Laverne Robilliard, PhD

Brisbane, Queensland, Australia Contact Info
143 followers 141 connections

Join to view profile

About

Bioanalytical Scientist:
- Assay development through to validation for clinical trial…

Activity

Join now to see all activity

Experience & Education

  • Vaxxas

View Laverne’s full experience

See their title, tenure and more.

or

By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.

Publications

  • Comprehensive analysis of inhibitory checkpoint ligand expression by glioblastoma cells

    Immunology and Cell Biology

    Glioblastoma is a highly aggressive brain malignancy commonly refractory to classical and novel chemo-, radio- and immunotherapies, with median survival times of ~15 months following diagnosis. Poor immunological responses exemplified by the downregulation of T-cell activity, and upregulation of immunosuppressive cells within the tumor microenvironment have limited the effectiveness of immunotherapy in glioblastoma to date. Here we show that glioblastoma cells express a large repertoire of…

    Glioblastoma is a highly aggressive brain malignancy commonly refractory to classical and novel chemo-, radio- and immunotherapies, with median survival times of ~15 months following diagnosis. Poor immunological responses exemplified by the downregulation of T-cell activity, and upregulation of immunosuppressive cells within the tumor microenvironment have limited the effectiveness of immunotherapy in glioblastoma to date. Here we show that glioblastoma cells express a large repertoire of inhibitory checkpoint ligands known to control effector T cell responses. Furthermore, flow cytometry analysis reveals that glioblastoma cells with an enhanced stem cell-like phenotype express several investigated ligands at significant levels on their cell surface. This reveals that glioblastoma stem-like cells express suppressive ligands with the potential of suppressing major T cell checkpoint receptors. With this information, it is now essential that we understand the relevance of this extensive repertoire of immune checkpoint ligands and their functional consequence on immune evasion in glioblastoma. This is necessary to develop effective immunotherapeutics and to be able to match treatment to patient, especially in the light of CheckMate 143.

    See publication
  • Analysis of Melanoma Secretome for Factors That Directly Disrupt the Barrier Integrity of Brain Endothelial Cells

    International Journal of Molecular Sciences

    We have recently demonstrated that invasive melanoma cells are capable of disrupting the brain endothelial barrier integrity. This was shown using ECIS biosensor technology, which revealed rapid disruption via the paracellular junctions. In this paper, we demonstrate that melanoma cells secrete factors (e.g., cytokines) that weaken the endothelial barrier integrity. Through proteome profiling, we attempt to identify the barrier-disrupting cytokines. Melanoma conditioned media were collected…

    We have recently demonstrated that invasive melanoma cells are capable of disrupting the brain endothelial barrier integrity. This was shown using ECIS biosensor technology, which revealed rapid disruption via the paracellular junctions. In this paper, we demonstrate that melanoma cells secrete factors (e.g., cytokines) that weaken the endothelial barrier integrity. Through proteome profiling, we attempt to identify the barrier-disrupting cytokines. Melanoma conditioned media were collected from three New Zealand melanoma lines. ECIS technology was used to assess if the conditioned media disrupted the endothelial barrier independent of the melanoma cells. The melanoma cell secretome was assessed using cytometric bead array (CBA), Luminex immunoassay and multiplex Proteome Profilers, to detect the expression of secretory proteins, which may facilitate metastasis. Finally, ECIS technology was used to assess the direct effects of secreted proteins identified as candidates from the proteome screens. We show that melanoma-conditioned media significantly disrupted the brain endothelial barrier, however, to a much lesser extent than the cells from which they were collected. Cytokine and proteome profiling of the conditioned media showed evidence of high concentrations of approximately 15 secreted proteins (including osteopontin, IL-8, GDF-15, MIF and VEGF). These 15 secreted proteins were expressed variably across the melanoma lines. Surprisingly, the addition of these individually to the brain endothelial cells did not substantially affect the barrier integrity. ANGPTL-4 and TGFβ were also produced by the melanoma cells. Whilst TGFβ-1 had a pronounced effect on the barrier integrity, surprisingly ANGPTL-4 did not. However, its C-terminal fragment did and within a very similar period to the conditioned media, albeit not to the same extent. Herein we show that melanoma cells produce a wide-range of soluble factors at high concentrations...

    See publication
  • The Importance of Multifrequency Impedance Sensing of Endothelial Barrier Formation Using ECIS Technology for the Generation of a Strong and Durable Paracellular Barrier

    Biosensors

    In this paper, we demonstrate the application of electrical cell-substrate impedance sensing (ECIS) technology for measuring differences in the formation of a strong and durable endothelial barrier model. In addition, we highlight the capacity of ECIS technology to model the parameters of the physical barrier associated with (I) the paracellular space (referred to as Rb) and (II) the basal adhesion of the endothelial cells (α, alpha). Physiologically, both parameters are very important…

    In this paper, we demonstrate the application of electrical cell-substrate impedance sensing (ECIS) technology for measuring differences in the formation of a strong and durable endothelial barrier model. In addition, we highlight the capacity of ECIS technology to model the parameters of the physical barrier associated with (I) the paracellular space (referred to as Rb) and (II) the basal adhesion of the endothelial cells (α, alpha). Physiologically, both parameters are very important for the correct formation of endothelial barriers. ECIS technology is the only commercially available technology that can measure and model these parameters independently of each other, which is important in the context of ascertaining whether a change in overall barrier resistance (R) occurs because of molecular changes in the paracellular junctional molecules or changes in the basal adhesion molecules. Finally, we show that the temporal changes observed in the paracellular Rb can be associated with changes in specific junctional proteins (CD144, ZO-1, and catenins), which have major roles in governing the overall strength of the junctional communication between neighbouring endothelial cells.

    See publication
  • ECIS technology reveals that monocytes isolated by CD14+ ve selection mediate greater loss of BBB integrity than untouched monocytes, which occurs to a greater extent with IL-1β activated endothelium in comparison to TNFα

    PloS one

    Background: We have previously shown that TNFα and IL-1β differentially regulate the inflammatory phenotype of human brain endothelial cells (hCMVECs). In this regard, IL-1β treatment was considerably more potent than TNFα at increasing expression of inflammatory chemokines and leukocyte adhesion molecules. We therefore hypothesised that interaction of the hCMVECs with human monocytes would also be dependent on the activation status of the endothelium. Therefore, the primary aim of this study…

    Background: We have previously shown that TNFα and IL-1β differentially regulate the inflammatory phenotype of human brain endothelial cells (hCMVECs). In this regard, IL-1β treatment was considerably more potent than TNFα at increasing expression of inflammatory chemokines and leukocyte adhesion molecules. We therefore hypothesised that interaction of the hCMVECs with human monocytes would also be dependent on the activation status of the endothelium. Therefore, the primary aim of this study was to assess whether brain endothelial cells activated by IL-1β or TNFα differed in their interaction with monocytes.

    See publication

Courses

  • Doctoral Academic Leadership Initiative Scholarship (2020)

    -

Honors & Awards

  • Neurological Women in Neuroscience Panelist

    Neurological Foundation of New Zealand

  • Inaugural Hilary Holloway Image Trophy for best image, and 1st in Confocal Microscopy Award.

    BIRU, University of Auckland

  • Neurological Foundation W & B Miller Postgraduate Scholarship

    Neurological Foundation of New Zealand

    A fully funded PhD scholarship worth $106,755 NZD

  • Catwalk Trust Summer Studentship ($6000)

    CatWalk Trust

    A studentship to supplement a summer internship at the University of Auckland

  • Neurological Foundation Full Project Grant (Named Investigator)

    Neurological Foundation of New Zealand

  • Neurological Foundation Travel Grant

    Neurological Foundation of New Zealand

    Assistance to attend EANO 2019 (Lyon, France from the 19th – 22nd of September 2019) and ESMO congress 2019 (Barcelona, Spain from the 27th – 1st of October 2019) ($4,200)

  • Neurological Foundation of New Zealand Small Project Grant (named investigator)

    Neurological Foundation of New Zealand

Organizations

  • University of Auckland

    Graduate Teaching Assistant

    -

More activity by Laverne

View Laverne’s full profile

  • See who you know in common
  • Get introduced
  • Contact Laverne directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Add new skills with these courses