
Think OS

A Brief Introduction to Operating Systems

Version 0.7.4

Think OS

A Brief Introduction to Operating Systems

Version 0.7.4

Allen B. Downey

Green Tea Press

Needham, Massachusetts

Copyright © 2015 Allen B. Downey.

Green Tea Press
9 Washburn Ave
Needham MA 02492

Permission is granted to copy, distribute, and/or modify this document under
the terms of the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License, which is available at http://creativecommons.

org/licenses/by-nc-sa/4.0/.

The LATEX source for this book is available from http://greenteapress.com/

thinkos.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://greenteapress.com/thinkos
http://greenteapress.com/thinkos

Preface

In many computer science programs, Operating Systems is an advanced topic.
By the time students take it, they know how to program in C, and they have
probably taken a class in Computer Architecture. Usually the goal of the class
is to expose students to the design and implementation of operating systems,
with the implied assumption that some of them will do research in this area,
or write part of an OS.

This book is intended for a different audience, and it has different goals. I
developed it for a class at Olin College called Software Systems.

Most students taking this class learned to program in Python, so one of the
goals is to help them learn C. For that part of the class, I use Griffiths and Grif-
fiths, Head First C, from O’Reilly Media. This book is meant to complement
that one.

Few of my students will ever write an operating system, but many of them
will write low-level applications in C or work on embedded systems. My class
includes material from operating systems, networks, databases, and embedded
systems, but it emphasizes the topics programmers need to know.

This book does not assume that you have studied Computer Architecture. As
we go along, I will explain what we need.

If this book is successful, it should give you a better understanding of what is
happening when programs run, and what you can do to make them run better
and faster.

Chapter 1 explains some of the differences between compiled and interpreted
languages, with some insight into how compilers work. Recommended reading:
Head First C Chapter 1.

Chapter 2 explains how the operating system uses processes to protect running
programs from interfering with each other.

Chapter 3 explains virtual memory and address translation. Recommended
reading: Head First C Chapter 2.

vi Chapter 0. Preface

Chapter 4 is about file systems and data streams. Recommended reading:
Head First C Chapter 3.

Chapter 5 describes how numbers, letters, and other values are encoded, and
presents the bitwise operators.

Chapter 6 explains how to use dynamic memory management, and how it
works. Recommended reading: Head First C Chapter 6.

Chapter 7 is about caching and the memory hierarchy.

Chapter 8 is about multitasking and scheduling.

Chapter 9 is about POSIX threads and mutexes. Recommended reading: Head
First C Chapter 12 and Little Book of Semaphores Chapters 1 and 2.

Chapter 10 is about POSIX condition variables and the producer/consumer
problem. Recommended reading: Little Book of Semaphores Chapters 3 and
4.

Chapter 11 is about using POSIX semaphores and implementing semaphores
in C.

A note on this draft

The current version of this book is an early draft. While I am working on the
text, I have not yet included the figures. So there are a few places where, I’m
sure, the explanation will be greatly improved when the figures are ready.

0.1 Using the code

Example code for this book is available from https://github.com/

AllenDowney/ThinkOS. Git is a version control system that allows you to
keep track of the files that make up a project. A collection of files under
Git’s control is called a repository. GitHub is a hosting service that provides
storage for Git repositories and a convenient web interface.

The GitHub homepage for my repository provides several ways to work with
the code:

� You can create a copy of my repository on GitHub by pressing the Fork
button. If you don’t already have a GitHub account, you’ll need to
create one. After forking, you’ll have your own repository on GitHub

https://github.com/AllenDowney/ThinkOS
https://github.com/AllenDowney/ThinkOS

0.1. Using the code vii

that you can use to keep track of code you write while working on this
book. Then you can clone the repo, which means that you copy the files
to your computer.

� Or you could clone my repository. You don’t need a GitHub account to
do this, but you won’t be able to write your changes back to GitHub.

� If you don’t want to use Git at all, you can download the files in a Zip
file using the button in the lower-right corner of the GitHub page.

Contributor List

If you have a suggestion or correction, please send email to
downey@allendowney.com. If I make a change based on your feedback,
I will add you to the contributor list (unless you ask to be omitted).

If you include at least part of the sentence the error appears in, that makes it
easy for me to search. Page and section numbers are fine, too, but not quite
as easy to work with. Thanks!

� I am grateful to the students in Software Systems at Olin College, who tested

an early draft of this book in Spring 2014. They corrected many errors and

made many helpful suggestions. I appreciate their pioneering spirit!

� James P Giannoules spotted a copy-and-paste error.

� Andy Engle knows the difference between GB and GiB.

� Aashish Karki noted some broken syntax.

Other people who found typos and errors include Jim Tyson, Donald Robertson,

Jeremy Vermast, Yuzhong Huang, Ian Hill.

viii Chapter 0. Preface

Contents

Preface v

0.1 Using the code . vi

1 Compilation 1

1.1 Compiled and interpreted languages 1

1.2 Static types . 1

1.3 The compilation process . 3

1.4 Object code . 4

1.5 Assembly code . 5

1.6 Preprocessing . 6

1.7 Understanding errors . 6

2 Processes 9

2.1 Abstraction and virtualization 9

2.2 Isolation . 10

2.3 UNIX processes . 12

3 Virtual memory 15

3.1 A bit of information theory 15

3.2 Memory and storage . 16

3.3 Address spaces . 16

x Contents

3.4 Memory segments . 17

3.5 Static local variables . 20

3.6 Address translation . 20

4 Files and file systems 23

4.1 Disk performance . 25

4.2 Disk metadata . 27

4.3 Block allocation . 28

4.4 Everything is a file? . 28

5 More bits and bytes 31

5.1 Representing integers . 31

5.2 Bitwise operators . 32

5.3 Representing floating-point numbers 33

5.4 Unions and memory errors 35

5.5 Representing strings . 36

6 Memory management 39

6.1 Memory errors . 39

6.2 Memory leaks . 41

6.3 Implementation . 43

7 Caching 45

7.1 How programs run . 45

7.2 Cache performance . 47

7.3 Locality . 47

7.4 Measuring cache performance 48

7.5 Programming for cache performance 51

7.6 The memory hierarchy . 52

7.7 Caching policy . 53

7.8 Paging . 54

Contents xi

8 Multitasking 57

8.1 Hardware state . 58

8.2 Context switching . 58

8.3 The process life cycle . 59

8.4 Scheduling . 60

8.5 Real-time scheduling . 62

9 Threads 63

9.1 Creating threads . 64

9.2 Creating threads . 64

9.3 Joining threads . 66

9.4 Synchronization errors . 67

9.5 Mutex . 69

10 Condition variables 71

10.1 The work queue . 71

10.2 Producers and consumers . 74

10.3 Mutual exclusion . 75

10.4 Condition variables . 77

10.5 Condition variable implementation 80

11 Semaphores in C 81

11.1 POSIX Semaphores . 81

11.2 Producers and consumers with semaphores 83

11.3 Make your own semaphores 85

xii Contents

Chapter 1

Compilation

1.1 Compiled and interpreted languages

People often describe programming languages as either compiled or inter-
preted. “Compiled” means that programs are translated into machine lan-
guage and then executed by hardware; “interpreted” means that programs
are read and executed by a software interpreter. Usually C is considered a
compiled language and Python is considered an interpreted language. But the
distinction is not always clear-cut.

First, many languages can be either compiled or interpreted. For example,
there are C interpreters and Python compilers. Second, there are languages
like Java that use a hybrid approach, compiling programs into an intermediate
language and then running the translated program in an interpreter. Java uses
an intermediate language called Java bytecode, which is similar to machine
language, but it is executed by a software interpreter, the Java virtual machine
(JVM).

So being compiled or interpreted is not an intrinsic characteristic of a lan-
guage; nevertheless, there are some general differences between compiled and
interpreted languages.

1.2 Static types

Many interpreted languages support dynamic types, but compiled languages
are usually limited to static types. In a statically-typed language, you can tell

2 Chapter 1. Compilation

by looking at the program what type each variable refers to. In a dynamically-
typed language, you don’t always know the type of a variable until the pro-
gram is running. In general, static refers to things that happen at compile
time (while a program is being compiled), and dynamic refers to things that
happen at run time (while a program is running).

For example, in Python you can write a function like this:

def add(x, y):

return x + y

Looking at this code, you can’t tell what type x and y will refer to at run
time. This function might be called several times, each time with values with
different types. Any values that support the addition operator will work; any
other types will cause an exception or runtime error.

In C you would write the same function like this:

int add(int x, int y) {

return x + y;

}

The first line of the function includes type declarations for the parameters
and the return value: x and y are declared to be integers, which means that
we can check at compile time whether the addition operator is legal for this
type (it is). The return value is also declared to be an integer.

Because of these declarations, when this function is called elsewhere in the
program, the compiler can check whether the arguments provided have the
right type, and whether the return value is used correctly.

These checks happen before the program starts executing, so errors can be
found earlier. More importantly, errors can be found in parts of the program
that have never run. Furthermore, these checks don’t have to happen at run
time, which is one of the reasons compiled languages generally run faster than
interpreted languages.

Declaring types at compile time also saves space. In dynamic languages, vari-
able names are stored in memory while the program runs, and they are of-
ten accessible by the program. For example, in Python the built-in function
locals returns a dictionary that contains variable names and their values.
Here’s an example in a Python interpreter:

>>> x = 5

>>> print locals()

{'x': 5, '__builtins__': <module '__builtin__' (built-in)>,

'__name__': '__main__', '__doc__': None, '__package__': None}

1.3. The compilation process 3

This shows that the name of the variable is stored in memory while the program
is running (along with some other values that are part of the default runtime
environment).

In compiled languages, variable names exist at compile-time but not at run
time. The compiler chooses a location for each variable and records these
locations as part of the compiled program.1 The location of a variable is
called its address. At run time, the value of each variable is stored at its
address, but the names of the variables are not stored at all (unless they are
added by the compiler for purposes of debugging).

1.3 The compilation process

As a programmer, you should have a mental model of what happens during
compilation. If you understand the process, it will help you interpret error
messages, debug your code, and avoid common pitfalls.

The steps of compilation are:

1. Preprocessing: C is one of several languages that include preprocessing
directives that take effect before the program is compiled. For example,
the #include directive causes the source code from another file to be
inserted at the location of the directive.

2. Parsing: During parsing, the compiler reads the source code and builds
an internal representation of the program, called an abstract syntax
tree. Errors detected during this step are generally syntax errors.

3. Static checking: The compiler checks whether variables and values have
the right type, whether functions are called with the right number and
type of arguments, etc. Errors detected during this step are sometimes
called static semantic errors.

4. Code generation: The compiler reads the internal representation of the
program and generates machine code or byte code.

5. Linking: If the program uses values and functions defined in a library,
the compiler has to find the appropriate library and include the required
code.

1This is a simplification; we will go into more detail later.

4 Chapter 1. Compilation

6. Optimization: At several points in the process, the compiler can trans-
form the program to generate code that runs faster or uses less space.
Most optimizations are simple changes that eliminate obvious waste, but
some compilers perform sophisticated analyses and transformations.

Normally when you run gcc, it runs all of these steps and generates an exe-
cutable file. For example, here is a minimal C program:

#include <stdio.h>

int main()

{

printf("Hello World\n");

}

If you save this code in a file called hello.c, you can compile and run it like
this:

$ gcc hello.c

$./a.out

By default, gcc stores the executable code in a file called a.out (which origi-
nally stood for “assembler output”). The second line runs the executable. The
prefix ./ tells the shell to look for it in the current directory.

It is usually a good idea to use the -o flag to provide a better name for the
executable:

$ gcc hello.c -o hello

$./hello

1.4 Object code

The -c flag tells gcc to compile the program and generate machine code, but
not to link it or generate an executable:

$ gcc hello.c -c

The result is a file named hello.o, where the o stands for object code, which
is the compiled program. Object code is not executable, but it can be linked
into an executable.

The UNIX command nm reads an object file and generates information about
the names it defines and uses. For example:

$ nm hello.o

0000000000000000 T main

U puts

1.5. Assembly code 5

This output indicates that hello.o defines the name main and uses a function
named puts, which stands for “put string”. In this example, gcc performs an
optimization by replacing printf, which is a large and complicated function,
with puts, which is relatively simple.

You can control how much optimization gcc does with the -O flag. By default,
it does very little optimization, which can make debugging easier. The option
-O1 turns on the most common and safe optimizations. Higher numbers turn
on additional optimizations that require longer compilation time.

In theory, optimization should not change the behavior of the program, other
than to speed it up. But if your program has a subtle bug, you might find that
optimization makes the bug appear or disappear. It is usually a good idea to
turn off optimization while you are developing new code. Once the program
is working and passing appropriate tests, you can turn on optimization and
confirm that the tests still pass.

1.5 Assembly code

Similar to the -c flag, the -S flag tells gcc to compile the program and generate
assembly code, which is basically a human-readable form of machine code.

$ gcc hello.c -S

The result is a file named hello.s, which might look something like this:

.file "hello.c"

.section .rodata

.LC0:

.string "Hello World"

.text

.globl main

.type main, @function

main:

.LFB0:

.cfi_startproc

pushq %rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp, %rbp

.cfi_def_cfa_register 6

movl $.LC0, %edi

call puts

6 Chapter 1. Compilation

movl $0, %eax

popq %rbp

.cfi_def_cfa 7, 8

ret

.cfi_endproc

.LFE0:

.size main, .-main

.ident "GCC: (Ubuntu/Linaro 4.7.3-1ubuntu1) 4.7.3"

.section .note.GNU-stack,"",@progbits

gcc is usually configured to generate code for the machine you are running on,
so for me it generates x86 assembly language, which runs on a wide variety
of processors from Intel, AMD, and others. If you are running on a different
architecture, you might see different code.

1.6 Preprocessing

Taking another step backward through the compilation process, you can use
the -E flag to run the preprocessor only:

$ gcc hello.c -E

The result is the output from the preprocessor. In this example, it contains
the included code from stdio.h, and all the files included from stdio.h, and
all the files included from those files, and so on. On my machine, the total is
more than 800 lines of code. Since almost every C program includes stdio.h,
those 800 lines of code get compiled a lot. If, like many C programs, you also
include stdlib.h, the result is more than 1800 lines of code.

1.7 Understanding errors

Now that we know the steps in the compilation process, it is easier to under-
stand error messages. For example, if there is an error in a #include directive,
you’ll get a message from the preprocessor:

hello.c:1:20: fatal error: stdioo.h: No such file or directory

compilation terminated.

If there’s a syntax error, you get a message from the compiler:

hello.c: In function 'main':

hello.c:6:1: error: expected ';' before '}' token

If you use a function that’s not defined in any of the standard libraries, you
get a message from the linker:

1.7. Understanding errors 7

/tmp/cc7iAUbN.o: In function `main':

hello.c:(.text+0xf): undefined reference to `printff'

collect2: error: ld returned 1 exit status

ld is the name of the UNIX linker, so named because “loading” is another
step in the compilation process that is closely related to linking.

Once the program starts, C does very little runtime checking, so there are
only a few runtime errors you are likely to see. If you divide by zero, or
perform another illegal floating-point operation, you will get a “Floating point
exception.” And if you try to read or write an incorrect location in memory,
you will get a “Segmentation fault.”

8 Chapter 1. Compilation

Chapter 2

Processes

2.1 Abstraction and virtualization

Before we talk about processes, I want to define a few words:

� Abstraction: An abstraction is a simplified representation of something
complicated. For example, if you drive a car, you understand that when
you turn the wheel left, the car goes left, and vice versa. Of course,
the steering wheel is connected to a sequence of mechanical and (often)
hydraulic systems that turn the wheels, and the wheels interact with
the road in ways that can be complex, but as a driver, you normally
don’t have to think about any of those details. You can get along very
well with a simple mental model of steering. Your mental model is an
abstraction.

Similarly, when you use a web browser, you understand that when you
click on a link, the browser displays the page the link refers to. The soft-
ware and network communication that make that possible are complex,
but as a user, you don’t have to know the details.

A large part of software engineering is designing abstractions like these
that allow users and other programmers to use powerful and complicated
systems without having to know about the details of their implementa-
tion.

� Virtualization: An important kind of abstraction is virtualization, which
is the process of creating a desirable illusion.

For example, many public libraries participate in inter-library collabora-
tions that allow them to borrow books from each other. When I request

10 Chapter 2. Processes

a book, sometimes the book is on the shelf at my local library, but other
times it has to be transferred from another collection. Either way, I get
a notification when it is available for pickup. I don’t need to know where
it came from, and I don’t need to know which books my library has. As
a whole, the system creates the illusion that my library has every book
in the world.

The collection physically located at my local library might be small,
but the collection available to me virtually includes every book in the
inter-library collaboration.

As another example, most computers are only connected to one network,
but that network is connected to others, and so on. What we call the
Internet is a collection of networks and a set of protocols that forward
packets from one network to the next. From the point of view of a user or
programmer, the system behaves as if every computer on the Internet is
connected to every other computer. The number of physical connections
is small, but the number of virtual connections is very large.

The word “virtual” is often used in the context of a virtual machine, which is
software that creates the illusion of a dedicated computer running a particular
operating system, when in reality the virtual machine might be running, along
with many other virtual machines, on a computer running a different operating
system.

In the context of virtualization, we sometimes call what is really happening
“physical”, and what is virtually happening either “logical” or “abstract.”

2.2 Isolation

One of the most important principles of engineering is isolation: when you
are designing a system with multiple components, it is usually a good idea to
isolate them from each other so that a change in one component doesn’t have
undesired effects on other components.

One of the most important goals of an operating system is to isolate each run-
ning program from the others so that programmers don’t have to think about
every possible interaction. The software object that provides this isolation is
a process.

A process is a software object that represents a running program. I mean
“software object” in the sense of object-oriented programming; in general, an
object contains data and provides methods that operate on the data. A process
is an object that contains the following data:

2.2. Isolation 11

� The text of the program, usually a sequence of machine language in-
structions.

� Data associated with the program, including static data (allocated at
compile time) and dynamic data (allocated at run time).

� The state of any pending input/output operations. For example, if the
process is waiting for data to be read from disk or for a packet to arrive
on a network, the status of these operations is part of the process.

� The hardware state of the program, which includes data stored in regis-
ters, status information, and the program counter, which indicates which
instruction is currently executing.

Usually one process runs one program, but it is also possible for a process to
load and run a new program.

It is also possible, and common, to run the same program in more than one
process. In that case, the processes share the same program text but generally
have different data and hardware states.

Most operating systems provide a fundamental set of capabilities to isolate
processes from each other:

� Multitasking: Most operating systems have the ability to interrupt a
running process at almost any time, save its hardware state, and then
resume the process later. In general, programmers don’t have to think
about these interruptions. The program behaves as if it is running con-
tinuously on a dedicated processor, except that the time between in-
structions is unpredictable.

� Virtual memory: Most operating systems create the illusion that each
process has its own chunk of memory, isolated from all other processes.
Again, programmers generally don’t have to think about how virtual
memory works; they can proceed as if every program has a dedicated
chunk of memory.

� Device abstraction: Processes running on the same computer share the
disk drive, the network interface, the graphics card, and other hardware.
If processes interacted with this hardware directly, without coordination,
chaos would ensue. For example, network data intended for one process
might be read by another. Or multiple processes might try to store data
in the same location on a hard drive. It is up to the operating system
to maintain order by providing appropriate abstractions.

12 Chapter 2. Processes

As a programmer, you don’t need to know much about how these capabilities
are implemented. But if you are curious, you will find a lot of interesting
things going on under the metaphorical hood. And if you know what’s going
on, it can make you a better programmer.

2.3 UNIX processes

While I write this book, the process I am most aware of is my text editor,
emacs. Every once in a while I switch to a terminal window, which is a
window running a UNIX shell that provides a command-line interface.

When I move the mouse, the window manager wakes up, sees that the mouse
is over the terminal window, and wakes up the terminal. The terminal wakes
up the shell. If I type make in the shell, it creates a new process to run
Make, which creates another process to run LaTeX and then another process
to display the results.

If I need to look something up, I might switch to another desktop, which wakes
up the window manager again. If I click on the icon for a web browser, the
window manager creates a process to run the web browser. Some browsers,
like Chrome, create a new process for each window and each tab.

And those are just the processes I am aware of. At the same time there
are many other processes running in the background. Many of them are
performing operations related to the operating system.

The UNIX command ps prints information about running processes. If you
run it in a terminal, you might see something like this:

PID TTY TIME CMD

2687 pts/1 00:00:00 bash

2801 pts/1 00:01:24 emacs

24762 pts/1 00:00:00 ps

The first column is the unique numerical process ID. The second column is
the terminal that created the process; “TTY” stands for teletypewriter, which
was the original mechanical terminal.

The third column is the total processor time used by the process, in hours,
minutes, and seconds. The last column is the name of the running program.
In this example, bash is the name of the shell that interprets the commands I
type in the terminal, emacs is my text editor, and ps is the program generating
this output.

2.3. UNIX processes 13

By default, ps lists only the processes associated with the current terminal.
If you use the -e flag, you get every process (including processes belonging to
other users, which is a security flaw, in my opinion).

On my system there are currently 233 processes. Here are some of them:

PID TTY TIME CMD

1 ? 00:00:17 init

2 ? 00:00:00 kthreadd

3 ? 00:00:02 ksoftirqd/0

4 ? 00:00:00 kworker/0:0

8 ? 00:00:00 migration/0

9 ? 00:00:00 rcu_bh

10 ? 00:00:16 rcu_sched

47 ? 00:00:00 cpuset

48 ? 00:00:00 khelper

49 ? 00:00:00 kdevtmpfs

50 ? 00:00:00 netns

51 ? 00:00:00 bdi-default

52 ? 00:00:00 kintegrityd

53 ? 00:00:00 kblockd

54 ? 00:00:00 ata_sff

55 ? 00:00:00 khubd

56 ? 00:00:00 md

57 ? 00:00:00 devfreq_wq

init is the first process created when the operating system starts. It creates
many of the other processes, and then sits idle until the processes it created
are done.

kthreadd is a process the operating system uses to create new threads. We’ll
talk more about threads later, but for now you can think of a thread as kind of
a process. The k at the beginning stands for kernel, which is the part of the
operating system responsible for core capabilities like creating threads. The
extra d at the end stands for daemon, which is another name for processes like
this that run in the background and provide operating system services. In this
context, “daemon” is used in the sense of a helpful spirit, with no connotation
of evil.

Based on the name, you can infer that ksoftirqd is also a kernel daemon;
specifically, it handles software interrupt requests, or “soft IRQ”.

kworker is a worker process created by the kernel to do some kind of processing
for the kernel.

14 Chapter 2. Processes

There are often multiple processes running these kernel services. On my system
at the moment, there are 8 ksoftirqd processes and 35 kworker processes.

I won’t go into more details about the other processes, but if you are interested
you can search for more information about them. You should run ps on your
system and compare your results to mine.

Chapter 3

Virtual memory

3.1 A bit of information theory

A bit is a binary digit; it is also a unit of information. If you have one bit,
you can specify one of two possibilities, usually written 0 and 1. If you have
two bits, there are 4 possible combinations, 00, 01, 10, and 11. In general, if
you have b bits, you can indicate one of 2b values. A byte is 8 bits, so it can
hold one of 256 values.

Going in the other direction, suppose you want to store a letter of the alphabet.
There are 26 letters, so how many bits do you need? With 4 bits, you can
specify one of 16 values, so that’s not enough. With 5 bits, you can specify up
to 32 values, so that’s enough for all the letters, with a few values left over.

In general, if you want to specify one of N values, you should choose the
smallest value of b so that 2b ≥ N . Taking the log base 2 of both sides yields
b ≥ log2N .

Suppose I flip a coin and tell you the outcome. I have given you one bit of
information. If I roll a six-sided die and tell you the outcome, I have given you
log26 bits of information. And in general, if the probability of the outcome is
1 in N , then the outcome contains log2N bits of information.

Equivalently, if the probability of the outcome is p, then the information con-
tent is −log2p. This quantity is called the self-information of the outcome.
It measures how surprising the outcome is, which is why it is also called sur-
prisal. If your horse has only one chance in 16 of winning, and he wins, you
get 4 bits of information (along with the payout). But if the favorite wins 75%
of the time, the news of the win contains only 0.42 bits.

16 Chapter 3. Virtual memory

Intuitively, unexpected news carries a lot of information; conversely, if there
is something you were already confident of, confirming it contributes only a
small amount of information.

For several topics in this book, we will need to be comfortable converting back
and forth between the number of bits, b, and the number of values they can
encode, N = 2b.

3.2 Memory and storage

While a process is running, most of its data is held in main memory, which
is usually some kind of random access memory (RAM). On most current com-
puters, main memory is volatile, which means that when the computer shuts
down, the contents of main memory are lost. A typical desktop computer has
2–8 GiB of memory. GiB stands for “gibibyte,” which is 230 bytes.

If the process reads and writes files, those files are usually stored on a hard
disk drive (HDD) or solid state drive (SSD). These storage devices are non-
volatile, so they are used for long-term storage. Currently a typical desktop
computer has a HDD with a capacity of 500 GB to 2 TB. GB stands for
“gigabyte,” which is 109 bytes. TB stands for “terabyte,” which is 1012 bytes.

You might have noticed that I used the binary unit GiB for the size of main
memory and the decimal units GB and TB for the size of the HDD. For
historical and technical reasons, memory is measured in binary units, and
disk drives are measured in decimal units. In this book I will be careful to
distinguish binary and decimal units, but you should be aware that the word
“gigabyte” and the abbreviation GB are often used ambiguously.

In casual use, the term “memory” is sometimes used for HDDs and SSDs as
well as RAM, but the properties of these devices are very different, so we will
need to distinguish them. I will use storage to refer to HDDs and SSDs.

3.3 Address spaces

Each byte in main memory is specified by an integer physical address. The
set of valid physical addresses is called the physical address space. It usually
runs from 0 to N − 1, where N is the size of main memory. On a system
with 1 GiB of physical memory, the highest valid address is 230 − 1, which is
1,073,741,823 in decimal, or 0x3fff ffff in hexadecimal (the prefix 0x indicates
a hexadecimal number).

3.4. Memory segments 17

However, most operating systems provide virtual memory, which means
that programs never deal with physical addresses, and don’t have to know
how much physical memory is available.

Instead, programs work with virtual addresses, which are numbered from 0
to M − 1, where M is the number of valid virtual addresses. The size of the
virtual address space is determined by the operating system and the hardware
it runs on.

You have probably heard people talk about 32-bit and 64-bit systems. These
terms indicate the size of the registers, which is usually also the size of a virtual
address. On a 32-bit system, virtual addresses are 32 bits, which means that
the virtual address space runs from 0 to 0xffff ffff. The size of this address
space is 232 bytes, or 4 GiB.

On a 64-bit system, the size of the virtual address space is 264 bytes, or 24·10246

bytes. That’s 16 exbibytes, which is about a billion times bigger than current
physical memories. It might seem strange that a virtual address space can be
so much bigger than physical memory, but we will see soon how that works.

When a program reads and writes values in memory, it generates virtual ad-
dresses. The hardware, with help from the operating system, translates to
physical addresses before accessing main memory. This translation is done on
a per-process basis, so even if two processes generate the same virtual address,
they would map to different locations in physical memory.

Thus, virtual memory is one important way the operating system isolates
processes from each other. In general, a process cannot access data belonging
to another process, because there is no virtual address it can generate that
maps to physical memory allocated to another process.

3.4 Memory segments

The data of a running process is organized into five segments:

� The code segment contains the program text; that is, the machine
language instructions that make up the program.

� The static segment contains immutable values, like string literals. For
example, if your program contains the string "Hello, World", those
characters will be stored in the static segment.

� The global segment contains global variables and local variables that
are declared static.

18 Chapter 3. Virtual memory

� The heap segment contains chunks of memory allocated at run time,
most often by calling the C library function malloc.

� The stack segment contains the call stack, which is a sequence of stack
frames. Each time a function is called, a stack frame is allocated to
contain the parameters and local variables of the function. When the
function completes, its stack frame is removed from the stack.

The arrangement of these segments is determined partly by the compiler and
partly by the operating system. The details vary from one system to another,
but in the most common arrangement:

� The text segment is near the “bottom” of memory, that is, at addresses
near 0.

� The static segment is often just above the text segment, that is, at higher
addresses.

� The global segment is often just above the static segment.

� The heap is often above the global segment. As it expands, it grows up
toward larger addresses.

� The stack is near the top of memory; that is, near the highest addresses
in the virtual address space. As the stack expands, it grows down toward
smaller addresses.

To determine the layout of these segments on your system, try running this
program, which is in aspace.c in the repository for this book (see Section 0.1).

#include <stdio.h>

#include <stdlib.h>

int global;

int main ()

{

int local = 5;

void *p = malloc(128);

char *s = "Hello, World";

printf ("Address of main is %p\n", main);

printf ("Address of global is %p\n", &global);

printf ("Address of local is %p\n", &local);

3.4. Memory segments 19

printf ("p points to %p\n", p);

printf ("s points to %p\n", s);

}

main is the name of a function; when it is used as a variable, it refers to the
address of the first machine language instruction in main, which we expect to
be in the text segment.

global is a global variable, so we expect it to be in the global segment. local
is a local variable, so we expect it to be on the stack.

s refers to a “string literal”, which is a string that appears as part of the
program (as opposed to a string that is read from a file, input by a user, etc.).
We expect the location of the string to be in the static segment (as opposed
to the pointer, s, which is a local variable).

p contains an address returned by malloc, which allocates space in the heap.
“malloc” stands for “memory allocate.”

The format sequence %p tells printf to format each address as a “pointer”,
so it displays the results in hexadecimal.

When I run this program, the output looks like this (I added spaces to make
it easier to read):

Address of main is 0x 40057d

Address of global is 0x 60104c

Address of local is 0x7ffe6085443c

p points to 0x 16c3010

s points to 0x 4006a4

As expected, the address of main is the lowest, followed by the location of the
string literal. The location of global is next, then the address p points to.
The address of local is much bigger.

The largest address has 12 hexadecimal digits. Each hex digit corresponds
to 4 bits, so it is a 48-bit address. That suggests that the usable part of the
virtual address space is 248 bytes.

As an exercise, run this program on your computer and compare your results
to mine. Add a second call to malloc and check whether the heap on your
system grows up (toward larger addresses). Add a function that prints the
address of a local variable, and check whether the stack grows down.

20 Chapter 3. Virtual memory

CPU

MMU

MCU

virtual address

physical address

virtual page #

virtual address

physical address

physical page #

offset

offset

TLB

MMU

Figure 3.1: Diagram of the address translation process.

3.5 Static local variables

Local variables on the stack are sometimes called automatic, because they
are allocated automatically when a function is called, and freed automatically
when the function returns.

In C there is another kind of local variable, called static, which is allocated
in the global segment. It is initialized when the program starts and keeps its
value from one function call to the next.

For example, the following function keeps track of how many times it has been
called.

int times_called()

{

static int counter = 0;

counter++;

return counter;

}

The keyword static indicates that counter is a static local variable. The
initialization happens only once, when the program starts.

If you add this function to aspace.c you can confirm that counter is allocated
in the global segment along with global variables, not in the stack.

3.6 Address translation

How does a virtual address (VA) get translated to a physical address (PA)?
The basic mechanism is simple, but a simple implementation would be too
slow and take too much space. So actual implementations are a bit more
complicated.

3.6. Address translation 21

Most processors provide a memory management unit (MMU) that sits between
the CPU and main memory. The MMU performs fast translation between VAs
and PAs.

1. When a program reads or writes a variable, the CPU generates a VA.

2. The MMU splits the VA into two parts, called the page number and the
offset. A “page” is a chunk of memory; the size of a page depends on
the operating system and the hardware, but common sizes are 1–4 KiB.

3. The MMU looks up the page number in the translation lookaside buffer
(TLB) and gets the corresponding physical page number. Then it com-
bines the physical page number with the offset to produce a PA.

4. The PA is passed to main memory, which reads or writes the given
location.

The TLB contains cached copies of data from the page table (which is stored
in kernel memory). The page table contains the mapping from virtual page
numbers to physical page numbers. Since each process has its own page table,
the TLB has to make sure it only uses entries from the page table of the
process that’s running.

Figure 3.1 shows a diagram of this process. To see how it all works, suppose
that the VA is 32 bits and the physical memory is 1 GiB, divided into 1 KiB
pages.

� Since 1 GiB is 230 bytes and 1 KiB is 210 bytes, there are 220 physical
pages, sometimes called “frames.”

� The size of the virtual address space is 232 B and the size of a page is
210 B, so there are 222 virtual pages.

� The size of the offset is determined by the page size. In this example the
page size is 210 B, so it takes 10 bits to specify a byte on a page.

� If a VA is 32 bits and the offset is 10 bits, the remaining 22 bits make
up the virtual page number.

� Since there are 220 physical pages, each physical page number is 20 bits.
Adding in the 10 bit offset, the resulting PAs are 30 bits.

So far this all seems feasible. But let’s think about how big a page table might
have to be. The simplest implementation of a page table is an array with one
entry for each virtual page. Each entry would contain a physical page number,

22 Chapter 3. Virtual memory

which is 20 bits in this example, plus some additional information about each
frame. So we expect 3–4 bytes per entry. But with 222 virtual pages, the page
table would require 224 bytes, or 16 MiB.

And since we need a page table for each process, a system running 256 processes
would need 232 bytes, or 4 GiB, just for page tables! And that’s just with 32-bit
virtual addresses. With 48- or 64-bit VAs, the numbers are ridiculous.

Fortunately, we don’t actually need that much space, because most processes
don’t use even a small fraction of their virtual address space. And if a process
doesn’t use a virtual page, we don’t need an entry in the page table for it.

Another way to say the same thing is that page tables are “sparse”, which
implies that the simple implementation, an array of page table entries, is a bad
idea. Fortunately, there are several good implementations for sparse arrays.

One option is a multilevel page table, which is what many operating systems,
including Linux, use. Another option is an associative table, where each entry
includes both the virtual page number and the physical page number. Search-
ing an associative table can be slow in software, but in hardware we can search
the entire table in parallel, so associative arrays are often used to represent
the page table entries in the TLB.

You can read more about these implementations at http://en.wikipedia.

org/wiki/Page_table; you might find the details interesting. But the fun-
damental idea is that page tables are sparse, so we have to choose a good
implementation for sparse arrays.

I mentioned earlier that the operating system can interrupt a running process,
save its state, and then run another process. This mechanism is called a
context switch. Since each process has its own page table, the operating
system has to work with the MMU to make sure each process gets the right
page table. In older machines, the page table information in the MMU had
to be replaced during every context switch, which was expensive. In newer
systems, each page table entry in the MMU includes the process ID, so page
tables from multiple processes can be in the MMU at the same time.

http://en.wikipedia.org/wiki/Page_table
http://en.wikipedia.org/wiki/Page_table

Chapter 4

Files and file systems

When a process completes (or crashes), any data stored in main memory is
lost. But data stored on a hard disk drive (HDD) or solid state drive (SSD)
is “persistent;” that is, it survives after the process completes, even if the
computer shuts down.

Hard disk drives are complicated. Data is stored in blocks, which are laid out
in sectors, which make up tracks, which are arranged in concentric circles on
platters.

Solid state drives are simpler in one sense, because blocks are numbered se-
quentially, but they raise a different complication: each block can be written
a limited number of times before it becomes unreliable.

As a programmer, you don’t want to deal with these complications. What you
want is an appropriate abstraction of persistent storage hardware. The most
common abstraction is called a “file system.”

Abstractly:

� A “file system” is a mapping from each file’s name to its contents. If
you think of the names as keys, and the contents as values, a file system
is a kind of key-value database (see https://en.wikipedia.org/wiki/

Key-value_database).

� A “file” is a sequence of bytes.

File names are usually strings, and they are usually “hierarchical”; that is, the
string specifies a path from a top-level directory (or folder), through a series
of subdirectories, to a specific file.

https://en.wikipedia.org/wiki/Key-value_database
https://en.wikipedia.org/wiki/Key-value_database

24 Chapter 4. Files and file systems

The primary difference between the abstraction and the underlying mechanism
is that files are byte-based and persistent storage is block-based. The operating
system translates byte-based file operations in the C library into block-based
operations on storage devices. Typical block sizes are 1–8 KiB.

For example, the following code opens a file and reads the first byte:

FILE *fp = fopen("/home/downey/file.txt", "r");

char c = fgetc(fp);

fclose(fp);

When this code runs:

1. fopen uses the filename to find the top-level directory, called /, the
subdirectory home, and the sub-subdirectory downey.

2. It finds the file named file.txt and “opens” it for reading, which means
it creates a data structure that represents the file being read. Among
other things, this data structure keeps track of how much of the file has
been read, called the “file position”.

In DOS, this data structure is called a File Control Block, but I want
to avoid that term because in UNIX it means something else. In UNIX,
there seems to be no good name for it. It is an entry in the open file
table, so I will call it an OpenFileTableEntry.

3. When we call fgetc, the operating system checks whether the next char-
acter of the file is already in memory. If so, it reads the next character,
advances the file position, and returns the result.

4. If the next character is not in memory, the operating system issues an
I/O request to get the next block. Disk drives are slow, so a process
waiting for a block from disk is usually interrupted so another process
can run until the data arrives.

5. When the I/O operation is complete, the new block of data is stored in
memory, and the process resumes. It reads the first character and stores
it as a local variable.

6. When the process closes the file, the operating system completes or can-
cels any pending operations, removes data stored in memory, and frees
the OpenFileTableEntry.

The process for writing a file is similar, but there are some additional steps.
Here is an example that opens a file for writing and changes the first character.

4.1. Disk performance 25

FILE *fp = fopen("/home/downey/file.txt", "w");

fputc('b', fp);

fclose(fp);

When this code runs:

1. Again, fopen uses the filename to find the file. If it does not already
exist, it creates a new file and adds an entry in the parent directory,
/home/downey.

2. The operating system creates an OpenFileTableEntry that indicates that
the file is open for writing, and sets the file position to 0.

3. fputc attempts to write (or re-write) the first byte of the file. If the
file already exists, the operating system has to load the first block into
memory. Otherwise it allocates a new block in memory and requests a
new block on disk.

4. After the block in memory is modified, it might not be copied back to
the disk right away. In general, data written to a file is “buffered”, which
means it is stored in memory and only written to disk when there is at
least one block to write.

5. When the file is closed, any buffered data is written to disk and the
OpenFileTableEntry is freed.

To summarize, the C library provides the abstraction of a file system that
maps from file names to streams of bytes. This abstraction is built on top of
storage devices that are actually organized in blocks.

4.1 Disk performance

I mentioned earlier that disk drives are slow. On current HDDs, the
average time to read a block from disk to memory might be 5–25
ms (see https://en.wikipedia.org/wiki/Hard_disk_drive_performance_
characteristics). SSDs are faster, taking 25 µs to read a 4 KiB block and
250 µs to write one (see http://en.wikipedia.org/wiki/Ssd#Controller).

To put these numbers in perspective, let’s compare them to the clock cycle of
the CPU. A processor with clock rate 2 GHz completes one clock cycle every
0.5 ns. The time to get a byte from memory to the CPU is typically around
100 ns. If the processor completes one instruction per clock cycle, it would
complete 200 instructions while waiting for a byte from memory.

https://en.wikipedia.org/wiki/Hard_disk_drive_performance_characteristics
https://en.wikipedia.org/wiki/Hard_disk_drive_performance_characteristics
http://en.wikipedia.org/wiki/Ssd#Controller

26 Chapter 4. Files and file systems

In one microsecond, it would complete 2000 instructions, so while waiting 25
µs for a byte from an SSD, it would complete 50,000.

In one millisecond, it would complete 2,000,000 instructions, so while waiting
20 ms for a byte from a HDD, it might complete 40 million. If there’s nothing
for the CPU to do while it waits, it would be idle. That’s why the operating
system generally switches to another process while it is waiting for data from
disk.

The gap in performance between main memory and persistent storage is one
of the major challenges of computer system design. Operating systems and
hardware provide several features intended to “fill in” this gap:

� Block transfers: The time it takes to load a single byte from disk is 5–
25 ms. By comparison, the additional time to load an 8 KiB block is
negligible. So systems generally try to read large blocks each time they
access the disk.

� Prefetching: Sometimes the operating system can predict that a process
will read a block and start loading it before it is requested. For example,
if you open a file and read the first block, there is a good chance you
will go on to read the second block. The operating system might start
loading additional blocks before they are requested.

� Buffering: As I mentioned, when you write a file, the operating system
stores the data in memory and only writes it to disk later. If you modify
the block several times while it is in memory, the system only has to
write it to disk once.

� Caching: If a process has used a block recently, it is likely to use it again
soon. If the operating system keeps a copy of the block in memory, it
can handle future requests at memory speed.

Some of these features are also implemented in hardware. For example, some
disk drives provide a cache that stores recently-used blocks, and many disk
drives read more than one block at a time, even if only one is requested.

These mechanisms generally improve the performance of programs, but they
don’t change the behavior. Usually programmers don’t have to think about
them, with two exceptions: (1) if the performance of a program is unexpectedly
bad, you might have to know something about these mechanisms to diagnose
the problem, and (2) when data is buffered, it can be harder to debug a
program. For example, if a program prints a value and then crashes, the value
might not appear, because it might be in a buffer. Similarly, if a program
writes data to disk and then the computer loses power, the data might be lost
if it is in a cache and not yet on disk.

4.2. Disk metadata 27

4.2 Disk metadata

The blocks that make up a file might be arranged contiguously on disk, and file
system performance is generally better if they are, but most operating systems
don’t require contiguous allocation. They are free to place a block anywhere
on disk, and they use various data structures to keep track of them.

In many UNIX file systems, that data structure is called an “inode,” which
stands for “index node”. More generally, information about files, including
the location of their blocks, is called “metadata”. (The content of the file is
data, so information about the file is data about data, hence “meta”.)

Since inodes reside on disk along with the rest of the data, they are designed
to fit neatly into disk blocks. A UNIX inode contains information about a
file, including the user ID of the file owner; permission flags indicating who
is allowed to read, write, or execute it; and timestamps that indicate when it
was last modified and accessed. In addition, it contains block numbers for the
first 12 blocks that make up the file.

If the block size is 8 KiB, the first 12 blocks make up 96 KiB. On most systems,
that’s big enough for a large majority of files, but it’s definitely not big enough
for all of them. That’s why the inode also contains a pointer to an “indirection
block”, which contains nothing but pointers to other blocks.

The number of pointers in an indirection block depends on the sizes of the
blocks and the block numbers, but it is often 1024. With 1024 block numbers
and 8 KiB blocks, an indirection block can address 8 MiB. That’s big enough
for all but the largest files, but still not big enough for all.

That’s why the inode also contains a pointer to a “double indirection block”,
which contains pointers to indirection blocks. With 1024 indirection blocks,
we can address 8 GiB.

And if that’s not big enough, there is (finally) a triple indirection block, which
contains pointers to double indirection blocks, yielding a maximum file size of
8 TiB. When UNIX inodes were designed, that seemed big enough to serve for
a long time. But that was a long time ago.

As an alternative to indirection blocks, some files systems, like FAT, use a File
Allocation Table that contains one entry for each block, called a “cluster” in
this context. A root directory contains a pointer to the first cluster in each file.
The FAT entry for each cluster points to the next cluster in the file, similar to
a linked list. For more details, see http://en.wikipedia.org/wiki/File_

Allocation_Table.

http://en.wikipedia.org/wiki/File_Allocation_Table
http://en.wikipedia.org/wiki/File_Allocation_Table

28 Chapter 4. Files and file systems

4.3 Block allocation

File systems have to keep track of which blocks belong to each file; they also
have to keep track of which blocks are available for use. When a new file is
created, the file system finds an available block and allocates it. When a file
is deleted, the file system makes its blocks available for re-allocation.

The goals of the block allocation system are:

� Speed: Allocating and freeing blocks should be fast.

� Minimal space overhead: The data structures used by the allocator
should be small, leaving as much space as possible for data.

� Minimal fragmentation: If some blocks are left unused, or some are only
partially used, the unused space is called “fragmentation”.

� Maximum contiguity: Data that is likely to be used at the same time
should be physically contiguous, if possible, to improve performance.

It is hard to design a file system that achieves all of these goals, especially
since file system performance depends on “workload characteristics” like file
sizes, access patterns, etc. A file system that is well tuned for one workload
might not perform as well for another.

For this reason, most operating systems support several kinds of file systems,
and file system design is an active area of research and development. In the
last decade, Linux systems have migrated from ext2, which was a conventional
UNIX file system, to ext3, a “journaling” file system intended to improve speed
and contiguity, and more recently to ext4, which can handle larger files and
file systems. Within the next few years, there might be another migration to
the B-tree file system, Btrfs.

4.4 Everything is a file?

The file abstraction is really a “stream of bytes” abstraction, which turns out
to be useful for many things, not just file systems.

One example is the UNIX pipe, which is a simple form of inter-process com-
munication. Processes can be set up so that output from one process is taken
as input into another process. For the first process, the pipe behaves like a
file open for writing, so it can use C library functions like fputs and fprintf.

4.4. Everything is a file? 29

For the second process, the pipe behaves like a file open for reading, so it uses
fgets and fscanf.

Network communication also uses the stream of bytes abstraction. A UNIX
socket is a data structure that represents a communication channel between
processes on different computers (usually). Again, processes can read data
from and write data to a socket using “file” handling functions.

Reusing the file abstraction makes life easier for programmers, since they only
have to learn one API (application program interface). It also makes programs
more versatile, since a program intended to work with files can also work with
data coming from pipes and other sources.

30 Chapter 4. Files and file systems

Chapter 5

More bits and bytes

5.1 Representing integers

You probably know that computers represent numbers in base 2, also known
as binary. For positive numbers, the binary representation is straightforward;
for example, the representation for 510 is b101.

For negative numbers, the most obvious representation uses a sign bit to in-
dicate whether a number is positive or negative. But there is another repre-
sentation, called “two’s complement” that is much more common because it
is easier to work with in hardware.

To find the two’s complement of a negative number, −x, find the binary rep-
resentation of x, flip all the bits, and add 1. For example, to represent −510,
start with the representation of 510, which is b00000101 if we write the 8-bit
version. Flipping all the bits and adding 1 yields b11111011.

In two’s complement, the leftmost bit acts like a sign bit; it is 0 for positive
numbers and 1 for negative numbers.

To convert from an 8-bit number to 16-bits, we have to add more 0’s for a
positive number and add 1’s for a negative number. In effect, we have to copy
the sign bit into the new bits. This process is called “sign extension”.

In C all integer types are signed (able to represent positive and negative num-
bers) unless you declare them unsigned. The difference, and the reason this
declaration is important, is that operations on unsigned integers don’t use sign
extension.

32 Chapter 5. More bits and bytes

5.2 Bitwise operators

People learning C are sometimes confused about the bitwise operators & and
|. These operators treat integers as bit vectors and compute logical operations
on corresponding bits.

For example, & computes the AND operation, which yields 1 if both operands
are 1, and 0 otherwise. Here is an example of & applied to two 4-bit numbers:

1100

& 1010

1000

In C, this means that the expression 12 & 10 has the value 8.

Similarly, | computes the OR operation, which yields 1 if either operand is 1,
and 0 otherwise.

1100

| 1010

1110

So the expression 12 | 10 has the value 14.

Finally, ^ computes the XOR operation, which yields 1 if either operand is 1,
but not both.

1100

^ 1010

0110

So the expression 12 ^ 10 has the value 6.

Most commonly, & is used to clear a set of bits from a bit vector, | is used to
set bits, and ^ is used to flip, or “toggle” bits. Here are the details:

Clearing bits: For any value x, x&0 is 0, and x&1 is x. So if you AND a
vector with 3, it selects only the two rightmost bits, and sets the rest to 0.

xxxx

& 0011

00xx

5.3. Representing floating-point numbers 33

In this context, the value 3 is called a “mask” because it selects some bits and
masks the rest.

Setting bits: Similarly, for any x, x|0 is x, and x|1 is 1. So if you OR a vector
with 3, it sets the rightmost bits, and leaves the rest alone:

xxxx

| 0011

xx11

Toggling bits: Finally, if you XOR a vector with 3, it flips the rightmost bits
and leaves the rest alone. As an exercise, see if you can compute the two’s
complement of 12 using ^. Hint: what’s the two’s complement representation
of -1?

C also provides shift operators, << and >>, which shift bits left and right. Each
left shift doubles a number, so 5 << 1 is 10, and 5 << 2 is 20. Each right shift
divides by two (rounding down), so 5 >> 1 is 2 and 2 >> 1 is 1.

5.3 Representing floating-point numbers

Floating-point numbers are represented using the binary version of scientific
notation. In decimal notation, large numbers are written as the product of a
coefficient and 10 raised to an exponent. For example, the speed of light in
m/s is approximately 2.998 · 108.

Most computers use the IEEE standard for floating-point arithmetic. The C
type float usually corresponds to the 32-bit IEEE standard; double usually
corresponds to the 64-bit standard.

In the 32-bit standard, the leftmost bit is the sign bit, s. The next 8 bits
are the exponent, q, and the last 23 bits are the coefficient, c. The value of a
floating-point number is

(−1)sc · 2q

Well, that’s almost correct, but there’s one more wrinkle. Floating-point num-
bers are usually normalized so that there is one digit before the point. For
example, in base 10, we prefer 2.998 · 108 rather than 2998 · 105 or any other
equivalent expression. In base 2, a normalized number always has the digit 1
before the binary point. Since the digit in this location is always 1, we can
save space by leaving it out of the representation.

34 Chapter 5. More bits and bytes

For example, the integer representation of 1310 is b1101. In floating point,
that’s 1.101 ·23, so the exponent is 3 and the part of the coefficient that would
be stored is 101 (followed by 20 zeros).

Well, that’s almost correct, but there’s one more wrinkle. The exponent is
stored with a “bias”. In the 32-bit standard, the bias is 127, so the exponent
3 would be stored as 130.

To pack and unpack floating-point numbers in C, we can use a union and
bitwise operations. Here’s an example:

union {

float f;

unsigned int u;

} p;

p.f = -13.0;

unsigned int sign = (p.u >> 31) & 1;

unsigned int exp = (p.u >> 23) & 0xff;

unsigned int coef_mask = (1 << 23) - 1;

unsigned int coef = p.u & coef_mask;

printf("%d\n", sign);

printf("%d\n", exp);

printf("0x%x\n", coef);

This code is in float.c in the repository for this book (see Section 0.1).

The union allows us to store a floating-point value using p.f and then read it
as an unsigned integer using p.u.

To get the sign bit, we shift the bits to the right 31 places and then use a 1-bit
mask to select only the rightmost bit.

To get the exponent, we shift the bits 23 places, then select the rightmost 8
bits (the hexadecimal value 0xff has eight 1’s).

To get the coefficient, we need to extract the 23 rightmost bits and ignore the
rest. We do that by making a mask with 1s in the 23 rightmost places and 0s
on the left. The easiest way to do that is by shifting 1 to the left by 23 places
and then subtracting 1.

The output of this program is:

1

5.4. Unions and memory errors 35

130

0x500000

As expected, the sign bit for a negative number is 1. The exponent is 130,
including the bias. And the coefficient, which I printed in hexadecimal, is 101
followed by 20 zeros.

As an exercise, try assembling or disassembling a double, which uses the 64-bit
standard. See http://en.wikipedia.org/wiki/IEEE_floating_point.

5.4 Unions and memory errors

There are two common uses of C unions. One, which we saw in the previous
section, is to access the binary representation of data. Another is to store
heterogeneous data. For example, you could use a union to represent a number
that might be an integer, float, complex, or rational number.

However, unions are error-prone. It is up to you, as the programmer, to keep
track of what type of data is in the union; if you write a floating-point value
and then interpret it as an integer, the result is usually nonsense.

Actually, the same thing can happen if you read a location in memory incor-
rectly. One way that can happen is if you read past the end of an array.

To see what happens, I’ll start with a function that allocates an array on the
stack and fills it with the numbers from 0 to 99.

void f1() {

int i;

int array[100];

for (i=0; i<100; i++) {

array[i] = i;

}

}

Next I’ll define a function that creates a smaller array and deliberately accesses
elements before the beginning and after the end:

void f2() {

int x = 17;

int array[10];

int y = 123;

printf("%d\n", array[-2]);

http://en.wikipedia.org/wiki/IEEE_floating_point

36 Chapter 5. More bits and bytes

printf("%d\n", array[-1]);

printf("%d\n", array[10]);

printf("%d\n", array[11]);

}

If I call f1 and then f2, I get these results:

17

123

98

99

The details here depend on the compiler, which arranges variables on the stack.
From these results, we can infer that the compiler put x and y next to each
other, “below” the array (at a lower address). And when we read past the
array, it looks like we are getting values that were left on the stack by the
previous function call.

In this example, all of the variables are integers, so it is relatively easy to figure
out what is going on. But in general when you read beyond the bounds of an
array, the values you read might have any type. For example, if I change f1

to make an array of floats, the results are:

17

123

1120141312

1120272384

The latter two values are what you get if you interpret a floating-point value
as an integer. If you encountered this output while debugging, you would have
a hard time figuring out what’s going on.

5.5 Representing strings

Related issues sometimes come up with strings. First, remember that C strings
are null-terminated. When you allocate space for a string, don’t forget the
extra byte at the end.

Also, the letters and numbers in C strings are encoded in ASCII. The ASCII
codes for the digits “0” through “9” are 48 through 57, not 0 through 9. The
ASCII code 0 is the NUL character that marks the end of a string. And the
ASCII codes 1 through 9 are special characters used in some communication
protocols. ASCII code 7 is a bell; on some terminals, printing it makes a
sound.

5.5. Representing strings 37

The ASCII code for the letter “A” is 65; the code for “a” is 97. Here are those
codes in binary:

65 = b0100 0001

97 = b0110 0001

A careful observer will notice that they differ by a single bit. And this pattern
holds for the rest of the letters; the sixth bit (counting from the right) acts as
a “case bit”, 0 for upper-case letters and 1 for lower case letters.

As an exercise, write a function that takes a string and converts from lower-
case to upper-case by flipping the sixth bit. As a challenge, you can make a
faster version by reading the string 32 or 64 bits at a time, rather than one
character at a time. This optimization is made easier if the length of the string
is a multiple of 4 or 8 bytes.

If you read past the end of a string, you are likely to see strange characters.
Conversely, if you write a string and then accidentally read it as an int or float,
the results will be hard to interpret.

For example, if you run:

char array[] = "allen";

float *p = array;

printf("%f\n", *p);

You will find that the ASCII representation of the first 8 characters
of my name, interpreted as a double-precision floating point number, is
69779713878800585457664.

38 Chapter 5. More bits and bytes

Chapter 6

Memory management

C provides 4 functions for dynamic memory allocation:

� malloc, which takes an integer size, in bytes, and returns a pointer to
a newly-allocated chunk of memory with (at least) the given size. If it
can’t satisfy the request, it returns the special pointer value NULL.

� calloc, which is the same as malloc except that it also clears the newly
allocated chunk; that is, it sets all bytes in the chunk to 0.

� free, which takes a pointer to a previously allocated chunk and deallo-
cates it; that is, it makes the space available for future allocation.

� realloc, which takes a pointer to a previously allocated chunk and a
new size. It allocates a chunk of memory with the new size, copies data
from the old chunk to the new, frees the old chunk, and returns a pointer
to the new chunk.

This API is notoriously error-prone and unforgiving. Memory management is
one of the most challenging parts of designing large software systems, which
is why most modern languages provide higher-level memory management fea-
tures like garbage collection.

6.1 Memory errors

The C memory management API is a bit like Jasper Beardly, a minor charac-
ter on the animated television program The Simpsons; in a few episodes, he
appears as a strict substitute teacher who imposes corporal punishment — a
“paddlin”’ — for all infractions.

40 Chapter 6. Memory management

Here are some of things a program can do that deserve a paddling:

� If you access (read or write) any chunk that has not been allocated,
that’s a paddling.

� If you free an allocated chunk and then access it, that’s a paddling.

� If you try to free a chunk that has not been allocated, that’s a paddling.

� If you free the same chunk more than once, that’s a paddling.

� If you call realloc with a chunk that was not allocated, or was allocated
and then freed, that’s a paddling.

It might not sound difficult to follow these rules, but in a large program a chunk
of memory might be allocated in one part of the program, used in several other
parts, and freed in yet another part. So changes in one part of the program
can require changes in many other parts.

Also, there might be many aliases, or references to the same allocated chunk,
in different parts of the program. The chunk should not be freed until all
references to the chunk are no longer in use. Getting this right often requires
careful analysis across all parts of the program, which is difficult and contrary
to fundamental principles of good software engineering.

Ideally, every function that allocates memory should include, as part of the
documented interface, information about how that memory is supposed to
be freed. Mature libraries often do this well, but in the real world, software
engineering practice often falls short of this ideal.

To make matters worse, memory errors can be difficult to find because the
symptoms are unpredictable. For example:

� If you read a value from an unallocated chunk, the system might detect
the error, trigger a runtime error called a “segmentation fault”, and stop
the program. Or, the program might read unallocated memory without
detecting the error; in that case, the value it gets is whatever happened
to be stored at the accessed location, which is unpredictable, and might
be different each time the program runs.

� If you write a value to an unallocated chunk, and don’t get a segmenta-
tion fault, things are even worse. After you write a value to an invalid
location, a long time might pass before it is read and causes problems.
At that point it will be very difficult to find the source of the problem.

6.2. Memory leaks 41

And things can be even worse than that! One of the most common problems
with C-style memory management is that the data structures used to imple-
ment malloc and free (which we will see soon) are often stored along with the
allocated chunks. So if you accidentally write past the end of a dynamically-
allocated chunk, you are likely to mangle these data structures. The system
usually won’t detect the problem until later, when you call malloc or free,
and those functions fail in some inscrutable way.

One conclusion you should draw from this is that safe memory management
requires design and discipline. If you write a library or module that allocates
memory, you should also provide an interface to free it, and memory manage-
ment should be part of the API design from the beginning.

If you use a library that allocates memory, you should be disciplined in your
use of the API. For example, if the library provides functions to allocate and
deallocate storage, you should use those functions and not, for example, call
free on a chunk you did not malloc. And you should avoid keeping multiple
references to the same chunk in different parts of your program.

Often there is a trade-off between safe memory management and performance.
For example, the most common source of memory errors is writing beyond the
bounds of an array. The obvious remedy for this problem is bounds checking;
that is, every access to the array should check whether the index is out of
bounds. High-level libraries that provide array-like structures usually perform
bounds checking. But C arrays and most low-level libraries do not.

6.2 Memory leaks

There is one more memory error that may or may not deserve a paddling. If
you allocate a chunk of memory and never free it, that’s a “memory leak”.

For some programs, memory leaks are ok. For example, if your program
allocates memory, performs computations on it, and then exits, it is probably
not necessary to free the allocated memory. When the program exits, all of its
memory is deallocated by the operating system. Freeing memory immediately
before exiting might feel more responsible, but it is mostly a waste of time.

But if a program runs for a long time and leaks memory, its total memory use
will increase indefinitely. At that point, a few things might happen:

� At some point, the system runs out of physical memory. On systems
without virtual memory, the next call to malloc will fail, returning
NULL.

42 Chapter 6. Memory management

� On systems with virtual memory, the operating system can move another
process’s pages from memory to disk and then allocate more space to the
leaking process. I explain this mechanism in Section 7.8.

� There might be a limit on the amount of space a single process can
allocate; beyond that, malloc returns NULL.

� Eventually, a process might fill its virtual address space (or the usable
part). After that, there are no more addresses to allocate, so malloc

returns NULL.

If malloc returns NULL, but you persist and access the chunk you think you
allocated, you get a segmentation fault. For this reason, it is considered good
style to check the result from malloc before using it. One option is to add a
condition like this after every malloc call:

void *p = malloc(size);

if (p == NULL) {

perror("malloc failed");

exit(-1);

}

perror is declared in stdio.h; it prints an error message and additional in-
formation about the last error that occurred.

exit, which is declared in stdlib.h, causes the process to terminate. The
argument is a status code that indicates how the process terminated. By
convention, status code 0 indicates normal termination and -1 indicates an
error condition. Sometimes other codes are used to indicate different error
conditions.

Error-checking code can be a nuisance, and it makes programs harder to read.
You can mitigate these problems by wrapping library function calls and their
error-checking code in your own functions. For example, here is a malloc

wrapper that checks the return value.

void *check_malloc(int size)

{

void *p = malloc (size);

if (p == NULL) {

perror("malloc failed");

exit(-1);

}

return p;

}

6.3. Implementation 43

Because memory management is so difficult, most large programs, like web
browsers, leak memory. To see which programs on your system are using the
most memory, you can use the UNIX utilities ps and top.

6.3 Implementation

When a process starts, the system allocates space for the text segment and
statically allocated data, space for the stack, and space for the heap, which
contains dynamically allocated data.

Not all programs allocate data dynamically, so the initial size of the heap
might be small or zero. Initially the heap contains only one free chunk.

When malloc is called, it checks whether it can find a free chunk that’s big
enough. If not, it has to request more memory from the system. The function
that does that is sbrk, which sets the “program break”, which you can think
of as a pointer to the end of the heap.

When sbrk is called, the OS allocates new pages of physical memory, updates
the process’s page table, and sets the program break.

In theory, a program could call sbrk directly (without using malloc) and
manage the heap itself. But malloc is easier to use and, for most memory-use
patterns, it runs fast and uses memory efficiently.

To implement the memory management API (that is, the functions malloc,
free, calloc, and realloc), most Linux systems use ptmalloc, which is
based on dlmalloc, written by Doug Lea. A short paper that describes key
elements of the implementation is available at http://gee.cs.oswego.edu/

dl/html/malloc.html.

For programmers, the most important elements to be aware of are:

� The run time of malloc does not usually depend on the size of the chunk,
but might depend on how many free chunks there are. free is usually
fast, regardless of the number of free chunks. Because calloc clears
every byte in the chunk, the run time depends on chunk size (as well as
the number of free chunks).

realloc is sometimes fast, if the new size is smaller than the current
size, or if space is available to expand the existing chunk. If not, it has
to copy data from the old chunk to the new; in that case, the run time
depends on the size of the old chunk.

http://gee.cs.oswego.edu/dl/html/malloc.html
http://gee.cs.oswego.edu/dl/html/malloc.html

44 Chapter 6. Memory management

� Boundary tags: When malloc allocates a chunk, it adds space at the
beginning and end to store information about the chunk, including its
size and the state (allocated or free). These bits of data are called
“boundary tags”. Using these tags, malloc can get from any chunk
to the previous chunk and the next chunk in memory. In addition, free
chunks are chained into a doubly-linked list; each free chunk contains
pointers to the next and previous chunks in the “free list”.

The boundary tags and free list pointers make up malloc’s internal data
structures. These data structures are interspersed with program data,
so it is easy for a program error to damage them.

� Space overhead: Boundary tags and free list pointers take up space.
The minimum chunk size on most systems is 16 bytes. So for very small
chunks, malloc is not space efficient. If your program requires large
numbers of small structures, it might be more efficient to allocate them
in arrays.

� Fragmentation: If you allocate and free chunks with varied sizes, the
heap will tend to become fragmented. That is, the free space might be
broken into many small pieces. Fragmentation wastes space; it also slows
the program down by making memory caches less effective.

� Binning and caching: The free list is sorted by size into bins, so when
malloc searches for a chunk with a particular size, it knows what bin
to search in. If you free a chunk and then immediately allocate a chunk
with the same size, malloc will usually be fast.

Chapter 7

Caching

7.1 How programs run

In order to understand caching, you have to understand how computers execute
programs. For a deep understanding of this topic, you should study computer
architecture. My goal in this chapter is to provide a simple model of program
execution.

When a program starts, the code (or text) is usually on a hard disk or solid
state drive. The operating system creates a new process to run the program,
then the “loader” copies the text from storage into main memory and starts
the program by calling main.

While the program is running, most of its data is stored in main memory, but
some of the data is in registers, which are small units of memory on the CPU.
These registers include:

� The program counter, or PC, which contains the address (in memory)
of the next instruction in the program.

� The instruction register, or IR, which contains the machine code instruc-
tion currently executing.

� The stack pointer, or SP, which contains the address of the stack frame
for the current function, which contains its parameters and local vari-
ables.

� General-purpose registers that hold the data the program is currently
working with.

46 Chapter 7. Caching

� A status register, or flag register, that contains information about the
current computation. For example, the flag register usually contains a
bit that is set if the result of the previous operation was zero.

When a program is running, the CPU executes the following steps, called the
“instruction cycle”:

� Fetch: The next instruction is fetched from memory and stored in the
instruction register.

� Decode: Part of the CPU, called the “control unit”, decodes the instruc-
tion and sends signals to the other parts of the CPU.

� Execute: Signals from the control unit cause the appropriate computa-
tion to occur.

Most computers can execute a few hundred different instructions, called the
“instruction set”. But most instructions fall into a few general categories:

� Load: Transfers a value from memory to a register.

� Arithmetic/logic: Loads operands from registers, performs a mathemat-
ical operation, and stores the result in a register.

� Store: Transfers a value from a register to memory.

� Jump/branch: Changes the program counter, causing the flow of execu-
tion to jump to another location in the program. Branches are usually
conditional, which means that they check a flag in the flag register and
jump only if it is set.

Some instructions sets, including the ubiquitous x86, provide instructions that
combine a load and an arithmetic operation.

During each instruction cycle, one instruction is read from the program text. In
addition, about half of the instructions in a typical program load or store data.
And therein lies one of the fundamental problems of computer architecture:
the “memory bottleneck”.

In current computers, a typical core is capable of executing an instruction in
less than 1 ns. But the time it takes to transfer data to and from memory is
about 100 ns. If the CPU has to wait 100 ns to fetch the next instruction, and
another 100 ns to load data, it would complete instructions 200 times slower
than what’s theoretically possible. For many computations, memory is the
speed limiting factor, not the CPU.

7.2. Cache performance 47

7.2 Cache performance

The solution to this problem, or at least a partial solution, is caching. A
“cache” is a small, fast memory that is physically close to the CPU, usually
on the same chip.

Actually, current computers typically have several levels of cache: the Level 1
cache, which is the smallest and fastest, might be 1–2 MiB with a access times
near 1 ns; the Level 2 cache might have access times near 4 ns, and the Level
3 might take 16 ns.

When the CPU loads a value from memory, it stores a copy in the cache. If
the same value is loaded again, the CPU gets the cached copy and doesn’t
have to wait for memory.

Eventually the cache gets full. Then, in order to bring something new in, we
have to kick something out. So if the CPU loads a value and then loads it
again much later, it might not be in cache any more.

The performance of many programs is limited by the effectiveness of the cache.
If the instructions and data needed by the CPU are usually in cache, the
program can run close to the full speed of the CPU. If the CPU frequently
needs data that are not in cache, the program is limited by the speed of
memory.

The cache “hit rate”, h, is the fraction of memory accesses that find data in
cache; the “miss rate”, m, is the fraction of memory accesses that have to go
to memory. If the time to process a cache hit is Th and the time for a cache
miss is Tm, the average time for each memory access is

hTh +mTm

Equivalently, we could define the “miss penalty” as the extra time to process
a cache miss, Tp = Tm − Th. Then the average access time is

Th +mTp

When the miss rate is low, the average access time can be close to Th. That
is, the program can perform as if memory ran at cache speeds.

7.3 Locality

When a program reads a byte for the first time, the cache usually loads a
“block” or “line” of data that includes the requested byte and some of its

48 Chapter 7. Caching

neighbors. If the program goes on to read one of the neighbors, it will already
be in cache.

As an example, suppose the block size is 64 B; you read a string with length
64, and the first byte of the string happens to fall at the beginning of a block.
When you load the first byte, you incur a miss penalty, but after that the rest
of the string will be in cache. After reading the whole string, the hit rate will
be 63/64, about 98%. If the string spans two blocks, you would incur 2 miss
penalties. But even then the hit rate would be 62/64, or almost 97%. If you
then read the same string again, the hit rate would be 100%.

On the other hand, if the program jumps around unpredictably, reading data
from scattered locations in memory, and seldom accessing the same location
twice, cache performance would be poor.

The tendency of a program to use the same data more than once is called
“temporal locality”. The tendency to use data in nearby locations is called
“spatial locality”. Fortunately, many programs naturally display both kinds
of locality:

� Most programs contain blocks of code with no jumps or branches. Within
these blocks, instructions run sequentially, so the access pattern has
spatial locality.

� In a loop, programs execute the same instructions many times, so the
access pattern has temporal locality.

� The result of one instruction is often used immediately as an operand of
the next instruction, so the data access pattern has temporal locality.

� When a program executes a function, its parameters and local variables
are stored together on the stack; accessing these values has spatial local-
ity.

� One of the most common processing patterns is to read or write the
elements of an array sequentially; this pattern also has spatial locality.

The next section explores the relationship between a program’s access pattern
and cache performance.

7.4 Measuring cache performance

When I was a graduate student at U.C. Berkeley I was a teaching assistant
for Computer Architecture with Brian Harvey. One of my favorite exercises

7.4. Measuring cache performance 49

involved a program that iterates through an array and measures the average
time to read and write an element. By varying the size of the array, it is
possible to infer the size of the cache, the block size, and some other attributes.

My modified version of this program is in the cache directory of the repository
for this book (see Section 0.1).

The important part of the program is this loop:

iters = 0;

do {

sec0 = get_seconds();

for (index = 0; index < limit; index += stride)

array[index] = array[index] + 1;

iters = iters + 1;

sec = sec + (get_seconds() - sec0);

} while (sec < 0.1);

The inner for loop traverses the array. limit determines how much of the
array it traverses; stride determines how many elements it skips over. For
example, if limit is 16 and stride is 4, the loop would access elements 0, 4,
8, and 12.

sec keeps track of the total CPU time used by the inner loop. The outer loop
runs until sec exceeds 0.1 seconds, which is long enough that we can compute
the average time with sufficient precision.

get_seconds uses the system call clock_gettime, converts to seconds, and
returns the result as a double:

double get_seconds(){

struct timespec ts;

clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);

return ts.tv_sec + ts.tv_nsec / 1e9;

}

To isolate the time to access the elements of the array, the program runs a
second loop that is almost identical except that the inner loop doesn’t touch
the array; it always increments the same variable:

iters2 = 0;

do {

sec0 = get_seconds();

50 Chapter 7. Caching

212 214 216 218 220 222 224 226

size (B)

0

2

4

6

8

10

av
er

ag
e

pe
na

lty
 (n

s)

512 B
256 B
128 B
64 B
32 B
16 B
8 B

Figure 7.1: Average miss penalty as a function of array size and stride.

for (index = 0; index < limit; index += stride)

temp = temp + index;

iters2 = iters2 + 1;

sec = sec - (get_seconds() - sec0);

} while (iters2 < iters);

The second loop runs the same number of iterations as the first. After each
iteration, it subtracts the elapsed time from sec. When the loop completes,
sec contains the total time for all array accesses, minus the total time it took
to increment temp. This difference is the total miss penalty incurred by all
accesses. Finally, we divide by the number of accesses to get the average miss
penalty per access, in ns:

sec * 1e9 / iters / limit * stride

If you compile and run cache.c you should see output like this:

Size: 4096 Stride: 8 read+write: 0.8633 ns

Size: 4096 Stride: 16 read+write: 0.7023 ns

Size: 4096 Stride: 32 read+write: 0.7105 ns

Size: 4096 Stride: 64 read+write: 0.7058 ns

If you have Python and matplotlib installed, you can use graph_data.py to
graph the results. Figure 7.1 shows the results when I ran it on a Dell Optiplex
7010. Notice that the array size and stride are reported in bytes, not number
of array elements.

Take a minute to consider this graph, and see what you can infer about the
cache. Here are some things to think about:

7.5. Programming for cache performance 51

� The program reads through the array many times, so it has plenty of
temporal locality. If the entire array fits in cache, we expect the average
miss penalty to be near 0.

� When the stride is 4 bytes, we read every element of the array, so the
program has plenty of spatial locality. If the block size is big enough to
contain 64 elements, for example, the hit rate would be 63/64, even if
the array does not fit in cache.

� If the stride is equal to the block size (or greater), the spatial locality is
effectively zero, because each time we read a block, we only access one
element. In that case we expect to see the maximum miss penalty.

In summary, we expect good cache performance if the array is smaller than
the cache size or if the stride is smaller than the block size. Performance only
degrades if the array is bigger than the cache and the stride is large.

In Figure 7.1, cache performance is good, for all strides, as long as the array
is less than 222 B. We can infer that the cache size is near 4 MiB; in fact,
according to the specs, it is 3 MiB.

When the stride is 8, 16, or 32 B, cache performance is good. At 64 B it starts
to degrade, and for larger strides the average miss penalty is about 9 ns. We
can infer that the block size near 128 B.

Many processors use “multi-level caches” that include a small, fast cache and
a bigger, slower cache. In this example, it looks like the miss penalty increases
a little when the array size is bigger than 214 B, so it’s possible that this
processor also has a 16 KB cache with an access time less than 1 ns.

7.5 Programming for cache performance

Memory caching is implemented in hardware, so most of the time programmers
don’t need to know much about it. But if you know how caches work, you can
write programs that use them more effectively.

For example, if you are working with a large array, it might be faster to traverse
the array once, performing several operations with each element, rather than
traversing the array several times.

If you are working with a 2-D array, it might be stored as an array of rows.
If you traverse through the elements, it would be faster to go row-wise, with
stride equal to the element size, rather than column-wise, with stride equal to
the row length.

52 Chapter 7. Caching

Linked data structures don’t always exhibit spatial locality, because the nodes
aren’t necessarily contiguous in memory. But if you allocate many nodes at
the same time, they are usually co-located in the heap. Or, even better, if you
allocate an array of nodes all at once, you know they will be contiguous.

Recursive strategies like mergesort often have good cache behavior because
they break big arrays into smaller pieces and then work with the pieces. Some-
times these algorithms can be tuned to take advantage of cache behavior.

For applications where performance is critical, it is possible to design algo-
rithms tailored to the size of the cache, the block size, and other hardware
characterstics. Algorithms like that are called “cache-aware”. The obvious
drawback of cache-aware algorithms is that they are hardware-specific.

7.6 The memory hierarchy

At some point during this chapter, a question like the following might have
occurred to you: “If caches are so much faster than main memory, why not
make a really big cache and forget about memory?”

Without going too far into computer architecture, there are two reasons: elec-
tronics and economics. Caches are fast because they are small and close to
the CPU, which minimizes delays due to capacitance and signal propagation.
If you make a cache big, it will be slower.

Also, caches take up space on the processor chip, and bigger chips are more
expensive. Main memory is usually dynamic random-access memory (DRAM),
which uses only one transistor and one capacitor per bit, so it is possible to pack
more memory into the same amount of space. But this way of implementing
memory is slower than the way caches are implemented.

Also main memory is usually packaged in a dual in-line memory module
(DIMM) that includes 16 or more chips. Several small chips are cheaper than
one big one.

The trade-off between speed, size, and cost is the fundamental reason for
caching. If there were one memory technology that was fast, big, and cheap,
we wouldn’t need anything else.

The same principle applies to storage as well as memory. Solid state drives
(SSD) are fast, but they are more expensive than hard drives (HDD), so they
tend to be smaller. Tape drives are even slower than hard drives, but they can
store large amounts of data relatively cheaply.

7.7. Caching policy 53

The following table shows typical access times, sizes, and costs for each of
these technologies.

Device Access Typical Cost
time size

Register 0.5 ns 256 B ?

Cache 1 ns 2 MiB ?

DRAM 100 ns 4 GiB $10 / GiB

SSD 10 µs 100 GiB $1 / GiB

HDD 5 ms 500 GiB $0.25 / GiB

Tape minutes 1–2 TiB $0.02 / GiB

The number and size of registers depends on details of the architecture. Cur-
rent computers have about 32 general-purpose registers, each storing one
“word”. On a 32-bit computer, a word is 32 bits or 4 B. On a 64-bit computer,
a word is 64 bits or 8 B. So the total size of the register file is 100–300 B.

The cost of registers and caches is hard to quantify. They contribute to the
cost of the chips they are on, but consumers don’t see that cost directly.

For the other numbers in the table, I looked at the specifications for typical
hardware for sale from online computer hardware stores. By the time you read
this, these numbers will be obsolete, but they give you an idea of what the
performance and cost gaps looked like at one point in time.

These technologies make up the “memory hierarchy” (note that this use of
“memory” also includes storage). Each level of the hierarchy is bigger and
slower than the one above it. And in some sense, each level acts as a cache for
the one below it. You can think of main memory as a cache for programs and
data that are stored permanently on SSDs and HHDs. And if you are working
with very large datasets stored on tape, you could use hard drives to cache
one subset of the data at a time.

7.7 Caching policy

The memory hierarchy suggests a framework for thinking about caching. At
every level of the hierarchy, we have to address four fundamental questions of
caching:

� Who moves data up and down the hierarchy? At the top of the hierarchy,
register allocation is usually done by the compiler. Hardware on the CPU
handles the memory cache. Users implicitly move data from storage to

54 Chapter 7. Caching

memory when they execute programs and open files. But the operating
system also moves data back and forth between memory and storage. At
the bottom of the hierarchy, administrators move data explicitly between
disk and tape.

� What gets moved? In general, block sizes are small at the top of the
hierarchy and bigger at the bottom. In a memory cache, a typical block
size is 128 B. Pages in memory might be 4 KiB, but when the operating
system reads a file from disk, it might read 10s or 100s of blocks at a
time.

� When does data get moved? In the most basic cache, data gets moved
into cache when it is used for the first time. But many caches use some
kind of “prefetching”, meaning that data is loaded before it is explicitly
requested. We have already seen one form of prefetching: loading an
entire block when only part of it is requested.

� Where in the cache does the data go? When the cache is full, we can’t
bring anything in without kicking something out. Ideally, we want to
keep data that will be used again soon and replace data that won’t.

The answers to these questions make up the “cache policy”. Near the top of
the hierarchy, cache policies tend to be simple because they have to be fast
and they are implemented in hardware. Near the bottom of the hierarchy,
there is more time to make decisions, and well-designed policies can make a
big difference.

Most cache policies are based on the principle that history repeats itself; if we
have information about the recent past, we can use it to predict the immediate
future. For example, if a block of data has been used recently, we expect it to
be used again soon. This principle suggests a replacement policy called “least
recently used,” or LRU, which removes from the cache a block of data that has
not been used recently. For more on this topic, see http://en.wikipedia.

org/wiki/Cache_algorithms.

7.8 Paging

In systems with virtual memory, the operating system can move pages back
and forth between memory and storage. As I mentioned in Section 6.2, this
mechanism is called “paging” or sometimes “swapping”.

Here’s how the process works:

http://en.wikipedia.org/wiki/Cache_algorithms
http://en.wikipedia.org/wiki/Cache_algorithms

7.8. Paging 55

1. Suppose Process A calls malloc to allocate a chunk. If there is no free
space in the heap with the requested size, malloc calls sbrk to ask the
operating system for more memory.

2. If there is a free page in physical memory, the operating system adds it
to the page table for Process A, creating a new range of valid virtual
addresses.

3. If there are no free pages, the paging system chooses a “victim page”
belonging to Process B. It copies the contents of the victim page from
memory to disk, then it modifies the page table for Process B to indicate
that this page is “swapped out”.

4. Once the data from Process B is written, the page can be reallocated
to Process A. To prevent Process A from reading Process B’s data, the
page should be cleared.

5. At this point the call to sbrk can return, giving malloc additional space
in the heap. Then malloc allocates the requested chunk and returns.
Process A can resume.

6. When Process A completes, or is interrupted, the scheduler might allow
Process B to resume. When Process B accesses a page that has been
swapped out, the memory management unit notices that the page is
“invalid” and causes an interrupt.

7. When the operating system handles the interrupt, it sees that the page
is swapped out, so it transfers the page back from disk to memory.

8. Once the page is swapped in, Process B can resume.

When paging works well, it can greatly improve the utilization of physical
memory, allowing more processes to run in less space. Here’s why:

� Most processes don’t use all of their allocated memory. Many parts of
the text segment are never executed, or execute once and never again.
Those pages can be swapped out without causing any problems.

� If a program leaks memory, it might leave allocated space behind and
never access it again. By swapping those pages out, the operating system
can effectively plug the leak.

� On most systems, there are processes like daemons that sit idle most of
the time and only occasionally “wake up” to respond to events. While
they are idle, these processes can be swapped out.

56 Chapter 7. Caching

� A user might have many windows open, but only a few are active at a
time. The inactive processes can be swapped out.

� Also, there might be many processes running the same program. These
processes can share the same text and static segments, avoiding the need
to keep multiple copies in physical memory.

If you add up the total memory allocated to all processes, it can greatly exceed
the size of physical memory, and yet the system can still behave well.

Up to a point.

When a process accesses a page that’s swapped out, it has to get the data back
from disk, which can take several milliseconds. The delay is often noticeable.
If you leave a window idle for a long time and then switch back to it, it
might start slowly, and you might hear the disk drive working while pages are
swapped in.

Occasional delays like that might be acceptable, but if you have too many
processes using too much space, they start to interfere with each other. When
Process A runs, it evicts the pages Process B needs. Then when B runs, it
evicts the pages A needs. When this happens, both processes slow to a crawl
and the system can become unresponsive. This scenario is called “thrashing”.

In theory, operating systems could avoid thrashing by detecting an increase in
paging and blocking or killing processes until the system is responsive again.
But as far as I can tell, most systems don’t do this, or don’t do it well; it is
often left to users to limit their use of physical memory or try to recover when
thrashing occurs.

Chapter 8

Multitasking

In many current systems, the CPU contains multiple cores, which means it can
run several processes at the same time. In addition, each core is capable of
“multitasking”, which means it can switch from one process to another quickly,
creating the illusion that many processes are running at the same time.

The part of the operating system that implements multitasking is the “kernel”.
In a nut or seed, the kernel is the innermost part, surrounded by a shell. In
an operating system, the kernel is the lowest level of software, surrounded by
several other layers, including an interface called a “shell.” Computer scientists
love extended metaphors.

At its most basic, the kernel’s job is to handle interrupts. An “interrupt” is an
event that stops the normal instruction cycle and causes the flow of execution
to jump to a special section of code called an “interrupt handler”.

A hardware interrupt is caused when a device sends a signal to the CPU.
For example, a network interface might cause an interrupt when a packet of
data arrives, or a disk drive might cause an interrupt when a data transfer
is complete. Most systems also have timers that cause interrupts at regular
intervals, or after an elapsed time.

A software interrupt is caused by a running program. For example, if an
instruction cannot complete for some reason, it might trigger an interrupt so
the condition can be handled by the operating system. Some floating-point
errors, like division by zero, are handled using interrupts.

When a program needs to access a hardware device, it makes a system call,
which is similar to a function call, except that instead of jumping to the
beginning of the function, it executes a special instruction that triggers an

58 Chapter 8. Multitasking

interrupt, causing the flow of execution to jump to the kernel. The kernel
reads the parameters of the system call, performs the requested operation,
and then resumes the interrupted process.

8.1 Hardware state

Handling interrupts requires cooperation between hardware and software.
When an interrupt occurs, there might be several instructions running on
the CPU, data stored in registers, and other hardware state.

Usually the hardware is responsible for bringing the CPU to a consistent state;
for example, every instruction should either complete or behave as if it never
started. No instruction should be left half complete. Also, the hardware is
responsible for saving the program counter (PC), so the kernel knows where
to resume.

Then, usually, it is the responsibility of the interrupt handler to save the rest
of the hardware state before it does anything that might modify it, and then
restore the saved state before the interrupted process resumes.

Here is an outline of this sequence of events:

1. When the interrupt occurs, the hardware saves the program counter in
a special register and jumps to the appropriate interrupt handler.

2. The interrupt handler stores the program counter and the status register
in memory, along with the contents of any data registers it plans to use.

3. The interrupt handler runs whatever code is needed to handle the inter-
rupt.

4. Then it restores the contents of the saved registers. Finally, it restores
the program counter of the interrupted process, which has the effect of
jumping back to the interrupted instruction.

If this mechanism works correctly, there is generally no way for the interrupted
process to know there was an interrupt, unless it detects the change in time
between instructions.

8.2 Context switching

Interrupt handlers can be fast because they don’t have to save the entire
hardware state; they only have to save registers they are planning to use.

8.3. The process life cycle 59

But when an interrupt occurs, the kernel does not always resume the inter-
rupted process. It has the option of switching to another process. This mech-
anism is called a “context switch”.

In general, the kernel doesn’t know which registers a process will use, so it has
to save all of them. Also, when it switches to a new process, it might have
to clear data stored in the memory management unit (see Section 3.6). And
after the context switch, it might take some time for the new process to load
data into the cache. For these reasons, context switches are relatively slow, on
the order of thousands of cycles, or a few microseconds.

In a multi-tasking system, each process is allowed to run for a short period of
time called a “time slice” or “quantum”. During a context switch, the kernel
sets a hardware timer that causes an interrupt at the end of the time slice.
When the interrupt occurs, the kernel can switch to another process or allow
the interrupted process to resume. The part of the operating system that
makes this decision is the “scheduler”.

8.3 The process life cycle

When a process is created, the operating system allocates a data structure
that contains information about the process, called a “process control block”
or PCB. Among other things, the PCB keeps track of the process state, which
is one of:

� Running, if the process is currently running on a core.

� Ready, if the process could be running, but isn’t, usually because there
are more runnable processes than cores.

� Blocked, if the process cannot run because it is waiting for a future event
like network communication or a disk read.

� Done, if the process has completed, but has exit status information that
has not been read yet.

Here are the events that cause a process to transition from one state to another:

� A process is created when the running program executes a system call
like fork. At the end of the system call, the new process is usually ready.
Then the scheduler might resume the original process (the “parent”) or
start the new process (the “child”).

60 Chapter 8. Multitasking

� When a process is started or resumed by the scheduler, its state changes
from ready to running.

� When a process is interrupted and the scheduler chooses not to let it
resume, its state changes from running to ready.

� If a process executes a system call that cannot complete immediately,
like a disk request, it becomes blocked and the scheduler usually chooses
another process.

� When an operation like a disk request completes, it causes an interrupt.
The interrupt handler figures out which process was waiting for the re-
quest and switches its state from blocked to ready. Then the scheduler
may or may not choose to resume the unblocked process.

� When a process calls exit, the interrupt handler stores the exit code in
the PCB and changes the process’s state to done.

8.4 Scheduling

As we saw in Section 2.3 there might be hundreds of processes on a computer,
but usually most of them are blocked. Most of the time, there are only a few
processes that are ready or running. When an interrupt occurs, the scheduler
decides which process to start or resume.

On a workstation or laptop, the primary goal of the scheduler is to minimize
response time; that is, the computer should respond quickly to user actions.
Response time is also important on a server, but in addition the scheduler
might try to maximize throughput, which is the number of requests that com-
plete per unit of time.

Usually the scheduler doesn’t have much information about what processes
are doing, so its decisions are based on a few heuristics:

� Processes might be limited by different resources. A process that does
a lot of computation is probably CPU-bound, which means that its run
time depends on how much CPU time it gets. A process that reads data
from a network or disk might be I/O-bound, which means that it would
run faster if data input and output went faster, but would not run faster
with more CPU time. Finally, a process that interacts with the user is
probably blocked, most of the time, waiting for user actions.

The operating system can sometimes classify processes based on their
past behavior, and schedule them accordingly. For example, when an

8.4. Scheduling 61

interactive process is unblocked, it should probably run immediately,
because a user is probably waiting for a reply. On the other hand, a
CPU-bound process that has been running for a long time might be less
time-sensitive.

� If a process is likely to run for a short time and then make a blocking
request, it should probably run immediately, for two reasons: (1) if the
request takes some time to complete, we should start it as soon as pos-
sible, and (2) it is better for a long-running process to wait for a short
one, rather than the other way around.

As an analogy, suppose you are making an apple pie. The crust takes
5 minutes to prepare, but then it has to chill for half an hour. It takes
20 minutes to prepare the filling. If you prepare the crust first, you can
prepare the filling while the crust is chilling, and you can finish the pie in
35 minutes. If you prepare the filling first, the process takes 55 minutes.

Most schedulers use some form of priority-based scheduling, where each process
has a priority that can be adjusted up or down over time. When the scheduler
runs, it chooses the runnable process with the highest priority.

Here are some of the factors that determine a process’s priority:

� A process usually starts with a relatively high priority so it starts running
quickly.

� If a process makes a request and blocks before its time slice is complete,
it is more likely to be interactive or I/O-bound, so its priority should go
up.

� If a process runs for an entire time slice, it is more likely to be long-
running and CPU-bound, so its priority should go down.

� If a task blocks for a long time and then becomes ready, it should get a
priority boost so it can respond to whatever it was waiting for.

� If process A is blocked waiting for process B, for example if they are
connected by a pipe, the priority of process B should go up.

� The system call nice allows a process to decrease (but not increase) its
own priority, allowing programmers to pass explicit information to the
scheduler.

For most systems running normal workloads, scheduling algorithms don’t have
a substantial effect on performance. Simple scheduling policies are usually
good enough.

62 Chapter 8. Multitasking

8.5 Real-time scheduling

However, for programs that interact with the real world, scheduling can be
very important. For example, a program that reads data from sensors and
controls motors might have to complete recurring tasks at some minimum fre-
quency and react to external events with some maximum response time. These
requirements are often expressed in terms of “tasks” that must be completed
before “deadlines”.

Scheduling tasks to meet deadlines is called “real-time scheduling”. For some
applications, a general-purpose operating system like Linux can be modified
to handle real-time scheduling. These modifications might include:

� Providing richer APIs for controlling task priorities.

� Modifying the scheduler to guarantee that the process with highest pri-
ority runs within a fixed amount of time.

� Reorganizing interrupt handlers to guarantee a maximum completion
time.

� Modifying locks and other synchronization mechanisms (coming up in
the next chapter) to allow a high-priority task to preempt a lower-priority
task.

� Choosing an implementation of dynamic memory allocation that guar-
antees a maximum completion time.

For more demanding applications, especially in domains where real-time re-
sponse is a matter of life and death, “real-time operating systems” provide
specialized capabilities, often with much simpler designs than general purpose
operating systems.

Chapter 9

Threads

When I mentioned threads in Section 2.3, I said that a thread is a kind of
process. Now I will provide a more careful explanation.

When you create a process, the operating system creates a new address space,
which includes the text segment, static segment, and heap; it also creates
a new “thread of execution”, which includes the program counter and other
hardware state, and the call stack.

The processes we have seen so far are “single-threaded”, which means that only
one thread of execution runs in each address space. In this chapter, you will
learn about “multi-threaded” processes that have multiple threads running in
the same address space.

Within a single process, all threads share the same text segment, so they run
the same code. But different threads often run different parts of the code.

And they share the same static segment, so if one thread changes a global
variable, other threads see the change. They also share the heap, so threads
can share dynamically-allocated chunks.

But each thread has its own stack, so threads can call functions without inter-
fering with each other. Usually threads don’t access each other’s local variables
(and sometimes they can’t).

The example code for this chapter is in the repository for this book, in a
directory named counter. For information on downloading this code, see
Section 0.1.

64 Chapter 9. Threads

9.1 Creating threads

The most popular threading standard used with C is POSIX Threads, or
Pthreads for short. The POSIX standard defines a thread model and an
interface for creating and controlling threads. Most versions of UNIX provide
an implementation of Pthreads.

Using Pthreads is like using most C libraries:

� You include headers files at the beginning of your program.

� You write code that calls functions defined by Pthreads.

� When you compile the program, you link it with the Pthread library.

For my examples, I include the following headers:

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <semaphore.h>

The first two are standard; the third is for Pthreads and the fourth is for
semaphores. To compile with the Pthread library in gcc, you can use the -l

option on the command line:

gcc -g -O2 -o array array.c -lpthread

This compiles a source file named array.c with debugging info and opti-
mization, links with the Pthread library, and generates an executable named
array.

9.2 Creating threads

The Pthread function that creates threads is called pthread_create. The
following function shows how to use it:

pthread_t make_thread(void *(*entry)(void *), Shared *shared)

{

int n;

pthread_t thread;

n = pthread_create(&thread, NULL, entry, (void *)shared);

if (n != 0) {

perror("pthread_create failed");

9.2. Creating threads 65

exit(-1);

}

return thread;

}

make_thread is a wrapper I wrote to make pthread_create easier to use, and
to provide error-checking.

The return type from pthread_create is pthread_t, which you can think of
as an id or “handle” for the new thread.

If pthread create succeeds, it returns 0 and make_thread returns the handle
of the new thread. If an error occurs, pthread create returns an error code
and make_thread prints an error message and exits.

The parameters of make_thread take some explaining. Starting with the sec-
ond, Shared is a structure I defined to contain values shared between threads.
The following typedef statement creates the new type:

typedef struct {

int counter;

} Shared;

In this case, the only shared variable is counter. make shared allocates space
for a Shared structure and initializes the contents:

Shared *make_shared()

{

Shared *shared = check_malloc(sizeof (Shared));

shared->counter = 0;

return shared;

}

Now that we have a shared data structure, let’s get back to make_thread.
The first parameter is a pointer to a function that takes a void pointer and
returns a void pointer. If the syntax for declaring this type makes your eyes
bleed, you are not alone. Anyway, the purpose of this parameter is to specify
the function where the execution of the new thread will begin. By convention,
this function is named entry:

void *entry(void *arg)

{

Shared *shared = (Shared *) arg;

child_code(shared);

pthread_exit(NULL);

}

66 Chapter 9. Threads

The parameter of entry has to be declared as a void pointer, but in this
program we know that it is really a pointer to a Shared structure, so we can
typecast it accordingly and then pass it along to child code, which does the
real work.

As a simple example, child_code prints the value of the shared counter and
increments it.

void child_code(Shared *shared)

{

printf("counter = %d\n", shared->counter);

shared->counter++;

}

When child code returns, entry invokes pthread_exit which can be used to
pass a value to the thread that joins with this thread. In this case, the child
has nothing to say, so we pass NULL.

Finally, here is the code that creates the child threads:

int i;

pthread_t child[NUM_CHILDREN];

Shared *shared = make_shared(1000000);

for (i=0; i<NUM_CHILDREN; i++) {

child[i] = make_thread(entry, shared);

}

NUM_CHILDREN is a compile-time constant that determines the number of child
threads. child is an array of thread handles.

9.3 Joining threads

When one thread wants to wait for another thread to complete, it invokes
pthread join. Here is my wrapper for pthread join:

void join_thread(pthread_t thread)

{

int ret = pthread_join(thread, NULL);

if (ret == -1) {

perror("pthread_join failed");

exit(-1);

}

}

9.4. Synchronization errors 67

The parameter is the handle of the thread you want to wait for. All the
wrapper does is call pthread join and check the result.

Any thread can join any other thread, but in the most common pattern the
parent thread creates and joins all child threads. Continuing the example from
the previous section, here’s the code that waits on the children:

for (i=0; i<NUM_CHILDREN; i++) {

join_thread(child[i]);

}

This loops waits for the children one at a time in the order they were created.
There is no guarantee that the child threads complete in that order, but this
loop works correctly even if they don’t. If one of the children is late, the loop
might have to wait, and other children might complete in the meantime. But
regardless, the loop exits only when all children are done.

If you have downloaded the repository for this book (see Section 0.1), you’ll
find this example in counter/counter.c. You can compile and run it like
this:

$ make counter

gcc -Wall counter.c -o counter -lpthread

$./counter

When I ran it with 5 children, I got the following output:

counter = 0

counter = 0

counter = 1

counter = 0

counter = 3

When you run it, you will probably get different results. And if you run it
again, you might get different results each time. What’s going on?

9.4 Synchronization errors

The problem with the previous program is that the children access the shared
variable, counter, without synchronization, so several threads can read the
same value of counter before any threads increment it.

Here is a sequence of events that could explain the output in the previous
section:

Child A reads 0

Child B reads 0

68 Chapter 9. Threads

Child C reads 0

Child A prints 0

Child B prints 0

Child A sets counter=1

Child D reads 1

Child D prints 1

Child C prints 0

Child A sets counter=1

Child B sets counter=2

Child C sets counter=3

Child E reads 3

Child E prints 3

Child D sets counter=4

Child E sets counter=5

Each time you run the program, threads might be interrupted at different
points, or the scheduler might choose different threads to run, so the sequence
of events, and the results, will be different.

Suppose we want to impose some order. For example, we might want each
thread to read a different value of counter and increment it, so that the value
of counter reflects the number of threads that have executed child_code.

To enforce that requirement, we can use a “mutex”, which is an object that
guarantees “mutual exclusion” for a block of code; that is, only one thread
can execute the block at a time.

I have written a small module called mutex.c that provides mutex objects.
I’ll show you how to use it first; then I’ll explain how it works.

Here’s a version of child_code that uses a mutex to synchronize threads:

void child_code(Shared *shared)

{

mutex_lock(shared->mutex);

printf("counter = %d\n", shared->counter);

shared->counter++;

mutex_unlock(shared->mutex);

}

Before any thread can access counter, it has to “lock” the mutex, which
has the effect of barring all other threads. Suppose Thread A has locked the
mutex and is in the middle of child_code. If Thread B arrives and executes
mutex_lock, it blocks.

When Thread A is done, it executes mutex_unlock, which allows Thread B to
proceed. In effect, the threads line up to execute child_code one at a time,

9.5. Mutex 69

so they can’t interfere with each other. When I run this code with 5 children,
I get:

counter = 0

counter = 1

counter = 2

counter = 3

counter = 4

And that satisfies the requirements. In order for this solution to work, I have
to add the Mutex to the Shared struct:

typedef struct {

int counter;

Mutex *mutex;

} Shared;

And initialize it in make_shared

Shared *make_shared(int end)

{

Shared *shared = check_malloc(sizeof(Shared));

shared->counter = 0;

shared->mutex = make_mutex(); //-- this line is new

return shared;

}

The code in this section is in counter_mutex.c. The definition of Mutex is in
mutex.c, which I explain in the next section.

9.5 Mutex

My definition of Mutex is a wrapper for a type called pthread_mutex_t, which
is defined in the POSIX threads API.

To create a POSIX mutex, you have to allocate space for a pthread_mutex_t

type and then call pthread_mutex_init.

One of the problems with this API is that pthread_mutex_t behaves like a
structure, so if you pass it as an argument, it makes a copy, which makes the
mutex behave incorrectly. To avoid that, you have to pass pthread_mutex_t

by address.

My code makes it easier to get that right. It defines a type, Mutex, which is
just a more readable name for pthread_mutex_t:

70 Chapter 9. Threads

#include <pthread.h>

typedef pthread_mutex_t Mutex;

Then it defines make_mutex, which allocates space and initializes the mutex:

Mutex *make_mutex()

{

Mutex *mutex = check_malloc(sizeof(Mutex));

int n = pthread_mutex_init(mutex, NULL);

if (n != 0) perror_exit("make_lock failed");

return mutex;

}

The return value is a pointer, which you can pass around as an argument
without causing unwanted copying.

The functions to lock and unlock the mutex are simple wrappers for POSIX
functions:

void mutex_lock(Mutex *mutex)

{

int n = pthread_mutex_lock(mutex);

if (n != 0) perror_exit("lock failed");

}

void mutex_unlock(Mutex *mutex)

{

int n = pthread_mutex_unlock(mutex);

if (n != 0) perror_exit("unlock failed");

}

This code is in mutex.c and the header file mutex.h.

Chapter 10

Condition variables

Many simple synchronization problems can be solved using mutexes as shown
in the previous chapter. In this chapter I introduce a bigger challenge, the
well-known “Producer-Consumer problem”, and a new tool to solve it, the
condition variable.

10.1 The work queue

In some multi-threaded programs, threads are organized to perform different
tasks. Often they communicate with each other using a queue, where some
threads, called “producers”, put data into the queue and other threads, called
“consumers”, take data out.

For example, in applications with a graphical user interface, there might be
one thread that runs the GUI, responding to user events, and another thread
that processes user requests. In that case, the GUI thread might put requests
into a queue and the “back end” thread might take requests out and process
them.

To support this organization, we need a queue implementation that is “thread
safe”, which means that both threads (or more than two) can access the queue
at the same time. And we need to handle the special cases when the queue is
empty and, if the size of the queue is bounded, when the queue is full.

I’ll start with a simple queue that is not thread safe, then we’ll see what goes
wrong and fix it. The code for this example is in the repository for this book,
in a folder called queue. The file queue.c contains a basic implementation of
a circular buffer, which you can read about at https://en.wikipedia.org/

wiki/Circular_buffer.

https://en.wikipedia.org/wiki/Circular_buffer
https://en.wikipedia.org/wiki/Circular_buffer

72 Chapter 10. Condition variables

Here’s the structure definition:

typedef struct {

int *array;

int length;

int next_in;

int next_out;

} Queue;

array is the array that contains the elements of the queue. For this example
the elements are ints, but more generally they would be structures that contain
user events, items of work, etc.

length is the length of the array. next_in is an index into the array that
indices where the next element should be added; similarly, next_out is the
index of the next element that should be removed.

make_queue allocates space for this structure and initializes the fields:

Queue *make_queue(int length)

{

Queue *queue = (Queue *) malloc(sizeof(Queue));

queue->length = length + 1;

queue->array = (int *) malloc(length * sizeof(int));

queue->next_in = 0;

queue->next_out = 0;

return queue;

}

The initial value for next_out needs some explaining. Since the queue is
initially empty, there is no next element to remove, so next_out is invalid.
Setting next_out == next_in is a special case that indicates that the queue
is empty, so we can write:

int queue_empty(Queue *queue)

{

return (queue->next_in == queue->next_out);

}

Now we can add elements to the queue using queue_push:

void queue_push(Queue *queue, int item) {

if (queue_full(queue)) {

perror_exit("queue is full");

}

queue->array[queue->next_in] = item;

10.1. The work queue 73

queue->next_in = queue_incr(queue, queue->next_in);

}

If the queue is full, queue_push prints an error message and exits. I will
explain queue_full soon.

If the queue is not full, queue_push inserts the new element and then incre-
ments next_in using queue_incr:

int queue_incr(Queue *queue, int i)

{

return (i+1) % queue->length;

}

When the index, i, gets to the end of the array, it wraps around to 0. And
that’s where we run into a tricky part. If we keep adding elements to the
queue, eventually next_in wraps around and catches up with next_out. But
if next_in == next_out, we would incorrectly conclude that the queue was
empty.

To avoid that, we define another special case to indicate that the queue is full:

int queue_full(Queue *queue)

{

return (queue_incr(queue, queue->next_in) == queue->next_out);

}

If incrementing next_in lands on next_out, that means we can’t add another
element without making the queue seem empty. So we stop one element before
the “end” (keeping in mind that the end of the queue can be anywhere, not
necessarily the end of the array).

Now we can write queue_pop, which removes and returns the next element
from the queue:

int queue_pop(Queue *queue) {

if (queue_empty(queue)) {

perror_exit("queue is empty");

}

int item = queue->array[queue->next_out];

queue->next_out = queue_incr(queue, queue->next_out);

return item;

}

If you try to pop from an empty queue, queue_pop prints an error message
and exits.

74 Chapter 10. Condition variables

10.2 Producers and consumers

Now let’s make some threads to access this queue. Here’s the producer code:

void *producer_entry(void *arg) {

Shared *shared = (Shared *) arg;

for (int i=0; i<QUEUE_LENGTH-1; i++) {

printf("adding item %d\n", i);

queue_push(shared->queue, i);

}

pthread_exit(NULL);

}

Here’s the consumer code:

void *consumer_entry(void *arg) {

int item;

Shared *shared = (Shared *) arg;

for (int i=0; i<QUEUE_LENGTH-1; i++) {

item = queue_pop(shared->queue);

printf("consuming item %d\n", item);

}

pthread_exit(NULL);

}

Here’s the parent code that starts the threads and waits for them

pthread_t child[NUM_CHILDREN];

Shared *shared = make_shared();

child[0] = make_thread(producer_entry, shared);

child[1] = make_thread(consumer_entry, shared);

for (int i=0; i<NUM_CHILDREN; i++) {

join_thread(child[i]);

}

And finally here’s the shared structure that contains the queue:

typedef struct {

Queue *queue;

} Shared;

Shared *make_shared()

10.3. Mutual exclusion 75

{

Shared *shared = check_malloc(sizeof(Shared));

shared->queue = make_queue(QUEUE_LENGTH);

return shared;

}

The code we have so far is a good starting place, but it has several problems:

� Access to the queue is not thread safe. Different threads could access
array, next_in, and next_out at the same time and leave the queue in
a broken, “inconsistent” state.

� If the consumer is scheduled first, it finds the queue empty, print an error
message, and exits. We would rather have the consumer block until the
queue is not empty. Similarly, we would like the producer to block if the
queue is full.

In the next section, we solve the first problem with a Mutex. In the following
section, we solve the second problem with condition variables.

10.3 Mutual exclusion

We can make the queue thread safe with a mutex. This version of the code is
in queue_mutex.c.

First we add a Mutex pointer to the queue structure:

typedef struct {

int *array;

int length;

int next_in;

int next_out;

Mutex *mutex; //-- this line is new

} Queue;

And initialize the Mutex in make_queue:

Queue *make_queue(int length) {

Queue *queue = (Queue *) malloc(sizeof(Queue));

queue->length = length;

queue->array = (int *) malloc(length * sizeof(int));

queue->next_in = 0;

queue->next_out = 0;

queue->mutex = make_mutex(); //-- new

return queue;

}

76 Chapter 10. Condition variables

Next we add synchronization code to queue_push:

void queue_push(Queue *queue, int item) {

mutex_lock(queue->mutex); //-- new

if (queue_full(queue)) {

mutex_unlock(queue->mutex); //-- new

perror_exit("queue is full");

}

queue->array[queue->next_in] = item;

queue->next_in = queue_incr(queue, queue->next_in);

mutex_unlock(queue->mutex); //-- new

}

Before checking whether the queue is full, we have to lock the Mutex. If the
queue is full, we have to unlock the Mutex before exiting; otherwise the thread
would leave it locked and no other threads could proceed.

The synchronization code for queue_pop is similar:

int queue_pop(Queue *queue) {

mutex_lock(queue->mutex);

if (queue_empty(queue)) {

mutex_unlock(queue->mutex);

perror_exit("queue is empty");

}

int item = queue->array[queue->next_out];

queue->next_out = queue_incr(queue, queue->next_out);

mutex_unlock(queue->mutex);

return item;

}

Note that the other Queue functions, queue_full, queue_empty, and
queue_incr do not try to lock the mutex. Any thread that calls these functions
is required to lock the mutex first; this requirement is part of the documented
interface for these functions.

With this additional code, the queue is thread safe; if you run it, you should
not see any synchronization errors. But it is likely that the consumer will exit
at some point because the queue is empty, or the producer will exit because
the queue is full, or both.

The next step is to add condition variables.

10.4. Condition variables 77

10.4 Condition variables

A condition variable is a data structure associated with a condition; it allows
threads to block until the condition becomes true. For example, thread_pop
might want check whether the queue is empty and, if so, wait for a condition
like “queue not empty”.

Similarly, thread_push might want to check whether the queue is full and, if
so, block until it is not full.

I’ll handle the first condition here, and you will have a chance to handle the
second condition as an exercise.

First we add a condition variable to the Queue structure:

typedef struct {

int *array;

int length;

int next_in;

int next_out;

Mutex *mutex;

Cond *nonempty; //-- new

} Queue;

And initialize it in make_queue:

Queue *make_queue(int length)

{

Queue *queue = (Queue *) malloc(sizeof(Queue));

queue->length = length;

queue->array = (int *) malloc(length * sizeof(int));

queue->next_in = 0;

queue->next_out = 0;

queue->mutex = make_mutex();

queue->nonempty = make_cond(); //-- new

return queue;

}

Now in queue_pop, if we find the queue empty, we don’t exit; instead we use
the condition variable to block:

int queue_pop(Queue *queue) {

mutex_lock(queue->mutex);

while (queue_empty(queue)) {

cond_wait(queue->nonempty, queue->mutex); //-- new

}

78 Chapter 10. Condition variables

int item = queue->array[queue->next_out];

queue->next_out = queue_incr(queue, queue->next_out);

mutex_unlock(queue->mutex);

cond_signal(queue->nonfull); //-- new

return item;

}

cond_wait is complicated, so let’s take it slow. The first argument is the
condition variable; in this case, the condition we are waiting for is “queue not
empty”. The second argument is the mutex that protects the queue.

When the thread that locked the mutex calls cond_wait, it unlocks the mutex
and then blocks. This is important. If cond_wait did not unlock the mutex
before blocking, no other thread would be able to access the queue, no more
items could be added, and the queue would always be empty.

So while the consumer is blocked on nonempty, the producer can run. Let’s
see what happens when the producer runs queue_push:

void queue_push(Queue *queue, int item) {

mutex_lock(queue->mutex);

if (queue_full(queue)) {

mutex_unlock(queue->mutex);

perror_exit("queue is full");

}

queue->array[queue->next_in] = item;

queue->next_in = queue_incr(queue, queue->next_in);

mutex_unlock(queue->mutex);

cond_signal(queue->nonempty); //-- new

}

Just as before, queue_push locks the Mutex and checks whether the queue is
full. Assuming it is not, queue_push adds a new element to the queue and
then unlocks the Mutex.

But before returning, it does one more thing: it “signals” the condition variable
nonempty.

Signalling a condition variable usually indicates that the condition is true. If
there are no threads waiting on the condition variable, the signal has no effect.

If there are threads waiting on the condition variable, one of them gets un-
blocked and resumes execution of cond_wait. But before the awakened thread
can return from cond_wait, it has to wait for and lock the Mutex, again.

Now go back to queue_pop and see what happens when the thread returns
from cond_wait. It loops back to the top of the while loop and checks the

10.4. Condition variables 79

condition again. I’ll explain why in just a second, but for now let’s assume
that the condition is true; that is, the queue is not empty.

When the consumer thread exits the while loop, we know two things: (1) the
condition is true, so there is at least one item in the queue, and (2) the Mutex

is locked, so it is safe to access the queue.

After removing an item, queue_pop unlocks the mutex and returns.

In the next section I’ll show you how my Cond code works, but first I want to
answer two frequently-asked questions:

� Why is cond_wait inside a while loop rather than an if statement; that
is, why do we have to check the condition again after returning from
cond_wait?

The primary reason you have to re-check the condition is the possibility
of an intercepted signal. Suppose Thread A is waiting on nonempty.
Thread B adds an item to the queue and signals nonempty. Thread A
wakes up an tries to lock the mutex, but before it gets the chance, Evil
Thread C swoops in, locks the mutex, pops the item from the queue,
and unlocks the mutex. Now the queue is empty again, but Thread A is
not blocked any more. Thread A could lock the mutex and returns from
cond_wait. If Thread A does not check the condition again, it would try
to pop an element from an empty queue, and probably cause an error.

� The other question that comes up when people learn about condition
variables is “How does the condition variable know what condition it is
associated with?”

This question is understandable because there is no explicit connection
between a Cond structure and the condition it relates to. The connection
is implicit in the way it is used.

Here’s one way to think of it: the condition associated with a Cond is
the thing that is false when you call cond_wait and true when you call
cond_signal.

Because threads have to check the condition when they return from cond_wait,
it is not strictly necessary to call cond_signal only when the condition is
true. If you have reason to think the condition might be true, you could call
cond_signal as a suggestion that now is a good time to check.

80 Chapter 10. Condition variables

10.5 Condition variable implementation

The Cond structure I used in the previous section is a wrapper for a type
called pthread_cond_t, which is defined in the POSIX threads API. It is very
similar to Mutex, which is a wrapper for pthread_mutex_t. Both wrappers
are defined in utils.c and utils.h.

Here’s the typedef:

typedef pthread_cond_t Cond;

make_cond allocates space, initializes the condition variable, and returns a
pointer:

Cond *make_cond() {

Cond *cond = check_malloc(sizeof(Cond));

int n = pthread_cond_init(cond, NULL);

if (n != 0) perror_exit("make_cond failed");

return cond;

}

And here are the wrappers for cond_wait and cond_signal.

void cond_wait(Cond *cond, Mutex *mutex) {

int n = pthread_cond_wait(cond, mutex);

if (n != 0) perror_exit("cond_wait failed");

}

void cond_signal(Cond *cond) {

int n = pthread_cond_signal(cond);

if (n != 0) perror_exit("cond_signal failed");

}

At this point there should be nothing too surprising there.

Chapter 11

Semaphores in C

Semaphores are a good way to learn about synchronization, but they are not
as widely used, in practice, as mutexes and condition variables.

Nevertheless, there are some synchronization problems that can be solved sim-
ply with semaphores, yielding solutions that are more demonstrably correct.

This chapter presents a C API for working with semaphores and my code for
making it easier to work with. And it presents a final challenge: can you write
an implementation of a semaphore using mutexes and condition variables?

The code for this chapter is in directory semaphore in the repository for this
book (see Section 0.1).

11.1 POSIX Semaphores

A semaphore is a data structure used to help threads work together without
interfering with each other.

The POSIX standard specifies an interface for semaphores; it is not part of
Pthreads, but most UNIXes that implement Pthreads also provide semaphores.

POSIX semaphores have type sem t. As usual, I put a wrapper around sem t

to make it easier to use. The interface is defined in sem.h:

typedef sem_t Semaphore;

Semaphore *make_semaphore(int value);

void semaphore_wait(Semaphore *sem);

void semaphore_signal(Semaphore *sem);

82 Chapter 11. Semaphores in C

Semaphore is a synonym for sem_t, but I find it more readable, and the capital
letter reminds me to treat it like an object and pass it by pointer.

The implementation of these functions is in sem.c:

Semaphore *make_semaphore(int value)

{

Semaphore *sem = check_malloc(sizeof(Semaphore));

int n = sem_init(sem, 0, value);

if (n != 0) perror_exit("sem_init failed");

return sem;

}

make semaphore takes the initial value of the semaphore as a parameter.
It allocates space for a Semaphore, initializes it, and returns a pointer to
Semaphore.

sem init returns 0 if it succeeds and -1 if anything goes wrong. One nice thing
about using wrapper functions is that you can encapsulate the error-checking
code, which makes the code that uses these functions more readable.

Here is the implementation of semaphore_wait:

void semaphore_wait(Semaphore *sem)

{

int n = sem_wait(sem);

if (n != 0) perror_exit("sem_wait failed");

}

And here is semaphore_signal:

void semaphore_signal(Semaphore *sem)

{

int n = sem_post(sem);

if (n != 0) perror_exit("sem_post failed");

}

I prefer to call this operation “signal” rather than “post”, although both terms
are common.

Here’s an example that shows how to use a semaphore as a mutex:

Semaphore *mutex = make_semaphore(1);

semaphore_wait(mutex);

// protected code goes here

semaphore_signal(mutex);

11.2. Producers and consumers with semaphores 83

When you use a semaphore as a mutex, you usually initialize it to 1 to indicate
that the mutex is unlocked; that is, one thread can pass the semaphore without
blocking.

Here I am using the variable name mutex to indicate that the semaphore is
being used as a mutex. But remember that the behavior of a semaphore is not
the same as a Pthread mutex.

11.2 Producers and consumers with

semaphores

Using these semaphore wrapper functions, we can write a solution to the
Producer-Consumer problem from Section 10.2. The code in this section is
in queue_sem.c.

Here’s the new definition of Queue, replacing the mutex and condition variables
with semaphores:

typedef struct {

int *array;

int length;

int next_in;

int next_out;

Semaphore *mutex; //-- new

Semaphore *items; //-- new

Semaphore *spaces; //-- new

} Queue;

And here’s the new version of make_queue:

Queue *make_queue(int length)

{

Queue *queue = (Queue *) malloc(sizeof(Queue));

queue->length = length;

queue->array = (int *) malloc(length * sizeof(int));

queue->next_in = 0;

queue->next_out = 0;

queue->mutex = make_semaphore(1);

queue->items = make_semaphore(0);

queue->spaces = make_semaphore(length-1);

return queue;

}

84 Chapter 11. Semaphores in C

mutex is used to guarantee exclusive access to the queue; the initial value is 1,
so the mutex is initially unlocked.

items is the number of items in the queue, which is also the number of con-
sumer threads that can execute queue_pop without blocking. Initially there
are no items in the queue.

spaces is the number of empty spaces in the queue, which is the number of
producer threads that can execute queue_push without blocking. Initially the
number of spaces is the capacity of the queue, which is length-1, as explained
in Section 10.1.

Here is the new version of queue_push, which is run by producer threads:

void queue_push(Queue *queue, int item) {

semaphore_wait(queue->spaces);

semaphore_wait(queue->mutex);

queue->array[queue->next_in] = item;

queue->next_in = queue_incr(queue, queue->next_in);

semaphore_signal(queue->mutex);

semaphore_signal(queue->items);

}

Notice that queue_push doesn’t have to call queue_full any more; instead,
the semaphore keeps track of how many spaces are available and blocks pro-
ducers if the queue is full.

Here is the new version of queue_pop:

int queue_pop(Queue *queue) {

semaphore_wait(queue->items);

semaphore_wait(queue->mutex);

int item = queue->array[queue->next_out];

queue->next_out = queue_incr(queue, queue->next_out);

semaphore_signal(queue->mutex);

semaphore_signal(queue->spaces);

return item;

}

This solution is explained, using pseudo-code, in Chapter 4 of The Little Book
of Semaphores.

11.3. Make your own semaphores 85

Using the code in the repository for this book, you should be able to compile
and run this solution like this:

$ make queue_sem

$./queue_sem

11.3 Make your own semaphores

Any problem that can be solved with semaphores can also be solved with
condition variables and mutexes. We can prove that’s true by using condition
variables and mutexes to implement a semaphore.

Before you go on, you might want to try this as an exercise: write func-
tions that implement the semaphore API in sem.h using using condition vari-
ables and mutexes. In the repository for this book, you’ll find my solution in
mysem_soln.c and mysem_soln.h.

If you have trouble getting started, you can use the following structure defini-
tion, from my solution, as a hint:

typedef struct {

int value, wakeups;

Mutex *mutex;

Cond *cond;

} Semaphore;

value is the value of the semaphore. wakeups counts the number of pending
signals; that is, the number of threads that have been woken but have not
yet resumed execution. The reason for wakeups is to make sure that our
semaphores have Property 3, described in The Little Book of Semaphores.

mutex provides exclusive access to value and wakeups; cond is the condition
variable threads wait on if they wait on the semaphore.

Here is the initialization code for this structure:

Semaphore *make_semaphore(int value)

{

Semaphore *semaphore = check_malloc(sizeof(Semaphore));

semaphore->value = value;

semaphore->wakeups = 0;

semaphore->mutex = make_mutex();

semaphore->cond = make_cond();

return semaphore;

}

86 Chapter 11. Semaphores in C

11.3.1 Semaphore implementation

Here is my implementation of semaphores using POSIX mutexes and condition
variables:

void semaphore_wait(Semaphore *semaphore)

{

mutex_lock(semaphore->mutex);

semaphore->value--;

if (semaphore->value < 0) {

do {

cond_wait(semaphore->cond, semaphore->mutex);

} while (semaphore->wakeups < 1);

semaphore->wakeups--;

}

mutex_unlock(semaphore->mutex);

}

When a thread waits on the semaphore, it has to lock the mutex before it
decrements value. If the value of the semaphore becomes negative, the thread
blocks until a “wakeup” is available. While it is blocked, the mutex is unlocked,
so another thread can signal.

Here is the code for semaphore_signal:

void semaphore_signal(Semaphore *semaphore)

{

mutex_lock(semaphore->mutex);

semaphore->value++;

if (semaphore->value <= 0) {

semaphore->wakeups++;

cond_signal(semaphore->cond);

}

mutex_unlock(semaphore->mutex);

}

Again, a thread has to lock the mutex before it increments value. If the
semaphore was negative, that means threads are waiting, so the signalling
thread increments wakeups and signals the condition variable.

At this point one of the waiting threads might wake up, but the mutex is still
locked until the signalling thread unlocks it.

At that point, one of the waiting threads returns from cond_wait and checks

11.3. Make your own semaphores 87

whether a wakeup is still available. If not, it loops and waits on the condition
variable again. If so, it decrements wakeups, unlocks the mutex, and exits.

One thing about this solution that might not be obvious is the use of a
do...while loop. Can you figure out why it is not a more conventional while
loop? What would go wrong?

The problem is that with a while loop this implementation would not have
Property 3. It would be possible for a thread to signal and then run around
and catch its own signal.

With the do...while loop, it is guaranteed1 that when a thread signals, one
of the waiting threads will get the signal, even if the signalling thread runs
around and gets the mutex before one of the waiting threads resumes.

1Well, almost. It turns out that a well-timed spurious wakeup (see http://en.

wikipedia.org/wiki/Spurious_wakeup) can violate this guarantee.

http://en.wikipedia.org/wiki/Spurious_wakeup
http://en.wikipedia.org/wiki/Spurious_wakeup

	Preface
	Using the code

	Compilation
	Compiled and interpreted languages
	Static types
	The compilation process
	Object code
	Assembly code
	Preprocessing
	Understanding errors

	Processes
	Abstraction and virtualization
	Isolation
	UNIX processes

	Virtual memory
	A bit of information theory
	Memory and storage
	Address spaces
	Memory segments
	Static local variables
	Address translation

	Files and file systems
	Disk performance
	Disk metadata
	Block allocation
	Everything is a file?

	More bits and bytes
	Representing integers
	Bitwise operators
	Representing floating-point numbers
	Unions and memory errors
	Representing strings

	Memory management
	Memory errors
	Memory leaks
	Implementation

	Caching
	How programs run
	Cache performance
	Locality
	Measuring cache performance
	Programming for cache performance
	The memory hierarchy
	Caching policy
	Paging

	Multitasking
	Hardware state
	Context switching
	The process life cycle
	Scheduling
	Real-time scheduling

	Threads
	Creating threads
	Creating threads
	Joining threads
	Synchronization errors
	Mutex

	Condition variables
	The work queue
	Producers and consumers
	Mutual exclusion
	Condition variables
	Condition variable implementation

	Semaphores in C
	POSIX Semaphores
	Producers and consumers with semaphores
	Make your own semaphores

