Think OS

A Brief Introduction to Operating Systems

Version 0.7.4

Think OS

A Brief Introduction to Operating Systems

Version 0.7.4

Allen B. Downey

Green Tea Press

Needham, Massachusetts

Copyright (©) 2015 Allen B. Downey.

Green Tea Press
9 Washburn Ave
Needham MA 02492

Permission is granted to copy, distribute, and/or modify this document under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License, which is available at http://creativecommons.
org/licenses/by-nc-sa/4.0/.

The BTEX source for this book is available from http://greenteapress.com/
thinkos.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://greenteapress.com/thinkos
http://greenteapress.com/thinkos

Preface

In many computer science programs, Operating Systems is an advanced topic.
By the time students take it, they know how to program in C, and they have
probably taken a class in Computer Architecture. Usually the goal of the class
is to expose students to the design and implementation of operating systems,
with the implied assumption that some of them will do research in this area,
or write part of an OS.

This book is intended for a different audience, and it has different goals. I
developed it for a class at Olin College called Software Systems.

Most students taking this class learned to program in Python, so one of the
goals is to help them learn C. For that part of the class, I use Griffiths and Grif-
fiths, Head First C, from O’Reilly Media. This book is meant to complement
that one.

Few of my students will ever write an operating system, but many of them
will write low-level applications in C or work on embedded systems. My class
includes material from operating systems, networks, databases, and embedded
systems, but it emphasizes the topics programmers need to know.

This book does not assume that you have studied Computer Architecture. As
we go along, I will explain what we need.

If this book is successful, it should give you a better understanding of what is
happening when programs run, and what you can do to make them run better
and faster.

Chapter 1 explains some of the differences between compiled and interpreted
languages, with some insight into how compilers work. Recommended reading:
Head First C' Chapter 1.

Chapter 2 explains how the operating system uses processes to protect running
programs from interfering with each other.

Chapter 3 explains virtual memory and address translation. Recommended
reading: Head First C Chapter 2.

vi Chapter 0. Preface

Chapter 4 is about file systems and data streams. Recommended reading:
Head First C Chapter 3.

Chapter 5 describes how numbers, letters, and other values are encoded, and
presents the bitwise operators.

Chapter 6 explains how to use dynamic memory management, and how it
works. Recommended reading: Head First C' Chapter 6.

Chapter 7 is about caching and the memory hierarchy.
Chapter 8 is about multitasking and scheduling.

Chapter 9 is about POSIX threads and mutexes. Recommended reading: Head
First C Chapter 12 and Little Book of Semaphores Chapters 1 and 2.

Chapter 10 is about POSIX condition variables and the producer/consumer
problem. Recommended reading: Little Book of Semaphores Chapters 3 and
4.

Chapter 11 is about using POSIX semaphores and implementing semaphores
in C.

A note on this draft

The current version of this book is an early draft. While I am working on the
text, I have not yet included the figures. So there are a few places where, I'm
sure, the explanation will be greatly improved when the figures are ready.

0.1 Using the code

Example code for this book is available from https://github.com/
AllenDowney/Think0S. Git is a version control system that allows you to
keep track of the files that make up a project. A collection of files under
Git’s control is called a repository. GitHub is a hosting service that provides
storage for Git repositories and a convenient web interface.

The GitHub homepage for my repository provides several ways to work with
the code:

e You can create a copy of my repository on GitHub by pressing the Fork
button. If you don’t already have a GitHub account, you’ll need to
create one. After forking, you’ll have your own repository on GitHub

https://github.com/AllenDowney/ThinkOS
https://github.com/AllenDowney/ThinkOS

0.1. Using the code vii

that you can use to keep track of code you write while working on this
book. Then you can clone the repo, which means that you copy the files
to your computer.

e Or you could clone my repository. You don’t need a GitHub account to
do this, but you won’t be able to write your changes back to GitHub.

e If you don’t want to use Git at all, you can download the files in a Zip
file using the button in the lower-right corner of the GitHub page.

Contributor List

If you have a suggestion or correction, please send email to
downey@allendowney.com. If I make a change based on your feedback,
[will add you to the contributor list (unless you ask to be omitted).

If you include at least part of the sentence the error appears in, that makes it
easy for me to search. Page and section numbers are fine, too, but not quite
as easy to work with. Thanks!

e [am grateful to the students in Software Systems at Olin College, who tested
an early draft of this book in Spring 2014. They corrected many errors and
made many helpful suggestions. I appreciate their pioneering spirit!

e James P Giannoules spotted a copy-and-paste error.
¢ Andy Engle knows the difference between GB and GiB.

e Aashish Karki noted some broken syntax.

Other people who found typos and errors include Jim Tyson, Donald Robertson,
Jeremy Vermast, Yuzhong Huang, Tan Hill.

viii Chapter 0. Preface

Contents

[Preface]

(0.1

Using the code|.

(1 Compilation|

(1.1 Compiled and interpreted languages|
(1.2 Static types|
(1.3 The compilation process|
(1.4 Objectcode| L
(1.5 Assembly code|.o
(1.6 Preprocessing] oo
(1.7 Understanding errors|
2__Processes|
2.1 Abstraction and virtualization|
2.2 [solation|
[2.3 UNIX processes|

[3 Virtual memory]|

[3.1 A bit of information theory|.
[3.2 Memory and storagel L.
(3.3 Address spaces|

S oY Ot = W

©

10
12

15
15
16
16

Contents

[3.4

Memory segments|

[4 Files and file systems|

1.4

Everythingisafile?).

[> More bits and bytes|

(5.1 Representing integers|
0.2 Bitwise operators|
(5.3 Representing floating-point numbers|

[>.4 ~ Unions and memory errors|
[5.5 Representing strings|.

6 Memory management|

(6.1 Memory errors|.
(6.2 Memory leaks|
[6.3 Implementation|
7 Caching|

[7.1 How programs run|
[7.2 Cache performance]
(7.3 Locality
7.4 Measuring cache performance|
[7.5 Programming for cache performance

7.6 The memory hierarchy|
(7.7 Caching policy|.
(7.8 Paging| 00000

........ 28

Contents

xi

8 Multitasking]

8.1 Hardware statel
8.2 Context switching|
(8.3 The process lite cyclelo
8.4 Schedulingl oL
8.5 Real-time schedulingl
[0 Threadsl
9.1 Creating threads|
9.2 Creating threads|
9.3 Joining threads|
[9.4 Synchronization errors|
9.5 Mutex
[0 Condif =bles
(10.1 The work queue|
[10.2 Producers and consumers.
M[0.3 Mutual exclusionl
[[0.4 Condition variables
(10.5 Condition variable implementation|

(11 Semaphores in C|

(11.1 POSIX Semaphores|

(11.2 Producers and consumers with semaphores|

(11.3 Make your own semaphores|

57
58
58
59
60
62

63
64
64
66
67
69

71
71
74
75
7
80

xii

Contents

Chapter 1

Compilation

1.1 Compiled and interpreted languages

People often describe programming languages as either compiled or inter-
preted. “Compiled” means that programs are translated into machine lan-
guage and then executed by hardware; “interpreted” means that programs
are read and executed by a software interpreter. Usually C is considered a
compiled language and Python is considered an interpreted language. But the
distinction is not always clear-cut.

First, many languages can be either compiled or interpreted. For example,
there are C interpreters and Python compilers. Second, there are languages
like Java that use a hybrid approach, compiling programs into an intermediate
language and then running the translated program in an interpreter. Java uses
an intermediate language called Java bytecode, which is similar to machine

language, but it is executed by a software interpreter, the Java virtual machine
(JVM).

So being compiled or interpreted is not an intrinsic characteristic of a lan-
guage; nevertheless, there are some general differences between compiled and
interpreted languages.

1.2 Static types

Many interpreted languages support dynamic types, but compiled languages
are usually limited to static types. In a statically-typed language, you can tell

2 Chapter 1. Compilation

by looking at the program what type each variable refers to. In a dynamically-
typed language, you don’t always know the type of a variable until the pro-
gram is running. In general, static refers to things that happen at compile
time (while a program is being compiled), and dynamic refers to things that
happen at run time (while a program is running).

For example, in Python you can write a function like this:

def add(x, y):
return x +y

Looking at this code, you can’t tell what type x and y will refer to at run
time. This function might be called several times, each time with values with
different types. Any values that support the addition operator will work; any
other types will cause an exception or runtime error.

In C you would write the same function like this:

int add(int x, int y) {
return x + y;

by

The first line of the function includes type declarations for the parameters
and the return value: x and y are declared to be integers, which means that
we can check at compile time whether the addition operator is legal for this
type (it is). The return value is also declared to be an integer.

Because of these declarations, when this function is called elsewhere in the
program, the compiler can check whether the arguments provided have the
right type, and whether the return value is used correctly.

These checks happen before the program starts executing, so errors can be
found earlier. More importantly, errors can be found in parts of the program
that have never run. Furthermore, these checks don’t have to happen at run
time, which is one of the reasons compiled languages generally run faster than
interpreted languages.

Declaring types at compile time also saves space. In dynamic languages, vari-
able names are stored in memory while the program runs, and they are of-
ten accessible by the program. For example, in Python the built-in function
locals returns a dictionary that contains variable names and their values.
Here’s an example in a Python interpreter:

>>>x =5
>>> print locals()
{'x': 5, '__builtins__': <module '__builtin__' (built-in)>,

'__name__': '__main__', '__doc__': None, '__package__': None}

1.3. The compilation process 3

This shows that the name of the variable is stored in memory while the program
is running (along with some other values that are part of the default runtime
environment).

In compiled languages, variable names exist at compile-time but not at run
time. The compiler chooses a location for each variable and records these
locations as part of the compiled program[] The location of a variable is
called its address. At run time, the value of each variable is stored at its
address, but the names of the variables are not stored at all (unless they are
added by the compiler for purposes of debugging).

1.3 The compilation process

As a programmer, you should have a mental model of what happens during
compilation. If you understand the process, it will help you interpret error
messages, debug your code, and avoid common pitfalls.

The steps of compilation are:

1. Preprocessing: C is one of several languages that include preprocessing
directives that take effect before the program is compiled. For example,
the #include directive causes the source code from another file to be
inserted at the location of the directive.

2. Parsing: During parsing, the compiler reads the source code and builds
an internal representation of the program, called an abstract syntax
tree. Errors detected during this step are generally syntax errors.

3. Static checking: The compiler checks whether variables and values have
the right type, whether functions are called with the right number and
type of arguments, etc. Errors detected during this step are sometimes
called static semantic errors.

4. Code generation: The compiler reads the internal representation of the
program and generates machine code or byte code.

5. Linking: If the program uses values and functions defined in a library,
the compiler has to find the appropriate library and include the required
code.

! This is a simplification; we will go into more detail later.

4 Chapter 1. Compilation

6. Optimization: At several points in the process, the compiler can trans-
form the program to generate code that runs faster or uses less space.
Most optimizations are simple changes that eliminate obvious waste, but
some compilers perform sophisticated analyses and transformations.

Normally when you run gcc, it runs all of these steps and generates an exe-
cutable file. For example, here is a minimal C program:

#include <stdio.h>
int main()

{
printf ("Hello World\n");

}

If you save this code in a file called hello.c, you can compile and run it like
this:

$ gcc hello.c

$./a.out

By default, gcc stores the executable code in a file called a.out (which origi-
nally stood for “assembler output”). The second line runs the executable. The
prefix ./ tells the shell to look for it in the current directory.

It is usually a good idea to use the -o flag to provide a better name for the
executable:

$ gcc hello.c -o hello
$./hello

1.4 Object code

The -c flag tells gcc to compile the program and generate machine code, but
not to link it or generate an executable:

$ gcc hello.c -c

The result is a file named hello.o, where the o stands for object code, which
is the compiled program. Object code is not executable, but it can be linked
into an executable.

The UNIX command nm reads an object file and generates information about
the names it defines and uses. For example:

$ nm hello.o
0000000000000000 T main
U puts

1.5. Assembly code 5

This output indicates that hello.o defines the name main and uses a function
named puts, which stands for “put string”. In this example, gcc performs an
optimization by replacing printf, which is a large and complicated function,
with puts, which is relatively simple.

You can control how much optimization gcc does with the -0 flag. By default,
it does very little optimization, which can make debugging easier. The option
-01 turns on the most common and safe optimizations. Higher numbers turn
on additional optimizations that require longer compilation time.

In theory, optimization should not change the behavior of the program, other
than to speed it up. But if your program has a subtle bug, you might find that
optimization makes the bug appear or disappear. It is usually a good idea to
turn off optimization while you are developing new code. Once the program
is working and passing appropriate tests, you can turn on optimization and
confirm that the tests still pass.

1.5 Assembly code

Similar to the -c flag, the -S flag tells gcc to compile the program and generate
assembly code, which is basically a human-readable form of machine code.

$ gcc hello.c -S
The result is a file named hello.s, which might look something like this:

.file "hello.c"
.section .rodata
.LCO:
.string "Hello World"
.text
.globl main
.type main, Q@function
main:
.LFBO:

.cfi_startproc

pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, hrbp
.cfi_def_cfa_register 6
movl $.LCO, Y%edi

call puts

6 Chapter 1. Compilation

movl $0, %eax

popq %rbp
.cfi_def_cfa 7, 8
ret
.cfi_endproc
.LFEO:
.size main, .-main
.ident "GCC: (Ubuntu/Linaro 4.7.3-1ubuntul) 4.7.3"
.section .note.GNU-stack,"",@progbits

gcc is usually configured to generate code for the machine you are running on,
so for me it generates x86 assembly language, which runs on a wide variety
of processors from Intel, AMD, and others. If you are running on a different
architecture, you might see different code.

1.6 Preprocessing

Taking another step backward through the compilation process, you can use
the -E flag to run the preprocessor only:

$ gcc hello.c -E

The result is the output from the preprocessor. In this example, it contains
the included code from stdio.h, and all the files included from stdio.h, and
all the files included from those files, and so on. On my machine, the total is
more than 800 lines of code. Since almost every C program includes stdio.h,
those 800 lines of code get compiled a lot. If, like many C programs, you also
include stdlib.h, the result is more than 1800 lines of code.

1.7 Understanding errors

Now that we know the steps in the compilation process, it is easier to under-
stand error messages. For example, if there is an error in a #include directive,
you’ll get a message from the preprocessor:

hello.c:1:20: fatal error: stdioco.h: No such file or directory
compilation terminated.

If there’s a syntax error, you get a message from the compiler:

hello.c: In function 'main':
hello.c:6:1: error: expected ';' before '}' token

If you use a function that’s not defined in any of the standard libraries, you
get a message from the linker:

1.7. Understanding errors 7

/tmp/cc7iAUbN.o: In function “main':
hello.c: (.text+0xf): undefined reference to “printff'
collect2: error: 1d returned 1 exit status

14 is the name of the UNIX linker, so named because “loading” is another
step in the compilation process that is closely related to linking.

Once the program starts, C does very little runtime checking, so there are
only a few runtime errors you are likely to see. If you divide by zero, or
perform another illegal floating-point operation, you will get a “Floating point
exception.” And if you try to read or write an incorrect location in memory,
you will get a “Segmentation fault.”

Chapter 1. Compilation

Chapter 2

Processes

2.1 Abstraction and virtualization

Before we talk about processes, I want to define a few words:

e Abstraction: An abstraction is a simplified representation of something
complicated. For example, if you drive a car, you understand that when
you turn the wheel left, the car goes left, and vice versa. Of course,
the steering wheel is connected to a sequence of mechanical and (often)
hydraulic systems that turn the wheels, and the wheels interact with
the road in ways that can be complex, but as a driver, you normally
don’t have to think about any of those details. You can get along very
well with a simple mental model of steering. Your mental model is an
abstraction.

Similarly, when you use a web browser, you understand that when you
click on a link, the browser displays the page the link refers to. The soft-
ware and network communication that make that possible are complex,
but as a user, you don’t have to know the details.

A large part of software engineering is designing abstractions like these
that allow users and other programmers to use powerful and complicated
systems without having to know about the details of their implementa-
tion.

e Virtualization: An important kind of abstraction is virtualization, which
is the process of creating a desirable illusion.

For example, many public libraries participate in inter-library collabora-
tions that allow them to borrow books from each other. When I request

10 Chapter 2. Processes

a book, sometimes the book is on the shelf at my local library, but other
times it has to be transferred from another collection. Either way, I get
a notification when it is available for pickup. I don’t need to know where
it came from, and I don’t need to know which books my library has. As
a whole, the system creates the illusion that my library has every book
in the world.

The collection physically located at my local library might be small,
but the collection available to me virtually includes every book in the
inter-library collaboration.

As another example, most computers are only connected to one network,
but that network is connected to others, and so on. What we call the
Internet is a collection of networks and a set of protocols that forward
packets from one network to the next. From the point of view of a user or
programmer, the system behaves as if every computer on the Internet is
connected to every other computer. The number of physical connections
is small, but the number of virtual connections is very large.

The word “virtual” is often used in the context of a virtual machine, which is
software that creates the illusion of a dedicated computer running a particular
operating system, when in reality the virtual machine might be running, along
with many other virtual machines, on a computer running a different operating
system.

In the context of virtualization, we sometimes call what is really happening
“physical”, and what is virtually happening either “logical” or “abstract.”

2.2 Isolation

One of the most important principles of engineering is isolation: when you
are designing a system with multiple components, it is usually a good idea to
isolate them from each other so that a change in one component doesn’t have
undesired effects on other components.

One of the most important goals of an operating system is to isolate each run-
ning program from the others so that programmers don’t have to think about
every possible interaction. The software object that provides this isolation is
a process.

A process is a software object that represents a running program. I mean
“software object” in the sense of object-oriented programming; in general, an
object contains data and provides methods that operate on the data. A process
is an object that contains the following data:

2.2. Isolation 11

e The text of the program, usually a sequence of machine language in-
structions.

e Data associated with the program, including static data (allocated at
compile time) and dynamic data (allocated at run time).

e The state of any pending input/output operations. For example, if the
process is waiting for data to be read from disk or for a packet to arrive
on a network, the status of these operations is part of the process.

e The hardware state of the program, which includes data stored in regis-
ters, status information, and the program counter, which indicates which
instruction is currently executing.

Usually one process runs one program, but it is also possible for a process to
load and run a new program.

It is also possible, and common, to run the same program in more than one
process. In that case, the processes share the same program text but generally
have different data and hardware states.

Most operating systems provide a fundamental set of capabilities to isolate
processes from each other:

e Multitasking: Most operating systems have the ability to interrupt a
running process at almost any time, save its hardware state, and then
resume the process later. In general, programmers don’t have to think
about these interruptions. The program behaves as if it is running con-
tinuously on a dedicated processor, except that the time between in-
structions is unpredictable.

e Virtual memory: Most operating systems create the illusion that each
process has its own chunk of memory, isolated from all other processes.
Again, programmers generally don’t have to think about how virtual
memory works; they can proceed as if every program has a dedicated
chunk of memory.

e Device abstraction: Processes running on the same computer share the
disk drive, the network interface, the graphics card, and other hardware.
If processes interacted with this hardware directly, without coordination,
chaos would ensue. For example, network data intended for one process
might be read by another. Or multiple processes might try to store data
in the same location on a hard drive. It is up to the operating system
to maintain order by providing appropriate abstractions.

12 Chapter 2. Processes

As a programmer, you don’t need to know much about how these capabilities
are implemented. But if you are curious, you will find a lot of interesting
things going on under the metaphorical hood. And if you know what’s going
on, it can make you a better programmer.

2.3 UNIX processes

While I write this book, the process I am most aware of is my text editor,
emacs. Every once in a while I switch to a terminal window, which is a
window running a UNIX shell that provides a command-line interface.

When I move the mouse, the window manager wakes up, sees that the mouse
is over the terminal window, and wakes up the terminal. The terminal wakes
up the shell. If T type make in the shell, it creates a new process to run
Make, which creates another process to run LaTeX and then another process
to display the results.

If T need to look something up, I might switch to another desktop, which wakes
up the window manager again. If I click on the icon for a web browser, the
window manager creates a process to run the web browser. Some browsers,
like Chrome, create a new process for each window and each tab.

And those are just the processes I am aware of. At the same time there
are many other processes running in the background. Many of them are
performing operations related to the operating system.

The UNIX command ps prints information about running processes. If you
run it in a terminal, you might see something like this:

PID TTY TIME CMD
2687 pts/1 00:00:00 bash
2801 pts/1 00:01:24 emacs

24762 pts/1 00:00:00 ps

The first column is the unique numerical process ID. The second column is
the terminal that created the process; “TTY” stands for teletypewriter, which
was the original mechanical terminal.

The third column is the total processor time used by the process, in hours,
minutes, and seconds. The last column is the name of the running program.
In this example, bash is the name of the shell that interprets the commands I
type in the terminal, emacs is my text editor, and ps is the program generating
this output.

2.3. UNIX processes 13

By default, ps lists only the processes associated with the current terminal.
If you use the -e flag, you get every process (including processes belonging to
other users, which is a security flaw, in my opinion).

On my system there are currently 233 processes. Here are some of them:

PID TTY TIME CMD
17 00:00:17 init
27 00:00:00 kthreadd
37 00:00:02 ksoftirqd/0
4 7 00:00:00 kworker/0:0
8 7 00:00:00 migration/0
97 00:00:00 rcu_bh
10 7 00:00:16 rcu_sched
47 00:00:00 cpuset
48 7 00:00:00 khelper
49 7 00:00:00 kdevtmpfs
50 7 00:00:00 netns
51 7 00:00:00 bdi-default
52 7 00:00:00 kintegrityd
53 7 00:00:00 kblockd
54 7 00:00:00 ata_sff
556 7 00:00:00 khubd
56 7 00:00:00 md
57 7 00:00:00 devfreq_wq

init is the first process created when the operating system starts. It creates
many of the other processes, and then sits idle until the processes it created
are done.

kthreadd is a process the operating system uses to create new threads. We'll
talk more about threads later, but for now you can think of a thread as kind of
a process. The k at the beginning stands for kernel, which is the part of the
operating system responsible for core capabilities like creating threads. The
extra d at the end stands for daemon, which is another name for processes like
this that run in the background and provide operating system services. In this
context, “daemon” is used in the sense of a helpful spirit, with no connotation
of evil.

Based on the name, you can infer that ksoftirqd is also a kernel daemon;
specifically, it handles software interrupt requests, or “soft IRQ”.

kworker is a worker process created by the kernel to do some kind of processing
for the kernel.

14 Chapter 2. Processes

There are often multiple processes running these kernel services. On my system
at the moment, there are 8 ksoftirqd processes and 35 kworker processes.

I won’t go into more details about the other processes, but if you are interested
you can search for more information about them. You should run ps on your
system and compare your results to mine.

Chapter 3

Virtual memory

3.1 A bit of information theory

A bit is a binary digit; it is also a unit of information. If you have one bit,
you can specify one of two possibilities, usually written 0 and 1. If you have
two bits, there are 4 possible combinations, 00, 01, 10, and 11. In general, if
you have b bits, you can indicate one of 2° values. A byte is 8 bits, so it can
hold one of 256 values.

Going in the other direction, suppose you want to store a letter of the alphabet.
There are 26 letters, so how many bits do you need? With 4 bits, you can
specify one of 16 values, so that’s not enough. With 5 bits, you can specify up
to 32 values, so that’s enough for all the letters, with a few values left over.

In general, if you want to specify one of N values, you should choose the
smallest value of b so that 2° > N. Taking the log base 2 of both sides yields
b > logaN.

Suppose I flip a coin and tell you the outcome. I have given you one bit of
information. If I roll a six-sided die and tell you the outcome, I have given you
logs6 bits of information. And in general, if the probability of the outcome is
1in N, then the outcome contains logs N bits of information.

Equivalently, if the probability of the outcome is p, then the information con-
tent is —logop. This quantity is called the self-information of the outcome.
It measures how surprising the outcome is, which is why it is also called sur-
prisal. If your horse has only one chance in 16 of winning, and he wins, you
get 4 bits of information (along with the payout). But if the favorite wins 75%
of the time, the news of the win contains only 0.42 bits.

16 Chapter 3. Virtual memory

Intuitively, unexpected news carries a lot of information; conversely, if there
is something you were already confident of, confirming it contributes only a
small amount of information.

For several topics in this book, we will need to be comfortable converting back
and forth between the number of bits, b, and the number of values they can
encode, N = 2°.

3.2 Memory and storage

While a process is running, most of its data is held in main memory, which
is usually some kind of random access memory (RAM). On most current com-
puters, main memory is volatile, which means that when the computer shuts
down, the contents of main memory are lost. A typical desktop computer has
2-8 GiB of memory. GiB stands for “gibibyte,” which is 23° bytes.

If the process reads and writes files, those files are usually stored on a hard
disk drive (HDD) or solid state drive (SSD). These storage devices are non-
volatile, so they are used for long-term storage. Currently a typical desktop
computer has a HDD with a capacity of 500 GB to 2 TB. GB stands for
“gigabyte,” which is 10° bytes. TB stands for “terabyte,” which is 102 bytes.

You might have noticed that I used the binary unit GiB for the size of main
memory and the decimal units GB and TB for the size of the HDD. For
historical and technical reasons, memory is measured in binary units, and
disk drives are measured in decimal units. In this book I will be careful to
distinguish binary and decimal units, but you should be aware that the word
“gigabyte” and the abbreviation GB are often used ambiguously.

In casual use, the term “memory” is sometimes used for HDDs and SSDs as
well as RAM, but the properties of these devices are very different, so we will
need to distinguish them. I will use storage to refer to HDDs and SSDs.

3.3 Address spaces

Each byte in main memory is specified by an integer physical address. The
set of valid physical addresses is called the physical address space. It usually
runs from 0 to N — 1, where N is the size of main memory. On a system
with 1 GiB of physical memory, the highest valid address is 23° — 1, which is
1,073,741,823 in decimal, or 0x3fff ffff in hexadecimal (the prefix Ox indicates
a hexadecimal number).

3.4. Memory segments 17

However, most operating systems provide virtual memory, which means
that programs never deal with physical addresses, and don’t have to know
how much physical memory is available.

Instead, programs work with virtual addresses, which are numbered from 0
to M — 1, where M is the number of valid virtual addresses. The size of the
virtual address space is determined by the operating system and the hardware
it runs on.

You have probably heard people talk about 32-bit and 64-bit systems. These
terms indicate the size of the registers, which is usually also the size of a virtual
address. On a 32-bit system, virtual addresses are 32 bits, which means that
the virtual address space runs from 0 to Oxffff ffff. The size of this address
space is 232 bytes, or 4 GiB.

On a 64-bit system, the size of the virtual address space is 254 bytes, or 2*-1024°
bytes. That’s 16 exbibytes, which is about a billion times bigger than current
physical memories. It might seem strange that a virtual address space can be
so much bigger than physical memory, but we will see soon how that works.

When a program reads and writes values in memory, it generates virtual ad-
dresses. The hardware, with help from the operating system, translates to
physical addresses before accessing main memory. This translation is done on
a per-process basis, so even if two processes generate the same virtual address,
they would map to different locations in physical memory.

Thus, virtual memory is one important way the operating system isolates
processes from each other. In general, a process cannot access data belonging
to another process, because there is no virtual address it can generate that
maps to physical memory allocated to another process.

3.4 Memory segments
The data of a running process is organized into five segments:

e The code segment contains the program text; that is, the machine
language instructions that make up the program.

e The static segment contains immutable values, like string literals. For
example, if your program contains the string "Hello, World", those
characters will be stored in the static segment.

e The global segment contains global variables and local variables that
are declared static.

18 Chapter 3. Virtual memory

e The heap segment contains chunks of memory allocated at run time,
most often by calling the C library function malloc.

e The stack segment contains the call stack, which is a sequence of stack
frames. Each time a function is called, a stack frame is allocated to
contain the parameters and local variables of the function. When the
function completes, its stack frame is removed from the stack.

The arrangement of these segments is determined partly by the compiler and
partly by the operating system. The details vary from one system to another,
but in the most common arrangement:

e The text segment is near the “bottom” of memory, that is, at addresses
near 0.

e The static segment is often just above the text segment, that is, at higher
addresses.

e The global segment is often just above the static segment.

e The heap is often above the global segment. As it expands, it grows up
toward larger addresses.

e The stack is near the top of memory; that is, near the highest addresses
in the virtual address space. As the stack expands, it grows down toward
smaller addresses.

To determine the layout of these segments on your system, try running this
program, which is in aspace. ¢ in the repository for this book (see Section [0.1]).

#include <stdio.h>
#include <stdlib.h>

int global;

int main ()

{
int local = 5;
void *p = malloc(128);
char *s = "Hello, World";

printf ("Address of main is %p\n", main);
printf ("Address of global is %p\n", &global);
printf ("Address of local is %p\n", &local);

3.4. Memory segments 19

printf ("p points to %p\n", p);
printf ("s points to %p\n", s);
}

main is the name of a function; when it is used as a variable, it refers to the
address of the first machine language instruction in main, which we expect to
be in the text segment.

global is a global variable, so we expect it to be in the global segment. local
is a local variable, so we expect it to be on the stack.

s refers to a “string literal”, which is a string that appears as part of the
program (as opposed to a string that is read from a file, input by a user, etc.).
We expect the location of the string to be in the static segment (as opposed
to the pointer, s, which is a local variable).

p contains an address returned by malloc, which allocates space in the heap.
“malloc” stands for “memory allocate.”

The format sequence %p tells printf to format each address as a “pointer”,
so it displays the results in hexadecimal.

When I run this program, the output looks like this (I added spaces to make
it easier to read):

Address of main is 0x 40057d
Address of global is Ox 60104c
Address of local is O0x7ffe6085443c
p points to 0x 16c3010
s points to 0x 4006a4

As expected, the address of main is the lowest, followed by the location of the
string literal. The location of global is next, then the address p points to.
The address of 1ocal is much bigger.

The largest address has 12 hexadecimal digits. Each hex digit corresponds
to 4 bits, so it is a 48-bit address. That suggests that the usable part of the
virtual address space is 2*® bytes.

As an exercise, run this program on your computer and compare your results
to mine. Add a second call to malloc and check whether the heap on your
system grows up (toward larger addresses). Add a function that prints the
address of a local variable, and check whether the stack grows down.

20 Chapter 3. Virtual memory

MMU
CPU o ' virtual address
virtual addressl " virtual P‘ﬁge # offset
MMU TLB
physical addressl . #
S physical page # offset
MCU : physical address

Figure 3.1: Diagram of the address translation process.

3.5 Static local variables

Local variables on the stack are sometimes called automatic, because they
are allocated automatically when a function is called, and freed automatically
when the function returns.

In C there is another kind of local variable, called static, which is allocated
in the global segment. It is initialized when the program starts and keeps its
value from one function call to the next.

For example, the following function keeps track of how many times it has been
called.

int times_called()

static int counter = 0;
counter++;
return counter;

The keyword static indicates that counter is a static local variable. The
initialization happens only once, when the program starts.

If you add this function to aspace. c you can confirm that counter is allocated
in the global segment along with global variables, not in the stack.

3.6 Address translation

How does a virtual address (VA) get translated to a physical address (PA)?
The basic mechanism is simple, but a simple implementation would be too
slow and take too much space. So actual implementations are a bit more
complicated.

3.6. Address translation 21

Most processors provide a memory management unit (MMU) that sits between
the CPU and main memory. The MMU performs fast translation between VAs
and PAs.

1. When a program reads or writes a variable, the CPU generates a VA.

2. The MMU splits the VA into two parts, called the page number and the
offset. A “page” is a chunk of memo