Skip to content
Should you have institutional access? Here's how to get it ...
Licensed Unlicensed Requires Authentication Published by De Gruyter October 14, 2022

Simple naturally occurring β-carboline alkaloids – role in sustainable theranostics

From the journal Physical Sciences Reviews

Abstract

This review is a brief treatise on some simple β-carboline alkaloids that are abundantly available in plants, animals and foodstuff. These alkaloids are well known for their pharmacological action as well as their allelopathic behaviour. The focus of this review is on sustainable use of naturally occurring compounds in safeguarding human health and protecting our environment at large i.e. the prospective applications of these molecules for Sustainable Theranostics . The review commences with an initial introduction to the β-carboline alkaloids, followed by an outlay of their geographical distribution and natural abundance, then the basic structure and building units of the simplest β-carboline alkaloids have been mentioned. This is followed by a discussion on the important methods of extraction from natural sources both plants and animals. Then the foundation for the use of these alkaloids in Sustainable Theranostics has been built by discussing their interesting photophysics, interactions with important biological molecules and an extensive survey of their therapeutic potential and allelopathic behaviour. Finally the review ends with a silver lining mentioning the future prospective applications of these alkaloids with special relevance to sustainability issues.


Corresponding author: Swati De, Department of Chemistry, University of Kalyani, Kalyani, 741235, India, E-mail:

Funding source: University of Kalyani Rusa Grant

Award Identifier / Grant number: IP/RUSA(C-10)/11/2021

Funding source: DST-INSPIRE, Govt. of India

Award Identifier / Grant number: Ref. No. IF170936

Acknowledgements

S. De thanks University of Kalyani for generous grant of the RUSA Scheme IP/RUSA(C-10)/11/2021. P Bhattacharya thanks DST-INSPIRE, Govt. of India for research fellowship [Ref. No. IF170936]. Above all, the authors thank the Editor, Professor P. Ramasami for the kind invitation to submit a Book Chapter.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by RUSA Scheme IP/RUSA (C-10)/11/2021.2) and DST-INSPIRE, Govt. of India, [Ref. No. IF170936].

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Abrimovitch, RA, Spencer, ID. The carbolines. Adv Heterocycl Chem 1964;3:79–207.10.1016/S0065-2725(08)60542-5Search in Google Scholar

2. Reyman, D, Pardo, A, Poyato, JML. Phototautomerism of beta-carboline. J Phys Chem 1994;98:10408–411. https://doi.org/10.1021/j100092a004.Search in Google Scholar

3. Hudson, JB, Towers, GHN. Antiviral properties of photosensitizers. Photochem Photobiol 1988;48:289–96. https://doi.org/10.1111/j.1751-1097.1988.tb02823.x.Search in Google Scholar PubMed

4. Miguel, MG, Burrows, HD, Pereira, MAE, Varela, AP. Probing solute distribution and acid-base behaviour in water-in-oil microemulsions by fluorescence techniques. Col SurfA 2001;176:85–99.10.1016/S0927-7757(00)00615-4Search in Google Scholar

5. Dillon, J, Spector, A, Nakanishi, K. Identification of β carbolines isolated from fluorescent human lens proteins. Nature 1976;259:422–3. https://doi.org/10.1038/259422a0.Search in Google Scholar PubMed

6. Schilitter, E, Bein, HJ, editors. Medicinal Chemistry. New York: Academic Press; 1967.Search in Google Scholar

7. Sniecks, V, Manske, RHF, editors. The Alkaloids. New York: Academic Press; 1968.Search in Google Scholar

8. Beljanski, M, Beljanski, MS. 3 alkaloids as selective destroyers of the proliferative capacity of cancer-cells. IRCS (Int Res Commun Syst) Med Sci 1984;50:587–8.Search in Google Scholar

9. Dias, A, Varela, AP, Miguel, Mda G, Macanita, AL, Becker, RS. β-carboline photosensitizers. 1. Photophysics, kinetics and excited-state equilibria in organic solvents, and theoretical calculations. J Phys Chem 1992;96:10290–6. https://doi.org/10.1021/j100204a036.Search in Google Scholar

10. Carmona, C, Galan, M, Angulo, G, Munoz, MA, Guardado, P, Balon, M. Ground and singlet excited state hydrogen bonding interactions of betacarbolines. Phys Chem Chem Phys 2000;2:5076–83. https://doi.org/10.1039/b005455k.Search in Google Scholar

11. Hidalgo, J, Balon, M, Carmona, C, Munoz, M, Pappalardo, RR, Marcos, ES. AM1 study of a β-carboline set: structural properties and potential reactivity. J Chem Soc Perkin Trans 2 1990;2:65–71. https://doi.org/10.1039/p29900000065.Search in Google Scholar

12. Varela, AP, Burrows, HD, Douglas, P, Miguel, Mda G. Triplet state studies of β-carbolines. J Photochem Photobiol A 2001;146:29–36. https://doi.org/10.1016/s1010-6030(01)00551-2.Search in Google Scholar

13. Mahmoudian, M, Jalilpour, H, Salehian, P, Iranian, J. Toxicity of peganum harmala: review and a case report. Pharmacol Ther 2002;1:1–4.Search in Google Scholar

14. Chen, Q, Chao, R, Chen, H, Hou, X, Yan, H, Zhou, S, et al.. Antitumor and neurotoxic effects of novel harmine derivatives and structure-activity relationship analysis. Int J Cancer 2005;114:675–82. https://doi.org/10.1002/ijc.20703.Search in Google Scholar PubMed

15. Kartal, M, Altun, ML, Kurucu, S. HPLC method for the analysis of harmol, harmalol, harmin and harmaline in the seeds of Peganum harmala L. J Pharm Biomed Anal 2003;31:263–9. https://doi.org/10.1016/s0731-7085(02)00568-x.Search in Google Scholar PubMed

16. Duan, JA, Zhou, RH, Zhao, SX, Wang, MS, Che, CT. Studies on the chemical constituents of peganum multisectum Maxim. I. The alkaloids from seeds and antitumour activity. J China Pharm Univ 1998;29:21–3.Search in Google Scholar

17. Chatterjee, A, Ganguly, M. Alkaloidal constituents of peganum harmala and synthesis of the minor alkaloid deoxyvascinone. Phytochemistry 1968;7:307–11. https://doi.org/10.1016/s0031-9422(00)86329-3.Search in Google Scholar

18. Sharaf, M, El-Ansari, MA, Matlin, SA, Saleh, NAM. Four flavonoid glycosides from peganum harmala. Phytochemistry 1997;44:533–6. https://doi.org/10.1016/s0031-9422(96)00531-6.Search in Google Scholar PubMed

19. Movafeghi, A, Abedini, M, Fathiazad, F, Aliasgharpour, M, Omidi, Y. Floral nectar composition of peganum harmala L. Nat Prod Res 2009;23:301–8. https://doi.org/10.1080/14786410802076291.Search in Google Scholar PubMed

20. Xing, M, Shen, F, Liu, L, Chen, Z, Guo, N, Wang, X, et al.. Antimicrobial efficacy of the alkaloid harmaline alone and in combination with chlorhexidine digluconate against clinical isolates of Staphylococcus aureus grown in planktonic and biofilm cultures. Lett Appl Microbiol 2012;54:475–82. https://doi.org/10.1111/j.1472-765x.2012.03233.x.Search in Google Scholar PubMed

21. Herraiz, T, Gonzaleza, D, Ancin-Azpilicuetac, C, Aranb, VJ, Guillena, H. Î2-Carboline alkaloids in peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem Toxicol 2010;48:839–45. https://doi.org/10.1016/j.fct.2009.12.019.Search in Google Scholar PubMed

22. Farouk, L, Laroubi, A, Aboufatima, R, Benharref, A, Chait, A. Evaluation of the analgesic effect of alkaloid extract of peganum harmala L: Possible mechanisms involved. J Ethnopharmacol 2008;115:449–54. https://doi.org/10.1016/j.jep.2007.10.014.Search in Google Scholar PubMed

23. Lamchouri, F, Settaf, A, Cherra, Y, Hassar, M, Zemzami, M, Atif, N, et al.. In vitro cell-toxicity of peganum harmala alkaloids on cancerous cell-lines. Fitoterapia 2000;71:50–4. https://doi.org/10.1016/s0367-326x(99)00117-3.Search in Google Scholar PubMed

24. Berrougui, H, Cordero, M, Khalil, A, Hamamouchia, M, Ettiab, A, Marhuenda, E, et al.. Vasorelaxant effects of harmine and harmaline extracted from peganum harmala L. seeds in isolated rat aorta. Pharmacol Res 2006;54:150–7. https://doi.org/10.1016/j.phrs.2006.04.001.Search in Google Scholar PubMed

25. Bemis, DL, Capodice, JL, Desai, M, Katz, AE, Buttyan, R. β-Carboline alkaloid–enriched extract from the amazonian rain forest tree Pao Pereira suppresses prostate cancer cells. J Soc Integr Oncol 2009;7:59–65.Search in Google Scholar

26. Bemis, DL, Capodice, JL, Gorroochurn, P, Katz, AE, Buttyan, R. Anti-prostate cancer activity of a β-carboline alkaloid enriched extract from Rauwolfia vomitoria. Int J Oncol 2006;29:1065–73. https://doi.org/10.3892/ijo.29.5.1065.Search in Google Scholar

27. Ahmad, K, Thomas, NF, Hadi, AH, Mukhtar, MR, Mohamad, K, Na, et al.. New vasorelaxant β-carboline alkaloids from neisosperma oppositifolia. Chem Pharm Bull 2010;58:1085–7. https://doi.org/10.1248/cpb.58.1085.Search in Google Scholar PubMed

28. Frye, A, Haustein, C. Extraction, identification, and quantification of harmala alkaloids in three species of passiflora. Am J Undergrad Res 2007;6:19–26. https://doi.org/10.33697/ajur.2007.020.Search in Google Scholar

29. Aiello, A, Fattorusso, E, Magno, S, Mayol, L. Brominaed β-carbolines from the marine hydroid aglaophenia pluma linnaeus. Tetrahedron 1987;43:5929–32. https://doi.org/10.1016/s0040-4020(01)87798-x.Search in Google Scholar

30. Prinsep, MR, Blunt, JW, Munro, MHG. New cytotoxic β-carboline alkaloids from the marine bryozoan, cribricellina cribraria. J Nat Prod 1991;54:1068–76. https://doi.org/10.1021/np50076a023.Search in Google Scholar PubMed

31. Harwood, DT, Urban, S, Blunt, JW, Munro, MHG. β-Carboline alkaloids from a New Zealand marine bryozoan, cribricellina cribraria. Nat Prod Res 2003;17:15–9. https://doi.org/10.1080/1057563021000001063.Search in Google Scholar PubMed

32. Beutler, JA, Cardellina, JHII, Prather, T, Shoemaker, RH, Boyd, MR. A cytotoxic β-carboline from the bryozoan catenicella cribraria. J Nat Prod 1993;56:1825–6. https://doi.org/10.1021/np50100a026.Search in Google Scholar PubMed

33. Carbrera, GM, Seldes, AM. A β-carboline alkaloid from the soft coral lignopsis spongiosum. J Nat Prod 1999;62:759–60.10.1021/np980429sSearch in Google Scholar PubMed

34. Schuup, P, Poehner, T, Edrada, R, Ebel, R, Berg, A, Wray, V, et al.. Two new β-carbolines from the micronesian tunicate Eudistoma sp. J Nat Prod 2003;66:272–5.10.1021/np020315nSearch in Google Scholar PubMed

35. Rashid, MA, Gustafson, KR, Boyd, MR. New cytotoxic N-methylated β-carboline alkaloids from the marine Ascidian Eudistomagilboverde. J Nat Prod 2001;64:1454–6. https://doi.org/10.1021/np010214+.10.1021/np010214+Search in Google Scholar PubMed

36. Kearns, PS, Coll, JC, Rideout, JA. A β-carboline dimer from an Ascidian, Didemnum sp. J Nat Prod 1995;58:1075–6. https://doi.org/10.1021/np50121a014.Search in Google Scholar

37. Foderaro, TA, Barrows, LR, Lassota, P, Ireland, CM. Bengacarboline, a new β-carboline from a marine Ascidian Didemnum sp. J Org Chem 1997;62:6064–5. https://doi.org/10.1021/jo962422q.Search in Google Scholar

38. Oku, N, Matsunaga, S, Fusetani, N. Shishijimicins A–C, novel enediyne antitumor antibiotics from the Ascidian Didemnum proliferum. J Am Chem Soc 2003;125:2044–5. https://doi.org/10.1021/ja0296780.Search in Google Scholar PubMed

39. Searle, PA, Molinski, TF. Five new alkaloids from the tropical ascidian, Lissoclinum sp. lissoclinotoxin A is chiral. J Org Chem 1994;59:6600–5. https://doi.org/10.1021/jo00101a018.Search in Google Scholar

40. Badre, A, Boulanger, A, Abou-Mansour, E, Banaigs, B, Com-baut, G, Francisco, C. Eudistomin U and Isoeudistomin U, new alkaloids from the carribean Ascidian Lissoclinum fragile. J Nat Prod 1994;57:528–33. https://doi.org/10.1021/np50106a016.Search in Google Scholar PubMed

41. Lake, RJ, Blunt, JW, Munro, MHG. Eudistomins from the New Zealand ascidian Ritterella sigillinoides. Aust J Chem 1989;42:1201–6. https://doi.org/10.1071/ch9891201.Search in Google Scholar

42. Lake, RJ, Brennan, MM, Blunt, JW, Munro, MHG, Pan-nell, LK. Eudistomin K sulfoxide – an antiviral sulfoxide from the New Zealand ascidian Ritterella sigillinoides. Tetrohedron Lett 1988;29:2255–6. https://doi.org/10.1016/s0040-4039(00)86725-8.Search in Google Scholar

43. Davis, RA, Carroll, AR, Quinn, RJ, Eudistomin, V. A new β-carboline from the australian ascidian Pseudodistoma aureum. J Nat Prod 1998;61:959–60. https://doi.org/10.1021/np9800452.Search in Google Scholar PubMed

44. Chbani, M, Paris, M, Delauneux, JM, Debitus, C. Brominated indole alkaloids from the marine tunicate Pseudodistoma arborescens. J Nat Prod 1993;56:99–104. https://doi.org/10.1021/np50091a014.Search in Google Scholar PubMed

45. Rinehart, KLJr, Kobayashi, J, Harbour, GC, Hughes, RGJr, Mizask, SA, Scahill, TA, et al.. Potent antiviral compounds containing a novel oxathiazepine ring from the caribbean tunicate Eudistoma olivaceum. J Am Chem Soc 1984;106:1524–6. https://doi.org/10.1021/ja00317a079.Search in Google Scholar

46. Kobayashi, J, Harbour, GC, Gilmore, J, Rinehart, KLJr, Eudistomins, A, D, G, et al.. hydroxy, pyrrolyl and iminoazepino .beta.-carbolines from the antiviral caribbean tunicate Eudistoma olivaceum. J Am Chem Soc 1984;106:1526–8. https://doi.org/10.1021/ja00317a080.Search in Google Scholar

47. Rinehart, LJr, Kobayashi, J, Harbour, GC, Gilmore, J, Mascal, M, Holt, TG, et al.. Eudistomins A-Q, beta.-carbolines from the antiviral caribbean tunicate Eudistoma olivaceum. J Am Chem Soc 1987;109:3378–87. https://doi.org/10.1021/ja00245a031.Search in Google Scholar

48. Kinzer, KF, Cardellina, JHII. Three new β-carbolines from the bermudian tunicate Eudistoma olivaceum. Tetrahedron Lett 1987;28:925–6.https://doi.org/10.1016/s0040-4039(00)95875-1.Search in Google Scholar

49. Kobayashi, J, Nakamura, H, Ohizumi, Y, Hirata, Y. Eudistomidin-A, a novel calmodulin antagonist from the okinawan tunicate eudistoma glaucus. Tetrahedron Lett 1986;27:1191–4. https://doi.org/10.1016/s0040-4039(00)84213-6.Search in Google Scholar

50. Kobayashi, J, Cheng, J, Ohta, T, Nozoe, S, Ohizumi, Y, Sasaki, T, et al.. Novel antileukemic alkaloids from the okinawan marine tunicate Eudistoma glaucus. J Org Chem 1990;55:3666–70. https://doi.org/10.1021/jo00298a056.Search in Google Scholar

51. Murata, O, Shigemori, H, Ishibashi, KS, Hayashi, K, Kobaya-shi, J, Eudistomidins, E, et al.. New β-carboline alkaloids from the okinawan marine tunicate Eudistoma glaucus. Tetrahedron Lett 1991;32:3539–42. https://doi.org/10.1016/0040-4039(91)80827-s.Search in Google Scholar

52. Buckholtz, NS. Neurobiology of tetrahydro-β-carbolines. Life Sci 1980;27:893–903. https://doi.org/10.1016/0024-3205(80)90098-3.Search in Google Scholar PubMed

53. Wagoner, RMV, Jompa, J, Tahir, A, Ireland, CM. Trypargine alkaloids from a previously undescribed Eudistoma sp. Ascidian. J Nat Prod 1999;62:794–7. https://doi.org/10.1021/np9805589.Search in Google Scholar PubMed

54. Volk, RB, Furkert, F. Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res 2006;161:180–6. https://doi.org/10.1016/j.micres.2005.08.005.Search in Google Scholar PubMed

55. Volk, RB. Studies on culture age versus exometabolite production in batch cultures of the cyanobacterium Nostoc insulare. J Appl Phycol 2007;19:491–5. https://doi.org/10.1007/s10811-007-9161-z.Search in Google Scholar

56. Armstrong, E, Boyd, KG, Pisacane, A, Peppiatt, CJ, Burgess, JG. Marine microbial natural products in antifouling coating. Biofouling 2000;16:221–32. https://doi.org/10.1016/s1387-2656(00)06024-5.Search in Google Scholar PubMed

57. Abdullah, M, Chiang, L, Nadeem, M. Comparative evaluation of adsorption kinetics and isotherms of a natural product removal by Amberlite polymeric adsorbents. Chem Eng J 2008;146:370–6.10.1016/j.cej.2008.06.018Search in Google Scholar

58. Volk, RB. Screening of microbial culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana. J Appl Phycol 2005;17:339–47. https://doi.org/10.1007/s10811-005-7292-7.Search in Google Scholar

59. Becher, PG, Beuchat, J, Gademann, K, Juttner, F. Nostocarboline: isolation and synthesis of a new cholinesterase inhibitor from Nostoc 78-12A. J Nat Prod 2005;68:1793–5. https://doi.org/10.1021/np050312l.Search in Google Scholar PubMed

60. Volk, RB. Screening of microalgae for species excreting norharmane, a manifold biologically active indole alkaloid. Microbiol Res 2008;163:307–13. https://doi.org/10.1016/j.micres.2006.06.002.Search in Google Scholar PubMed

61. Kreitlow, S, Mundt, S, Lindequist, U. Cyanobacteria—a potential source of new biologically active substances. J Biotechnol 1999;70:61–3. https://doi.org/10.1016/s0168-1656(99)00058-9.Search in Google Scholar PubMed

62. Tan, LT, Goh, BP, Tripathi, A, Lim, MG, Dickinson, GH, Lee, SS, et al.. Natural antifoulants from the marine cyanobacterium Lyngbya majuscula. Biofouling 2010;26:685–95. https://doi.org/10.1080/08927014.2010.508343.Search in Google Scholar PubMed

63. Karan, T, Erenler, R. Screening of norharmane from seven cyanobacteria by high-performance liquid chromatography. Phcog Mag 2017;13:S723–5. https://doi.org/10.4103/pm.pm_214_17.Search in Google Scholar PubMed PubMed Central

64. Totsuka, Y, Ushiyama, H, Ishihara, J, Sinha, R, Goto, S, Sugimura, T, et al.. Quantification of the co-mutagenic betacarbolines, norharman and harman, in cigarette smoke condensates and cooked foods. Cancer Lett 1999;143:139–43. https://doi.org/10.1016/s0304-3835(99)00143-3.Search in Google Scholar PubMed

65. Totsuka, Y, Takamura-Enya, T, Nishigaki, R, Sugimura, T, Wakabayashi, K. Mutagens formed from beta-carbolines with aromatic amines. J Chromatogr B 2004;802:135–41. https://doi.org/10.1016/j.jchromb.2003.10.041.Search in Google Scholar PubMed

66. Caicedo, NH, Kumirska, J, Neumann, J, Stolte, S, Thöming, J. Detection of bioactive exometabolites Produced by the filamentous marine cyanobacterium Geitlerinema sp. Mar Biotechnol 2012;14:436–45. https://doi.org/10.1007/s10126-011-9424-1.Search in Google Scholar PubMed PubMed Central

67. Shao, H, Huang, X, Zhang, Y, Zhang, C. Main alkaloids of Peganum harmala L. And their different effects on Dicot and Monocot crops. Molecules 2013;18:2623–34. https://doi.org/10.3390/molecules18032623.Search in Google Scholar PubMed PubMed Central

68. Das, P, Chakrabarty, A, Mallick, A, Chattopadhyay, N. Photophysics of a cationic biological photosensitizer in anionic micellar environments: combined effect of polarity and rigidity. J Phys Chem B 2007;111:11169–176. https://doi.org/10.1021/jp073984o.Search in Google Scholar PubMed

69. Sengupta, B, Sengupta, PK. Binding of quercetin with human serum albumin: a critical spectroscopic study. Biopolymers 2003;72:427–34. https://doi.org/10.1002/bip.10489.Search in Google Scholar PubMed

70. Guharay, J, Sengupta, B, Sengupta, PK. Protein–flavonol interaction: fluorescence spectroscopic study. Proteins Struct Funct Genet 2001;43:75–81. https://doi.org/10.1002/1097-0134(20010501)43:2<75::aid-prot1019>3.0.co;2-7.10.1002/1097-0134(20010501)43:2<75::AID-PROT1019>3.0.CO;2-7Search in Google Scholar

71. Mallick, A, Purkayastha, P, Chattopadhyay, N. Photoprocesses of excited molecules in confined liquid environments: an overview. J Photochem Photobiol C Photochem Rev 2007;8:109–27. https://doi.org/10.1016/j.jphotochemrev.2007.06.001.Search in Google Scholar

72. Reyman, D, Vinas, MH, Poyato, JML, Pardo, A. Proton transfer dynamics of norharman in organic solvents. J Phys Chem A 1997;101:768–75. https://doi.org/10.1021/jp961742a.Search in Google Scholar

73. Vert, FT, Sanchez, IZ, Torrent, AO. Acidity constants of β-carbolines in the ground and excited singlet states. J Photochem 1983;23:355–68. https://doi.org/10.1016/0047-2670(83)87109-3.Search in Google Scholar

74. Balon, M, Muroz, MA, Hidalgo, J, Carmona, MC, Sanchez, M. Fluorescence characteristics of β-carboline alkaloids in highly concentrated hydroxide solutions. J Photochem 1987;36:193–204. https://doi.org/10.1016/0047-2670(87)87076-4.Search in Google Scholar

75. Gonzalez, MM, Salum, ML, Gholipour, Y, Cabrerizo, FM, Erra-Balsells, R. Photochemistry of norharmane in aqueous solution. Photochem Photobiol Sci 2009;8:1139–49. https://doi.org/10.1039/b822173a.Search in Google Scholar

76. Ghiggino, KP, Skilton, PF, Thistlethwaite, PJ. β-Carboline as a fluorescence standard. J Photochem 1985;31:113–21. https://doi.org/10.1016/0047-2670(85)85079-6.Search in Google Scholar

77. Sakurovs, R, Ghiggino, KP. Excited state proton transfer in β-carboline. J Photochem 1982;18:1–8. https://doi.org/10.1016/0047-2670(82)80002-6.Search in Google Scholar

78. Varela, AP, Miguel, Mda G, Maçanita, AL, Burrows, HD, Becker, RS. Beta-carboline photosensitizers. 3. Studies on ground and excited state partitioning in AOT/water/cyclohexane microemulsions. J Phys Chem 1995;99:16093–100. https://doi.org/10.1021/j100043a059.Search in Google Scholar

79. Mallick, A, Haldar, B, Chattopadhyay, N. Encapsulation of norharmane in cyclodextrin: formation of 1:1 and 1:2 inclusion complexes. J Photochem Photobiol B 2005;78:215–21. https://doi.org/10.1016/j.jphotobiol.2004.11.008.Search in Google Scholar PubMed

80. Mallick, A, Chattopadhyay, N. Photophysics of norharmane in micellar environments: a fluorometric study. Biophys Chem 2004;109:261–70. https://doi.org/10.1016/j.bpc.2003.11.008.Search in Google Scholar PubMed

81. Chakrabarty, A, Das, P, Mallick, A, Chattopadhyay, N. Effect of surfactant chain length on the binding interaction of a biological photosensitizer with cationic micelles. J Phys Chem B 2008;112:3684—92. https://doi.org/10.1021/jp709818d.Search in Google Scholar PubMed

82. Chakrabarty, A, Mallick, A, Haldar, B, Purkayastha, P, Das, P, Chattopadhyay, N. Surfactant chain-length-dependent modulation of the prototropic transformation of a biological photosensitizer: norharmane in anionic micelles. Langmuir 2007;23:4842–48. https://doi.org/10.1021/la0700063.Search in Google Scholar PubMed

83. Paul, BK, Ghosh, N, Mondal, R, Mukherjee, S. Contrasting effects of salt and temperature on niosome-bound norharmane: direct evidence for positive heat capacity change in the niosome:β-cyclodextrin interaction. J Phys Chem B 2016;120:4091–101.https://doi.org/10.1021/acs.jpcb.6b02168.Search in Google Scholar PubMed

84. Kasha, M. Proton-transfer spectroscopy. Perturbation of the tautomerization potential. J Chem Soc, Faraday Trans 2 1986;82:2379–92. https://doi.org/10.1039/f29868202379.Search in Google Scholar

85. Kasha, M, Sytnik, A, Dellinger, B. Solvent cage spectroscopy. Pure Appl Chem 1993;65:1641–46. https://doi.org/10.1351/pac199365081641.Search in Google Scholar

86. Pimentel, GC, McClellan, AL. The Hydrogen Bond. San Francisco: W. H. Freeman; 1960.Search in Google Scholar

87. Green, RD. Hydrogen bonding by C-H groups. New York: MacMillan Press; 1974.10.1007/978-1-349-02172-7Search in Google Scholar

88. Sarkar, D, Mallick, A, Haldar, B, Chattopadhyay, N. Ratiometric spectroscopic response of pH sensitive probes: an alternative strategy for multidimensional sensing. Chem Phys Lett 2010;484:168–72. https://doi.org/10.1016/j.cplett.2009.10.076.Search in Google Scholar

89. Mallick, A, Roy, UK, Majumdar, T, Haldar, B, Pratihare, S. Photophysical, NMR and density functional study on the ion interaction of norharmane: proton transfer vs. hydrogen bonding. RSC Adv 2014;4:16274–80. https://doi.org/10.1039/c3ra46029k.Search in Google Scholar

90. Paul, S, Karar, M, Paul, P, Mallick, A, Majumdar, T. Dual mode nitro explosive detection under crowded condition: conceptual development of a sensing device. J Photochem Photobiol A 2019;379:123–9. https://doi.org/10.1016/j.jphotochem.2019.04.038.Search in Google Scholar

91. Paul, S, Karar, M, Mitra, S, Sher Shah, SA, Majumdar, T, Mallick, A. A molecular lock with hydrogen sulfate as “Key” and fluoride as “hand”: computing based insights on the functioning mechanism. ChemistrySelect 2016;1:5547–53. https://doi.org/10.1002/slct.201600986.Search in Google Scholar

92. Marques, ADS, Souza, HF, Costa, IC, Azevedo, WMde. Spectroscopic study of harmane in micelles at 77 K using fluorescent probes. J Mol Struct 2000;520:179–90. https://doi.org/10.1016/s0022-2860(99)00334-8.Search in Google Scholar

93. Paul, BK, Ray, D, Guchhait, N. Binding interaction and rotational-relaxation dynamics of a cancer cell photosensitizer with various micellar assemblies. J Phys Chem B 2012;116:9704–17. https://doi.org/10.1021/jp304280m.Search in Google Scholar PubMed

94. Ahmed, SA, Chatterjee, A, Maity, B, Seth, D. Supramolecular interaction of a cancer cell photosensitizer in the nanocavity of cucurbit[7]uril: a spectroscopic and calorimetric study. Int J Pharm 2015;492:103–08. https://doi.org/10.1016/j.ijpharm.2015.07.016.Search in Google Scholar PubMed

95. Paul, BK, Guchhait, N. Differential interactions of a biological photosensitizer with liposome membranes having varying surface charges. Photochem Photobiol Sci 2012;11:661. https://doi.org/10.1039/c2pp05346b.Search in Google Scholar PubMed

96. Paul, BK, Ray, D, Ganguly, A, Guchhait, N. Modulation in prototropism of the photosensitizer Harmane by host:guest interactions between β-cyclodextrin and surfactants. J Colloid Interface Sci 2013;411:230–39. https://doi.org/10.1016/j.jcis.2013.08.010.Search in Google Scholar PubMed

97. Carmona, C, Balon, M, Galan, M, Guardado, P, Munoz, MA. Dynamic study of excited state hydrogen-bonded complexes of harmane in cyclohexane–toluene mixtures. Photochem Photobiol 2002;76:239–46. https://doi.org/10.1562/0031-8655(2002)076<0239:dsoesh>2.0.co;2.10.1562/0031-8655(2002)076<0239:DSOESH>2.0.CO;2Search in Google Scholar

98. Krishnamurthy, M, Dogra, SK. Electronic spectra of harmane: study of solvent dependence. Int J Chem A 1986;25:178–80.Search in Google Scholar

99. Reyman, D, Hallwass, F, Goncalvesda Cruz, SM, Camacho, JJ. Coupled hydrogen-bonding interactions between β-carboline derivatives and acetic acid. Magn Reson Chem 2007;45:830–34. https://doi.org/10.1002/mrc.2049.Search in Google Scholar

100. Balon, M, Guardado, P, Munoz, MA, Carmona, C. A spectroscopic study of the hydrogen bonding and π–π stacking interactions of harmane with quinoline. Biospectroscopy 1998;4:185–95. https://doi.org/10.1002/(sici)1520-6343(1998)4:3<185::aid-bspy4>3.0.co;2-3.10.1002/(SICI)1520-6343(1998)4:3<185::AID-BSPY4>3.0.CO;2-3Search in Google Scholar

101. Balon, M, Munoz, MA, Guardado, P, Carmona, C. Hydrogen-bonding interactions between harmane and pyridine in the ground and lowest excited singlet states. Photochem Photobiol 1996;64:531–36. https://doi.org/10.1111/j.1751-1097.1996.tb03101.x.Search in Google Scholar

102. Wolfbeis, OS, Füriinger, E. The pH-dependence of the absorption and fluorescence spectra of harmine and harmol: drastic differences in the tautomeric equilibria of ground and first excited singlet state. Z Phys Chem 1982;129:171–83. https://doi.org/10.1524/zpch.1982.129.2.171.Search in Google Scholar

103. Becker, RS, Ferreira, LFV, Elisei, F, Machado, I, Latterini, L. Comprehensive photochemistry and photophysics of land- and marine-based β-carbolines employing time-resolved emission and flash transient spectroscopy. Photochem Photobiol 2005;81:1195–204. https://doi.org/10.1562/2005-03-22-RA-469.Search in Google Scholar

104. Karar, M, Paul, P, Mistri, R, Majumdar, T, Mallick, A. Dual macrocyclic chemical input based highly protective molecular keypad lock using fluorescence in solution phase: a new type approach. J Mol Liq 2021;331:115679. https://doi.org/10.1016/j.molliq.2021.115679.Search in Google Scholar

105. Windholz, M, editor. The Merck Index, 9th ed. Rahway, NJ: Merck; 1976. 4471 p.Search in Google Scholar

106. Robinson, T. The Biochemistry of Alkaloids. Berlin: Springer; 1968. 132 p.10.1007/978-3-662-01015-0Search in Google Scholar

107. Mitra, C, Guha, SR. Inhibition patterns of monoamine oxidase in sub-fractions of rat brain mitochondria in presence of some selective inhibitors. Biochem Pharmacol 1979;28:1135–7. https://doi.org/10.1016/0006-2952(79)90318-6.Search in Google Scholar

108. Tomas, F, Zabala, I, Olba, A. Acid-base and tautomeric equilibria of harmol in the ground and first excited singlet states. J Photochem 1985;31:253–63. https://doi.org/10.1016/0047-2670(85)85094-2.Search in Google Scholar

109. Olba, A, Medina, P, Codoñer, A, Monsó, S. Fluorescence and phosphorescence of harmol and harmalol at 77 K. J Photochem 1987;39:273–83. https://doi.org/10.1016/0047-2670(87)80038-2.Search in Google Scholar

110. Airaksinen, MM, Kari, I. β-Carbolines, psychoactive compounds in the mammalian body. Med Biol 1981;59:21–34.Search in Google Scholar

111. Mallick, A, Chattopadhyay, N. Photophysics in motionally constrained bioenvironment: interactions of norharmane with bovine serum albumin. Photochem Photobiol 2005;81:419–24. https://doi.org/10.1562/2004-07-12-ra-230.1.Search in Google Scholar

112. Ghosh, S, Chakrabarty, S, Bhowmik, D, Kumar, GS, Chattopadhyay, N. Stepwise unfolding of bovine and human serum albumin by an anionic surfactant: an investigation using the proton transfer probe norharmane. J Phys Chem B 2015;119:2090–102. https://doi.org/10.1021/jp501150p.Search in Google Scholar PubMed

113. Domonkos, C, Fitos, I, Visy, J, Zsila, F. Fatty acid modulated human serum albumin binding of the β-carboline alkaloids norharmane and harmane. Mol Pharm 2013;10:4706–16. https://doi.org/10.1021/mp400531n.Search in Google Scholar PubMed

114. Meester, C. Genotoxic potential of β-carbolines: a review. Mutat Res 1995;339:139–53.10.1016/0165-1110(95)90008-XSearch in Google Scholar

115. Funayama, Y, Nishio, K, Wakabayashi, K, Nagao, M, Shimoi, K, Ohira, T, et al.. Effects of β- and γ-carboline derivatives on DNA topoisomerase activities. Mutat Res 1996;349:183–91. https://doi.org/10.1016/0027-5107(95)00176-x.Search in Google Scholar PubMed

116. Duportail, G. Linear and circular dichroism of harmine and harmaline interacting with DNA. Int J Biol Macromol 1981;3:188–92. https://doi.org/10.1016/0141-8130(81)90062-3.Search in Google Scholar

117. Taira, Z, Kanzawass, S, Dohara, C, Ishida, S, Matsumoto, M, Sakiya, Y. Intercalation of six β-carboline derivatives into DNA. Jpn J Toxicol Environ Health 1997;43:83–91. https://doi.org/10.1248/jhs1956.43.83.Search in Google Scholar

118. Balon, M, Munoz, MA, Carmona, C, Guardado, P, Galan, M. A fluorescence study of the molecular interactions of harmane with the nucleobases, their nucleosides and mononucleotides. Biophys Chem 1999;80:41–52. https://doi.org/10.1016/s0301-4622(99)00059-9.Search in Google Scholar PubMed

119. Remsen, JF, Cerutti, PA. Inhibition of DNA-repair and DNA-synthesis by harman in human alveolar tumor cells. Biochem Biophys Res Commun 1979;86:124–29. https://doi.org/10.1016/0006-291x(79)90390-5.Search in Google Scholar PubMed

120. Funayama, Y, Nishio, K, Wakabayashi, K, Nagao, M, Shimoi, K, Ohira, T, et al.. Effects of β- and γ-carboline derivatives on DNA topoisomerase activities. Mutat Res 1996;349:183–91. https://doi.org/10.1016/0027-5107(95)00176-x.Search in Google Scholar

121. Manabe, S, Kanai, Y, Ishikawa, S, Wada, O. Carcinogenic tryptophan Pyrolysis Products Potent inhibitors of type A monoamine oxidase and the Platelet response to 5-hydroxytryptamine. J Clin Chem Clin Biochem 1988;26:265–70. https://doi.org/10.1515/cclm.1988.26.5.265.Search in Google Scholar PubMed

122. Herraiz, T, Chaparro, C. Human monoamine oxidase enzyme inhibition by coffee and β-carbolines norharman and harman isolated from coffee. Life Sci 2006;78:795–802. https://doi.org/10.1016/j.lfs.2005.05.074.Search in Google Scholar PubMed

123. May, T, Rommelspacher, H, Pawlik, M. [3H]Harman binding experiments. I: a reversible and selective radioligand for monoamine oxidase subtype A in the CNS of the rat. J Neurochem 1991;56:490–9. https://doi.org/10.1111/j.1471-4159.1991.tb08177.x.Search in Google Scholar PubMed

124. Rommelspacher, H, May, T, Salewski, B. Harman (1-methyl-β-carboline) is a natural inhibitor of monoamine oxidase type A in rats. Eur J Pharmacol 1994;252:51–9. https://doi.org/10.1016/0014-2999(94)90574-6.Search in Google Scholar PubMed

125. Rommelspacher, H, Meier-Henco, M, Smolka, M, Kloft, C. The levels of norharman are high enough after smoking to affect monoamineoxidase B in platelets. Eur J Pharmacol 2002;441:115–25. https://doi.org/10.1016/s0014-2999(02)01452-8.Search in Google Scholar PubMed

126. Kim, H, Sablin, SO, Ramsay, RR. Inhibition of monoamine oxidase A by β-carboline derivatives. Arch Biochem Biophys 1997;337:137–42. https://doi.org/10.1006/abbi.1996.9771.Search in Google Scholar PubMed

127. Song, Y, Wang, J, Teng, SF, Kesuma, D, Deng, Y, Duan, J, et al.. β-Carbolines as specific inhibitors of cyclin-Dependent kinases. Bioorg Med Chem Lett 2002;12:1129–32. https://doi.org/10.1016/s0960-894x(02)00094-x.Search in Google Scholar PubMed

128. Song, Y, Kesuma, D, Wang, J, Deng, Y, Duan, J, Wang, JH, et al.. Specific inhibition of cyclin-dependent kinases and cell proliferation by harmine. Biochem Biophys Res Commun 2004;317:128–32. https://doi.org/10.1016/j.bbrc.2004.03.019.Search in Google Scholar PubMed

129. Sobhani, AM, Ebrahimi, SA, Mahmoudian, M. An in vitro evaluation of human DNA topoisomerase|inhibition by peganum harmala L. seeds extract and its β-carboline alkaloids. J Pharm Pharmaceut Sci 2002;5:19–23.Search in Google Scholar

130. Hayashi, K, Nagao, M, Sugimura, T. Interactions of norharman and harman with DNA. Nucleic Acids Res 1977;4:3679–86. https://doi.org/10.1093/nar/4.11.3679.Search in Google Scholar PubMed PubMed Central

131. Cao, R, Peng, W, Chen, H, Ma, Y, Liu, X, Hou, X, et al.. DNA binding properties of 9-substituted harmine derivatives. Biochem Biophys Res Commun 2005;338:1557–63. https://doi.org/10.1016/j.bbrc.2005.10.121.Search in Google Scholar PubMed

132. Slotkin, TA, Distefano, VI, Au, WYW. Blood levels and urinary excretion of harmine and its metabolites in man and rats. J Pharmacol Exp Therapeut 1970;173:26–30.Search in Google Scholar

133. Naranjo, C. In Ethnopharmacologic Search for Psychoactive Drugs. Efron, DK, Holmstedt, B, Kline, NS, editors. Washington, DC: US Govement Printing Office; 1967. p. 385–91.Search in Google Scholar

134. Rommelspacher, H, Schmidt, LG, May, T. Plasma norharman (β-carboline) levels are elevated in chronic alcoholics. Alcohol Clin Exp Res 1991;15:553–9. https://doi.org/10.1111/j.1530-0277.1991.tb00559.x.Search in Google Scholar PubMed

135. Stohler, R, Rommelspacher, H, Ladewig, D, Dammann, G. Beta-carbolines (harman/norharman) are increased in heroin dependent patients. Ther Umsch Rev ther 1993;50:178–81.Search in Google Scholar

136. Stohler, R, Rommelspacher, H, Ladewig, D. The role of beta-carbolines (harman/norharman) in heroin addicts. Eur Psychiatr 1995;10:56–8. https://doi.org/10.1016/0767-399x(96)80076-9.Search in Google Scholar

137. Aricioglu-Kartal, F, Kayır, H, Uzbay, IT. Effects of harman and harmine on naloxone-precipitated withdrawal syndrome in morphine-dependent rats. Life Sci 2003;73:2363–71. https://doi.org/10.1016/s0024-3205(03)00647-7.Search in Google Scholar PubMed

138. Lantz, SM, Cuevas, E, Robinson, BL, Paule, MG, Ali, SF, Imam, SZ. The role of harmane and norharmane in in Vitro dopaminergic function. J Drug Alcohol Res 2015;4:1–8.10.4303/jdar/235925Search in Google Scholar

139. Matsubara, K, Gonda, T, Sawada, H, Uezono, T, Kobayashi, Y, Kawamura, T, et al.. Endogenously occurring β-carboline induces parkinsonism in nonprimate animals: a possible causative protoxin in idiopathic Parkinson’s disease. J Neurochem 1998;70:727–35. https://doi.org/10.1046/j.1471-4159.1998.70020727.x.Search in Google Scholar PubMed

140. Matsubara, K, Neafsey, EJ, Collins, MA. Novel s-adenosylmethionine-dependent indole-N-methylation of β-carbolines in brain particulate fractions. J Neurochem 1992;59:511–18. https://doi.org/10.1111/j.1471-4159.1992.tb09400.x.Search in Google Scholar PubMed

141. Sanchaita, L, Swapan, P, Sibabrata, M, Santu, B, Mukul, KB. Harmine: evaluation of its antileishmanial properties in various vesicular delivery systems. J Drug Target 2004;12:165–75.10.1080/10611860410001712696Search in Google Scholar PubMed

142. Marquenie, D, Geeraerd, AH, Lammertyn, J, Soontjens, C, Van Impe, JF, Michiels, CW, et al.. Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena. Int J Food Microbiol 2003;85:185–96. https://doi.org/10.1016/s0168-1605(02)00538-x.Search in Google Scholar PubMed

143. Palou, L, Usall, J, Munoz, J, Smilanick, J, Viñas, I. Hot water, sodium bicarbonate and sodium carbonate for the control of green and blue mold of Clemetine mandarins. Postharvest Biol Technol 2002;24:93–6. https://doi.org/10.1016/s0925-5214(01)00178-8.Search in Google Scholar

144. Cantu, D, Blanco-Ulate, B, Yang, L, Labavitch, JM, Bennett, AB, Powell, AL. Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene. Plant Physiol 2009;150:1434–49. https://doi.org/10.1104/pp.109.138701.Search in Google Scholar PubMed PubMed Central

145. Elad, Y, Evensen, K. Physiological aspects of resistance to Botrytis cinerea. Phytopathology 1995;85:637–43. https://doi.org/10.1094/phyto-85-637.Search in Google Scholar

146. Garber, MP, Hudson, WG, Norcini, JG, Thomas, WA, Jones, RK, Bondari, K. Biologic and Economic Assessment of Pest Management in the United States Greenhouse and Nursery Industry. Athens: Coop Ext Serv Univ. GA; 1997.Search in Google Scholar

147. Latorre, B, Flores, V, Sara, A, Roco, A. Dicarboximide-resistant strains of Botrytis cinerea from table grapes in Chile: survey and characterization. Plant Dis 1994;78:990–4. https://doi.org/10.1094/pd-78-0990.Search in Google Scholar

148. Olmedo, GM, Cerioni, L, Gonzalez, MM, Cabrerizo, FM, Rapisarda, VA, Volentini, SI. Antifungal activity of β-carbolines on penicillium digitatum and botrytis cinerea. Food Microbiol 2017;62:9–14. https://doi.org/10.1016/j.fm.2016.09.011.Search in Google Scholar PubMed

149. Chouvenc, T, Su, NY, Elliott, MI. Antifungal activity of the termite alkaloid norharmane against the mycelial growth of Metarhizium anisopliae and Aspergillus nomius. J Invertebr Pathol 2008;99:345–7. https://doi.org/10.1016/j.jip.2008.07.003.Search in Google Scholar PubMed

150. Xing, M, Shen, F, Liu, L, Chen, Z, Guo, N, Wang, X, et al.. Antimicrobial efficacy of the alkaloid harmaline alone and in combination with chlorhexidine digluconate against clinical isolates of Staphylococcus aureus grown in planktonic and biofilm cultures. Lett Appl Microbiol 2012;54:475–82. https://doi.org/10.1111/j.1472-765x.2012.03233.x.Search in Google Scholar PubMed

151. Rivas, P, Cassels, BK, Morello, A, Repetto, Y. Effects of some beta-carboline alkaloids on intact Trypanosoma cruzi epimastigotes. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 1999;122:27–31. https://doi.org/10.1016/s0742-8413(98)10069-5.Search in Google Scholar PubMed

152. Alomar, ML, Rasse-Suriani, FA, Ganuza, A, Coceres, VM, Cabrerizo, FM, Angel, SO. In vitro evaluation of beta-carboline alkaloids as potential anti-Toxoplasma agents. BMC Res Notes 2013;6:193. https://doi.org/10.1186/1756-0500-6-193.Search in Google Scholar PubMed PubMed Central

153. Olmedo, GM, Cerioni, L, Gonzalez, MM, Cabrerizo, FM, Volentini, SI, Rapisarda, VA. UVA photoactivation of harmol enhances its antifungal activity against the phytopathogens Penicillium digitatum and Botrytis cinerea. Front Microbiol 2017;8:1–9. https://doi.org/10.3389/fmicb.2017.00347.Search in Google Scholar PubMed PubMed Central

154. Gonzalez, MM, Salum, ML, Gholipour, Y, Cabrerizo, FM, Erra- Balsells, R. Photochemistry of norharmane in aqueous solution. Photochem Photobiol Sci 2009;8:1139–49. https://doi.org/10.1039/b822173a.Search in Google Scholar PubMed

155. Chandra, F, Kumar, P, Koner, AL. Encapsulation and modulation of Protolytic equilibrium of β-carboline-based norharmane drug by cucurbit[7]uril and micellar environments for enhanced cellular uptake. Colloids Surf B Biointerfaces 2018;171:530–7. https://doi.org/10.1016/j.colsurfb.2018.07.061.Search in Google Scholar PubMed

156. Abe, A, Yamada, H. Harmol induces apoptosis by caspase-8 activation independently on Fas/Fas ligand interaction in human lung carcinoma H596 cells. Anti Cancer Drugs 2009;20:373–81. https://doi.org/10.1097/CAD.0b013e32832a2dd9.Search in Google Scholar PubMed

157. Abe, A, Yamada, H, Moriya, S, Miyazawa, K. The β-carboline alkaloid harmol induces cell death via autophagy but not apoptosis in human non-small cell lung cancer A549 cells. Biol Pharm Bull 2011;34:1264–72. https://doi.org/10.1248/bpb.34.1264.Search in Google Scholar PubMed

158. Abe, A, Kokuba, H. Harmol induces autophagy and subsequent apoptosis in U251MG human glioma cells through the downregulation of survivin. Oncol Rep 2013;29:1333–42.https://doi.org/10.3892/or.2013.2242.Search in Google Scholar PubMed

159. Al-Allaf, TA, Rashan, LJ. Synthesis and cytotoxic evaluation of the first trans-palladium (II) complex with naturally occurring alkaloid harmine. Eur J Med Chem 1998;33:817–20. https://doi.org/10.1016/s0223-5234(99)80033-6.Search in Google Scholar

160. Al-Allaf, TA, Ayoub, MT, Rashan, LJ. Synthesis and characterization of novel biologically active platinum (II) and palladium (II) complexes of some β-carboline alkaloids. J Inorg Biochem 1990;38:47–56. https://doi.org/10.1016/0162-0134(90)85006-i.Search in Google Scholar PubMed

161. Ma, Y, Wink, M. The beta-carboline alkaloid harmine inhibits BCRP and can reverse resistance to the anticancer drugs mitoxantrone and camptothecin in breast cancer cells. Phytother Res 2010;24:146–9. https://doi.org/10.1002/ptr.2860.Search in Google Scholar PubMed

162. Chen, W, Yuan, Z-Q, Liu, Y, Yang, S, Zhang, C, Li, J, et al.. Liposomes coated with N-trimethyl chitosan to improve the absorption of harmine in vivo and in vitro. Int J Nanomed 2016;11:325–36. https://doi.org/10.2147/IJN.S95540.Search in Google Scholar PubMed PubMed Central

163. Artursson, P, Palm, K, Luthman, K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 2012;64:280–9. https://doi.org/10.1016/j.addr.2012.09.005.Search in Google Scholar

164. Di Giorgio, C, Delmas, F, Ollivier, E, Elias, R, Balansard, G, Timon-David, P. In vitro activity of the β-carboline alkaloids harmane, harmine, and harmaline toward parasites of the species Leishmaniainfantum. Exp Parasitol 2004;106:67–74. https://doi.org/10.1016/j.exppara.2004.04.002.Search in Google Scholar PubMed

165. Zhang, H, Chen, L, Hu, Z. Xeromorphic characters in the vegetative organs of Peganumharmala. Acta Phytoeco Geobot Sin 1992;16:243–8.Search in Google Scholar

166. Asgarpanah, J, Ramezanloo, F. Chemistry, pharmacology and medicinal properties of Peganumharmala L. Afr J Pharm Pharmacol 2012;6:1573–80. https://doi.org/10.5897/ajpp12.901.Search in Google Scholar

167. Sodaeizadeh, H, Rafieiolhossaini, M, van Damme, P. Herbicidal activity of a medicinal plant, Peganum harmala L., and decomposition dynamics of its phytotoxins in the soil. Ind Crop Prod 2010;31:385–94. https://doi.org/10.1016/j.indcrop.2009.12.006.Search in Google Scholar

168. Cavin, JC, Rodriguez, E. The influence of dietary β-carboline alkaloids on growth rate, food consumption, and food utilization of larvae of Spodoptera exigua (Hubner). J Chem Ecol 1988;14:475–84. https://doi.org/10.1007/bf01013899.Search in Google Scholar PubMed

169. Zeng, Y, Zhang, Y, Weng, Q, Hu, M, Zhong, G. Cytotoxic and insecticidal activities of derivatives of harmine, a natural insecticidal component isolated from Peganum harmala. Molecules 2010;15:7775–91. https://doi.org/10.3390/molecules15117775.Search in Google Scholar PubMed PubMed Central

170. Nenaah, G. Toxicity and growth inhibitory activities of methanol extract and the β-carboline alkaloids of Peganum harmalaL.against two coleopteran stored-grain pests. J Stored Prod Res 2011;47:255–61. https://doi.org/10.1016/j.jspr.2011.04.004.Search in Google Scholar

171. Adachi, J, Mizoi, Y, Naito, T, Yamamoto, K, Fujiwara, S, Ninomiya, I. Determination of b-carbolines in foodstuffs by high performance liquid chromatography and high performance liquid chromatograph–mass spectrometry. J Chromatogr 1991;538:331–9. https://doi.org/10.1016/s0021-9673(01)88854-3.Search in Google Scholar PubMed

172. Poindexter, EH, Carpenter, RD. The isolation of harmane and norharmane from tobacco and cigarette smoke. Phytochemistry 1962;1:215–21. https://doi.org/10.1016/s0031-9422(00)82825-3.Search in Google Scholar

173. Rommelspacher, H, Barbey, M, Strauss, S, Greiner, B, Fahndrich, E. Beta-Carbolines and Tetrahydroisoquinolines Bloom, F, Barchas, J, Sandler, M, Usdin, E, editors. 41–55. New York: A. R. Liss; 1982.Search in Google Scholar

174. Allen, RF, Beck, O, Borg, S, Skroder, R. Analysis of 1-methyl-1,2,3,4-tetrahydro-b-carboline in human urine and cerebrospinal fluid by gas chromatography–mass spectrometry. Eur J Mass Spectrom 1980;1:171–7.Search in Google Scholar

175. Bidder, TA, Shoemaker, DW, Boettger, HG, Evans, M, Cummins, JT. Harmane in human platelets. Life Sci 1979;25:157–64. https://doi.org/10.1016/0024-3205(79)90387-4.Search in Google Scholar PubMed

176. Rommelspacher, H, Strauss, S, Lindemann, J. Excretion of tetrahydroharmane and harmane into the urine of man and rat after load with ethanol. FEBS Lett 1980;109:209–12. https://doi.org/10.1016/0014-5793(80)81088-x.Search in Google Scholar PubMed

177. Zetler, G, Singbart, G, Schlosser, L. Cerebral pharmacokinetics of tremor-producing harmala and iboga alkaloids. Pharmacology 1972;7:237–48. https://doi.org/10.1159/000136294.Search in Google Scholar PubMed

178. Moncrieff, J. Determination of pharmacological levels of harmane, harmine and harmaline in mammalian brain tissue, cerebrospinal fluid and plasma by high-performance liquid chromatography with fluorimetric detection. J Chromatogr 1989;496:269–78. https://doi.org/10.1016/s0378-4347(00)82576-1.Search in Google Scholar PubMed

Received: 2022-06-10
Accepted: 2022-09-10
Published Online: 2022-10-14

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.8.2024 from https://www.degruyter.com/document/doi/10.1515/psr-2022-0132/html
Scroll to top button