149–169.

Bodlaender, Hans L. 1994. A tourist guide through treewidth. Acta Cybernetica, 11(1-2), 1.
Bonet, Maria Luisa, Pitassi, Toniann, and Raz, Ran. 2000. On interpolation and automatiza-

tion for Frege systems. SIAM Journal on Computing, 29(6), 1939–1967.
Bonet, Maria Luisa, Buss, Sam, and Johannsen, Jan. 2014. Improved separations of regular

resolution from clause learning proof systems. Journal of Artificial Intelligence Research,
49, 669–703.

Cadar, Cristian, Ganesh, Vijay, Pawlowski, Peter M., Dill, David L., and Engler, Daw-
son R. 2006. EXE: Automatically generating inputs of death. In Proceedings of the 13th
ACM Conference on Computer and Communications Security, pp. 322–335. CCS ’06.
ACM.

Cheeseman, Peter C, Kanefsky, Bob, and Taylor, William M. 1991. Where the really hard
problems are. In International Joint Conference on Artificial Intelligence (IJCAI), pp.
331–337.

Chvátal, Vašek, and Reed, Bruce. 1992. Mick gets some (the odds are on his side)(satisfiability).
Proceedings, 33rd Annual Symposium on Foundations of Computer Science, pp. 620–627.
IEEE.

Clarke, Edmund, Biere, Armin, Raimi, Richard, and Zhu, Yunshan. 2001. Bounded model
checking using satisfiability solving. Formal Methods in System Design, 19(1), 7–34.

Clauset, Aaron, Newman, M. E. J., and Moore, Cristopher. 2004. Finding community
structure in very large networks. Physical Review E, 70(Dec), 066111.

Coarfa, Cristian, Demopoulos, Demetrios D., Aguirre, Alfonso San Miguel, Subramanian,
Devika, and Vardi, Moshe Y. 2003. Random 3-SAT: The plot thickens. Constraints, 8(3),
243–261.

564

ON THE UNREASONABLE EFFECTIVENESS OF SAT SOLVERS

Cook, Stephen A. 1971. The complexity of theorem-proving procedures. Proceedings of the
Third Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM.

Davis, Martin, Logemann, George, and Loveland, Donald. 1962. A machine program for
theorem-proving. Communications of the ACM, 5(7), 394–397.

Díaz, Josep, Kirousis, Lefteris, Mitsche, Dieter, and Pérez-Giménez, Xavier. 2009. On the
satisfiability threshold of formulas with three literals per clause. Theoretical Computer
Science, 410(30-32), 2920–2934.

Ferrara, Andrea, Pan, Guoqiang, and Vardi, Moshe Y. 2005. Treewidth in verification: Local
vs. global. International Conference on Logic for Programming Artificial Intelligence and
Reasoning, pp. 489–503. Springer.

Freuder, Eugene C. 1990. Complexity of K-tree structured constraint satisfaction problems.
In Proceedings of the 8th National Conference on Artificial Intelligence, pp. 4–9. AAAI
Press / The MIT Press.

Gomes, Carla P., Selman, Bart, and Kautz, Henry. 1998. Boosting combinatorial search
through randomization. In Proceedings of the Fifteenth National/Tenth Conference on
Artificial Intelligence/Innovative Applications of Artificial Intelligence, pp. 431–437. AAAI
’98/IAAI ’98. American Association for Artificial Intelligence.

Haken, Armin. 1985. The intractability of resolution. Theoretical Computer Science, 39,
297–308.

Iwama, Kazuo. 1997. Complexity of finding short resolution proofs. In International Sympo-
sium on Mathematical Foundations of Computer Science, pp. 309–318. Springer.

Kaporis, Alexis C, Kirousis, Lefteris M, and Lalas, Efthimios G. 2006. The probabilistic
analysis of a greedy satisfiability algorithm. Random Structures & Algorithms, 28(4),
444–480.

Kautz, Henry A, Selman, Bart, et al. 1992. Planning as satisfiability. In European Conference
on Artificial Intelligence (ECAI), pp. 359–363. Citeseer.

Kilby, Philip, Slaney, John, Thiébaux, Sylvie, Walsh, Toby, et al. 2005. Backbones and
backdoors in satisfiability. In AAAI Conference on Artificial Intelligence, pp. 1368–
1373.

Kolaitis, Phokion G, and Vardi, Moshe Y. 2000. Conjunctive-query containment and con-
straint satisfaction. Journal of Computer and System Sciences, 61(2), 302–332.

Krajíček, Jan. 2019. Proof Complexity vol. 170. Cambridge University Press.
Liang, Jia Hui, Ganesh, Vijay, Poupart, Pascal, and Czarnecki, Krzysztof. 2016. Learning rate

based branching heuristic for SAT solvers. In Creignou, Nadia, and Le Berre, Daniel
(eds), Theory and Applications of Satisfiability Testing – SAT 2016, pp. 123–140. Springer
International Publishing.

Liang, Jia Hui, Oh, Chanseok, Mathew, Minu, Thomas, Ciza, Li, Chunxiao, and Ganesh,
Vijay. 2018. Machine learning-based restart policy for CDCL SAT solvers. Theory and
Applications of Satisfiability Testing - SAT 2018 - 21st International Conference, SAT
2018, Held as Part of the Federated Logic Conference, FloC 2018.

Marques-Silva, João P, and Sakallah, Karem A. 1996. GRASP: A new search algorithm
for satisfiability. In Proceedings of the 1996 IEEE/ACM International Conference on
Computer-Aided Design, pp. 220–227. ICCAD ’96. IEEE Computer Society.

Mitchell, David, Selman, Bart, and Levesque, Hector. 1992. Hard and easy distributions of
SAT problems. In AAAI Conference on Artificial Intelligence, pp. 1368–1373.

Moskewicz, Matthew W., Madigan, Conor F., Zhao, Ying, Zhang, Lintao, and Malik, Sharad.
2001. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Annual Design
Automation Conference, pp. 530–535. DAC ’01. ACM.

Newsham, Zack, Ganesh, Vijay, Fischmeister, Sebastian, Audemard, Gilles, and Simon, Lau-
rent. 2014. Impact of community structure on SAT solver performance. Sinz, Carsten,
and Egly, Uwe (eds), Theory and Applications of Satisfiability Testing – SAT 2014, pp.
252–268. Cham: Springer International.

565

V. GANESH AND M. Y. VARDI

Pipatsrisawat, Knot, and Darwiche, Adnan. 2011. On the power of clause-learning SAT
solvers as resolution engines. Artificial Intelligence, 175(2), 512–525.

Tseitin, Grigori S. 1983. On the complexity of derivation in propositional calculus. Automation
of Reasoning, pp. 466–483. Springer.

Urquhart, Alasdair. 1987. Hard examples for resolution. Journal of the ACM (JACM), 34(1),
209–219.

Vardi, Moshe Y. 2014. Boolean satisfiability: Theory and engineering. Communications of the
ACM, 57(3), 5–5.

Williams, Ryan, Gomes, Carla, and Selman, Bart. 2003. Backdoors to typical case complexity.
In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp.
1173–1178.

Zulkoski, Edward, Martins, Ruben, Wintersteiger, Christoph M., Liang, Jia Hui, Czarnecki,
Krzysztof, and Ganesh, Vijay. 2018a. The effect of structural measures and merges on
SAT solver performance. In Principles and Practice of Constraint Programming - 24th
International Conference, CP 2018, pp. 436–452.

Zulkoski, Edward, Martins, Ruben, Wintersteiger, Christoph M., Robere, Robert, Liang,
Jia Hui, Czarnecki, Krzysztof, and Ganesh, Vijay. 2018b. Learning-sensitive backdoors
with restarts. International Conference on Principles and Practice of Constraint Program-
ming, pp. 453–469. Springer.

566

CHAPTER TWENTY SIX

When Simple Hash Functions Suffice
Kai-Min Chung, Michael Mitzenmacher, and Salil Vadhan

Abstract: In this chapter, we describe a semirandom data model
under which simple, explicit families of hash functions, such as those
that are 2-universal or O(1)-wise independent, perform in a way that
is nearly indistinguishable from idealized random hashing, where
each data item is mapped independently and uniformly to the range.
Specifically, we show that it suffices for the data to come from a
“block source,” whereby each new data item has some “entropy”
given the previous ones. This provides a possible explanation for the
observation that simple hash functions, including 2-universal hash
functions, often perform as predicted by analysis for the idealized
model of truly random hash functions, despite generally having
noticeably weaker worst-case guarantees.

26.1 Introduction

Hashing is at the core of many fundamental algorithms and data structures, including
all varieties of hash tables, Bloom filters and their many variants, summary algo-
rithms for data streams, and many others. Traditionally, applications of hashing
are analyzed as if the hash function is a truly random function (a.k.a. “random
oracle”) mapping each data item independently and uniformly to the range of the
hash function. However, this idealized model is arguably unrealistic, because a truly
random function mapping {0,1}n to {0,1}m requires an exponential (in n) number of
bits to describe.

For this reason, a long line of theoretical work has sought to provide rigorous
bounds on performance when explicit families of hash functions are used; e.g., fami-
lies whose description and computational complexity are polynomial in n and m. The
first examples used 2-universal hash families, which have the property that for every
two distinct inputs x �= x′ ∈ {0,1}n, if we choose a random hash function H from the
family, the probability that x and x′ collide under H (i.e., H(x) = H(x′)) is at most
1/2m. There are 2-universal families where each hash function has a description length
that is linear (in n) and can be evaluated in nearly linear time, and the 2-universal
property can be shown to suffice for a number of applications of hashing. A stronger
property sometimes used is s-wise independence, where for every s distinct inputs
x1, . . . ,xs ∈ {0,1}n, the hash values H(x1), . . . ,H(xs) are uniform and independent in

567

K-M. CHUNG, M. MITZENMACHER, AND S. VADHAN

{0,1}m. However, achieving s-wise independence would require the description length
and the evaluation time to be at least linear in s · m.

While many beautiful results of this type have been obtained, they are not always
as strong as we would like. In some cases, the types of hash functions analyzed
can be implemented very efficiently (e.g., universal or O(1)-wise independent hash
functions), but the performance guarantees are noticeably weaker than for ideal
hashing. In other cases, the performance guarantees are (essentially) optimal, but
the hash functions are more complex and expensive (e.g., with a superlinear time or
space requirement). For example, if at most T items are going to be hashed, then a
T-wise independent hash function will have precisely the same behavior as an ideal
hash function. But a T-wise independent hash function mapping to {0,1}m requires
at least T · m bits to represent, which is often too large. For some applications, it has
been shown that less independence, such as O(log T)-wise independence, suffices, but
such functions are still substantially less efficient than 2-universal hash functions.

In practice, however, the performance of standard universal hashing often seems
to match what is predicted for ideal hashing. Thus, it may not always be necessary
to use the more complex hash functions for which this kind of performance can be
proven. As in many other examples in this book, this gap between theory and practice
may be due to worst-case analysis. Indeed, in some cases, it can be proven that there
exist sequences of data items for which universal hashing does not provide optimal
performance. But these bad sequences may be pathological cases that are unlikely
to arise in practice. That is, the strong performance of universal hash functions in
practice may arise from a combination of the randomness of the hash function and
the randomness of the data.

Of course, doing an average-case analysis, whereby each data item is independently
and uniformly distributed in {0,1}n, is also very unrealistic (not to mention that it
trivializes many applications). In this chapter, we describe an intermediate model,
previously studied in the literature on “randomness extractors,” that may be an
appropriate data model for some hashing applications. Under the assumption that the
data fit this model, we will see that relatively weak hash functions achieve essentially
the same performance as ideal hash functions.

26.1.1 The Model

We will model the data as coming from a random source in which the data items can
be far from uniform and have arbitrary correlations, provided that each (new) data
item is sufficiently unpredictable given the previous items. This is formalized by the
notion of a block source, where we require that the ith item (block) Xi has at least
some k bits of “entropy” conditioned on the previous items (blocks) X1, . . . ,Xi−1.
There are various choices for the entropy measure that can be used here; min-entropy
is used most commonly in the literature on randomness extractors, but most of the
results presented here hold even for the less stringent measure of Rényi entropy. (See
Section 26.2.3 for the formal definitions.)

Block sources seem to be a plausible model for many real-life data sources where
we believe that there are is some intrinsic randomness in each data item, provided the
entropy k required per block is not too large. However, in some settings, the data may
have structure that violates the block-source property, in which case the results of this
chapter will not apply. See Section 26.1.4 for further discussion about the model.

568

WHEN SIMPLE HASH FUNCTIONS SUFFICE

26.1.2 The Results

Here we give a high-level overview of the results presented in this chapter; see
Sections 26.2 and 26.3 for the formal treatment of the definitions and results.

It turns out that standard results in the literature on “randomness extractors”1

already imply that universal hashing performs nearly as well ideal hashing, provided
the data items have enough entropy. Specifically, if we have T data items coming
from a block source (X1, . . . ,XT) where each data item has (Rényi) entropy at least
m + 2 log(T/ε) (all logs are base 2 in this chapter) and H is a random 2-universal
hash function mapping to {0,1}m, then (H(X1), . . . ,H(XT)) has statistical distance
at most ε from T uniform and independent elements of {0,1}m. Thus, any event that
would occur with some probability p under ideal hashing now occurs with probability
in the range [p − ε, p + ε]. This allows us to automatically translate existing results
for ideal hashing into results for universal hashing in the block-source model.

In many hashing applications, it is possible to improve on the preceding analysis
and reduce the amount of entropy required from the data items. Assuming our hash
function has a description size o(mT), then we must have at least (1 − o(1))m bits of
entropy per item for the hashing to “behave like” ideal hashing (because the entropy
of (H(X1), . . . ,H(XT)) is at most the sum of the entropies of H and the Xi’s). The
standard analysis mentioned earlier requires an additional 2 log(T/ε) bits of entropy
per block. In the randomness extraction literature, the additional entropy required is
typically not significant because log(T/ε) is much smaller than m. However, it can be
significant in our applications. For example, a typical setting is hashing T = �(M)

items into 2m = M bins. Here m + 2 log(T/ε) ≥ 3m − O(1) and thus the standard
analysis requires three times more entropy than the lower bound of (1−o(1))m. (The
bounds obtained for the specific applications mentioned in the text that follows are
even larger, sometimes due to the need for a subconstant ε = o(1) and sometimes due
to the fact that several independent hash values are needed for each item.)

By a finer analysis, the required entropy per block for (H(X1), . . . ,H(XT)) to be
ε-close to uniform in statistical distance can be reduced from m + 2 log(T/ε) to m +
log T + 2 log(1/ε), which is known to be tight. The entropy required can be reduced
even further for some applications by measuring the quality of the output differently
(not using statistical distance) or by using 4-wise independent hash functions (which
also have very fast implementations).

26.1.3 Applications

Consider the standard method of chained hashing, when T items are hashed
into T buckets by a single random hash function. When the hash function is an
idealized truly random function, the maximum load of any bucket is known to be
(1 + o(1)) · (log T/ log log T) with high probability. In contrast, for a natural family
of 2-universal hash functions, it is possible for an adversary to choose a set of T
items so that the maximum load is always �(T1/2). The results of this chapter in
turn show that 2-universal hashing achieves the same performance as ideal hashing
asymptotically, provided that the data come from a block source with roughly 2 log T
bits of (Rényi) entropy per item. Similar results for other applications of hashing,
such as “linear probing,” “balanced allocations,” and “Bloom filters,” are described
in Sections 26.6 and 26.7.

1 See Section 26.2.4 for a brief introduction to and formal definition of randomness extractors.

569

K-M. CHUNG, M. MITZENMACHER, AND S. VADHAN

26.1.4 Perspective

The block source model we consider in this chapter is very much in the same spirit
as the other semirandom models covered in this book, in that an adversary can pick
a worst-case input distribution from a constrained family of distributions (namely,
ones with enough conditional entropy per data item). In fact, the semirandom graph
models discussed in Chapter 9 were also inspired by a model of “semirandom
sources” in the randomness extractor literature, which amount to block sources
where each block consists of one bit, and inspired the later, more general notion
of block sources we study. Moreover, the block source model itself (with respect
to max probability) is identical to the class of distributions considered for “diffuse
adversaries” in the online paging problem in Chapter 24.

In terms of the goals for the analysis of algorithms laid out in Chapter 1, the
motivation for the model in the current chapter falls squarely under “performance
prediction.” Indeed, the goal is to understand when an instantiation of a hashing
algorithm with an explicit and efficient family of hash functions will perform similarly
to its idealized analysis with truly random functions. The design of an algorithm that
optimizes the idealized performance is taken as a given, and the only freedom is in
the choice of hash family to instantiate the algorithm.

The block source model seems relatively uncontroversial from the “natural sci-
entist” perspective, where the goal is to explain why previous experiments have not
witnessed the gap between universal hashing and idealized analysis predicted by the
worst-case theory. Indeed, those experiments may have used input distributions that
are block sources or interact with the hash functions in a similar way.

From the “engineering” perspective, where the goal is to select a hash family to
achieve good performance in a new application, more care is warranted in judging
whether the data distribution is likely to fit the block source model. Even if each data
item has sufficient entropy on its own, correlations between data items can make the
conditional entropies very small or even zero. An extreme example is when the items
are consecutive elements of an interval, i.e., xi+1 = xi + 1. If the initial data item
x1 has high entropy, so will all of the other items xi, but the conditional entropy
of xi given x1, . . . ,xi−1 will be zero. Indeed, such data distributions do sometimes
arise in practice, and practical 2-universal hashing families have been found to have
poor performance (e.g., when used in linear probing) on such data distributions.
Unfortunately, determining whether a distribution is close to a block source is difficult
in general; it requires a number of samples that is exponential in the number of blocks
(Exercise 26.5).

For this reason, an interesting direction for future work is to identify other families
of data distributions (beyond just the block-source model) where simple families
of hash functions can be shown to behave like idealized hash functions for a wide
class of hashing applications. When that can’t be done, there may be no alternative
other than to turn to more complex hash families, such as ω(1)-wise independence
or cryptographic hash functions.

We remark that the cryptography literature also grapples with a similar issue
around the implementation of cryptographic protocols that utilize hashing. It is
often easier to provide the security of such protocols by adopting the “random
oracle model,” where the hash function is modelled as a truly random function
that all parties (honest or adversarial) can query as an oracle. But security in the

570

WHEN SIMPLE HASH FUNCTIONS SUFFICE

random oracle model does not in general imply security when the hash function is
implemented with any explicit polynomial-time instantiation. Thus, there is a large
body of work on trying to identify classes of cryptographic protocols and realistic,
nonidealized properties of hash families such that the security in the random oracle
model is preserved under instantiation (assuming that the hash family actually has
the specified properties).

The cryptographic setting is usually much more challenging than the algorithmic
one, because an adversary can typically influence the inputs fed to the hash function
based on the description of the hash function itself, or at least based on prior
observations of input–output behavior. In contrast, even in the worst-case analysis of
hashing algorithms, we typically assume that the hash function is chosen randomly
and independently of the data items. This assumption should be carefully scrutinized
in applications of hashing algorithms (especially when used in a security context), and
if it does not hold, then cryptographic hash functions or “pseudorandom functions”
may be a safer, albeit more expensive, choice.

26.2 Preliminaries

26.2.1 Notation

[N] denotes the set {0, . . . ,N−1}. All logs are base 2. For a random variable X and an
event E, X |E denotes X conditioned on E. The support of X is supp(X) = {x : Pr[X =
x] > 0}. For a finite set S, US denotes a random variable uniformly distributed on S.

26.2.2 Hashing

Let H be a family (multiset) of hash functions h : [N] → [M] and let H be uniformly
distributed over H. We use h ← H to denote that h is sampled according to the
distribution H. We say that H is a truly random family if H is the set all functions
mapping [N] to [M]; i.e., the N random variables {H(x)}x∈[N] are independent and
uniformly distributed over [M]. For s ∈ N, H is s-wise independent (a.k.a. strongly
s-universal) if for every sequence of distinct elements x1, . . . ,xs ∈ [N], the random
variables H(x1), . . . ,H(xs) are independent and uniformly distributed over [M]. H
is s-universal if for every sequence of distinct elements x1, . . . ,xs ∈ [N], we have
Pr[H(x1) = · · · = H(xs)] ≤ 1/Ms. The description size of H ∈ H is the number
of bits to describe H, which is simply log |H|.

A standard example of a 2-universal family for a universe [N] being hashed to the
range [M] can be obtained by choosing a prime p ≥ max{N,M} and using the family

ha,b(x) = ((ax + b) mod p) mod M.

Here a and b are integers chosen independently and uniformly at random from
{1, . . . ,p − 1} and {0,1, . . . ,p − 1}, respectively. We leave it as Exercise 26.2 to show
that for x �= y, the probability that ha,b(x) = ha,b(y) is at most 1/M. A standard
example of an s-wise independent family where the domain and range are the same
finite field F is the family of hash functions

ha0,a1,...,as−1(x) = a0 + a1x + a2x2 + · · · + ak−1xs−1. (26.1)

571

K-M. CHUNG, M. MITZENMACHER, AND S. VADHAN

Here choosing a hash function from the family corresponds to choosing the ai’s
independently and uniformly at random from F; that is, the hash function is a random
polynomial of degree at most s − 1. Again, we leave it as Exercise 26.3 to show that
for a hash function chosen randomly from this family, the hashed values for any s
elements of F are distributed uniformly and independently over F. To obtain a family
where the range is smaller than the domain, we can use a field F of size pk for a prime
p and integer k > 1, pick any positive integer � < k, and compose the hash functions
in Equation (26.1) with a fixed mapping g : F → [p�], all of whose preimages are of
size F/p� (e.g., g(y) = y mod p�, after interpreting y as an element of [pk]).

26.2.3 Block Sources

We view the data items as being random variables distributed over a finite set of size
N, which we identify with [N]. We use the following quantities to measure the amount
of randomness in a data item. For a random variable X , the max probability of X is
mp(X) = maxx Pr[X = x]. The collision probability of X is cp(X) = ∑

x Pr[X = x]2.
Measuring these quantities is equivalent to measuring the min-entropy

H∞(X) = min
x

log(1/Pr[X = x]) = log(1/mp(X))

and the Rényi entropy

H2(X) = log(1/Pr[X = X ′]) = log(1/cp(X)),

where X ′ is an i.i.d. copy of X . (These entropy measures are from the family of Rényi
q-entropies, defined for positive and finite q �= 1 as

Hq(X) = 1
1 − q

log

(∑
x

(Pr[X = x])q

)
,

with H∞(X) obtained by taking the limit as q → ∞, and Shannon entropy by taking
the limit as q → 1.) If X is supported on a set of size K, then mp(X) ≥ cp(X) ≥ 1/K
(i.e. H∞(X) ≤ H2(X) ≤ log K), with equality if and only if X is uniform on its
support. Hence, assuming X has at least k bits of Rényi entropy is strictly weaker
than assuming X has at least k bits of min-entropy, and therefore using Rényi
entropy makes the positive results stronger. On the other hand, it also holds that
mp(X) ≤ cp(X)1/2 (i.e., H∞(X) ≥ H2(X)/2; see Exercise 26.1), so min-entropy and
Rényi entropy are always within a factor of 2 of each other.

We model a sequence of data items as a sequence (X1, . . . ,XT) of correlated ran-
dom variables where each item is guaranteed to have some entropy even conditioned
on the previous items.

Definition 26.1 (Block Sources) A sequence of random variables (X1, . . . ,XT)

taking values in [N]T is a block source with collision probability p per
block (respectively, max probability p per block) if for every i ∈ [T] and
every (x1, . . . ,xi−1)∈ supp(X1, . . . ,Xi−1), we have cp(Xi|X1=x1,...,Xi−1=xi−1)≤ p
(respectively, mp(Xi|X1=x1,...,Xi−1=xi−1) ≤ p).

572

WHEN SIMPLE HASH FUNCTIONS SUFFICE

When max probability is used as the measure of entropy, then this is a standard
model of sources used in the randomness extractor literature. We will mainly use the
collision probability formulation as the entropy measure, since it makes the statements
more general.

Definition 26.2 (X1, . . . ,XT) is a block K-source if it is a block source with
collision probability at most p = 1/K per block.

26.2.4 Randomness Extractors

Before obtaining our results on block sources, we need results showing that hashing
a single item leads to it being nearly uniformly distributed, which we will then
generalize. A randomness extractor can be viewed as a family of hash functions with
the property that for any random variable X with enough entropy, if we pick a random
hash function h from the family, then h(X) is “close” to being uniformly distributed
on the range of the hash function. Randomness extractors are a central object in the
theory of pseudorandomness and have many applications in theoretical computer
science. Thus there is a large body of work on the construction of randomness
extractors. A major emphasis in this line of work is constructing extractors where
it takes extremely few (e.g., a logarithmic number of) random bits to choose a hash
function from the family. This parameter is less crucial for us, so instead our emphasis
is on using simple and very efficient hash functions (e.g., universal hash functions)
and minimizing the amount of entropy needed from the source X . To do this, we will
measure the quality of a hash family in ways that are tailored to our application, and
thus we do not necessarily work with the standard definitions of extractors.

In requiring that the hashed value h(X) be “close” to uniform, the standard
definition of an extractor uses the most natural measure of “closeness.” Specifically,
for random variables X and Y , taking values in [N], their statistical distance is
defined as

(X,Y) = max
S⊆[N]

| Pr[X ∈ S] − Pr[Y ∈ S]|.

X and Y are called ε-close (resp., ε-far) if
(X,Y) ≤ ε (resp.,
(X,Y) ≥ ε).
The classic Leftover Hash Lemma shows that universal hash functions are ran-

domness extractors with respect to statistical distance.

Lemma 26.3 (The Leftover Hash Lemma) Let H : [N] → [M] be a random
hash function from a 2-universal family H. For every random variable X taking
values in [N] with cp(X) ≤ 1/K, we have

cp((H,H(X))) ≤ 1
|H| ·

(
1

M
+ 1

K

)
,

and thus (H,H(X)) is (1/2) · √M/K-close to (H,U[M]).

Notice that Lemma 26.3 says that the joint distribution of (H,H(X)) is ε-close to
uniform (for ε = (1/2) · √M/K); a family of hash functions achieving this property
is referred to as a “strong” randomness extractor. Up to some loss in the parameter ε

573

K-M. CHUNG, M. MITZENMACHER, AND S. VADHAN

(which we will later want to save), this strong extraction property is equivalent to
saying that with high probability over h ← H, the random variable h(X) is close to
uniform.

Proof Let (H ′,X ′) be an i.i.d. copy of (H,X). The bound on the collision
probability follows by the following calculation.

cp(H,H(X)) = Pr[H = H ′ ∧ H(X) = H ′(X ′)]
= Pr[H = H ′] · Pr[H(X) = H(X ′)]
≤ (1/|H|) · (Pr[X = X ′] + Pr[H(X) = H(X ′)|X �= X ′])

≤ 1
|H| ·

(
1

M
+ 1

K

)
.

The bound on the statistical distance follows directly by the second statement
of the following lemma (we state the more general first statement since it will be
useful later). �

Lemma 26.4 If X takes values in [M] and cp(X) ≤ 1/M + 1/K, then

1 For every function f : [M] → R,

|E[f (X)] − μ| ≤ σ ·
√

M/K,

where μ is the expectation of f (U[M]) and σ is its standard deviation. In
particular, if f takes values in the interval [a,b], then

|E[f (X)] − μ| ≤
√
(μ − a) · (b − μ) ·

√
M/K.

2 X is (1/2) · √M/K-close to U[M].

Proof By the premise of the lemma,

|E[f (X)] − μ| =
∣∣∣∣∣∣
∑

x∈[M]

(f (x) − μ) · (Pr[X = x] − 1/M)

∣∣∣∣∣∣
≤
√ ∑

x∈[M]

(f (x) − μ)2 ·
√ ∑

x∈[M]

(Pr[X = x] − 1/M)2

(Cauchy–Schwarz)

=
√

M · Var[f (U[M])]

·
√ ∑

x∈[M]

(Pr[X = x]2 − 2 Pr[X = x]/M + 1/M2)

=
√

M · σ ·
√

cp(X) − 2/M + 1/M

≤ σ ·
√

M/K.

574

WHEN SIMPLE HASH FUNCTIONS SUFFICE

The “in particular” follows from the fact that σ [Y] ≤ √
(μ − a) · (b − μ)

for every random variable Y taking values in [a,b] and having expectation μ.
(Intuitively, the variance is maximized if Y takes on only the extreme values
a and b with appropriate probability masses to make the expectation μ. For a
proof: σ [Y]2 = E[(Y − a)2] − (μ − a)2 ≤ (b − a) · (μ − a) − (μ − a)2 =
(μ − a) · (b − μ).)

Item (2) follows by noting that the statistical distance between X and U[M]
is the maximum of |E[f (X)] − E[f (U[M])]| over Boolean functions f , since a
Boolean function can be viewed as an indicator/characteristic function for a
subset S in the definition of statistical distance. Hence, by item (1), the statistical
distance is at most

√
μ(f) · (1 − μ(f)) · √M/K ≤ (1/2) · √M/K. �

26.3 Hashing Block Sources

In this section, we show that when the data is modeled as a block source with sufficient
entropy per block, the performance of using 2-universal hash functions is close to
that of ideal hashing. More precisely, note that in ideal hashing, the distribution of
the hashed values (H(x1), . . . ,H(xT)) is simply a uniform distribution over [M]T .
The following theorem states that when the data is a block source (X1, . . . ,XT) with
sufficient entropy per block and H is 2-universal, the distribution of the hashed values
(H(X1), . . . ,H(XT)) is close to uniform in statistical distance.

Theorem 26.5 Let H : [N] → [M] be a random hash function from a
2-universal family H. For every block K-source (X1, . . . ,XT), the random variable
(H,H(X1), . . . ,H(XT)) is (T/2) · √M/K-close to (H,U[M]T).

Proof The theorem follows by applying the Leftover Hash Lemma
(Lemma 26.3) to each block of the source and summing the statistical distance
over the T blocks. Specifically, since (X1, . . . ,XT) is a block K-source, the
Leftover Hash Lemma implies that for every x<i = (x1, . . . ,xi−1) ∈ [M]i−1, the
distribution (H,H(Xi)|X<i=x<i) is (1/2) · √M/K-close to (H,U[M]).

Define hybrid distributions D1, . . . ,DT+1 by

Di =
(

H,H(X1), . . . ,H(Xi−1),U
(i)
[M], . . . ,U

(T)
[M]

)
for i ∈ [T + 1].

Note that the preceding statement implies that
(Di,Di+1) ≤ (1/2) · √
M/K

for every i ∈ [T] (since the statement holds for every x<i ∈ [M]i−1). Also note
that D1 = (H,U[M]T) and DT+1 = (H,H(X1), . . . ,H(XT)). Since statistical
distance satisfies the triangle inequality,

(D1,DT+1) ≤
T∑

i=1

(Di,Di+1) ≤ (T/2) ·
√

M/K. �

Assuming K ≥ MT2/(4ε2), Theorem 26.5 implies that the distribution of the
hashed values (H(X1), . . . ,H(XT)) is ε-close to uniform. Thus, any event that would
occur with some probability p under ideal hashing now occurs with probability in the

575

K-M. CHUNG, M. MITZENMACHER, AND S. VADHAN

range [p−ε, p+ε]. This allows us to readily translate existing results for ideal hashing
into results for universal hashing in the block data source model.

A tight version of Theorem 26.5 is known, which improves the linear dependency
in T to

√
T :

Theorem 26.6 Let H : [N] → [M] be a random hash function from a
2-universal family H. For every block K-source (X1, . . . ,XT), the random variable
(H,H(X1), . . . ,H(XT)) is (

√
MT/K)-close to (H,U[M]T).

By Theorem 26.6, it suffices to assume K ≥ MT/ε2 to conclude that the hashed values
are ε-close to uniform. In Section 26.4 we discuss the implication of Theorem 26.6 to
chained hashing as an example.

The proof of Theorem 26.6 is quite involved, switching carefully between different
distance notions to measure the growth of the distance to the uniform distribution
over the T blocks. Thus we omit its proof here.

26.4 Application: Chained Hashing

We first briefly recall the chained hashing algorithm and its results under ideal
hashing. A hash table using chained hashing stores a set x = {x1, . . . ,xT } ∈ [N]T

in an array of M buckets. Let h be a hash function mapping [N] to [M]. We place
each item xi in the bucket h(xi). The load of a bucket when the process terminates is
the number of items in it.

Definition 26.7 Given h : [N] → [M] and a sequence x = {x1, . . . ,xT } of data
items from [N] stored via chained hashing using h, we define the maximum load
MaxLoadCH(x,h) to be the maximum load among the buckets after all data
items have been placed.

It is known that under ideal hashing, when M = T , the expected maximum load
is log T/log log T asymptotically. This bound also holds with high probability. More
precisely, we have:

Theorem 26.8 Let H be a truly random hash function mapping [N] to [T]. For
every sequence x ∈ [N]T of distinct data items, we have

Pr
[

MaxLoadCH(x,H) ≤ (1 + o(1)) · log T
log log T

]
= 1 − o(1),

where the o(1) terms tend to zero as T → ∞.

The calculation underlying this theorem requires that the hash function be
�(log T/ log log T)-wise independent. Indeed, Exercise 26.4 shows that there are
2-universal families and input sets x where the maximum load is always at least

√
T .

Nevertheless, suppose we model the data as a block source and use 2-universal
hashing, Theorem 26.6 allows us to derive the conclusion of Theorem 26.8 assuming
the data has sufficient entropy per block.

576

WHEN SIMPLE HASH FUNCTIONS SUFFICE

Theorem 26.9 Let H be chosen at random from a 2-universal hash family H
mapping [N] to [T]. For every block K-source X taking values in [N]T with
K = ω(T2), we have

Pr
[

MaxLoadCH(X,H) ≤ (1 + o(1)) · log T
log log T

]
= 1 − o(1),

where the o(1) terms tend to zero as T → ∞.

Proof Set M = T . Note that the value of MaxLoadCH(x,h) can be determined
from the hashed sequence (h(x1), . . . ,h(xT)) ∈ [M]T alone, and does not
otherwise depend on the data sequence x or the hash function h. Thus for a
function λ : N → N, we can let S ⊆ [M]T be the set of all sequences of
hashed values that produce an allocation with a max load greater than λ(T). By
Theorem 26.8, we can take λ(T) = (1 + o(1)) · (log T)/(log log T) so that we
have:

Pr[U[M]T ∈ S] = Pr [MaxLoadCH(x,I) > λ(T)] = o(1),

where I is a truly random hash function mapping [N] to [M] = [T] and x is an
arbitrary sequence of distinct data items.

We are interested in the quantity:

Pr[MaxLoadCH(X,H) > λ(T)] = Pr[(H(X1), . . . ,H(XT)) ∈ S],

where H is a random hash function from a 2-universal family. Given K =
ω(T2), we set ε = √

MT/K = o(1). By Theorem 26.6, (H(X1), . . . ,H(XT))

is ε-close to the uniform distribution. Thus, we have

Pr[(H(X1), . . . ,H(XT)) ∈ S] ≤ Pr[U[M]T ∈ S] + ε

= o(1). �

26.5 Optimizing Block Source Extraction

We have seen that, for some applications, when the data comes from a block source
with sufficient entropy per block, 2-universal hashing performs nearly as well as ideal
hashing. We might naturally ask, how much entropy do we need? The answer can
depend on the needs of the application scenario, as well as on the specific hashing
algorithm we use and its analysis. With our analysis thus far, the required entropy
can range from very reasonable to unrealistic.

In this section, we discuss some general approaches to reduce the required entropy.
A main observation is that instead of working with the stringent notion of statistical
distance, for several applications it suffices to ensure that the collection of hashed
values (H(X1), . . . ,H(XT)) has (or is statistically close to having) sufficiently small
collision probability, say within an O(1) factor of that of the uniform distribution.
Theorem 26.10 provides a result of this form with smaller required entropy from the
block source, which reduces required entropy for some applications (see Section 26.6).

Theorem 26.10 Let H : [N] → [M] be a random hash function from a
2-universal family H. For every block K-source (X1, . . . ,XT) and every ε > 0,

577

K-M. CHUNG, M. MITZENMACHER, AND S. VADHAN

the random variable (H,Ȳ) = (H,H(X1), . . . ,H(XT)) is ε-close to a distribution
(H,Z̄) with collision probability

cp(H,Z̄) ≤ 1
|H| · MT ·

(
1 + M

εK

)T

.

In particular, if K ≥ MT/ε, then (H,Z̄) has collision probability at most

1
|H| · MT ·

(
1 + 2MT

εK

)
.

Note that the factor 1/(|H| · MT) is the collision probability of the uniform
distribution (H,U[M]T) and the factors (1+(M/εK))T and (1+(2MT/εK)) quantify
the blow-up in collision probability as compared to ideal hashing. Also note that
comparing to Theorem 26.6, the key savings is in the dependency on ε. Specifically, to
achieve statistical distance ε, K only needs to be �(MT/ε) as opposed to �(MT/ε2).
Thus, this is particularly useful in applications where ε = o(1) is required in the
analysis.

We omit the proof of Theorem 26.10 here. Roughly, to prove Theorem 26.10,
one first shows that a certain average form of the (conditional) collision probability
for hashed blocks is small with high probability, using the Leftover Hash Lemma
(Lemma 26.3) together with a Markov argument. Then, the theorem follows by
showing that the distribution (H,Z̄) can be obtained by carefully modifying the
distribution of (H,Ȳ) based on the property established in the first step.

We can further improve the bound by using 4-wise independent hash functions,
stated in the following theorem, where the dependency on ε is further improved. At
a high level, the improvement comes from the fact that 4-wise independent hashing
allows us to replace the Markov argument by Chebyshev’s inequality in the proof.

Theorem 26.11 Let H : [N] → [M] be a random hash function from a 4-wise
independent family H. For every block K-source (X1, . . . ,XT) and every ε > 0,
the random variable (H,Ȳ) = (H,H(X1), . . . ,H(XT)) is ε-close to a distribution
(H,Z̄) with collision probability

cp(H,Z̄) ≤ 1
|H| · MT

(
1 + M

K
+
√

2M
εK2

)T

.

In particular, if K ≥ MT +
√

2MT2/ε, then (H,Z̄) has collision probability at
most (1 + γ)/(|H| · MT), for γ = 2 · (MT +

√
2MT2/ε)/K.

26.6 Application: Linear Probing

In this section, we illustrate that Theorems 26.10 and 26.11 can be used to give a better
analysis for some applications than using Theorem 26.6. We first mention that when
applied to the “high-probability” statement in chained hashing, Theorems 26.10
and 26.11 do not yield significant improvement over Theorem 26.6. On the other
hand, for applications where we only have bounds on expectations, applying

578

WHEN SIMPLE HASH FUNCTIONS SUFFICE

Theorems 26.10 and 26.11 can reduce the required entropy. As we will see in the
linear probing example that follows, this is because small ε = o(1) is required in
the analysis.

We start with a brief review of linear probing (also covered in Chapter 8). A hash
table using linear probing stores a sequence x = (x1, . . . ,xT) of data items from [N]
using M memory locations. Given a hash function h : [N] → [M], we place the data
items x1, . . . ,xT sequentially as follows. The data item xi first attempts placement
at h(xi), and if this location is already filled, locations (h(xi) + 1) mod M, (h(xi) +
2) mod M, and so on are tried until an empty location is found. The ratio γ = T/M
is referred to as the load of the table. The efficiency of linear probing is measured by
the insertion time for a new data item as a function of the load. (Other measures, such
as the average time to search for items already in the table, are also often studied, and
the results here can be generalized to these measures as well.)

Definition 26.12 Given h : [N] → [M], a set x = {x1, . . . ,xT−1} of data items
from [N] stored via linear probing using h, and an extra data item y /∈ x̄, we
define the insertion time TimeLP(h,x,y) to be the value of j such that y is placed
at location h(y) + (j − 1) mod M.

It is well known that with ideal hashing (i.e., hashing using truly random hash
functions), the expected insertion time can be bounded quite tightly as a function of
the load.

Theorem 26.13 Let H be a truly random hash function mapping [N] to [M]. For
every sequence x ∈ [N]T−1 and y /∈ x, we have E[TimeLP(H,x,y)] ≤ 1/(1 − γ)2,
where γ = T/M is the load.

It is known that the expected lookup time can be bounded in terms of γ (indepen-
dent of T) using only O(1)-wise independence. Specifically, with 5-wise independence,
the expected time for an insertion is O(1/(1 − γ)2.5) for any sequence x. On the
other hand, it is also known that there are examples of sequences x and pairwise
independent hash families such that the expected time for a lookup is logarithmic in
T (even though the load γ is independent of T).

Now, suppose we consider data items coming from a block K-source (X1, . . . ,

XT−1,XT) where the item Y = XT to be inserted is the last block. An immediate
application of Theorem 26.6, using just a 2-universal hash family, gives that if
K ≥ MT/ε2, the resulting distribution of the element hashes is ε-close to uniform.
The effect of the ε statistical distance on the expected insertion time is at most εT ,
because the maximum insertion time is T . That is, if we let EU be the expected time
for an insertion when using a truly random hash function, and EP be the expected
time for an insertion using pairwise independent hash functions, we have

EP ≤ EU + εT .

A natural choice is ε = o(1/T), so that the εT term is o(1), giving that K needs to
be ω(MT3) = ω(M4) in the standard case where T = γM for a constant γ ∈ (0,1)
(which we assume henceforth). An alternative interpretation is that with probability

579

K-M. CHUNG, M. MITZENMACHER, AND S. VADHAN

1 − ε, our hash table behaves exactly as though a truly random hash function was
used. In some applications, constant ε may be sufficient, in which case K = ω(M2)

suffices.
Better results can be obtained by applying Lemma 26.4, in conjunction with

Theorem 26.10. In particular, for linear probing, the standard deviation σ of the
insertion time is known to be O(1/(1 − γ)2). With a 2-universal family, as long as
K ≥ MT/ε, from Theorem 26.10 the resulting hash values are ε-close to a block
source with collision probability at most (1 + 2MT/(εK))/MT . We can now apply
Lemma 26.4 with this bound on the collision probability to bound the expected
insertion time as

EP ≤ EU + εT + σ

√
2MT
εK

.

Choosing ε = o(1/T) gives that EP and EU are the same up to lower order terms when

K is ω(M3). Theorem 26.11 gives a further improvement; for K ≥ MT +
√

2MT2

ε
, we

have

EP ≤ EU + εT + σ

√√√√2MT +
√

2MT2

ε

K
.

Choosing ε = o(1/T) now allows for K to be only ω(M2).
In other words, the Rényi entropy needs only to be 2 log(M) + ω(1) bits when

using 4-wise independent hash functions, and 3 log(M) + ω(1) bits for 2-universal
hash functions. We formalize the result for the case of 2-universal hash functions as
follows:

Theorem 26.14 Let H be chosen at random from a 2-universal hash family H
mapping [N] to [M]. For every block K-source (X,Y) taking values in [N]T with

K ≥ MT/ε, we have E[TimeLP(H,X,Y)] ≤ 1/(1 − γ)2 + εT + σ

√
2MT
εK . Here

γ = T/M is the load and σ = O(1/(1 − γ)2) is the standard deviation in the
insertion time in the case of truly random hash functions.

26.7 Other Applications

In this section, we survey the application of the methods in this chapter to a couple
of other hashing-based algorithms.

With the balanced allocation paradigm, it is known that when T items are hashed
to T buckets, with each item being sequentially placed in the least loaded of d choices
(for d ≥ 2), the maximum load is log log T/ log d + O(1) with high probability. Note
that going from d = 1 to d = 2 yields an exponential saving in the maximum load
from O(log T/ log log T) to O(log log T). Using the methods from this chapter, it
can be shown that the same result holds when the hash function is chosen from a
2-universal hash family, provided the data items come from a block source with
roughly (d + 1) log T bits of entropy per data item.

Bloom filters are data structures for approximately storing sets in which mem-
bership tests can result in false positives with some bounded probability. It can be

580

WHEN SIMPLE HASH FUNCTIONS SUFFICE

Table 26.1 Entropy required per item

Type of hash family Required entropy

Linear probing

2-universal hashing 3 log T
4-wise independence 2 log T

Chained hashing

2-universal hashing 2 log T

Balanced allocations with d choices

2-universal hashing (d + 1) log T

Bloom filters

2-universal hashing 3 log T

Each entry denotes the (Rényi) entropy required per item to
ensure that the performance of the given application is “close”
to the performance when using truly random hash functions In
all cases, the bounds omit additive terms that depend on how
close a performance is desired, and we restrict to the (standard)
case that the size of the hash table is linear in the number of
items being hashed. That is, m = log T + O(1).

shown that there is a constant gap in the false positive probability for worst-case data
when O(1)-wise independent hash functions are used instead of truly random hash
functions. On the other hand, if the data comes from a block source with roughly
3 log M bits of (Rényi) entropy per item, where M is the size of the Bloom filter, then
the false positive probability with 2-universal hashing asymptotically matches that of
ideal hashing.

A summary of required (Rényi) entropy per item for the preceding applications
can be found in Table 26.1.

26.8 Notes

The material in this chapter is drawn primarily from Chung et al. (2013).
Surveys of algorithmic applications of hashing are given by Knuth (1998), Broder

and Mitzenmacher (2005), and Muthukrishnan (2005). Universal and s-wise indepen-
dent hashing were introduced in Carter and Wegman (1979) and Wegman and Carter
(1981), respectively. Analysis of O(log T)-wise independent hashing of T items can
be found in Schmidt and Siegel (1990) and Pagh and Rodler (2004). Further coverage
of universal and s-wise independent families can be found in many standard texts,
e.g., Mitzenmacher and Upfal (2017) and Vadhan (2011). The analysis of maximum
load under chained hashing with idealized hash functions (e.g., Theorem 26.8) was
done by Gonnet (1981) and Raab and Steger (1998). Worst-case analysis of chained
hashing under 2-universal hash families (including Exercise 26.4) was done by Alon
et al. (1999). The expected insertion time for linear probing under idealized hash
functions (i.e., Theorem 26.13) was analyzed by Knuth (1998), and its variance can
be found in Gonnet and Baeza-Yates (1991). Worst-case analysis of linear probing

581

K-M. CHUNG, M. MITZENMACHER, AND S. VADHAN

under O(1)-wise independence was done by Pagh et al. (2009) and Patrascu and
Thorup (2010), with experiments (and fast implementations of 4-wise independent
hashing) in Thorup and Zhang (2012). The balanced allocation paradigm is due
to Azar et al. (2000) and Bloom filters are due to Bloom (1970). The fact that the
performance of standard universal hashing often matches what is predicted for ideal
hashing was experimentally observed in (Ramakrishna, 1988, 1989; Ramakrishna
et al., 1997; Broder and Mitzenmacher, 2001; Dharmapurikar et al., 2004; Pagh and
Rodler, 2004).

Surveys on randomness extractors are given by Nisan and Ta-Shma (1999),
Shaltiel (2002), and Vadhan (2011). Block sources were introduced by Chor and
Goldreich (1988) (under the name “probability-bounded sources”), generalizing
the model of “semirandom sources” introduced by Santha and Vazirani (1986).
The Leftover Hash Lemma (Lemma 26.3) is due to Bennett et al. (1988) Impagliazzo
et al. (1989), with the proof we present being attributed to Rackoff (Impagliazzo and
Zuckerman, 1989). The analysis of universal hashing and randomness extraction
on block sources given by Theorem 26.5 follows Chor and Goldreich (1988) and
Zuckerman (1996). Semirandom models for graphs were introduced by Blum
and Spencer (1995) and diffuse adversaries for online paging by Koutsoupias and
Papadimitriou (2000).

The Random Oracle Model in cryptography was introduced by Fiat and Shamir
(1987) and Bellare and Rogaway (1993). The fact that security may not be preserved
when instantiating the random oracle with explicit hash functions was demonstrated
by Canetti et al. (2004). Efforts to find classes of protocols and properties of hash
families that allow for secure instantiation can be found in Bellare et al. (2013) and
the references therein.

Acknowledgments

Kai-Min is supported in part by Academia Sinica Career Development Award Grant
no. 23-17. Michael is supported by NSF grants CCF-1563710 and CCF-1535795.
Salil is supported by NSF grant CCF-1763299 and a Simons Investigator Award.
We thank Elias Koutsoupias and Tim Roughgarden for their feedback, which has
improved this survey.

References

Alon, Noga, Dietzfelbinger, Martin, Miltersen, Peter Bro, Petrank, Erez, and Tardos, Gábor.
1999. Linear hash functions. Journal of the ACM, 46(5), 667–683.

Azar, Yossi, Broder, Andrei Z., Karlin, Anna R., and Upfal, Eli. 2000. Balanced allocations.
SIAM Journal on Computing, 29(1), 180–200.

Bellare, Mihir, and Rogaway, Phillip. 1993. Random oracles are practical: A paradigm for
designing efficient protocols. In Denning, Dorothy E., Pyle, Raymond, Ganesan, Ravi,
Sandhu, Ravi S., and Ashby, Victoria (eds), CCS ’93, Proceedings of the 1st ACM
Conference on Computer and Communications Security, pp. 62–73. ACM.

Bellare, Mihir, Hoang, Viet Tung, and Keelveedhi, Sriram. 2013. Instantiating random oracles
via UCEs. In Canetti, Ran, and Garay, Juan A. (eds.), Advances in Cryptology – CRYPTO
2013–33rd Annual Cryptology Conference. Lecture Notes in Computer Science, vol. 8043,
pp. 398–415. Springer.

582

WHEN SIMPLE HASH FUNCTIONS SUFFICE

Bennett, Charles H., Brassard, Gilles, and Robert, Jean-Marc. 1988. Privacy amplification
by public discussion. SIAM Journal on Computing, 17(2), 210–229. Special issue on
cryptography.

Bloom, Burton H. 1970. Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM, 13(7), 422–426.

Blum, Avrim, and Spencer, Joel. 1995. Coloring random and semi-random k-colorable graphs.
Journal of Algorithms, 19(2), 204–234.

Broder, A., and Mitzenmacher, M. 2001. Using multiple hash functions to improve IP lookups.
In INFOCOM 2001: Proceedings of the Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies, pp. 1454–1463.

Broder, A., and Mitzenmacher, M. 2005. Network applications of Bloom filters: A survey.
Internet Mathematics, 1(4), 485–509.

Canetti, Ran, Goldreich, Oded, and Halevi, Shai. 2004. The random oracle methodology,
revisited. Journal of the ACM, 51(4), 557–594.

Carter, J. Lawrence, and Wegman, Mark N. 1979. Universal classes of hash functions. Journal
of Computer and System Sciences, 18(2), 143–154.

Chor, Benny, and Goldreich, Oded. 1988. Unbiased bits from sources of weak random-
ness and probabilistic communication complexity. SIAM Journal on Computing, 17(2),
230–261.

Chung, Kai-Min, Mitzenmacher, Michael, and Vadhan, Salil P. 2013. Why simple hash
functions work: Exploiting the entropy in a data stream. Theory of Computing, 9,
897–945.

Dharmapurikar, S., Krishnamurthy, P., Sproull, T. S., and Lockwood, J. W. 2004. Deep packet
inspection using parallel Bloom filters. IEEE Micro, 24(1), 52–61.

Fiat, Amos, and Shamir, Adi. 1987. How to prove yourself: Practical solutions to identification
and signature problems. In Advances in cryptology—CRYPTO ’86. Lecture Notes in
Computer Science, vol. 263, pp. 186–194. Springer.

Gonnet, Gaston H. 1981. Expected length of the longest probe sequence in hash code
searching. Journal of the ACM, 28(2), 289–304.

Gonnet, GH, and Baeza-Yates, R. 1991. Handbook of Algorithms and Data Structures: In
Pascal and C. Addison-Wesley Longman.

Impagliazzo, Russell, and Zuckerman, David. 1989 (Oct. 30 – Nov. 1). How to recycle random
bits. In 30th Annual Symposium on Foundations of Computer Science. IEEE, pp. 248–253.

Impagliazzo, Russell, Levin, Leonid A., and Luby, Michael. 1989 (May 15-17). Pseudo-
random generation from one-way functions (Extended Abstracts). In Proceedings of the
Twenty First Annual ACM Symposium on Theory of Computing, pp. 12–24.

Knuth, D.E. 1998. The Art of Computer Programming, vol. 3: Sorting and Searching. Addison
Wesley Longman.

Koutsoupias, Elias, and Papadimitriou, Christos H. 2000. Beyond competitive analysis. SIAM
Journal on Computing, 30(1), 300–317.

Mitzenmacher, Michael, and Upfal, Eli. 2017. Probability and Computing, ed. Cambridge
University Press. 2nd Randomization and Probabilistic Techniques in Algorithms and
Data Analysis.

Muthukrishnan, S. 2005. Data Streams: Algorithms and Applications. Foundations and Trends
in Theoretical Computer Science, 1(2), 117–236.

Nisan, Noam, and Ta-Shma, Amnon. 1999. Extracting randomness: A survey and new
constructions. Journal of Computer and System Sciences, 58(1), 148–173.

Pagh, Anna, Pagh, Rasmus, and Ruzic, Milan. 2009. Linear probing with constant Indepen-
dence. SIAM Journal on Computing, 39(3), 1107–1120.

Pagh, R., and Rodler, F. F. 2004. Cuckoo hashing. Journal of Algorithms, 51(2), 122–144.
Patrascu, Mihai, and Thorup, Mikkel. 2010. On the k-independence required by linear probing

and minwise independence. In Abramsky, Samson, Gavoille, Cyril, Kirchner, Claude,

583

K-M. CHUNG, M. MITZENMACHER, AND S. VADHAN

Meyer auf der Heide, Friedhelm, and Spirakis, Paul G. (eds), ICALP (1). Lecture Notes
in Computer Science, vol. 6198, pp. 715–726. Springer.

Raab, Martin, and Steger, Angelika. 1998. “Balls into bins”: A simple and tight analysis.
In Randomization and approximation techniques in computer science (Barcelona, 1998).
Lecture Notes in Computer Science, vol. 1518, pp. 159–170. Springer.

Ramakrishna, M. V. 1988. Hashing practice: Analysis of hashing and universal hashing.
SIGMOD ’88: Proceedings of the 1988 ACM SIGMOD International Conference on
Management of Data, pp. 191–199. ACM Press.

Ramakrishna, M. V. 1989. Practical performance of Bloom filters and parallel free-text
searching. Communications of the ACM, 32(10), 1237–1239.

Ramakrishna, M. V., Fu, E., and Bahcekapili, E. 1997. Efficient hardware hashing functions
for high performance computers. IEEE Transactions on Computing, 46(12), 1378–1381.

Santha, Miklos, and Vazirani, Umesh V. 1986. Generating quasi-random sequences from semi-
random sources. Journal of Computer and System Sciences, 33(1), 75–87.

Schmidt, Jeanette P., and Siegel, Alan. 1990. The analysis of closed hashing unr limited
randomness (Extended Abstract). In Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing (STOC), pp. 224–234. ACM.

Shaltiel, Ronen. 2002. Recent developments in explicit constructions of extractors. Bulletin of
the European Association for Theoretical Computer Science, 77(June), 67–95.

Thorup, Mikkel, and Zhang, Yin. 2012. Tabulation-based 5-independent hashing with appli-
cations to linear probing and second moment estimation. SIAM Journal on Computing,
41(2), 293–331.

Vadhan, Salil P. 2011. Pseudorandomness. Foundations and Trends� in Theoretical Computer
Science, 7(1-3), front matter, 1–336.

Wegman, Mark N., and Carter, J. Lawrence. 1981. New hash functions and their use in
authentication and set equality. Journal of Computer and System Sciences, 22(3), 265–279.

Zuckerman, David. 1996. Simulating BPP using a general weak random source. Algorithmica,
16(4/5), 367–391.

Exercises

Exercise 26.1 Prove H∞(X)≥ H2(X)/2 and find a distribution X such that the
inequality is (almost) tight. (Hint: Consider X that takes a fixed value with a
constant probability, say 1/2, and is uniform for the rest of the probability mass.)

Exercise 26.2 Prove that the family of hash functions of the form ha,b(x) =
((ax + b) mod p) mod M is a 2-universal family mapping [N] to [M] for p ≥
max{N,M}, a ∈ {1, . . . ,p − 1}, and b ∈ {0, . . . ,p − 1}.

Exercise 26.3 Prove that for a finite field F and positive integer s, the family of
functions of the form

ha0,a1,...,as−1(x) = a0 + a1x + a2x2 + · · · + ak−1xs−1

is an s-wise independent family. [Hint: For every s distinct values x1, . . . ,xs ∈ F

and every y1, . . . ,ys ∈ F, there is a unique polynomial h of degree at most s such
that h(xi) = yi for all i.]

Exercise 26.4 Let F be a finite field of size that is a perfect square, and let F0 ⊆ F be
its subfield of size

√|F|. Consider the family H of hash functions mapping F × F

to F given by ha,b(x,y) = ax + by, where a,b vary over all of F.

584

WHEN SIMPLE HASH FUNCTIONS SUFFICE

(1) Show that H is a 2-universal family.
(2) Let γ be a fixed element of F − F0, and consider the set

S =
{(

1
u + γ

,
v

u + γ

)
: u,v ∈ F0

}
.

Observe that |S| = |F0|2 = |F|. Show that for every a,b ∈ F, we have

MaxLoadCH(S,ha,b) ≥ |F0| =
√

|F|.
(Hint: When b = 0, consider the subset of S where u = 0. If b �= 0, then argue
that there is a c ∈ F such that c/b and (γ c − a)/b are both in F0, and consider
the subset of S where v = (c/b)u + (γ c − a)/b.)

Exercise 26.5 Suppose that there is an algorithm A that takes as input s iid samples
X (1), . . . ,X (s) from an unknown distribution X on [N]T and has the following
properties:

� If X is the uniform distribution on [N]T , then A(X (1), . . . ,X (s)) accepts with
probability at least 2/3, and

� If X has statistical distance at least 1/2 from every block source with collision
probability at most 1/4 per block, then A(X (1), . . . ,X (s)) accepts with probabil-
ity at most 1/3.

Prove that the sample complexity s of A must be at least �(N(T−1)/2). (Hint:
Consider X = (X1, . . . ,XT) where X1, . . . ,XT−1 are uniform and independent,
and XT = f (X1, . . . ,XT−1) for a randomly chosen function f : [N]T−1 → [N],
and consider what must occur in the s samples for A to distinguish X from the
uniform distribution on [N]T .)

585

CHAPTER TWENTY SEVEN

Prior-Independent Auctions
Inbal Talgam-Cohen

Abstract: This chapter discusses prior-independent auctions. The
goal is to design a single auction which, simultaneously for every
distribution in a given class, approximates the expected revenue of
the optimal auction designed specifically for that distribution. We
consider two main approaches to designing such auctions: The first
is sample-based, where the problem boils down to learning enough
about the distribution (by performing “market analysis on the fly”) in
order to do almost as well as if the distribution were fully known. The
second approach is competition-based, where the idea is to increase
the competition in the market enough so as to drive up prices, while
remaining blissfully ignorant about the distribution.

27.1 Introduction

Auctions as a Meeting Place for Worst- and Average-Case Analysis Auctions are
algorithms for resource allocation, with the extra complication that the input (“who
values each resource by how much”) comes from strategic agents who might misre-
port. Algorithmic research has only been studying auctions in the past two decades,
spurred by their huge importance in the internet age as a main source of revenue for
companies like Google. The classic theory of auctions was developed mainly within
microeconomics (earning several Nobel prizes along the way).

Unlike the theory of algorithms, which has the worst-case approach at its core,
in microeconomics the mainstream approach is average-case analysis. In the context
of auctions, this means that buyers’ values for different resources are assumed to
come from known prior distributions. These priors are hard-coded into the auction
in order to maximize the expected revenue from selling the resources. For example, if
the known distribution tells us that a potential buyer’s value for an item is likely to
be high, the auction we design will charge a high price – how high exactly depends on
the details of the distribution.

The assumption of distributional knowledge has all the usual downsides of the
average-case approach, like being overly brittle to noise. Of course, the worst-
case approach has its own downsides like being overly pessimistic. The premise
of this chapter is that auctions offer a fascinating meeting place for the average-
case economics approach and the worst-case computer science approach. In par-
ticular, auctions and other economic mechanisms are a natural testbed of what the

586

PRIOR-INDEPENDENT AUCTIONS

algorithmic worst-case approach can contribute to other disciplines, e.g., in making
various designs more robust or explaining the prevalence of simple designs in
practice; and also of its limitations and how it can be made more suitable for practical
applications by drawing closer to average-case analysis.

This chapter is organized as follows. Section 27.2 is a “crash course” in Nobel lau-
reate Roger Myerson’s theory of revenue-optimal auctions (which the familiar reader
can safely skip). Section 27.3 defines prior-independence – a par excellence example
of the semirandom models of Part III. Section 27.4 applies prior-independence to
Myerson’s theory. Section 27.5 tackles the much more challenging goal of maximizing
revenue from selling several different items, to which Myerson’s theory no longer
applies – luckily resource augmentation (Chapter 4) comes to the rescue. Section 27.6
summarizes.

27.2 A Crash Course in Revenue-Maximizing Auctions

The Basic Problem There is a single item for sale and a set of n bidders participating
in an auction for the item. Every bidder i has a value vi ∈ 9≥0 for winning the
item, which is privately known only to the bidder herself. This value is distributed
according to a distribution Fi with positive density fi,1 and is reported (not necessarily
truthfully) to the auctioneer as a bid for the item. There are usually two primary
objectives when designing an auction: The first is social welfare, that is, the total
value bidders gain from the auction (in our simple setting, if the item goes to bidder
i then the welfare is vi). The second is revenue, that is, the total payments the bidders
transfer to the auctioneer (in our setting, what the winner of the item pays for it).
An auction is carried out as follows: The auctioneer receives bids &b = (b1, . . . ,bn)

from the n bidders, applies an allocation rule x to the bids to decide how to allocate
(in our setting, xi(&b) ∈ {0,1} indicates whether or not bidder i is allocated the item),2

and a payment rule p to decide how much to charge (where pi(&b) is the payment of
bidder i). An auction is thus an algorithm that gets value-bids as input, and returns an
allocation and payments as output, with the goal of maximizing welfare or revenue.

Truthfulness The “twist” in designing auctions compared to other algorithms is
that the values are reported by strategic bidders, who will not report truthfully
unless it’s in their best interest. This poses a challenge: For example, for the goal
of maximizing welfare, how would you bid in an auction where the item was given
for free to the highest bidder? Indeed, you have a strong incentive to bid much higher
than your true value for the item! How can the auctioneer find the bidder with the
highest value if auction participants have an incentive to overbid to increase their
chances of winning? An auction is (dominant-strategy3) truthful if for every i, no
matter what the others bid, bidder i is (weakly) better off bidding her true value
than over- or underbidding. A convenient notation for the vector of bids of all other
bidders but i is b−i. Using this notation, we can write bidder i’s utility from bidding vi
as vi ·xi(vi,b−i)−pi(vi,b−i). Truthfulness means this utility is at least as high as bidder

1 Extensions to discrete distributions are known.
2 An allocation can also be randomized, in which case xi(&b) ∈ [0,1] represents the probability with which

bidder i is allocated the item.
3 A weaker requirement than dominant-strategy truthfulness is Bayesian truthfulness, which we return to

briefly in Section 27.5.

587

I. TALGAM-COHEN

i’s utility vi · xi(b′
i,b−i) − pi(b′

i,b−i) if she were to bid b′
i �= vi. The goal of much of

the theory of auction design is to get truthful auctions with good welfare or revenue
guarantees. From now on we shall focus on truthful auctions and assume that bidders
report their values (i.e., bi = vi for every i); a discussion of this assumption appears
in Section 27.3.1.

27.2.1 Welfare Maximization: The Second Price and VCG Auctions

The problem of designing a truthful auction that maximizes social welfare was solved
by Vickrey in 1961. The high-level idea is to use the payments to align the interests of
the bidders with those of society. The resulting auction for our single-item setting is
very simple: Upon receiving the reported values &v, the allocation rule gives the item
to a bidder who values it the most (i.e., bidder i∗ = arg maxi{vi}), and charges the
second-highest bid as the item’s price. This is called the second price auction. For
example, if three bidders bid &v = (5,8,3) for an item, then the second bidder wins
and pays 5. Intuitively, neither the winner nor losers can gain by bidding higher or
lower than their true value, and indeed the second price auction is truthful. Better
yet, Vickrey’s auction can be generalized beyond a single item to multiple items.
The generalization is called the VCG auction, after Vickrey, Clarke and Groves. In
the generalization, items are partitioned among bidders in a way that maximizes
welfare.4 Each bidder is charged her “externality”on the others (i.e., their lost welfare)
caused by her participation in the auction. Notice that for a single item, the winner’s
externality on the second-highest bidder is precisely this bidder’s loss from not being
the winner herself, i.e., the second-highest value.

27.2.2 Worst-Case Revenue Maximization

So far, the modeling assumption that vi is drawn from a distribution Fi played no part
in our account. Vickrey’s second price auction allocates based only on the reported
value profile of the bidders, ignoring the distributions and always choosing the bidder
with the highest value as winner. The second price auction thus maximizes welfare
pointwise, i.e., for every realization of the random values. This ensures worst-case
optimality: the auction is guaranteed to maximize welfare for every instance (value
profile) of the problem.

Unfortunately, trying to apply the same approach to maximizing revenue rather
than welfare is doomed to failure – there is no truthful auction that is worst-case
optimal, or even approximately so, for revenue.5 To see this consider the simplest
possible setting with a single bidder interested in the item. Intuitively, all an auction
can do to raise revenue is set a take-it-or-leave-it price for the item, which can’t depend
on the bidder’s reported value (to maintain truthfulness). Setting the price to zero is
clearly not worst-case optimal, and for any auction that sets a price p > 0, there is
a worst-case instance on which this auction gets zero revenue (e.g., let the bidder’s
value be v = p − ε). It thus seems to make sense to switch from the worst-case
approach to the average-case one, in which the goal is to maximize expected revenue

4 One caveat is that this allocation task is in general computationally intractable.
5 One alternative suggested in the literature in order to stay in the worst-case regime is competitive analysis

of online auctions.

588

PRIOR-INDEPENDENT AUCTIONS

over the values’ randomness. The average-case approach is indeed the standard one
in the economics literature on revenue-maximizing auction design.

27.2.3 Average-Case Revenue-Maximization and Myerson’s Theory

For a single item, Myerson solved the problem of designing a truthful auction that
maximizes expected revenue in 1981. As discussed above the optimal auction must
depend on the value distributions F1, . . . ,Fn. The design thus relies on an extra
assumption of full distributional knowledge.

In what follows we ignore for simplicity distributions that are “irregular” (e.g.,
distributions that are “too long-tailed” or bimodal; a formal definition of regularity
appears in the text that follows). Essentially what Myerson shows is that the depen-
dence of the optimal auction on the distributions is very specific – they are used to
transform the values into new ones called virtual values, by subtracting from each
value a distribution-dependent “penalty” called the information rent. Once we have
the virtual values, the allocation rule proceeds by simply maximizing welfare over
these new values. In the remainder of the section we give the details of Myerson’s
theory.

Myerson’s Lemma Myerson’s first contribution, which we refer to as Myerson’s
Lemma, is a characterization of truthful auctions for the single-item case. It turns out
that truthful auctions are precisely those which allocate “monotonically in values,”
and charge according to a unique payment rule whose formula depends only on the
allocation rule (provided that bidders who bid zero are not charged). By “allocating
monotonically” we mean that for every bidder i and values v−i of the other bidders,
bidder i’s allocation xi(bi,v−i) is nondecreasing in her bid bi. Intuitively, if bidding
higher lowers your allocation, you will want to bid lower than your true value,
violating truthfulness; Myerson shows that monotonicity is not only necessary but
also sufficient, and that once a monotone allocation rule has been fixed, the payments
are in effect fixed as well (so we never have to worry about designing payments!).

Application to a Single Bidder Let’s now use Myerson’s characterization to find
the optimal auction (pricing mechanism) for the single-bidder case. We focus for
simplicity of exposition on deterministic allocation rules.6 So a monotone allocation
rule must assign 0 (“lose”) to all values up to a certain threshold p, and 1 (“win”)
to all values above the threshold. This is equivalent to presenting the bidder with a
price p for the item, and letting her decide whether or not to purchase at this price. We
wish to optimize p for expected revenue given the bidder’s value distribution F . The
expected revenue given price p is p(1−F(p)), since 1−F(p) is precisely the probability
that the bidder’s value is at least p i.e. she purchases the item.

For simple, regular distributions F , we can maximize the expression p(1 − F(p)) –
which we refer to as the revenue curve in value space – by taking the derivative (1 −
F(p))− pf (p) and setting it equal to zero. We get that the optimal price p∗, known as
the monopoly price of F , is the solution to p − 1−F(p)

f (p) = 0. This essentially concludes
the single-bidder case. We now give another interpretation of this solution that will
be helpful in the multibidder case.

6 One of the conclusions from Myerson’s theory is that randomization cannot help extract more expected
revenue than deterministic auctions when selling a single item.

589

I. TALGAM-COHEN

Regularity and Virtual Values Call v − 1−F(v)
f (v) the virtual value corresponding to

value v drawn from distribution F . The information rent 1−F(v)
f (v) is subtracted from the

value and so the virtual value may be negative.7 We can now formally define regularity
of a distribution F as the assumption that the virtual value function corresponding
to F is (weakly) increasing in v. The uniform, Gaussian and exponential distributions
are all examples of regular distributions. Long-tailed distributions like F(v) = 1− 1√

v
,

as well as bimodal distributions, are irregular.
Using the language of virtual values, the auction we ended up with in the single-

bidder case maximizes the “virtual welfare” – i.e., the welfare with respect to the
virtual value – since it allocates to the bidder iff her virtual value is ≥ 0. In the single-
bidder case, we conclude that maximizing the virtual welfare is precisely what’s needed
in order to maximize the expected revenue. In fact, the revenue from the bidder is
equal in expectation to her virtual value.

Multiple Bidders and the I.I.D. Assumption Myerson shows that in the multi-bidder
case, the same principle holds, and maximizing the virtual welfare (coupled with the
unique payment rule coming from Myerson’s Lemma) yields the optimal auction. In
fact, the expected revenue of any auction is equal to the expected virtual welfare it
induces by its allocation rule.

Perhaps the neatest conclusion from Myerson’s theory is what auction to run when
the bidder values are i.i.d., that is, all drawn independently from a single (regular)
distribution F : In this case, we can skip the transformation to virtual values, since
all values would be transformed using the same monotone transformation. We need
only set a threshold such that no bidder with value below the threshold (read: virtual
value below zero) can win. The optimal auction thus boils down to simply the second
price auction with the monopoly price of F set as reserve price.8 This is in fact a well-
known auction format in practice, used for example on eBay. The i.i.d. case will play
a big role in our account on prior-independence.

Takeaway An important takeaway from the discussion of Myerson’s theory in this
section is that the revenue-optimal auction is highly dependent on the value distributions
and their knowledge. In general, the distributional information is used to figure out
the precise penalty to subtract from every value in order to get the virtual values. Even
in the simple single-bidder or i.i.d. cases, the optimal reserve price closely depends on
the distribution.

Beyond a Single Item Unfortunately, the elegant theory of optimal auctions
developed by Myerson does not extend (at least not in its simple and clean form)
to settings in which buyers have different values for different items. Such settings
are formally called multiparameter settings, since their complexity stems from the
preferences of the bidders being multidimensional rather than from the multiplicity
of items per se.9 In this chapter for simplicity we shall refer to such settings as multiple
item (multi-item) settings, to differentiate them from the single item setting discussed
so far. We address the complication introduced by multiple items (multidimensional
values) in Section 27.5.

7 This subtracted “penalty” is the inverse of what’s known as the hazard rate of distribution F .
8 A reserve price is the lowest price at which the auctioneer is willing to sell.
9 Myerson’s theory does extend to all single-parameter settings, such as settings with multiple identical units

of the same item for sale.

590

PRIOR-INDEPENDENT AUCTIONS

27.3 Defining Prior-Independence

A long-time goal of auction design has been to weaken the strong informational
assumptions on which revenue-optimal auctions rely. Robustness with respect to
distributional knowledge has been advocated across disciplines: In economics, Robert
Wilson famously called for the weakening of auctions’ dependence on the details of
the economic environment, a position that has become known in the field as “Wilson’s
doctrine.” In operations research, Herbert Scarf wrote in 1958 that we “have reason
to suspect that the future demand will come from a distribution which differs from
that governing past history in an unpredictable way.” And in computer science, the
discipline’s general mistrust of average-case solutions (see Chapter 8) immediately
extended to auction design.

But what exactly is robustness? Informally, what designers seek is auctions that
have performance guarantees that are insensitive to the environment details, i.e.,
“perform well”for a “large range”of economic environments. We now formally define
the robustness notion of prior-independence.

Definition We focus for simplicity on the single item case with i.i.d. values. Consider
first a particular distribution F from which the bidders’ values are independently
drawn. Let OPTF be the optimal expected revenue that a truthful auction, which
has full knowledge of F , can achieve in this environment, and let α ∈ (0,1] be
an approximation factor. An auction is α-optimal with respect to F if its expected
revenue is at least αOPTF (so far this is the usual notion of approximation used in
algorithms). Now let F be a family of value distributions, called priors. In particular,
we shall focus on the family of distributions which satisfy the regularity property of
virtual value monotonicity.

Definition 27.1 (Prior-Independence) An auction is robustly α-optimal with
respect to the family of priors F if for every prior F ∈ F , the auction is
α-optimal with respect to F .

Definition 27.1 fills with content the informal terms used earlier to describe
robustness: For a prior-independent auction to “perform well,” it must achieve
expected revenue that approximates the optimal expected revenue simultaneously for
every distribution in class F ; the “large range” of distributions is usually the class of
all regular distributions. The definition extends naturally to multi-item settings.

27.3.1 Discussion of the Definition

The definition of prior-independent robustness is an interesting mixture of average-
and worst-case guarantees. On one hand, performance is measured in expectation
over the random input (value profile); on the other, it is measured in the worst case
over all distributions that belong to a class F .

What are the rationales behind the definition of prior-independent robustness?
In particular, why measure whether a robust auction has good performance by
comparing it to the optimal auction with the “unfair” advantage of knowing the right
distribution from F ? And given this measure, why take F to be the set of regular
distributions? This can be split into two subquestions: First, why not take F to be
even bigger? On the other hand, why allow F to encompass such a large range of
distributions?

591

I. TALGAM-COHEN

We begin by addressing the question of why prior-independence is a good idea as
a design goal. The first reason is that existence of good prior-independent auctions
according to Definition 27.1 is a powerful and useful result. An auction that performs
well for all “reasonable” distributions is perfect for situations in which the seller has
little to no information about the actual value distribution, such as a newcomer seller
entering the market, a new item on the market, or an item whose distribution is
constantly shifting. In other cases, the seller may be able to obtain some information
regarding the value distribution, but at a prohibitively high cost or subject to sub-
stantial noise. Even assuming the seller somehow has reliable, affordable and up-to-
date information on the value distribution, hard-wiring it into the auction can harm
flexibility, since once an auction becomes the market standard it is not easy to make
changes. A second important reason to set prior-independence as a design goal is
that as it turns out, it often leads to auctions with a simple and natural format. Prior-
independence thus gives a theoretical foundation for well-known auction formats and
introduces promising new ones.

A Regularity-Type Assumption on F Is Necessary and Sufficient The following
example taken from (Dhangwatnotai et al., 2015) demonstrates the necessity of some
kind of tail-restricting assumption on the class F ; regularity is a canonical example
of such an assumption. Fix a number n of i.i.d. bidders. Consider an irregular
value distribution Fz, with probability 1/n2 for value z and probability 1 − 1/n2 for
value zero. An auction with access to the prior distribution Fz can extract expected
revenue of �(z/n) from the n bidders whose values are drawn from Fz. In contrast,
any prior-independent truthful auction essentially has to guess the value of z, since
using the winning bidder’s bid violates truthfulness and all other bids are likely to be
zero (therefore providing no information about z). The conclusion is that absent a
tail assumption, a prior-independent auction’s expected revenue cannot be within a
constant factor of z/n simultaneously for every Fz.10

On the other hand, the class F of regular distributions is not “too big”: The results
presented in this chapter show that the regularity assumption is sufficient to achieve
a constant approximation to the ambitious benchmark of OPTF , even in challenging
environments like multi-item settings, for which optimal auctions remain elusive.

Alternative BWCA Models A natural alternative approach to robustness would
be, rather than to approximate the optimal auction for every distribution in F , to
design an auction that maximizes the minimum expected revenue, where the minimum
is taken over all distributions in F . This approach is called robust optimization in
the operations research literature (Bandi and Bertsimas, 2014), and has also been
pursued in the context of auctions and mechanism design by economist Gabriel
Carroll and others.

The prior-independence and max-min approaches are incomparable and both have
already led to interesting insights. For prior-independence, notable successes in iden-
tifying natural and interesting mechanisms have been through either approximation
or resource augmentation. Note that the smaller class F is, the easier it is to achieve
a prior-independence result. For max-min, however, some of the most meaningful
and interpretable results to date have been through characterizing the mechanism
that achieves the exact maximum (where the minimum is over a judicious choice of

10 There are alternative tail assumptions to regularity that work too; e.g., Sivan and Syrgkanis (2013) show
prior-independence results for convex combinations of a small number of regular distributions.

592

PRIOR-INDEPENDENT AUCTIONS

distributions F). Note that if F is too small, achieving an exact max-min result can
become very challenging. For example, with multiple items, if F contains only a single
distribution then the max-min mechanism is the revenue-optimal one for multiple
items, which is known not to have a useful characterization. Interestingly, in either of
the approaches, typically to single-out natural and interesting mechanisms, the class
F should exhibit sufficient richness.

Another alternative BWCA model to prior-independence is that of prior-free
auctions. The prior-free approach makes no assumption that values come from an
underlying (albeit unknown) distribution, and is thus fundamentally different from
prior-independence. Yet there are interesting connections among the two approaches.
In particular, prior-free analysis that evaluates mechanisms with respect to an eco-
nomically meaningful benchmark will yield a prior-independent result as a corollary
(see Hartline [2019a] for the definition of “economically meaningful”). Also, some
techniques are relevant to both approaches, like that of randomly dividing the
bidders into two and using one group as a “training set” to learn auction parameters
applicable to the other (Balcan et al., 2008). This is similar in spirit to the single-
sample methods in Sections 27.4.2 and 27.4.3, which use one bidder as a “training
sample” to learn a reserve price applicable to the others. Of course, prior-free
guarantees are more demanding than prior-independent ones (since less is assumed),
and accordingly have less reach at the moment for settings such as multiple items.

A Note on Truthfulness In our discussion in Section 27.2 of revenue maximization,
we focused on truthful auctions. Truthfulness is an important property of auctions
in itself – it simplifies participation, thus drawing more competition and leveling the
playing field among sophisticated and naïve bidders. For optimal auction design it
is remarkably without loss of generality due to a fundamental observation known
as the revelation principle, by which a truthful mechanism can simulate the bidders’
equilibrium strategies in a nontruthful mechanism to obtain the same outcome.
Feng and Hartline (2018) note that in Bayesian settings where the agents’ equi-
librium strategies are a function of the prior, the Bayesian truthful mechanism (a
weaker truthfulness guarantee than dominant-strategy) which is constructed via
the revelation principle is not prior-independent. They show a gap between the
robust approximate optimality of nontruthful mechanisms versus that of truthful
mechanisms in welfare-maximization settings with budgeted bidders. Existence of a
similar gap in revenue-maximization settings is left as an open question.

27.4 Sample-Based Approach: Single Item

In the era of big data, not having knowledge of a bidder’s value distribution F may
sound like a solvable problem – simply obtain sufficiently many samples, e.g., by
interacting with other bidders of the same population (see also Chapter 29). This
requires assuming the existence of a population of bidders with the same value
distribution so that we can learn about the distribution of one bidder’s value from
the values of others. Indeed, such an assumption of i.i.d. values seems necessary
to get positive prior-independence results. However, relying on large amounts of
data is far from ideal in the context of auctions, as we discuss in Section 27.4.1.
The main goal of this section is to minimize the required number of samples as
much as possible, starting from as little as a single sample from the unknown
distribution F (Sections 27.4.2 and 27.4.3). Clearly with so few samples, the empirical

593

I. TALGAM-COHEN

distribution will not in general resemble the ground truth one. This differentiates the
computer science approach from previous efforts in economics, which typically rely
on asymptotically large markets (e.g., Segal, 2003). We discuss a general measure of
sample complexity in Section 27.4.4, and finish with lower bounds in Section 27.4.5.

27.4.1 How to Get Samples

Limitations on the Number and Nature of Samples As pointed out by Hartline (2019b),
optimal auction design is probably most important in “thin” markets, i.e., markets in
which there aren’t many competitors for the item on sale, and thus insufficient past
data. This could result from the nature of the item (say a unique modern art painting),
or from deliberate targeting of a small set of bidders for whom the item is particularly
well suited (as done in the online ad market). In thick markets we could easily obtain
many samples, but the folklore wisdom is that the auction format matters less in such
markets (for example, bidders may not be able to effectively strategize regardless of
the auction’s truthfulness, since every bidder’s action has very little influence on the
outcome).

Another issue with relying on past data is that once repeated players realize that the
seller is learning how to extract revenue from their bids, they have incentive to report
untruthfully in order to gain in the long run. There is a growing literature on learning
in the presence of strategic behavior, usually requiring behavioral assumptions on the
bidders that are outside the scope of this chapter. Tang and Zeng (2018) abstract away
from such assumptions, considering instead the equilibria of distribution-reporting
games in which the distributions are endogenously reported by the bidders. They show
that prior-dependent auctions are inferior to prior-independent ones when bidders
are strategic about the distributions their bids reflect, a finding they dub as price of
prior-dependence. If the setting is not a repeated one (imagine, e.g., tickets to a one-
time event), long-run strategic behavior is less of an issue. But now there is no past
data whatsoever.

Using Extra Bidders as Samples In light of the preceding discussion, we shall often
assume that the samples come from the bidders themselves. That is, we randomly
choose one (or more) of the bidders to excuse from the auction, in which case
reporting truthfully becomes a dominant strategy for them. We then use these truthful
reports as samples from F .

While providing invaluable information, throwing away bidders also loses a certain
fraction of expected revenue. The following lemma shows a bound on how much
expected revenue is lost:

Lemma 27.2 In a single-item setting where the bidders have i.i.d. values, consider
the optimal expected revenue OPT as a function of the number of bidders. Then
OPT(k) ≥ k

k+�
OPT(k + �) for every pair of integers k,� > 0.

Lemma 27.2 can be interpreted as saying that the optimal expected revenue
is subadditive in the number of bidders. We leave its proof as an exercise (see
Exercise 27.1). Applications of Lemma 27.2 include showing that if we start out with
a certain number of bidders, say n = 2, and throw out one of the bidders at random,
we lose no more than 1/2 of the optimal expected revenue. It can also be applied to
analyze the revenue effects of investing marketing efforts in recruiting extra bidders
to the auction, then using the extras as data samples.

594

PRIOR-INDEPENDENT AUCTIONS

27.4.2 Single Bidder, Single Sample

Recall from Section 27.2 that the optimal auction for a single bidder and known
distribution F maximizes the expected revenue p(1 − F(p)) by offering the item at
monopoly price p∗. For regular F , p∗ is the value at which the corresponding virtual
value becomes zero. Now assume we no longer know F but have access to a single
sample p ∼ F . A natural thing to try is to simply set the item’s price to be this
sample p. It turns out that this method achieves in expectation at least half of the
optimal expected revenue. In this section we establish this result using a geometric
proof by Dhangwatnotai et al. (2015).

Proposition 27.3 Consider a single bidder with value drawn from F. Let F be a
regular distribution and let p∗ be its monopoly price. Then using a random price
achieves half of the optimum in expectation: Ep∼F [p(1−F(p))] ≥ 1

2 p∗(1−F(p∗)).

Equivalent Definition of Regularity For simplicity we assume throughout this
section that F is continuous and has bounded support (the proof of Proposition 27.3
can be extended beyond these assumptions). In the proof below it will be convenient
to use an alternative definition of regularity as follows.

Recall that regularity means that the virtual value function v − 1−F(v)
f (v) is (weakly)

increasing in v. Recall also that in Section 27.2.3 we referred to v(1 − F(v)) as the
“revenue curve in value space.” We now switch to an equivalent, more convenient
formulation for our purpose, which takes place in quantile space. The idea is that
while the expected revenue can be represented as a function of the price p, where p
ranges over all possible values, it can also be represented as a function of the quantile
of the price, i.e., q = 1 − F(p). The quantile q of p ranges between 0 and 1 and tells
us what fraction of the population would purchase at price p. We denote by R(q) the
expected revenue as a function of the quantile q (also known as the revenue curve in
quantile space). For example, R(0.5) is the expected revenue if the price is set to be
the value at quantile 0.5 – i.e., the median – so that a random bidder would purchase
with probability 0.5.

We can now state the alternative definition of regularity: A distribution is regular if
and only if its revenue curve in quantile space R(q) is a concave function of q. To verify
this one can check that the slope R′(q) of the revenue curve at q is precisely the virtual
value corresponding to the value v = F−1(1 − q). We shall use this characterization
in the following proof.

Proof of Proposition 27.3 Consider the revenue curve of F in quantile space.
We can assume without loss that the lowest value in F ’s support is zero (this is
the hardest case). Thus at the extreme quantiles 0 and 1, the expected revenue
is zero (by definition nobody buys at quantile 0, and by assumption everybody
buys but pays nothing at quantile 1). We plot the revenue curve in Figure 27.1.
Due to regularity of F , the curve is concave. We now use this figure to visualize
the two quantities we need to relate in order to prove the proposition.

The optimal expected revenue benchmark p∗(1 − F(p∗)) can be written as
R(q∗), where q∗ is the quantile of p∗. Geometrically, it is the area of the rectangle
in the figure (since this rectangle’s width is 1, and its height is R(q∗)). As for the
expected revenue Ep∼F [p(1 − F(p))] from setting a randomly-drawn price, we

595

I. TALGAM-COHEN

Figure 27.1 Geometric proof of Proposition 27.3.

can rewrite this as Eq∼U [0,1][R(q)]. This is because randomly choosing a price
according to the value distribution F is equivalent to choosing a quantile q
uniformly at random and then taking the price F−1(1−q) that corresponds to it.
Geometrically, Eq∼U [0,1][R(q)] is the area under the revenue curve in Figure 27.1.

To relate these two areas as required, we simply use the concavity of the
revenue curve: By concavity, the triangle depicted in Figure 27.1 has area not
greater than that under the curve. As its area is exactly half that of the rectangle,
this completes the proof. �

The guarantee in Proposition 27.3 is tight: Consider the regular distribution F on
the range [0,H] where F(v) = 1− 1

v+1 for every v ∈ [0,H) and F(H) = 1. As H → ∞,
the revenue curve in quantile space for this distribution is essentially a triangle, and
so the analysis in the proof of Proposition 27.3 is tight.

27.4.3 Multiple Bidders, Single Sample

In this section we build upon Proposition 27.3 from the previous section, in order to
design a prior-independent auction for multiple bidders that is robustly approximately
optimal. A slightly more general version of Proposition 27.3 establishes that under
the same conditions and for every threshold t ≥ 0, setting the maximum of t and a
sample p ∼ F as the bidder’s price achieves a 1

2 -approximation to setting the price
to the maximum of t and the monopoly price p∗ (Exercise 27.2). This can be used
to establish that the following prior-independent auction, called the single sample
auction, is robustly n−1

2n -optimal where n is the number of bidders.

Algorithm 27.4 The single sample auction has the following allocation rule:
(1) Pick a “reserve” bidder i uniformly at random. (2) Run the second-price
auction among the non-reserve bidders; let i∗ be the tentative winner and let t
be the second-highest bid. (3) Allocate the item to i∗ if and only if vi∗ ≥ vi.
The payment rule from Myerson’s Lemma says that if i∗ is allocated she pays
max{t,vi}.

The single sample auction is clearly prior-independent as its allocation rule is
defined with no mention of the value distributions. It is also not hard to verify its
truthfulness using Myerson’s Lemma. Its performance guarantee is as follows:

596

PRIOR-INDEPENDENT AUCTIONS

Theorem 27.5 For every single-item setting with n ≥ 2 i.i.d. bidders, the single
sample auction is robustly n−1

2n -optimal with respect to regular distributions.

Theorem 27.5 follows by first applying Lemma 27.2 to bound the loss from
step (1) of the single sample auction, guaranteeing that a factor of n−1

n of the
optimal expected revenue is maintained, then applying the generalized version of
Proposition 27.3 with random price p = vi and threshold t to bound the loss from
steps (2) and (3) by another 1

2 -factor. The tightness of the guarantee in Theorem 27.5
is discussed shortly (Section 27.4.5).

We end this section by remarking that the single sample auction has also been
extended to multiple samples – the generalized version is called the “empirical revenue
maximization (ERM)”auction11 – as well as to multiple items by Devanur et al. (2011)
and Goldner and Karlin (2016).

27.4.4 Multiple Samples: Sample Complexity

The term sample complexity is borrowed from machine learning; in the context of
auctions its study was initiated by Cole and Roughgarden (2014) (see also early
works like (Elkind, 2007; Balcan et al., 2008), from which certain sample complexity
results can be derived). The sample complexity of a family of settings measures
how many samples from the prior distribution are needed in order to achieve, with
high probability, expected revenue that is close up to a given multiplicative factor
(often, 1 − ε) to the target optimal expected revenue (when the distribution is
known). Of course, the number of samples needed will grow with the inverse of the
precision parameter ε; it is interesting to understand what else it depends on.12 The
sample complexity is an information theoretic measure, related but separate from the
question of tractably learning from samples (this is another way in which the study
of sample complexity diverges from the concrete prior-independent auctions we saw
in previous sections).

There have been two main approaches in the literature to bounding the sample
complexity, summarized nicely by Guo et al. (2019) (see references within). The first
is to consider a class (“ε-net”) of auctions, such that for every setting in the relevant
family of settings, there always exists an approximately-optimal auction in the class.
VC-like learning dimensions from statistical learning theory can then be applied to
measure the complexity (or simplicity) of the auction class, telling us how many
samples are needed to find the best auction in it.

An alternative approach, closer in spirit to the single sample method described
in Sections 27.4.2 and 27.4.3, is to learn enough about the distributions to obtain
an auction with approximately optimal expected revenue. The difference from the
single sample approach is that the approximation factor is required to be very close
to 1. Often the goal is to learn a small set of statistics, for instance sufficiently many
quantiles, which are relatively easy to estimate accurately via standard concentration

11 ERM maximizes revenue given the empirical distribution, i.e., the uniform distribution over the samples.
For example, for a single bidder, the ERM auction sets the price to be the monopoly price of the empirical
distribution, which for a single sample is simply the sample itself.

12 For example, with multiple nonidentically distributed bidders, the number of samples required from every
distributions turns out to depend polynomially on the total number of bidders.

597

I. TALGAM-COHEN

inequalities, and sufficiently robust such that estimation errors don’t harm revenue
too much. For example, in the single item, single bidder case, it turns out that
�(log H) empirical quantiles suffice for a close-to-1 approximation when the support
of the distribution is bounded by H, even without regularity.

We remark that sample complexity has also been studied for the challenging
case of multiple items, largely focusing on information-theoretic rather than con-
structive results (for a single item, many of the most recent results are in fact
constructive).

27.4.5 Lower Bounds and Tightness

We discuss lower bounds for the single item case, which has been the main focus of
this section. There are three kinds of lower bounds, corresponding to the three types
of results we have seen: (1) Robust approximation guarantees with a given number
of samples (Proposition 27.3); (2) Robust approximation guarantees with a given
number of i.i.d. bidders (Theorem 27.5); (3) Guarantees on the number of samples
that suffice to obtain robust (1 − ε)-optimal auctions (Section 27.4.4).

For (1), Fu et al. (2015) show that with a single sample, while no deterministic
auction can do better than 1

2 , a randomized one can break the 1
2 barrier. For (2),

given n ≥ 2 i.i.d. bidders, simply running the second-price auction with no reserve
achieves an approximation factor of n−1

n (we further discuss this approach of running
the welfare-maximizing auction with sufficient competition in Section 27.5). However
the n−1

n factor is not tight: in the special case of n = 2 bidders, Fu et al. (2015)
show a prior-independent randomized auction with a guarantee of 0.512; Allouah
and Besbes (2018) show that no auction can guarantee more than 0.556. Finally,
for (3), the recent cutting-edge sample complexity results for a single item are all
asymptotically tight up to polylogarithmic factors. For example, in (Guo et al., 2019)
there is a lower bound of �(nε−3) samples if the prior distribution is regular, and
they show a matching upper bound (up to polylogarithmic factors).

27.5 Competition-Based Approach: Multiple Items

We now shift our attention to settings with multiple different items. For such settings
Myerson’s theory no longer holds, and designing optimal auctions even given full
distributional knowledge becomes a challenging task.13

A way to approach the multi-item challenge – one which we shall not pursue
in this section – is to focus on simple, approximately optimal auctions. These have
been developed for many families of multiple-item markets in recent years. To make
these auctions prior-independent, the “market analysis on the fly” methods from the
previous section can be applied. The constant-fraction losses in expected revenue
by the prior-dependent auctions are of course inherited by their prior-independent
counterparts.

To avoid such losses, in this section we explore an alternative approach along the
lines of resource augmentation (Chapter 4). Note that the model in this section is

13 Indeed, even for a single bidder and two items, revenue-optimal auctions involve various complexities
such as intricate menus of lotteries.

598

PRIOR-INDEPENDENT AUCTIONS

still a semi-random one, because the bidders’ values are still assumed to be drawn
from unknown prior distributions. What are the advantages of combining these
two models?

Combining the Semirandom and Resource Augmentation Models Recall that a main
source for samples came from “throwing away” part of the demand-side of the
market. Given that we are throwing away bidders who, besides being able to provide
us with samples from the distributions we’re interested in, also have purchasing power
and willingness to pay for the items, is this the best way to use these extra bidders?
Another idea would be to view extra bidders as increasing the competition for the
items on the market. Intuitively, competition drives up revenue naturally, reducing
the need to design careful pricing or lotteries. In fact, we can use the extra bidders
to get revenue that is competitive with the optimal expected revenue benchmark –
without extra bidders and with known distributions (this is the same benchmark
approximated by the sample-based approach). This is achieved even while running
extremely simple auctions.

VCG The simple auction we mostly focus on is the welfare-maximizing VCG
auction. Recall from Section 27.2.1 that the VCG auction is a generalization of the
second price auction to multiple items. As in the second price auction, the allocation
rule of VCG partitions the items among the bidders in a way that maximizes the
social welfare, in this case the bidders’ aggregate value. The payment rule is not
quite as simple as charging the second highest bid, but it is the natural analog
for multiple items: each bidder is charged her externality (for a single item, the
winner’s externality on the second-highest bidder is precisely this bidder’s value). The
resulting VCG auction is deterministic, dominant-strategy truthful, and inherently
prior-independent. And while our first-order goal is revenue, as an extra bonus by
using VCG we get maximum welfare “for free.”

27.5.1 Competition Complexity

Warm-up: A Seminal Result from Microeconomics Bulow and Klemperer (1996) were
the first to establish positive results using the competition-based approach sketched
earlier. The main result in their paper is for a single item setting (they use Myerson’s
theory in their analysis):

Theorem 27.6 For every single item setting with n i.i.d. bidders whose values are
drawn from a regular distribution F, the optimal expected revenue is at most the
expected revenue from running the second price auction with n + 1 such bidders.

In other words, the second price auction with a single additional bidder is robustly
optimal. In the case of n = 1, Theorem 27.6 says that if we use the distribution-
dependent monopoly price to sell the item to a single bidder, we get weakly less
expected revenue than if we were to recruit a second bidder and run the second
price auction. The proof of Theorem 27.6 for this case of n = 1 follows from
Proposition 27.3, by observing that each bidder effectively faces a random price p
drawn from F .

Multiple Items How far can we push the competition-based approach of Bulow
and Klemperer (1996)? Consider complex settings with multiple items; is it always
enough to add to the original n bidders a constant, or at least finite, number of

599

I. TALGAM-COHEN

extra bidders in order for the VCG auction to surpass the benchmark of optimal
expected revenue for n bidders and known distributions? In other words, we seek
Bulow–Klemperer-style results of the form: “The revenue of the welfare-maximizing
auction with n+C i.i.d. bidders whose values are drawn from a regular distribution F
is at least as high in expectation as the optimal revenue with n such bidders.” If such
a statement holds for a family of auction settings, we call the smallest C for which
it holds its competition complexity (Eden et al., 2017). Competition complexity falls
under the resource augmentation umbrella, since we are comparing the performance
of a simple auction with extra resources (bidders) to that of a complex auction with
no extra resources.

Our Model We study the competition complexity of multi-item settings in the
following model, which generalizes the i.i.d. assumption to multiple items: Consider
m items, where each item j ∈ [m] is associated with a regular distribution Fj. We
assume that for every i ∈ [n], bidder i’s value vi,j for item j is drawn independently
from Fj.

It is left to specify how to extend item values to values for sets of items. Let
set function vi : 2[m] →9≥0 be bidder i’s valuation function. We consider two
cases, where vi is either unit-demand, or additive, for every bidder i. In the former
case, vi(S)= maxj∈S{vi,j}, and in the latter case, vi(S)=

∑
j∈S vi,j. As an illustrative

example, if the items are different desserts then a bidder on a low-sugar diet can be
modeled as having a unit-demand valuation – she will enjoy no more than one dessert.
A bidder who is not restricted by a diet can be modeled as additive, since she can
enjoy any number of desserts. Notice that in the former case, the welfare-maximizing
allocation is simply a maximum-value matching, and in the latter case the welfare-
maximizing allocation simply gives every item to the bidder who values it most.

27.5.2 Unit-Demand Bidders

In this section we analyze the competition complexity of settings with n unit-
demand bidders and m items. The first competition complexity results for multiple
items were obtained by Roughgarden et al. (2019), demonstrating that the classic
approach of Bulow and Klemperer (1996) is useful in more complex settings than
previously realized. The benchmark used by Roughgarden et al. (2019) is the optimal
deterministic auction, the expected revenue of which – in the unit-demand context –
is up to a small constant fraction away from the optimal randomized auction. The
restriction to a deterministic benchmark will be relaxed in Section 27.5.4.

Theorem 27.7 For every setting with n unit-demand bidders and m items whose
distributions F1, . . . ,Fm are regular, the optimal expected revenue by a determin-
istic truthful14 auction is at most the expected revenue from running the VCG
auction with n + m such bidders.

Theorem 27.7 extends Theorem 27.6 beyond m = 1, and shows that the VCG
auction with m additional bidders is robustly optimal. In the remainder of this section
we sketch the proof of Theorem 27.7 in three steps: upper-bounding the optimal
expected revenue, lower-bounding the expected revenue of the VCG auction, and
relating the two bounds.

14 In this section it is important that we are focusing on the optimal dominant-strategy truthful auction.

600

PRIOR-INDEPENDENT AUCTIONS

Proof Sketch The first part of the proof relies on achieving a sufficient understand-
ing of optimal auctions for multiple items to obtain a reasonable upper bound on
their revenue. While no simple closed-form descriptions of these auctions are known,
there has been great progress on the approximation front in recent years. One useful
bound was obtained for unit-demand bidders by Chawla et al. (2010):

Lemma 27.8 The optimal expected revenue of a deterministic truthful auction
with n unit-demand bidders and regular value distributions is upper-bounded by
the expected revenue from selling every item j by the second price auction to n + 1
bidders with i.i.d. values from Fj.

The second part of the proof uses a simple bound on VCG’s expected
revenue, which follows from charging the winner of an item her externality on the
others:

Lemma 27.9 Let U be the set of unallocated bidders allocated no items by VCG.
The expected revenue of the VCG auction is lower-bounded by

∑
j maxi∈U{vi,j},

i.e., by the sum over all items j of the highest value of a bidder in U for j.

The third part of the proof relates the two bounds by utilizing the fact that the
upper and lower bounds share a similar form. Fix an item j; the upper bound is
the expected second-highest among n + 1 values drawn independently from Fj; the
lower bound is the highest among n values of unallocated bidders for item j, where
bidders’ values for j are drawn independently from Fj. This is where the proof uses
the augmentation of the market with more bidders – in the augmented setting, only
m out of n+m bidders are allocated and so there are n unallocated bidders. However,
a dependency issue arises: conditioned on the event that a bidder is unallocated by
VCG, her value for item j is no longer distributed like a random sample from Fj. In
other words, the losers in the VCG auction are likely to have lower values. Luckily, in
unit-demand settings VCG allocates according to the maximum matching, and due to
combinatorial properties of such matchings, the only thing that can be deduced about
a losing bidder’s value for item j is that it is lower than the value of item j’s winner.
Thus, appropriate coupling arguments can relate item j’s expected contributions to
the upper and lower bounds, completing the proof.

27.5.3 Lower Bounds and Tightness

Before we turn to competition complexity for additive bidders, let’s briefly discuss
lower bounds.

Unit-Demand Theorem 27.7 is tight, as adding fewer than m extra unit-demand
bidders to the VCG auction may fail to guarantee the optimal expected revenue in
the original environment. Consider the special case of a single unit-demand bidder
(n = 1), and m items whose values are all drawn from a point-mass distribution
(and thus are identical). If no more than m − 1 additional bidders are added to the
original single bidder, each of the unit-demand bidders can get one of the m identical
items, and so there is no competition to drive up the revenue. In fact, in this particular
setting, the expected revenue achieved by the VCG auction with at most m (in total)
unit-demand bidders is zero.

601

I. TALGAM-COHEN

Additive Consider again the n = 1 case. We now argue that the best lower bound
on the extra number of additive bidders needed for the VCG auction to guarantee
the optimal expected revenue is �(log m) (compared to m for unit-demand).

Let the item distributions all be the regular “equal revenue”distribution F on range
[1,m2], where F(v) = 1 − 1

v for every v ∈ [1,m2) and F(m2) = 1. For sufficiently large
m, the optimal expected revenue from selling the items to the original single bidder
is �(m log m).15 Consider now the expected revenue of VCG with k extra bidders.
For additive bidders, VCG is simply a collection of m second price auctions, one per
item. Thus the expected revenue is m times the expected second price in a (k + 1)-
bidder auction with values drawn from F , which is k by direct calculation (omitted).
For mk to match the benchmark �(m log m), the number of extra bidders k must be
�(log m). This lower bound holds even if one is willing to lose an ε-fraction of the
optimal expected revenue (Feldman et al., 2018).

27.5.4 Additive Bidders

In this section we complete the picture of what’s known on competition complexity
by discussing settings with additive bidders and m items. For a single additive bidder,
Beyhaghi and Weinberg (2019) show that the lower bound from the previous section
is tight up to constant factors:

Theorem 27.10 For every setting with a single additive bidder and m items with
regular distributions F1, . . . ,Fm, the optimal expected revenue by a truthful16

auction is at most the expected revenue from running the VCG auction with
O(log m) additional bidders.

The proof follows the same general structure as that of Theorem 27.7, but the
bounds and the arguments relating them are significantly more intricate.

For n additive bidders, we get an interesting dependence of the competition
complexity on n: it is the minimum among O(n log m

n) and O(
√

nm) (where the former
is tight when n ≤ m). Like in sample complexity, understanding which parameters
factor into the competition complexity is one of the interesting insights that arise
from the study of such complexity measures for auction settings.

27.6 Summary

In this chapter we surveyed prior-independent auctions, a par excellence example
of a semirandom model: the objective is to maximize expected revenue, but the
distribution over which the expectation is taken is adversarial. We started out with
a single item, for which revenue-optimal auctions are well-understood. We saw what
can be achieved with very little information about the distribution in the form of
either a single sample or, better yet, a single additional bidder with the same value
distribution. With so little information about the unknown distribution, we naturally

15 This is achieved by bundling together all m items, whose expected value separately is �(log m) and so
together is concentrated around �(m log m).

16 In this section the competition complexity results hold even for the benchmark of the optimal Bayesian
truthful auction.

602

PRIOR-INDEPENDENT AUCTIONS

aim for approximation results. However losing a constant approximation factor has
its downsides, especially in economic context – e.g., companies usually would not be
willing to settle for half of the optimal revenue.

One solution is to draw closer to the economics approach of a known distribution,
by allowing the auction to learn a lot about the distribution rather than just a single
sample. This can be achieved by accessing multiple samples or multiple extra bidders,
and these two alternatives each have pros and cons. In particular, samples can be
obtained from past data even if additional bidders cannot be recruited. But with
extra bidders, the auction format becomes extremely simple and less open to strategic
behavior. Perhaps the biggest advantage of the resource augmentation approach
of extra bidders is that it does not lose an approximation factor compared to the
benchmark; this is the only approach so far that enables such an achievement.

Open Questions We conclude with three directions for future research. The entire
range between a single sample (or extra bidder) on the one hand, and an unlimited
number of samples (or bidders) on the other, is interesting and relevant for prior-
independence and has hardly been explored (see Babaioff et al. (2018) for a starting
point). Developing competition complexity bounds for multi-item settings beyond
unit-demand and additive presents new challenges (see Eden et al. (2017) for a
starting point). In addition to completely eliminating distribution dependence as
in prior-dependence, reducing such dependence is an important alternative that is
largely open. This comes in two flavors: assuming very limited knowledge of the
prior, e.g., just its mean; and allowing the auction to have a limited number of
distribution-dependent parameters (see Azar et al. [2013] and Morgenstern and
Roughgarden [2016], respectively, for starting points).

27.7 Notes

For an excellent book chapter with an in-depth exposition of prior-independent
auctions for mechanism designers, see (Hartline, 2019b). The interested reader is also
referred to the PhD theses of Yan (2012) and Sivan (2013) on different aspects of
prior-independence. Figure 27.1 is from Roughgarden (2017).

There are many extensions in the prior-independence literature to the results
appearing in the chapter, we give here several examples: Utilizing limited, parametric
knowledge on the prior distribution (Azar et al., 2013; Azar and Micali, 2013);
risk-averse bidders (Fu et al., 2013); interdependent bidders (Roughgarden and
Talgam-Cohen, 2016); bidders with nonidentically distributed values (Fu et al.,
2019); multiple items beyond additive or unit-demand bidders (Eden et al., 2017);
dynamic auctions (Liu and Psomas, 2018); other objectives like makespan minimiza-
tion in machine scheduling (Chawla et al., 2013); prior-independence for budgeted
agents and welfare (Feng and Hartline, 2018); irregular combinations of regular
distributions (Sivan and Syrgkanis, 2013); limiting supply instead of adding bidders
(Roughgarden et al., 2019).

Acknowledgments

This chapter has greatly benefited from the helpful and insightful comments of
Maria-Florina Balcan, Jason Hartline, Balasubramanian Sivan, Qiqi Yan, and
Konstantin Zabarnyi. Support by the ISRAEL SCIENCE FOUNDATION (grant
No. 336/18) and the Taub Family Foundation is thankfully acknowledged.

603

I. TALGAM-COHEN

References

Allouah, Amine, and Besbes, Omar. 2018. Prior-independent optimal auctions. In Proceedings
of the 19th ACM Conference on Economics and Computation (EC), p. 503.

Azar, Pablo Daniel, and Micali, Silvio. 2013. Parametric digital auctions. In Proceedings of
the 4th Innovations in Theoretical Computer Science Conference, pp. 231–232.

Azar, Pablo Daniel, Daskalakis, Constantinos, Micali, Silvio, and Weinberg, S. Matthew.
2013. Optimal and efficient parametric auctions. In Proceedings of 24th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 596–604.

Babaioff, Moshe, Gonczarowski, Yannai A., Mansour, Yishay, and Moran, Shay. 2018. Are
two (samples) really better than one? In Proceedings of the 19th ACM Conference on
Economics and Computation (EC), p. 175.

Balcan, Maria-Florina, Blum, Avrim, Hartline, Jason D., and Mansour, Yishay. 2008. Reduc-
ing mechanism design to algorithm design via machine learning. Journal of Computer and
System Sciences, 74(8), 1245–1270.

Bandi, Chaithanya, and Bertsimas, Dimitris. 2014. Optimal design for multi-item auctions: A
robust optimization approach. Mathematics of Operations Research, 39(4), 1012–1038.

Beyhaghi, Hedyeh, and Weinberg, S. Matthew. 2019. Optimal (and benchmark-optimal)
competition complexity for additive buyers over independent items. In Proceedings of
the 51st ACM Symposium on Theory of Computing (STOC), pp. 686–696.

Bulow, Jeremy, and Klemperer, Paul. 1996. Auctions versus negotiations. American Economic
Review, 86(1), 180–194.

Chawla, Shuchi, Hartline, Jason D., Malec, David L., and Sivan, Balasubramanian. 2010.
Multi-parameter mechanism design and sequential posted pricing. In Proceedings of the
42nd ACM Symposium on Theory of Computing (STOC), pp. 311–320.

Chawla, Shuchi, Hartline, Jason D., Malec, David L., and Sivan, Balasubramanian. 2013.
Prior-independent mechanisms for scheduling. In Proceedings of the 45th ACM Sympo-
sium on Theory of Computing (STOC), pp. 51–60.

Cole, Richard, and Roughgarden, Tim. 2014. The sample complexity of revenue maximiza-
tion. In Proceedings of the 46th ACM Symposium on Theory of Computing (STOC), pp.
243–252.

Devanur, Nikhil R., Hartline, Jason D., Karlin, Anna R., and Nguyen, C. Thach. 2011. Prior-
independent multi-parameter mechanism design. In Proceedings of the 7th Conference on
Web and Internet Economics (WINE), pp. 122–133.

Dhangwatnotai, Peerapong, Roughgarden, Tim, and Yan, Qiqi. 2015. Revenue maximization
with a single sample. Games and Economic Behavior, 91, 318–333.

Eden, Alon, Feldman, Michal, Friedler, Ophir, Talgam-Cohen, Inbal, and Weinberg,
S. Matthew. 2017. The competition complexity of auctions: A Bulow-Klemperer result
for multi-dimensional bidders. In Proceedings of the 18th ACM Conference on Economics
and Computation (EC), p. 343.

Elkind, Edith. 2007. Designing and learning optimal finite support auctions. In Proceedings
of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 736–745.

Feldman, Michal, Friedler, Ophir, and Rubinstein, Aviad. 2018. 99% revenue via enhanced
competition. In Proceedings of the 19th ACM Conference on Economics and Computation
(EC), pp. 443–460.

Feng, Yiding, and Hartline, Jason D. 2018. An end-to-end argument in mechanism Design.
In 59th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 404–415.

Fu, Hu, Hartline, Jason D., and Hoy, Darrell. 2013. Prior-independent auctions for risk-averse
agents. In Proceedings of the 14th ACM Conference on Electronic Commerce (EC), pp.
471–488.

Fu, Hu, Immorlica, Nicole, Lucier, Brendan, and Strack, Philipp. 2015. Randomization beats
second price as a prior-independent auction. In Proceedings of the 16th ACM Conference
on Economics and Computation (EC), p. 323.

604

PRIOR-INDEPENDENT AUCTIONS

Fu, Hu, Liaw, Christopher, and Randhawa, Sikander. 2019. The Vickrey auction with a single
duplicate bidder approximates the optimal revenue. In Proceedings of the 20th ACM
Conference on Economics and Computation (EC), pp. 419–426.

Goldner, Kira, and Karlin, Anna R. 2016. A prior-independent revenue-maximizing auction
for multiple additive bidders. In Proceedings of the 12th Conference on Web and Internet
Economics (WINE), pp. 160–173.

Guo, Chenghao, Huang, Zhiyi, and Zhang, Xinzhi. 2019. Settling the sample complexity of
single-parameter revenue maximization. In Proceedings of the 51st ACM Symposium on
Theory of Computing (STOC), pp. 662–673.

Hartline, Jason D. 2019a. Prior-free mechanisms. Mechanism Design and Approximation,
Chapter 6. Book draft available at http://jasonhartline.com/MDnA/.

Hartline, Jason D. 2019b. Prior-independent approximation. Mechanism Design and Approxi-
mation, Chapter 5.

Liu, Siqi, and Psomas, Christos-Alexandros. 2018. On the competition complexity of dynamic
mechanism design. Proceedings of the 29th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 2008–2025.

Morgenstern, Jamie, and Roughgarden, Tim. 2016. Learning simple auctions. In Proceedings
of the 29th COLT, pp. 1298–1318.

Roughgarden, Tim. 2017. Beyond Worst-Case Analysis. Lecture notes available at http://
timroughgarden.org/w17/w17.html.

Roughgarden, Tim, and Talgam-Cohen, Inbal. 2016. Optimal and robust mechanism design
with interdependent values. ACM Transactions on Economics and Comput., 4(3), 18:1–
18:34.

Roughgarden, Tim, Talgam-Cohen, Inbal, and Yan, Qiqi. In press. Robust auctions for
revenue via enhanced competition. To appear in Operations Research.

Segal, Ilya. 2003. Optimal pricing mechanisms with unknown demand. American Economic
Review, 93(3), 509–529.

Sivan, Balasubramanian. 2013. Prior Robust Optimization. PhD thesis, University of
Wisconsin.

Sivan, Balasubramanian, and Syrgkanis, Vasilis. 2013. Vickrey Auctions for Irregular distri-
butions. In Proceedings of the 9th WINE. pp. 422–435.

Tang, Pingzhong, and Zeng, Yulong. 2018. The price of prior dependence in auctions. In
Proceedings of the 19th ACM Conference on Economics and Computation (EC), pp.
485–502.

Yan, Qiqi. 2012. Prior Independence: A New Lens for Mechanism Design. PhD thesis, Stanford
University.

Exercises

Exercise 27.1 Prove Lemma 27.2.: In a single-item setting, let OPT(κ) be the optimal
expected revenue from κ bidders with i.i.d. values. Show that for every pair of
integers k,� > 0,

OPT(k) ≥ k
k + �

OPT(k + �).

Exercise 27.2 Let F be a continuous, regular distribution with bounded support, and
let p∗ be its monopoly price. Fix a threshold t ≥ 0. Show that

Ep∼F [max{t,p}(1 − F(max{t,p}))] ≥ 1
2

max{t,p∗}(1 − F(max{t,p∗})).

605

http://jasonhartline.com/MDnA/
http://timroughgarden.org/w17/w17.html
http://timroughgarden.org/w17/w17.html

CHAPTER TWENTY EIGHT

Distribution-Free Models
of Social Networks
Tim Roughgarden and C. Seshadhri

Abstract: The structure of large-scale social networks has predomi-
nantly been articulated using generative models, a form of average-
case analysis. This chapter surveys recent proposals of more robust
models of such networks. These models posit deterministic and
empirically supported combinatorial structure rather than a specific
probability distribution. We discuss the formal definitions of these
models and how they relate to empirical observations in social
networks, as well as the known structural and algorithmic results for
the corresponding graph classes.

28.1 Introduction

Technological developments in the twenty-first century have given rise to large-scale
social networks, such as the graphs defined by Facebook friendship relationships
or followers on Twitter. Such networks arguably provide the most important new
application domain for graph analysis in well over a decade.

28.1.1 Social Networks Have Special Structure

There is wide consensus that social networks have predictable structure and fea-
tures, and accordingly are not well modeled by arbitrary graphs. From a structural
viewpoint, the most well studied and empirically validated properties of social
networks are:

1. A heavy-tailed degree distribution, such as a power-law distribution.
2. Triadic closure, meaning that pairs of vertices with a common neighbor tend to

be directly connected – that friends of friends tend to be friends in their own right.
3. The presence of “community-like structures,” meaning subgraphs that are much

more richly connected internally than externally.
4. The small-world property, meaning that it’s possible to travel from any vertex to

any other vertex using remarkably few hops.

These properties are not generally possessed by Erdős–Rényi random graphs (in
which each edge is present independently with some probability p); a new model is
needed to capture them.

606

DISTRIBUTION-FREE MODELS OF SOCIAL NETWORKS

From an algorithmic standpoint, empirical results indicate that optimization
problems are often easier to solve in social networks than in worst-case graphs.
For example, lightweight heuristics are unreasonably effective in practice for finding
the maximum clique or recovering dense subgraphs of a large social network.

The literature on models that capture the special structure of social networks is
almost entirely driven by the quest for generative (i.e., probabilistic) models that
replicate some or all of the four properties listed earlier. Dozens of generative models
have been proposed, and there is little consensus about which is the “right” one.
The plethora of models poses a challenge to meaningful theoretical work on social
networks–which of the models, if any, is to be believed? How can we be sure that a
given algorithmic or structural result is not an artifact of the model chosen?

This chapter surveys recent research on more robust models of large-scale social
networks, which assume deterministic combinatorial properties rather than a specific
generative model. Structural and algorithmic results that rely only on these deter-
ministic properties automatically carry over to any generative model that produces
graphs possessing these properties (with high probability). Such results effectively
apply “in the worst case over all plausible generative models.” This hybrid of worst-
case (over input distributions) and average-case (with respect to the distribution)
analysis resembles several of the semirandom models discussed elsewhere in the book,
such as in the preceding chapters on pseudorandom data (Chapter 26) and prior-
independent auctions (Chapter 27).

Sections 28.2 and 28.3 of this chapter cover two models of social networks that
are motivated by triadic closure, the second of the four signatures of social networks
listed in Section 28.1. Sections 28.4 and 28.5 discuss two models motivated by heavy-
tailed degree distributions.

28.2 Cliques of c-Closed Graphs

28.2.1 Triadic Closure

Triadic closure is the property that, when two members of a social network have
a friend in common, they are likely to be friends themselves. In graph-theoretic
terminology, two-hop paths tend to induce triangles.

Triadic closure has been studied for decades in the social sciences and there is
compelling intuition for why social networks should exhibit strong triadic closure
properties. Two people with a common friend are much more likely to meet than
two arbitrary people, and are likely to share common interests. They might also
feel pressure to be friends to avoid imposing stress on their relationships with their
common friend.

The data support this intuition. Numerous large-scale studies on online social
networks provide overwhelming empirical evidence for triadic closure. The plot in
Figure 28.1, derived from the network of email communications at the disgraced
energy company Enron, is representative. Other social networks exhibit similar triadic
closure properties.

28.2.2 c-Closed Graphs

The most extreme version of triadic closure would assert that whenever two vertices
have a common neighbor, they are themselves neighbors: whenever (u,v) and (v,w)

607

T. ROUGHGARDEN AND C. SESHADHRI

(a) Triadic closure in the Enron email network (b) Triadic closure in a random graph

Figure 28.1 In the Enron email graph, vertices correspond to Enron employees, and there is an edge
connecting two employees if one sent at least one email to the other. In (a), vertex pairs of this graph
are grouped according to the number of common neighbors (indicated on the x-axis). The y -axis shows
the fraction of such pairs that are themselves connected by an edge. The edge density – the fraction of
arbitrary vertex pairs that are directly connected – is roughly 10−4. In (b), a cartoon of the analogous plot
for an Erdős–Rényi graph with edge density p = 10−4 is shown. Erdős–Rényi graphs are not a good
model for networks like the Enron network – their closure rate is too small, and the closure rate fails to
increase as the number of common neighbors increases.

are in the edge set E, so is (u,w). The class of graphs satisfying this property is not
very interesting – it is precisely the (vertex-)disjoint unions of cliques – but it forms a
natural base case for more interesting parameterized definitions.1

Our first definition of a class of graphs with strong triadic closure properties is
that of c-closed graphs.

Definition 28.1 (Fox et al., 2020) For a positive integer c, a graph G = (V,E)

is c-closed if, whenever u,v ∈ V have at least c common neighbors, (u,v) ∈ E.

For a fixed number of vertices, the parameter c interpolates between unions of
cliques (when c = 1) and all graphs (when c = |V | − 1). The class of 2-closed
graphs—the graphs that do not contain a square (i.e., K2,2) or a diamond (i.e., K4
minus an edge) as an induced subgraph – is already nontrivial. The c-closed condition
is a coarse proxy for the empirical closure rates observed in social networks (like in
Figure 28.1), asserting that the closure rate jumps to 100% for vertices with c or more
common neighbors.

Next is a less stringent version of the definition, which is sufficient for the main
algorithmic result of this section.

Definition 28.2 (Fox et al., 2020) For a positive integer c, a vertex v of a graph
G = (V,E) is c-good if whenever v has at least c common neighbors with another
vertex u, (u,v) ∈ E. The graph G is weakly c-closed if every induced subgraph
has at least one c-good vertex.

A c-closed graph is also weakly c-closed, as each of its vertices is c-good in each
of its induced subgraphs. The converse is false; for example, a path graph is not

1 Recall that a clique of a graph G = (V,E) is a subset S ⊆ V of vertices that are fully connected, meaning
that (u,v) ∈ E for every pair u,v of distinct vertices of S.

608

DISTRIBUTION-FREE MODELS OF SOCIAL NETWORKS

Table 28.1 The c-closure and weak c-closure of four well-studied social networks
from the SNAP (Stanford Large Network Dataset) collection of benchmarks
(http://snap.stanford.edu/)

n m c weak c

email-Enron 36692 183831 161 34
p2p-Gnutella04 10876 39994 24 8
wiki-Vote 7115 103689 420 42
ca-GrQc 5242 14496 41 9

“email-Enron” is the network described in Figure 28.1; “p2p-Gnutella04” is the topol-
ogy of a Gnutella peer-to-peer network circa 2002; “wiki-Vote” is the network of who
votes on whom in promotion cases on Wikipedia; and “ca-GrQc” is the collaboration
network of authors of papers uploaded to the General Relativity and Quantum
Cosmology section of arXiv. For each network G, n indicates the number of vertices,
m the number of edges, c the smallest value γ such that G is γ -closed, and “weak c” the
smallest value γ such that G is weakly γ -closed.

1-closed, but it is weakly 1-closed (as the endpoints of a path are 1-good). Equivalent
to Definition 28.2 is the condition that the graph G has an elimination ordering
of c-good vertices, meaning the vertices can be ordered v1,v2, . . . ,vn such that, for
every i = 1,2, . . . ,n, the vertex vi is c-good in the subgraph induced by vi,vi+1, . . . ,vn
(Exercise 28.1). Are real-world social networks c-closed or weakly c-closed for
reasonable values of c? Table 28.1 summarizes some representative numbers.

These social networks are c-closed for much smaller values of c than the trivial
bound of n − 1, and are weakly c-closed for quite modest values of c.

28.2.3 Computing a Maximum Clique: A Backtracking Algorithm

Once a class of graph has been defined, such as c-closed graphs, a natural agenda is
to investigate fundamental optimization problems with graphs restricted to the class.
We single out the problem of finding the maximum-size clique of a graph, primarily
because it is one of the most central problems in social network analysis. In a social
network, cliques can be interpreted as the most extreme form of a community.

The problem of computing the maximum clique of a graph reduces to the problem
of enumerating the graph’s maximal cliques2 – the maximum clique is also maximal,
so it appears as the largest of the cliques in the enumeration.

How does the c-closed condition help with the efficient computation of a
maximum clique? We next observe that the problem of reporting all maximal
cliques is polynomial-time solvable in c-closed graphs when c is a fixed constant.
The algorithm is based on backtracking. For convenience, we give a procedure that,
for any vertex v, identifies all maximal cliques that contain v. (The full procedure
loops over all vertices.)

1. Maintain a history H, initially empty.
2. Let N denote the vertex set comprising v and all vertices w that are adjacent to

both v and all vertices in H.

2 A maximal clique is a clique that is not a strict subset of another clique.

609

http://snap.stanford.edu/

T. ROUGHGARDEN AND C. SESHADHRI

3. If N is a clique, report the clique H ∪ N and return.
4. Otherwise, recurse on each vertex w ∈ N \ {v} with history H := H ∪ {v}.

This subroutine reports all maximal cliques that contain v, whether the graph is
c-closed or not (Exercise 28.2). In a c-closed graph, the maximum depth of the
recursion is c – once |H| = c − 1, every pair of vertices in N \ {v} has c common
neighbors (namely H ∪ {v}) and hence N must be a clique. The running time of the
backtracking algorithm is therefore nc+O(1) in c-closed graphs.

This simplistic backtracking algorithm is extremely slow except for very small
values of c. Can we do better?

28.2.4 Computing a Maximum Clique: Fixed-Parameter Tractability

There is a simple but clever algorithm that, for an arbitrary graph, enumerates all of
the maximal cliques while using only polynomial time per clique.

Theorem 28.3 (Tsukiyama et al., 1977) There is an algorithm that, given any
input graph with n vertices and m edges, outputs all of the maximal cliques of the
graph in O(mn) time per maximal clique.

Theorem 28.3 reduces the problem of enumerating all maximal cliques in poly-
nomial time to the combinatorial task of proving a polynomial upper bound on the
number of maximal cliques.

Computing a maximum clique of an arbitrary graph is an NP-hard problem, so
presumably there exist graphs with an exponential number of maximal cliques. The
Moon–Moser graphs are a simple and famous example. For n a multiple of 3, the
Moon–Moser graph with n vertices is the perfectly balanced n

3 -tite graph, meaning
the vertices are partitioned into n

3 groups of 3, and every vertex is connected to every
other vertex except for the 2 vertices in the same group (Figure 28.2). Choosing one
vertex from each group induces a maximal clique, for a total of 3n/3 maximal cliques,
and these are all of the maximal cliques of the graph. More generally, a basic result in
graph theory asserts that no n-vertex graph can have more than 3n/3 maximal cliques.

Theorem 28.4 (Moon and Moser, 1965) Every n-vertex graph has at most 3n/3

maximal cliques.

Figure 28.2 The Moon–Moser graph with n = 12 vertices.

610

DISTRIBUTION-FREE MODELS OF SOCIAL NETWORKS

A Moon–Moser graph on n vertices is not c-closed even for c = n − 3, so there
remains hope for a positive result for c-closed graphs with small c. The Moon–Moser
graphs do show that the number of maximal cliques of a c-closed graph can be
exponential in c (since a Moon–Moser graph on c vertices is trivially c-closed). Thus
the best-case scenario for enumerating the maximal cliques of a c-closed graph is a
fixed-parameter tractability result (with respect to the parameter c), stating that, for
some function f and constant d (independent of c), the number of maximal cliques in
an n-vertex c-closed graph is O(f (c) · nd). The next theorem shows that this is indeed
the case, even for weakly c-closed graphs.

Theorem 28.5 (Fox et al., 2020) Every weakly c-closed graph with n vertices has
at most

3(c−1)/3 · n2

maximal cliques.

The following corollary is immediate from Theorems 28.3 and 28.5.

Corollary 28.6 The maximum clique problem is polynomial-time solvable in
weakly c-closed n-vertex graphs with c = O(log n).

28.2.5 Proof of Theorem 28.5

The proof of Theorem 28.5 proceeds by induction on the number of vertices n. (One
of the factors of n in the bound is from the n steps in this induction.) Let G be an
n-vertex weakly c-closed graph. Assume that n ≥ 3; otherwise, the bound is trivial.

By assumption, G has a c-good vertex v. By induction, G \ {v} has at most
(n − 1)2 · 3(c−1)/3 maximal cliques. (An induced subgraph of a weakly c-closed graph
is again weakly c-closed.) Every maximal clique C of G \ {v} gives rise to a unique
maximal clique in G (namely C or C∪{v}, depending on whether the latter is a clique).
It remains to bound the number of uncounted maximal cliques of G, meaning the
maximal cliques K of G for which K \ {v} is not maximal in G \ {v}.

An uncounted maximal clique K must include v, with K contained in v’s neighbor-
hood (i.e., in the subgraph induced by v and the vertices adjacent to it). Also, there
must be a vertex u /∈ K such that K \ {v} ∪ {u} is a clique in G \ {v}; we say that u is
a witness for K, as it certifies the nonmaximality of K \ {v} in G \ {v}. Such a witness
must be connected to every vertex of K\{v}. It cannot be a neighbor of v, as otherwise
K ∪ {u} would be a clique in G, contradicting K’s maximality.

Choose an arbitrary witness for each uncounted clique of G and bucket these
cliques according to their witness; recall that all witnesses are non-neighbors of v.
For every uncounted clique K with witness u, all vertices of the clique K \ {v} are
connected to both v and u. Moreover, because K is a maximal clique in G, K \ {v} is
a maximal clique in the subgraph Gu induced by the common neighbors of u and v.

How big can such a subgraph Gu be? This is the step of the proof where the weakly
c-closed condition is important: Because u is a nonneighbor of v and v is a c-good
vertex, u and v have at most c − 1 common neighbors and hence Gu has at most
c − 1 vertices (Figure 28.3). By the Moon–Moser theorem (Theorem 28.4), each

611

T. ROUGHGARDEN AND C. SESHADHRI

(
< c

N(v)

K \ {v}
v

u

G \ (N(v) {v})

Figure 28.3 Proof of Theorem 28.5. N(v) denotes the neighbors of v . K denotes a maximal clique of G
such that K \ {v} is not maximal in G \ {v}. There is a vertex u, not connected to v , that witnesses the
nonmaximality of K \ {v} in G \ {v}. Because v is a c-good vertex, u and v have at most c − 1 common
neighbors.

subgraph Gu has at most 3(c−1)/3 maximal cliques. Adding up over the at most n
choices for u, the number of uncounted cliques is at most n · 3(c−1)/3; this sum over
possible witnesses is the source of the second factor of n in Theorem 28.5. Combining
this bound on the uncounted cliques with the inductive bound on the remaining
maximal cliques of G yields the desired upper bound of

(n − 1)2 · 3(c−1)/3 + n · 3(c−1)/3 ≤ n2 · 3(c−1)/3.

28.3 The Structure of Triangle-Dense Graphs

28.3.1 Triangle-Dense Graphs

Our second graph class inspired by the strong triadic closure properties of social and
information networks is the class of δ-triangle-dense graphs. These are graphs where
a constant fraction of vertex pairs having at least one common neighbor are directly
connected by an edge. Equivalently, a constant fraction of the wedges (i.e., two-hop
paths) of the graph belong to a triangle.

Definition 28.7 (Gupta et al., 2016) The triangle density of an undirected
graph G is τ(G) := 3t(G)/w(G), where t(G) and w(G) denote the number of
triangles and wedges of G, respectively. (We define τ(G) = 0 if w(G) = 0.) The
class of δ-triangle-dense graphs consists of the graphs G with τ(G) ≥ δ.

(In the social networks literature, this is also called the transitivity or the global
clustering coefficient.) Because every triangle of a graph contains three wedges, and
no two triangles share a wedge, the triangle density of a graph is between 0 and 1 – the
fraction of wedges that belong to a triangle. Triangle density is another coarse proxy
for the empirical closure rates observed in social networks (like in Figure 28.1a).

The 1-triangle-dense graphs are precisely the unions of disjoint cliques, while
triangle-free graphs constitute the 0-triangle-dense graphs. The triangle density
of an Erdős–Rényi graph with edge probability p is concentrated around p (cf.,
Figure 28.1b). For an Erdős–Rényi graph to have constant triangle density, one would
need to set p = �(1). This would imply that the graph is dense, quite unlike social
networks. For example, in the year 2011 the triangle density of the Facebook graph
was computed to be 0.16, which is five orders of magnitude larger than in a random

612

DISTRIBUTION-FREE MODELS OF SOCIAL NETWORKS

(a) An ideal triangle-dense graph (b) The lollipop graph

Figure 28.4 Two examples of δ-triangle-dense graphs with δ close to 1.

graph with the same number of vertices (roughly 1 billion at the time) and edges
(roughly 100 billion).

28.3.2 Visualizing Triangle-Dense Graphs

What do δ-triangle-dense graphs look like? Can we make any structural assertions
about them, akin to separator theorems for planar graphs (allowing them to be viewed
as “approximate grids”) or the regularity lemma for dense graphs (allowing them to
viewed as approximate unions of random bipartite graphs)?

Given that 1-triangle-dense graphs are unions of cliques, a first guess might be
that δ-triangle-dense graphs look like the approximate union of approximate cliques
(as in Figure 28.4a). Such graphs certainly have high triangle density; could there be
an “inverse theorem,” stating that these are in some sense the only graphs with this
property?

In its simplest form, the answer to this question is “no,” as δ-triangle-dense graphs
become quite diverse once δ is bounded below 1. For example, adding a clique on n2/5

vertices to an arbitrary bounded-degree n-vertex graph produces a δ-triangle-dense
graph with δ = 1 − o(1) as n → ∞ (see Figure 28.4b).

Nonetheless, an inverse theorem does hold if we redefine what it means to approx-
imate a graph by a collection of approximate cliques. Instead of trying to capture
most of the vertices or edges (which is impossible, as the previous example shows),
we consider the goal of capturing a constant fraction of the triangles of a graph by a
collection of dense subgraphs.

28.3.3 An Inverse Theorem

To state an inverse theorem for triangle-dense graphs, we require a preliminary
definition.

Definition 28.8 (Tightly-Knit Family) Let ρ > 0. A collection V1,V2, . . . ,Vk
of disjoint sets of vertices of a graph G = (V,E) forms a ρ-tightly-knit family if

1. For each i = 1,2, . . . ,k, the subgraph induced by Vi has at least ρ ·(|Vi|
2

)
edges

and ρ · (|Vi|
3

)
triangles. (That is, a ρ-fraction of the maximum possible edges

and triangles.)
2. For each i = 1,2, . . . ,k, the subgraph induced by Vi has radius at most 2.

613

T. ROUGHGARDEN AND C. SESHADHRI

In Definition 28.8, the vertex sets V1,V2, . . . ,Vk are disjoint but need not cover all
of V ; in particular, the empty collection is technically a tightly-knit family.

The following inverse theorem states that every triangle-dense graph contains
a tightly-knit family that captures most of the “meaningful social structure” – a
constant fraction of the graph’s triangles.

Theorem 28.9 (Gupta et al., 2016) There is a function f (δ) = O(δ4) such that
for every δ-triangle dense graph G, there exists an f (δ)-tightly-knit family that
contains an f (δ) fraction of the triangles of G.

Graphs that are not triangle dense, such as sparse Erdős–Rényi random graphs,
do not generally admit ρ-tightly-knit families with constant ρ. The complete tri-
partite graph shows that Theorem 28.9 does not hold if the “radius-2” condition in
Definition 28.7 is strengthened to “radius-1” (Exercise 28.4).

28.3.4 Proof Sketch of Theorem 28.9

The proof of Theorem 28.9 is constructive, and interleaves two subroutines. To state
the first, define the Jaccard similarity of an edge (u,v) of a graph G as the fraction of
neighbors of u and v that are neighbors of both:

|N(u) ∩ N(v)|
|N(u) ∪ N(v)| − 2

,

where N(·) denotes the neighbors of a vertex and the “-2” is to avoid counting u
and v themselves. The first subroutine, called the cleaner, is given a parameter ε

as input and repeatedly deletes edges with Jaccard similarity less than ε until none
remain. Removing edges from the graph is worrisome because it removes triangles,
and Theorem 28.9 promises that the final tightly-knit family captures a constant
fraction of the original graph’s triangles. But removing an edge with low Jaccard
similarity destroys many more wedges than triangles, and the number of triangles
in the graph is at least a constant fraction of the number of wedges (because it is
δ-triangle-dense). A charging argument along these lines shows that, provided ε is at
most δ/4, the cleaner cannot destroy more than a constant fraction of the graph’s
triangles.

The second subroutine, called the extractor, is responsible for extracting one of the
clusters of the tightly-knit family from a graph in which all edges have Jaccard similar-
ity at least ε. (Isolated vertices can be discarded from further consideration.) How is
this Jaccard similarity condition helpful? One easy observation is that, post-cleaning,
the graph is “approximately locally regular,” meaning that the endpoints of any edge
have degrees within a 1

ε
factor of each other. Starting from this fact, easy algebra

shows that every one-hop neighborhood of the graph (i.e., the subgraph induced by
a vertex and its neighbors) has constant (depending on ε) density in both edges and
triangles, as required by Theorem 28.9. The bad news is that extracting a one-hop
neighborhood can destroy almost all of a graph’s triangles (Exercise 28.4). The good
news is that supplementing a one-hop neighborhood with a judiciously chosen subset
of the corresponding two-hop neighborhood (i.e., neighbors of neighbors) fixes the

614

DISTRIBUTION-FREE MODELS OF SOCIAL NETWORKS

problem. Precisely, the extractor subroutine is given a graph G in which every edge
has Jaccard similarity at least ε and proceeds as follows:

1. Let v be a vertex of G with the maximum degree. Let dmax denote v’s degree
and N(v) its neighbors.

2. Calculate a score θw for every vertex w outside {v} ∪ N(v) equal to the number of
triangles that include w and two vertices of N(v). In other words, θw is the number
of triangles that would be saved by supplementing the one-hop neighborhood {v}∪
N(v) by w. (On the flip side, this would also destroy the triangles that contain w
and two vertices outside N(v).)

3. Return the union of {v}, N(v), and up to dmax vertices outside {v} ∪ N(v) with the
largest nonzero θ-scores.

It is clear that the extractor outputs a set S of vertices that induces a subgraph with
radius at most 2. As with one-hop neighborhoods, easy algebra shows that, because
every edge has Jaccard similarity at least ε, this subgraph is dense in both edges and
triangles. The important nonobvious fact, whose proof is omitted here, is that the
number of triangles saved by the extractor (i.e., triangles with all three vertices in
its output) is at least a constant fraction of the number of triangles it destroys (i.e.,
triangles with one or two vertices in its output). It follows that alternating between
cleaning and extracting (until no edges remain) will produce a tightly-knit family
meeting the promises of Theorem 28.9.

28.4 Power-Law Bounded Networks

Arguably the most famous property of social and information networks, even more
so than triadic closure, is a power-law degree distribution, also referred to as a heavy-
tailed or scale-free degree distribution.

28.4.1 Power-Law Degree Distributions and Their Properties

Consider a simple graph G = (V,E) with n vertices. For each positive integer d,
let n(d) denote the number of vertices of G with degree d. The sequence {n(d)} is
called the degree distribution of G. Informally, a degree distribution is said to be a
power-law with exponent γ > 0 if n(d) scales as n/dγ .

There is some controversy about how to best fit power-law distributions to data,
and whether such distributions are the “right” fit for the degree distributions in real-
world social networks (as opposed to, say, lognormal distributions). Nevertheless,
several of the consequences of a power-law degree distribution assumption are
uncontroversial for social networks, and so a power-law distribution is a reasonable
starting point for mathematical analysis.

This section studies the algorithmic benefits of assuming that a graph has an
(approximately) power-law degree distribution, in the form of fast algorithms for
fundamental graph problems. To develop our intuition about such graphs, let’s do
some rough calculations under the assumption that n(d) = cn/dγ (for some constant
c) for every d up to the maximum degree dmax; think of dmax as nβ for some constant
β ∈ (0,1).

615

T. ROUGHGARDEN AND C. SESHADHRI

First, we have the implication∑
d≤dmax

n(d) = n 8⇒ cn
∑

d≤dmax

d−γ = n. (28.1)

When γ ≤ 1,
∑

d<∞ d−γ is a divergent series. In this case, we cannot satisfy the
right-hand side of (28.1) with a constant c. For this reason, results on power-law
degree distributions typically assume that γ > 1.

Next, the number of edges is exactly

1
2

∑
d≤dmax

d · n(d) = cn
2

∑
d≤dmax

d−γ+1. (28.2)

Thus, up to constant factors,
∑

d≤dmax
d−γ+1 is the average degree. For γ > 2,∑

d<∞ d−γ+1 is a convergent series, and the graph has constant average degree. For
this reason, much of the early literature on graphs with power-law degree distribu-
tions focused on the regime where γ > 2. When γ = 2, the average degree scales with
log n, and for γ ∈ (1,2), it scales with (dmax)

2−γ , which is polynomial in n.
One of the primary implications of a power-law degree distribution is upper

bounds on the number of high-degree vertices. Specifically, under our assumption
that n(d) = cn/dγ , the number of vertices of degree at least k can be bounded by

dmax∑
d=k

n(d) ≤ cn
∞∑

d=k

d−γ ≤ cn
∫ ∞

k
x−γ dx = cnk−γ+1/(γ − 1) = �(nk−γ+1). (28.3)

28.4.2 PLB Graphs

The key definition in this section is a more plausible and robust version of the
assumption that n(d) = cn/dγ , for which the conclusions of calculations like those in
Section 28.4.1 remain valid. The definition allows individual values of n(d) to deviate
from a true power law, while requiring (essentially) that the average value of n(d) in
sufficiently large intervals of d does follow a power law.

Definition 28.10 (Berry et al., 2015; Brach et al., 2016) A graph G with degree
distribution {n(d)} is a power-law bounded (PLB) graph with exponent γ > 1 if
there is a constant c > 0 such that

2r+1∑
d=2r

n(d) ≤ cn
2r+1∑
d=2r

d−γ

for all r ≥ 0.

Many real-world social networks satisfy a mild generalization of this definition, in
which n(d) is allowed to scale with n/(d + t)γ for a “shift” t ≥ 0; see the Notes for
details. For simplicity, we continue to assume in this section that t = 0.

616

DISTRIBUTION-FREE MODELS OF SOCIAL NETWORKS

Definition 28.10 has several of the same implications as a pure power law assump-
tion, including the following lemma (cf. (28.2)).

Lemma 28.11 Suppose G is a PLB graph with exponent γ > 1. For every c > 0
and natural number k,

∑
d≤k

dc · n(d) = O

⎛⎝n
∑
d≤k

dc−γ

⎞⎠ .

The proof of Lemma 28.11 is technical but not overly difficult; we do not discuss
the details here.

The first part of the next lemma provides control over the number of high-degree
vertices and is the primary reason why many graph problems are more easily solved
on PLB graphs than on general graphs. The second part of the lemma bounds the
number of wedges of the graph when γ ≥ 3.

Lemma 28.12 Suppose G is a PLB graph with exponent γ > 1. Then

(a)
∑

d≥k n(d) = O(nk−γ+1).
(b) Let W denote the number of wedges (i.e., two-hop paths). If γ = 3, W =

O(n log n). If γ > 3, W = O(n).

Part (a) extends the computation in (28.3) to PLB graphs, while part (b) follows
from Lemma 28.11 (see Exercise 28.5).

28.4.3 Counting Triangles

Many graph problems appear to be easier in PLB graphs than in general graphs. To
illustrate this point, we single out the problem of triangle counting, which is one of
the most canonical problems in social network analysis. For this section, we assume
that our algorithms can determine in constant time if there is an edge between a
given pair of vertices; these lookups can be avoided with a careful implementation
(Exercise 28.6), but such details distract from the main analysis.

As a warm up, consider the following trivial algorithm to count (three times) the
number of triangles of a given graph G (“Algorithm 1”):

� For every vertex u of G:
– For every pair v,w of u’s neighbors, check if u, v, and w form a triangle.

Note that the running time of Algorithm 1 is proportional to the number of wedges in
the graph G. The following running time bound for triangle counting in PLB graphs
is an immediate corollary of Lemma 28.12(b), applied to Algorithm 1.

Corollary 28.13 Triangle counting in n-vertex PLB graphs with exponent 3 can
be carried out in O(n log n) time. If the exponent is strictly greater than 3, it can
be done in O(n) time.

617

T. ROUGHGARDEN AND C. SESHADHRI

Now consider an optimization of Algorithm 1 (“Algorithm 2”):

� Direct each edge of G from the lower-degree endpoint to the higher-degree
endpoint (breaking ties lexicographically) to obtain a directed graph D.

� For every vertex u of D:
– For every pair v,w of u’s out-neighbors, check if u, v, and w form a triangle in G.

Each triangle is counted exactly once by Algorithm 2, in the iteration where the
lowest-degree of its three vertices plays the role of u. Remarkably, this simple idea
leads to massive time savings in practice.

A classical way to capture this running time improvement mathematically is to
parameterize the input graph G by its degeneracy, which can be thought of as a
refinement of the maximum degree. The degeneracy α(G) of a graph G can be
computed by iteratively removing a minimum-degree vertex (updating the vertex
degrees after each iteration) until no vertices remain; α(G) is then the largest degree
of a vertex at the time of its removal. (For example, every tree has degeneracy equal
to 1.) We have the following guarantee for Algorithm 2, parameterized by a graph’s
degeneracy:

Theorem 28.14 (Chiba and Nishizeki, 1985) For every graph with m edges and
degeneracy α, the running time of Algorithm 2 is O(mα).

Every PLB graph with exponent γ > 1 has degeneracy α= O(n1/γ); see Exercise
28.8. For PLB graphs with γ > 2, we can apply Lemma 28.11 with c = 1 to obtain
m = O(n) and hence the running time of Algorithm 2 is O(mα) = O(n(γ+1)/γ).

Our final result for PLB graphs improves this running time bound, for all γ ∈ (2,3),
through a more refined analysis.3

Theorem 28.15 (Brach et al., 2016) In PLB graphs with exponent γ ∈ (2,3),
Algorithm 2 runs in O(n3/γ) time.

Proof Let G = (V,E) denote an n-vertex PLB graph with exponent γ ∈ (2,3).
Denote the degree of vertex v in G by dv and its out-degree in the directed
graph D by d+

v . The running time of Algorithm 2 is O(n +∑
v
(d+

v
2

)
) = O(n +∑

v(d
+
v)2), so the analysis boils down to bounding the out-degrees in D. One

trivial upper bound is d+
v ≤ dv for every v ∈ V . Because every edge is directed

from its lower-degree endpoint to its higher-degree endpoint, we also have
d+

v ≤ ∑
d≥dv

n(d). By Claim 28.12(a), the second bound is O(nd−γ+1
v). The

second bound is better than the first roughly when dv ≥ nd−γ+1
v , or equivalently

when dv ≥ n1/γ .
Let V(d) denote the set of degree-d vertices of G. We split the sum over

vertices according to how their degrees compare to n1/γ , using the first bound
for low-degree vertices and the second bound for high-degree vertices:

3 The running time bound actually holds for all γ ∈ (1,3), but is an improvement only for γ > 2.

618

DISTRIBUTION-FREE MODELS OF SOCIAL NETWORKS∑
v∈V

(d+
v)2 =

∑
d

∑
v∈V(d)

(d+
v)2

≤
∑

d≤n1/γ

∑
v∈V(d)

d2 +
∑

d>n1/γ

∑
v∈V(d)

O(n2d−2γ+2)

=
∑

d≤n1/γ

d2 · n(d) + O

⎛⎝n2 ·
∑

d>n1/γ

d−2γ+2 · n(d)

⎞⎠ .

Applying Lemma 28.11 (with c = 2) to the sum over low-degree vertices, and
using the fact that with γ < 3 the sum

∑
d d2−γ is divergent, we derive

∑
d≤n1/γ

d2 · n(d) = O

⎛⎝n
∑

d≤n1/γ

d2−γ

⎞⎠ = O(n(n1/γ)3−γ) = O(n3/γ).

The second sum is over the highest-degree vertices, and Lemma 28.11 does
not apply. On the other hand, we can invoke Claim 28.12(a) to obtain the desired
bound:

n2
∑

d>n1/γ

d−2γ+2 · n(d) ≤ n2(n1/γ)−2γ+2
∑

d>n1/γ

n(d)

= O(n2/γ · n(n1/γ)−γ+1)

= O(n3/γ). �

The same reasoning shows that Algorithm 2 runs in O(n log n) time in n-vertex
PLB graphs with exponent γ = 3, and in O(n) time in PLB graphs with γ > 3
(Exercise 28.9).

28.4.4 Discussion

Beyond triangle counting, which computational problems should we expect to be
easier on PLB graphs than on general graphs? A good starting point is problems
that are relatively easy on bounded-degree graphs. In many cases, fast algorithms for
bounded-degree graphs remain fast for graphs with bounded degeneracy. In these
cases, the degeneracy bound for PLB graphs (Exercise 28.8) can already lead to fast
algorithms for such graphs. For example, this approach can be used to show that all of
the cliques of a PLB graph with exponent γ > 1 can be enumerated in subexponential
time (see Exercise 28.10). In some cases, like in Theorem 28.15, one can beat the
bound from the degeneracy-based analysis through more refined arguments.

28.5 The BCT Model

This section gives an impressionistic overview of another set of deterministic condi-
tions meant to capture properties of “typical networks,” proposed by Borassi et al.
(2017) and hereafter called the BCT model. The precise model is technical with a
number of parameters; we give only a high-level description that ignores several
complications.

619

T. ROUGHGARDEN AND C. SESHADHRI

To illustrate the main ideas, consider the problem of computing the diameter
maxu,v∈V dist(u,v) of an undirected and unweighted n-vertex graph G = (V,E),
where dist(u,v) denotes the shortest-path distance between u and v in G. Define the
eccentricity of a vertex u by ecc(u) := maxv∈V dist(u,v), so that the diameter is the
maximum eccentricity. The eccentricity of a single vertex can be computed in linear
time using breadth-first search, which gives a quadratic-time algorithm for computing
the diameter. Despite much effort, no subquadratic (1+ ε)-approximation algorithm
for computing the graph diameter is known for general graphs. Yet there are many
heuristics that perform well in real-world networks. Most of these heuristics compute
the eccentricities of a carefully chosen subset of vertices. An extreme example is the
TwoSweep algorithm:

1. Pick an arbitrary vertex s, and perform breadth-first search from s to compute a
vertex t ∈ argmaxv∈V dist(s,v).

2. Use breadth-first search again to compute ecc(t) and return the result.

This heuristic always produces a lower bound on a graph’s diameter, and in practice
usually achieves a close approximation. What properties of “real-world” graphs
might explain this empirical performance?

The BCT model is largely inspired by the metric properties of random graphs. To
explain, for a vertex s and natural number k, let τs(k) denote the smallest length � so
that there are at least k vertices at distance (exactly) � from s. Ignoring the specifics of
the random graph model, the �-step neighborhoods (i.e., vertices at distance exactly �)
of a vertex in a random graph resemble uniform random sets of size increasing
with �. We next use this property to derive a heuristic upper bound on dist(s,t).
Define �s := τs(

√
n) and �t := τt(

√
n). Since the �s-step neighborhood of s and

the �t-step neighborhood of t act like random sets of size
√

n, a birthday paradox
argument implies that they intersect with nontrivial probability. If they do intersect,
then �s + �t is an upper bound on dist(s,t). In any event, we can adopt this inequality
as a deterministic graph property, which can be tested against real network data.4

Property 28.16 For all s,t ∈ V , dist(s,t) ≤ τs(
√

n) + τt(
√

n).

One would expect this distance upper bound to be tight for pairs of vertices that
are far away from each other, and in a reasonably random graph, this will be true for
most of the vertex pairs. This leads us to the next property.5

Property 28.17 For all s ∈ V : for “most” t ∈ V , dist(s,t) > τs(
√

n)+τt(
√

n)−1.

The third property posits a distribution on the τs(
√

n) values. Let T(k) denote the
average n−1∑

s∈V τs(k).

Property 28.18 There are constants c,γ > 0 such that the fraction of vertices s
satisfying τs(

√
n) ≥ T(

√
n) + γ is roughly c−γ .

4 The actual BCT model uses the upper bound τs(nx)+ τt(ny) for x + y > 1 + δ, to ensure intersection with
high enough probability.

5 We omit the exact definition of this property in the BCT model, which is quite involved.

620

DISTRIBUTION-FREE MODELS OF SOCIAL NETWORKS

A consequence of this property is that the largest value of τs(
√

n) is T(
√

n) +
logc n + �(1).

As we discuss in the text that follows, these properties will imply that simple
heuristics work well for computing the diameter of a graph. On the other hand, these
properties do not generally hold in real-world graphs. The actual BCT model has a
nuanced version of these properties, parameterized by vertex degrees. In addition, the
BCT model imposes an approximate power-law degree distribution, in the spirit of
power-law bounded graphs (Definition 28.10 in Section 28.4). This nuanced list of
properties can be empirically verified on a large set of real-world graphs.

Nonetheless, for understanding the connection of metric properties to diameter
computation, it suffices to look at Properties 28.16–28.18. We can now bound the
eccentricities of vertices. The properties imply that

dist(u,v) ≤ τu(
√

n) + τv(
√

n) ≤ τu(
√

n) + T(
√

n) + logc n + O(1).

Fix u and imagine varying v to estimate ecc(u). For “most” vertices v, dist(u,v) ≥
τu(

√
n) + τv(

√
n) − 1. By Property 28.18, one of the vertices v satisfying this lower

bound will also satisfy τv(
√

n) ≥ T(
√

n) + logc n − �(1). Combining, we can bound
the eccentricity by

ecc(u) = max
v

dist(u,v) = τu(
√

n) + T(
√

n) + logc n ± �(1). (28.4)

The bound (28.4) is significant because it reduces maximizing ecc(u) over u ∈ V to
maximizing τu(

√
n).

Pick an arbitrary vertex s and consider a vertex u that maximizes dist(s,u). By an
argument similar to the one above (and because most vertices are far away from s),
we expect that dist(s,u) ≈ τs(

√
n) + τu(

√
n). Thus, a vertex u maximizing dist(s,u)

is almost the same as a vertex maximizing τu(
√

n), which by (28.4) is almost the
same as a vertex maximizing ecc(u). This gives an explanation of why the TwoSweep
algorithm performs so well. Its first use of breadth-first search identifies a vertex u
that (almost) maximizes ecc(u). The second pass of breadth-first search (from u) then
computes a close approximation of the diameter.

The analysis in this section is heuristic, but it captures much of the spirit of
algorithm analysis in the BCT model. These results for TwoSweep can be extended
to other heuristics that choose a set of vertices through a random process to lower
bound the diameter. In general, the key insight is that most distances dist(u,v) in the
BCT model can be closely approximated as a sum of quantities that depend only on
either u or v.

28.6 Discussion

Let’s take a bird’s-eye view of this chapter. The big challenge in the line of research
described in this chapter is the formulation of graph classes and properties that both
reflect real-world graphs and lead to a satisfying theory. It seems unlikely that any
one class of graphs will simultaneously capture all the relevant properties of (say)
social networks. Accordingly, this chapter described several graph classes that target
specific empirically observed graph properties, each with its own algorithmic lessons:

� Triadic closure aids the computation of dense subgraphs.

621

T. ROUGHGARDEN AND C. SESHADHRI

� Power-law degree distributions aid subgraph counting.
� �-hop neighborhood structure influences the structure of shortest paths.

These lessons suggest that, when defining a graph class to capture “real-world”
graphs, it may be important to keep a target algorithmic application in mind.

Different graph classes differ in how closely the definitions are tied to domain
knowledge and empirically observed statistics. The c-closed and triangle-dense graph
classes are in the spirit of classical families of graphs (e.g., planar or bounded-
treewidth graphs), and they sacrifice precision in the service of generality, cleaner
definitions, and arguably more elegant theory. The PLB and BCT frameworks
take the opposite view: the graph properties are quite technical and involve many
parameters, and in exchange tightly capture the properties of “real-world” graphs.
These additional details can add fidelity to theoretical explanations for the surprising
effectiveness of simple heuristics.

A big advantage of combinatorially defined graph classes – a hallmark of graph-
theoretic work in theoretical computer science – is the ability to empirically validate
them on real data. The standard statistical viewpoint taken in network science has led
to dozens of competing generative models, and it is nearly impossible to validate the
details of such a model from network data. The deterministic graph classes defined
in this chapter give a much more satisfying foundation for algorithmics on real-
world graphs.

Complex algorithms for real-world problems can be useful, but practical
algorithms for graph analysis are typically based on simple ideas like backtracking
or greedy algorithms. An ideal theory would reflect this reality, offering compelling
explanations for why relatively simple algorithms have such surprising efficacy
in practice.

We conclude this section with some open problems.

1. Theorem 28.5 gives, for constant c, a bound of O(n2) on the number of maximal
cliques in a c-closed graph. Fox et al. (2020) also prove a sharper bound of
O(n2(1−2−c)), which is asymptotically tight when c = 2. Is it tight for all values of c?
Additionally, parameterizing by the number of edges (m) rather than vertices (n),
is the number of maximal cliques in a c-closed graph with c = O(1) bounded by
O(m)? Could there be a linear-time algorithm for maximal clique enumeration for
c-closed graphs with constant c?

2. Theorem 28.9 guarantees the capture by a tightly-knit family of an O(δ4) fraction
of the triangles of a δ-triangle-dense graph. What is the best-possible constant
in the exponent? Can the upper bound be improved, perhaps under additional
assumptions (e.g., about the distribution of the clustering coefficients of the graph,
rather than merely about their average)?

3. Ugander et al. (2013) observe that 4-vertex subgraph counts in real-world graphs
exhibit predictable and peculiar behavior. By imposing conditions on 4-vertex
subgraph counts (in addition to triangle density), can one prove decomposition
theorems better than Theorem 28.9?

4. Is there a compelling algorithmic application for graphs that can be approximated
by tightly-knit families?

5. Benson et al. (2016) and Tsourakakis et al. (2017) defined the triangle conductance
of a graph, where cuts are measured in terms of the number of triangles cut (rather

622

DISTRIBUTION-FREE MODELS OF SOCIAL NETWORKS

than the number of edges). Empirical evidence suggests that cuts with low triangle
conductance give more meaningful communities (i.e., denser subgraphs) than cuts
with low (edge) conductance. Is there a plausible theoretical explanation for this
observation?

6. A more open-ended goal is to use the theoretical insights described in this chapter
to develop new and practical algorithms for fundamental graph problems.

28.7 Notes

The book by Easley and Kleinberg (2010) is a good introduction to social net-
work analysis, including discussions of heavy-tailed degree distributions and triadic
closure. A good if somewhat outdated review of generative models for social and
information networks is Chakrabarti and Faloutsos (2006). The Enron email network
was first studied by Klimt and Yang (2004).

The definitions of c-closed and weakly c-closed graphs (Definitions 28.1–28.2) are
from Fox et al. (2020), as is the fixed-parameter tractability result for the maximum
clique problem (Theorem 28.5). Eppstein et al. (2010) proved an analogous result with
respect to a different parameter, the degeneracy of the input graph. The reduction
from efficiently enumerating maximal cliques to bounding the number of maximal
cliques (Theorem 28.3) is from Tsukiyama et al. (1977). Moon–Moser graphs and
the Moon–Moser bound on the maximum number of maximal cliques of a graph
are from Moon and Moser (1965).

The definition of triangle-dense graphs (Definition 28.7) and the inverse theorem
for them (Theorem 28.9) are from Gupta et al. (2016). The computation of the
triangle density of the Facebook graph is detailed by Ugander et al. (2011).

The definition of power law bounded graphs (Definition 28.10) first appeared in
Berry et al. (2015) in the context of triangle counting, but it was formalized and
applied to many different problems by Brach et al. (2016), including triangle counting
(Theorem 28.15), clique enumeration (Exercise 28.10), and linear algebraic problems
for matrices with a pattern of non-zeroes that induces a PLB graph. Brach et al. (2016)
also performed a detailed empirical analysis, validating Definition 28.10 (with small
shifts t) on real data. The degeneracy-parameterized bound for counting triangles is
essentially due to Chiba and Nishizeki (1985).

The BCT model (Section 28.5) and the fast algorithm for computing the diameter
of a graph are due to Borassi et al. (2017).

Acknowledgments

The authors thank Michele Borassi, Shweta Jain, Piotr Sankowski, and Inbal
Talgam-Cohen for their comments on earlier drafts of this chapter.

References

Benson, A., Gleich, D. F., and Leskovec, J. 2016. Higher-order organization of complex
networks. Science, 353(6295), 163–166.

Berry, J. W., Fostvedt, L. A., Nordman, D. J., Phillips, C. A., Seshadhri, C., and Wilson, A. G.
2015. Why do simple algorithms for triangle enumeration work in the real world? Internet
Mathematics, 11(6), 555–571.

623

T. ROUGHGARDEN AND C. SESHADHRI

Borassi, M., Crescenzi, P., and Trevisan, L. 2017. An axiomatic and an average-case analysis
of algorithms and heuristics for metric properties of graphs. Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 920–939.

Brach, Pawel, Cygan, Marek, Lacki, Jakub, and Sankowski, Piotr. 2016. Algorithmic com-
plexity of power law networks. Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1306–1325.

Chakrabarti, D., and Faloutsos, C. 2006. Graph mining: Laws, generators, and algorithms.
ACM Computing Surveys, 38(1), Article 2.

Chiba, N., and Nishizeki, T. 1985. Arboricity and subgraph listing algorithms. SIAM Journal
on Computing, 14(1), 210–223.

Easley, D., and Kleinberg, J. 2010. Networks, Crowds, and Markets. Cambridge University
Press.

Eppstein, D., Löffler, M., and Strash, D. 2010. Listing all maximal cliques in sparse graphs
in near-optimal time. Proceedings of the 21st International Symposium on Algorithms and
Computation (ISAAC), pp. 403–414.

Fox, J., Roughgarden, T., Seshadhri, C., Wei, F., and Wein, N. 2020. Finding cliques in social
networks: A new distribution-free model. SIAM Journal on Computing, 49(2), 448–464.

Gupta, R., Roughgarden, T., and Seshadhri, C. 2016. Decompositions of triangle-dense
graphs. SIAM Journal on Computing, 45(2), 197–215.

Klimt, B., and Yang, Y. 2004. The Enron corpus: A new dataset for email classification
research. Proceedings of the 15th European Conference on Machine Learning (ECML),
pp. 217–226.

Moon, J., and Moser, L. 1965. On cliques in graphs. Israel Journal of Mathematics, 3, 23–28.
Tsourakakis, Charalampos E., Pachocki, Jakub W., and Mitzenmacher, Michael. 2017.

Scalable motif-aware graph clustering. In Proceedings of the Web Conference (WWW),
vol. abs/1606.06235, pp. 1451–1460.

Tsukiyama, S., Ide, M., Ariyoshi, H., and Shirakawa, I. 1977. A new algorithm for generating
all the maximal independent sets. SIAM Journal on Computing, 6(3), 505–517.

Ugander, J., Karrer, B., Backstrom, L., and Marlow, C. 2011. The Anatomy of the Facebook
Social Graph. arXiv:1111.4503.

Ugander, J., Backstrom, L., and Kleinberg, J. 2013. Subgraph frequencies: Mapping the
empirical and extremal geography of large graph collections. Proceedings of World Wide
Web Conference, pp. 1307–1318.

Exercises

Exercise 28.1 Prove that a graph is weakly c-closed in the sense of Definition 28.2
if and only if its vertices can be ordered v1,v2, . . . ,vn such that, for every
i = 1,2, . . . ,n, the vertex vi is c-good in the subgraph induced by vi,vi+1, . . . ,vn.

Exercise 28.2 Prove that the backtracking algorithm in Section 28.2.3 enumerates all
of the maximal cliques of a graph.

Exercise 28.3 Prove that a graph has triangle density 1 if and only if it is a disjoint
union of cliques.

Exercise 28.4 Let G be the complete regular tripartite graph with n vertices – three
vertex sets of size n

3 each, with each vertex connected to every vertex of the other
two groups and none of the vertices within the same group.

(a) What is the triangle density of the graph?

624

DISTRIBUTION-FREE MODELS OF SOCIAL NETWORKS

(b) What is the output of the cleaner (Section 28.3.4) when applied to this graph?
What is then the output of the extractor?

(c) Prove that G admits no tightly-knit family that contains a constant fraction
(as n → ∞) of the graph’s triangles and uses only radius-1 clusters.

Exercise 28.5 Prove Claim 28.12.

[Hint: To prove (a), break up the sum over degrees into sub-sums between powers
of 2. Apply Definition 28.10 to each sub-sum.]

Exercise 28.6 Implement Algorithm 2 from Section 28.4.3 in O(
∑

v(d
+
v)2 + n) time,

where d+
v is the number of out-neighbors of v in the directed version D of G,

assuming that the input G is represented using only adjacency lists.

[Hint: You may need to store the in- and out-neighbor lists of D.]

Exercise 28.7 Prove that every graph with m edges has degeneracy at most
√

2m.
Exhibit a family of graphs showing that this bound is tight (up to lower order
terms).

Exercise 28.8 Suppose G is a PLB graph with exponent γ > 1.

(a) Prove that the maximum degree of G is O(n1/(γ−1)).
(b) Prove that the degeneracy is O(n1/γ).

[Hint: For (b), use the main idea in the proof of Exercise 28.7 and Claim 28.12.]

Exercise 28.9 Prove that Algorithm 2 in Section 28.4.3 runs in O(n log n) time
and O(n) time in n-vertex PLB graphs with exponents γ = 3 and γ > 3, respectively.

Exercise 28.10 Prove that all of the cliques of a graph with degeneracy α can be
enumerated in O(n2α) time. (By Exercise 28.8(b), this immediately gives a
subexponential-time algorithm for enumerating the cliques of a PLB graph.)

625

CHAPTER TWENTY NINE

Data-Driven Algorithm Design
Maria-Florina Balcan

Abstract: Data-driven algorithm design is an important aspect of
modern data science and algorithm design. Rather than using off the
shelf algorithms that only have worst-case performance guarantees,
practitioners often optimize over large families of parameterized
algorithms and tune the parameters of these algorithms using a
training set of problem instances from their domain to determine a
configuration with high expected performance over future instances.
However, most of this work comes with no performance guarantees.
The challenge is that for many combinatorial problems of significant
importance including partitioning, subset selection, and alignment
problems, a small tweak to the parameters can cause a cascade of
changes in the algorithm’s behavior, so the algorithm’s performance
is a discontinuous function of its parameters.

In this chapter, we survey recent work that helps put data-driven
combinatorial algorithm design on firm foundations. We provide
strong computational and statistical performance guarantees, both
for the batch and online scenarios where a collection of typical
problem instances from the given application are presented either all
at once or in an online fashion, respectively.

29.1 Motivation and Context

The classic approach to designing and analyzing combinatorial algorithms (that
has been the backbone of algorithmic research and applications since the field’s
inception) assumes that the algorithm we design for a given problem will be used
to solve worst-case instances of the problem, about which the algorithm has abso-
lutely no information at all. The typical performance guarantees we aim for, in
this classic framework, require that the algorithm we design must succeed even for
solving just a one-time, worst-case instance of the underlying algorithmic problem.
While ideal in principle, for many problems such worst-case guarantees are often
weak. Moreover, for many problems, empirically, different methods work better in
different settings, and there are often large, even infinite parameterized families of
methods that one could try to use. Consequently, rather than using off the shelf

626

DATA-DRIVEN ALGORITHM DESIGN

algorithms that have weak worst-case guarantees, practitioners often employ a data-
driven algorithm design approach; specifically, given an application domain, they use
machine learning and instances of the problem coming from the specific domain
to learn a method that works best in that domain. This idea has long been used
in practice in various communities, including artificial intelligence (Horvitz et al.,
2001; Xu et al., 2008), computational biology (Blasio and Kececioglu, 2018), and
auction design (Sandholm, 2003). However, so far, most of this work has come with
no performance guarantees.

In this chapter we survey recent work that provides formal guarantees for this
data-driven algorithm design approach, by building and significantly expanding on
learning theory tools. We discuss both the batch and online scenarios in which a
collection of typical problem instances from the given application are presented either
all at once or in an online fashion, respectively. This includes nearly optimal sample
complexity bounds for the batch scenario and no-regret guarantees for the online
scenario for a number of important algorithmic families that include classic modules
such as greedy, local search, dynamic programming, and semidefinite relaxation
followed by rounding. These are applicable to a wide variety of combinatorial
problems (e.g., subset selection, clustering, partitioning, and alignment problems)
from diverse domains ranging from data science to computational biology to auction
design. The key technical challenge is that for many of these problems, a small tweak
to the parameters can cause a cascade of changes in the algorithm’s behavior, so the
algorithm’s performance is a discontinuous function of its parameters.

At a technical level, this work draws on insights from some of the other approaches
on algorithms beyond the worst case, including perturbation stability discussed in
Chapter 5 and approximation stability discussed in Chapter 6. The motivation here
is identical: many important optimization problems are unfortunately provably hard
even to approximate well on worst-case instances, so using algorithms with worst-case
guarantees might be pessimistic. The key difference is that that line of work aims to
articulate specific regularities or stability properties that the input instances might
satisfy, and to design algorithms that provably exploit them and overcome worst-case
hardness results on instances satisfying them. In addition to providing algorithms
with provable guarantees when these stability conditions hold, such analyses suggest
interesting families of algorithms to learn over in the data-driven algorithm approach,
which are even more broadly applicable (including in scenarios where verifying these
properties might be hard). Indeed, some of the algorithm families we study in this
chapter (in the context of clustering problems in particular) are directly inspired by
these analyses.

This topic is related in spirit to several widely popular topics in machine learning,
including hyperparameter tuning and meta-learning. The key difference here is that
we focus on parametric families of functions induced by algorithms for solving
discrete optimization problems, which leads to cost functions with sharp disconti-
nuities. This leads to very interesting challenges that require new techniques that help
significantly push the boundaries of learning theory as well.

As discussed in Chapter 12, the goals of data-driven algorithm design are similar
to those of self-improving algorithms. The main take away of our chapter is that one
can build on and extend tools from learning theory to achieve these goals for a wide
variety of algorithmic problems.

627

M.-F. BALCAN

29.2 Data-Driven Algorithm Design via Statistical Learning

Gupta and Roughgarden (2016, 2017) proposed analyzing data-driven algorithm
design as a distributional learning problem, by using and extending the classic learn-
ing theory models, PAC (Valiant, 1984) and Statistical Learning Theory (Vapnik,
1998). In this framework, for a given algorithmic problem, we model an application
domain as a distribution over problem instances, and assume that we have access
to training instances that are drawn i.i.d from this fixed, but unknown distribution.
The formal guarantees we aim for in this framework are generalization guarantees
quantifying how many training problem instances are needed to ensure that an
algorithm with good performance over the training instances will exhibit good
performance on future problem instances. Such guarantees depend on the intrinsic
complexity of the search space which in this case is a parameterized family of
algorithms for the problem at hand, and this intrinsic dimension is quantified using
learning theoretic measures.

The challenge, and the reason that theoretical analysis is needed, is that it could
be that parameter settings that work well on past instances perform poorly on future
instances due to overfitting to the training data. In particular, even if past and future
instances are all drawn i.i.d. from the same probability distribution, if the algorithm
family is sufficiently complex, it may be possible to set parameters that capture
peculiarities of the training data (or even in the extreme case, memorize specific
solutions to training instances), performing well on them without truly performing
well on the instance distribution. Sample complexity analysis provides guarantees
on how many training instances are sufficient, as a function of the complexity of
the algorithm family, to ensure that with high probability no such overfitting occurs.
Next, we formally describe the problem setup and how overfitting will be addressed
through uniform convergence analysis.

Problem Formulation We fix an algorithmic problem (e.g., a subset selection problem
or a clustering problem) and we denote by � the set of problem instances of interest
for this problem. We also fix A a large (potentially infinite) family of algorithms, and
throughout this chapter we assume that this family is parameterized by a set P ⊆ R

d ;
we denote by Aρ the algorithm in A parameterized by ρ. We also fix a utility function
u : � × P → [0,H], where u(x,ρ) measures the performance of the algorithm Aρ

on problem instance x ∈ �. We denote by uρ(·) the utility function u : � → [0,H]
induced by Aρ , where uρ(x) = u(x,ρ). Note that u is bounded; for example, for cases
in which u is related to an algorithm’s running time, H can be the time-out deadline.

The “application-specific information” is modeled by the unknown input distri-
bution D. The learning algorithm is given m i.i.d. samples x1, . . . ,xm ∈ � from
D, and (perhaps implicitly) the corresponding performance uρ(x) of each algorithm
Aρ ∈ A on each input xi. The learning algorithm uses this information to suggest an
algorithm Aρ̂ ∈ A to use on future inputs drawn from D. We seek learning algorithms
that almost always output an algorithm of A that performs almost as well as the
optimal algorithm Aρ� for D that maximizes Ex∼D[uρ(x)] over Aρ ∈ A.

Knapsack As an example, a canonical problem we consider in this chapter is the
knapsack problem. A knapsack instance x consists of n items, where each item i has a
value vi and a size si, together with an overall knapsack capacity C. Our goal is to find

628

DATA-DRIVEN ALGORITHM DESIGN

the most valuable subset of items whose total size does not exceed C. For this problem
we analyze a family of greedy algorithms parameterized by a one dimensional set,
P = R. For ρ ∈ P , the algorithm Aρ operates as follows. We set the score of item i
to be vi/sρi ; then, in decreasing order of score, we add each item to the knapsack if
there is enough capacity left (breaking ties by selecting the item of smallest index).
The utility function uρ(x) = u(x,ρ) is defined as the value of the items chosen by the
greedy algorithm with parameter ρ on input x.

Uniform Convergence To achieve our desired guarantees, we rely on uniform con-
vergence results, which roughly speaking specify how many training instances we
need in order to guarantee that with high probability (over the draw of the training
set of instances) we have that, uniformly, for all the algorithms in the class A, their
average performance over the sample is additively close to their expected performance
on a typical (random) problem instance coming from the same distribution as the
training set. It is known from empricial processes and learning theory that these
uniform convergence results depend on the intrinsic complexity of the family of real-
valued utility functions {uρ(·)}ρ . In this chapter we consider the pseudo-dimension
as a measure of complexity, which roughly speaking quantifies the ability of the class
to fit complex patterns.

Definition 29.1 (Pseudo-dimension) Let {uρ(·)}ρ be the family of performance
measures induced by A = {Aρ}ρ and the utility function u(x,ρ).

(a) Let S = {x1, . . . ,xm} ⊂ � be a set of problem instances and let z1, . . . ,zm ∈
R be a set of targets. We say that z1, . . . ,zm witness the shattering of S by
{uρ(·)}ρ if for all subsets T ⊆ S, there exists some parameter ρ ∈ P such
that for all elements xi ∈ T , uρ (xi) ≤ zi and for all xi �∈ T , uρ (xi) > zi.
We say that S is shattered by {uρ(·)}ρ if there exist z1, . . . ,zm that witness its
shattering.

(b) Let S ⊆ � be the largest set that can be shattered by {uρ(·)}ρ . Then the
pseudo-dimension of the class {uρ(·)}ρ is Pdim({uρ(·)}ρ) = |S|.

When {uρ(·)}ρ is a set of binary valued functions, the notion of pseudo-dimension
reduces to the notion of VC-dimension, covered in Chapter 16.

Theorem 29.2 Let dA be the pseudo-dimension of the family of utility functions
{uρ(·)}ρ induced by the class of algorithms A and the utility function u(x,ρ);
assume that the range of u(x,ρ) is [0,H]. For any ε > 0, any δ ∈ (0,1) and any
distribution D over �, m = O

(H2

ε2

(
dA+ln 1

δ

))
samples are sufficient to ensure that

with probability 1 − δ over the draw of m samples S = {x1, . . . ,xm} ∼ Dm, for
all ρ ∈ P , the difference between the average utility of the algorithm Aρ over the
samples and its expected utiliy is ≤ ε, i.e.:

∣∣ 1
m

∑m
i=1 uρ(xi) − Ex∼D[uρ(x)]

∣∣ ≤ ε.

Theorem 29.2 implies that to obtain sample complexity guarantees it is sufficient
to bound the pseudo-dimension of the family {uρ(x)}ρ∈P . Interestingly, many of
the proofs in the literature for doing this proceed by providing (either implicitly
or explicitly) a structural result for the dual class of functions, {ux(ρ)}x∈�, where
ux(ρ) = u(x,ρ) = uρ(x). We present in Lemma 29.3 a simple, but powerful lemma of
this form, which we will use throughout the chapter for the case that our parameter

629

M.-F. BALCAN

vector ρ is just a single real number; this lemma is used implicitly or explicitly in
several papers (Gupta and Roughgarden, 2016; Balcan et al., 2017, 2018d).

Lemma 29.3 Suppose that for every instance x ∈ �, the function ux(ρ) : R → R

is piecewise constant with at most N pieces. Then the family {uρ(x)} has pseudo-
dimension O(log N).

Proof Consider a problem instance x ∈�. Since the function ux(ρ) is piecewise
constant with at most N pieces, this means there are at most N −1 critical points
ρ∗

1,ρ
∗
2, . . . such that between any two consecutive critical points ρ∗

i and ρ∗
i+1, the

function ux(ρ) is constant.
Consider m problem instances x1, . . . ,xm. Taking the union of their critical

points and sorting them, between any two consecutive of these critical points
we have that all of the functions uxj (ρ) are constant. Since these critical points
break up the real line into at most (N−1)m+1 ≤ Nm intervals, and all uxj (ρ) are
constant in each interval, this means that overall there are at most Nm different
m-tuples of values produced over all ρ. Equivalently, the functions uρ(x)
produce at most Nm different m-tuples of values on the m inputs x1, . . . ,xm.
However, to shatter the m instances, we must have 2m different m-tuples of
values produced. Solving Nm ≥ 2m shows that only sets of instances of size
m = O(log N) can be shattered. �

29.2.1 Greedy Algorithms for Subset Selection Problems

In this section, we discuss infinite parameterized families of greedy algorithms for
subset selection problems introduced and analyzed in Gupta and Roughgarden
(2016). We start by discussing a specific family of algorithms for the canonical
knapsack problem and then present a general result applicable to other problems
including maximum weight independent set.

Knapsack For the knapsack problem, let Aknapsack = {Aρ} be the family of greedy
algorithms described earlier. For this family P = R≥0, and for ρ ∈ P , for an instance
x where vi and si are the value and size of item i, the algorithm Aρ adds the items to the
knapsack in decreasing order of vi/sρi subject to the capacity constraint. The utility
function u(x,ρ) is defined as the value of the items chosen by the greedy algorithm
with parameter ρ on input x. We can show that the class Aknapsack is not too complex,
in the sense that its pseudo-dimension is small.

Theorem 29.4 The family of utility functions {uρ(x)} corresponding to Aknapsack
has pseudo-dimension O(log n), where n is the maximum number of items in an
instance.

Proof We first show that each function ux(ρ) is piecewise constant with at most
n2 pieces, and then apply Lemma 29.3.

To show the first part, fix some instance x. Now, suppose algorithm Aρ1

produces a different solution on x than Aρ2 does for ρ1 < ρ2. We argue there
must exist some critical value c ∈ [ρ1,ρ2] and some pair of items i,j ∈ x such
that vi/sc

i = vj/sc
j . The reason is that if Aρ1 and Aρ2 produce different solutions

630

DATA-DRIVEN ALGORITHM DESIGN

on x, they must at some point make different decisions about which item to
add to the knapsack. Consider the first point where they differ: say that Aρ1

adds item i to the knapsack and Aρ2 adds item j. Then it must be the case that
vi/sρ1

i −vj/sρ1
j ≥ 0 but vi/sρ2

i −vj/sρ2
j ≤ 0. Since the function f (ρ) = vi/sρi −vj/sρj

is continuous, there must exist some value c ∈ [ρ1,ρ2] such that vi/sc
i − vj/sc

j = 0
as desired.

Now, for any given pair of items i,j, there is at most one value of ρ ≥ 0
such that vi/sρi = vj/sρj ; in particular, it is ρ = log(vi/vj)/ log(si/sj).1 This
means there are at most

(n
2

)
critical values c such that vi/sc

i = vj/sc
j for some

pair of items i,j ∈ x. By the preceding argument, all values of ρ in the interval
between any two consecutive critical values must produce the same behavior
on the instance x. This means there are at most

(n
2

) + 1 ≤ n2 intervals such
that all values of ρ inside the same interval result in the exact same solution by
algorithm Aρ .

Now, we simply apply Lemma 29.3 with N = n2. �

Maximum Weighted Independent Set Another canonical subset selection problem
is the maximum weighted independent set problem (MWIS). An instance x is a
graph with a weight w (v) ∈ R≥0 for each vertex v. The goal is to find a set of
mutually nonadjacent vertices with maximum total weight. Gupta and Roughgarden
(2017) analyze a family AMWIS of greedy heuristics that at each step selects the
vertex maximizing w (v) / (1 + deg (v))ρ , where ρ ∈P = [0,B] for some B ∈ R, and
then removes v and its neighbors from the graph. Using a similar argument as in
Theorem 29.4 we can show that the family of utility functions {uρ(x)} corresponding
to AMWIS has pseudo-dimension O(log n), where n is the maximum number of
vertices in an instance.

A General Analysis for Greedy Heuristics We now more generally consider problems
in which the input is a set of n objects with various attributes, and the feasible
solutions consist of assignments of the objects to a finite set Y , subject to feasibility
constraints. The attributes of an object are represented as an element ξ of an abstract
set. For example, in the Knapsack problem ξ encodes the value and size of an object;
in the MWIS problem, ξ encodes the weight and (original or residual) degree of a
vertex. In the Knapsack and MWIS problems, Y = {0,1}, indicating whether or not
a given object is selected.

Gupta and Roughgarden (2017) provide pseudo-dimension bounds for general
greedy heuristics of the following form:

While there remain unassigned objects,

a. Use a scoring rule σ (a function from attributes to R) to compute a score σ(ξi)

for each unassigned object i, as a function of its current attributes ξi.
b. For the unassigned object i with the highest score, use an assignment rule to

assign i a value from Y and, if necessary, update the attributes of the other
unassigned objects. Assume that ties are always resolved lexicographically.

1 Except for the special case that si = sj and vi = vj , but in that case the order the items are considered in is
fixed by the tie breaking rule, so we can ignore any such pair.

631

M.-F. BALCAN

Assignment rules that do not modify objects’ attributes yield nonadaptive greedy
heuristics, which use only the original attributes of each object (like vi or vi/si in
the Knapsack problem, for instance). Assignment rules that modify object attributes
yield adaptive greedy heuristics, such as the adaptive MWIS heuristic described
earlier. In a single-parameter family of scoring rules, there is a scoring rule of the form
σ(ρ,ξ) for each parameter value ρ in some interval I ⊆ R. Moreover, σ is assumed
to be continuous in ρ for each fixed value of ξ . Natural examples include Knapsack
scoring rules of the form vi/sρi and MWIS scoring rules of the form w(v)/(1+deg(v))ρ

for ρ ∈ [0,1] or ρ ∈ [0,∞).
A single-parameter family of scoring rules is κ-crossing if, for each distinct pair of

attributes ξ ′, ξ ′′, there are at most κ values of ρ for which σ(ρ,ξ ′) = σ(ρ,ξ ′′). For
example, all of the scoring rules mentioned above are 1-crossing rules.

For an example assignment rule, in the Knapsack and MWIS problems, the rule
simply assigns i to 1 if it is feasible to do so, and to 0 otherwise. In the adaptive
greedy heuristic for the MWIS problem, whenever the assignment rule assigns 1 to a
vertex v, it updates the residual degrees of other unassigned vertices (two hops away)
accordingly. Say that an assignment rule is β-bounded if every object i is guaranteed
to take on at most β distinct attribute values. For example, an assignment rule that
never modifies an object’s attributes is 1-bounded. The assignment rule in the adaptive
MWIS algorithm is n-bounded, since it only modifies the degree of a vertex (which
lies in {0,1,2, . . . ,n − 1}). Coupling a single-parameter family of κ-crossing scoring
rules with a fixed β-bounded assignment rule yields a (κ,β)-single-parameter family
of greedy heuristics. The knapsack greedy heuristic is a (1,1)-single-parameter family
and the adaptive MWIS heuristic is a (1,n)-single-parameter family.

Theorem 29.5 LetAgreedy be a (κ,β) single parameter family of greedy heuristics
and let {uρ(x)} be its corresponding family of utility functions. The pseudo-
dimension of {uρ(x)} is O(log(κβn)), where n is the number of objects.

Proof Fix an instance x, and consider the behavior of the algorithm as we
vary ρ. Because there are n items and the assignment rule is β-bounded, there
are a total of at most nβ distinct attribute values possible over all choices of ρ.
For any two such attribute values ξ ′,ξ ′′, we know by the κ-crossing assumption
there are at most κ distinct critical values c such that σ(c,ξ ′) = σ(c,ξ ′′). Thus,
there are at most (nβ)2κ distinct critical values total. Now, between any two
consecutive critical values, the algorithm must behave identically for all ρ in
that interval. In particular, if ρ1 and ρ2 behave differently on x, there must exist
two attribute values ξ ′,ξ ′′ such that one has higher score under ρ1 but the other
has higher score under ρ2, and by continuity of σ this means ρ1 and ρ2 must
be separated by a critical value. Since the algorithm behaves identically in each
interval and there are at most (nβ)2κ + 1 intervals, this means that that each
function ux(ρ) is piecewise constant with at most (nβ)2κ+1 pieces. The theorem
then follows from Lemma 29.3. �

29.2.2 Clustering Problems

In this section we discuss how a data-driven approach can help overcome impossi-
bility results for clustering problems. Clustering is one of the most basic problems in

632

DATA-DRIVEN ALGORITHM DESIGN

data science; given a large set of complex data (e.g., images or news articles) the goal
is to organize it into groups of similar items. Despite significant efforts from different
communities, it remains a major challenge. Traditional approaches have focused
on the “one-shot” setting, where the goal is to cluster a single potentially worst-
case dataset. Unfortunately, there are major impossibility results for such scenarios;
first, in most applications it is not clear what objective function to use to recover
a good clustering for the given dataset; second, even in cases where the objective
can be naturally specified, optimally solving the underlying combinatorial clustering
problem is typically intractable. One approach to circumvent hardness of worst-case
instances (discussed in Chapters 5 and 6) is to posit specific stability assumptions
about the input instances, and to design efficient algorithms with good performance
on such instances. Another approach that is particularly suited for settings (including
text and image categorization) where we have to solve many clustering problems
arising in a given application domain, is to select a good clustering algorithm in
a data-driven way. In particular, given a series of clustering instances to be solved
from the same domain, we learn a good parameter setting for a clustering algorithm
(from a large potentially infinite set of clustering algorithms) that performs well
on instances coming from that domain. We can then use the general framework
discussed in Section 29.2 to provide guarantees for this approach. We discuss next
such guarantees for several parametric families of clustering procedures widely used
in practice.

Problem Setup The results we present apply both to objective based clustering (e.g.,
k-means and k-median) and to an unsupervised learning formulation of the problem.
In both cases the input to a clustering problem is a point set V of n points, a desired
number of clusters k ∈ {1, . . . ,n}, and a metric d (such as Euclidean distance in R

d)
specifying the distance between any two points; throughout the rest of this section
we denote by d(i,j) the distance between points i and j.

For objective based clustering, the goal is to output a partition C = {C1, . . . ,Ck} of
V that optimizes a specific objective function. For example, in the k-means clustering
objective the goal is to output a partition C = {C1, . . . ,Ck} and a center ci for each
Ci to minimize the sum of the squared distances between every point and its nearest
center, i.e., cost(C) = (∑

i
∑

v∈Ci
d(v,ci)

2
)
, while in the k-median objective the goal is

to minimize the sum of distances to the centers rather than the squared distances, i.e.,
cost(C) = (∑

i
∑

v∈Ci
d(v,ci)

)
. Unfortunately, finding the clustering that minimizes

these objectives (and other classic ones such as k-center and min-sum) is NP-hard,
so using a data-driven approach can help in identifying solutions with good objective
values for specific domains.

In the unsupervised learning or “matching the ground-truth clustering” approach,
we assume that for each instance V of n points, in addition to the distance metric
d, there is a ground-truth partition of the input points C∗ = {C∗

1, . . . ,C
∗
k}. The goal

is to output a partition C = {C1, . . . ,Ck} in order to minimize some loss function
relative to the ground truth; e.g., a common loss function (discussed in Chapter 6)
is the fraction of points that would have to be reassigned in C to make it match C∗

up to reindexing of the clusters, or equivalently minσ
1
n

∑k
i=1 |Ci \ C∗

σ(i)|, where the
minimum is taken over all bijections σ : {1, . . . ,k} → {1, . . . ,k}. For the data-driven
approach we assume that the ground truth is known for the training instances, but it
is unknown and what we want to predict for the test instances.

633

M.-F. BALCAN

Linkage-Based Families In the following we discuss families of two stage clustering
algorithms, that in the first stage use a linkage procedure to organize data into
a hierarchical clustering and then in a second stage use a fixed (computationally
efficient) procedure to extract a pruning from this hierarchy. Such techniques are
prevalent in practice and from a theoretical point of view, they are known to
perform nearly optimally in settings where the data is well-clusterable, in particular
perturbation resilient and approximation stable, as discussed in Chapters 5 and 6.

The linkage procedure in the first step takes as input a clustering instance x (a
set V of n points and metric d specifying the distance between any pair of the base
points) and outputs a cluster tree, by repeatedly merging the two closest clusters.
In particular, starting with the base distance d, we first define a distance measure
D(A,B) between any two subsets A and B of {1, . . . ,n}, that is used to greedily link
the data into a binary cluster tree. The leaves of the tree are the individual data
points, while the root node corresponds to the entire dataset. The algorithm starts
with each point belonging to its own cluster. Then, it repeatedly merges the closest
pair of clusters according to distance D. When there is only a single cluster remaining,
the algorithm outputs the constructed cluster tree. Different definitions for D lead to
different hierarchical procedures. For example, the classic linkage procedures single,
complete, and average linkage define D as D(A,B) = dmin(A,B) = mina∈A,b∈B d(a,b),
D(A,B) = dmax(A,B) = maxa∈A,b∈B d(a,b), and D(A,B) = 1

|A||B|
∑

u∈A,v∈B d(u,v),
respectively.

The procedure in the second step can be as simple as just “undoing” the last k − 1
merges from the first step or a dynamic programming subroutine over the hierarchy
from the first step to extract a clustering of highest score based on some measurable
objective such as k-means or k-median cost. The final quality or utility (measured by
the function uρ(x) on clustering instance x) of the solution produced by the algorithm
is for the objective-based approach measured by the given objective function (e.g.
k-means or k-median objective) or the loss with respect to the ground truth in the
unsupervised learning formulation.

We analyze in the text that follows the pseudo-dimension of two parametric
families of algorithms of this form (from Balcan et al., 2017). Both of these families
use a parameterized linkage procedure in the first step, and the cluster tree produced
is then fed into a fixed second-stage procedure to produce a k-clustering. The first
family Ascl uses a parameterized family of linkage algorithms with a single parameter
ρ ∈ P = [0,1] that helps interpolate linearly between the classic single and complete
linkage procedures. For ρ ∈ P the algorithm Aρ ∈ Ascl defines the distance between
two sets A and B as Dscl

ρ (A,B) = (1 − ρ) dmin(A,B) + ρ dmax(A,B). Note that ρ = 0
and ρ = 1 recover single and complete linkage, respectively.

The second family Aexp uses a parameterized family of linkage algorithms with
a single parameter ρ ∈ P = R that helps interpolate not only between single and
complete linkage but also includes average linkage as well. For ρ ∈ P the algo-
rithm Aρ ∈Aexp defines the distance between two sets A and B as Dexp

ρ (A,B) =(1
|A||B|

∑
u∈A,v∈B (d(u,v))ρ

)1/ρ . Note that ρ = 0 recovers average linkage, ρ → ∞
recovers complete linkage, and ρ → −∞ recovers single linkage. Balcan et al. (2017)
prove that the family of functions {uρ(x)} corresponding to the family Ascl is not
too complex, in the sense that it has pseudo-dimension �(log n), where n is an upper
bound on the number of data points in a clustering instance. Similarly, the family of

634

DATA-DRIVEN ALGORITHM DESIGN

functions {uρ(x)} corresponding to the family Aexp has pseudo-dimension �(n). We
sketch the upper bounds next.

We start by analyzing the family Dscl
ρ -linkage, for which we can prove the following

structural result.

Lemma 29.6 Let x be a clustering instance. We can partition P into at most n8

intervals such that all values of ρ inside the same interval result in the exact same
solution produced by the Dscl

ρ -linkage algorithm.

Proof First, for any pair of candidate cluster merges (C1,C2) and (C′
1,C

′
2),

where C1, C2, C′
1 and C′

2 are clusters, there is at most one critical parameter
value c such that Dscl

ρ (C1,C2) = Dscl
ρ (C′

1,C
′
2) only when ρ = c. In particular, c =

min/(
min −
max), where
min = dmin(C′
1,C

′
2) − dmin(C1,C2) and
max =

dmax(C′
1,C

′
2)−dmax(C1,C2). For clarity, we will call this value c(C1,C2,C′

1,C
′
2).

Next, the total number of distinct critical values c ranging over all possible
4-tuples of clusters C1,C2,C′

1,C
′
2 is at most n8. The reason is that for any given

clusters C1,C2,C′
1,C

′
2 there exist 8 points (not necessarily distinct) correspond-

ing to the closest pair between C1 and C2, the closest pair between C′
1 and C′

2,
the farthest pair between C1 and C2, and the farthest pair between C′

1 and C′
2,

whose distances completely define c(C1,C2,C′
1,C

′
2). Since there are at most n8

possible 8-tuples of such points, this means there are at most n8 distinct critical
values.

Between any two consecutive critical values c, all Dscl
ρ -linkage algorithms give

the same ordering on all possible merges. This is because for any C1,C2,C′
1,C

′
2,

the function f (ρ) = Dscl
ρ (C1,C2) − Dscl

ρ (C′
1,C

′
2) is continuous, and therefore

must have a zero (creating a critical value) if it switches sign. So, there are at
most n8 intervals such that all values of ρ inside the same interval result in the
exact same merges, and therefore the same solution produced by the Dscl

ρ -linkage
algorithm. �

Lemma 29.6 and Lemma 29.3 imply the following:

Theorem 29.7 The family of functions {uρ(x)} corresponding to the family Ascl-
linkage has pseudo-dimension O(log n).

Theorem 29.8 The family of functions {uρ(x)} corresponding to the family Aexp-
linkage has pseudo-dimension O(n).

Proof Sketch As in the proof of Lemma 29.6, we fix an instance x and bound
the number of intervals such that all values of ρ inside the same interval result
in the exact same solution produced by the algorithm.

Fixing an instance x, consider two pairs of sets A,B and X,Y that could
be potentially merged. Now, the decision to merge one pair before the
other is determined by the sign of the expression 1

|A||B|
∑

p∈A,q∈B(d(p,q))
ρ −

1
|X ||Y |

∑
x∈X,y∈Y (d(x,y))ρ . First note that this expression has O(n2) terms, and

by a consequence of Rolle’s Theorem, it has O(n2) roots. Therefore, as we iterate

635

M.-F. BALCAN

over the O
(
(3n)2) possible pairs (A,B) and (X,Y), we can determine O

(
32n
)

unique expressions each with O(n2) values of ρ at which the corresponding
decision flips. Thus, by continuity of the associated functions, we can divide R

into at most O
(
n232n

)
intervals over each of which the output of the algorithm

on input x is fixed.
Finally, we apply Lemma 29.3 using the fact that each function ux(ρ) is

piecewise constant with at most 2O(n) pieces. �

Interestingly, these families of clustering algorithms are also known to have strong
analytical properties for stable instances of the type discussed in Chapters 5 and 6.
One such condition, called perturbation-resilience, asks that even if distances between
data points are perturbed by up to some factor β, the clustering that optimizes a given
objective (such as k-means or k-median) does not change. If this condition is satisfied
for β ≥ 2, it is known that one can find the optimal clustering efficiently, in fact
via a linkage algorithm followed by dynamic programming, further motivating that
algorithm family. However, one drawback of all these results is that if the condition
does not hold, the guarantees do not apply. Here, we aim to provide guarantees
on optimality within an algorithm family that hold regardless of clusterability
assumptions, but with the additional property that if typical instances are indeed
well-clusterable (e.g., they satisfy perturbation-resilience or some related condition),
then the optimal algorithm in the family is optimal overall. This way, we can produce
guarantees that simultaneously are meaningful in the general case and can take
advantage of settings in which the data are particularly well behaved.

Parameterized Lloyd’s Methods The Lloyd’s method is another popular technique in
practice. The procedure starts with k initial centers and iteratively makes incremental
improvements until a local optimum is reached. One of the most crucial decisions an
algorithm designer must make when using such an algorithm is the initial seeding step,
i.e., how the algorithm chooses the k initial centers. Balcan et al. (2018d) consider an
infinite family of algorithms generalizing the popular k-means++ approach (Arthur
and Vassilvitskii, 2007), with a parameter α that controls the seeding process. In the
seeding phase, each point v is sampled with probability proportional to dmin(v,C)α,
where C is the set of centers chosen so far and dmin(v,C) = minc∈C d(v,c). Then
Lloyd’s method is used to converge to a local minimum or is cut off at some given time
bound. By ranging over α ∈ [0,∞)∪ {∞}, we obtain an infinite family of algorithms
that we call α-Lloyds++. This allows a spectrum between random seeding (α = 0),
and farthest-first traversal (α = ∞), with α = 2 corresponding to k-means++. What
is different about this algorithm family compared to those studied earlier in this
chapter is that because the algorithm is randomized, for this problem the expected
cost as a function of α is Lipschitz. In particular, one can prove a Lipschitz constant
of O(nkH log R), where R is the ratio of maximum to minimum pairwise distance,
and H is an upper bound on the k-means cost of any clustering. As a consequence,
one can discretize values of α into a fine grid, and then try N = O(αhnkH(log R)/ε)

values of α on a sample of size O((H/ε)2 log N) and pick the best, where αh is the
largest value of α one wishes to consider. However, by pushing the randomness of
the algorithm into the problem instance (augmenting each problem instance with a
random string and viewing the algorithm as a deterministic function of the instance

636

DATA-DRIVEN ALGORITHM DESIGN

and random string), one can view ux(α) as a piecewise-constant function with a
number of pieces that in expectation is only O(nk(log n) log(αh log R)). This allows
for many fewer values of α to be tried, making this approach more practical. In
fact, Balcan et al. (2018d) implement this approach and demonstrate it on several
interesting datasets.

29.2.3 Other Applications and Generic Results

Partitioning Problems via IQPs Balcan et al. (2017) study data-driven algorithm
design for problems that can be written as integer quadratic programs (IQPs) for
families of algorithms that involve semidefinite programming (SDP) relaxations fol-
lowed by parameterized rounding schemes. The class of IQP problems they consider
is described as follows. An instance x is specified by a matrix A ∈ R

n×n, and the goal is
to solve (at least approximately) the optimization problem maxz∈{±1}n z!Az. This is of
interest, since many classic NP-hard problems can be formulated as IQPs, including
max-cut, max-2SAT, and correlation clustering. For example, the classic max-cut
problem can be written as an IQP of this form. Recall that given a graph G on n nodes
with edge weights wij, the max-cut problem is to find a partition of the vertices into
two sides to maximize the total sum of edge weights crossing the partition. This can be
written as solving for z ∈ {±1}n to maximize

∑
(i,j)∈E wij

(1−zizj
2

)
, where zi represents

which side vertex i is assigned to. This objective can be formulated as maxz∈{±1}n z!Az
for aij = −wij/2 for (i,j) ∈ E and aij = 0 for (i,j) �∈ E.

The family of algorithms Around
ρ that Balcan et al. (2017) analyze is parameterized

by a one-dimensional set P = R, and for any ρ ∈ P the algorithm Aρ operates
as follows. In the first stage it solves the SDP relaxation

∑
i,j∈[n] aij〈ui,uj〉 subject to

the constraint that ‖ui‖ = 1 for i ∈ {1,2, . . . ,n}. In the second stage it rounds the
vectors ui to {±1} by sampling a standard Gaussian Z ∼ Nn and setting zi = 1 with
probability 1/2 + φρ (〈ui,Z〉) /2 and −1 otherwise, where φρ(y) = y/ρ for −ρ ≤
y ≤ ρ, φρ(y) = −1 for y < −ρ, and φρ(y) = 1 for y > ρ. In other words, if
|〈ui,Z〉| > ρ then ui is rounded based on the sign of the dot-product, else it is rounded
probabilistically using a linear scale. The utility function uρ(x) for algorithm Aρ maps
the algorithm parameter ρ to the expected objective value obtained on the instance x.
Note that by design the algorithms Around

ρ are polynomial-time algorithms.
Note that when ρ = 0, this algorithm corresponds to the classic Goemans–

Williamson max-cut algorithm. It is known that nonzero values of ρ can outperform
the classic algorithm on graphs for which the max cut does not constitute a large
fraction of the edges.

Theorem 29.9 Let {uρ(x)} be the corresponding family of utility functions for
the family of algorithms Around

ρ . The pseudo-dimension of {uρ(x)} is O(log(n)),
where n is the maximum number of variables in an instance.

At a high level, the proof idea is to analyze a related utility function for which
we imagine that the Gaussians Z are sampled ahead of time and included as part
of the problem instance; in other words we augment the instance to obtain a new
instance x̃ = (x,Z). One can then prove that the utility is uρ(x̃) = ∑n

i=1 a2
ii +∑

i �=j aijφs(vi)φs(vj), where vi = 〈ui,Z〉. Using this form, it is easy to show that this

637

M.-F. BALCAN

objective function value is piecewise quadratic in 1/ρ with n boundaries. The result
then follows from a generalization of Lemma 29.3.

Learning to Branch So far we considered families of polynomial-time algorithms and
scored them based on solution quality (e.g., clustering quality or objective value).
In general, one could also score algorithms based on other important measures of
performance. For example, Balcan et al. (2018c) consider parameterized branch-and-
bound techniques for learning how to branch when solving mixed integer programs
(MIPs) in the distributional learning setting, and score a parameter setting based
on the tree size on a given instance (which roughly corresponds to running time).
Balcan et al. (2018c) show that the corresponding dual functions are piecewise
constant, and then the sample complexity results follow from a high-dimensional
generalization of Lemma 29.3. Balcan et al. (2018c) also show experimentally that
different parameter settings of these families of algorithms can result in branch and
bound trees of vastly different sizes, for different combinatorial problems (including
winner determination in combinatorial auctions, k-means clustering, and agnostic
learning of linear separators). They also show that the optimal parameter is highly
distribution dependent: using a parameter optimized on the wrong distribution can
lead to a dramatic tree size blowup, implying that learning to branch is both practical
and hugely beneficial.

General Theorem Balcan et al. (2019b) present a general sample complexity result
applicable to algorithm configuration problems for which the dual functions are
piece-wise structured. The key innovation is to provide an elegant and widely applica-
ble abstraction that simultaneously covers all the types of dual structures appearing
in the algorithm families mentioned so far – this includes those in Sections 29.2.1
and 29.2.2 (where ux(ρ) are piecewise-constant with a limited number of pieces as
in Lemma 29.3), and the dual functions appearing in the context of learning to
branch mentioned earlier, as well as revenue maximization in multi-item multi-bidder
settings. Balcan et al. (2019b) show that this theorem recovers all the prior results and
they also show new applications including to dynamic programming techniques for
important problems in computational biology, e.g., sequence alignment and protein
folding.

Recall that P denotes the space of parameter vectors ρ (e.g., if ρ consists of d real-
valued parameters, then P = R

d). Let F denote a family of boundary functions such
as linear separators or quadratic separators that each partition P into two pieces, and
let G denote a family of simple utility functions such as constant functions or linear
functions overP . Balcan et al. (2019b) show the following. Suppose that for each dual
function ux(ρ), there are a limited number of boundary functions f1, . . . , fN ∈ F such
that within each region2 defined by these functions, ux(ρ) behaves as some function
from G. Then, the pseudo-dimension of the primal family {uρ(x)} can be bounded
as a function of N, the VC-dimension of the dual class F∗ to F , and the pseudo-
dimension of the dual class G∗ to G.3

2 Formally, each fi is a function from P to {0,1}, and a region is a nonempty set of ρ that are all labeled the
same way by each fi.

3 F∗ is defined as follows: for each ρ ∈ P define the function ρ(f) = f (ρ) for all f ∈ F . G∗ is defined
similarly.

638

DATA-DRIVEN ALGORITHM DESIGN

29.3 Data-Driven Algorithm Design via Online Learning

We now consider an online formulation for algorithm design where we do not assume
that the instances of the given algorithmic problem are i.i.d. and presented all at once;
instead, they could arrive online, in an arbitrary order, in which case what we can
aim for is to compete with the best fixed algorithm in hindsight (Cohen-Addad and
Kanade, 2017; Gupta and Roughgarden, 2017; Balcan et al., 2018a), also known
as no-regret learning. Since the utility functions appearing in algorithm selection
settings often exhibit sharp discontinuities, achieving no-regret is impossible in the
worst case over the input sequence of instances.

We discuss a niceness condition on the sequence of utility functions introduced in
Balcan et al. (2018a), called dispersion, that is sufficient for the existence of online
algorithms that guarantee no regret.

Problem Formulation On each round t the learner chooses an algorithm from the
family specified by the parameter vector ρt and receives a new instance of the problem
xt; this induces the utility function uxt(ρ) that measures the performance of each
algorithm in the family for the given instance, and the utility of the learner at time t
is uxt(ρt). The case where the learner observes the entire utility function uxt(ρ) or can
evaluate it at points of its own choice is called the full information setting; the case
where it only observes the scalar uxt(ρt) is called the bandit setting. The goal is to
select algorithms so that the cumulative performance of the learner is nearly as good
as the best algorithm in hindsight for that sequence of problems. Formally, the goal
is to minimize expected regret

E

[
max
ρ∈P

∑
uxt(ρ) − uxt(ρt)

]
,

where the expectation is over the randomness in the learner’s choices or over the
randomness in the utility functions. We aim to obtain expected regret that is sublinear
in T , since in that case the per-round average performance of the algorithm is
approaching that of the best parameter in hindsight – this is commonly referred as
achieving “no regret” in the online learning literature.

As we have seen in the previous sections the utility functions appearing in algo-
rithm selection settings often exhibit sharp discontinuities, and it is known that even
for one-dimensional cases, achieving no-regret guarantees for learning functions with
sharp discontinuities is impossible, in the worst case. In essence, the problem is that
if I is an interval of parameters that have all achieved maximum utility so far, an
adversary can choose the next utility function to randomly give either the left or
right half of I a utility of 0 and the other half a maximum utility, causing any
online algorithm to achieve only half of the optimum in hindsight. Gupta and
Roughgarden (2017) show that this is the case for online algorithm selection for the
maximum weighted independent set problem for the family of algorithms discussed
in Section 29.2.1.

We now describe a general condition on the sequence of utility functions intro-
duced, called dispersion, that is provably sufficient to achieve no-regret, intro-
duced in Balcan et al. (2018a). Roughly speaking, a collection of utility functions
ux1, . . . ,uxT is dispersed if no small region of the space contains discontinuities for
many of these functions. Formally:

639

M.-F. BALCAN

(a) (b)

Figure 29.1 The utility functions in figure (a) are dispersed because any small interval has discontinuities
for only a few of them. The utility functions in figure (b) are not dispersed because there is a small interval
with many discontinuities.

Definition 29.10 Let ux1, . . . ,uxT : P → [0,H] be a collection of utility func-
tions where uxi is piecewise Lipschitz over a partition Pi of P . We say that
Pi splits a set A if A intersects with at least two sets in Pi. The collection of
functions is (w,k)-dispersed if every ball of radius w is split by at most k of
the partitions P1, . . . ,PT . More generally, the functions are (w,k)-dispersed at a
maximizer if there exists a point ρ∗ ∈ argmaxρ∈P

∑T
i=1 ui(ρ) such that the ball

B(ρ∗,w) is split by at most k of the partitions P1, . . . ,PT .

In many applications, Definition 29.10 holds with high probability for w = Tα−1

and k = Õ(Tα) for some 1/2 ≤ α ≤ 1, ignoring problem-specific multiplicands.

Continuous Weighted Majority In the full information setting, we can use a contin-
uous version of the classic weighted majority algorithm (Cesa-Bianchi and Lugosi,
2006) to obtain no-regret learning in dispersed settings. In round t, the algorithm
samples a vector ρt from the distribution pt(ρ) ∝ exp(λ

∑t−1
s=1 us(ρ)). The following

bound holds for this algorithm (Balcan et al., 2018a).

Theorem 29.11 Let ux1, . . . ,uxT : P → [0,H] be a sequence of utility func-
tions corresponding to problem instances x1, . . . xT . Assume that these functions
ux1, . . . ,uxT are piecewise L-Lipschitz functions and (w,k)-dispersed at the max-
imizer ρ∗. Suppose P ⊂ R

d is contained in a ball of radius R and B(ρ∗,w) ⊂ P .
The continuous weighted majority algorithm with λ = 1

H

√
d ln(R/w)/T has

expected regret bounded by O
(

H
(√

Td log R
w + k

)
+ TLw

)
.

When w = 1/
√

T and k = Õ(
√

T), this gives regret Õ(
√

T(H
√

d + L)).

Proof Sketch Let Ut be the function
∑t−1

i=1 uxi(·); let Wt be the normalizing
constant at round t, that is Wt = ∫

P exp(λUt(ρ)) dρ.
The proof follows by providing upper and lower bounds on WT+1/W1. The

upper bound on WT+1/W1 in terms of the learner’s expected payout follows as

in the classic weighted majority algorithm, yielding: WT+1
W1

≤ exp
(

P(A)
(
eHλ−1

)
H

)
,

where P(A) is the expected total payoff of the algorithm.
We use (w,k)-dispersion to lower bound WT+1/W1 in terms of the optimal

parameter’s total payout. The key insight is that not only ρ∗ the optimal

640

DATA-DRIVEN ALGORITHM DESIGN

parameter gets a good payoff in hindsight, but all the parameters in the ball of
radius w around ρ∗ have a good total payoff. Let ρ∗ be the optimal parameter
and let OPT = UT+1(ρ

∗). Also, let B∗ be the ball of radius w around ρ∗. From
(w,k)-dispersion, we know that for all ρ ∈ B∗, UT+1(ρ) ≥ OPT − Hk − LTw.
Therefore,

WT+1 =
∫
P

exp(λUT+1(ρ)) dρ ≥
∫
B∗

exp(λUT+1(ρ)) dρ

≥ Vol(B(ρ∗,w)) exp(λ(OPT − Hk − LTw)).

Moreover, W1 = ∫
P exp(λU1(ρ)) dρ ≤ Vol(B(0,R)). Therefore,

WT+1

W1
≥ Vol(B(ρ∗,w))

Vol(B(0,R))
exp(λ(OPT − Hk − LTw)).

Combining the upper and lower bounds on WT+1
W1

gives the result. �

Whether the continuous weighted majority algorithm can be implemented in
polynomial time depends on the setting. Assume that for all rounds t ∈ {1, . . . ,T},∑t

s=1 us is piecewise Lipschitz over at most N pieces. It is not hard to prove that when
d = 1 and P = R and exp(

∑t
s=1 us) can be integrated in constant time on each of its

pieces, the running time is O(TN) per round. When d > 1 and
∑t

s=1 us is piecewise
concave over convex pieces, Balcan et al. (2018a) provide an efficient approximate
implementation by using tools from high-dimensional geometry.

Examples We now show that under natural smoothness conditions about the input
instances, dispersion is satisfied for the knapsack and clustering problems discussed
in Section 29.2. The proof structure in both cases is to use the functional form
of the discontinuities of the corresponding utility functions to reason about the
distribution of discontinuity locations that arise as transformations of random
problem parameters in algorithm configuration instances. Using this idea one can
upper bound the expected number of functions with discontinuities in any fixed
interval, and then obtain the final desired result by using a uniform convergence result
summarized in the following lemma.

Lemma 29.12 Let ux1,ux2, . . . ,uxT : R → R be piecewise L-Lipschitz functions,
each having at most N discontinuities, with independent randomness in their
discontinuities.4 Let F ={ fI : �→{0,1} | I ⊂R is an interval}, where fI : � →
{0,1} maps an instance x ∈ � to 1 if the interval I contains a discontinuity for
the utility function ux, and 0 otherwise. With probability 1− δ over randomness in

the selection of utility functions ux1,ux2, . . . ,uxT we have: supfI∈F
∣∣∣∑T

t=1 fI(xt)−
E

[∑T
t=1 fI(xt)

]∣∣∣ ≤ O(
√

T log(N/δ)).

Intuitively, Lemma 29.12 states the following. Suppose that instead of a worst-
case sequence of utility functions, there is some randomness in the locations of their

4 The independence is between functions. Within a function, the discontinuities may be correlated.

641

M.-F. BALCAN

discontinuities, where the randomness is independent between utility functions. Then,
with high probability, for every interval I , the actual number of discontinuities in I
will be close to its expectation, and in particular within an additive gap of at most
O(
√

T log(N/δ)). To prove this, the key step is to apply uniform convergence to the
class of functionsF defined in the lemma, and to prove that its Vapnik–Chervonenkis
(VC)-dimension is O(log N). This lemma is from Balcan et al. (2020) and it improves
over the earlier result in Balcan et al. (2018a).

For the family of greedy algorithms Aknapsack discussed in Section 29.2.2, in
the worst case, the associated utility functions might not be dispersed. However,
we can perform a smoothed analysis (discussed also in Chapters 13–15 for other
applications), and show that if there is some randomness in the item values, then we
have dispersion with high probability. Formally, we assume item values are b-smooth:
they are random, independent, and each has a density function upper bounded by
b. (For example, a canonical b-smooth distribution is a uniform distribution on an
interval of width 1/b.) The dispersion guarantee is given in Theorem 29.13.

Theorem 29.13 Let x1, . . . ,xT be any sequence of knapsack instances with n
items and capacity C where instance i has sizes s(i)1 , . . . ,s(i)n ∈ [1,C] and values

v(i)1 , . . . ,v(i)n ∈ (0,1]. Assume that the item values are b-smooth. Then for any δ >

0, with probability at least 1 − δ, for any w > 0, the utility functions ux1, . . . ,uxT

are (w,k)-dispersed for k = O
(
wTn2b2 log(C) +√T log(n/δ)

)
.

Proof Sketch Recall from Lemma 29.4 that for a knapsack instance x with item
values v1, . . . ,vn and sizes s1, . . . ,sn, the discontinuities of the utility ux only
occur at parameter values where the relative ordering of two items swaps under
the score σρ . For items i and j, let cij = log(vi/vj)/ log(si/sj) be the critical
parameter value where their relative scores swap. When the item values are
independent and have b-bounded distributions, we are guaranteed that their
joint density is also b2-bounded. Using this Balcan et al. (2018a) prove that
each discontinuity is random and has a density function that is upper bounded
by b2 log(C)/2.

Next, fix any ball I of radius w (i.e., an interval of width 2w). For any function
uxi the probability that any one of its discontinuities belongs to the interval I
is at most wb2 log(C). Summing over both knapsack instances x1, . . . ,xT and
the O(n2) discontinuities for each, it follows that the expected total number of
discontinuities in interval I is at most wTn2b2 log(C). This is also a bound on the
expected number of functions among ux1, . . . ,uxT that are discontinuous on the
ball I . Finally, Lemma 29.12 can be used to show that with probability ≥ 1 − δ

any interval of radius w has O(wTn2b2 log(C) + √
T log(n/δ)) discontinuous

functions. �

Combining the dispersion analysis for the knapsack problem with the regret
guarantees for the continuous weighted majority algorithm, we can obtain an upper
bound on the algorithm’s expected regret. In particular, applying Theorems 29.13
and 29.11 with δ = 1/

√
T and w = 1/(

√
Tn2b2 log(C)), and using that utilities

take values in [0,C], we have the following corollary (from Balcan et al., 2020) which
improves over the earlier result (Balcan et al., 2018a):

642

DATA-DRIVEN ALGORITHM DESIGN

Corollary 29.14 Let x1, . . . ,xT be any sequence of knapsack instances
satisfying the same conditions as in Theorem 29.13. The continuous weighted
majority algorithm employed to choose parameters ρ1, . . . ,ρT ∈ [0,R] for the

sequence x1, . . . ,xT with λ=
√

log(R/(
√

Tn2b2 log(C))/C has expected regret
bounded by

E

[
max
ρ∈[0,R]

T∑
t=1

uxt(ρ) −
T∑

t=1

uxt(ρt)

]
= O

(
C
√

T log(RTnb log(C))
)

.

For the Ascl-linkage algorithm family analyzed in Section 29.2.2, Balcan et al.
(2020) show the following guarantees:

Theorem 29.15 Let x1, . . . ,xT be a sequence of clustering instances over n
points and let D1, . . . ,DT ∈ [0,M]n×n be their corresponding distance matrices.
Assume that the pairwise distances for each instance are b-smooth: for all
t ∈ {1, . . . ,T} the entries of Dt are random, independent, and have density
functions that are bounded by b. Assume further that the utility functions
are bounded in [0,H]. The continuous weighted majority algorithm employed
to choose parameters ρ1, . . . ,ρT ∈ [0,1] for the sequence D1, . . . ,DT with

λ =
√

log(1/(
√

Tn8b2M2)/H has expected regret bounded by E
[

maxρ∈[0,R]∑T
t=1 uxt(ρ) −∑T

t=1 uxt(ρt)
] = O

(
H
√

T log(TnbM)
)
.

Proof Sketch Using Lemma 29.6 and properties of b-bounded random vari-
ables we can show that for any δ > 0, with probability 1 − δ, for any w > 0,
the utility functions uD1, . . . ,uDT are (w,k)-dispersed for k = O

(
wTn8b2M2 +√

T log(n/δ)
)
. By choosing w = 1/(

√
Tn8b2M2) and using Theorem 29.11, we

obtain the result. �

Balcan et al. (2018a) also show good dispersion bounds for the family of algo-
rithms for solving IQPs discussed in Section 29.2 (SDP relaxations followed by
parameterized rounding); interestingly, here the dispersion condition holds due to
internal randomization in the algorithms themselves (with no additional smoothness
assumptions about the input instances).

Extensions Extensions to the results presented here include:

� A regret bound of Õ(T (d+1)/(d+2)(H
√

d(3R)d + L)) for the bandit setting. While
this is more realistic in terms of feedback per round, the regret bound is signifi-
cantly worse than that for the full information setting (Balcan et al., 2018a).

� A better regret bound, similar to that of Theorem 29.11, and a computationally
efficient implementation for semi-bandit online optimization problems where
evaluating the cost function of one algorithm reveals the cost for a range of similar
algorithms (Balcan et al., 2020).

� An application of the dispersion condition to the offline learning setting of
Section 29.2, specifically the derivation of more refined data-dependent uniform
convergence guarantees using empirical Radamacher complexity (Balcan et al.,
2018a) (see Chapter 22 for a definition of Rademacher complexity).

643

M.-F. BALCAN

29.4 Summary and Discussion

The results in Section 29.2 showing a pseudo-dimension of O(log n) also lead to
computationally efficient learning algorithms, because one can identify and try out
a polynomial number of parameter choices. Those with larger pseudo-dimension
generally need to use additional problem structure to achieve polynomial-time opti-
mization and learning.

Other Directions Other recent theoretical works (Kleinberg et al., 2017; Weisz et al.,
2018) consider data-driven algorithm design for runtime among a finite number of
algorithms. Their goal is to select an algorithm whose expected running time, after
removing a δ probability mass of instances, is at most (1 + ε)OPT , where OPT is
the expected running time of the best of the n algorithms on instances from D. The
key challenge they address is to minimize the total running time for learning in terms
of n, OPT , ε, and δ, and without any dependence on the maximum runtime of an
algorithm. Note that as opposed to most of the work presented in this chapter these
papers do not assume any assume structural relations among the n algorithms. It
would be very interesting to combine these two lines of work.

A related line of work presents sample complexity bounds derived for data-
driven mechanism design for revenue maximization settings (Morgenstern and
Roughgarden, 2015; Balcan et al., 2016, 2018b). The general theorem of Balcan
et al. (2019b) (mentioned in Section 29.2.3) can be used to recover the bounds in
these papers. Furthermore, the dispersion tools derived in Section 29.3 have been
used for providing estimators for the degree of approximate incentive compatibility
of an auction, another important problem in modern auction design (Balcan et al.,
2019a).

Open Directions Data-driven algorithm design has the potential to fundamentally
shift the way we analyze and design algorithms for combinatorial problems. In
addition to scaling up the techniques developed so far and also using them for new
problems, it would be interesting to develop new analysis frameworks that lead to even
better automated algorithm design techniques. For example, it would be interesting
to explore a reinforcement learning approach, where we would learn state-based
decision policies that use properties of the current state of the algorithm (e.g., the
search tree for MIPs) to determine how to proceed (e.g., which variable to branch on
next at a given node). It would also be interesting to develop tools for learning within
a single problem instance (as opposed to learning across instances).

In addition to providing theoretically sound and practically useful data-driven
algorithmic methods, in the long term, this area has the potential to give rise to new
algorithmic paradigms of the type humans were not able to design before.

References

Arthur, David, and Vassilvitskii, Sergei. 2007. k-means++: The advantages of careful seeding.
In ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035.

Balcan, Maria-Florina, Sandholm, Tuomas, and Vitercik, Ellen. 2016. Sample complexity of
automated mechanism design. In Annual Conference on Neural Information Processing
Systems, pp. 2083–2091.

644

DATA-DRIVEN ALGORITHM DESIGN

Balcan, Maria-Florina, Nagarajan, Vaishnavh, Vitercik, Ellen, and White, Colin. 2017.
Learning-theoretic foundations of algorithm configuration for combinatorial partition-
ing problems. In Conference on Learning Theory (COLT), pp. 213–274.

Balcan, Maria-Florina, Dick, Travis, and Vitercik, Ellen. 2018a. Dispersion for data-driven
algorithm design, online learning, and private optimization. In Proceedings of the 59th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 603–614. IEEE.

Balcan, Maria-Florina, Sandholm, Tuomas, and Vitercik, Ellen. 2018b. A general theory of
sample complexity for multi-item profit maximization. In ACM Conference on Economics
and Computation, pp. 173–174.

Balcan, Maria-Florina, Dick, Travis, Sandholm, Tuomas, and Vitercik, Ellen. 2018c. Learning
to branch. In International Conference on Machine Learning (ICML), pp. 353–362.

Balcan, Maria-Florina, Sandholm, Tuomas, and Vitercik, Ellen. 2019a. Estimating approxi-
mate incentive compatibility. In ACM Conference on Economics and Computation, p. 867.

Balcan, Maria-Florina, DeBlasio, Dan, Dick, Travis, Kingsford, Carl, Sandholm, Tuomas,
and Vitercik, Ellen. 2019b. How much data is sufficient to learn high-performing algo-
rithms. In Arxiv.

Balcan, Maria-Florina, Dick, Travis, and Pegden, Wesley. 2020. Semi-bandit optimization in
the dispersed setting. In: Uncertainty in Artificial Intelligence (UAI).

Balcan, Maria-Florina F, Dick, Travis, and White, Colin. 2018d. Data-driven clustering via
parameterized Lloyd’s families. In Advances in Neural Information Processing Systems,
pp. 10641–10651.

Blasio, Dan De, and Kececioglu, John D. 2018. Parameter Advising for Multiple Sequence
Alignment. Springer.

Cesa-Bianchi, Nicolo, and Lugosi, Gábor. 2006. Prediction, Learning, and Games. Cambridge
University Press.

Cohen-Addad, Vincent, and Kanade, Varun. 2017. Online Optimization Of Smoothed
Piecewise Constant Functions. In International Conference on Artificial Intelligence and
Statistics (AISTATS), pp. 412–420.

Gupta, Rishi, and Roughgarden, Tim. 2016. A PAC approach to application-specific algo-
rithm selection. In Innovations in Theoretical Computer Science (ITCS), pp. 123–134.

Gupta, Rishi, and Roughgarden, Tim. 2017. A PAC approach to application-specific algo-
rithm selection. SIAM Journal on Computing, 46(3), 992–1017.

Horvitz, Eric J., Ruan, Yongshao, Gomes, Carla P., Kautz, Henry, Selman, Bart, and
Chickering, David Maxwell. 2001. A Bayesian approach to tackling hard computational
problems. In Conference in Uncertainty in Artificial Intelligence (UAI), pp. 235–244.

Kleinberg, Robert, Leyton-Brown, Kevin, and Lucier, Brendan. 2017. Efficiency through pro-
crastination: Approximately optimal algorithm configuration with runtime guarantees,
pp. 2023–2031. IJCAI.

Morgenstern, Jamie, and Roughgarden, Tim. 2015. The pseudo-dimension of nearly optimal
auctions. In Conference on Neural Information Processing Systems, pp. 136–144.

Sandholm, Tuomas. 2003. Automated mechanism design: A new application area for search
algorithms. In International Conference on Principles and Practice of Constraint Program-
ming, pp. 19–36.

Valiant, L.G. 1984. A theory of the learnable. Communications of the ACM, 27(11), 1134–
1142.

Vapnik, V. N. 1998. Statistical Learning Theory. John Wiley & Sons.
Weisz, Gellért, György, András, and Szepesvári, Csaba. 2018. Leaps and bounds: A method

for approximately optimal algorithm configuration. In International Conference on
Machine Learning (ICML), pp. 5254–5262.

Xu, Lin, Hutter, Frank, Hoos, Holger H., and Leyton-Brown, Kevin. 2008. SATzilla:
Portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence Research,
32(June), 565–606.

645

CHAPTER THIRTY

Algorithms with Predictions
Michael Mitzenmacher and Sergei Vassilvitskii

Abstract: We introduce algorithms that use predictions from
machine learning applied to the input to circumvent worst-case
analysis. We aim for algorithms that have near optimal performance
when these predictions are good, but recover the prediction-less
worst-case behavior when the predictions have large errors.

30.1 Introduction

In finding ways to go beyond worst-case analysis, previous chapters have described
different ways to model the inputs seen by an algorithm in order to avoid fragile
bad examples, give better guarantees, or explain the efficacy of methods in practice.
Many of these approaches are based on assuming a model of the input that includes
randomness in a very specific way. For instance, in average case analysis (Chapter 8)
data is drawn from a fixed but unknown distribution, and with random arrival models
(Chapter 11) the input is assumed to be randomly permuted. In this chapter, instead
of posing a specific model or a set of assumptions on the input, we provide a general
framework designed to make use of the rapidly growing power of machine learning
techniques. In our framework, we assume that we have a machine learning method
that provides us with predictions about the input, and we use the predictions to make
a more effective algorithm. We then analyze the performance of the algorithm as a
function of how accurate the predictions are; ideally, the better the predictions, the
better the performance.

One thing that distinguishes this approach from other work is its natural connec-
tion to practice, as for many problems machine learning can be readily applied to
provide the necessary prediction for new inputs. Moreover, if we can successfully tie
the performance of an algorithm to the quality of the predictions it receives, then as
machine learning technology evolves and the quality of predictions improves, we get
better performing algorithms essentially for free.

When designing these kinds of algorithms with predictions, there are several new
challenges. One is a new goal for our theoretical analysis. We wish to provide formal
guarantees of the following form: if our predictor has a given level of performance,
our algorithm will achieve a corresponding level of performance. A further challenge
is to identify what quantity or quantities to predict, as these will generally be problem
specific. Choosing the right quantity to predict can affect both the algorithm’s
performance and the bounds from our analysis. Finally, an additional challenge is

646

ALGORITHMS WITH PREDICTIONS

that by nature machine learning methods are imperfect. They have errors that can be
large and surprising, and the algorithms we design using machine learning predictions
should be robust enough to cope with them.

We start with some very simple examples suggesting why this framework might be
useful, and then present some additional examples of more complicated algorithms
and data structures that make use of predictions.

30.1.1 Warm-up: Binary Search

As a first example, consider the binary search problem. Given a sorted array A on n
elements and a query element q, the goal is to either find the index of q in the array,
or state that it is not in the set. The textbook method is binary search: compare the
value of q to the value of the middle element of A, and recurse on the correct half of
the array. After O(log n) probes, the method either finds q or correctly returns that q
is not in the array.

Binary search optimizes for the worst case, but there are often times when we can
do better. For example, most bookstores have books arranged alphabetically by the
authors’ last name within a particular section. If we were looking for an Agatha
Christie mystery, we would likely start our search near the beginning of the section;
if, instead, we were to look for a Dorothy Sayers novel, we’d start further toward the
end. We first look at the approximate location where we expect to find the book, using
our knowledge of the alphabet.

How can we generalize this approach? Let us assume we have a predictor h that,
for every query q, returns our best guess for the position of q in the array. To use
h, a natural approach is to first probe the location at h(q); if q is not found there,
we immediately know whether it is smaller or larger. Suppose q is larger than the
element in A[h(q)] and the array is sorted in increasing order. We probe elements at
h(q)+2,h(q)+4,h(q)+8, and so on, until we find an element larger than q (or we hit
the end of the array). Then we apply binary search on the interval that’s guaranteed to
contain q (if it exists). The bookstore example uses interpolation search as a classifier;
since “C” is the third letter out of 26, we start our search for the Agatha Christie book
about 3/26 ≈ 12% of the way through the Mysteries section.

What is the cost of such an approach, in terms of the number of comparisons?
Let t(q) be the true position of q in the array (or the position of the largest element
smaller than q if it is not in the array). Suppose the error of the classifier on q is
ηq = |h(q)− t(q)|. The cost of running the above algorithm starting at h(q) is at most
2(log |h(q) − t(q)|) = 2 log ηq.

If the queries q come from a distribution, then the expected cost of the algorithm is

2Eq

[
log (|h(q) − t(q)|)

]
≤ 2 logEq

[
|h(q) − t(q)|

]
= 2 logEq[ηq],

where the inequality follows by Jensen’s inequality. This gives a guarantee on the
performance of the algorithm parametrized by the error of the predictor. In partic-
ular, even a classifier with an average error of O(polylog n) leads to an improvement
in asymptotic performance. Moreover, since ηq is trivially bounded by n, even an
exceptionally bad predictor cannot do much harm.

647

M. MITZENMACHER AND S. VASSILVITSKII

30.1.2 Online Algorithms: Ski Rental

The binary search example has the nice property that the use of predictions is
essentially free. On the one hand, as the prediction error tends to zero, the running
time approaches the best possible for this task (a constant). On the other hand, the
error is naturally bounded by the number of elements, so even bad predictions will not
asymptotically degrade the algorithm’s performance. In other situations there can be
a more dramatic trade-off between the benefit of using the predictions and the cost
incurred when these predictions are wildly incorrect.

Consider the SKIRENTAL problem. At the beginning of the ski season, a new skier
has the option to buy skis for $b dollars, or to rent them every day for $1 per day.
This is one of the simplest settings of decision making under uncertainty – the skier
does not know how many days she will ski, yet a simple deterministic strategy will
guarantee that she does not spend more than twice as much as she would have had
she known the future.

The algorithm achieving that bound rents skis for the first b days, and then buys
them on day b+1. If the skier skis b or fewer days, she has spent the optimal amount.
If, by chance, she stops skiing after day b+1, she has spent at most $2b in total, which
is less than twice the optimal amount.

Suppose the skier has access to a prediction h(d) of how many days she will ski.
How should she use this information? Let d∗ be the true number of skiing days, and
η = |h(d) − d∗| be the error in the prediction. It is easy to verify that the algorithm
that treats the prediction as truth (i.e., buying skis on day 1 if h(d) > b and renting
daily otherwise) has a total cost of OPT + η. We observe that in this case, the use of
predictions is not “free.” While the algorithm performs optimally when the prediction
is correct, if the skier trusts the prediction and doesn’t buy the skis when she should,
she can spend arbitrarily more money than if she applies the simple deterministic
strategy given earlier.

There is, however, a simple fix. Let λ ∈ [0,1] be a tunable parameter, and consider
the following algorithm. If h(d) > b, the skier buys on day �λb�, and otherwise, she
buys on day �b/λ�. A case analysis shows that the competitive ratio of this algorithm
is bounded by

1 + min
(

1
λ
,λ + η

(1 − λ)OPT

)
. (30.1)

In particular, as the error of the prediction drops to 0, the competitive ratio is no
more than 1 + λ. On the other hand, even for large errors, the ratio is never worse
than 1 + 1/λ. Note that λ = 1 recovers the algorithm we described originally.

30.1.3 Model

The two preceding examples outline the desiderata that we have for algorithms that
use predictions. There are three properties that we highlight.

First, we have isolated the inner workings of the predictor from the algorithm
that uses the predictions, instead simply abstracting the predictor as a function h.
Our algorithms are accordingly not tied to a specific type of predictor. We can apply
decision trees, neural networks, or any other approach to obtain predictions; any h
with low error suffices.

648

ALGORITHMS WITH PREDICTIONS

Second, the goal is to tie the performance of the algorithm to the observed loss of
the predictor. In the setting of our examples, where we used competitive analysis, we
further isolated two concepts. We want the algorithms to be consistent; that is, ideally
their performance should recover that guaranteed by the offline optimal algorithm
given an error-free prediction. Additionally, to capture the fact that machine learning
systems sometimes have very large errors, we want algorithms to be robust; that is,
ideally their performance should not be worse than standard online algorithms that
use no predictions whatsoever.

While ideal consistency and robustness may be quite challenging, we can loosen
the goals using an approximation. Formally, we say that an algorithm is α-consistent
if its competitive ratio tends to α as the error in the predictions goes to 0, and β-robust
if the competitive ratio is bounded by β even with arbitrarily bad predictions.

As we saw in the ski-rental example, there is often a tension between consistency
and robustness. A practitioner who has high confidence in the predictions may aim
for high consistency and low robustness by choosing a small value of λ. On the
other hand, a risk-averse decision maker may choose a higher value for λ, limiting
the benefit of the predictions but also the additional cost when they turn out to be
incorrect.

30.2 Counting Sketches

Another example of a problem where predictions have been shown to boost perfor-
mance is in the setting of counting sketches for data streams. We briefly describe the
Count-Min sketch as an example of a counting sketch. For simplicity, we assume
items come in as a data stream one at a time; for example, these could be URLs or IP
addresses being accessed. Keeping a separate counter for each item may require too
much space, and so we can instead use a sketch that requires less memory at the cost
of obtaining only an approximate count for each item, with some chance of failure
for each item. The Count-Min sketch sets up a rectangular array of counters with
r rows and c columns. Each item hashes to one counter location in each row; when
an item passes in the stream, each of its counters is incremented. The approximate
count for an item is the minimum counter value associated with the item, which can
only yield an overestimate of the actual count for the item. Various results are known
that show the error for such a sketch can be small for appropriate values of r and c.
Note that if an item has at least one counter where no other item hashes to it, the
resulting approximate count will in fact be the exact count. The idea behind the
good performance of the Count-Min sketch is that for most items, there will be at
least one counter for which the item collides with very few other items, leading to
an accurate estimate. In particular, for skewed data streams where item frequencies
follow a Zipfian distribution (or more generally for heavy-tailed distributions), so
much of the total count is based on a small number of items that the approach can
be very accurate, as most collisions introduce only a small error in the counter.

Suppose, however, that we had a predictor that could reasonably accurately predict
which items were the “heavy hitters,” that is, the most frequent items. Since the idea of
using a data sketch is to save space, we do not want to use a separate counter for every
item, but we may be willing to use space to keep individual counters for each item that
is predicted to have a high count. This assures accuracy for correctly predicted heavy
hitters, which is often important, but also importantly it greatly reduces the possibility

649

M. MITZENMACHER AND S. VASSILVITSKII

of a large error for an item with a small count, since removing potential heavy hitters
from the larger array greatly reduces the possibility that a small item will have all of
its counters collide with a large item.

The works by Aamand et al. (2019) and Hsu et al. (2019) have formalized this high-
level argument with provable results for the Count-Min sketch and Count-Sketch
for Zipfian frequency distributions, showing they can improve the space/performance
tradeoff over sketches without predictions. They also show this improvement holds
in practice. While we do not go into further details here, the example of counting
sketches provides an intuitive approach for using predictions within algorithms
and data structures: If there are a limited set of problematic elements, such as
outliers or high weight elements, that greatly affect performance when they are not
known in advance, a predictor may allow these elements to be separated out and
correspondingly improve overall performance.

30.3 Learned Bloom Filters

An early proposed example of how predictions from machine learning could improve
data structures provided a novel variation of the Bloom filter (Kraska et al., 2018).

To start, let us briefly review standard Bloom filters (Bloom, 1970; Broder and
Mitzenmacher, 2004), a data structure used to answer set membership queries using
small space. A Bloom filter for representing a set S = {x1,x2, . . . ,xn} of n elements
corresponds to an array of m bits, and uses k independent hash functions h1, . . . ,hk
with range {0, . . . ,m − 1}. Note that the number of bits per item used by the Bloom
filter is given by m/n. Here we assume that these hash functions are perfectly random.
Initially all array bits are 0. For each element x ∈ S, the array bits hi(x) are set to 1
for 1 ≤ i ≤ k; a bit may be repeatedly set to 1. To check if an item y is in S, we check
whether all hi(y) are set to 1. If not, then clearly y is not a member of S. If all hi(y)
are set to 1, we conclude that y is in S, although this may be a false positive. A Bloom
filter does not produce false negatives.

Let y be an element such that y /∈ S, where y is chosen independently of the
hash functions used to create the filter. Let ρ be the fraction of bits set to 1 after the
elements are hashed. Then the probability of a false positive is ρk. Now the expected
value of ρ is easily calculated, as the probability a specific bit in the filter stays 0 is just(

1 − 1
m

)kn

≈ e−kn/m.

Standard techniques show that ρ is close to its expectation with high probability,
so using the expectation in place of ρ, we see the false positive probability will be
concentrated near

(1 − e−kn/m)k

when k and m/n are constant. Choosing k appropriately (the optimal value for k is
(m/n) · ln 2), we see the false positive probability for an element falls exponentially
with m/n, the number of bits per item used in the filter.

The idea of a learned Bloom filter is to train a neural network or other machine
learning algorithm to recognize the set S. We represent the algorithm by a function f ,

650

ALGORITHMS WITH PREDICTIONS

Figure 30.1 The left side shows a learned Bloom filter. Negatives from the learned function are checked
against the backup filter to prevent false negatives. The right side shows the sandwiched learned Bloom
filter. An initial filter removes many true negatives from reaching the learned function, reducing the false
positives from the learned function.

so that on input x the algorithm returns a value f (x) between 0 and 1. The algorithm
ideally would return 1 for every element in the set and 0 for every element not in the
set. If we had such a predictor, we would not need any data structure, as we could just
use the function to represent the set. This is too much to expect in practice; instead,
we consider an algorithm that returns a value 0 ≤ f (x) ≤ 1. We might intuitively
interpret f (x) as an estimate of the probability that x is an element from the set,
although this interpretation is not necessary in what follows.

We can choose a threshold τ , and have the algorithm return that any element that
satisfies f (x) ≥ τ is in the set and otherwise it is not in the set. Indeed, if we choose
τ = minx∈S f (x) then there will be no false negatives. But unless the predictor f is
very good, it is likely that this value of τ will lead to too many false positives.

The alternative approach we apply is to use the learned function f as a prefilter,
selecting a larger value of τ to cut down on false positives, and then using a standard
Bloom filter as a backup to prevent false negatives. The setup is shown in Figure 30.1.
The initial learned function should correctly identify a substantial number of set
elements, with a low false positive rate. The backup Bloom filter then holds all the
set elements that are incorrectly rejected by the learned function; to be clear, we
determine these in advance and set up the backup Bloom filter accordingly, which
means the dataset and the learned function must be fixed before setting up the backup
Bloom filter. The backup Bloom filter again yields false positives, but prevents any
false negatives.

To see how there might be gains from this approach, imagine a small learned
function that correctly identifies half of the original set. Then the backup Bloom
filter needs to only correct the erroneous false negatives of the predictor, which means
the backup filter needs to represent only half the original set elements. Accordingly,
the backup filter could be roughly half the size of a Bloom filter for the entire set
with roughly the same false positive rate. If the learned function has a small enough
representation, namely less than half the size of a Bloom filter for the entire set, then
this combination will be a win in terms of the space versus false positive probability

651

M. MITZENMACHER AND S. VASSILVITSKII

tradeoff against a standard Bloom filter. Empirical results from Kraska et al. (2018)
show that learned Bloom filters can outperform standard Bloom filters for real-world
datasets.

We emphasize that the threshold τ will typically be chosen empirically, based
on test queries, to predict the rate of false positives that will occur. This empirical
evaluation of test data to determine the relationship between τ and the rate of
false positives we expect to find in future queries depends on our test queries being
representative of the future; otherwise we may obtain a higher false positive rate over
future queries than expected. A learned Bloom filter thus requires different additional
assumptions than a standard Bloom filter in order to make statements about its
performance. Further details are discussed in Mitzenmacher (2018).

Learned Bloom filters are relatively new; given the large number of variations
of Bloom filters, there may be interesting improvements for and variations of learned
Bloom filters that will appear. Indeed, it is already known that a “sandwiched”
learned Bloom filter that uses a learned filter between two standard Bloom filters,
also shown in Figure 30.1, can yield better performance (Mitzenmacher, 2018).

30.4 Caching with Predictions

The caching or paging problem is both a canonical example of online algorithms
and a problem that has necessitated beyond worst-case analysis, as we have seen in
Chapters 1, 2, and 24.

Recall the problem setup. We are given a machine with a slow memory that can
hold N pages, and a fast memory with k slots. Page requests arrive one at a time,
and must be served out of fast memory. If the page is already in fast memory (cache),
then a hit occurs, and the operation is free. Otherwise, there is a cache miss, the page is
brought into fast memory, and one of the k existing pages in the cache is evicted. The
goal is to minimize the number of cache misses over the sequence of page requests.

30.4.1 What to Predict?

The first question to address is to decide on the quantity that should be predicted
by the machine learning subsystem. We look for predictions that are both useful to
the algorithm and efficiently learnable. The latter highlights the fact that predictions
should be grounded in reality. Specifically, we want to make sure that we only need
polynomially many examples to learn a good predictor; formally, we ensure that the
function has a low sample complexity. As long as the family of functions specifying
the predictor is relatively simple and well behaved, this condition is satisfied. However,
an approach to fully predict the whole instance would fail the test and be untenable.

What are good candidates for predictions for the paging problem? As mentioned in
Chapter 1, the Furthest-In-Future (FIF) algorithm minimizes the number of cache
misses. In order to be able to emulate it online, a useful prediction to be made at
the time of each request is the next arrival time of this element. Formally, let next(t)
be the next arrival time of the element that appeared at time t, and h(t) denote the
predicted time of the next arrival of this element.

Armed with such a predictor a natural approach is to plug it into the Furthest-In-
Future algorithm, instead of the ground truth. We call this the PFIF for Predicted
Furthest-In-Future.

652

ALGORITHMS WITH PREDICTIONS

The analysis of the FIF algorithm directly implies that if the predictor h is perfect,
that is h(t) = next(t) for all t, then PFIF is optimal. In other words, PFIF is consistent.
But is the approach robust?

First we must define an error metric. For a hypothesis h let us define η(h) =∑
t |h(t) − next(t)|. The question we want to ask is how the competitive ratio of

PFIF scales with η(h). The first thing to observe is that, as we defined it, the error
grows with the input length. This is undesirable. Suppose we duplicate a request
sequence and the predictions. The competitive ratio would remain the same, but the
error defined above would double. We can normalize by the input length, but this,
too, leads to pathological cases. For instance, take any request sequence of length n,
and repeat the last element n times. Since all of these extra requests would be cache
hits, the performance of any algorithm remains the same as well. However, if the last
n predictions are perfect, then η does not change, but error normalized by sequence
length would decrease by a factor of 2. Instead, we will normalize the error by the
cost of the optimum solution OPT, which behaves correctly in both of these examples.

We show that the competitive ratio of PFIF grows linearly with the error. Formally,
the competitive ratio of PFIF is �(η(h)/OPT).

Consider a simple example with a cache of size 2, and three elements, a, b, and
c. The true sequence will be c,a,b,a,b, . . . ,a,b,c. The predictions will be correct for
elements a and b, but the prediction for c will always be at time 0. Hence η(h) is the
length of the sequence. In this case PFIF will keep c in the cache, and suffer a cache
miss almost every time. On the other hand, the optimal solution never misses on a
and b once they are in the cache, and has a constant number of misses overall. We
note that while it may be tempting to attempt to fix this algorithm by disregarding
elements whose predicted appearance time has passed, this also has an �(η(h)/OPT)

competitive ratio.

30.4.2 Marking Algorithms

A natural question then is whether we can get competitive ratios with a more benign
dependence on η(h)/OPT.

To proceed we introduce the Marking family of algorithms, first introduced by Fiat
et al. (1991). These algorithms proceed in phases. Every phase begins with every
cache position “unmarked.” Whenever there is a cache miss, an unmarked element
is evicted, and the new element is marked. When a cache hit occurs the element is
marked as well. This continues until all elements in the cache are marked, at which
point the phase ends, and all of the marks are cleared. It is easy to show that any
marking algorithm is O(k)-competitive, where k is the cache size. Moreover, Fiat et al.
(1991) show that if an algorithm evicts a uniformly random unmarked element, then
the expected competitive ratio is O(log k).

To prove a bound on the competitive ratio of the marking algorithm, we must get
a lower bound on the optimum. To do so, we partition elements that arrive during
a phase into two categories: clean and stale. Clean elements in phase i are those that
did not appear in phase i − 1. In contrast, stale elements are those that were seen in
the previous phase. Consider the following sequence with a cache of size 3.

a,a,b,a,b,c,︸ ︷︷ ︸
phase1

b,b,c,b,d,︸ ︷︷ ︸
phase2

a,a,d,c︸ ︷︷ ︸
phase3

653

M. MITZENMACHER AND S. VASSILVITSKII

Note that each phase ends as soon as three distinct elements appear. In phase 2,
elements b and c are stale (since they appeared in phase 1), and element d is clean. In
contrast, in phase 3, d is stale (as is c), and a is clean.

Let Ci be the number of clean elements in phase i. Consider the performance of
any algorithm on the clean elements. For some element j ∈ Ci, if it is not present in
the cache in the beginning of phase i, then it will incur a cache miss. On the other
hand, if it is in the cache at the beginning of the phase, it must have stayed in the
cache throughout phase i−1, even though it did not appear, thus effectively reducing
the working cache size. This argument can be made precise, to show that

OPT ≥ 1
2

∑
i

Ci. (30.2)

In other words, the number of misses in any strategy is at least half the number of all
clean elements. We will relate the misses suffered by our algorithm to the number of
clean elements in each phase.

In order to utilize predictions in the marking framework, we modify the eviction
strategy of the marking algorithm. If the arriving element is clean, we evict the
unmarked element predicted to appear furthest in the future. If the arriving element
is stale, we proceed as before, and evict a uniformly random unmarked element. We
refer to this variant as PREDICTIVEMARKER.

Theorem 30.1 PREDICTIVEMARKER has a competitive ratio of O
(

log η(h)
OPT

)
.

To prove the theorem, let us try to understand the reason behind cache misses
incurred by the algorithm. Suppose an element e arrives and e is not in the cache,
causing a cache miss. If the element e is clean, Equation 30.2 tells us we can charge
its eviction directly to OPT. Suppose e is stale. By the definition of stale elements, e
was in the cache when the phase began, thus it must have been evicted at some point
between the beginning of the phase and its arrival. Let ev(e) denote the element whose
arrival caused the eviction of e. Either ev(e) is clean, or it is another stale element,
e1, whose arrival time is earlier than e. In this case let us look why e1 was evicted, i.e.,
ev(e1) = ev(ev(e)). By the same logic, either ev(e1) is a clean element, or it is another
stale element whose first arrival in this phase was earlier still. Therefore, repeatedly
applying the ev function to an element leads to a clean element whose arrival set off
this chain of events.

To get a bound on the competitive ratio, we ask how long can this chain be? This
gives us the desired bound because each link in the chain represents a cache miss,
each chain terminates with a clean element, and the number of clean elements is
comparable to OPT by Equation 30.2. It is clear that the length of the chain depends
on the eviction rule: If we always evict the element that is latest to arrive (FIF) then
each chain is of length 1. If we do the reverse and evict the element that is next to
arrive, then a chain can grow to be �(k) in length.

We first analyze the standard marking algorithm which evicts elements uniformly
at random.

Lemma 30.2 When evicting a random unmarked element, the expected length of
each chain is O(log k).

654

ALGORITHMS WITH PREDICTIONS

Proof We need only consider stale elements in every phase, and there may be
as many as k−1 of them. Order them by their arrival time, with e1 arriving first,
then e2, and so on. Denote by Li the length of the chain starting with element
ei. We can write down the recurrence for Li as

Li = 1 + 1
k − i

k−1∑
j=1

Lj,

which solves to L0 = �(log k) when Lk−1 = 0. �

On the other hand, in PREDICTIVEMARKER, when a clean element arrives, we evict
the element predicted to arrive furthest in the future. Let c be a clean element that
arrives at time tc, s denote the element we chose to evict, and ts be the next time of
arrival of s. Note that any stale element that arrives between tc and ts cannot increase
the chain started at c. Therefore the only elements that can contribute to the growth
of the chain are those that arrive after time ts. But this is exactly in violation of our
prediction, and thus we can charge these cache misses to the error of the predictor. Let
invh(s) denote the set of elements that arrive after s even though they were predicted
by h to arrive before. It is easy to extend Lemma 30.2 to show that the expected length
of the chain starting with s is �(log invh(s)).

To complete the analysis, we need to bound the number of inversions as a function
of the accuracy of the predictor. For any two permutations, the total number of
inversions and the �1 distance of the elements are known to always be within a
factor of two by the celebrated Diaconis–Graham inequality (Diaconis and Graham,
1977). The latter is also exactly η(h) decomposed across phases. Further, since log is
a concave function, to maximize the total length of all chains, we should partition
errors equally among them. These two facts imply that the expected error of the above
algorithm is O(log(η(h)/OPT)).

30.4.3 Summary of Caching

The caching problem is illustrative of the power of algorithms with predictions and
the care that must be taken in designing them. We relied on the offline algorithm
to identify the quantity that we wished to predict: the next appearance of every
arriving element. We then proved that simply using this prediction as a proxy for
the truth in the optimal offline algorithm allowed for pathological examples where
the predictions led the algorithm astray. We then showed a different algorithm that,
by using the predictions in a more careful manner, leads to a marked improvement
in the competitive ratio over the naïve way of using the predictor. In addition, we
can show that even if the error is very large, we can guarantee performance within
a constant factor of the standard marking algorithm. (See Exercise 30.2.) Finally,
as Lykouris and Vassilvitskii (2018) showed, these gains are not just theoretical; even
with off-the-shelf prediction models PREDICTIVEMARKER consistently outperformed
standard methods like the Least Recently Used (LRU) policy.

30.5 Scheduling with Predictions

In Chapter 4, the problem of scheduling jobs on a single machine was considered
in the setting of resource augmentation. One of the key points was that if job times

655

M. MITZENMACHER AND S. VASSILVITSKII

were known, the simple greedy algorithm of Shortest Remaining Processing Time
(SRPT) is optimal with respect to minimizing the total flow time. Here we consider
the potential of strategies such as SRPT in the context of queueing systems, where
arrivals occur over time.

30.5.1 A Simple Model with Predictions

We start with a very simple example. Suppose we have n jobs j1, . . . ,jn, each of which
is either short or long. Short jobs require time s to process and long jobs require time
� > s to process. Jobs are all available at time 0, and they are to be ordered and then
processed sequentially. When the job times are known, shortest job first minimizes
the total waiting time over all jobs. If there are ns short jobs and n� long jobs, it is
easy to check that the average waiting time is

1
n

(
ns

ns − 1
2

s + n�
n� − 1

2
� + n�nss

)
.

If one has no information about the job times, then one might randomly order the
jobs, in which case the expected waiting time over all jobs is

1
n

(
ns

(
ns − 1

2
s + n�

2
�

)
+ n�

(
ns

2
s + n� − 1

2
�

))
.

Finally, suppose we have an algorithm that can predict a job’s type. We assume
short jobs are misclassified as long jobs with some probability p and long jobs are
misclassified as short jobs with some probability q. The natural approach would
be to use shortest-predicted-job-first; that is, we apply shortest-job-first based on the
predictions. Some case arithmetic shows that the expected waiting time is then

1
n

(
(1 − p)ns

(
(1 − p)(ns − 1)

2
s + qn�

2
�

)
+ pns

(
(1 − p)(ns − 1)s + p(ns − 1)

2
s + (1 − q)n�

2
� + qn��

)
+ (1 − q)n�

(
(1 − q)(n� − 1)

2
� + q(n� − 1)� + pns

2
s + (1 − p)nss

)
+ qn�

(
q(n� − 1)

2
� + (1 − p)ns

2
s
))

.

With these expressions, one can determine the gain from using predictions over
randomly ordering jobs, and the loss from using predictions in place of exact
information. Mitzenmacher (2019) suggests that we might also consider the ratio
between the expected waiting time with imperfect information and the expected
waiting time with perfect information. Mitzenmacher (2019) further suggests that
for any algorithm where it makes sense to use predicted information in place of exact
information one can consider this ratio, which is there referred to as the price of
misprediction, using the following definition:

Definition 30.3 Let MA(Q;I) be the value of some measure (such as the
expected waiting time) for a system Q given information I about the system

656

ALGORITHMS WITH PREDICTIONS

using algorithm A, and let MA(Q;P) be the value of that metric using predicted
information P in place of I when using algorithm A. Then the price of mispre-
diction is defined as MA(Q;I)/MA(Q;P).

Notice here that (unlike many other uses of the “price of” language in algorithm
analysis) the denominator is not necessarily an optimal algorithm, but the corre-
sponding algorithm with exact information. (One could, of course, also compare
against an optimal algorithm, as we have seen elsewhere in this chapter.)

30.5.2 More General Job Service Times

We can consider a more general model where a job’s actual and predicted times for
service are real-valued random variables. A natural probabilistic model is to suppose
that the job sizes are governed by some distribution, and correspondingly, for each
possible service time x, the output of the predictor y is governed by some distribution
that depends only on x. For example, we might model the prediction y as the value x
with some additional random noise, where the distribution of the noise might depend
on x. Equivalently, we can describe jobs according to a density function g(x,y),
giving the density for a job that has service time x and predicted service time y.
(For convenience we assume that g(x,y) is “well-behaved” throughout, so that it is
continuous and all necessary derivatives exist; the analysis can be readily modified
to handle point masses or other discontinuities in the distribution.) This model
makes some assumptions, most notably that each job corresponds to an independent
instantiation of this density function. However, it does seem sensible to model a
machine learning algorithm that has been trained on lots of data as providing an
estimated service time that corresponds to a conditional distribution based on the
actual service time, as is done here, as long as the future jobs we are going to see can
be thought of as coming from the same distribution as the jobs we used for training –
that is, roughly speaking, if the future is going to look like the past.

Again, we assume that all jobs are given at time 0, and we simply order the jobs
according to the shortest predicted job first. We let fs(x) = ∫∞

y=0 g(x,y) dy be the

corresponding density function for the service time, and fp(y) = ∫∞
x=0 g(x,y) dx be

the corresponding density function for the predicted service time. If there are n total
jobs, the expected waiting time for a job using shortest job first given full information
is given by

(n − 1)
∫ ∞

x=0
fs(x)

(∫ x

z=0
zfs(z) dz

)
dx,

while the expected waiting time for a job using predicted information using shortest
predicted job first is given by

(n − 1)
∫ ∞

y=0
fp(y)

(∫ ∞

x=0

∫ y

z=0
xg(x,z) dz dx

)
dy.

In words, in the full information case, given the service time for a job, we determine
its expected waiting time from each other job by taking the expectation conditioned
on the other job having a smaller service time. In the predicted information case,
to compute the expected waiting time for a job given its predicted service time, we

657

M. MITZENMACHER AND S. VASSILVITSKII

determine its expected waiting time from each other job by taking the expectation
based on the other job’s actual service time, conditioned on the other job having a
smaller predicted service time than the original job.

In this case, the price of misprediction is given by the ratio∫∞
y=0 fp(y)

(∫∞
x=0

∫ y
z=0 xg(x,z) dz dx

)
dy∫∞

x=0 fs(x)
(∫ x

z=0 zfs(z) dz
)

dx
; (30.3)

while this is not the simplest of expressions, given g(x,y) it can be numerically
evaluated. As an interesting albeit not necessarily realistic example, suppose that jobs
have service times that are exponentially distributed with mean 1, but the service time
prediction for a job with actual service time x is exponential with mean x, so that
the mean of the prediction is correct but the prediction itself can be significantly
inaccurate. It can be shown that the price of misprediction in this case is 4/3; this is
given as Exercise 30.3.

30.5.3 Scheduling Queues

This type of analysis can be extended, with some more involved work, to the case
of queues. In the queueing setting, we still just have one machine, but jobs both
enter for service and leave after finishing service over time, and we typically first
look at the average time in the system when considering performance. For example,
in standard queueing theory, the prototypical queue is known as the M/M/1 queue,
where arrivals are a Poisson process of rate λ < 1, service times are independently
and identically exponentially distributed with mean 1, and there is a single server
serving the customers. (The“M” in the M/M/1 queue stands for memoryless.) One
of the fundamental results in queueing theory is that the expected time a customer
spends waiting for and obtaining service in equilibrium in an M/M/1 queue with First
Come First Served (FCFS) scheduling (also called First In First Out (FIFO)) is given
by 1/(1−λ). In this section we consider queues with Poisson arrivals but general service
time distributions, not just exponential.

If one knows the service time for a job, one can try to schedule better than FCFS.
Shortest Job First (SJF) is the non-preemptive strategy that schedules the queued job
with the shortest service time when a job completes. Preemptive Shortest Job First
(PSJF) acts similarly, but will preempt a running job if new job with a smaller service
time arrives. Shortest Remaining Processing Time (SRPT) will instead schedule and
preempt jobs based on their remaining processing time instead of their service time.

In Mitzenmacher (2019), these strategies are considered in the setting where one
has predicted service times instead of actual service times, leading to the strate-
gies Shortest Predicted Job First (SPJF), Preemptive Shortest Predicted Job First
(PSPJF), and Shortest Predicted Remaining Processing Time (SPRPT). Equations
for all three strategies are provided under the assumption that there is a joint density
distribution g(x,y) for jobs with service time x and predicted service time y, and
that each job independently yields predicted and actual service times from this
distribution.

For example, comparing SJF and SPJF, we first set up the following notation. Let
fs(x) = ∫∞

y=0 g(x,y) dy and fp(y) = ∫∞
x=0 g(x,y) dx be the corresponding service and

predicted service density functions. Finally, the quantity ρx = λ
∫ x

t=0 tfs(t) dt is the

658

ALGORITHMS WITH PREDICTIONS

rate of work entering the queue from jobs with service time at most x, and
ρ′

y = λ
∫ y

t=0

∫∞
x=0 g(x,t)x dx dt is the corresponding rate of work entering the queue

from jobs with predicted service at most y.
For SJF, it is known that W(x), the time spent waiting in the queue (not being

served) for jobs with service time x, in the steady state satisfies

E[W(x)] = ρE[S2]

2E[S] (1 − ρx)
2 .

Note that the waiting time for a job with service time x depends on the general service
distribution but also specifically on the work from jobs with service time at most x,
as one might expect. The overall expected time waiting in a queue, which we denote
by E[W], is then simply

E[W] =
∫ ∞

x=0
fS(x)E[W(x)] dx.

It turns out that for SPJF, a similar analysis to that used to derive the performance
equations for SJF applies. If we let W ′(y) be the distribution of time spent waiting in
the queue for a job with predicted service time y in the steady state, then

E[W ′(y)] = ρE[S2]

2E[S]
(
1 − ρ′

y
)2 .

The price of misprediction for the time waiting in queue for SJF/SPJF is then
expressed as ∫∞

y=0
fp(y)

(1−ρ′
y)

2 dy∫∞
x=0

fs(x)
(1−ρx)2 dx

.

Similar analyses can be done for PSJF/PSPJF and SRPT/SPRPT, although the
resulting expressions are more complicated.

Simulations show that even fairly weak predictors can provide significant perfor-
mance gains for queues under high load (that is, as λ gets close to 1), as FIFO queues
relatively frequently stack short jobs behind a long job, and this is a primary reason
for long expected waiting times. Predictors that simply keep long jobs behind short
jobs most of the time therefore greatly improve the expected waiting time over all jobs.
For example, a predictor with a multiplicative error can do quite well. Figure 30.2
provides an example with λ = 0.95 and two types of service distributions: exponential
with mean 1, and a Weibull distribution with cumulative distribution 1−e−√

2x. (The
Weibull distribution also has mean 1, but is more heavy-tailed, so longer jobs occur
with higher probability.) The results are averaged over 1,000 trials over a time period
of 1 million time units, where each trial averages the time in system for jobs that
complete after the first 100,000 time units. A job with service time x has a predicted
service time that is uniform over [(1−α)x,(1+α)x] for a parameter α; we try α = j/10
for integer j from 0 to 9. We observe that performance degrades gracefully with α,
and is much better than without predictions, where the steady-state average time in
the system is 20 for the exponential distribution and 58 for the Weibull distribution.

659

M. MITZENMACHER AND S. VASSILVITSKII

Figure 30.2 Results from simulations at λ = 0.95 for exponential and Weibull distributions. A job with
service time x has predicted service time uniform over [(1−α)x,(1+α)x]. Performance degrades gracefully
with α.

30.6 Notes

As mentioned in Chapter 24, the use of advice to assist online algorithms has been
studied in the past (Boyar et al., 2016). But previous work has focused on minimizing
the number of advice bits from omniscient sources to achieve optimal or near-optimal
competitive ratios. The motivation of the work in online algorithms using learning-
based predictions more closely mirrors the use of machine learning in practice,
focusing on improvements in the competitive ratio that can arise with realistic advice.

The idea of learning in order to improve algorithms’ performance, especially
in the realm of online algorithms, has appeared in some works in the past. For
instance, Devanur and Hayes (2009) and Vee et al. (2010) explored how predictions
can be used to obtain nearly optimal online matching bounds, while Cole and
Roughgarden (2014) and Medina and Vassilvitskii (2017) showed how to learn from
samples to maximize revenue in auction settings. In parallel, Kraska et al. (2018)
showed that these endeavors are not simply theoretical, building a system that used
machine learning to improve retrieval speed for index data structures.

A formal model of learning with predictions, including the notions of α-
consistency and β-robustness, was presented by Lykouris and Vassilvitskii (2018).
They were also the first ones to analyze this setting for the caching problem. The
analysis we presented here is due to Rohatgi (2020). Additionally, Purohit et al.
(2018) demonstrated explicit trade-offs between these two concepts in the context of
ski-rental and online scheduling.

A good general reference for queueing theory, including derivations for SJF and
SRPT with exact information, is Harchol-Balter (2013).

In scheduling for queues, some works have looked at the effects of using imprecise
information for load balancing in multiple queue settings. For example, Mitzen-
macher (2000) considers using old load information to place jobs in the context
of the power of two choices. For single queues, Wierman and Nuyens (2008) look
at variations of SRPT and SJF with inexact job sizes, bounding the performance

660

ALGORITHMS WITH PREDICTIONS

gap based on bounds on how inexact the estimates can be. Dell’Amico, Carra, and
Michardi empirically study scheduling policies for queueing systems with estimated
sizes (Dell’Amico et al., 2015). As mentioned, Purohit et al. (2018) specifically looked
at scheduling with predictions in the standard online setting, where they considered
variants of shortest predicted processing time that yield good performance in terms
of the competitive ratio, with the performance depending on the accuracy of the
predictions.

The Count-Min Sketch (Cormode and Muthukrishnan, 2005) and the Count-
Sketch (Charikar et al., 2002) are well-known data structures for finding heavy hitters
in data streams, and have found many additional applications.

Bloom filters were originally developed by Bloom (1970), and have proven useful
for a number of applications (Broder and Mitzenmacher, 2004). Learned Bloom
filters were originally described by Kraska et al. (2018), where other additional
possible examples of using learning to improve index data structures were proposed.

References

Aamand, Anders, Indyk, Piotr, and Vakilian, Ali. 2019. (Learned) frequency estimation
algorithms under Zipfian distribution. arXiv preprint arXiv:1908.05198.

Bloom, Burton H. 1970. Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM, 13(7), 422–426.

Boyar, Joan, Favrholdt, Lene M, Kudahl, Christian, Larsen, Kim S, and Mikkelsen, Jesper W.
2016. Online algorithms with advice: A survey. ACM SIGACT News, 47(3), 93–129.

Broder, Andrei, and Mitzenmacher, Michael. 2004. Network applications of Bloom filters: A
survey. Internet Mathematics, 1(4), 485–509.

Charikar, Moses, Chen, Kevin, and Farach-Colton, Martin. 2002. Finding frequent items in
data streams. In International Colloquium on Automata, Languages, and Programming,
pp. 693–703. Springer.

Cole, Richard, and Roughgarden, Tim. 2014. The sample complexity of revenue maximiza-
tion. In Symposium on Theory of Computing, STOC 2014, pp. 243–252.

Cormode, Graham, and Muthukrishnan, Shan. 2005. An improved data stream summary:
The count-min sketch and its applications. Journal of Algorithms, 55(1), 58–75.

Dell’Amico, Matteo, Carra, Damiano, and Michiardi, Pietro. 2015. PSBS: Practical size-based
scheduling. IEEE Transactions on Computers, 65(7), 2199–2212.

Devanur, Nikhil R., and Hayes, Thomas P. 2009. The adwords problem: Online keyword
matching with budgeted bidders under random permutations. In Proceedings 10th ACM
Conference on Electronic Commerce (EC-2009), pp. 71–78

Diaconis, P., and Graham, R.L. 1977. Spearman’s footrule as a measure of disarray. Journal
of the Royal Statistical Society B, 39(2), 262–268.

Fiat, Amos, Karp, Richard M., Luby, Michael, McGeoch, Lyle A., Sleator, Daniel Dominic,
and Young, Neal E. 1991. Competitive paging algorithms. Journal of Algorithms, 12(4),
685–699.

Harchol-Balter, Mor. 2013. Performance Modeling and Design of Computer Systems: Queueing
Theory in Action. Cambridge University Press.

Hsu, Chen-Yu, Indyk, Piotr, Katabi, Dina, and Vakilian, Ali. 2019. Learning-based frequency
estimation algorithms. In 7th International Conference on Learning Representations.

Kraska, Tim, Beutel, Alex, Chi, Ed H, Dean, Jeffrey, and Polyzotis, Neoklis. 2018. The
case for learned index structures. In Proceedings of the 2018 International Conference on
Management of Data, pp. 489–504. ACM.

661

M. MITZENMACHER AND S. VASSILVITSKII

Lykouris, Thodoris, and Vassilvitskii, Sergei. 2018. Competitive caching with machine learned
advice. In Proceedings of the 35th International Conference on Machine Learning, ICML
2018.

Medina, Andres Muñoz, and Vassilvitskii, Sergei. 2017. Revenue optimization with approxi-
mate bid predictions. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, pp. 1858–1866.

Mitzenmacher, Michael. 2000. How useful is old information? IEEE Transactions on Parallel
and Distributed Systems, 11(1), 6–20.

Mitzenmacher, Michael. 2018. A model for learned bloom filters and optimizing by sandwich-
ing. In Advances in Neural Information Processing Systems, pp. 464–473.

Mitzenmacher, Michael. 2019. Scheduling with Predictions and the price of misprediction. In
Proceedings of the 11th Innovations in Theoretical Computer Science Conference (ITCS),
pp. 14:1–14:18.

Purohit, Manish, Svitkina, Zoya, and Kumar, Ravi. 2018. Improving online algorithms via
predictions. In Advances in Neural Information Processing Systems, pp. 9661–9670.

Rohatgi, Dhruv. 2020. Near-optimal bounds for online caching with machine learned advice.
In Symposium on Discrete Algorithms (SODA), pp. 1834–1845.

Vee, Erik, Vassilvitskii, Sergei, and Shanmugasundaram, Jayavel. 2010. Optimal online assign-
ment with forecasts. In Proceedings 11th ACM Conference on Electronic Commerce
(EC-2010), pp. 109–118.

Wierman, Adam, and Nuyens, Misja. 2008. Scheduling despite inexact job-size information.
In ACM SIGMETRICS Performance Evaluation Review, vol. 36, pp. 25–36. ACM.

Exercises

Exercise 30.1 Prove the competitive ratio bound given in equation 30.1 for the ski
rental with predictions algorithm.

Exercise 30.2 Consider the caching problem, and suppose we have two data-
dependent eviction algorithms. For an input x, one of them has competitive
ratio a(x) while the other has ratio b(x). Develop an algorithm that for every input
x has competitive ratio O(min(a(x),b(x))).

Exercise 30.3 Consider the setting of equation 30.3, where job sizes are exponentially
distributed with mean 1, and a job with mean service time x has a predicted service
time that is itself exponentially distributed with mean x. Show via numerical eval-
uation or integration (perhaps using a software package for evaluating integrals)
that the “price of misprediction” in this case is 4/3.

Exercise 30.4 Write a simulation to study one of the problems discussed in the
chapter. For example, you could write a simulation for a queue that uses predicted
service times, and use it to explore how the service time distribution and the quality
of the prediction affect the average time spent waiting in the queue. Or you could
implement an Count-Min sketch and simulate a predictor for heavy hitter elements,
and use it to explore how the accuracy of the sketch improves with the quality of
the prediction or varies with how skewed the frequency distribution of items is.
Your simulation can use an actual learned function as a predictor, or you could
use a synthetic prediction (by, for example, adding noise in some specified way to
the ground truth to obtain a prediction).

662

Index

access graphs, 530–533, 536
competitive analysis and, 531
page request sequences and, 531

active learning, 378
adaptive analysis, 52

competitive analysis of online algorithms
and, 66

input order and, 64
input structure and, 64–65
open research directions, 66–67
output-sensitive algorithms, 64
parameterized algorithms and, 66

adaptive dissection, 179
adaptive sorting, 64
adaptivity

holdout method and, 501
to intrinsic dimension, 408–409
as overparameterization, 501

additive bidders, 600, 602
adjacency matrices, 213, 217
adversarial noise, 134–362, 378–379
adversaries

knapsack problem and, 343
localization and, 373
monotone, 190, 194, 196–200, 203–205,

213–214, 229
in semi-random models, 189
statistical model of, 542
weakening, 542–543

agnostic learning, 362–364
computational hardness of, 367

algorithm development, 3
algorithm performance, 1, 2. See also

specific topics
parameterizing, 12
resources and, 75

algorithmic game theory, 19
algorithmic regularization, 481
algorithmic stability, 488–489

algorithms with predictions, 20
allocation rule, 587–589
alternating least-squares, 440
alternating minimization, 228, 229, 440, 441
alternative RIP matrices, 160
analysis of algorithms

goals of, 2
parameterized, 11
worst-case, 1–3

analysis of local search algorithms, 16
analysis of social networks, 19
anchor words algorithm, 458–460
anchor words assumption, 459
anti-concentration bounds, 437
anti-concentration of Gaussians, 432
anti-concentration of polynomials, 437
application-specific, 628
α-approximate kernels, 44–45
approximate Nash equilibrium, 120
approximate nearest neighbor search

hashing for, 404–405
tradeoffs of, 419

approximate Pareto curves, 342
approximately-optimal auctions, 598
approximation guarantees

for k-median, 121
for min-sum, 132
prior-independent auctions and, 598
resource augmentation bounds and, 74
smoothed analysis and, 434
Stitch algorithm and, 177
surrogate loss functions and, 369

approximation ratio
smoothed analysis of, 301–305
2-opt bounds and, 302–303

approximation stability, 13, 120, 379, 627
algorithms and proofs for, 127–132
clustering and, 121, 126, 133
definitions for, 121–125

663

INDEX

approximation stability (cont.)
instance stability and, 122
interesting parameter ranges in, 121
k-means and, 133
k-median problem and, 125–132
min-sum clustering and, 133
Nash equilibrium and, 135
NP-hard problems and, 121
open questions in, 136
optimization problems and, 121
perturbation stability and, 123, 135
proxy objectives and, 124
relaxations and, 137
separability and, 124, 126
small clusters and, 132
without target solution, 122

(c, ε)-approximation stability, 121
approximations, 103, 105

hardness of, 126–127
arrays

binary search and, 647
Bloom filters and, 650
chained hashing and, 576
QuickSort and, 171–172
sorting algorithms and, 1–2, 260–262, 264
2D maxima and, 272

arrival-order distributions, randomness of, 253
asserting clause learning schemes, 553, 555
assignment trails, 552–553, 555
assortative case, 212
auctions, 19

approximately-optimal, 598
average-case revenue maximization, 589–590
basic problem of, 587
competition-based, 586, 599
deterministic, 600
prior-free, 593
revenue-maximizing, 587–590
robustness and, 591
sample complexity and, 597–598
single sample, 596
truthfulness and, 587–588
VCG, 588, 599–602
worst-case revenue maximization, 588–589

augmented indexing problem, 155
automatic inequality prover, 519–522
automatizability of proof systems, 549

CDCL solvers and, 557–558
average stability, 489
average-case analysis, 167, 226–230

advantages of, 168
alternating minimization, 228
classical algorithm justifications and,

171–175

disadvantages of, 169
matrix completion, 227–228
planted models and, 193
semi-random models and, 193–194

average-case revenue maximization, 589–590
Averaging algorithm, 369, 378
Azuma’s inequality, 513

backbones, 560
backdoors, 560

strong, 560
weak, 560

backjump levels, 553
backjumping, 554
backtracking algorithms, 609–610
backup Bloom filters, 651
backwards analysis technique, 255
bag-of-words representation, 445
balanced allocations, 569, 580
ball growing approaches, 123
bandit setting, 639
basis pursuit, 153
batch normalization, 479
Bayes classifiers, 362, 412
Bayesian assumptions, 508
BCT model, 619–622
Bélády’s furthest-in-the-future algorithm, 7
belief propagation, 213, 221–223
Bellman-Ford algorithm, 339–341. See also

Bicriteria Bellman-Ford algorithm
benchmarks

CIFAR-10, 496, 501
economically meaningful, 593
ImageNet, 501
machine learning, 501
Opt*, 510–511

BERT model, 461
best fit algorithm, 249
beyond competitive analysis, 529
bias-variance decomposition, 414
Bicriteria Bellman-Ford algorithm, 339–341,

350
bicriteria shortest path problem, 338, 340, 350
bidders

additive, 600, 602
unit-demand, 600–601

bids, 587
bijective analysis, 543
bimatrix games, 134

approximate equilibria in, 134
bin packing, 176, 183

distributional analysis of, 173–175
RO models, 248–249

664

INDEX

binary optimization problems
linear, 352
smoothed complexity of, 352–354

binary search, 647
binary search trees (BSTs), 264, 265n

rooted, 275
binary symmetric channel (BSC), 194
bipartite expander graphs, 155
bisection

graph, 180
minimum, 190
planted, 181, 185, 190, 213, 216

block source, 567, 572–573
entropy and, 569, 575
hash family selection and, 570
hashing, 575–576
optimal extraction, 577–578

Bloom filters, 567, 569, 580
false negatives, 651
false positives, 650
learned, 650–652

Boolean constraint propagation (BCP),
550–554

Boolean formulas, parameteric understanding
of, 549, 558–562

Boolean Satisfiability problem, 547
Boolean satisfiability solvers (SAT), 19,

547–550
central questions for, 548–550
proof complexity of, 554–557
proof search and, 549
as proof systems, 548–549, 554

boosting, 497
Borgwardt’s algorithm, 322
boundary functions, 638
bounded model checkers, 560
bounded noise, 374, 375

margin-based localization for, 376
non-persistent, 379
research directions in, 379

bounded search tree, 28
bounded treewidth, 560
bounds. See also specific types

anti-concentration, 437
bias, 415
competition complexity, 603
instance specific, in randomized tree

structure, 409–411
interpolation, 500
margin, 497–499
variance, 415

branching
algorithm for, 28, 29
extended sequences of, 555

learning to, 638
broadcast tree model, 224–226
BSC. See binary symmetric channel
BSTs. See binary search trees
bucket sort, 266
bucketing, 241
Buss rule, 35

generalization to matrix rank of, 38–39

cache miss, 652
marking algorithms and, 653, 654

cache replacement policies, 6, 8–9
caching, 72. See also paging problem

loosely competitive algorithms and, 86
online, 279
online algorithms and, 6
with predictions, 652–655
in resource augmentation analysis, 74–75

Carbery-Wright anti-concentration bounds,
437

cardinality bounds, 492
catch words, 461
Cauchy-Schwarz inequality, 520
c-closed condition, maximum clique and, 608
c-closed graphs

cliques of, 607–612
defining, 608–609
maximal cliques of, 610–611
weakly, 608

CDCL solvers. See conflict-driven
clause-learning solvers

center perturbation clusterability, 124
center proximity

metric perturbation resilience and, 110
2-center, 111

λ-center proximity condition, 108
center-based clusterings, 124
centers

clustering and, 294
k-center, 108

certificates
correctness and, 274
of instances, 56
maxima, 274
of optimality, 215–217

γ -certified algorithm, 97, 115
certified algorithms, 95–97

basic properties of, 99–101
(3 + ε)-certified local search, 113–115
constraints and, 101
convex relaxations and, 103–105
designing, 101–106
running time, 97

chained hashing, 569, 576–577

665

INDEX

Chebyshev’s inequality, 518, 578
chemometrics, 448
Chernoff bound, 180, 185, 201, 229, 365, 415,

416, 513
Chernoff-Hellinger divergence, 221
Chernoff-Hoeffding concentration bound, 240,

245, 269
chi-distribution, 290
chi-squared test, 506, 517–518
CIFAR-10 benchmark, 496, 501
classification

computational complexity and, 364–365
current research directions for noise in,

134–135, 378–379
defining, 361, 362
linear programming and, 364
localization and, 369–374
nearest neighbor, 17, 403
sample complexity and, 363–364

classification errors, 6, 487, 497, 500
classification risk

k-NN classification, 415
minimax, 413

classification rules, 361
classifier error

estimating, 365
sample complexity and, 363

classifiers, 5, 362, 412
bounding, 366
polynomial regression and, 367–369

clause density, 559
clause learning, 553
Clause/Variable Ratio (CVR), 559–560
clique problem, 30, 40
cliques, 129

of c-closed graphs, 607–612
planted, 14, 182, 185

clustering, 4–5, 95
applications of, 133
approximation stability and, 13, 120, 121,

126, 133, 379
with center based objective, 108
centers and, 294
(3 + ε)-certified local search algorithm for,

113–115
correlation, 637
data-driven algorithmic design and, 632–637
distances between, 125
with dynamic programming, 111–113
ground-truth, 13
k-means, 124, 293–301
linkage-based families, 634–636
min-sum, 125
NP-hard, 12

objective based, 633
perturbation-resilient, 116
proxy objectives and, 124
single-linkage, 108, 111
small clusters, 132

CNF. See conjunctive normal form
CNF-SAT problem, 30, 40, 547
co-approximations, 103, 105
coefficient decay, 141
coherence, 149
collaborative filtering, 447
collisions

block source extraction optimization and,
577–578

counting sketches and, 649
CountMinSketch and, 144
linear probing and, 172
probability of, 572–573, 577, 580

color coding technique, 31, 33
colorful clique, 40
combinatorial algorithms, 626, 627
combinatorial approaches, 181
combinatorial optimization problems, 15,

95–100
local search heuristic for, 285–286

combinatorially defined graph classes, 622
communication complexity, 154
community detection, 224, 227
community structure, 213, 561
community-like structures, 606
comparative analysis, 540–541
comparative ratio, 540
comparison trees, 264

in self-improving sorters, 271
competition complexity, 599–600, 602, 603
competition-based auctions, 586, 599
competitive algorithms, 89

loosely competitive, 86–89
competitive analysis, 523, 529

access graphs and, 531
adaptive analysis and, 66
diffuse adversary model and, 534–537
of online algorithms, 18, 66, 235, 542

competitive ratio, 66, 73–74, 234, 235, 529
for lazy marking algorithms, 534
for LRU, 532
of marking algorithms, 653
PFIF and, 653
smoothed, 540
trees and, 532

complementary objectives, 98
complementary problems, 98
complexity

communication, 154

666

INDEX

competition, 599–600, 602
computational, 364–365
model, effects of, 493–495
parameterized, 27–31, 35, 37, 455
proof, 550, 562–563
Rademacher, 493, 497, 499
sample, 363–364, 517, 594, 597–598, 638
smoothed, 352–354
spectral, 499
statistical, of k-nearest neighbor

classification, 411–419
complexity measures, of neural networks, 498
compressed sensing, 140, 148, 157, 160

L1 minimization, 153–154
compression, 36, 141
compressive sampling, 148
compressive sensing, 14
computational biology, 133
computational complexity, 12

classification and, 364–365
of hash functions, 567

computational improvements
localization and, 369–374
nicer noise models and, 375–378
polynomial regression and, 367–369

concentration bounds, 240. See also Chernoff
bound; Chernoff-Hoeffding concentration
bound

conflict-driven clause-learning solvers (CDCL
solvers), 19, 547–554

algorithm for, 551
backjumping, 554
Boolean constraint propagation and,

551–552
conflict analysis and clause learning,

553–554
decision levels, assignment trail, and

antecedents, 552–553, 555
lower and upper bounds for, 557–558
resolution proof systems equivalence with,

554–557
restarts, 554
variable- and value-selection heuristics, 552

conjunctive normal form (CNF), 547
conspiracies of outliers, 385
constraint satisfaction problems (CSP), 100,

365
constraints

Boolean constraint propagation, 550–554
certified algorithm design and, 101
Gaussian constraint perturbation models,

319, 329
hard, 100

contamination model, 383, 384, 399

continuous weighted majority, 640, 642
convergence

to local minimum, 466
uniform, 492, 629

convex hull problem, 53–55, 65
distributional analysis of, 175–176, 179, 184
Gaussian perturbed points and, 323, 331
self-improving algorithms for, 278

convex programming, 151, 223, 228, 399. See
also semi-definite programming

robust mean estimation and, 390
convex relaxations, 103–105

sparse estimation and, 399
Correlated Topic Models, 460
correlation clustering, 637
ε-corrupted sets, 383–386
cost functions

flow-dependent, 77
for network flow, 77, 79, 80

counting sketches, 649–650
CountMedianSketch, 146, 156
Count-Min sketch, 649
CountMinSketch algorithm, 144–148, 153,

154, 156, 160
Count-Sketch, 650
CountSketch algorithm, 143, 146, 148, 149,

154, 156, 158, 160
coupled oscillators, 230
covariance estimation, 382

robust, 397
cover trees, 408
critical values, 632, 635
cross-validation, 415
crowdsourcing, 379
crude SDP, 207
cryptography

distributional models and, 193
hashing and, 570

CSP. See constraint satisfaction problems
curse of dimensionality, 413
CVR. See Clause/Variable Ratio

data augmentation, 496
data distributions, neural networks and, 481
data models

deterministic, 13–20
worst-case analysis lacking, 7

data streams, 142
counting sketches for, 649–650

data structures. See also specific types
data-driven algorithm design and, 279
exact nearest neighbor search and, 405–406
intrinsic dimensions and, 408–409
lazy, 550

667

INDEX

data structures (cont.)
LSH and, 404–405
machine learning improving, 650
nearest neighbor, 17, 408
nearest neighbor search and, 403
self-improving algorithms and, 260,

262–263, 279
for self-improving sorter, 266
stack, 553
for 2D maxima algorithms, 275–278

data-dependent covering arguments, 499
data-driven algorithm design, 20, 279, 626–627

clustering problems and, 632–637
greedy algorithms for subset selection

problems, 630–632
linkage-based families, 634–636
open directions for, 644
parametrized Lloyd’s methods, 636–637
self-improving algorithms and, 279
statistical learning for, 628–638

Davis-Kahan theorem, 432
Davis-Putnam-Logemann-Loveland algorithm

(DPLL), 19
DD algorithm, 322–323, 331
Decision Learning Scheme (DLS), 553
decision levels, 552–553, 555
decomposition. See also tensor decomposition

bias-variance, 414
low-rank, 424–426
orthogonal, 440
singular value, 230, 425, 447

decoupling inequalities, 439
deep learning, 479
defeatist search, 406, 410
degeneracy, 618, 619
degree distributions

heavy-tailed, 606, 607, 623
power-law, 615–616, 621

Delaunay triangulation, self-improving, 277
de-noising, 508

of empirical distributions, 507
dense k-subgraph problem, 195
derandomization, 34
deterministic models of data, 13–20
deterministic reweighting, 395
Devex rule, 330
Diaconis-Graham inequality, 655
dictionaries, 142, 407
diffuse adversary model, 534–537, 570
Dijkstra’s algorithm, 340
dimensionality

curse of, 413
of data, 383

dimensionality reduction, 403

dimension-independent error, 383
direct comparison of online algorithms,

540–541
directed access graphs, 531
directed acyclic graphs, 553

general resolution proofs as, 556
directed flow networks, 77
Dirichlet distributions, 454, 456, 458, 459
discrete Fourier matrices, 157
discrete frechet distance problem, 66
distance between clusterings, 125
distance function, 122
distribution dependence, 603
distribution testing and learning, 184

instance optimality and, 18, 507–515
distributional analysis, 14

of classical algorithms, 171–175
Erdős-Rényi random graphs, 179–180
Euclidean problems, 175–179
learning near-optimal solutions, 184
optimal stopping problems and, 168–169
pros and cons of, 167–168
robust, 183–184
simultaneous near-optimality in, 183
threshold rules and, 169–171
TSP in plane, 176–179
2D convex hull, 175–176

distributional assumptions, 15, 167–168
algorithm design and, 171
consequences of incorrect, 179
outlier removal and, 386
robust mean estimation and, 382
sparse recovery and, 141
stability conditions and, 386

distributional knowledge, 586
robustness and, 591

distributional learning, 638
distributional models

cryptography and, 193
semi-random models and, 193–194

distribution-independent error bounds, 379
distribution-optimal sorters, 15
distribution-specific optimization, 168
divide-and-conquer algorithms, 54, 179

for 2D convex hull problem, 175
DLS. See Decision Learning Scheme
DMark algorithm, 534–535
Doob martingale, 513
double descent curve, 494
doubling dimension, 407, 409
doubling measure, 407
downward-closed families, 246
DPLL. See Davis-Putnam-Logemann-

Loveland algorithm

668

INDEX

DPLL SAT solvers, 548, 554, 558
d-regular spectral expander graphs, 208
Dscl-linkage algorithms, 635
dual certificates, 219
dynamic objects, 553
dynamic programming, 109

clustering with, 111–113
knapsack problem and, 336
linkage-based families and, 634, 636
Longest Path problem and, 33
MST clustering and, 111–113

eccentricity of vertices, 620
economically meaningful benchmarks, 593
edit distance, 66
80/20 rule, 140
ellipsoid method, 4, 7
ELMo model, 461
EM. See Expectation-Maximization algorithm
empirical distributions, 506, 509

de-noising, 507
nearest neighbor models and, 415
polynomial regression and, 367
spherical Gaussians and, 387

empirical error, 362
empirical estimators, 509
empirical means, 17, 382

certificates for, 388
robust mean estimation and, 385–391
robust sparse mean estimation and, 398

empirical Rademacher complexity, 493
empirical risk, 479

concentration of, 470
generalization gap and, 487–488
holdout method and, 500
interpolation bounds and, 500
margin bounds and, 497, 498

empirical risk minimization (ERM)
regularization and, 491, 496
stability of, 490–491

encoding, 264
Enron email graph, 608
ensemble methods, 494

margin bounds for, 497
entropy, 567

block source and, 569, 575
encoding and, 264
hash function modeling and, 568
joint, of random variables, 266
in Maxima Set problem, 56
min-entropy, 568, 572
of random arrival order, 253
Rényi, 568, 572, 580, 581
Shannon, 264

structural, 57
vertical, 55–56, 65

equilibrium flow, 77
cost of, 78

Erdős-Rényi random graphs, 179–180, 182,
185, 191, 192, 226, 606

sparse, 614
triangle density of, 612

ERM. See empirical risk minimization
error

Chernoff bound and estimating, 365
classification, 6, 363, 365, 487, 497, 500
dimension-independent, 383
distribution-independent bounds on, 379
empirical, 362
estimation, 140
expected, 362
information-theoretic limit on minimum, 383
margin, 497
method-of-moments and robustness to, 428
PFIF and, 653
training, 488

estimation error, 140
estimators, 509
ETH. See Exponential-Time Hypothesis
Euclidean distances, 287, 292
Euclidean problems, good-on-average

algorithms for, 175–179
Euclidean TSP, 176–179, 183, 184
eviction rules, 654
evolutionary trees, 136
excess-risk, 412
expansion constants, 408
Expectation-Maximization algorithm (EM),

231, 427, 529
expected error, 362
explicit regularization, 496–497
exponential tail property, 366
Exponential-Time Hypothesis (ETH), 40–42,

134, 453
extended branching sequences, 555

Facebook, 606
triangle density of graph, 612

facility location problem, 113, 250
factoring algorithms, 193
failure probability, 436–437
FAR algorithm, 533, 536
Fast Fourier Transform (FFT), 157
fast rates, k-nearest neighbor classification and,

417–419
FCFS. See first come first served
feedforward linearized neural networks, 479
FFD. See first-fit decreasing

669

INDEX

FFT. See Fast Fourier Transform
FIF algorithm. See Furthest-in-the-Future

algorithm
FIFO policy. See first-in first-out policy
50%-algorithm, 235, 237, 239, 242
filtering, 391, 399

basic, 391–393, 596
collaborative, 447
multi-filters, 398
point removal methods for, 394–395
practical considerations for, 396
randomized, 393–394
for robust mean estimation, 391–396
robust sparse mean estimation, 398–399
universal, 395–396

first come first served (FCFS), 658
first-fit decreasing (FFD), 174–175, 184
first-in first-out policy (FIFO policy), 6–11, 73,

530, 536, 658, 659
competitive ratios for, 533, 536
as lazy marking algorithm, 534

fixed dissection, 179
fixed points

of belief propagation equations, 222–223
fixed-parameter algorithms (FPT algorithms),

29–31, 35, 610–611
kernelization and, 37
W[1]-hardness and, 39–40

FK model, 203–205
flip heuristic, 306

for max cut problem, 304
flow polytope, 315
flush-when-full (FWF), 530
FOOBI algorithm, 441
4CNF formulas, 202
4SAT, 203, 206
4-wise independent hash functions, 578
Fourier matrices, 160
Fourier measurements, 157–158
Fourier transform, 140
FPT algorithms. See fixed-parameter

algorithms
FPT-approximation, 43–45
FPTAS, 342
fractional solutions, 104–105
frequency distributions, 143
frequency spectrum recovery algorithm, 516
FrequentDirections algorithm, 158, 159
FrequentElements algorithm, 143, 148, 159
Frobenius norm, 431, 438
Furthest-in-the-Future algorithm (FIF

algorithm), 73–74, 537, 652, 655
FWF. See flush-when-full

gap version, of multiobjective optimization
problem, 342

Gaussian constraint perturbation models, 309,
310, 319, 329

Gaussian constraints, LPs with, 319–329
Gaussian distributions, 288, 366

rotational symmetry, 290
sparse iterations of k-means and, 300

Gaussian ensemble, 150
Gaussian linear combinations, 431
Gaussian matrices, 157
Gaussian mixture model, 230–231, 428–429,

434
Gaussian noise, 155
Gaussian unit LPs, 329
general and tree-like resolution proofs, 556
general resolution proof systems (Res-proofs)

as directed acyclic graphs, 556
CDCL equivalence with, 554–557
lower and upper bounds for, 557–558

generalization
of Buss rule, to matrix rank, 38–39
guarantees for, 628
in machine learning, 486
open research questions in, 502
optimization versus, 495–496
overparameterized models and, 18, 486
tools for reasoning about, 488–493

generalization bounds
NTK approach and, 481
for overparameterized models, 497–500
Rademacher complexity and, 493
uniform convergence and, 492

generalization gap, empirical risk and, 487–488
generalized linear models, 468–470
generative models, 19, 200, 202

social network structure studied with, 606
topic modeling and, 445–447

generic tensors, 426, 442
genetic testing, 148
geometric structure, unsupervised learning

and, 409
Gershgorin disc theorem, 432
ghost samples, 488
global clustering coefficient, 612
global optimality

local optimality and, 467–468, 477–478
non-convex optimization for, 476

Goemans-Williamson max-cut algorithm, 637
Goemans-Williamson relaxation, 220, 226
Goldfarb’s steepest edge rule, 309
Good-Turing Denoising Algorithm, 508,

511–513
Good-Turing frequency estimation, 511–513

670

INDEX

gradient descent, 6, 397
implicit regularization of, 499
over-parameterized neural networks with,

480
perturbed, 481
stochastic, 18, 397, 472, 495

gradient estimators, 397
Graham’s scan algorithm, 53–54, 56, 60

sorted inputs and, 59
Gram matrix, 459, 460
graph bisection problem, 180
graph classes, 621–622
graph coloring problem, 34

FK model and, 203
hosted coloring framework, 207–208
unbalanced k-colorable semi-random model,

197
unbalanced 4-coloring semi-random model,

197
vertex coloring problem, 29, 46

graphical secretary problem, 241
graphs. See also random graphs

c-closed, 607–612
combinatorially defined classes of, 622
Enron email, 608
Moon-Moser, 610–611
social network analysis and, 19
treewidth of, 560
triangle-dense, 612–615
variable-incidence, 561

greedy algorithms, 642
subset selection problems and, 630–632

greedy heuristics, 43
general analysis for, 631–632
merge resolution and, 562

ground-truth clustering, 13

Haar wavelet, 140
Hadamard matrices, 157
halfspace

learning, 374
through origins, 363
unknown, 16–17

Hamiltonian path problems, 31
Hamiltonian tour, 288
Hamming distance, 38, 122, 154
Hamming’s noise model model, 194
hard thresholding, 151
hardness

of agnostic learning, 367
of approximations, 126–127
kernelization optimality and, 42
of NMF, 448–449
parameterized algorithms and, 39–42

Harris’ Devex rule, 309
Harshman’s uniqueness theorem, 428
hash families, 570, 571, 577
hash functions, 172, 567

applications of, 569
4-wise independent, 578
modeling, 568
performance guarantees, 568–569
pseudorandom data and, 184
simple, 19
truly random, 576

hash tables, 567
in CountMinSketch, 144
linear probing and, 172–173

hashing, 571–572
for approximate nearest neighbor search,

404–405
block sources, 575–576
chained, 569, 576–577
cryptography and, 570
ideal, 568, 570, 579
linear probing and, 579

heavy-tailed degree distributions, 606
hidden Markov models (HMMs), 439, 440

learning, 429
high dimensions

adaptive analysis and, 66–67
shadow bound in, 325–329

high-dimensional robust statistics, 382
high-dimensional unsupervised learning, 383
higher-degree moments, robust estimation of,

399
hinge loss, 372, 373, 377, 487
HMMs. See hidden Markov models
Hoeffding bound, 269. See also

Chernoff-Hoeffding concentration
bound

Hölder conditions, 418
Hölder inequality, 520–522
holdout method, 500–501
homogeneous linear threshold classifiers, 363
Huber’s contamination model, 384
hybrid heuristics, 305
hybrid samples, 489
hypergraph max cut problem, 33
hyperparameter tuning, 627
hypothesis testing problems, 506, 517

ideal hashing, 568, 570, 579
identity testing, 506, 516, 523

instance optimal algorithm for, 518–519
interpretation of sample complexity, 517

IHT. See IterativeHardThresholding

671

INDEX

i.i.d. model, 251, 383, 537, 539, 590
robust mean estimation and, 387
Steiner tree problem in, 251–252

ImageNet benchmark, 501
implicit regularization, 481, 499
improper learning, 365
incoherence, 149, 150, 227
incomparable algorithms, worst-case analysis

of algorithms and, 1–2
independent set problem, 43. See also

Maximum Independent Set
independent sets, planted, 192
inequalities

automatic prover for, 519–522
Azuma’s, 513
Cauchy-Schwarz, 520
Chebyshev’s, 519, 578
decoupling, 439
Diaconis-Graham, 655
Hölder, 520, 522
Jensen’s, 647
Markov’s, 128, 146, 351
lp monotonicity, 520–522
non-degenerate systems of, 312
prophet, 169–171, 184
proving without math, 521–522
restricted secant, 468, 470
triangle, 128

information rent, 589–590
information retrieval, nearest neighbor search

in, 403
information theoretic limits

of exact recovery, 219–221, 223
on minimum error, 383
in semi-random models, 224

information theory, 263–266
self-improving algorithms and, 265
sorting and, 260

inliers, 383, 385
input distributions, 167–168
input order, adaptive analysis and, 64
input structure

adaptive analysis and, 64–65
input-based parameters, 12
insertion sort, 1, 266
insertion time, 579
insertion-only matrix recovery, 158–160
insertion-only streams, 143
instance optimal distribution learning, 506–515
Instance Optimal Learning Algorithm,

508–510, 513
instance optimality, 12, 18, 60–61, 273, 279, 506

for identity testing, 518–519
order-oblivious, 56–60

self-improving algorithms and, 279
of Threshold Algorithm, 63

instance stability, approximation stability and,
122

instance-optimal aggregation algorithms,
60–64

integer quadratic programs (IQPs), 637
Intermediate Simplex problem, 449
interpolation bounds, 500
interval lemma, 317
intrinsic dimension, 416

adaptivity to, 408–409
defining, 407
nearest neighbor search and, 408–409

inverse theorem for triangle-dense graphs,
613–614

IQPs. See integer quadratic programs
islands of tractability, 13
isotropic log-concave marginal, 373, 375
iterative methods

planted clique problem and, 198
in sparse recovery, 151–153

IterativeHardThresholding (IHT), 151–154,
156, 157

Jaccard similarity, 614, 615
Jarvis march algorithm, 53, 54, 56
Jennrich’s algorithm, 434, 442, 457

overcomplete settings and, 437
Jennrich’s algorithm, 430

overcomplete settings and, 435
Jensen’s inequality, 647
job service times, 657–658
Johnson-Lindenstrauss Lemma, 150
joint entropy of random variables, 266

Kac-Rice formula, 482
k-center, 108
k-clustering, 125, 129

linkage-based families and, 634
k-clustering problems

dynamic programming and, 111, 112
k-CNF formulas, 559
k-colorable graphs, 106, 108–111, 115
k-coloring, 32, 196
k-d tree, 405–406, 409
k-dimensional simplex, 446
k-means, 5, 108

approximation stability and, 133
bounds for, 293–301
decrease of objective function, 295–296
dense iterations and, 296–298
polynomial bounds for, 301
smoothed analysis of, 293–301, 304

672

INDEX

sparse iterations, 298–300
worst-case running time, 294

k-means clustering, 125
k-median clustering, 4, 121, 130, 131

approximation guarantees for, 121
approximation stability and, 125–132
approximation stability for objectives, 127
(3 + ε)-certified local search algorithm for,

113–115
cost, 125
definitions for, 125

knapsack problem, 335–338, 628
adversaries and, 343
greedy algorithms and, 630–632, 642
as linear binary optimization problem, 352
multidimensional, 341
number of Pareto-optimal solutions,

343–349
k-nearest neighbor classification

adaptive rates versus worst-case rates, 413
cross-validation, 415
extensions of, 417
general metrics and intrinsic dimension, 416
low noise conditions and fast rates, 417–419
minimax optimality, 412
smoothness conditions, 416–417
statistical complexity of, 411–419
statistical learning frameworks for, 412

k-sparse vectors, 141, 154
kernel methods, over-parameterized models

and, 480–481
kernelization, 29, 35–36

FPT-approximation and, 44
hardness and optimality of, 42

kernels
α-approximate, 44–45
lossy, 43–45
polynomial, 42

Kesten-Stigum bound, 225
Khatri-Rao product, 435
Klee’s Measure problem, 65
Kruskal’s algorithm, 111, 241, 243
Kruskal’s uniqueness theorem, 428, 442
kSAT, 203

L1 minimization, 153–154, 156, 157, 160
label-invariant properties, 514
landscape property, 477, 479
large-scale optimization problems, 285
large-scale social networks, structure of,

606–607
Lasserre hierarchy, 441
LASSO, 153

Latent Dirichlet Allocation model, 454, 456,
458, 460

latent semantic indexing, 447
latent variable models

HMMs and, 429
spherical Gaussian mixtures and, 428–429
tensor decomposition and learning, 426–430

LCT. See linear comparison tree
learned Bloom filters, 650–652
learning

active, 378
agnostic, 362–364, 367
asserting clause learning schemes, 553
to branch, 638
clause, 553
deep, 479
distributional, 638
distributional analysis and near-optimal

solutions, 184
halfspaces, 16–17, 374
improper, 365
instance optimal distribution, 507–515
latent variable models, 426–430
list-decodable, 398
no regret, 640
outlier presence and, 382
realizable, 363
unlabeled vectors of probabilities, 513–515
unsupervised, 4

least recently used policy (LRU policy), 6–11,
73, 530, 536, 655

bijective analysis and, 543
comparative analysis of, 541
competitive ratios for, 532–536
as lazy marking algorithm, 534
loosely competitive algorithms and, 86–89
page fault rates, 74
performance predictions, 74

least squares problems, 228
leave-one-out distance, 436
Leftover Hash Lemma, 573, 575, 578
limited-access prophet model, 254
linear binary optimization problems, 352, 353
linear comparison tree (LCT), 275
linear models, margin bounds for, 498
linear probing, 569, 578–580

distributional analysis of, 172–173
linear programming (LP), 7, 309

classification and, 364
ellipsoid method for, 4
with Gaussian constraints, 319–329
relaxation and, 103, 106
shadow vertex simplex method, 310–314
simplex method for, 3–4, 16

673

INDEX

linear programming (LP) (cont.)
smoothed complexity and, 329
smoothed unit, 320–321
two-phase interpolation method, 321–322

linear sketching algorithms, 141, 143–144
linear sparse recovery algorithms, 154
linear threshold classifiers, 362, 365
linear thresholds, learning in presence of noise,

361
linearized neural networks, 479
linear-time median finding algorithms, 54
linkage-based families, 634–636
Lin-Kernighan heuristic, 304, 305
Lipschitz continuity, 413, 414, 419, 514
L-Lipschitz continuous gradients, 467
Lipschitz functions, 640
list update problem, 539
list-decodable learning, 398
Lloyd’s algorithm, 5, 124, 231

parametrized, 636–637
local improvement step, 285
local methods, 18, 465
local minimum, convergence to, 466
local neighborhoods

broadcast tree model and, 225, 226
community guesses and, 221

local optimality, global optimality and,
467–468, 477–478

local optimum, 286, 301
monotone adversaries for, 203–205

local search algorithms, 113, 285–286, 301
analysis of, 16
(3 + ε)-certified, 113–115
smoothed number of iterations for, 286

locality of reference, 530
parameterizing by, 8–9

locality-sensitive hashing (LSH), 409
localization

adversaries and, 373
computational improvements via, 369–374
key technical ideas, 370–371
margin-based, 371, 376, 378
power of, 373

localized optimization, 376
log-concave distributions, 366, 370
log-Lipschitz probability distributions, 330
log-normal distributions, 140
longest path problem, 31–33

derandomization and, 34
ETH and SETH and, 41
kernelization optimality and, 42

loosely competitive algorithms, 86–89
loss functions, 487
lossy kernels, 43–45

lower bounds
for self-improving sorters, 271–272
prior-independent auctions and, 598
sparse recovery and, 154–155

low-rank decompositions, 424–426, 433
low-rank matrix estimation, 141
low-rank matrix recovery, 140, 158
low-rank tensor decomposition, 17
LP. See linear programming
LRU policy. See least recently used policy
LSH. See locality-sensitive hashing

machine learning
applications in, 16–18
benchmarks for, 501
classification, 361
distributions classes in, 366
generalization in, 486
learned Bloom filters and, 650
non-convex optimization and, 465
predictions from, 646
sample complexity and, 597–598
self-improving algorithms and, 279
solver design and, 550, 562–563
unreasonable effectiveness, 5–6

malicious noise, 373, 379
manifold gradient and Hessian, 468, 477–478
manifold-constrained optimization, 468
MapleSAT, 563
maps. See dictionaries
margin bounds

for ensemble methods, 497
for linear models, 498
for neural networks, 498–499

marginal distribution
assumptions on, benefits of, 365–374
localization and, 369–374
polynomial regression and, 367–369

margin-based localization, 371, 378
for bounded noise, 376

marking algorithms, 533
cache miss and, 653, 655
competitive ratio of, 653
lazy, 534
prediction and, 653–655

Markov chains, 213, 537
Markov paging algorithms, 536–539
Markov’s inequality, 128, 146, 351, 578
marriage before conquest algorithm, 54–57, 59,

60
horizontal version, 55
vertical entropy and, 55–56

martingales, 513
Massart’s noise condition, 418

674

INDEX

matrix completion, 227–228, 472–476
semirandom, 229–230

matrix decomposition, rotation problem and,
426

matrix factorization problems, 471–476
matrix rank, Buss rule generalization to, 38–39
matrix recovery, 158–160
matrix rigidity problem, 38–39
matroid secretary problem, 242, 255
max-2SAT, IQPs and, 637
Max 2-Horn SAT, 101, 116
max cut problem, 33, 100, 101, 115

flip heuristic for, 304, 306
IQPs and, 637

max probability, 572, 573
maxima set problems, 52–60, 274

adaptive analysis and, 67
Graham’s scan and, 53–54, 56
impossibility result and, 60
instance optimality and, 56–59
Jarvis march and, 53, 56
layers of, 67
marriage before conquest and, 54–57
partially sorted inputs and, 59
sorts inputs and, 59
vertical entropy and, 55–56

maximal cliques, of c-closed graphs, 610–611
maximal depth problem, 65
maximization CSPs, 101
maximum clique problem, 180

backtracking algorithm for, 609–610
c-closed condition and, 608
fixed-parameter tractability for, 610–611

Maximum Independent Set (MIS), 99, 106,
108–112, 115, 116, 191

monotone adversary with, 197–200
noise contamination and, 195
planted, 198
refutation heuristic for, 202–203

maximum k-cut problem, 221
maximum likelihood estimation, 427
maximum weighted independent set (MWIS),

631–632. See also Maximum Independent
Set

maximum-weight forest problem, 241–242
MAX-SAT, 121, 136
max-weight matching, 246–247
mean estimation, 382

robust, 383–396
measurement matrix, 149
merge resolution, 561–562
MergeSort algorithm, 1, 2, 65, 260
meta-learning, 627
method-of-moments approach

robustness and, 428
semirandom mixture models and, 230
tensor decomposition and, 427–428

metric dimension, 407
metric perturbation resilience

center proximity implied by, 110
defining, 109

min uncut problem, 100–102
min-cost matching, 253
min-entropy, 568, 572
minimax optimality, 412
minimization CSPs, 100
minimum bisection, 190, 214, 215, 218
minimum cut problem, multiobjective version,

341
minimum multiway cut problem, 99, 106–107,

115
minimum spanning tree (MST), 111–113, 252

self-improving algorithms and, 279
minimum vertex cover, 99
min-sum clustering, 125

approximation stability and, 133
MIPs. See mixed integer programs
MIS. See Maximum Independent Set
misprediction, price of, 656–659
mixed integer programs (MIPs), 638
mixture models, 446

semirandom, 230–231
topic modeling and, 456–458

MNIST data set, 405
model complexity, effects of, 493–495
modularity, 561
monopoly price, 589, 595
monotone adversaries, 190, 194, 196, 197,

213–214
for locally optimal solutions, 203–205
partial recovery limits and, 224
planted clique and MIS with, 197–200
robustness against, 218–219
SDP and, 216
stochastic block model and, 229

Moon-Moser graphs, 610–611
Moore-Penrose inverse, 431
MRI machines, 148, 157
MST. See minimum spanning tree
multi-class settings, k-nearest neighbor

classification and, 418
multi-filters, 398
multidimensional discrete Fourier matrices,

157
multidimensional knapsack problem, 341
multiobjective optimization problems,

340–342, 351–352
Pareto curves for, 16

675

INDEX

multiobjective optimization problems (cont.)
shortest path problem, 354
spanning tree problem, 342

multiple-secretary problem, 254, 255
order-adaptive algorithms, 243–244
order-oblivious algorithms, 239–240

multi-sample models, 184
Murphy’s Law data model, 7
MWIS. See maximum weighted independent

set
Myerson’s Lemma, 589, 596, 598

Nash equilibria, 120, 123
nearest neighbor classification

adaptive rates versus worst-case rates,
413–417

cross-validation, 415
general metrics and intrinsic dimension, 416
interpolation bounds and, 500
low noise conditions and fast rates, 417–419
minimax optimality, 413
smoothness conditions, 416–417
statistical complexity of, 411–419
statistical learning frameworks for, 412

nearest neighbor data structures, 17, 408
nearest neighbor search, 17, 403

algorithmic problem of, 403–405, 411
analyzing algorithms for, 411
approximate, 404–405
canonical bad case in, 404
exact, 405–406
intrinsic dimension and, 408–409

Nemhauser-Ullman algorithm, 336–337, 341,
348, 351

networks
BCT model and, 619
cost functions for, 77, 79, 80
equilibrium flow in, 77–79
of parallel edges, 79
power-law bounded, 615–619
selfish routing and, 77–80

neural networks, 18
complexity measures of, 498
data distributions and, 481
learned Bloom filters and, 650
linearized, 479
margin bounds for, 498–499
optimization of, 478–482
over-parameterization and, 479
regularized, 481
residual, 479
training, 6, 495

neural tangent kernel (NTK), 480–481
nicer noise models

computational improvements and, 375–378
statistical improvements from, 374–375

NMF. See nonnegative matrix factorization
no regret learning, 639, 640
noise

adversarial, 361–362, 378–379
benefits of assumptions on, 374–378
bounded, 374, 375, 379
Gaussian, 155
k-nearest neighbor classification and,

417–419
learning linear thresholds in presence of, 361
malicious, 135, 373, 379
modeling, 194
post-measurement versus pre-measurement,

151
probability density functions for, 349
random classification, 374, 375
recovering signal contaminated by, 194–195
research directions for classification and,

378–379
statistical improvements for nicer models of,

374–375
non-backtracking walks, 223
non-clairvoyant scheduling, 81
non-convex optimization, 18, 465

convergence to local minimum, 466
for orthogonal tensor decomposition and

global optimality, 476
stochastic gradient descent training and, 495
tensor decomposition and, 476–478

non-degenerate inequality system, 312
nonnegative matrix factorization (NMF), 17,

445, 447
algorithm for separable, 451–453
further applications, 453
geometric interpretation of separability,

450–451
hardness of, 448–449
robustness of algorithms for, 452–453
separability and, 450
topic models and, 454, 458, 460
uniqueness of, 449–450

nonparametric estimation, 411
non-pathological inputs, 14, 167

input distributions and, 167, 171
not-all-equal 3SAT, 192
NP-hard problems

clustering and sparse recovery, 13
optimization problems, 4–5
parameterized complexity and, 27
W[1]-hardness and, 39
semi-random models and, 195
tensor rank as, 454

676

INDEX

approximation stability and, 121
refutation algorithms and, 201
semi-random models and, 196

NTK. See neural tangent kernel
nuclear norm, 159, 160, 228

minimizing, 229
monotone adversary and, 229

objective based clustering, 633
oblivious random models, 192, 193
observation matrix, 149
online ad allocation, 253
online algorithms, 529, 648

adaptive analysis and, 66
adversary weakening and, 542–543
analysis of, 7
changing performance measurement of, 543
comparative analysis of, 540–541
competitive analysis of, 18, 235, 542
competitive ratios for, 531
direct comparison of, 540–541
loosely competitive, 86–89
Markov, 537–539
oracles and, 539
random-order models and, 15
resource augmentation and, 542
scheduling, 89
self-improving algorithms and, 260
threshold rules and, 169–171

online matching, 247, 255
bipartite matching problem, 247
minimizing augmentations in, 247–248

online paging, 6, 72–75
model for, 72–73. See also caching; paging

problem
parameterized bounds in, 8–12

online Steiner tree problem, 251
optimal algorithm identification, 3
optimal block source extraction, 577–578
optimal estimators, 509
optimal maxima algorithms, 274
optimal online algorithms, 537
optimal stopping problems, 168–169, 254
optimality

instance, 18, 56–61
minimax, 413
parameterized algorithms and, 39–42

optimality ratios, 61
for Threshold Algorithm, 63–64
matching lower bounds on, 63–64

optimization
distribution-specific, 168
generalization versus, 495–496
localized, 376

manifold-constrained, 468
of neural networks, 478–482
of non-convex functions, 465
robust, 592

optimization problems
approximation stability and, 121
binary, 352–354
certified algorithm design and,
FPT-approximation and, 43–45
hard constraints in, 100
multiobjective, 16, 340–342, 351–352

oracles, 364
online algorithms with, 539
random, 570
separation, 390

order-adaptive algorithms, 255
max-weight matching, 246–247
multiple-secretary problem, 243–244
solving packing integer programs, 244–246

order-oblivious algorithms, 238–243, 254
multiple-secretary problem, 239–240

order-oblivious instance optimality, 56–60
orthogonal decomposition, 440
orthonormal columns, 149
orthonormal representations, 199
outliers, 383

consequential, 385
conspiracies of, 385
learning in presence of, 382

output-sensitive algorithms, 64
overcomplete settings

application implications of tensor
decompositions in, 439–440

Jennrich’s algorithm and, 435, 437
tensor decomposition and, 433–440

overfitting, 167, 168, 494
semi-random noise and, 194

overparameterization
adaptivity as, 501
empirical phenomena, 493–497
model complexity and, 493–495
optimization versus generalization,

495–496
overparameterized models, 6, 18, 479

future research directions, 502
generalization and, 486
generalization bounds for, 497–500
holdout method, 500–501
implicit regularization, 499
interpolation bounds, 500
kernel method and, 480–481
margin bounds for ensemble methods, 497
margin bounds for linear models, 498

677

INDEX

PAC model, 628
PACE challenge, 46
packing integer programs, 244–246
page faults, 72, 537

loosely competitive algorithms and, 86
LRU policy and, 86
resource augmentation bounds on, 74–75

page request sequences, 9, 10, 72, 73, 652
access graphs and, 531
locality of reference and, 8, 11
loosely competitive algorithms and, 86
partitioning into phases, 535
PFIF and, 653

PageRank, 61
paging problem, 530. See also caching

comparative analysis and, 540
stochastic models for, 537–540
trees and, 531

parameteric understanding of Boolean
formulas, 549, 558–562

parameterization
by locality of references, 8–9
input-based, 12
solution-based, 12

parameterized algorithms, 12–13, 27, 39–41
adaptive analysis and, 66
application domains, 46
FPT-approximation, 43–45
hardness and optimality and, 39–42
kernelization and, 35–36
lossy kernels, 43–45
randomization and, 31–34
structural parameterizations, 34–35

parameterized analysis of algorithms, 8, 11, 12,
536, 539

parameterized complexity, 27, 35, 37
vertex cover and, 27–31

parametrized Lloyd’s methods, 636–637
Pareto curves, 335

approximate, 342
computing, 334–342
for multi-objective optimization problems, 16
smoothed analysis of, 334

Pareto frontier, 272
Pareto-optimal solutions, 334, 336

general model for, 349–351
knapsack problem and, 335, 343–349
multiple objectives, 340–342
number of, 342–352
shortest path problem and, 338–340

partial recovery, 221–222
belief propagation and, 222
broadcast tree model and, 225
monotone adversary and limit of, 224

SDP for, 224
semirandom model and, 225

partial vertex cover problem, 43
α-approximate kernels and, 44–45

partially sorted inputs
input order and, 64
Maxima Set problems and, 59
synergy between order and structure and, 65

payment rule, 587
PCA. See principle component analysis
PCA tree. See principle component analysis

tree
Pearson’s chi-squared test, 506, 516–518
peg game, 521–522
Perceptron algorithm, 487
performance guarantees, 2

alternating minimization and, 229
data-driven algorithm design and, 626–629
hash functions and, 568
instance optimal algorithms and, 518
loosely competitive algorithms and, 87
online paging and, 8
order-oblivious algorithms and, 239
parameterized, 8, 11, 12
of prior-independent auctions, 596

performance measures, 1
changing, for online algorithms, 543

performance prediction, 2
γ -perturbation, 95–96, 102, 109
perturbation bounds in matrix theory, 433

SVD and, 447
perturbation models, 316

Gaussian constraint, 309, 310, 320, 329
perturbation resilience, 13, 95–96, 100, 105,

109, 115, 627
approximation stability and, 123
center proximity implied by metric, 110–111
clustering problems, 116
single-linkage clustering and, 111
perturbation-resilient clustering problems

and,
2-perturbation-resilient instances and,

111–113
weak, 96
γ -weakly, 105

perturbations, 350, 351
random, 15–16, 434
zero-preserving, 352

perturbed gradient descent, 481
Pfam dataset, 133
PFIF algorithm. See Predicted

Furthest-in-the-Future algorithm
PHP. See Propositional Pigeonhole Principle
phylogenetic tree reconstruction, 136

678

INDEX

physical sensing apparatus, 149
PIE model, 209
planted bisection, 181, 185, 190, 213, 216

exact recovery limits and, 219–220
partial recovery and, 221

planted clique problem, 14, 182, 185, 213
monotone adversary with, 197–200
spectral algorithm for, 198, 200

planted community structure, 212
planted graph models, 180–182
planted independent set, 192, 198, 199
planted models, 14, 192

average case analysis and, 193
distributional, 191
noise contamination and, 194

PLB graphs. See power-law bounded graphs
PLS. See polynomial local search
point removal methods, 394–395
poisoning attack, 373, 379
polar (of a polytope), 313–314
Polyak-Lojasiewicz condition, 467, 471
polynomial compression, 37
polynomial kernels, 42
polynomial local search (PLS), 286
polynomial regression, 376–378

computational improvements via, 367–369
polynomial thresholds, 368, 376
polynomials, anti-concentration of, 437
population risk, 469–470, 479. See also

generalization
NTK approach and, 481

power-law bounded graphs (PLB graphs),
615–619, 622

defining, 617
triangle counting and, 617–619

power-law degree distributions, 615–616, 622
power-law distributions, 140, 509, 606

recovery guarantees and, 147–148
PPAD, 134
Predicted Furthest-in-the-Future algorithm

(PFIF algorithm), 653
predictions, 646

caching with, 652–655
general job service times and, 657–658
marking algorithms and, 653–655
scheduling with, 655–659

PredictiveMarker, 654–655
preemptive shortest predicted job first

(PSPJF), 658–659
preferential attachment, 193
price

of anarchy, 77
of misprediction, 656–659
of prior-dependence, 594

principle component analysis (PCA), 471–473
principle component analysis tree (PCA tree),

406
prior-free auctions, 593
prior-independent auctions, 19, 184, 586,

591–593
competition complexity and, 599–600, 602
competitions-based approach, 598–602
lower bounds and tightness, 598, 601–602
multiple bidder, single sample, 596
multiple samples, 597–598
open questions for, 603
sample-based, single item, 593–598
single bidder, single sample, 595
unit-demand bidders in, 600–601

probabilistic latent semantic indexing, 446
probability distributions, 167
problem

CLIQUE, 30, 31
LONGEST PATH, 42
MATRIX RIGIDITY, 38, 39
VERTEX COLORING, 29, 31
VERTEX COVER, 27–31, 35–38, 40, 47, 48,

50
CNF-SAT, 30

proof complexity, solver design and, 550,
562–563

proof search, 549
proof systems

automatizability of, 549, 557–558
SAT solvers as, 548–549

prophet inequality, 169–171, 184, 254
Propositional Pigeonhole Principle (PHP), 557
proximity conditions

λ-center, 108, 109
2-center, 111

proxy objectives, 124
pseudo-dimension, 629–630, 634, 644
pseudoinverse, 431
pseudorandomness

hash functions and, 184
randomness extractors and, 573
simple hash functions and, 19

PSPJF. See preemptive shortest predicted job
first

public key cryptography, 193
pure topic models, 446, 455

quantile space, 595
revenue curve in, 595

quasi-convexity, 469, 470, 482
weak, 467

query order, 65
queues, scheduling, 658–659

679

INDEX

QuickSort, 14, 184
distributional analysis of, 171–172

Rademacher complexity, 493, 497, 499
radio telescopes, 148, 157
random arrival order, 253
random classification noise, 374, 375
random forests, 497
random functions, hash functions and, 19
random graphs

Erdős-Rényi, 179–180, 182, 185, 191, 192,
606, 612, 614

sparse, 223
statistical physics and, 193

random linear projections, 404
random matrix theory, 217–218, 436
random models, oblivious, 193
random oracle model, 570
random order ratio, 543
random perturbations, 15–16

smoothed analysis and, 434
random projection tree (RP tree), 410
random walk matrix, 395

non-backtracking, 223
random walks, 249
Random-Threshold algorithm, 241
randomization

competitive ratios and, 530
parameterized algorithms and, 31–34

randomization tests, 495
randomness extractors, 568, 573–575

strong, 573
random-order models (RO model), 15, 234–236

bin packing and, 248–249
extending to other models, 254
increasing randomness, 251–252
maximization problems and, 238–247
maximum-weight forest problem, 241–242
minimization problems, 247–250
minimizing augmentations in online

matching, 247–248
multiple-secretary problem, 239–240
online facility location problem, 250
reducing randomness, 252–254
robustness and, 253–254
Steiner tree in, 251

rank, of tensors, 424–426, 454
rank-1 matrix completion, 472–474
Rayleigh quotients, 198, 200
realizable learning, 363
reconstructing distributions, 513–515
recovery

general stochastic block models and, 221

information theoretic limits of exact,
219–221, 223

partial, 221–222
planted bisection and, 219–220
via semidefinite programming, 215–218

recovery guarantees, 147–148, 513
reduction rules, 36, 38, 47
reductions

dimensionality, 403
from Exact NMF to Intermediate Simplex,

449
maxima sets and, 54–56
parameterized, 39–41
from 3SAT to MIS, 202

refutation heuristics, 201–203, 209
regression, polynomial, 367–369, 376–378
regularity, 590, 592, 595
regularization, 491

algorithmic, 481
explicit, 496–497
implicit, 499
l2, 491, 496
of neural networks, 481

relaxation
approximation stability and, 137
convex, 103
Goemans-Williamson, 220, 226
linear programming and, 103, 106

Rényi entropy, 568, 572, 580, 581
request sequences. See page request sequences
resolution proof systems

CDCL equivalence with, 554–557
merges and, 561–562
resolution width, 561

resource augmentation, 13, 89, 592
competition complexity and, 600
guarantees of, 75–78, 81–83, 87
online paging and, 72–75
page fault bounds, 74
scheduling problems and, 81–86
selfish routing and, 77–80
worst-case analysis of algorithms and, 75

resources
algorithm performance and, 75
scheduling problems and, 81–82

Res-proofs. See general resolution proof
systems

Restricted Isometry Property (RIP), 149–151
alternative matrices, 160
RIP-1, 155–156
uniformity versus nonuniformity of, 153

restricted secant inequality, 468, 470
revelation principle, 593
revenue, 587

680

INDEX

data-driven algorithms and maximization of,
644

worst-case maximization of, 588–589
revenue curve

in quantile space, 595
in value space, 589, 595

revenue-maximizing auctions, 587–590
reweighting, 396

deterministic, 395
Riemannian manifolds, 468
RIP. See Restricted Isometry Property
risk

classification, 413
empirical, 470, 479, 487–488
ERM, 490–491
excess, 412
minimax classification, 413
population, 469–470, 479, 481
predictors and minimization of, 487
supervised learning and minimizing, 487
01, 412

RO model. See random-order models
robust covariance estimation, 397
robust distributional analysis, 183–184
robust estimation of higher-degree moments,

399
robust high-dimensional statistics, 17, 382

recently developed estimators, 396–399
robust mean estimation

filtering method, 391–396
good sets and stability, 386–390
i.i.d. model and, 387
key difficulties and high-level intuition,

385–386
recursive dimension-halving and, 399
sample efficient robust estimation, 383–384
unknown convex programming method and,

390
robust optimization, 592
robust simplex, 452–453
robust sparse mean estimation, 398–399
robust stochastic optimization, 397
robustness

auctions and, 591
distributional knowledge and, 591
Jennrich’s algorithm and, 434
method-of-moments and, 428
against monotone adversaries, 218–219
RO model and, 253–254

rounding schemes, 103, 104, 106, 107
RP forests, 411
RP tree. See random projection tree
RSA, 193
running time

of simplex method, 16
smoothed analysis of, 286–301, 304–305

sample complexity, 594
auctions and, 597–598
classification and, 363–364
interpretation of, 517

SAT. See Boolean satisfiability solvers
scheduling, 89

non-clairvoyant, 81
resources in, 81–82
speed scaling in, 81–86
with predictions, 655–659

SCOP dataset, 133
SDP. See semi-definite programming
search

CDCL loops for, 553
nearest neighbor, 17
proof, 549, 557–558

search algorithms
analysis of, 16
(3 + ε)-certified, 113–115
1-local, 113

search trees
bounded, 28
in self-improving sorter, 269
vertex cover problem and, 28

second price, 588
secretary problem, 235, 237–238, 254. See also

multiple-secretary problem
graphical, 241
matroid, 242, 255
optimal stopping theory and, 254

self-improving 2D convex hulls, 278
self-improving 2D Delaunay triangulations,

277
self-improving algorithms, 15, 20, 184, 259

critiques of, 278–280
future research directions, 280
information theory and, 265
phases of, 260
sorting and, 260–263
for 2D maxima, 272–277

self-improving sorters, 262–263, 265–272
comparison trees in, 271
limiting phase, 267–268
lower bound for, 271–272
beyond product distributions, 278
training phase, 268–271

selfish routing, 89
model for, 77
resource augmentation guarantees and, 78

self-modeling curve resolution, 448

681

INDEX

semi-definite programming (SDP), 181, 199
FK model and, 203
information-theoretic threshold for exact

recovery and, 223
IQPs and, 637
list-decodable learning and, 398
monotone adversaries and, 216
for partial recovery, 224
recovery via, 215–218
robustness against monotone adversaries

and, 218–219
sum-of-squares algorithms and, 441
synchronization problems and, 230

semicircle laws, 217
semirandom gaussian mixture model, 230–231
semirandom matrix completion, 229–230
semirandom mixture models, 230–231
semirandom models, 14–15, 183, 226, 570

adversaries in, 189–190
average-case analysis and, 193–194
competition-based auction approach and,

599
defining, 189
examples of, 189–192
hosted coloring framework and, 207–208
information theoretic limits in, 224
monotone adversary for locally optimal

solutions, 203–205
NP-hardness and, 195–196
open problems in, 209–210
partial recovery and, 225
PIE model, 209
planted clique and MIS with monotone

adversaries, 197–200
preliminary results on, 196–197
rationale for studying, 192–196
refutation heuristics and, 201–203
separable, 205
signal recovery from noise contamination

and, 194–195
smoothed analysis and, 286
worst case instances and, 195

semirandom stochastic block models, 212
average-case analysis and, 226–230
recovery via semidefinite programming,

215–218
robustness against monotone adversaries,

218–219
separability

approximation stability and, 124, 126
geometric interpretation of, 450–451
NMF and, 450
3-coloring models and, 191

separable models for unique games, 206–207

separable NMF
algorithm for, 451–453
geometric interpretation of, 450–451

separable semi-random models, 205
separation oracles, 390
set splitting problem, 33, 34

ETH and SETH and, 41
SETF. See shortest elapsed time first
SETH. See Strong Exponential-Time

Hypothesis
shadow bound

for Gaussian unit LPs, 329
in higher dimensions, 325–329
open problems in, 330
in two dimensions, 323–325

shadow path
interpreting, 311
SSP and, 317
structure of, 310–312

shadow plane, 313–314, 320, 321
shadow vertex pivot rule, 330
shadow vertex simplex method, 309–314, 319,

330, 331
algorithm for, 312–313
shadow path structure, 310–312
SSP and, 315–316

Shannon entropy, 263
Shannon’s encoding theorem, 262, 264
shortest augmenting path algorithm, 248
shortest elapsed time first (SETF), 81–85
shortest job first, 656, 658
shortest path problem, 338–340

multiobjective, 354
shortest predicted job first (SPJF), 656–659
shortest predicted remaining processing time

(SPRPT), 658–659
shortest remaining processing time (SRPT), 81,

84, 656, 658–659
signals

noise contamination, recovering, 194–195
sparse, 140

simple hash functions, 19
simplex method, 3–4, 7. See also shadow vertex

simplex method
probabilistic analysis of, 330
robust, 452–453
running time of, 16
smoothed analysis of, 309

simultaneous near-optimality, 183
single sample auctions, 596
single-linkage clustering, 108, 111
single-parameter family of scoring rules, 632
single-pixel camera architecture, 148
single-sample models, 183

682

INDEX

singular value decomposition (SVD), 230, 425,
447

SkiRental problem, 648
slice-wise polynomial algorithms (XP

algorithms), 29
small-world property, 606
smoothed analysis, 4, 11, 15–16, 183, 189, 285,

286
of approximation ratio, 301–305
failure probability and, 436–437
hybrid heuristics and, 305
Jennrich’s algorithm and, 435, 437
of Pareto curves, 334
random perturbations and, 434
of running time, 286–301, 304–305
of simplex method, 309
of SSP, 316–319
tensor decomposition and, 433–440
of 2-opt, 306

smoothed approximation ratio, 303
smoothed competitive ratio, 540
smoothed complexity, 329

linear binary optimization problems, 352
of binary optimization problems, 352–354

smoothed LP, 320–321
smoothed models, 194
smoothness conditions, 416–417
SMP. See SparseMatchingPursuit
social media posts

adversarial noise and, 362
automatic classification of, 361

social network analysis, 19
social networks, 193

generative models in studying, 606
PLB graphs and, 617
power-law distributions and, 615
stochastic block model and, 212
structure of, 606–607
triangle-dense graphs and, 612

social welfare, 587
soft outlier removal, 373
solution-based parameterization, 12
solver design

machine learning and, 550, 562–563
proof complexity and, 550, 562–563

solving packing integer programs, 244–246
sorters

distribution-optimal, 15
self-improving, 262–263, 265–272, 278

sorting, 66
bucket, 266
self-improving models and, 260–263

Sorting Multisets problem, 55, 56

spanning tree problem, 350. See also minimum
spanning tree

multiobjective, 342
sparse Fourier transforms, 140
sparse matrices, RIP-1 and, 155–156
sparse mean estimation, robust, 398–399
sparse random graphs, 223

belief propagation and, 222
sparse recovery, 13, 140–141

compressed sensing and, 149
Fourier measurements, 157–158
iterative methods, 151–153
lower bounds and, 154–155
matrix recovery, 158–160
measurement models, 155–158
NP-hard, 13
RIP and, 149–151

sparse signals, 140
sparse vectors

Dirichlet distribution and, 454
RIP uniformity versus nonuniformity for,

153
SparseMatchingPursuit (SMP), 156
sparsest cut problem, 102, 213

approximation stability and, 136
sparsity-aware bounds, 143
spectral algorithms, 181, 182

hosted coloring framework and, 207
planted clique and, 198, 200
robust sparse estimation with, 399

speed scaling in scheduling, 81–86
spherical Gaussian distributions, 382, 384, 387,

400
mixtures of, 428–429

Spielman-Teng analysis, 16
SPJF. See shortest predicted job first
SPRPT. See shortest predicted remaining

processing time
SRPT. See shortest remaining processing time
SSP. See successive shortest path algorithm
stability

algorithmic, 488–489
average, 489
of empirical risk minimization, 490–491
robust mean estimation and, 386–390
uniform, 489

stationary points, 466, 467
statistical adversary model, 542
statistical distance, 573, 574
statistical learning, 628

for data-driven algorithmic design, 628–638
frameworks, 412
greedy algorithms for subset selection

problems, 630–632

683

INDEX

Statistical Query model, 399, 400
statistics. See also specific topics

applications in, 16–18
robust high-dimensional, 17, 382, 396–399

Steiner tree problem, 46
in i.i.d. model, 251–252
in RO model, 251

Stitch algorithm for Euclidean TSP, 176–179,
184

stochastic block model, 14, 185, 212, 224, 227
average-case analysis and, 226–230
general, 221
monotone adversary and, 229

stochastic gradient descent, 18, 397, 472, 487,
495

stochastic models, 234, 236
paging problem and, 537–540

stochastic optimization
generalization gap and, 487
robust, 397

streaming algorithms, 140, 141, 148, 157
matrix recovery and, 159
post-measurement versus pre-measurement

noise, 151
RIP and, 149–151

streams
insertion-only, 143
strict turnstile, 143
turnstile, 143

strict saddle condition, 18
strong backdoors, 560
Strong Exponential-Time Hypothesis (SETH),

40–42, 66
strongly NP-hard problems, 353
strongly s-universal hash functions, 571
structural parameterizations, 34–35
sublinear algorithms, 157
successive shortest path algorithm (SSP),

315–319, 331
as shadow vertex, 315–316
smoothed analysis of, 316–319

sum-of-squares algorithms, 441
supervised learning, 18, 184, 486

risk minimization in, 487
SVD. See singular value decomposition
s-way cut problem, 44
sweep line approach, 272, 274
s-wise independent, 571
symmetric distributional properties, 514
synchronization problems, 230

TA. See Threshold Algorithm
tail bounds, 291. See also Chernoff bound;

Chernoff-Hoeffding concentration bound

filtering and, 392–393, 395
for Gaussian random variables, 289
shadow bounds and, 324, 328, 330
uniform convergence and, 492

tangent cone, 310
tensor decomposition, 424, 482

efficient algorithms in full rank setting,
430–433

factors of, 425
iterative algorithms, 441
Jennrich’s algorithm, 430–433
latent variable model learning and, 426–430
low-rank, 424–426
method-of-moments via, 427–428
mixed models and, 456–458
non-convex optimization for, 476–478
open questions in, 441
orthogonal, 440
other algorithms for, 440–441
overcomplete setting and, 433–440
power method, 440–441
pure topic models and, 456
smoothed analysis model for, 433–440
topic models and, 454–455

tensors, 424–426
defining, 424
generic, 426, 442
modes of, 424
order of, 424
rank, 424–426, 454
symmetric, 425

test sets
holdout method and, 501
machine learning benchmarks with, 501
model accuracy and, 502

37%-algorithm, 237, 242
3CNF formulas. See 3SAT
3-coloring, 191, 207–209
3SAT, 190, 192, 195, 201, 202, 205
Threshold Algorithm (TA), 62

instance optimality of, 63
optimality ratio lower bound for, 63–64

threshold rules, 169–171, 184
thresholding

hard, 151
IHT algorithm, 151–154, 157
randomized, 394, 396

Tikhonov regularization, 491
TimeStamp algorithm, 539
TM. See truncate and match
topic modeling, 17, 445–447

anchor words algorithm, 458–460
mixed models, 456–458
NMF and, 454, 458, 460

684

INDEX

pure, 455
tensor decomposition and, 454–455

training error, 488
training sets, 6, 593

holdout method and, 501
transitivity (of a graph), 612
Traveling Salesman Problem (TSP), 1, 16, 115,

350
2-opt heuristic for, 287–302
as strongly NP-hard, 353
Euclidean, 176–179, 183, 184

trees
belief propagation and, 222
binary, 264
binary search, 28–29, 265n, 270
bounded search, 28
broadcast, 224–226
comparison, 264, 271
cover, 408
evolutionary, 136
exact nearest neighbor search and, 405–406
k-d, 405–406, 409
LRU competitive ratio for, 532–533
minimum spanning, 111–113, 252
multiobjective spanning, 342
paging and, 531
PCA, 406
phylogenetic reconstruction of, 136
randomized, 409–411
rooted binary, 275
spanning, 350
Steiner, 46, 251–252

treewidth, 46, 560
triadic closure, 606–607, 621
triangle counting, 617–619
triangle inequality, 128
triangle-dense graphs, 612

inverse theorem for, 613–614
visualizing, 613

truly random functions, 571, 576
truncate and match (TM), 174
truthfulness, 593

auctions and, 587–588
TSP. See Traveling Salesman Problem
Tsybakov noise condition, 418
Tukey’s median, 384
2/3-norm testing algorithm, 519
2-center proximity condition, 111
2D maxima

certificates and linear decision trees and,
274–275

coordinate-wise, 272
self-improving algorithms for, 272–277
sweep line approach, 272, 274

2-opt heuristic, 16, 285
approximation ratio bounds, 302–303
improved smoothed approximation ratio of,

303
improving initial tour length, 292
linked pairs of steps, 293
smoothed analysis of, 295, 306
for TSP, 287–302

2SAT, 207
2-perturbation-resilient instances, 111–113
2-universal hash families, 567–568, 570, 571,

577
2D convex hull problem, 175–176, 179, 184
TwoSweep algorithm, 620, 621

UGC. See unique games conjecture
unbalanced bipartite expander graphs, 155
underparameterized regime, 494
uniform algorithms, 148–154
uniform convergence, 492, 629
uniform distribution over convex sets, 366
uniform stability, 489
uniformity, 153, 590
union bounds, 146, 150, 201

in order-adaptive algorithms, 244
in self-improving algorithms, 269

unique games conjecture (UGC), 206
unique games, separable models for, 206–207
unit consistency, 556
unit resolution rule, 551
unit-cost RAM, 337
unit-demand bidders, 600–601
universal filtering, 395–396
universal hashing, 568, 570
unknown convex programming method, 390
unknown halfspaces, learning, 16–17
unlabeled vectors of probabilities

expected error and, 513
learning, 508, 510, 513–515
reconstructing, 516

unsupervised learning, 4, 426, 633
geometric structure and, 409
high-dimensional, 383
matrix completion, 227
outliers and, 382

value-selection heuristics, 552
Vapnik-Chervonenkis dimension (VC

dimension), 492, 629
variable-incidence graph (VIG), 561
variable-selection heuristics, 552
variance bounds, 415
variational inference, 461

685

INDEX

VC dimension. See Vapnik-Chervonenkis
dimension

VCG auctions, 588, 599–602
vertex cover problem, 27–31, 40

kernelization and, 35, 37
VIG. See variable-incidence graph
virtual values, 589, 590
virtual welfare, 590
Voronoi diagram, 277

W[1]-hardness, 30, 39–40
s-Way Cut problem and, 44

weak backdoors, 560
weak perturbation resilience, 96
weak quasi-convexity, 467
weakly c-closed graphs, 608
Weibull distributions, 659
weight decay, 491
weighted majority, 640, 642
welfare maximization, 588, 600
whitening, 441
Wilson’s doctrine, 591
wireless communication, 157
word embeddings, 461
word frequency, 509

vectors for, 445
worst-case analysis of algorithms

benefits of, 2
cons of, 7
famous failures of, 3–8
incomparable algorithms and, 1–2
as modeling choice, 2
refinements of, 12–13
resource augmentation and, 75

worst-case bounds
intrinsic dimension and, 406, 408
nearest-neighbor search and, 403, 408
revenue maximization, 588–589

XP algorithms. See slice-wise polynomial
algorithms

Yao’s minimax lemma, 235, 244

01-risk, 412
zero-error probabilistic polynomial time (ZPP),

353
zero-preserving perturbations, 352
Zipfian distributions, 140, 507, 509

counting sketches and, 649
recovery guarantees and, 147

Zipf’s law, 140, 143
ZPP. See zero-error probabilistic polynomial

time

686

	Cover
	Half-title
	Title page
	Copyright information
	Contents
	Preface
	List of Contributors
	1 Introduction
	1.1 The Worst-Case Analysis of Algorithms
	1.2 Famous Failures and the Need for Alternatives
	1.3 Example: Parameterized Bounds in Online Paging
	1.4 Overview of the Book
	1.5 Notes

	 Part One Refinements of Worst-Case Analysis
	2 Parameterized Algorithms
	2.1 Introduction
	2.2 Randomization
	2.3 Structural Parameterizations
	2.4 Kernelization
	2.5 Hardness and Optimality
	2.6 Outlook: New Paradigms and Application Domains
	2.7 The Big Picture
	2.8 Notes

	3 From Adaptive Analysis to Instance Optimality
	3.1 Case Study 1: Maxima Sets
	3.2 Case Study 2: Instance-Optimal Aggregation Algorithms
	3.3 Survey of Additional Results and Techniques
	3.4 Discussion
	3.5 Selected Open Problems
	3.6 Key Takeaways
	3.7 Notes

	4 Resource Augmentation
	4.1 Online Paging Revisited
	4.2 Discussion
	4.3 Selfish Routing
	4.4 Speed Scaling in Scheduling
	4.5 Loosely Competitive Algorithms
	4.6 Notes

	 Part Two Deterministic Models of Data
	5 Perturbation Resilience
	5.1 Introduction
	5.2 Combinatorial Optimization Problems
	5.3 Designing Certified Algorithms
	5.4 Examples of Certified Algorithms
	5.5 Perturbation-Resilient Clustering Problems
	5.6 Algorithm for 2-Perturbation-Resilient Instances
	5.7 (3+ ε)-Certified Local Search Algorithm for k-Medians
	5.8 Notes

	6 Approximation Stability and Proxy Objectives
	6.1 Introduction and Motivation
	6.2 Definitions and Discussion
	6.3 The k-Median Problem
	6.4 k-Means, Min-Sum, and Other Clustering Objectives
	6.5 Clustering Applications
	6.6 Nash Equilibria
	6.7 The Big Picture
	6.8 Open Questions
	6.9 Relaxations
	6.10 Notes

	7 Sparse Recovery
	7.1 Sparse Recovery
	7.2 A Simple Insertion-Only Streaming Algorithm
	7.3 Handling Deletions: Linear Sketching Algorithms
	7.4 Uniform Algorithms
	7.5 Lower Bound
	7.6 Different Measurement Models
	7.7 Matrix Recovery
	7.8 Notes

	 Part Three Semirandom Models
	8 Distributional Analysis
	8.1 Introduction
	8.2 Average-Case Justifications of Classical Algorithms
	8.3 Good-on-Average Algorithms for Euclidean Problems
	8.4 Random Graphs and Planted Models
	8.5 Robust Distributional Analysis
	8.6 Notes

	9 Introduction to Semirandom Models
	9.1 Introduction
	9.2 Why Study Semirandom Models?
	9.3 Some Representative Work
	9.4 Open Problems

	10 Semirandom Stochastic Block Models
	10.1 Introduction
	10.2 Recovery via Semidefinite Programming
	10.3 Robustness Against a Monotone Adversary
	10.4 Information Theoretic Limits of Exact Recovery
	10.5 Partial Recovery and Belief Propagation
	10.6 Random versus Semirandom Separations
	10.7 Above Average-Case Analysis
	10.8 Semirandom Mixture Models

	11 Random-Order Models
	11.1 Motivation: Picking a Large Element
	11.2 The Secretary Problem
	11.3 Multiple-Secretary and Other Maximization Problems
	11.4 Minimization Problems
	11.5 Related Models and Extensions
	11.6 Notes

	12 Self-Improving Algorithms
	12.1 Introduction
	12.2 Information Theory Basics
	12.3 The Self-Improving Sorter
	12.4 Self-Improving Algorithms for 2D Maxima
	12.5 More Self-Improving Algorithms
	12.6 Critique of the Self-Improving Model

	 Part Four Smoothed Analysis
	13 Smoothed Analysis of Local Search
	13.1 Introduction
	13.2 Smoothed Analysis of the Running Time
	13.3 Smoothed Analysis of the Approximation Ratio
	13.4 Discussion and Open Problems
	13.5 Notes

	14 Smoothed Analysis of the Simplex Method
	14.1 Introduction
	14.2 The Shadow Vertex Simplex Method
	14.3 The Successive Shortest Path Algorithm
	14.4 LPs with Gaussian Constraints
	14.5 Discussion
	14.6 Notes

	15 Smoothed Analysis of Pareto Curves in Multiobjective Optimization
	15.1 Algorithms for Computing Pareto Curves
	15.2 Number of Pareto-optimal Solutions
	15.3 Smoothed Complexity of Binary Optimization Problems
	15.4 Conclusions
	15.5 Notes

	 Part Five Applications in Machine Learning and Statistics
	16 Noise in Classification
	16.1 Introduction
	16.2 Model
	16.3 The Best Case and the Worst Case
	16.4 Benefits of Assumptions on the Marginal Distribution
	16.5 Benefits of Assumptions on the Noise
	16.6 Final Remarks and Current Research Directions

	17 Robust High-Dimensional Statistics
	17.1 Introduction
	17.2 Robust Mean Estimation
	17.3 Beyond Robust Mean Estimation
	17.4 Notes

	18 Nearest Neighbor Classification and Search
	18.1 Introduction
	18.2 The Algorithmic Problem of Nearest Neighbor Search
	18.3 Statistical Complexity of k-Nearest Neighbor Classification
	18.4 Notes

	19 Efficient Tensor Decompositions
	19.1 Introduction to Tensors
	19.2 Applications to Learning Latent Variable Models
	19.3 Efficient Algorithms in the Full-Rank Setting
	19.4 Smoothed Analysis and the Overcomplete Setting
	19.5 Other Algorithms for Tensor Decompositions
	19.6 Discussion and Open Questions

	20 Topic Models and Nonnegative Matrix Factorization
	20.1 Introduction
	20.2 Nonnegative Matrix Factorization
	20.3 Topic Models
	20.4 Epilogue: Word Embeddings and Beyond

	21 Why Do Local Methods Solve Nonconvex Problems?
	21.1 Introduction
	21.2 Analysis Technique: Characterization of the Landscape
	21.3 Generalized Linear Models
	21.4 Matrix Factorization Problems
	21.5 Landscape of Tensor Decomposition
	21.6 Survey and Outlook: Optimization of Neural Networks
	21.7 Notes

	22 Generalization in Overparameterized Models
	22.1 Background and Motivation
	22.2 Tools to Reason About Generalization
	22.3 Overparameterization: Empirical Phenomena
	22.4 Generalization Bounds for Overparameterized Models
	22.5 Empirical Checks and Holdout Estimates
	22.6 Looking Ahead
	22.7 Notes

	23 Instance Optimal Distribution Testing and Learning
	23.1 Testing and Learning Discrete Distributions
	23.2 Instance Optimal Distribution Learning
	23.3 Identity Testing
	23.4 Digression: An Automatic Inequality Prover
	23.5 Beyond Worst-Case Analysis for Other Testing Problems
	23.6 Notes

	 Part Six Further Applications
	24 Beyond Competitive Analysis
	24.1 Introduction
	24.2 The Access Graph Model
	24.3 The Diffuse Adversary Model
	24.4 Stochastic Models
	24.5 Direct Comparison of Online Algorithms
	24.6 Where Do We Go from Here?
	24.7 Notes

	25 On the Unreasonable Effectiveness of SAT Solvers
	25.1 Introduction: The Boolean SAT Problem and Solvers
	25.2 Conflict-Driven Clause Learning SAT Solvers
	25.3 Proof Complexity of SAT Solvers
	25.4 Proof Search, Automatizability, and CDCL SAT Solvers
	25.5 Parameteric Understanding of Boolean Formulas
	25.6 Proof Complexity, Machine Learning, and Solver Design
	25.7 Conclusions and Future Directions

	26 When Simple Hash Functions Suffice
	26.1 Introduction
	26.2 Preliminaries
	26.3 Hashing Block Sources
	26.4 Application: Chained Hashing
	26.5 Optimizing Block Source Extraction
	26.6 Application: Linear Probing
	26.7 Other Applications
	26.8 Notes

	27 Prior-Independent Auctions
	27.1 Introduction
	27.2 A Crash Course in Revenue-Maximizing Auctions
	27.3 Defining Prior-Independence
	27.4 Sample-Based Approach: Single Item
	27.5 Competition-Based Approach: Multiple Items
	27.6 Summary
	27.7 Notes

	28 Distribution-Free Models of Social Networks
	28.1 Introduction
	28.2 Cliques of c-Closed Graphs
	28.3 The Structure of Triangle-Dense Graphs
	28.4 Power-Law Bounded Networks
	28.5 The BCT Model
	28.6 Discussion
	28.7 Notes

	29 Data-Driven Algorithm Design
	29.1 Motivation and Context
	29.2 Data-Driven Algorithm Design via Statistical Learning
	29.3 Data-Driven Algorithm Design via Online Learning
	29.4 Summary and Discussion

	30 Algorithms with Predictions
	30.1 Introduction
	30.2 Counting Sketches
	30.3 Learned Bloom Filters
	30.4 Caching with Predictions
	30.5 Scheduling with Predictions
	30.6 Notes

	Index

