Differential induction of donor-reactive Foxp3+ regulatory T cell via blockade of CD154 vs CD40

  • Author Footnotes
    † These authors contributed equally: Danya Liu and Hongmin Yao.
    Danya Liu
    Footnotes
    † These authors contributed equally: Danya Liu and Hongmin Yao.
    Affiliations
    Emory Transplant Center and Department of Surgery, Emory University, Atlanta, Georgia, USA
    Search for articles by this author
  • Author Footnotes
    † These authors contributed equally: Danya Liu and Hongmin Yao.
    Hongmin Yao
    Footnotes
    † These authors contributed equally: Danya Liu and Hongmin Yao.
    Affiliations
    Emory Transplant Center and Department of Surgery, Emory University, Atlanta, Georgia, USA
    Search for articles by this author
  • Ivana R. Ferrer
    Affiliations
    Emory Transplant Center and Department of Surgery, Emory University, Atlanta, Georgia, USA
    Search for articles by this author
  • Mandy L. Ford
    Correspondence
    Corresponding author. Mandy L. Ford, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5015 WMB, Atlanta, GA 30322, USA.
    Affiliations
    Emory Transplant Center and Department of Surgery, Emory University, Atlanta, Georgia, USA
    Search for articles by this author
  • Author Footnotes
    † These authors contributed equally: Danya Liu and Hongmin Yao.
Published:March 27, 2024DOI:https://doi.org/10.1016/j.ajt.2024.03.033

Abstract

Recently published studies in both murine models and a meta-analysis of non-human primate renal transplant studies showed that anti-CD154 reagents conferred a significant survival advantage over CD40 blockers in both animal models and across multiple organs. Here we sought to compare the induction of donor-reactive forkhead box P3+-induced regulatory T cells (Foxp3+ iTreg) in mice treated with anti-CD154 versus anti-CD40 monoclonal antibodies (mAbs). Results indicated that while treatment with anti-CD154 mAb resulted in a significant increase in the frequency of donor-reactive CD4+ Foxp3+ iTreg following transplantation, treatment with anti-CD40 or Cd40 deficiency failed to recapitulate this result. Because we recently identified CD11b as an alternate receptor for CD154 during alloimmunity, we interrogated the role of CD154:CD11b interactions in the generation of Foxp3+ iTreg and found that blockade of CD11b in Cd40−/− recipients resulted in increased donor-reactive Foxp3+ iTreg as compared with CD40 deficiency alone. Mechanistically, CD154:CD11b inhibition decreased interleukin (IL)-1β from CD11b+ and CD11c+ dendritic cells, and blockade of IL-1β synergized with CD40 deficiency to promote Foxp3+ iTreg induction and prolong allograft survival. Taken together, these data provide a mechanistic basis for the observed inferiority of anti-CD40 blockers as compared with anti-CD154 mAb and illuminate an IL-1β-dependent mechanism by which CD154:CD11b interactions prevent the generation of donor-reactive Foxp3+ iTreg during transplantation.

Keywords

Abbreviations:

APC (antigen-presenting cell), cM7 (C-EQLKKSKTL-C), DC (dendritic cell), dLN (draining lymph node), DST (donor-specific transfusion), Foxp3+ (forkhead box P3+), IL (interleukin), iTreg (induced regulatory T cell), LN (lymph node), M7 (EQLKKSKTL), mAb (monoclonal antibody), MACS (macrophages), MFI (median fluorescence intensity), MHC (major histocompatibility complex), MLR (mixed lymphocyte reaction assay), NHP (non-human primate), No Rx (no treatment), PBS (phosphate-buffered saline), RANTES (regulated upon activation, normal T cell-expressed and secreted protein), sc (scrambled control), sCD154 (soluble CD154), WT (wild-type)
To read this article in full you will need to make a payment

Purchase one-time access:

Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
One-time access price info
  • For academic or personal research use, select 'Academic and Personal'
  • For corporate R&D use, select 'Corporate R&D Professionals'

Subscribe:

Subscribe to American Journal of Transplantation
Already a print subscriber? Claim online access
Already an online subscriber? Sign in
Institutional Access: Sign in to ScienceDirect

References

    • Kirk A.D.
    • Burkly L.C.
    • Batty D.S.
    • et al.
    Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates.
    Nat Med. 1999; 5 (1999): 686-693https://doi.org/10.1038/9536
    • Larsen C.P.
    • Elwood E.T.
    • Alexander D.Z.
    • Ritchie S.C.
    • Hendrix R.
    • Tucker-Burden C.
    • Cho H.R.
    • Aruffo A.
    • Hollenbaugh D.
    • Linsley P.S.
    • Winn K.J.
    • Pearson T.C.
    Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways.
    Nature. 1996; 381 (1996): 434-438https://doi.org/10.1038/381434a0
    • Taylor P.A.
    • Friedman T.M.
    • Korngold R.
    • Noelle R.J.
    • Blazar B.R.
    Tolerance induction of alloreactive T cells via ex vivo blockade of the CD40:CD40L costimulatory pathway results in the generation of a potent immune regulatory cell.
    Blood. 2002; 99: 4601-4609https://doi.org/10.1182/blood.v99.12.4601
    • Wekerle T.
    • Kurtz J.
    • Ito H.
    • et al.
    Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment.
    Nat Med. 2000; 6: 464-469https://doi.org/10.1038/74731
    • Fehr T.
    • Takeuchi Y.
    • Kurtz J.
    • Wekerle T.
    • Sykes M.
    Early regulation of CD8 T cell alloreactivity by CD4+CD25- T cells in recipients of anti-CD154 antibody and allogeneic BMT is followed by rapid peripheral deletion of donor-reactive CD8+ T cells, precluding a role for sustained regulation.
    Eur J Immunol. 2005; 35: 2679-2690https://doi.org/10.1002/eji.200526190
    • Pinelli D.F.
    • Ford M.L.
    Novel insights into anti-CD40/CD154 immunotherapy in transplant tolerance.
    Immunotherapy. 2015; 7: 399-410https://doi.org/10.2217/imt.15.1
    • Kawai T.
    • Andrews D.
    • Colvin R.B.
    • Sachs D.H.
    • Cosimi A.B.
    Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand.
    Nat Med. 2000; 6: 114https://doi.org/10.1038/72162
    • Adams A.B.
    • Shirasugi N.
    • Jones T.R.
    • et al.
    Development of a chimeric anti-CD40 monoclonal antibody that synergizes with LEA29Y to prolong islet allograft survival.
    J Immunol. 2005; 174: 542-550https://doi.org/10.4049/jimmunol.174.1.542
    • Thompson P.
    • Cardona K.
    • Russell M.
    • et al.
    CD40-specific costimulation blockade enhances neonatal porcine islet survival in nonhuman primates.
    Am J Transplant. 2011; 11: 947-957https://doi.org/10.1111/j.1600-6143.2011.03509.x
    • Badell I.R.
    • Thompson P.W.
    • Turner A.P.
    • et al.
    Nondepleting anti-CD40-based therapy prolongs allograft survival in nonhuman primates.
    Am J Transplant. 2012; 12: 126-135https://doi.org/10.1111/j.1600-6143.2011.03736.x
    • Badell I.R.
    • Russell M.C.
    • Cardona K.
    • et al.
    CTLA4Ig prevents alloantibody formation following nonhuman primate islet transplantation using the CD40-specific antibody 3A8.
    Am J Transplant. 2012; 12: 1918-1923https://doi.org/10.1111/j.1600-6143.2012.04029.x
    • Lowe M.
    • Badell I.R.
    • Thompson P.
    • et al.
    A novel monoclonal antibody to CD40 prolongs islet allograft survival.
    Am J Transplant. 2012; 12: 2079-2087https://doi.org/10.1111/j.1600-6143.2012.04054.x
    • Liu D.
    • Ford M.L.
    CD11b is a novel alternate receptor for CD154 during alloimmunity.
    Am J Transplant. 2020; 20 (2020): 2216-2225https://doi.org/10.1111/ajt.15835
    • Perrin S.
    • Magill M.
    The inhibition of CD40/CD154 costimulatory signaling in the prevention of renal transplant rejection in nonhuman primates: a systematic review and meta analysis.
    Front Immunol. 2022; 13861471https://doi.org/10.3389/fimmu.2022.861471
    • Wolf D.
    • Anto-Michel N.
    • Blankenbach H.
    • et al.
    A ligand-specific blockade of the integrin Mac-1 selectively targets pathologic inflammation while maintaining protective host-defense.
    Nat Commun. 2018; 9: 525https://doi.org/10.1038/s41467-018-02896-8
    • Michel N.A.
    • Zirlik A.
    • Wolf D.
    CD40L and its receptors in atherothrombosis-an update.
    Front Cardiovasc Med. 2017; 4: 40https://doi.org/10.3389/fcvm.2017.00040
    • Wolf D.
    • Hohmann J.D.
    • Wiedemann A.
    • et al.
    Binding of CD40L to Mac-1's I-domain involves the EQLKKSKTL motif and mediates leukocyte recruitment and atherosclerosis--but does not affect immunity and thrombosis in mice.
    Circ Res. 2011; 109: 1269-1279https://doi.org/10.1161/CIRCRESAHA.111.247684
    • Aarts S.
    • Seijkens T.T.P.
    • van Dorst K.J.F.
    • Dijkstra C.D.
    • Kooij G.
    • Lutgens E.
    The CD40-CD40L dyad in experimental autoimmune encephalomyelitis and multiple sclerosis.
    Front Immunol. 2017; 8: 1791https://doi.org/10.3389/fimmu.2017.01791
    • Ochando J.C.
    • Homma C.
    • Yang Y.
    • et al.
    Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts.
    Nat Immunol. 2006; 7: 652-662https://doi.org/10.1038/ni1333
    • Ferrer I.R.
    • Wagener M.E.
    • Song M.
    • Kirk A.D.
    • Larsen C.P.
    • Ford M.L.
    Antigen-specific induced Foxp3+ regulatory T cells are generated following CD40/CD154 blockade.
    Proc Natl Acad Sci U S A. 2011; 108: 20701-20706https://doi.org/10.1073/pnas
    • Quezada S.A.
    • Bennett K.
    • Blazar B.R.
    • Rudensky A.Y.
    • Sakaguchi S.
    • Noelle R.J.
    Analysis of the underlying cellular mechanisms of anti-CD154-induced graft tolerance: the interplay of clonal anergy and immune regulation.
    J Immunol. 2005; 175: 771-779https://doi.org/10.4049/jimmunol.175.2.771
    • Kawai T.
    • Sogawa H.
    • Boskovic S.
    • et al.
    CD154 blockade for induction of mixed chimerism and prolonged renal allograft survival in nonhuman primates.
    Am J Transplant. 2004; 4: 1391-1398https://doi.org/10.1111/j.1600-6143.2004.00523.x
    • Ehst B.D.
    • Ingulli E.
    • Jenkins M.K.
    Development of a novel transgenic mouse for the study of interactions between CD4 and CD8 T cells during graft rejection.
    Am J Transplant. 2003; 3: 1355-1362https://doi.org/10.1046/j.1600-6135.2003.00246.x
    • Trambley J.
    • Bingaman A.W.
    • Lin A.
    • et al.
    Asialo GM1(+) CD8(+) T cells play a critical role in costimulation blockade-resistant allograft rejection.
    J Clin Invest. 1999; 104: 1715-1722https://doi.org/10.1172/JCI8082
    • Chen Y.
    • Heeger P.S.
    • Valujskikh A.
    In vivo helper functions of alloreactive memory CD4+ T cells remain intact despite donor-specific transfusion and anti-CD40 ligand therapy.
    J Immunol. 2004; 172: 5456-5466https://doi.org/10.4049/jimmunol.172.9.5456
    • Li Y.
    • Ma L.
    • Yin D.
    • Shen J.
    • Chong A.S.
    Long-term control of alloreactive B cell responses by the suppression of T cell help.
    J Immunol. 2008; 180 (2008): 6077-6084https://doi.org/10.4049/jimmunol.180.9.6077
    • Ferrer I.R.
    • Liu D.
    • Pinelli D.F.
    • Koehn B.H.
    • Stempora L.L.
    • Ford M.L.
    CD40/CD154 blockade inhibits dendritic cell expression of inflammatory cytokines but not costimulatory molecules.
    J Immunol. 2012; 189: 4387-4395https://doi.org/10.4049/jimmunol.1201757
    • Pinelli D.F.
    • Wagener M.E.
    • Liu D.
    • Yamniuk A.
    • Tamura J.
    • Grant S.
    • Larsen C.P.
    • Suri A.
    • Nadler S.G.
    • Ford M.L.
    An anti-CD154 domain antibody prolongs graft survival and induces Foxp3(+) iTreg in the absence and presence of CTLA-4 Ig.
    Am J Transplant. 2013; 13: 3021-3030https://doi.org/10.1111/ajt.12417
    • Gilson C.R.
    • Milas Z.
    • Gangappa S.
    • et al.
    Anti-CD40 monoclonal antibody synergizes with CTLA4-Ig in promoting long-term graft survival in murine models of transplantation. J Immunol.
    . 2009; 183: 1625-1635https://doi.org/10.4049/jimmunol.0900339
    • Taylor P.A.
    • Noelle R.J.
    • Blazar B.R.
    CD4(+)CD25(+) immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade.
    J Exp Med. 2001; 193: 1311-1318https://doi.org/10.1084/jem.193.11.1311
    • Burrell B.E.
    • Nakayama Y.
    • Xu J.
    • Brinkman C.C.
    • Bromberg J.S.
    Regulatory T cell induction, migration, and function in transplantation.
    J Immunol. 2012; 189: 4705-4711https://doi.org/10.4049/jimmunol.1202027
    • Liu D.
    • Ford M.L.
    CD11b is a novel alternate receptor for CD154 during alloimmunity.
    Am J Transplant. 2020; 20: 2216-2225https://doi.org/10.1111/ajt.15835
    • Brennan T.V.
    • Hoang V.
    • Garrod K.R.
    • et al.
    A new T-cell receptor transgenic model of the CD4+ direct pathway: level of priming determines acute versus chronic rejection.
    Transplantation. 2008; 85: 247-255https://doi.org/10.1097/TP.0b013e31815e883e
    • Rosenblum M.D.
    • Way S.S.
    • Abbas A.K.
    Regulatory T cell memory.
    Nat Rev Immunol. 2016; 16: 90-101https://doi.org/10.1038/nri.2015.1
    • Willecke F.
    • Tiwari S.
    • Rupprecht B.
    • et al.
    Interruption of classic CD40L-CD40 signalling but not of the novel CD40L-Mac-1 interaction limits arterial neointima formation in mice.
    Thromb Haemost. 2014; 112: 379-389https://doi.org/10.1160/TH13-08-0653
    • Raffin C.
    • Pignon P.
    • Celse C.
    • Debien E.
    • Valmori D.
    • Ayyoub M.
    Human memory Helios- FOXP3+ regulatory T cells (Tregs) encompass induced Tregs that express Aiolos and respond to IL-1beta by downregulating their suppressor functions.
    J Immunol. 2013; 191: 4619-4627https://doi.org/10.4049/jimmunol.1301378
    • Okimura K.
    • Maeta K.
    • Kobayashi N.
    • et al.
    Characterization of ASKP1240, a fully human antibody targeting human CD40 with potent immunosuppressive effects.
    Am J Transplant. 2014; 14: 1290-1299https://doi.org/10.1111/ajt.12678
    • Oura T.
    • Yamashita K.
    • Suzuki T.
    • et al.
    Long-term hepatic allograft acceptance based on CD40 blockade by ASKP1240 in nonhuman primates.
    Am J Transplant. 2012; 12: 1740-1754https://doi.org/10.1111/j.1600-6143.2012.04014.x
    • Song L.
    • Ma A.
    • Dun H.
    • et al.
    Effects of ASKP1240 combined with tacrolimus or mycophenolate mofetil on renal allograft survival in Cynomolgus monkeys.
    Transplantation. 2014; 98: 267-276https://doi.org/10.1097/TP.0000000000000236
    • Watanabe M.
    • Yamashita K.
    • Suzuki T.
    • et al.
    ASKP1240, a fully human anti-CD40 monoclonal antibody, prolongs pancreatic islet allograft survival in nonhuman primates.
    Am J Transplant. 2013; 13: 1976-1988https://doi.org/10.1111/ajt.12330
    • Anil Kumar M.S.
    • Papp K.
    • Tainaka R.
    • et al.
    Randomized, controlled study of bleselumab (ASKP1240) pharmacokinetics and safety in patients with moderate-to-severe plaque psoriasis.
    Biopharm Drug Dispos. 2018; 39: 245-255https://doi.org/10.1002/bdd.2130
    • Goldwater R.
    • Keirns J.
    • Blahunka P.
    • et al.
    A phase 1, randomized ascending single-dose study of antagonist anti-human CD40 ASKP1240 in healthy subjects.
    Am J Transplant. 2013; 13: 1040-1046https://doi.org/10.1111/ajt.12082
    • Malvezzi P.
    • Jouve T.
    • Rostaing L.
    Costimulation blockade in kidney transplantation: an update.
    Transplantation. 2016; 100 (2016): 2315-2323https://doi.org/10.1097/TP.0000000000001344
    • Cordoba F.
    • Wieczorek G.
    • Audet M.
    • et al.
    A novel, blocking, Fc-silent anti-CD40 monoclonal antibody prolongs nonhuman primate renal allograft survival in the absence of B cell depletion.
    Am J Transplant. 2015; 15: 2825-2836https://doi.org/10.1111/ajt.13377
    • Ristov J.
    • Espie P.
    • Ulrich P.
    • et al.
    Characterization of the in vitro and in vivo properties of CFZ533, a blocking and non-depleting anti-CD40 monoclonal antibody.
    Am J Transplant. 2018; 18: 2895-2904https://doi.org/10.1111/ajt.14872
    • Ulrich P.
    • Flandre T.
    • Espie P.
    • et al.
    Nonclinical safety assessment of CFZ533, a Fc-Silent anti-CD40 antibody, in Cynomolgus monkeys.
    Toxicol Sci. 2018; 166: 192-202https://doi.org/10.1093/toxsci/kfy196
    • Feldhoff L.M.
    • Rueda C.M.
    • Moreno-Fernandez M.E.
    • et al.
    IL-1beta induced HIF-1alpha inhibits the differentiation of human FOXP3(+) T cells.
    Sci Rep. 2017; 7: 465https://doi.org/10.1038/s41598-017-00508-x
    • Li L.
    • Kim J.
    • Boussiotis V.A.
    IL-1beta-mediated signals preferentially drive conversion of regulatory T cells but not conventional T cells into IL-17-producing cells.
    J Immunol. 2010; 185: 4148-4153https://doi.org/10.4049/jimmunol.1001536
    • Mailer R.K.
    • Joly A.L.
    • Liu S.
    • Elias S.
    • Tegner J.
    • Andersson J.
    IL-1β promotes Th17 differentiation by inducing alternative splicing of FOXP3.
    Sci Rep. 2015; 514674https://doi.org/10.1038/srep14674
    • Bosmans L.A.
    • Bosch L.
    • Kusters P.J.H.
    • Lutgens E.
    • Seijkens T.T.P.
    The CD40-CD40L dyad as immunotherapeutic target in cardiovascular disease.
    J Cardiovasc Transl Res. 2021; 14: 13-22https://doi.org/10.1007/s12265-020-09994-3
    • Natoli R.
    • Fernando N.
    • Madigan M.
    • et al.
    Microglia-derived IL-1β promotes chemokine expression by Muller cells and RPE in focal retinal degeneration.
    Mol Neurodegener. 2017; 12: 31https://doi.org/10.1186/s13024-017-0175-y
    • Wooff Y.
    • Man S.M.
    • Aggio-Bruce R.
    • Natoli R.
    • Fernando N.
    IL-1 family members mediate cell death, inflammation and angiogenesis in retinal degenerative diseases.
    Front Immunol. 2019; 10: 1618https://doi.org/10.3389/fimmu.2019.01618
    • Bian Z.M.
    • Field M.G.
    • Elner S.G.
    • Kahlenberg J.M.
    • Elner V.M.
    Distinct CD40L receptors mediate inflammasome activation and secretion of IL-1β and MCP-1 in cultured human retinal pigment epithelial cells.
    Exp Eye Res. 2018; 170: 29-39https://doi.org/10.1016/j.exer.2018.02.014

Linked Article

  • The emerging era of organ transplantation and anti-CD154mAb
    American Journal of Transplantation
    • Preview
      In 1999, Kirk et al1 published a manuscript demonstrating the surprising efficacy of anti-CD154mAb monotherapy in preventing renal allograft rejection in nonhuman primate (NHP) model. During the 1990s, 2 costimulation blockers, CTLA4-Ig and anti-CD154mAb, were heavily investigated in the setting of organ transplantation, typically in combination.2,3 Although the combination demonstrated promising efficacy in both murine and large animal models, targeting the CD40-CD40L signaling pathway yielded better outcomes than targeting the CD28-CD80/86 signaling pathway.
    • Full-Text
    • PDF
View full text