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In this groundbreaking work, computer sci¬ 

entist Leslie G. Valiant details a promising 

new computational approach to studying the 

intricate workings of the human brain. 

Focusing on the brain’s enigmatic ability 

to quickly access a massive store of accu¬ 

mulated information during reasoning 

processes, the author asks how such feats 

are possible given the extreme constraints 

imposed by the brain’s finite number of 

neurons, their limited speed of communica¬ 

tion, and their restricted interconnectivi¬ 

ty. Valiant proposes a “neuroidal model” 

that serves as a vehicle to explore these 

fascinating questions. 

While embracing the now classical theo¬ 

ries of McCulloch and Pitts, the neuroidal 

model also accommodates state information 

in the neurons, more flexible timing mecha¬ 

nisms, a variety of assumptions about 

interconnectivity, and the possibility that 

different brain areas perform specialized 

functions. Programmable so that a wide 

range of algorithmic theories can be 

described and evaluated, the model provides 

a concrete computational language and a 

unified framework in which diverse cogni¬ 

tive phenomena—such as memory, learn¬ 

ing, and reasoning—can be systematically 

and concurrently analyzed. 

Requiring no specialized knowledge. Cir¬ 

cuits of the Mind masterfully offers an 

exciting new approach to brain science for 

students and researchers in computer sci¬ 

ence, neurobiology, neuroscience, artificial 

intelligence, and cognitive science. 
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Preface 

It has been said that science can be defined as any discipline in 

which a fool of this generation can go beyond the point reached 

by a genius of the last. It is perhaps surprising that any field of 

endeavor can satisfy this strict criterion, but there is little doubt 

that some do. In fields that do, it appears that continuous progress 

is possible for long periods almost routinely. In the established 

physical sciences, for example, a rich intellectual structure has 

been uncovered that reveals at any time a wide range of unsolved 

problems or puzzles. Solutions to these provide increased under¬ 

standing of the field and further enrich the structure. As long as 

successful problem solving continues, progress is close to being 

guaranteed. The possibility of almost routine progress of this na¬ 

ture appears to be a fundamental aspect of science. Even if it is 

not the most celebrated aspect, it may be the most characteristic 

one. 

The study of cognition and the mind has probably not yet ma¬ 

tured to the stage where routine progress is possible or the given 

criterion of science satisfied. The questions that one would think 

of as central have yet to be found formulations that reduce them 

to problem solving. Although several sciences are encroaching on 

this area, it is questionable whether they have succeeded in occu¬ 

pying its center. The main task for the present, therefore, may be 

viewed as a prescientific one. What is the most promising way 

to proceed in order to find the intellectual structure within which 

at least some central questions can be formulated and reduced to 

problem solving? 

This volume suggests one avenue. It places at the center of 

the investigation some simple tasks of memory and learning, and 
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advocates that these tasks be investigated by means of detailed 

computational models. The primary content is technical. It con¬ 

sists of a definition of a model together with descriptions of how 

a variety of tasks can be realized by programming this model ap¬ 

propriately. For the purpose of motivating the choices made and 

evaluating what is demonstrated, additional material is included 

that references findings in cognitive psychology, neuroscience, and 

computer science. We have kept these references brief, and nec¬ 

essarily incomplete, so as not to divert attention from the primary 

theme. It is clear, however, that the ultimate value of the approach 

will depend on how successfully some of these connections can be 

made in the future. 

The model that will be defined is that of a system of model 

neurons that will be called neuroids. Its ultimate purpose is to 

bring within the scope of analysis some significant aspects of cog¬ 

nition. There are several disciplines that have similar aims and it 

is pertinent to ask at the start how the neuroidal model relates to 

models currently used in these various fields. A very rudimentary 

answer that conveys at least some of the basic intentions of the 

model and the positioning of this study would go as follows. The 

models that neuroidal systems offer are intended to be more unified 

and computationally detailed than those typically used in cognitive 

psychology, more programmable and of broader functionality than 

those in the field of neural networks, at a higher systems level than 

in neuroscience, and subject to more realistic resource constraints 

than those typical in artificial intelligence. Thus in these various 

respects the model is intended to offer something to each of these 

areas. 

Since the use of unambiguous models is advocated, formal no¬ 

tation is frequently used in the text. Formalisms are needed both 

for the purpose of expressing programs as well as for analyzing 

them. The neuroidal model may be viewed as a programming 

language and those familiar with standard programming languages 

will be able to devise their own programs for this model with little 

difficulty. For the purpose of analyzing the algorithms some ele¬ 

mentary probability theory is used. This is done sparingly except 

in the one chapter toward the end. The essential points of each 

chapter are intended to be accessible to those motivated readers 
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who do not wish to delve too deeply into either kind of formal 

notation. The mathematically sophisticated will know how to skip 

formulae. This skill is easy to practice for others also. 

This project has taken a long time to come to fruition. A sabbat¬ 

ical leave at Oxford University allowed me to write a preliminary 

paper. Subsequent work on this book was completed at Harvard 

University and at the NEC Research Institute in Princeton, New 

Jersey. I am grateful to all three institutions for providing me with 

the opportunity for pursuing such a speculative line of research. I 

am also grateful to the National Science Foundation, the Office of 

Naval Research, and the Advanced Research Project Agency for 

funding my research at Harvard in this and other areas over many 

years. 

In the course of these years I have had valuable conversations 

with numerous colleagues on the range of topics that this volume 

addresses. My gratitude goes to those who provided an informa¬ 

tive comment, a word of encouragement, or, in several cases, a 

concerned look. A few devoted many hours to reading all or parts 

of a preliminary version of this manuscript and provided some 

valuable comments and advice. I am particularly indebted in this 

regard to Dana Angluin, Eric Baum, Richard Hermstein, Philip 

Johnson-Laird, Roni Khardon, Christof Koch, Hector Levesque, 

Wolfgang Maass, Dan Roth, and David Waltz. 

The manuscript in its many versions was typeset initially in 

DTgX by Carol Harlow. I am grateful for her endless patience and 

good humor. 

Finally, I have to thank my immediate family — Gayle, Paul, 

and Gregory — for providing inspiration in their various ways. 
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Chapter 1 
The Approach 

Consider what happens when a person is exposed to a surpris¬ 

ing juxtaposition of words as occurs sometimes in the title of a 

new book. The experience causes some adjustments in the brain, 

one must presume, since the presentation of the same sequence of 

words at a later time may elicit some form of recognition. Memo¬ 

rization of this kind requires few preconditions. The phrase to be 

memorized may be almost any combination of intelligible words, 

and the presentation of it may be very brief in time. Also, memo¬ 

rization has a certain robustness in the sense that it does not appear 

to interfere with unrelated knowledge previously memorized. 

Even for an apparently simple phenomenon as this no widely 

accepted theory exists that can explain how the brain accomplishes 

it. Worse still, no theories appear to exist that explain how any 

mechanism that even remotely resembles the brain in structure and 

quantitative parameters could give rise to the variety of such basic 

phenomena that human brains appear to exhibit. 

Our purpose in this monograph is twofold. The first is to show 

that this challenge can be formulated in a concrete manner. It is 

possible to attempt plausible specifications both of the cognitive 

functions that are to be explained, as well as of some compu¬ 

tational models that capture the brain’s basic capabilities. Such 

specifications help in contributing provocative questions about the 

central problems and make the difficulties harder to evade. We 

shall suggest some candidates for these cognitive functions and 

computational models. If these choices turn out to be right, then 

an algorithmic explanation will exist of how these functions are 

1 



2 The Approach 

indeed supported in the brain. If the choices are inaccurate then 

alternative choices of a similarly unambiguous nature will need to 

be found and explored. 

The second of our purposes is to point out that the insights gained 

in recent decades from thinking about computation may provide a 

powerful new methodology for approaching the understanding of 

cognition and of its basis in the brain. Our thesis is that if the 

computational analogy has borne only limited fruit to date it is not 

because it is fundamentally flawed, but because it has not been 

taken far enough. By this we do not imply that the brain is at all 

similar to an electronic computer. What we mean is that the same 

methodology should be used for understanding the computational 

power of the brain as has been used for understanding the power of 

the wide variety of computational models that have been studied. 

A computational account of the workings of the brain would 

consist of three parts. First, one needs a specification of the cog¬ 

nitiveor tasks for which an explanation is sought. These 

could include rote learning or memorization, as illustrated in the 

above example, as well as recall, inductive learning, and any other 

task that is regarded as basic to cognition. The specifications need 

to be unambiguous. They also need to accurately capture essen¬ 

tial aspects of the respective phenomena. Second, there has to be 

a description of the basic model of computation. In the cerebral 

context this would include definitions of the individual components 

that correspond to neurons, as well as of the connections through 

which they communicate with each other. Such a model would 

need to incorporate parallelism (i.e., simultaneous computational 

processing in many places) and hence differ from the current stan¬ 

dard for electronic computation, the von Neumann model. Lastly, 

one has to specify the computational mechanisms or algorithms 

that enable the underlying model to realize the claimed functions 
or tasks. 

Putting together such an account for even the superficially sim¬ 

plest tasks, such as memorization, becomes problematic as soon 

as we try to keep faith with the gross quantitative parameters that 

the brain is known to have. One major constraint is speed. Indi¬ 

vidual neurons in the cortex are slow. They are thought to have 

basic switching times of between 1 and 10 milliseconds. In con- 
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trast, humans can perform significant tasks of scene recognition 

in 100-200 milliseconds, tasks that no one knows how to perform 

by computer, even in principle, in any amount of time. In other 

words, in a few hundred steps at most the brain can do tasks that are 

currently beyond our imagination to even specify. The sparseness 

of the interconnections relative to the total number of neurons is 

another important constraint, since this limits the means by which 

neurons can communicate with each other. A third constraint is the 

finiteness of the number of neurons. Any proposal has to respect 

the actual bounds on this number. 

The mystery is added a final twist by the issue of learning. 

Many recognition tasks that are easy for children but currently im¬ 

possible for computers, such as identifying a chair or other artificial 

concepts, must have a large learning component, since it is implau¬ 

sible that humans have these capabilities entirely preprogrammed 

at birth. Hence our problem is not merely to explain how such 

recognition tasks can be implemented on a fixed number of slow, 

sparsely connected neurons by clever programmers. The question 

is even more daunting. How can slow, sparsely connected neurons 

program themselves to do these tasks using knowledge derived 

from interacting with the world? 

This stark tension between the brain’s substantial functionality 

and its severely restricted computational resources is sometimes 

interpreted as evidence that the problem is too difficult in the cur¬ 

rent state of knowledge and cannot be pursued fruitfully in the 

foreseeable future. We choose to interpret it in the opposite di¬ 

rection. When a problem is severely constrained it may be easier 

to investigate merely because the number of plausible avenues to 

search are few, and even the first one found may yield valuable 

insights. 

Since the severity of the constraints is the leverage that we hope 

to exploit, we shall maximize it by focusing on a class of tasks 

to which sparsely connected, slow neurons seem the least suited. 

We call these random access tasks because the attribute that they 

share is that the execution of any one of them has the potential to 

involve any part of memory. For example, the aforementioned task 

of memorizing a new book title that consists of the juxtaposition 

of an almost arbitrary pair of words potentially requires access to 
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any of the words the reader already knows. Associating the book 

with a subject, an event, or an owner requires further access to 

information in memory that may be almost arbitrarily unrelated to 

the words in the title. All the problems we shall consider have 

this flavor. For each one we shall give the simplest formulation 

that, we believe, captures at least some fundamental computational 

hurdle that must be overcome. 

As we are focusing on tasks of a specific nature, it will be con¬ 

venient for the sake of conceptual simplicity to separate the device 

that performs them from the devices that do not. We shall there¬ 

fore hypothesize a device which we call a neuroidal tabula rasa 

(NTR) which is capable of computing the relevant random access 

tasks. We delegate all other tasks to various peripheral devices. 

Since the main challenge for the NTR is to overcome some funda¬ 

mental quantitative barriers associated with random access tasks, 

our strategy will be to make the NTR as simple as possible in 

other respects. We shall, therefore, consider the NTR to be essen¬ 

tially free of preprogrammed knowledge, other than some generic 

algorithms needed to realize the basic random access tasks. The 

many cognitive processes that appear to require a large amount 

of preprogrammed knowledge are therefore the domain of the pe¬ 

ripherals. These include low level sensory processing such as that 

of early vision, as well as, for example, the interpretation of the 

three dimensional world, which appears to be essential for some 

animals from the moment of birth. We shall also hypothesize the 

existence of some peripherals that are needed to mediate between 

the NTR and the senses. One example is an attentional mechanism 

that is able to focus on one part of the input scene at a time, and to 

present the attributes of each part to the NTR at distinct times. We 

do not detail how the peripherals perform their tasks. This is not 

inconsistent with our methodology as long as we do not require 

the peripherals themselves to perform random access tasks, which 

we do not. Also, it is not inconsistent to allow the peripherals 

to request the NTR to perform random access tasks for them as 
needed. 

We note that the clear separation we impose between the NTR 

and the peripherals is a conceptual device adopted for the sake of 

ease of analysis. The question of whether the two kinds of func- 
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tions are spatially integrated, which they may well be in biological 
systems, or separate, is not of primary relevance to our analysis 
here. More detailed models will need to take more detailed posi¬ 
tions on this question in the future. The hippocampus, for example, 
is known to be closely involved in laying down long term mem¬ 
ory in cortex. Although its exact role is not currently understood, 
it appears to interact with the cortex over a long period, perhaps 
several weeks, in order to perform its function. It may be thought 
of as a peripheral that is involved in facilitating the functions of 
the NTR itself, rather than in mediating or processing sensory data 
directly. 

We shall start by giving a little relevant background in neuro¬ 
biology, computer science, and cognition in each of the next three 
chapters. Our aim is to explain our computational methodology and 
to suggest that ultimately computational models should be able to 
bridge the gap between the neurobiological level and the level of 
cognitive behavior. 

In Chapters 5 and 6 we shall give a definition of the neuroidal 
model of the NTR. It specifies the computational power of each 
component and how the components are connected in a sparse 
network. In subsequent chapters we specify algorithms for a va¬ 
riety of simple tasks that formalize memorization and inductive 
learning, among others. In Chapter 14 we show that the network 
assumptions made in Chapter 6 can be relaxed substantially, to 
better approximate biological reality, without the model losing the 
computational capabilities already demonstrated for it. 

Chapters 11 to 13 deal with more complex functions, such as 
the representation of relations among several objects, and simple 
reasoning. Here computational explanations are given in terms of 
more complex interactions between the NTR and the peripherals. 
Since we do not define the workings of the peripherals to any 
degree of precision, the relevant descriptions in these later chapters 
are less complete than in the earlier ones. 

Taken together the various computational mechanisms described 
provide a unified view of cognition. Basically there is a cognitive 
substrate of a few simple functionalities, such as memorization. 
When an instance of one of these functionalities is executed as a 
result of some interaction with the environment or of some internal 
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process, some neural circuit may be modified. This modification 

can be seen as representing the acquisition of a piece of knowledge 

or skill. These individual acquisitions we view as giving rise or 

contributing to what we shall call reflexes. Each such reflex is 

simple in itself and may be viewed as a tiny amount of incremental 

information in the whole system. Nevertheless, when operating 

together these reflexes provide an effective mechanism for coping 

in a complex world. Intelligent behavior is then a phenomenon 

that arises out of the interactions of the myriad of such reflexes 

with each other, and with the external world. 

If this view is essentially correct then it should be possible to 

identify the functionalities that constitute the substrate, namely 

those required to acquire, invoke, and maintain circuits for these 

reflexes. Whether or not the candidates considered in this book 

turn out to be correct, we believe that analysis to the level of de¬ 

tail we consider here, and beyond, will be required to identify the 

constituents of this substrate. 

In conclusion, we emphasize that many of the differences be¬ 

tween our theory and that of others derive from differences in 

approach or emphasis. Subtle differences in starting philosophy 

can lead to widely different outcomes. At some risk of oversim¬ 

plification, one can attempt to characterize the various approaches 

according to how they deal with the three levels of function, al¬ 

gorithm and computational model, that we mentioned earlier.^ For 

example, in the last century Boole aimed to “investigate the fun¬ 

damental laws of those operations of the mind by which reason¬ 

ing is performed.” In other words, he believed that one can make 

progress by analyzing the functional level in isolation. Marr, work¬ 

ing more recently, also believed that analysis at the functional level 

is crucial, but emphasized, in addition, that any mechanisms that 

are suggested have to be computationally feasible in the nervous 

system. Newell based what he called his unified theory of cog¬ 

nition on the mechanism of production systems at the algorithmic 

level, with less emphasis on specifications at the functional level 

or on models of computation at the neural level. The connectionist 

or neural network approach can be viewed as being similar except 

that the algorithmic level chosen is closer to the neural level. 

The approach we are advocating here can be characterized as one 
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based on “resource constrained tension between the functionality 

and the computational model.” We believe that this constitutes 

the most basic computational approach. It can be summarized as 

consisting of three components: (a) formalizations of a range of 

cognitive functions, (b) a model of neural computation, and (c) 

the requirement that (a) be implementable on (b) within plausible 

resource bounds. If the range of functions is too restricted, or if 

the model of computation is too powerful to be realistic, then a 

plethora of ways of satisfying (c) exist, too many to resolve among. 

Experimentation designed to falsify them one by one will result in 

imperceptibly slow progress. On the other hand, as the range of 

functions is widened and the model restricted to match reality, the 

number of satisfying solutions diminishes toward zero only too 

rapidly. We believe that it is exactly within such a constrained 

problem formulation that it is most worthwhile to persevere in 

seeking a solution. As long as the functions and model are chosen 

with reasonable taste some such solution must exist, and if the 

problem is constrained sufficiently, the solution found will be close 

to the right one. 

Suppose that on a distant planet we one day find some robots that 

have some very interesting and complex behavior that we would 

like to understand better. We could study their components and ar¬ 

chitecture much as a neurobiologist studies the brain, and construct 

theories of their general computational capabilities. Alternatively 

we could perform experiments on their behavior like a psycholo¬ 

gist might, and construct theories of that behavior. But suppose 

that when these approaches are pursued separately they are not suf¬ 

ficient to yield the sought after insights. A third approach would 

be to try to imagine how one might build systems that resemble 

the robots in behavior, using components that resemble those that 

they are built from. This is basically the computational approach, 

in which one constructs a theory that accommodates both of the 

above viewpoints simultaneously and that also accounts for the 

computational resources such as time and hardware. 

As a concrete illustration of how we pursue this approach, con¬ 

sider again the problem of memorizing a new book title, which 

we raised at the beginning of this chapter. In later chapters we 

shall describe a computational mechanism for realizing this task 
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that is not inconsistent with the gross neurobiological constraints 

as we interpret them. At the time of writing much uncertainty 

still surrounds the nature and parameters of these constraints and 

it is therefore not clear what claims we can make regarding that 

particular mechanism. Nevertheless, in the broader endeavor one 

needs to choose somewhere to begin. 



Chapter 2 
Biological Constraints 

2.1 Introduction 

The idea that understanding the biological brain may lead to a bet¬ 

ter understanding of ourselves is a tantalizing one. It is no doubt 

responsible for the substantial research efforts that have been de¬ 

voted to the brain over the last century, and that continue with 

increasing momentum. Clearly much has been achieved and sub¬ 

stantial volumes are devoted to summarizing some of the known 

information.^ 

The history of this science has been punctuated with a series of 

striking discoveries and the development of some very powerful 

experimental techniques. In the 1880s Ramon y Cajal was among 

a number of neuroanatomists who suggested the so called neuron 

doctrine, which asserted that the brain consisted of cells or neu¬ 

rons that were discrete and physically separate from each other. 

Sherrington subsequently suggested the word synapse for the gaps 

between neurons at the points at which they came close to touch¬ 

ing. The neuron doctrine eventually won general acceptance. In 

the 1920s Adrian and Zotterman recorded electrical impulses from 

single nerve fibers. This confirmed the view that long-range com¬ 

munication along nerves was electrical, but the question of how 

neurons communicated with each other at synapses remained open 

until Eccles provided evidence that this was chemical. A detailed 

theory of how axons produced electrical impulses, or action poten- 

9 
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tials, was finally offered by Hodgkin and Huxley in 1952. Thus, 

by the middle of this century, substantial progress had been made 

toward understanding the basic nature of the constituents of the 

brain. 
Although at the more macroscopic or systems level an equally 

great amount is known, relatively less is understood. Specula¬ 

tions attributing various mental faculties to particular areas of the 

brain have been made since at least the Middle Ages. Through the 

study of brain-damaged patients one can attempt to more system¬ 

atically associate specific parts of the brain, namely those that are 

damaged, with the intellectual deficits that the individuals have suf¬ 

fered. Associations between brain areas and functionality can also 

be made by electrical recordings and by recently developed nonin- 

trusive techniques for measuring the distribution of blood flow in 

the brain while a subject is performing various activities. Through 

anatomical studies one can investigate which parts of the brain are 

connected to each other directly and which are not. 

In spite of the wealth of knowledge that has now accumulated, 

the main questions of how the brain represents information and 

how it processes it are essentially unresolved. Indeed, there is 

little consensus as to how close we are to finding answers to them. 

Fortunately, this book is not about the whole brain, or, for that 

matter, the whole mind. It is about specific kinds of memory and 

learning tasks that we call random access tasks. In this chapter we 

shall summarize those known facts about the brain that we con¬ 

sider to be most relevant to these functions. As will become clear, 

there are many simple questions to which answers are currently 

unavailable or uncertain. A conservative theoretician may choose 

to await the resolution of these before putting forward any theory. 

Our view here is, to the contrary, that theoretical models may even 

now have an important role to play. They may help to highlight the 

parameters that govern the basic characteristics of cortical compu¬ 

tations, and hence encourage a greater experimental effort toward 

determining their values. 
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2.2 The Neocortex 

The average adult human brain weighs about 1.4 kilograms and 

most of it is covered with a fairly uniform outer layer called the 

cortex. All the evidence points to the cortex as being the main seat 

of memory and higher brain functions, and hence the correct focus 

of our study. With the exception of a small part of it that is older in 

terms of evolutionary history, the majority of the cortex is believed 

to have evolved at the time of the appearance of mammals. For 

this reason this larger part is called the neocortex. For the sake of 

brevity, we shall often refer to it simply as the cortex. 

In addition to its size and relative youth the neocortex has a 

further feature in terms of evolutionary history. It is a part of the 

brain that has grown explosively in relation to most other parts 

since humans evolved from early primates. We interpret this fact 

as an encouraging indicator for our study. It suggests that the neo¬ 

cortex is organized along principles that scale well with size. This 

scalability may have some principle underlying it that is simple 

enough that we may have a chance of discovering it. 

Random access tasks are those that may need information from 

any part of memory. Hence communication over large physical 

distances within the brain is of central concern. Fortunately, the 

cortex is based on one very simple unifying principle in this regard. 

Long distance connections are realized in the main by one class of 

cells, called pyramidal cells. Furthermore, they form the majority 

of the neurons in the cortex. Therefore, as a first approximation, 

we can think of the cortex as being a network of these cells. 

The human cortex, sometimes called the gray matter, is a layer 

of tissue having many convoluted folds, typically a little more than 

2000 square centimeters in total area and a little more than 2 mil¬ 

limeters in average thickness. The cell bodies of the 10'^ or so 

pyramidal cells reside in this thin layer. Each of these cells has 

a very long fiber called the axon that is about 0.0003 millimeters 

wide but up to several centimeters long, sometimes traversing the 

brain. The axon typically leaves the gray matter in the vicinity of 

its cell body, and travels within the so-called white matter for most 

of its length before reentering the gray matter at another location. 
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The white matter is best viewed as a cable box through which a 

vast amount of long distance communication is realized. Even in 

the technology of the remarkably thin axons, this cable box takes 

up a substantial volume. Figure 2.1 illustrates a section in the hu¬ 

man brain. The large light area in the center is the white matter 

which is to be contrasted with the thin outside layer that is the 

gray matter of the neocortex. It is striking how sharply the former, 

which implements communication, is distinguished from the latter, 

which is believed to be responsible for computation and informa¬ 

tion storage. Sections across the brain at lower levels would cut 

parts, such as the brain stem, that are more ancient in evolution¬ 

ary terms. They would show much more intricate structure and 

suggest special purpose functionality. 

Much effort has been put into identifying the particular func¬ 

tions performed by each part of the cortex. This is a difficult 

task since many functions appear to be distributed over several 

areas, and most areas perform apparently very complex, possibly 

overlapping, functions. The areas that have proved the easiest to 

investigate are the motor areas and the primary sensory areas. The 

latter can be subdivided into primary visual, auditory, somatic sen¬ 

sory, and olfactory areas, which are those parts of cortex that are 

connected most directly with the organs of vision, hearing, touch, 

and smell, respectively. These sensory areas are conventionally 

termed unimodal because they appear to be influenced primarily 

by inputs coming from one of these senses. They are connected 

in turn, via pyramidal cell axons, to higher and higher areas which 

are ultimately multimodal. Cells in these latter areas respond to 

combinations of stimuli from two or more of the senses. 

There is no consensus on the number of cortical areas that it is 

useful to distinguish by function. Some have put this number in 

the hundreds. It is perhaps in the visual area where most detailed 

maps of the various areas have been made. Thus the primary visual 

area, which contains essentially a two dimensional projection of the 

image on the retina, is at the back of the head and is connected by 

axon bundles to a series of higher and higher level regions forward 
of it. 
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Figure 2.1. Horizontal section of human brain showing the thin layer of gray 
matter of the neocortex surrounding the large volume of white matter. The line 
in the inset shows the location in the brain of the section. From S.J. DeAr- 
mond, M.M. Fusco, and M.M. Dewey, Structure of the Human Brain, Oxford 
University Press 1976. 
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Electrical recordings show that, in the primary visual area, in¬ 

dividual cells respond to characteristics of the scene that are local 

to a small region of the scene (e.g. color in a small region). At 

higher levels individual cells respond to what are characteristics of 

much larger parts of the scene. For example, in the inferotempo- 

ral cortex (IT), which is generally regarded as a unimodal visual 

area, there are large populations of cells that respond strongly to 

the sight of faces, but not to a wide variety of other stimuli. Fur¬ 

thermore, various subpopulations of these are selective to different 

features of faces. They respond in different ways depending on 

whether the face is frontal or in profile, or whether the eyes are vis¬ 

ible (R. Desimone, T.D. Albright, C.G. Gross and C. Bruce 1984, 

C.G. Gross 1992). 

While much emphasis has been placed on finding differences 

in function among the various parts, it is generally accepted that 

the physiology of the cortex is highly uniform. Experiments have 

shown that if the connections from the sensory organs to the vi¬ 

sual and auditory cortices of certain young mammals are inter¬ 

changed, significant functionality is retained nevertheless (M. Sur 

et aL 1988). It may be that the differences in function among 

the various areas of the cortex are due more to where they are 

connected to, rather than their intrinsic characteristics. 

One pervasive phenomenon of the connections between areas 

of the cortex is reciprocity. Whenever there is an axon bundle 

going from one to the other, there is usually another going in the 

reverse direction. Such feedback is clearly helpful to computation 

of almost any nature. Whether the reciprocity is point to point (i.e. 

whether a connection between two cells in one direction is more 

likely than not to have a precise reverse connection) is currently 

unknown. 

Another question concerns the pattern of connections between 

two regions. In low level visual areas, where the regions process 

two-dimensional projections of the visual scene, it is known that 

many of the connections are topographic or parallel (i.e. they 

connect corresponding points of the projections of the scene being 

viewed.) The nature of the connections in higher areas is much 

less well understood and may be more random. 

A further issue is whether cortex should be viewed as consisting 
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of modules at a larger scale than single neurons. Candidates for 

such modules have been called columns, microcolumns or assem¬ 

blies. The candidate units that have been suggested vary in size 

from tens to tens of thousands of neurons. There is ample evidence 

that in the primary visual area functional units exist that are per¬ 

haps one millimeter across. The extent to which this characteristic 

is shared by cortical areas in general is currently unresolved. 

The organization of the brain has been examined from many 

viewpoints. One finding is that the brains of humans are remark¬ 

ably similar to those of other mammals. It has been argued that, 

with respect to basic components and overall organization, it is 

difficult to distinguish the brain of a human from that of a cow. 

The only striking difference is in the relative sizes of the various 

components. Thus the evolution of the human brain may have been 

primarily an enlargement of various parts in various proportions, 

along the lines of a uniform scalable master plan. 

Within the human brain there is no question that the neocortex 

has enlarged enormously, as compared with the older parts of the 

cortex and the rest of the brain. The sizes of the various parts of the 

human brain have been compared with those of the most primitive 

mammals. One such tabulation that makes an appropriate compen¬ 

sation for body weight shows that the neocortex has grown most, 

by a factor of 180 relative to these primitive mammals, while the 

cerebellum associated with motion coordination has a correspond¬ 

ing factor of 21, and the olfactory cortex responsible for smell 

comes a poor last at 0.3, reflecting the relative weakness of our 

species in that area.^ 

The relative changes in size of the various constituent parts 

within the neocortex have also been significant. In mammals like 

rats a large fraction of the neocortex appears to be committed to the 

motor and primary sensory areas. In apes, and even more so for 

humans, this fraction is small, and the larger part of it performs 

activities that have proved more difficult to characterize but are 

conventionally associated with higher level multimodal functions. 

It is possible that in addition to the massive quantitative growth, 

there have also been significant qualitative changes in the course of 

the evolution of the human brain. Identifying any specific changes 

has proved elusive. The most obvious functional novelty is per- 
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haps the development of speech, and consequently the speech areas 

of the cortex have been conjectured by some as locations where 

significant changes may have taken place. It is not known whether 

these areas are old areas that have been coopted to perfomi a new 

function, or whether they evolved recently. 

Since human evolution apparently occurred suddenly in com¬ 

parison with the overall biological time scale, it is probable that 

the accompanying qualitative changes in the brain were relatively 

small. If the functionalities that we discuss and find algorithms for 

in later chapters are acceptable descriptions of cognitive functions 

in the brain, then they must have come into existence at some time. 

Hence this study can be viewed as providing a vocabulary for dis¬ 

cussing the evolution of the brain. It is quite possible, of course, 

that all the particular functionalities we consider here correspond 

to faculties acquired during prehuman evolution. Whether or not 

this is true, the qualitative changes that accompanied the evolution 

of humans may well be expressible in the general framework we 

use to describe the various functionalities. 

It is also conceivable that the central evolutionary development 

that separated humans from other species was an essentially quan¬ 

titative, rather than a qualitative one. The measure that would be 

held responsible for any distinguishing characteristics of the human 

intellect is not, however, self-evident. The quantitative measures 

in which humans surpass all other species are not necessarily the 

most obvious ones. Whales have larger brains than we have and 

some monkeys have higher brain to body weight ratios (R.E. Pass- 

ingham 1982). Curiously, one measure that does appear to put 

humans at the top is the fraction of the brain by weight that is 

accounted for by the cortical white matter (M.A. Hofman 1989). 

Thus the human brain devotes an exceptional amount of hardware 

to long distance communication, which is exactly the commodity 

needed for realizing random access functions as we define them. 

This provides some circumstantial evidence that the ability to per¬ 

form random access tasks in some generality is central to human 

cognition, and may even characterize it. 
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2.3 Pyramidal Neurons 

Pyramidal neurons provide the principal mechanism for perform¬ 

ing long distance communication in the cortex. Each one has a 

cell body that resides in the gray matter and a long axon that typi¬ 

cally leaves the gray matter near the cell body, passes through the 

white matter to a distant part of the cortex, sometimes in the oppo¬ 

site hemisphere, reenters the gray matter there, and then splits into 

numerous branches to form an axonal branching. Typically the 

cell has a second set of axonal branchings, the local branchings, 

that leave the axon near the cell body and stay within its vicinity 

perhaps within 1 millimeter. These axonal structures carry the out¬ 

put of the computation performed by the neuron. The inputs are 

gathered via a dendritic tree that is entirely in close proximity to 

the cell body. An axonal branch of one cell sometimes comes in 

very close proximity to a point in the dendritic tree of another cell 

to form a synapse. Electrical activity in the former (or presynap- 

tic) cell can cause chemical changes at the synapse and thereby 

influence electrical activity in the latter {postsynaptic) cell. 

Each neuron is surrounded by a membrane. When the neuron 

is at rest the electrical potential inside the membrane is about 70 

millivolts less than on the outer surface. The major electrical event 

in a cell is an action potential or spike, which is a momentary re¬ 

versal of the potential, such that the potential inside the membrane 

becomes more, by say 40 millivolts, than on the outside. This 

impulse, which has a duration of a millisecond or so, is initiated 

at the cell body and travels down the axon to all the branches. 

At a synapse this action potential may influence the potential in 

the postsynaptic cell by an amount called the postsynaptic poten¬ 

tial (PSP). Remarkably, the effect of a pyramidal cell is always 

to increase the postsynaptic potential (i.e. the PSP is positive). 

For this reason pyramidal cells are called excitatory. In the cortex 

there exist nonpyramidal cells that have the opposite effect (i.e. 

are inhibitory) but these do not have long axons and are fewer in 

number overall. In addition to whatever part they have in com¬ 

putation, their role may also include other functions. They may 

be needed to subdue overall activity, or to select the most intense 
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activity among several by suppressing the others. 

In the dendritic tree of the postsynaptic cell the PSPs of the 

synapses are somehow integrated. If the overall effect is large 

enough then the postsynaptic cell initiates an action potential in its 

cell body and axon, or, in other words, fires. The exact mechanism 

that integrates the PSPs is a complex one, and the overall result 

may depend on the relative positions on the dendritic tree of the 

synapses that participate, as well as the exact times at which the 

various presynaptic neurons hre. If they fire simultaneously, for 

example, they have a larger effect than otherwise. A rough first 

approximation to what happens is that the various PSPs are added 

up and if their sum exceeds a certain threshold, say 20 millivolts, 

then the cell fires. We shall use this linear additive mechanism 

as the basis for our model. We do not have any evidence at the 

moment suggesting that the more complex nonlinear phenomena 

that have been observed within dendritic trees could be useful for 

implementing random access tasks, although they may have other 

important roles. 

Action potentials appear to be stereotyped. The time profile 

of the impulse as it travels along any one axon appears to be 

essentially the same every time. Hence the information carried by 

a spike must be captured entirely by the instant in time at which 

it arrives. Beyond that, it is believed, little information is carried. 

This still leaves a broad range of possibilities. Information may 

be encoded in the average rate at which the spikes are produced, 

in the temporal gaps between successive spikes, or in the relative 

simultaneity of firings of a collection of several neurons. All three 

of these mechanisms may have a role, and they may be used in 

different ways in different parts of the brain. 

The actual values of the various numerical parameters that char¬ 

acterize the cortex are clearly crucial to any theory of its function¬ 

ing. Since our current knowledge of these parameters is incom¬ 

plete, we need to use variables for these parameters to express the¬ 

ories and to have theories that are robust within reasonable ranges 

of their values. The values we give below refer to human cor¬ 

tex and should be regarded as very rough estimates. For some of 

these parameters more reliable values are known for the mouse 

(V. Braitenberg and A. Schiiz 1991), and, perhaps fortunately for 
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our theories, these appear less well suited to supporting generic 

random access functions. We also have to emphasize that in defin¬ 

ing these parameters one runs the risk of oversimplifying the ac¬ 

tual properties of neurons, and that methodological problems are 

involved in the definitions themselves (M. Abeles 1991). In gen¬ 

eral, we cannot overemphasize that all the numerical values that 

we quote should be regarded as provisional. In each case one 

can argue whether an alternative value would be more consistent 

with the current experimental evidence. These numerical estimates 

will be needed only in Chapter 14, where we shall discuss their 

role in neuroidal modeling. In that chapter we hope to leave no 

doubt that determining these parameters more precisely is of great 

importance. 

We shall use the estimate that a typical pyramidal cell in hu¬ 

man cortex has about 40,000 synapses on its dendrites and the 

same number on the axonal branchings (M. Abeles 1991). The 

latter number is split about evenly with about 20,000 in the local 

branchings, near the cell body, and 20,000 at the distant end of 

the axon. The dendritic tree and the local branchings are typically 

within perhaps 1 millimeter of the cell body. The figures we gave 

earlier for the area, thickness, and total pyramidal cell count sug¬ 

gest that there are about 20,000 such cells in each cubic millimeter 

of cortex. Hence two cells within 1 millimeter of each other have 

a significant chance of synapsing with each other if the dendritic 

trees and axonal branchings of each of them synapse randomly in 

each others’ vicinity. This is simply because the 20,000 synapses 

on the local axonal branchings of one neuron have nowhere else 

to go than to spread themselves roughly evenly among the 20,000 

or so neurons in their vicinity, assuming for now that they spread 

throughout a volume of one cubic millimeter. 

The value of a PSP is modifiable and depends on the history of 

the firings of the two cells involved. One process of modification 

is called long-term potentiation or LTP, and has been widely inves¬ 

tigated. It is believed that the dominant vehicle for storing learned 

information in the cortex is in the values of the PSPs, which cor¬ 

respond to weights in the neuroid model. It is also thought that in 

humans no new neurons are formed after birth, or even after the 

first four months of gestation. The growth of new connections is 
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less well understood, but it is not currently believed to provide the 

primary mechanism of learning. 

It appears that the PSPs do not constitute the only mechanism 

available to neurons for storing information that is dependent on 

the previous history of activity. A wide variety of others have also 

been investigated (C.D. Woody et al 1988). Perhaps the simplest 

such example of history dependent behavior is that of a refractory 

period following an action potential. During such a period the 

cell will not fire even if the stimulation at the synapses would be 

sufficient to make it do so normally. In the neuroid model memory 

mechanisms that are associated with the whole neuron, rather than 

with individual synapses, will be modeled by states. 

A fundamental open question, which relates to the style of com¬ 

putation and information representation used in the cortex, is the 

number of presynaptic neurons that need to fire in the course of a 

typical natural computation in order to make a postsynaptic neu¬ 

ron fire. It is believed that a total contribution of about 20mV is 

needed to make a neuron fire. Also, it seems reasonable to assume 

that the average contribution of any one synapse should be a very 

small fraction of this, less than 0.1 mV. (This is because cortical 

neurons are known to fire apparently randomly in the background 

at rates in the range of perhaps 0.5 to 10 times a second. Assum¬ 

ing a rate of 5 here, it follows that in any millisecond about 200 

of the 40,000 dendritic synapses will contribute a PSP. The sum 

of these 200 PSPs should not be enough to make the postsynaptic 

neuron fire.) Such a low average PSP value is well confirmed by 

the available experimental evidence. The significant open ques¬ 

tion is whether among its many dendritic synapses, a neuron has 

at least a few with significantly higher than average PSPs. Some 

evidence has been found that this is indeed the case. In rat cortex 

PSPs above 2mV have been observed (A.M. Thomson et al. 1988, 

A. Mason et al. 1991, A.M. Thomson et al. 1993) which is much 

higher than the corresponding average values. If higher PSPs exist 

but only on a few synapses for each neuron, (e.g. less than 0.1% 

of synapses), and only in brain tissue that performs random access 

tasks, then it may yet prove difficult to confirm their existence. 

Further complications arise from the difficulty of distinguishing 

between single versus multiple synapses. Also the values of the 
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PSP contributed by a synapse seem to vary randomly on different 

occasions. The idealized weight is at best some average value. 

The strongest evidence that a single neuron may have a large in¬ 

fluence on its neighbors comes from correlation studies (D.H. Perkel 

et al. 1967, M. Abeles 1991). Electrical recordings are made si¬ 

multaneously in or near two neurons. These signals are analyzed 

statistically. If activity at the first correlates highly with activity at 

a second, say one millisecond later, then it is a plausible interpre¬ 

tation that these two neurons are directly connected. A different 

pattern of correlation is interpreted as signifying that the two neu¬ 

rons are not directly connected, but are connected to a common 

presynaptic neuron. The majority of experiments confirm that the 

typical influence of a neuron on another is very small. In a few 

cases stronger influences have been found. For example, one ex¬ 

periment on the inferotemporal cortex (P.M. Gochin et al. 1991) 

suggests according to this interpretation that there exist some pairs 

of cells in which one controls the behavior of the other quite 

strongly. The spiking of one is highly correlated with the spik¬ 

ing of the other at a time immediately before. 

The quantitative issues raised in the two paragraphs above are 

crucial, we believe, in any analysis of the capabilities of cortex 

for performing random access tasks. In Chapter 14 we introduce 

a parameter a, which is defined there as the minimum number of 

synaptic weights of a model neuron that can sum up to the threshold 

needed to cause it to fire. Relating this parameter to real biological 

neurons raises several issues. For example, it is conceivable that in 

natural computations a significant fraction of the 20mV threshold 

that needs to be overcome by a neuron is contributed by the random 

spontaneous firing of its neighbors, in which case the purposeful 

activity would not need to contribute as much. An effective value 

of a = 1 is the one that would support our algorithms most easily. 

However, at present there is no direct evidence to support values of 

a less than about 5. For this reason we shall expend some effort in 

Chapter 14 to show that our algorithms can be supported by larger 

values of a, such as 5. There is a fundamental computational 

hurdle that needs to be overcome if we are to work with such higher 

values of a. The basic problem is that in order to make a neuron 

fire, either several presynaptic neurons now have to be coordinated 



22 Biological Constraints 

or, alternatively, there has to be one presynaptic neuron that makes 

several synapses with the same neuron. Perhaps the only previous 

work that addresses this issue in detail is that of Abeles. He gives 

a method of performing a certain kind of communication within 

local cortical circuits (i.e. neurons densely connected with each 

other) using what he calls synfire chains (M. Abeles 1991). The 

problems we need to solve in our formulation are more constrained, 

not only because our random access tasks impose a more onerous 

burden on the network, but also because our network models the 

sparser connectivity realized by the long range axons. 

There are three further important aspects of the cortex that mod¬ 

els may need to take into account. First, while pyramidal cells 

are the majority of neurons in cortex, they are not the only ones. 

In particular, there are cells that are inhibitory. Their firing has 

the effect that postsynaptic neurons synapsing with them are re¬ 

strained from firing. Fortunately, for the modeler, these neurons 

do not have long distance connections. Thus if one cell A is to 

inhibit the firing of a distant cell B, it would appear that A would 

need to excite an inhibitory neuron C in the vicinity of neuron B. 

A second aspect is that the cortex is conventionally divided into 

six parallel layers, layer I being at the surface and layer VI closest 

to the white matter. The layers can be distinguished according to 

the types of cells found in them, the destinations of any axons that 

emanate from them, as well as the distal axonal branchings that 

terminate in them. 

Lastly, and as mentioned previously, numerous authors have em¬ 

phasized that the cortex is not homogeneous laterally (V. Mount- 

castle 1979, J. Szentagothai 1978). It is believed that the cortex 

can be viewed as consisting of units, variously called columns, or 

assemblies, that have the shape of cylinders cutting through per¬ 

pendicular to the six layers. They are believed to be interconnected 

more richly internally than they are to neurons in neighboring units. 

There is some disagreement, however, about the details of the size 

and nature of these units. 

In addition to a, the models introduced in Chapter 14 will also 

assume particular values for some other parameters, namely p, the 

expected number of synapses between two neurons in a certain 

proximity, and the average number of synapses on the local 
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and distal axonal branches of a neuron, for which we have already 

quoted estimates. We note that determining these parameters ac¬ 

curately presents numerous difficulties. An obvious one is that 

experiments that count neurons and synapses will yield some av¬ 

erage value for x. for example, over all neurons, while what we 

seek is its value for pyramidal cells. Furthermore not only are 

each of these parameters difficult to determine experimentally, but 

also, any direct measurement may be difficult to interpret, since 

the ejfective values of these parameters in the actual neural com¬ 

putation may be influenced by additional factors. For example, 

the effective values of all three of these parameters may relate to 

synapses formed by pairs of neurons in a specific pair of layers. If 

a parameter such as p is measured over all pairs of neurons then 

the value obtained may be rather lower than the effective value 

it takes in the actual layered arrangement. If one accepts the six 

layer classification, one can ask thirty distinct questions about how 

the local axonal branching of the neurons in each layer synapse 

with neurons in each of the others. The answers to each of these 

questions may provide the values of p that are the effective ones 

in the various computational behaviors. Some of these values may 

be rather higher than the overall average value. 
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Chapter 3 
Computational Laws 

3.1 Introduction 

Although computation has had a central role in mathematics from 

the beginning it was not studied systematically until the recent 

advent of digital computers, which made large scale computations 

possible. A new discipline has arisen which has come to be called 

computer science. From this a broad perspective has emerged that 

invites comparisons with the physical sciences. In particular it now 

appears that the world of computation can be compared with the 

physical world not only in the richness and variety of phenomena 

that can be observed, but also in the existence of underlying laws 

that govern what is and what is not feasible to do. 

It is possible to view the laws of physics as negative statements 

of what cannot be done. The law of energy conservation, for 

example, states that energy cannot be created or destroyed. The 

equation E == mE does not say how matter can be converted into 

energy but does limit the quantitative nature of any such conver¬ 

sion that does take place. As we know, an understanding of such 

negative constraints can and does lead to positive consequences. 

By ruling out a myriad of fruitless paths it helps channel the search 

for how to achieve some desired result in the physical world along 

constructive lines. 

Computational laws may be interpreted as having an essentially 

similar negative nature. They capture the limits beyond which 

25 
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computations are impossible. As Turing showed in an epoch- 

making paper, some well defined problems do not have compu¬ 

tational solutions at all. Others cannot be solved with less than 

a certain amount of resources, such as of computational steps or 

storage space."^ A better understanding of these limitations can 

be expected to and does yield positive benefits, just as it does 

in the physical world. In the current context we are concerned 

with understanding the limits that brain-like models impose on the 

computation of random access tasks, so that we may also better 

understand the possibilities. 

Central to our notion of a computational law is the distinction 

between a computational problem and an algorithm. The former is 

a statement of what is to be accomplished while the latter describes 

how it can be done. For example, consider the familiar problem of 

multiplying two large numbers. Suppose that we agree to represent 

numbers in conventional decimal notation. Here the task that has 

to be performed is unambiguously clear. There are, nevertheless, 

any number of algorithms or methods for performing it, even if 

we fix the ground rules. Suppose, for example, that we agree 

that any algorithm has to consist of atomic steps that operate on 

a pair of single digits. Long multiplication as universally taught 

in elementary schools is Just one option. It is now known, but 

only since surprisingly recently, that long multiplication is by no 

means the best method for large numbers. If the numbers to be 

multiplied are each n digits long, then this conventional method 

would multiply each digit of the second number by the whole of 

the first number taking about 2n steps for each such digit. The total 

cost of doing this for all n digits is therefore and a similar 

cost is incurred in finally adding up the n results obtained. There 

appears to be no record of anyone knowing of a better algorithm 

prior to 1962. In that year Karatsuba and Ofman published an 

algorithm in which the number of steps grows as n* ^ rather than 

n . It improves on the conventional method even for moderate 

values of n, and does so more and more dramatically as n grows. 

Since then even faster methods have been discovered that reduce 

the growth of the runtime as n grows, to almost linear in n. 

A more elementary example is that of division. Consider the 

problem of dividing a number consisting of 2n decimal digits by 
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another of n decimal digits. One method of doing this is to re¬ 

peatedly subtract the second number from the first, and count how 

many times this can be done before zero is reached. This algo¬ 

rithm is a correct one, but takes exponential time, about 10^ steps. 

Compared to this the familiar long division algorithm looks good, 

requiring only about steps, and we should be thankful both that 

it exists and that someone discovered it. 

An algorithm cannot be described totally in the abstract. One 

has to assume some specific model of computation. Such a model 

specifies the basic individual steps that can be performed that are 

to be regarded as atomic and not broken down into smaller parts. 

In the previous paragraphs the bounds given on the number of 

steps taken apply for several models. One such model is that of 

a human doing the calculation with pencil and paper and counting 

each basic arithmetic operation on a pair of decimal digits as one 

operation, with all other actions, such as writing digits, counted as 

having no additional cost. 

The usefulness of computational laws rests on the observation 

that models of computation can be very robust. Once a model 

is powerful enough to capture certain computational phenomena, 

often many changes in the details of its specification can be made 

without changing its computational power. For the multiplication 

problem the and ^ step algorithms mentioned keep their re¬ 

spective behaviors for a very broad range of models that include 

not only pencil and paper calculations, but also digital computers 

programmed in any of the standard high level languages. Small 

differences that do arise are often in the constants that multiply the 

growth function. For example, long multiplication can be charged 

as 2n^ or 4n^ steps, or whatever, depending on the details of the 

model. For this reason these constants are often suppressed by 

means of the “big O” notation. Thus 0(n^ means “at most 

for some constant k independent of n.” Although this notation 

can be abused by using it to hide enormous constants k, its value 

is in highlighting the order of growth, which is usually the most 

significant component in practice. 

The discovery of robustness phenomena for computational mod¬ 

els was among the first significant achievements in computer sci¬ 

ence. In the 1930s the work of Turing, Church, and others estab- 



28 Computational Laws 

lished that several superficially dissimilar models of computation 

had identical computational power. The functions that could be 

computed on any one were the same as those that could be com¬ 

puted on any other. This early study led to the development in the 

1960s of the theory of computational complexity, in which empha¬ 

sis shifted from the issue of what can be computed at all to that 

of what can be computed efficiently. Here again strong robustness 

phenomena have been established in many directions. 

By analogy with these previous success stories we shall hypoth¬ 

esize that sufficient robustness exists around the neural model that 

we shall develop here, to give the study validity. Certainly several 

simple mutations to the model can be shown to leave its power in¬ 

variant. Any study based on simplified models requires some such 

robustness to justify it. We do not want the results to be artifices 

of the arbitrary choices made in the definitions. 

In the light of this introduction we can formulate the nature of a 

typical computational law as follows. First there have to be defined 

both a model of computation, and also computational problem or 

task. The law then states the ultimate limitations that any algorithm 

on that model for that task has to confront. The limitations may 

be in terms of any of several criteria, such as the number of steps 

required, the amount of storage spaced used, or the accuracy or 

reliability of the solution. 

Once a model of computation is accepted as useful, the limi¬ 

tations to computing a well-defined task on it can be formulated 

as mathematical questions. Hence, in principle, these limitations 

are resolvable with mathematical rigor. In this sense a compu¬ 

tational law can be placed on firmer foundations than a physical 

law. Of course, there always remains the informal aspect of what 

constitutes a useful model of computation. This aspect is also 

present, however, in physical laws, in which the computational 

models correspond to irreducible concepts such as, for example, 

force or energy. Physical laws about force or energy are of interest 

only because they turn out to relate to some aspect of reality, a fact 
which is not a law itself. 

While in principle computational laws can be given more solid 

foundation than physical ones, this extra rigor has not been achieved 

to date except in very restricted domains. For significant areas of 
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computation our current knowledge of what can be computed is 

expressible only in the form of hypotheses which, much like phys¬ 

ical laws, are subject to future falsification. A prime example is 

the hypothesis, first enunciated by Cook, that none of the so-called 

“NP-complete” problems have efficient algorithms.^ The weight 

of evidence for or against such conjectures is impossible to evalu¬ 

ate except in terms of the human effort that has been expended in 

attempts at resolving them. If many people have tried and failed to 

find an algorithm with a specified efficiency, then in human terms 

there is more evidence that no such algorithm exists than would 

be the case if no-one had sought to find one. Also, as long as 

we do not mind being wrong, there is no reason for not hypoth¬ 

esizing that the best algorithm we know at any time is the best 

possible. Indeed, this methodology seems the most promising ap¬ 

proach at the moment for pinning down the ultimate limitations in 

resources needed for performing significant computations. It is in 

this spirit that the algorithms for the neuroidal model, described in 

later sections of this book, are intended. We do hope, of course, 

that eventually mathematical techniques will become available for 

establishing these laws once and for all, but for the moment we 

apparently must follow this less rigorous strategy, as is currently 

done in most other areas of computing. 

3.2 Three Sources of Complexity 

It is useful to distinguish three distinct sources of computational 

difficulty that the mechanisms of the brain have to overcome. 

These are computational complexity, descriptional complexity, and 

learning. Each of these is studied as a subfield of computer science.^ 

We shall endeavor here to avoid using technical results from any 

of these areas. It is important, however, to call attention to the 

phenomena at their respective centers, since there lie the imped¬ 

iments which our algorithms, or, we believe, any other computa¬ 

tional theory of the brain, will need to confront. It is the reality of 

these impediments that underpins our general methodology, since 
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it guarantees that there is some virtue in exhibiting mechanisms 
that overcome them, whether or not these mechanisms are actually 

the same as those used in the brain. 
The first, computational complexity, is the one from which we 

drew the examples in the previous section. The phenomenon asso¬ 
ciated with it is that a computational problem may have substantial 
intrinsic computational difficulty. A certain amount of resources, 
such as number of steps or storage space, at the minimum, will be 
required for the computation. The resource bounds in the brain, 
as currently understood, are seriously limited. A fixed number of 
about 10'^ neurons need to suffice for a lifetime. Significant recog¬ 
nition tasks can be performed in about 100 milliseconds, which al¬ 
lows for relatively few successive steps of cortical firings. Clearly, 
any functionalities attributed to the brain have to be such that these 
computational resources are demonstrably sufficient. 

The second, descriptional complexity, is concerned with the fact 
that for any one function, while there may be several different 
programs for computing it, these programs will require some min¬ 
imal length of description. To make this concrete one needs first 
to fix an appropriate language for specifying a program, perhaps 
a standard programming language, a theoretical model such as a 
Turing machine, or our neuroidal model, and then agree on how 
to measure program length in terms of it. Now, all the empirical 
evidence with computer programs suggests that to achieve any sig¬ 
nificant functionality appropriate for complex situations, one needs 
long programs. This is consistent, for example, with the experience 
of most computer users. The moral here is that, when we seek to 
find out exactly what the brain does, the target of the search should 
be of the order of the complexity of a set of programs rather than 
a single equation as found in physics. Even if the programs have 
some unifying underlying principles, which we certainly hope that 
they do, in their totality they will be long. The interactions among 
them during execution may be even more difficult to describe since, 
in general, timing issues in distributed and parallel systems may 
be very complex. Furthermore, this descriptional complexity does 
not arise only because much new information is acquired by the 
brain through learning. We are suggesting that the computational 
mechanisms that underly the basic functions of memory, learning. 
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and recall already are of substantial complexity. The evidence 

from biology is certainly consistent with this view. It has been 

estimated that fully a third of the mammalian genome is dedicated 

exclusively to the functions of the brain (J.G. Sutcliffe 1988). Rec¬ 

onciling ourselves to this source of complexity may be, in itself, a 

significant step forward. 

Finally, there is a third source of difficulty, that of the inherent 

complexity of learning. The various programs in our brains are 

either present at birth, a result of evolution, or have been learned 

during life, a result of interactions with the world. Some may be 

the result of some combination of the two. Their totality is, as we 

explained above, most probably of substantial descriptional com¬ 

plexity. In order to have any chance of uncovering their nature it 

seems essential that we take some intellectual view of how these 

programs got into the brain in the first place. How do these pro¬ 

grams relate to the interactions with the world that produced them 

during evolution or learning? How do they relate to the world in 

which they are to perform effectively? In the case of learning, 

these issues are addressed in the field of computational learning 

theory. The phenomenon that needs a quantitative explanation is, 

essentially, the following. How can a system, with limited com¬ 

putational resources and exposure only to a moderate number of 

situations, acquire programs that are going to be effective and ro¬ 

bust in dealing with new situations not previously seen? Since, 

as we believe, there is a very large amount of information in the 

brain that is acquired by learning, some position on the nature of 

this process has to be taken. We shall return to this issue in later 

chapters. 
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Chapter 4 
Cognitive Functions 

4.1 Introduction 

In the previous two chapters we considered the possible contribu¬ 

tions that the fields of neuroscience and computer science could 

make to an understanding of cortical computations. In this chapter 

we consider the third major viewpoint, that of cognitive psychol¬ 

ogy. The potential contribution of this field is to provide defini¬ 

tions or specifications of the behavior exhibited by the brain. Once 

accurate specifications are available, and provided suitable neural 

models have been abstracted from neuroscience, there remains only 

the problem of discovering the algorithms. 

It appears that among these three aspects the problem of speci¬ 

fying the cognitive functions presents the most formidable difficul¬ 

ties. For a complicated device such as the brain, it is difficult both 

to describe the total behavior in its full complexity, as well as to de¬ 

compose it into simpler constituents. There exist theoretical results 

that show that even relatively simple computational mechanisms 

can result in behaviors that are so complex that a description of the 

mechanism or of the constituent parts of the behavior cannot be 

recovered feasibly from observations of the behavior itself.^ Hence 

we have to hope that there is some substrate of simple functions 

on which human cognition is built, and which we can discover by, 

dare we say, inspired guesswork. 

Where should we look to find candidates for the functions of 
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this cognitive substrate? One approach is to study the results of 

experiments in cognitive psychology and to use them to identify the 

basic functionalities that underly behavior. In practice this appears 

to be difficult to do. It may be that the difficulties mentioned in the 

previous paragraph account for this impediment. In this volume 

we follow what is essentially a reverse approach that starts with 

some simple functionalities and then traces the implications that 

follow from them. 

Attempts to isolate mental faculties and to describe them in ex¬ 

plicit mathematical terms have often met with serious difficulties. 

More than three centuries ago Leibniz made exactly such an at¬ 

tempt to capture the nature of thought processes. At the age of 

nineteen he wrote a dissertation De Arte Combinatoria on this 

topic, and he returned to it several times later in his life with less 

success than he would have wished. Little further progress was 

made until the 1850s when Boole published his Laws of Thought, 

which fulfilled some of Leibniz’s original aims. Boole constructed 

a mathematical system, now called Boolean algebra, that was ex¬ 

plicitly motivated by questions of cognition. In the next section 

we shall discuss his system and explain why it is a useful starting 

point for us. In subsequent sections we shall explain and justify 

how we selected the actual functions that we chose to study for 

implementation on the neuroidal model. Although on the surface 

these functions look simplistic and even impoverished, it turns 

out that their implementation on neuroids suggests a rich world 

of computational and cognitive phenomena. As we explain in the 

final section §4.5, these phenomena are amongst those of greatest 

current concern to experimental cognitive psychologists. 

4.2 Boolean Functions 

Boolean algebra formally resembles traditional algebra but is in¬ 

tended to be applicable in a different domain. The basic difference 

is that a variable x in Boolean algebra can take values “true” or 

“false” rather than numerical values such as 2 or 3.6. As a conse- 
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quence the meaning of the operations needs to be different, since 

the conventional arithmetic operations, such as multiplication, no 

longer make sense. Finally, the manipulations that it is valid to 

perform on equations must also be different. 

The intention of a Boolean variable is to represent a proposition. 

Thus X can stand for “it is raining” and y for “it is cold.” The 

intention of a Boolean operation is to create new propositions from 

old ones. For example, the operation “and” denoted by “A” (or 

sometimes by “.”) can be used to create the new proposition “xA|/” 

which in this instance would denote the proposition “it is raining 

and it is cold.” In a similar way “or” is a useful operation, denoted 

by V, (or sometimes +) and x\/ y would denote the proposition “it 

is raining or it is cold or possibly both.” A third operation is “not” 

and is denoted by Thus -^y would denote that “it is not cold.” 

While A and V are binary operations, i.e. having two arguments, 

^ is unary and has just one. Boolean algebra is concerned with 

the laws under which expressions formed by Boolean operations 

can be manipulated. For example, (-ix) A {-^y) is equivalent to 

-n(x V ^), as it should be under the semantics just described for 

these operations. By equivalent we mean that for any combination 

of the two possible truth values for x and the two possible truth 

values for y, the truth value of the two expressions will be the 

same. 

It has been noted with surprise that Boolean algebra was not 

discovered earlier. For example, Leibniz discovered the differen¬ 

tial calculus apparently with ease, while his comparatively greater 

efforts towards formalizing thought processes apparently failed to 

uncover Boolean algebra^. One possible explanation for this is that 

while the differential calculus is an outstandingly clear theory of 

continuous processes. Boolean algebra is so incomplete in explain¬ 

ing thought that it was simply rejected by those who might have 

considered it. 

Perhaps the most important aspect of Boole’s work is that it 

provides a model of cognition in which variables can take on only 

a discrete choice of values, in particular “true” or “false”, rather 

than an unbounded choice. The merits of this central idea, that 

cognition should be modeled in terms of discrete mathematics, can 

be debated, but in may ways it has withstood the test of time re- 
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markably well and it permeates current thinking. There is now 

much accumulated experience with handling human knowledge in 

large quantities, whether in print or in computers. The representa¬ 

tion used is almost invariably discrete. When one opens an ency¬ 

clopaedia one sees discrete words, not arrays of dials or decimal 

numbers. 

Here we shall adopt this view that discrete representations play 

a fundamental part in the substrate of principles on which hu¬ 

man cognition is built. For searching, updating, and structuring 

knowledge as our algorithms in later chapters attempt to do, we 

know of no competitive alternative approach. Clearly, by itself 

Boolean algebra is at best an incomplete theory of cognition when 

compared with successful theories in some other fields, such as 

physics. However, rejecting it for that reason would be a mis¬ 

take. The reality may be that the true “laws of thought” are of 

much greater descriptional complexity than the basic laws of the 

physical sciences, and Boolean algebra captures only a part of it. 

For these reasons we shall formulate the various cognitive tasks 

in a Boolean framework in the first instance. As will be clear 

later, the actual functions implemented by our algorithms, even 

the simplest ones, will have more structure, being “softer around 

the edges.” This softening is a consequence of the style of imple¬ 

mentation we use, and of the random properties assumed of the 

interconnection pattern. In addition, we will introduce further in¬ 

ternal structure by allowing relations, for example, as constituent 

parts of the Boolean functions. 

The most basic cognitive tasks we consider are those of recogni¬ 

tion. These will be implemented by circuits that evaluate the cor¬ 

responding Boolean function or predicate. For some set of input 

variables — say, x^y^z — the circuit will output “true” or “false” 

according to the value the function takes when supplied with truth 

values for x, and z. The input variables may be themselves the 

outputs of Boolean functions and may express something compli¬ 

cated. Thus the function ic(x, y) = xAy may express “it is a nasty 

day.” In general we consider that some scene is presented to the 

system, and the truth of the predicates are evaluated by the system 
for that scene. 

A central question is to determine which classes of Boolean 
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functions are most appropriate for modeling how knowledge is 

represented in the brain. In particular, we ask the incremental 

version of this question. If one new piece of knowledge is learned, 

what is the appropriate class of representations from which the act 

of learning selects? Classes that are too general become unrealistic 

if no plausible mechanism can be found for learning instances of 

them. Classes that are too restrictive are unrealistic if they cannot 

express significant fragments of real world knowledge. 

A simple but unavoidable class is that of conjunctions. If vari¬ 

ables, Xi, • • •, xioo, say, are available, a conjunction is the “and” 

of any subset of them, such as 

X3 A Xy A X19. 

These are sometimes called Aristotelean concepts and have been 

discussed at length by philosophers and psychologists. The truth 

of every variable that appears in the conjunction is both necessary 

and sufficient for the conjunction to be true. 

Conjunctions seem relevant to representing single instances of 

objects or events. They express the conjunction of all the relevant 

attributes. Thus, the notion of “yesterday’s lunchtime compan¬ 

ion” contains simultaneously the attributes, yesterday, lunchtime, 

and companion, and it seems difficult to avoid expressing it as 

some kind of conjunction. For this reason we shall accommodate 

conjunctions centrally. On the other hand, it is clear and has been 

extensively argued that more general concepts require richer repre¬ 

sentation classes. Wittgenstein argued that the notion of a “game” 

has no attributes that are both necessary and sufficient. For exam¬ 

ple, not every game is won or lost, not every game is played by 

two people, etc. For these reasons we need to go to more gen¬ 

eral representations. A most attractive generalization is disjunctive 

normal form, abbreviated usually to DNF. A DNF expression is a 

disjunction of conjunctions, such as 

(X1AX5AX7) V (X2AX5AX7) V (X2AX4AX8). 

DNF can express concepts that have several distinct varieties of 

typical members. If we are allowed to write one conjunction to 

characterize one-person games and another to cover two-person 
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games, we would get a better characterization of games than is 

possible with a single conjunction. 

One important point is that, in all of this discussion of con¬ 

junctions and DNF, we could have replaced any single variable, 

such as X3, by its negation Indeed these classes are defined 

conventionally to allow negations. In this text, however, we will 

avoid using negations as much as we can. The firing of a neuroid 

will correspond usually to a variable x being true. If we need a 

variable to represent the opposite, we can associate a separate neu¬ 

roid with a new variable, say y, that will have positive value when 

the neuroid fires and is logically equivalent to -^x. However, on a 

few occasions it will be necessary to face the issue of negation or 

inhibition explicitly. 

4.3 Learning 

Learning phenomena have been classified and categorized in nu¬ 

merous ways. Here we shall adopt two dichotomies that appear 

to be fundamental in any context in which we wish to describe 

explicit mechanisms of learning. 

The first dichotomy is between memorization and inductive learn¬ 

ing. The first of these is simply the storage of some information 

that is explicitly provided or internally deduced. The information 

memorized may be, for example, the spelling of a word, or it may 

relate to the appearance of a person, the description of an event, 

or the result of a logical deduction. The second notion, inductive 

learning, we define essentially negatively, as any kind of infor¬ 

mation gathering where the information acquired is not explicitly 

given or necessarily implied by that which is explicitly given. The 

common characteristic that the phenomena of inductive learning 

have is that some form of generalization is involved that is not 

dictated unquestionably by the evidence. When learning to rec¬ 

ognize chairs from some examples, we acquire a capability that 

is somehow more general than the ability merely to recognize the 

particular examples of chairs that we have seen. The riddle that in- 
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ductive learning presents is that, while it seems difficult to defend 

it intellectually, it does appear to work in the real world. 

In conventional computers memorization is a trivial operation, 

and for this reason in the field of machine learning it is often 

not regarded as learning at all. In the neural context, however, it 

raises very challenging computational problems that are too easily 

underestimated. The challenge of modeling inductive learning is, 

of course, even greater. Learning involving generalization poses 

fundamental philosophical questions as to its very nature that mem¬ 

orization does not. Nevertheless, as mentioned in the previous 

chapter, we need to take a concrete view of it in any theory of 

cognition. The viewpoint we shall adopt is that of computational 

learning theory and we shall discuss it further in Chapter 9. We 

note that essentially all knowledge acquisition phenomena, except 

those modeled as memorization, appear to have some component 

of generalization. For this reason we shall use the word learning 

as an abbreviation for inductive learning.*^ 

The second dichotomy is between supervised and unsupervised 

learning. Consider the process in which the learner is presented 

with some examples. In the case of supervised learning, the infor¬ 

mation describing each example is accompanied by information of 

a second kind called the labeling. The labeling could be provided 

by a teacher or deduced by some internal process by the learner. 

When learning the concept of a chair, we will be presented with 

a sequence of examples each labeled as “chair” or “not chair”. In 

unsupervised learning, on the other hand, information describing 

the examples alone is presented, with no additional commentary. 

These two dichotomies can be used in several complementary 

ways. In one case we could learn the sound of the word by unsu¬ 

pervised memorization, and then learn its meaning from a sequence 

of labeled examples in supervised inductive mode. In another case, 

we can first learn in unsupervised inductive mode conjunctions of 

attributes that often occur together in the world. In supervised in¬ 

ductive mode we can then learn a more complex Boolean function 

than we could have otherwise, by treating these conjunctions as 

equal citizens with previously available single attributes. 

More specifically, we shall use these two dichotomies to describe 

four modes of learning. We can characterize these by further ex- 
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amples of them as follows: unsupervised memorization is appro¬ 

priate for memorizing the sound or spelling of a word about which 

we have no previous knowledge; supervised memorization will be 

appropriate for associating the face of a person with a name; su¬ 

pervised inductive learning is appropriate for learning a concept 

or category such as “chair” or “good” from examples labeled as 

positive or negative instances of the given category; unsupervised 

inductive learning is typically to do with spotting combinations of 

events or attributes that occur together unexpectedly often, and we 

shall refer to this as correlational learning. 

In each case the aim of the learning process will be to set up a 

neuroidal circuit that, when given inputs subsequent to the learn¬ 

ing experience, will categorize the input according to the required 

function. Thus the aim of memorization is to set up a circuit such 

that repeating the same input will result in recognition. The aim 

of inductive learning is similar, except that recognition is expected 

for a broader class of inputs. 

It is worthwhile to relate these dichotomies to those made in the 

psychology literature. The most relevant such distinction is be¬ 

tween “declarative” and “nondeclarative” memory. The former 

relates particularly to facts and events, where what is remem¬ 

bered is accessible to one’s conscious recollection. The latter 

relates to skills and habits, where the details of the skill (e.g. 

how to ride a bicycle) are not accessible to one’s consciousness. 

This declarative/nondeclarative distinction is similar to our mem¬ 

orization/inductive learning distinction, provided the recognition 

of general concepts, such as chairs, is considered nondeclara¬ 

tive. Many other related distinctions have been considered also 

(E. Tulving 1983, L.R. Squire 1992). 

4.4 The Nature of Concepts 

The nature of a concept, sometimes called a category or a universal, 

has been a central subject of philosophical speculation. When 

we describe something as a “game” or a “chair” we mean that 
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it belongs to a certain class. The basic question is to delimit 

more carefully the nature of the classes that humans employ as 

categories. 

Saying that concepts correspond to Boolean functions is a step 

toward taking a position on this issue but, as we shall argue, only a 

small one. At one level it is a statement that is trivially true, since 

if we digitize the input presented and define the Boolean function 

of these inputs as having value true if the human characterizes 

the input as “chair” and false otherwise, then we have a Boolean 

function at least for one person’s notion of chair. 

For our current purposes the better question to ask is whether 

there exist more detailed models of concepts that are more use¬ 

ful. One major problem area was discussed in previous sec¬ 

tions: namely, which classes of computationally tractable knowl¬ 

edge representations are sufficient to represent human concepts? Is 

it Boolean conjunctions, or disjunctive normal form, or something 

else? Psychological experiments do yield some clues here. It has 

been found (S.J. Thorpe et al. 1989), for example, that artificial 

concepts made up by combining elementary concepts by “and” or 

“or” are much easier to learn by humans than those composed 

by the “exclusive-or” connective (i.e. one or other but not both.) 

Attempts by workers in artificial intelligence to describe natural 

concepts formally yield further clues. Notation for expressing re¬ 

lationships among constituent parts of the examined information 

appears to be indispensable. We shall examine this latter issue in 

detail in Chapter 11. 

Boolean concepts may have internal structure in several addi¬ 

tional ways. The exemplar theory suggests that our representation 

of a chair consists of descriptions of particular chairs that we have 

seen. On seeing a new object we compare it with these exemplars 

and see whether it is sufficiently similar to at least one of them. 

The unanswered problem here is to describe measures of similar¬ 

ity that work for the whole range of human concepts. Related 

theories suggest that concepts are graded. Some chairs are classi¬ 

fied by human subjects as more typical than others. Furthermore, 

this subjective measure of typicality correlates with more objective 

ones, such as reaction times measured when subjects are asked to 

categorize objects. A third theory claims that there are a number 
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of attributes that are each positive indicators of chairhood, such as 

having four legs and being suitable for sitting on. A chair is then 

anything which satisfies at least a certain number of these. 

The view of concepts that emerges from the representation and 

algorithms described in our later chapters does have something in 

common with all these theories, but is more complex than any one 

of them. Perhaps the main difference is that a concept is no longer 

unitary. For example, although any individual’s notion of “France” 

is at some level a single Boolean function, it is more useful to view 

it as the interaction of perhaps a large number of functions var¬ 

iously acquired by memorization or inductive modes. Thus we 

may have in our mind, as a prototype, a map from an atlas we had 

in childhood. In addition, we can clearly recognize outlines that 

are close enough. This ability we consider here to be acquired by 

inductive learning. In addition, there may be many items of in¬ 

formation acquired by memorization that are associated with these 

inductively learned functions, in this case, perhaps, the names and 

locations of cities. If we see an outline map that resembles France 

and a dot inside labeled Rome, the immediate computational reac¬ 

tion is probably not usefully viewed as the evaluation of the unitary 

concept of France, but rather as the recognition of a number of dis¬ 

tinct predicates. These may turn out to be inconsistent with each 

other, in which case we will need to resolve amongst them by other 

means such as, for example, the application of further functions 

that depend also on the outputs of the functions that were applied 

first. 

One consequence of our choice of knowledge representation is 

that even though we treat the functions learned as Boolean in the 

first instance, they do come to have fuzzier edges than are con¬ 

ventionally associated with Boolean functions. The main reason 

for this is that whenever we require in the implementation that 

particular neuroids be connected, this is ensured only with high 

probability. For example, when we learn conjunctive concepts the 

representation has some of the flavor of the last psychological the¬ 

ory mentioned, where instead of the requirement that all of a set of 

necessary and sufficient attributes are present, the presence of a suf¬ 

ficiently high fraction of a set of confirmatory features is enough. 

The fact that neuroids act as threshold functions also contributes 
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to the nature of the final representation realized. 

We emphasize that the choice of knowledge representation is 

a most central issue in analyzing models of neural computation. 

Instances of the representation have to be expressible succinctly 

in the neural model. Also, there has to be a plausible account 

of how these structures can be learned. As we shall see later, 

the representation that emerges from our model is a complex one, 

influenced by our view of the discrete nature of concepts, by the 

consequences of the properties of random graphs, as well as by the 

algorithmic properties of the neuroidal model. 

4.5 Experimental Psychology 

Over the last century a large body of experimental data has been 

collected regarding the cognitive performance of humans and other 

species under various laboratory conditions. The phenomena stud¬ 

ied have included memory, learning, attention, as well as numer¬ 

ous others. Many of these results are robust and reproducible in 

exactly the same way as are experimental results in the physical 

sciences. The most glaring difference is that, as compared with, 

say, physics, no global theories have emerged that account for 

comparably broad ranges of phenomena and can make comparable 

predictions. 

Our view here is that a successful search for such global theo¬ 

ries, for example, of the cognitive substrate, will need to be theory 

driven. One needs to start with theories that have the potential 

to be global. Experiments can then resolve among the candidates. 

The neuroidal formulation described in the next several chapters is 

intended to facilitate a range of just such theories. The develop¬ 

ment of this formulation was influenced little, however, by current 

trends in experimental psychology. We made no explicit attempt 

to ensure that the model fit psychological facts, and for this reason 

we have left discussion of the latter to this last section. 

In developing the model we found to our surprise that several 

mechanisms that we introduced to overcome computational impedi- 
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merits corresponded closely to notions that already had wide accep¬ 

tance in cognitive psychology. These include, for example, atten- 

tional mechanisms, imagery, and serial processing of multi-object 

inputs. We shall devote the remainder of this section to a review 

of some of these existing connections, and to some brief comments 

about where further connections might be usefully sought. 

We start with a very basic question concerning scenes that con¬ 

tain more than one object. The propositional predicates of Boolean 

algebra can be applied to a whole scene, but how are they to be 

applied to parts of a multi-object scene! For example, in the nor¬ 

mal interpretation when a picture is being described, the predicates 

blue or green would describe the whole picture. How are we to 

treat the case where the picture contains several distinguishable 

parts, one of which is blue and another green? The question of 

how humans deal with this situation has been the subject of care¬ 

ful investigation (A. Treisman and G. Gelade 1980). In a typical 

experiment a human subject is presented with pictures that each 

contain a number of figures, such as green triangles, red squares, 

etc. The subject is asked various questions and the time required 

for answering them reliably is measured. A typical finding is that 

when asked whether the picture contains an object having a single 

attribute, such as being green or being a triangle, the time taken 

is independent of the number of objects. The interpretation of this 

is that processing of all the objects is carried out in parallel, and 

perhaps a global propositional predicate, “there is a triangular ob¬ 

ject,” is evaluated for the whole scene, in time independent of the 

complexity of the scene. In contrast, if an object having a con¬ 

junction of two attributes is sought, such as a green triangle, then 

the time taken increases linearly with the number of objects, sug¬ 

gesting that the subject is, at some level, processing the objects in 

sequence. This sequential strategy is exactly the solution we adopt 

in the neuroidal model in §11 to deal with multi-object scenes. It 

is the simplest general computational mechanism we could find 

for this task. We did not attempt to make any fit with psycho¬ 

logical data, which, as it happens, turn out to be rather complex. 

(K. Nakayama and G.H. Silverman 1986, A. Treisman 1988). 

One closely related issue is that of attention. Conjunctions of 

attributes in a part of a scene are typically not noticed if they have 
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not been attended to. In experiments of the kind just described 

subjects sometimes report having seen a green triangle and a red 

square when they have been presented with a red triangle and a 

green square for too short a time to attend to them separately. 

This phenomenon is called illusory conjunctions. In everyday life 

we fail to recall conjunctions that we have no motivation to have 

noticed. Few of us can recall which letters are associated with 

which numbers on a telephone dial, although we have been ex¬ 

posed to these inputs innumerable timesEven single attributes 

need to be attended to to be remembered. People find it difficult 

to recall, for example, the direction in which the head faces on 

particular denominations of coins. We have chosen to incorporate 

such attentional mechanisms in our model again because they solve 

several computational problems effectively, and not in order to fit 

psychological data. In particular, we assume that the attentional 

system can identify meaningful constituent parts of the scene and 

attend to them in turn (M.I. Posner and S.E. Peterson 1990). 

A further important issue is imagery. In our neuroidal model 

the view is taken that the sensory areas of the cortex process the 

perceptual inputs, and transform them to more and more abstract 

representations as the information is passed up to higher levels. 

At some point nodes corresponding to “chairs” will fire. If by 

some internal deductions or associations the nodes corresponding 

to tables are caused to fire as a result, the question arises as to what 

then ensues that might make the system act on this new insight. 

The simplest view is that the system also supports reverse flows 

of information. The firing of the “table” neurons will cause some 

activity in the lower level sensory areas, similar to the activity 

induced by the sight of a table. This reverse activity corresponds 

to the act of “imagining” a table. Thus, while certain activity in 

the sensory area would normally cause the “table” neuron in the 

higher area to fire, this view suggests that exactly the reverse is also 

possible and typical. The existence and location of such imagery 

areas have been the subject of detailed investigation both by means 

of psychological experiments, as well as brain scans, and the results 

are not inconsistent with the view taken here (S.M. Kosslyn 1980, 

S.M. Kosslyn and O. Koenig 1992). 

A further area of psychological research is on memory capacity. 
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Experiments have been performed to explore the limits. In one, 

humans were presented with 10,000 pictures over a period of five 

days and tested at the end of the fifth day. It was found that in 

the test they could distinguish pictures seen from some others not 

previously seen, with reasonable accuracy (L. Standing 1973). Ex¬ 

periments such as this, aimed at determining the quantitative limits 

of cognitive performance, are clearly of substantial relevance for 

distinguishing ultimately among detailed computational theories. 

The issue of concept formation that we discussed in the previous 

section goes beyond simple memorization and is more difficult to 

investigate. Several impressive studies have been carried out with 

pigeons. There is substantial evidence that after seeing many ex¬ 

amples of a concept, such as pictures that depict water in some 

form, the pigeons succeed in generalizing appropriately. They can 

classify previously unseen pictures according to whether the gener¬ 

alization learned holds or not (R.J. Hermstein 1985). Indeed, it is 

difficult to isolate in laboratory experiments simple learning phe¬ 

nomena that distinguish humans from other species. The one area 

in which nonhumans appear to have much more difficulty is that of 

learning relations (R.J. Hermstein, 1990). In Chapter 11 we find 

indeed that in our neuroidal system also the handling of relations 

introduces an extra level of difficulty. 

A completely different approach to identifying the knowledge 

representations and learning algorithms that are used by humans 

is through the study of language learning in children. Do children 

tend to overgeneralize or undergeneralize when using a word re¬ 

cently learned? Many learning algorithms have a tendency to do 

one or the other. For example, the simplest elimination algorithm 

given in Chapter 9 overgeneralizes in the case of disjunctions and 

undergeneralizes in the case of conjunctions. Observations on hu¬ 

mans can be used to mle out learning algorithms that are clearly 

inconsistent with observation. Current evidence suggests that in 

humans overgeneralization is more prevalent than undergeneral¬ 

ization (M. Bowermann 1977, Y. Levy, et al. 1988). 

A further related issue is “short term” or “working” memory 

(E. Tulving 1983). Psychologists have consistently differentiated 

this from long term memory. In our neuroidal system we use 

peripherals that correspond to imagery and working memory in 



4.5 Experimental Psychology 47 

order to empower the NTR to perform random access tasks and to 

store “long term” memory. 

Finally, we mention classical Pavlovian conditioning, a striking 

phenomenon about which a large amount of experimental data has 

been accumulated (I.P. Pavlov 1928, J.E. Mazur 1990). The fol¬ 

lowing is a typical experiment. A subject has an air puff blown 

into an eye causing it to blink (or is prompted to perform some 

other reflex action), and at about the same time is also presented 

with one of a wide variety of stimuli, such as the sight of a yellow 

square. It is found that if this procedure is repeated enough times 

then the subject will become “conditioned,” so that at later times 

the presentation of the yellow square even in the absence of the 

air puff will cause blinking. This can be regarded as a random 

access phenomenon since the range of stimuli that one can substi¬ 

tute for the yellow square is apparently very large. Furthermore, 

instead of having just one arbitrary stimulus such as the yellow 

square, one can have several. The conditioned response can then 

be made dependent on more than one such variable. It is tempting 

to speculate that the learning phenomena associated with Pavlo¬ 

vian conditioning reflect some basic learning mechanisms at the 

neural level. Relating them to learning algorithms is, therefore, of 

considerable interest (R.A. Rescorla and A.R. Wagner 1972, R.S. 

Sutton and A.G. Barto 1981). 

The issues described so far highlight those in which there is 

already some existing connection between experimental findings 

in psychology and the neuroidal models that we develop here. 

This leaves two distinct classes of questions for which similar 

connections have yet to be made. 

The first of these concerns psychological phenomena that are 

well supported by experiment, but which we were not forced to 

introduce into the current discussion of the neuroidal model. One 

example of a well studied area of robust phenomena, is priming 

(E. Tulving and D.L. Schacter 1990). In a typical experiment a 

human subject is given a list of fifty words to read. Some time 

later the subject is presented with some word fragments and asked 

to complete each one to make a word. It is found that the subject 

is more likely to reconstruct a word recently seen in such a list, 

than an equally valid alternative, even when the subject cannot 
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consciously recollect having seen that word. In any neuroidal sys¬ 

tem that attempts to model significant areas of cognition there may 

be several alternative ways of incorporating priming effects. For 

example, recently increased weights may be allowed to attenuate 

with time, so that the most recent changes always have greater rel¬ 

ative influence than earlier ones. This may be allowed only at low 

levels or only at certain other levels of processing. Thus various 

alternative models of priming can be constructed and compared by 

experimentation. We return to this in §12.3. 

In the reverse direction, one can delineate a second class of is¬ 

sues, those that have received limited experimental attention to date 

but are suggested as relevant by the neuroidal model. An example 

of such a question is whether an item in memory is represented 

accurately in each mode separately. For example, do there exist 

neurons for recognizing dogs within the vision area and each of 

the other sensory areas separately, or are the indicators that con¬ 

firm doghood in the various modalities mixed together at a level 

preliminary to recognition by any one? More particularly, if we 

present a word fragment and a picture fragment, which separately 

are not enough to remind a person of the object to which they 

both refer, can the presentation of the fragments together do so? 

Our ability to solve crossword puzzles suggests a positive answer 

to this question,*^ which in turn suggests that concepts do have 

such mixed mode representations. Mixed mode representations do 

appear to be the more economical in terms of representation and 

computation, and this would appear to compensate for the accom¬ 

panying loss in precision. A second issue is that of hierarchical 

learning. There is plenty of evidence in human learning that in 

order to learn one thing it is often beneficial to have learned an¬ 

other beforehand. There is some evidence for similar phenomena 

in pigeons. These two issues of mixed mode representations and 

hierarchical learning are merely examples of questions that are 

suggested by the neuroidal model as promising subjects for more 

systematic experimentation. 



Chapter 5 
The Neuroidal Model 

5.1 Programmable Models 

We do not know how difficult the task of understanding the actual 

circuits of the brain will turn out to be. A simple strategy of trial 

and error, in which one posits and tests a succession of particular 

algorithms, is unlikely to work if there are too many plausible 

algorithms to consider. It appears that in order to make headway a 

model that embodies some broad flexibility is needed, so that wide 

classes of hypotheses can be investigated together. This means that 

instead of considering, one by one, theories that have some specific 

algorithms deeply embedded in them, we should start rather with 

models that are programmable. 

There is also a second, more specific argument that favors the 

consideration of a programmable model here. We wish to sup¬ 

port a greater variety of tasks than previous modelers appear to 

have attempted within a single system. The enormous descrip- 

tional complexity of the brain may be due as much to the variety 

of mechanisms incorporated as to the intricacy of any one of them. 

In order to describe such a variety of algorithms one needs a suit¬ 

ably expressive language. 

With this aim in mind we shall define an idealized model of a 

network of neurons that we shall call a neuroidal net. We shall 

use it to model the neuroidal tabula rasa (NTR). Each neuroid in 

the net is defined to be a linear threshold element, as originally 

49 
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formalized by W.S. McCulloch and W.H. Pitts in 1943, but is aug¬ 

mented by states and a simple timing mechanism. It turns out that 

these apparently innocuous augmentations make all the difference 

in rendering the model programmable. The computational power 

of the net depends not only on the mechanism at the nodes, but also 

on the network. Hence we shall consider in detail the connectivity 

properties of the network in conjunction with the algorithms exe¬ 

cuting on it. In such a model two opposing constraints need to be 

reconciled. First, the model needs to be simple enough that there 

is little question that real cortical neurons are at least as powerful 

computationally. Then any algorithm we devise for neuroids can 

be construed as an existence proof that the corresponding func¬ 

tionality can indeed be supported by cortical neurons. The second 

constraint on the model is that it has to capture the essence of 

the computational capabilities of the brain, at least for implement¬ 

ing random access tasks. Although neural systems in the cortex 

are clearly very complex, we believe that their capabilities in the 

realm of random access tasks can be captured by some simple 

model, such as ours. The direct relevance of our model to real 

neural computations rests, therefore, on the hypothesis that it does 

satisfy these two opposing constraints simultaneously. 

The nodes of the neuroidal net are individual neuroids. In this 

chapter we define the functionality of these neuroids. In the chapter 

to follow, we shall discuss some graph-theoretic requirements on 

the network that are critical to the functioning of the neuroidal net. 

To emphasize that we can regard a neuroidal net as something 

precisely defined, we shall give a somewhat formal definition of 

it in the style of the theory of automata (J.E. Hopcroft and J.D. 

Ullman 1979). A neuroidal net will be specified in five parts, in 

particular as the quintuple (G, VF, X, 5, A). Here G is the graph 

describing the topology of the network, W is the set of possible 

weights that the edges of the graph can have, X is the set of modes 

that a neuroid can be in at any instant, 6 is the update function 

for the mode, and A is the update function for the weights. We 

shall elaborate on each of these notions in the next section. Such 

a quintuple is a complete description of the net. If the initial 

conditions IC (i.e. initial weights and modes of the neuroids) and 

input sequence IS (i.e. the timing of the firing of those neuroids 
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that are controlled directly by the peripherals) are specified, then 

the behavior of the net is determined. Since the model allows for 

randomized update functions 6 and A, if these are used then what 

is determined is the probabilistic behavior of the net. We note that 

the treatment here of individual neurons is similar in spirit to that 

of some earlier modelers (J.A. Feldman and D.H. Ballard 1982). 

Timing is crucially important to our model. The peripherals have 

the power to cause various sets of neuroids in the NTR to fire si¬ 

multaneously at various times. The actual choices of the sets and 

the times, which we call prompts, determine the input sequence IS. 

There is a substantial body of experimental evidence that suggests 

that synchronized rhythmic behavior is a pervasive characteristic of 

the cortex (W.J. Freeman 1975, E. Basar and T.H. Bullock 1992) 

and hence that the hypothesized power of causing synchronous fir¬ 

ings, that is ascribed here to the peripherals, is not unreasonable. 

Between successive prompts from the peripherals our algorithms 

will be expected to do only a very few basic steps, perhaps typ¬ 

ically less than ten and most often just one or two. No global 

synchronization mechanism is assumed here, but it is supposed 

that the neuroids share common notions of a time unit, and hence 

can keep in synchrony for such short sequences of basic steps by 

following their own clocks. Even if their clocks keep slightly dif¬ 

ferent times this is no problem as long as they need to keep in step 

for only short periods. For simplicity we shall assume in the model 

that the neuroids have exactly identical clocks. Timing issues will 

be discussed in more detail in ^5.3. 

5.2 Neuroids 

We shall now define the five components that are needed to specify 

any particular neuroidal net. 

First, G is a directed graph denoted by G = {V,E), where V is 

a finite set of N nodes labeled by distinct integers 1,2, • • •, A^, and 

G’ is a set of directed edges between the nodes. The edge (z,j) 

for i, j G {1, • • •, A^} is an edge directed from node i to node j. 
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1 2 

Figure 5.1. A directed graph. 

We say that nodes i,j are adjacent or neighbors if at least one 

of the directed edges (z, j) and (j, z) belongs to E. An example 

with ^ = 4 and £ = {(1,2),(2,3),(3,4)(4,1).(1,4),(3,1)} is 

shown in Figure 5.1. A neuroid corresponds to a node j together 

with all the edges directed toward it (i.e. (z,j) for every z such 

that (z, j) is a member oi E.) The intention is that an edge (z, j) 

models a synapse between two neurons where z is the presynaptic 

neuron and j is the postsynaptic neuron. By saying that a neuroid 

corresponds both to a node j as well as the incoming edges, we 

are associating each synapse with its postsynaptic neuron. 

The set of edge weights VF is a set of numbers. Each edge 

(z, j) G E has at each instant of time a value Wij G W for its 

weight. Possible choices of W are the set of nonnegative integers, 

the set of positive real numbers, or the set of all real numbers. 

Alternative choices restrict the weights to some range of discrete 

values, such as the set {0,1,2} or some range of real values such 

as the interval [0,2]. Weights model the post-synaptic potentials, 

or PSPs, that were discussed in §2.3. 

The mode of a neuroid describes every aspect of its instantaneous 

condition other than the weights on its edges. It models properties 

that are global for the neuron rather than relating only to particular 

synapses. It is specified as a pair (g,T) of values where q is 

a member of Q, a finite set of states, and T is a vector of 7 
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numbers = T, • • •, for some fixed integer 7. The set 

of modes, X, is the set of all such pairs. Q describes a finite choice 

among states. For example a neuroid that has not yet been assigned 

to a task or item would be typically in a different state from one that 

has. The algorithms described in the next five chapters require few 

states, sometimes only two. The first component of T is called 

T for short. In general T denotes a number that is the threshold 

of the neuroid. It models the electrical potential required to be 

overcome to cause the neuron to fire. For neuroid i at any instant, 

we denote its mode by its state by qi and its threshold by T^. 
The model allows for the possibility of 7 > 1, i.e. having more 

than one numerical value in the mode. For example we may want 

a second number that expresses the confidence in a generalization 

that has been learned inductively by a neuroid. Where not stated 

otherwise we shall assume that 7=1 and hence that Si is the pair 

The states have names that are mnemonics for their function. For 

example AR will be the “available relay” state. Also, Q consists 

of two kinds of states called firing and quiescent states. The last 

letter of a state name will be F if and only if it is a firing state. 

Also we shall define the Boolean variable to have value one or 

zero depending on whether node i is in a firing state or not. 

The mode update function S and the weight update function A 

embody the essence of the algorithm executing on the neuroid 

by specifying the updates that occur. Their action on neuroid i 

depends on, among other things, the quantity Wi. This is defined to 

be the sum of those weights Wki of neuroid i that are on edges {kfi) 

that come from neuroids that are currently firing. More formally, 

Wi= '^ki- 

k firing 
{k,i)eE 

The mode update function 6 defines for each combination {si^Wi) 
that holds at time t, the mode s'- e X that neuroid i will transit 

to at time t + 1. The weight update function A defines for each 

weight Wji at time t the weight w'j- to which it will transit at time 

^ + 1, where the new weight may depend on the values of each of 

Si,Wi^ and fj at time t. These two transition functions can be 
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written therefore as 

6{s^,w^) = 5-, and 

^ ji' 

As an example suppose that we have a neuroid i that at time 

^ = 0 is in a state we call Al, and has all weights wji incoming 

from neighboring nodes equal to one. Suppose that, independent 

of the initial value of the threshold we want that at time t = 1 

the state of i be A2, that all wji from neighbors not firing at time 

0 be set to 0, and that the new threshold Ti equal the number of 

the neighbors j that did fire at time 0. Figure 5.2 illustrates the 

updates that are required in one particular instance. The transitions 

below show how the algorithm that realizes these updates would 

be expressed within the model: 

X{[Al,Ti],w^,w 

■- [A2, Wi 

,»,0) =0 

for all , Wi, and 

for all Ti^Wi^Wji. 

The first transition updates the mode. It says that if the state is 

Al, then the new state will be A2 and the new threshold will be 

Wi (which equals the number of presynaptic neighbors that were 

firing since at time t — 0 each wji = 1). The same update occurs 

for all values of Ti. 

The second transition updates the value of weight wji to 0 for 

every wji such that the given conditions hold, namely that the state 

Qi is Al, and that fj = 0. 

As explained in later chapters, when writing more elaborate al¬ 

gorithms we shall, for the sake of clarity, use a more succinct 

notation that groups together the transitions that are to occur si¬ 

multaneously at a node. This example would then be written as 

{qi — Al} ^ {qi := A2, Ti Wi, if fj = 0 then wji := 0}. 

What this algorithm achieves is that it enables node i to recog¬ 

nize at later times the same pattern of inputs that it was exposed 

to at time 0, in a certain sense. If all the inputs that were firing 

at time 0 fire at a later time, then the same value of Wi will be 
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Figure 5.2. Illustration of the algorithm when the target node 9 has directed 

edges from nodes 1,3,5 and 6, and if initially at time 0 nodes 3 and 6 are caused 

to fire. The diagram on the left shows those aspects of the condition at time 0 

that are relevant to the algorithm. The righthand diagram shows the result of 

the algorithm at time t = 1. At all subsequent times, whenever both of nodes 

3 and 6 fire, the value of will reach the value of the threshold T9, namely 

two. 

achieved as at time 0, and the value of the threshold Ti set at time 

1 will be reached. As we explain later, this will cause the node to 

fire if a standard threshold firing transition is assumed to be present 

also. The firing of additional inputs will not affect this outcome 

since the weights from these are now zero. Once the node is in 

state A2, no further opportunities for weight changes are possible 

unless further transitions are added to the specification. 

Since each synapse of a real neuron appears to be either excita¬ 

tory or inhibitory, we shall assume that the weights have fixed-sign^ 

in the sense that each Wji is predetermined to be either nonnegative, 

meaning that it can be never assigned a value less than zero, or 

nonpositive, meaning that it can never be assigned a value greater 

than zero. 

The definitions of 6 and A express the basic intentions that (i) the 

updates to a neuroid should depend only on its own condition and 

that of neuroids from which it has incoming edges, (ii) the firing 

condition of these neighbors should be the only aspect of their 

instantaneous description that has any direct effect, and that (iii) 

the actual dependence on these neighbors be through a linear sum 

of the form in which Wi is defined above. These model in a simple 
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way the influence of the presynaptic neurons on the postsynaptic 

neuron through the potentials they contribute. 

Note that we allow updates to a neuroid to occur even when it is 

not firing itself. This is useful for preventing unwanted cascades of 

firings since if every neuroid that we wished to update was forced 

to fire, then the effects of this additional activity would also need 

to be controlled. 

Also note that the definitions are not the minimal ones that 

achieve a certain expressive power. They incorporate some redun¬ 

dancy in order to provide for ease of expression, which is useful 

if the model is to be used as a programming language. For exam¬ 

ple, the dependence of A on Wi is redundant in the sense that the 

value of Wi can be stored as a component of the mode and 

updated by means of 6 transitions in a subsequent step. Transfor¬ 

mations such as this, that leave the expressive power of the model 

invariant, serve to provide some evidence of the robustness of the 

model and are explored more fully in the Exercises at the end of 

the book. The expressive power of a robust model should be pre¬ 

served under reasonably wide ranges of mutations to the model, 

and should not depend significantly on any arbitrary choices. 

For economy of descriptions it is sometimes useful to introduce 

additional redundant notation. Each state q ^ Q has a latency i{q) 

that is a positive integer. If node i arrives in state q at time t then 

neither its mode nor its weights can be changed until time f+%) 

at the earliest. The latency is a timing mechanism corresponding 

roughly to the refractory period in real neurons. The updates to the 

mode and weights of a neuroid happen instantaneously at integral 

units of time. What happens at time t is determined entirely by the 

description of the net at time t — 1, except that if at time t a neuroid 

has not completed the latency period it entered most recently, then 

no update will occur. Clearly, a state that has latency i can be 

simulated by a sequence of £ states each of latency one, which 

have the property that they each go in unit time to the next state in 

the sequence, independent of all other conditions. Hence allowing 

states to have differing rather than the same latencies does not 

increase the power of the model, but may allow for more succinct 

descriptions of some algorithms. We shall assume that each state 

has latency one throughout this volume. 
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Also for economy of descriptions it is sometimes convenient to 

assume certain defaults. In particular, we shall assume threshold 

transitions by default. Such a transition occurs whenever all three 

of the following conditions hold: Wi > Ti, there is no explicitly 

stated other available transition, and i is not within a latency pe¬ 

riod. In such a threshold transition only the state is updated and the 

update changes the state to the one with the same mnemonic but 

with an “F” appended, indicating that it is a firing state. For exam¬ 

ple, the available relay state AR would go to state ARF. Threshold 

transitions typify the process by which circuits recognize inputs, 

while the other transitions typically modify weights or thresholds 

for the purpose of learning. 

We shall similarly assume that a firing state has a default transi¬ 

tion that makes a node in such a state cease firing at the end of a 

latency period and go into the state corresponding to its mnemonic 

but with the F terminator removed. Thus if node i is in state ARF 

at time t and if no explicitly stated transition is applicable then its 

state will be AR at time t -h 1 if the latency of this state is one. 

The only factors that determine the history of a net, other than 

its quintuple (G, VF, X, (5, A), are the initial conditions IC and the 

input sequence IS. The former specifies the mode and weights of 

each neuroid in the system at time t = 0. We envisage that a small 

fixed number of distinct neuroid types, each initially having some 

distribution of modes and weights, and occurring in some given 

proportions, will suffice as a typical specification of IC. For sim¬ 

plicity of definition we can equivalently regard all the neuroids 

as being identical, disjoint behavior for the different types being 

guaranteed by different initial states. The input sequence IS is a 

sequence of sets of neuroids that specifies for each ^ = 0,1,2, - -, 

the set of neuroids that are forced to fire (or prevented from firing) 

at that time by mechanisms outside the net, namely the peripherals. 

Such prompts or forcings comprise the only means of communi¬ 

cating information to the net from outside of itself. 

There are two important further aspects of the model that require 

more involved notation in a full formal description. For simplicity 

we suppress this extra notation when not discussing these aspects. 

First, in the full model we allow the graph to be a multigraph. 

Instead of there being at most one edge from node i to node j 
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there may be several, say k, in which case we distinguish them 

by {ijy, • • •, (i j)^ and their weights by wy,wl, • • 
Such a multiplicity of edges from node i to node j corresponds 

to the axonal branching of neuron i having k synapses with the 

dendritic tree of neuron j. Note that while two synapses of weight 

one may have the same effect as one synapse of weight two as far 

as the conditions that would make j fire, the update rule A may 

treat them differently. Therefore, our formal model is based on 

multigraphs rather than graphs. We shall, however, use the simple 

graph model for brevity when it makes no difference. We note 

that sections §14.2 and §14.3 do use the multigraph property, and 

that the multiple synapses that they model is crucial to the theory 

described there. 

The second additional aspect of the model is that it allows for 

randomized transitions S and A. This means that for each com¬ 

bination of argument values of 6 and A there may be not just 

one outcome at the next time unit, but several. The neuroid will 

choose randomly among these according to predetermined proba¬ 

bilities. While randomization has found applications in many areas 

of computation, its role in the brain is not known. The actual al¬ 

gorithms we shall describe here use it in only one restricted role, 

that of allowing a set of neuroids to select a certain approximate 

fraction of themselves by having them make independent random 

choices. 

To complete the definition of the model we need to discuss 

what restrictions are reasonable to impose on W and on the update 

functions 6 and A. First we observe that, at the risk of allowing too 

much power, we can opt for a simple complexity theoretic model. 

For example, we could allow the weights Wji and the thresholds Ti 

(or other components of 7) to take values from some fixed set of 

numbers where the size of the set grows polynomially with N, and 

then allow 6 and A to be arbitrary functions of their arguments. 

Then the number of symbols required to describe a neuroid totally, 

including its transitions, would be also bounded by a polynomial in 

N. This is a possible choice if one favors mathematical simplicity. 

The algorithms we shall describe all use much less computa¬ 

tional power than such a definition would allow. In particular the 

dependence in 8 of the new state qi on Wi or is restricted to 
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simple thresholding (i.e. applying the Boolean predicate “greater 

than or equal to” to it) and finite Boolean combinations of these 

predicates. Note that where only integer values are allowed for 

T, we can encode an equality condition “T = /c” this way if by 

saying “T > /c” and “not T > k + 1.” When changes to wj^ up¬ 

date their previous values, they do so by counting up or down a 

sequence in some manner, e.g. wji := Wj^ + 1 or wji 1.3 x Wji. 

(More generally, for some monotone function A, wji := A{wji) 

or A~\wji)). The updates to the threshold are similarly re¬ 

stricted. In addition, Wji or may be also assigned values that 

are simple arithmetic functions of Wi. Finally, we note that all the 

algorithms that we shall describe work even when all the weights 

are fixed-sign nonnegative. The computations that result under this 

assumption have the advantage that cascades of threshold firings 

will stabilize robustly. We allow for the additional possibility of 

negative weights because of the substantial evidence for inhibitory 

effects in the nervous system (I.P. Pavlov 1928). The perceptron 

algorithm described in §9.5 can accommodate negative weights 

without requiring them. 

The variant of the neuroidal model that these restrictions on 6, A 

and W specify is just one of several that deserve further study. 

Identifying sets of restrictions that capture cortical neurons more 

faithfully would certainly be of great interest. Presumably in bi¬ 

ological neurons there is some bound on the number of possible 

states, and weight updates have some particular character such as 

being additive or multiplicative. Hence, in certain directions the 

variant, as described, will be too powerful for biological plausibil¬ 

ity. It would be interesting to determine whether some useful extra 

constraints can be stated simply. Conversely, it is possible that the 

model misses out on some mechanisms that real neurons support 

and are important to the realization of random access tasks. It may 

be fruitful to consider choices of 6 and A that depend on different 

sets of arguments and have less synchronous behavior than the def¬ 

initions above allow. There is some evidence that weight changes 

in real neurons may sometimes attenuate with time. Extensions to 

A that make weights dependent on past history in this way are of 

interest and can be accommodated. Some authors emphasize that 
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synapses are unreliable. This suggests other extensions in which 

the values of the weights behave like random variables even in the 

absence of any learning. 

5.3 Timing 

Timing plays a central role in neuroidal algorithms. In order to 

make programming manageable, neuroidal systems work with two 

very different time scales. The individual transitions 8 and A that 

update single neurons work on a scale of very short intervals called 

microunits. In the definitions given in the previous section, time t 

was measured in terms of microunits. For orchestrating the com¬ 

putations in the NTR, the peripherals work on a longer time scale, 

measured in terms of macrounits. In particular, we assume that the 

peripherals have mechanisms for global synchronization in terms 

of these larger units. They are able to prompt the NTR by simul¬ 

taneously causing to fire some subset of the neuroids in the NTR 

that are directly controllable by the peripherals (and possibly forc¬ 

ing some other subset not to fire.) A cascade of computations on 

the microunit time scale will then ensue in the NTR, and we shall 

assume that this will terminate in a stable situation before a full 

macrounit of time has elapsed. When this macrounit has elapsed 

the peripherals may prompt the NTR again with the same or a 

different subset of neuroids. 

In order to ensure that the cascade of firings in the NTR initiated 

by a prompt does indeed terminate in a stable situation, several al¬ 

ternative approaches can be taken. Since the actual choice made 

is of little consequence in general, we will simply presume that 

one such viable choice has been made. The one major issue is 

that the computation performed in one cascade of the NTR needs 

to have an interpretation that is robust to the various demands 

that may be made on the NTR. For example, the peripherals may 

prompt low level neuroids, and the algorithm being executed may 

need to modify neuroids representing higher level concepts that 

are separated in the network from the prompted ones by several 
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intermediate neuroids. We need to avoid situations in which an 

algorithm is executed incorrectly because the various input signals 

that were to arrive simultaneously had traversed paths of different 

lengths, and for that reason failed to arrive when needed. In or¬ 

der to keep the algorithms as simple as possible we shall assume 

that the implementation is equivalent to one in which a neuroid 

undergoes cascade transitions only when all the signals that will 

arrive there have arrived. Clearly a sufficient condition for this is 

that the graph formed by the neuroids that are actively involved 

in any cascade is acyclic, and all paths from the inputs to any one 

node are of the same length. However, the latter condition, on 

path length, becomes redundant if each signal is a long enough 

train of spikes that every neuroid in the cascade has time to reach 

some stable level of activity, and if it is assumed in addition that 

in any such cascade no negative weighted edge is involved that 

might have the effect of reducing firing activity. 

A neuroidal algorithm for a task, such as unsupervised memo¬ 

rization, will be defined as a sequence of steps each initiated by 

a prompt from the peripherals and resulting in some updates to 

some neuroids. These prompts will be separated in time by one, 

or a larger whole number of macrounits. It turns out that neuroidal 

algorithms of the kind in which we are interested have convenient 

high-level descriptions which describe their essence. In these the 

possibility that the prompted neuroids influence the ones taking 

part in the algorithm through a cascade of threshold firings, is sup¬ 

pressed. It is assumed that any items that need to be prompted by 

the peripherals can be prompted directly by the peripherals. The 

result is that a macrounit can be equated with a microunit in the 

description of the algorithms. Hence we shall describe all algo¬ 

rithms at this level on just one time scale. A more detailed level 

of neuroidal implementation, of the kind described in the previ¬ 

ous paragraph, is assumed to support these high level algorithms. 

Perhaps the simplest way to interpret our algorithms, therefore, 

is to assume that the threshold transitions that occur in cascades 

take infinitesimal or zero time, while all other transitions take unit 

time, corresponding to a macrounit. In order to be consistent with 

this, in the high level descriptions we shall use the convention that 

threshold transitions take zero time. 
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To summarize, all transitions in the algorithms to he described 

will he assumed to take unit time, with the exception of the thresh¬ 

old transitions and prompts, which will both cause the correspond¬ 

ing nodes to fire instantaneously. 

A stylistic point is that it may make it easier to implement high 

level algorithms if information is not encoded in the firing status 

of neuroids between steps. Then the only neuroids that fire at the 

start of a step are those that are prompted by the peripherals, and 

those that undergo threshold firing as a result. 

An interaction is the computation resulting in the NTR from 

an input from the outside world, or from certain peripherals that 

model such things as imagery or short term memory. In either case 

the input is processed (by some peripheral) and the information so 

derived presented to the NTR in accordance with some neuroidal 

algorithm that consists of a number of steps as described above. 

Once G, X, and W are defined for the NTR, an algorithm for a 

functionality is a specification of the update functions of the neu¬ 

roids as well as a description of the input sequence that has to be 

applied by the peripherals, that together enable the functionality to 

be realized. Such an algorithm may require several steps. Some 

algorithms, particularly those for inductive learning, achieve their 

desired result after a sequence of interactions, corresponding pos¬ 

sibly to a long series of encounters with the outside world. 



Chapter 6 
Knowledge Representations 

6.1 Positive Knowledge Representations 

If a neural system can cope in a complex external world, one 

must presume that its behavior can be described in terms of the 

various semantic items that are meaningful in that world. By the 

term item we mean just about any aspect of the world that may 

be useful in describing it. Individual objects, events, properties, 

relationships, concepts, and categories are all examples of items, 

as are certain predicates that are detected at lower levels in our 

perceptual systems. 

It seems plausible to hypothesize that the items that are appro¬ 

priate for describing the world of experience of a system provide 

the right vocabulary for describing its behavior when it interacts 

with that world. What is more controversial and problematic is to 

determine whether these same items also provide the most appro¬ 

priate internal vocabulary for the neural system. Does the firing of 

a neuron in the cortex signal the recognition of one such item, or 

does it correspond to something that is best described in completely 

different terms? Conversely, does each item in the world that can 

be recognized by an individual correspond to some neurons that 

recognize it? 

This central issue has received much attention. Barlow gives 

an early comprehensive treatment of the “localist” position that 

takes a positive view on these questions (H.B. Barlow 1972). At 

63 
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the other extreme are theories that posit global, sometimes called 

holographic, representations (J.J. Hopfield 1982, J.L. McClelland 

and D.E. Rumelhart 1986), in which the representation of any item 

is best viewed as being spread over many or all the neurons. Vari¬ 

ous intermediate positions may also be taken (J.A. Feldman 1990). 

The representations that emerge from our various analyses here 

are all of one flavor, and we shall call these positive representations. 

This flavor can be characterized in terms of five features that we 

shall label (a),- • sCe), respectively. 

The first two features are characteristic of the localist position 

and state that (a) each neuron corresponds to a semantic item, and 

(b) there are typically several neurons representing each such item 

that is represented at all. Localist positions are sometimes called 

“grandmother cell” theories because they assert that there are some 

neurons that fire if and only if one thinks of one’s grandmother. 

The objection that is often raised to such theories is that there just 

are not enough neurons to represent every combination of attributes 

that one may need to represent. Do we have neurons to represent 

our grandmothers in every possible location? Using a different 

metaphor, do we have neurons to represent “a yellow Volkswagen” 

and every other combination of car makes and colors?’^ 

The representation we use answers this objection by having a 

third characteristic: (c) only those new items are added to memory 

that are experienced and noticed by the attentional mechanisms. 

Thus on seeing a scene various circuits may fire as we attend to 

different parts of it and to different attributes of the parts. Unless 

yellow Volkswagens have figured importantly in our previous lives, 

neurons for both yellow and Volkswagen will fire, but there may 

not be neurons previously allocated for the combination. In this 

sense our representation has some of the characteristics of popu¬ 

lation coding, namely that inputs cause subsets of neurons to fire 

that may overlap for different inputs. In our representations two 

such subsets will overlap only if the corresponding inputs share 

some common characteristics. 

A fourth aspect of the representation is that (d) it is hierarchical. 

Some items will be represented at the start and may be viewed as 

having been preprogrammed. Once some items have been assigned 

to neurons, new items expressible in terms of the items already 
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represented can be assigned to previously unused neurons. By the 

word hierarchical we do not imply strict hierarchies in the sense 

that cyclical relationships are forbidden. It is possible that once 

two related items have been assigned, their meaning is refined in 

terms of each other. The emphasis is more on the idea that the 

representation is structured so that some items are high level, being 

satisfied for very specific inputs, while others are lower level and 

of greater generality, being satisfied for wider ranges of inputs. 

Some of the lowest level items may be determined by the basic 

units of the peripherals that perform perception. High level items 

are typically represented in terms of combinations of lower level 

items. 

Lastly, we mention that while the intention of the representation 

as described so far is to express Boolean functions, the reality 

of the neuroidal implementations makes it graded, so that (e) only 

approximations of any idealized Boolean functions are represented. 

One reason for this is that the physical neural connections necessary 

to realize the idealized function will be present only with high 

probability, and not with certainty. A second reason is that there 

may not be any simple idealized function to realize. For example, a 

circuit for recognizing a chair may involve subcircuits for various 

particular chairs and various types of chairs so that the overall 

circuit has no simple characterization. 

All the algorithms described in this volume work with knowl¬ 

edge representations of this flavor. The items represented will be 

denoted by letters such as a:, z. The sets of neuroids representing 

each of these items will be x, z, respectively. The basic inten¬ 

tion is that when the system is presented from the outside with 

an input corresponding to item x, then the neuroids in the set x 

will fire. Typically there will be about r neuroids for each item, r 

being called the replication factor. Replication will ensure robust¬ 

ness, as well as a slightly lower connectivity requirement on the 

network than would be needed otherwise. Several authors have 

previously used sets or assemblies of cells to represent a concept 

(D.O. Hebb 1949, V. Braitenberg 1978), usually with the implica¬ 

tion that within each such set or assembly, each member has an 

excitatory influence on the others. Such assemblies would have 

a self-imposed tendency toward an all-or-none firing behavior. In 
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our representation we make no such assumption. 

To illustrate one specific way in which the representation gen¬ 

erated by our algorithms is graded, suppose that xi,X2, and X3 are 

already represented by nodes and we wish to represent the con¬ 

junction ^ = xi A X2 A X3. Now y will be represented by r nodes. 

Most of these will be connected via some appropriate circuitry to 

members of all three of Xi, X2, and X3 and will be able to represent 

xi A X2 A X3. Some may be connected to only xi and X3, say, and 

will represent xi A X3. The different members of y may, therefore, 

represent the desired function with varying accuracy. Thus some 

grading is introduced even at the neuroidal level. If we consider 

how a neuroidal algorithm might be implemented by biological 

neurons, there are many additional potential sources of grading. 

For example, it may be that a spike train is interpreted more ac¬ 

curately as a numerical value, corresponding to some measure of 

frequency or duration rather than a Boolean truth value. In that 

case the operations on them are only approximated by the Boolean 

operations that we consider here. 

We envisage that, in practice, any grading in the individual cir¬ 

cuits is compensated for by having multiple representations for 

important items, so as to ensure that the overall system is highly 

reliable. By this we mean that the nodes corresponding, for ex¬ 

ample, to the item chair are associated with several circuits, each 

of which attempts to find confirmation of chairhood in a differ¬ 

ent way. If a reasonable fraction of these succeed, then it can be 

assumed that overwhelming evidence of chairhood has been found. 

6.2 Vicinal Algorithms 

All the algorithms that we shall describe can be considered, at a 

suitable level of abstraction, as vicinal or neighborly. The most 

basic feature of a vicinal algorithm is that, whenever some com¬ 

munication has to be established between two items not directly 

connected, the algorithm establishes the necessary communication 

via neuroids that are each common neighbors of some pair of neu- 
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roids that represent the two items respectively. Thus, if x and 
A 

y correspond to the two items and E{x)^E{y) are the neighbor- 
A A 

ing nodes of the sets x and y respectively, then E{x) n E{y), 

the undirected frontier of x and will be the set through which 

communication takes place. Because of the primacy they give to 

communication via common neighbors we call these algorithms 

vicinal. This approach contrasts with the various communication 

schemes currently proposed for parallel computers, which will typ¬ 

ically route packets of information via a succession of intermediate 

nodes to a distant node with a specified identifier or address. 

Some algorithms may require that a two-way channel of com¬ 

munication be established, if temporarily, between pairs of nodes. 

This is done most easily by requiring that the edges be bidirec¬ 

tional, in the sense that a directed edge (z, j) G E has an associated 

reverse edge (j, i) also belonging to E. We shall sometimes refer 

to such a pair of edges between two nodes in opposite directions 

as a bidirected edge. The algorithms that exploit bidirectionality 

can be interpreted as demonstrating the computational efficacy of 

point-to-point feedback. Whether such bidirectionality between in¬ 

dividual neurons is pervasive in the cortex is currently unknown. 

However, it is well established that for most pathways linking one 

cortical area to another there are reciprocal pathways going in the 

opposite direction. What is unknown is whether the reciprocity is 

precise enough to realize bidirected edges directly. 

In this chapter we shall describe perhaps the simplest model, 

namely random graphs, that support vicinal algorithms directly. 

These graphs have two important properties that are necessary for 

supporting these algorithms, namely a certain frontier property, and 

a certain hashing property. An alternative graph model, namely 

random multipartite graphs have very similar frontier and hashing 

properties, and are equally good for supporting vicinal algorithms. 

Where we assume the basic random graph case, we do so only for 

the sake of greater simplicity. The main difference between the 

models is that while the first treats all the nodes as equal, the second 

splits them into sets, each of which corresponds to a different area 

of the cortex. In both cases the edges model long distance com¬ 

munication. In the multipartite case we assume that certain pairs 

of areas are connected. Those pairs that are have random connec- 
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Figure 6.1. Schematic diagram of (a) a random graph; and (b) a random mul¬ 

tipartite graph that models the connections among five cortical areas. 

tions between them. Note that random multipartite graphs resemble 

some of the hierarchical structures that have been found, for ex¬ 

ample, in visual cortex (DJ. Felleman and D.C. van Essen 1991). 

We can consider each of the two classes of graphs in each of the 

two cases of being directed or bidirected. Figure 6.1(a) illustrates 

the bidirected case for general random graphs. This is the one on 

which vicinal algorithms can be implemented most directly. On 

the other hand, vicinal algorithms can be supported also without 

this bidirectional assumption. Figure 6.1(b) shows an alternative 

such model for a random multipartite graph. The edges between 

two areas either all go in one direction, or, as illustrated for one 

pair of the areas, they go in both directions. Note, however, that 

in the latter case no individual edge is bidirected (except possibly 

a very few by chance.) We shall show in later chapters that vicinal 

algorithms can also be implemented on other classes of graphs. 

Hence these algorithms may be viewed as high level conceptual 

abstractions for programming the neuroidal model. 
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6.3 Frontier Properties and Storing New 

Items 

The most basic aspect of our knowledge representation is that each 

item is stored in about r neuroids, where the replication factor 

r is viewed as a constant (say 50 or 100). Since vicinal algo¬ 

rithms establish communication between the sets representing two 

items through the frontier of these two sets, this frontier should be 

nonempty in general. Furthermore, since it is the aim of some of 

the algorithms to store a new item at this frontier, so that the new 

item becomes an equal citizen with the others, one needs that this 

frontier be of size about r also. For example, if x and y store “yel¬ 

low” and “Volkswagen” respectively, then we may allocate their 

frontier to store “yellow Volkswagen.” To be more precise we de¬ 

fine E{x), E[y) to be the sets of nodes to which edges are directed 

from X, y respectively, and call these the directed neighbors. We 

then define E{x) H E{y) to be the directed frontier of x and y. 

As illustrated in Figure 6.2 the algorithm will allocate this directed 

frontier, which we will simply call the frontier from now on, for 

storing x/\y. The task of allocating nodes for storing a conjunction 

X A ^ is called JOIN in Chapter 14, and discussed there in more 

generality. The method described below and in the next chapter 

can be viewed as the simplest vicinal implementation of this more 

general task. 

These considerations suggest the following definition. We say 

that a graph G — (V, E) has the (r, /, m)-frontier property if, when 

x^y EV diXt randomly chosen disjoint subsets of size r, the size 

of the frontier E{x) H E{y) has expectation I and variance m. A 

graph that is ideal for executing vicinal algorithms would have 

I = r and m = 0. 

Consider a random graph on N nodes such that for each pair 

(z, j) of nodes, a directed edge joining i to j is present with proba¬ 

bility p, independent of all other pairs. Then the expected number 

of edges directed toward any one node is the same as the expected 

number directed away and equals pN. These quantities are called 

the expected indegree and outdegree, and where they are equal we 

shall call them simply the degree. 
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E(5^) n E(y) 

Figure 6.2. Sets x and y are illustrated by the leftmost five and the rightmost 

five nodes, respectively, in the bottom row. Their frontier, consisting of the five 

nodes in the middle in the top row, is where the conjunction x A y will be 

stored. 

We regard r as a fixed constant, N as varying and large, and p as 

diminishing as N grows. Let x,y be disjoint sets of r nodes. Then 

the probability that any one fixed node i, not belonging to x or y, 

lies in the frontier of x and ^ is (1 — (1 — To see this first note 

that the probability that i ^ E{x) is (1 — p)^, since (1 — p) is the 

probability that it fails to be connected to any fixed member of x, 

and there are r such members. The probability that it is connected 

to at least one node in x is, therefore, (1 — (1 — pY), Since the 

same statement holds for p, the square of this expression gives 

the desired probability. Note that we are assuming here that the 

edges coming to i from different nodes have probabilities of being 

present independent of each other. Also, we are using the fact that 

the probability of several independent events occurring together is 

the product of the probabilities of their occurrence separately. 

Here, as well as throughout this chapter and Chapter 14, we 

shall make the following assumptions in all our estimations of 

probabilities, which we call the pristine conditions assumptions. 

First, the number of neuroids representing any one item already 

stored (i.e. the size of x or of p in this case) is exactly r, and, 

second, that the edges directed toward neuroids not yet allocated 
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are present with equal probability independently. Once a chain of 

allocations has been made by our methods, these assumptions will 

hold only approximately. 

Regarding r as fixed,if p —> 0 as —> cx), then (1 — (1 — 

differs from by a quantity that diminishes proportionately with 

p^. In more convenient notation one would say that (1 — (1 —pY)^ = 

r^p^ -\-0{p^). This follows by application of the Binomial Theorem 

to (1 — (1 —pYY — 1—2(1 —pY + (1 —pY^ — 1—2(1 —rp-\-r(r — 
l)p^/2+0(p^)) + (l—2rp+2r(2r—l)p^/2+0(p^)) = r^p^+0(p^). 

Then for each i not in x or y the probability of being in their 

frontier is given by p* == r^p^ + O(p^) and is independent for 

different choices of i. Hence the size of the frontier is governed 

by a binomial distribution consisting of — 2r trials each 

with probability p* of success. If we choose p — then 

we obtain that the number of nodes in the frontier has 

expectation = A^*p* = (A^ — 2r){r/N — 

— r — 0(A^~^/^), and 

variance = A^*p*(l — p*) 

= {N - 2r){r/N - 0(A^-3/^))(l - r/N + 0(A^-^/2)) 

= r-0(A^-i/2). 

We conclude that a random graph with p = (A^r)~^/^, or ex¬ 

pected degree (A^/r)^/^, has the (r, r — 0(A^“^/^), r — 0(A^“^/^))- 

frontier property. For implementing vicinal algorithms random 

graphs of this degree appear therefore to be ideal for ensuring that 

the expected size of the frontier of two sets x, p of size r will be 

about the same as their own size and, therefore, that this frontier 

has some chance of storing a new item that is to become an equal 

citizen with the items x and y. 

Since we wish that the NTR be able to learn hierarchically, we 

have to ask what happens if we create new items out of such 

frontiers and repeat this process, creating new frontiers from sets 

that were previously frontiers themselves, to arbitrary depth. It 

turns out that the variance of this process is too large to maintain 

stability over a large number of iterations. Experiments suggest, 

however, that for r = 50, for example, this process is maintainable 

in such random graphs to depth 4 or 5 (A. Gerbessiotis 1993). It 
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is an open question whether there exist graphs that have frontier 

properties that have lower variance and hence are more stable. It 

is known that for r > 2 the ideally stable (r, r, 0)-frontier property 

is not possessed by any bidirected graph with more than 3r nodes 

(A. Gerbessiotis 1993). 

There are several plausible approaches to hierarchical learning 

that sidestep this instability problem. One simple approach is to 

replace the random graph model by a random multipartite model 

of fixed depth, as illustrated in Figure 6.1(b). As already noted, if 

the connections between successive layers are random then most of 

the beneficial properties that random graphs provide are retained, 

except now, we have the added benefit that the depths of all the 

hierarchies are limited to the number of layers in the graph. 

A more interesting twist comes from observing that it is only 

in the process of allocating neuroids to new items that the hierar¬ 

chy depth needs to be restricted. Once these allocations have been 

made, associations can be established in supervised mode (as in 

Chapters 8 or 9), with arbitrary implications for the depths of the 

semantic hierarchies. This suggests that before an item is stored 

it should be given a name from some simple uniform space of 

names, such as a sequence of phonemes or letters. Such a space 

of names should be simple enough that there be a mechanism for 

allocating arbitrary names to neuroids in a multipartite network of 

small depth. Then when we learn a new concept, such as that 

of a “dinosaur”, we allocate nodes to it according to a shallow 

hierarchy, that is sufficient since the structure of the sequence of 

phonemes or letters in such a word is necessarily limited (see Fig¬ 

ure 12.1 in Chapter 12). We can then add an arbitrarily deep 

hierarchical definition of the semantics of this item by learning 

in supervised mode relationships between the “dinosaur” item and 

some of the other items that are also represented. According to 

this approach language, and in particular, naming, acquires a spe¬ 

cial role in cognition. This role can be summarized as follows: 

Hierarchical learning may not be feasible if storage for items is 

allocated solely according to their semantics, since that may give 

rise to hierarchies that are too deep to be supported stably by the 

network. Hierarchical learning may become feasible, however, if 

the items are encoded in some more uniform manner, as by sound 



6.4 Frontier Properties and Associations 73 

pattern, for which a fixed depth mechanism for storage allocation 

is sufficient. 

6.4 Frontier Properties and Associations 

The common neighbors of pairs of neuroids play another important 

role in vicinal algorithms besides memory allocation. This second 

application is to establishing associations between arbitrary pairs 

of items already stored. If node sets x and 5 are already allocated, 

we may wish to update the network so that at later times whenever 

X fires so will z. In Chapter 14 we will call this update operation 

LINK. To achieve it in the simplest way we can attempt to assign to 

a set y the role of relay nodes, and change some weights incoming 

to y and z in such a way that at a later time the firing of x will 

influence the firing of z. This is illustrated in Figure 6.3. The 

algorithms of Chapters 8 and 9 for supervised learning are all 

based on some such implementation of this LINK operation. The 

question we ask is the following. Suppose that // > 0 is some 

constant and r and N are as before. If the graph is random with 

edge probability p = (/x/(rA^))^/^, what is the expected number 

of members of z that have a common neighbor with at least one 

member of x? As we shall see, if x and z have size r, then the 

answer is about r(l —e~^). For example, if y = 1, then about 63% 

of the z will be connected to some member of x via a common 

neighbor, while if y = 2 (which increases the degree by a factor 

of 1.414), then the proportion is as much as about 86%. If y = 4 

(i.e. degree is 2(A^/r)^/^), then the fraction is larger than 98%. We 

note that by having values for y greater than one we perturb the 

frontier node allocation process described in Section 6.3, in that we 

will be allocating about yr rather than r nodes to each new item. 

We can counteract this by, for example, having the node allocation 

process reject each node provisionally allocated with probability 

y~^ randomly. In this way we can support on the same network 

both the allocation process JOIN as well as the process LINK that 

establishes associations. 
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z 

Figure 6.3. Illustration of an association set up from node set X to node set i 
via a set of relay nodes y. In the illustration there are four y nodes that serve 

as relay nodes. Also, the association is made successfully with four of the five 

members of The remaining member lacks the necessary connections. 

To prove our claim about the number of members of i that 

have a common neighbor with x, we first consider the proba¬ 

bility that there is a path of length two to one fixed member, 

say i e z, from at least one member of x via a fixed node 

j. Since the probability that at least one member of x is con¬ 

nected to j is (1 — (1 — p)^), as above, and the probability that 

j is connected to i is p, the probability of both happening is 

p(l — (1 —pY). Using the Binomial Theorem, this can be writ¬ 

ten as p{rp -\- 0(p^)), which, after substituting for p gives p/N -\- 

Hence the probability that there is such a path via at 

least one of the N — 2r possible choices of j is 

1 - (1 - p/N + 

Using the fact that (1 — ^ e~^ asx —> oowe obtain^^ that 

this probability is 1 — e~^(l +0(A^“^/^)). Since this probability 

holds for each i e z, the expected number of members of i having 

the required property is r times this quantity, which approaches 

r(l — asymptotically as > oo. 
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The conclusion of the analysis of this and the previous sections, 

for random directed graphs with p = {pi/rN)Y^^ and ^ = 4 is the 

following. When allocating storage to a new item (by an algorithm 

such as Algorithm 7.2) one half of the frontier set will be retained 

for the purpose of storing the item and the rest will be freed. 

When establishing an association from the representatives of one 

item X to the representatives of another 2 (by an algorithm such as 

Algorithm 8.1 or 8.2), an expected fraction of (1 — ^ 0.98 of 

the nodes of 2 will be reached successfully. 

6.5 Hashing 

Besides the frontier properties, there is a further attribute that is 

required of the network and can be supplied by randomness. This 

further property is needed to ensure that the nodes chosen for rep¬ 

resenting a new item will be, to large measure, among those not 

previously chosen. We shall call this the hashing property since it 

corresponds to that notion in computer science. 

The only mechanism we use for allocating new storage is the 

one described earlier, that of assigning a frontier E{x) H E{y) to 

a new item that is associated with the conjunction x A y. The 

property that needs to be ensured is that for any choice of x and y, 

this frontier contains a sufficient number of previously unallocated 

neuroids that these are able to represent the new item effectively. 

As in conventional hashing we shall assume that only a certain 

constant fraction of all the neuroids are ever assigned. The al¬ 

location mechanism will degrade severely as the memory fills up 

beyond a certain fraction. For plausibility we observe that a bio¬ 

logical system, such as a human, living for 100 years and having 

10^^ available neurons will be able to allocate up to 10^ new neu¬ 

rons each hour without more than 10% of the memory ever filling 

up. This holds even in the absence of any provisions for freeing 

memory or forgetting. 

To conceptualize the hashing process we take the view of univer¬ 

sal hashing^ ^ where the sequence of data requests over the lifetime 
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of the system is taken as fixed, and the hash function, or in our case 

the graph, is taken as chosen randomly and independently of the 

requests. This viewpoint allows us to analyze the behavior for ar¬ 

bitrary sequences of memorization requests without any seriously 

limiting assumptions having to be made about the nature of the 

sequence. In particular, we shall consider the situation in which 

a set of items is already stored and a new one is to be allocated. 

We allocate the frontier of some appropriate pair of sets x and y to 

store the new item. This pair is arbitrary (though perhaps restricted 

to a certain depth in the network as previously mentioned). We 

need to show that if the graph was randomly chosen then with high 

likelihood it can accommodate this new item in the sense that the 

frontier will contain a significant number of nodes that are still free 

and available for allocation. The basic phenomenon is the same 

as that exhibited in Section 6.2, except that now only a certain 

fraction of the nodes are still available. 

We can do a very approximate calculation using the pristine 

conditions assumptions of Section 6.3 and assuming /x = 1 for 

simplicity. We consider x and y both to have size r, assume 

that there are A^(l — u) nodes still unallocated for some constant 

u [0 <u < 1), and assume that each potential edge to any fixed un¬ 

allocated node i, from any fixed x ox y node, is present with prob¬ 

ability p = independent of the presence of other edges. 

Then, exactly as before, the probability that node i is adjacent to 

some node in x and some node in ^ is (1 — (1 —pYY = r^p^-fO(p^). 

Hence, if there are A^(l — u) choices of i then the expected size 

of the frontier of x and y that is unallocated is 

A^(l — u){r^p^ + 0(p^)) 

= A-(l-„)(.-=±+o(^)) 
= r(l-xi) 

What such a hashed memory achieves can be viewed as follows: 

Regarding r as a constant, suppose that we have {u/2)N/r items 

already stored, for some small enough constant xx < 1, and some 

sequence of another {u/2)N/r new items come along, each one 
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expressible as the conjunction of a pair previously memorized. Al¬ 

though the new pairs may be viewed as chosen from many more 

(proportional to N^) pairs potentially, and although only N neu- 

roids are available, we can nevertheless allocate memory for this 

arbitrary sequence of new items that present themselves, at least 

with high probability. The main point is that we can allocate these 

arbitrary new items drawn from quadratically many possibilities, 

without needing quadratically many nodes! 

In order to capture the precise behavior of this hashing mech¬ 

anism we need to be more careful in the analysis than the brief 

argument given above. There is clearly a contradiction in making 

the pristine conditions assumption here, since in discussing hash¬ 

ing we want to make a claim about what happens as the memory 

fills up. In particular, the items we can accommodate in this man¬ 

ner are clearly constrained in the following way: No item x can 

occur in more than about {N/rY^^ distinct new items, since there 

are not enough neuroids adjacent to x to represent them all. It 

is, however, the case that for some constants 0 < u,v < I if any 

uN/r conjunctions need to be stored and no item occurs in more 

than v{N/rY^^ of them, then they can all be allocated with high 

probability, assuming only a certain hierarchical stability that guar¬ 

antees each allocated item has close to r nodes. The aspect of the 

pristine conditions assumption that requires that edges directed to¬ 

ward unallocated nodes have the same probability of being present 

independently of each other is not required. 

The following is a brief outline of the idea needed to verify this. 

As we said previously, in general we view the sequence of requests 

as fixed and consider the graph as being generated randomly inde¬ 

pendent of the requests. We can do this generation more carefully 

by considering each allocation request in turn, and at each stage 

generating only those edges of the graph that are strictly necessary. 

Thus if the conjunction of x and y is required then we will ran¬ 

domly choose the nodes that will represent x Ay according to the 

correct probability. The end points of all other edges going from x 

or y to unallocated nodes will remain uncommitted and unbiased 

(although the probability of any one of these edges existing will 

then be slightly biased to below p). 

We then consider a stage in the above process when fewer than 
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uNjl nodes have been allocated and hence at least (1 — ujTjN 

remain free, where N was their total number initially. For each 

allocated node, among the (7V/r)^/^ edges directed away from it 

at most a fraction v were responsible for actual allocations, and at 

most another (expected) fraction u go to allocated nodes for whose 

allocations they were not responsible. Hence the expected number 

of available nodes allocated to x A ^ can be computed by exactly 

the same method as in §6.3. This will give some constant fraction 

of r rather than r, since the number of available neuroids is now 

only a constant fraction of N, and the edge probability is biased 

away from p by a constant fraction depending on u and v. 



Chapter 7 
Unsupervised Memorization 

7.1 An Algorithm 

Unsupervised memorization, as formulated earlier, appears on the 

surface to be a simple task. Following one presentation of an 

input, changes in the neuroidal system take place so that if an 

identical or similar enough input is presented in the future, the 

neuroidal system will recognize this repetition. By the term similar, 

we are not implying any abstract metric of similarity. We mean 

simply that the effects on the other circuits present in the system 

are substantially the same. 

Despite its apparent simplicity this task poses a very fundamen¬ 

tal problem, that of storage allocation. Since the instance to be 

memorized may be unanticipated and, within limits, arbitrary, a 

mechanism is needed for allocating storage space to essentially 

arbitrary new items. Since we employ a positive knowledge rep¬ 

resentation we treat the process of storage allocation as one of 

identifying some previously unused neuroids and committing them 

to the purpose of representing this new item. Such a strategy, if 

it can be implemented, makes it possible for learning to be cu¬ 

mulative, in the sense that unrelated items in memory will be left 

alone by any one execution of unsupervised memorization. The 

relative ease of dealing with this issue in positive representations 

is an important factor in our favoring it over the alternatives. 

As discussed earlier we regard memorization as being related 
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to forming Boolean conjunctions. We shall, therefore, consider 
the following idealization of the task at hand. An input has a 
number of attributes that correspond to items xi,' - ,Xn that are 
represented in the NTR by neuroid sets xi, • •, Xn- When this input 
is presented the nodes in all the sets xi, • • •, will be caused to 
fire. The problem, in its purest form, is to allocate a new set i of 
neuroids to represent the new item 2^ that corresponds to this input, 
and to update the net in such a way that in future interactions the 
nodes 5 will fire if and only if xi, • • •, x^ all fire simultaneously. 
We regard these sets as all having size r, and regard the neuroids 
within any one of these sets as having identical behavior (i.e. at 
any time either all fire or none do). In later chapters we shall 
discuss the more realistic and robust situation in which the item 
represented by such a set is considered as recognized if the fraction 
of its elements that are firing is above a certain value. The issue 
of how the peripherals may mediate and influence the choice of 
attributes that are presented to the NTR will also be discussed in 
later chapters. 

We note that here, as elsewhere, all items once allocated are 
regarded as equal citizens. Items represented by nodes that are 
allocated by the mechanisms of this chapter play the same role 
as items represented by nodes that are controlled directly by the 
peripherals. Except for the proviso that some limits on the depth of 
the hierarchies of allocations may be imposed, the theory defines 
items relative to each other rather than absolutely. To some extent 
the hierarchical memory allocation process implies a hierarchical 
view of the knowledge that can be stored. As noted previously, 
however, any item already stored can be learned in supervised 
mode in terms of any of the others. Hence circular relationships 
among the items may develop that do not respect the hierarchy of 
the original allocation process. 

We shall first discuss the case of n = 2, which we call 2- 
conjunctions. The more general case can be reduced to this one. 
The solution we propose is the following: We assume that the net¬ 
work has the frontier properties described in the previous chapter. 
For learning 2 = xi A X2 we shall simply allocate to 2 the frontier 
E'(xi) n £^(x2), or rather those members of this frontier that are in 
a certain state which we call “available memory” state, indicating 
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that they are not already allocated. What remains then is to spec¬ 

ify an algorithm that will enable the neuroids in this z to modify 

themselves so that at later times they will fire whenever both xi 

and X2 fire simultaneously. 

The neuroids that implement unsupervised memorization are all 

initially in available memory state (AM). They are in readiness to 

be called upon to store an item. Their initialized condition is that 

their edges all have weight one and their threshold is effectively 

infinite, or, in other words, higher than the number of inputs. They 

cannot undergo threshold firing until after they are allocated and 

have changed to unsupervised memory state (UM). 

First we describe an initial attempt at an algorithm. This will 

serve to further illustrate the notation we use for algorithms in 

general, as well as to explicate the correct version that follows. 

In this first version the algorithm is prompted by the peripherals 

firing a set I of neuroids. Any neuroid in state AM, say neuroid z, 

that is connected to at least two members of I will change to state 

UM. It will undergo threshold firings at later times whenever the 

nodes in I to which it is connected all fire simultaneously. 

Algorithm 7.1 

Step 0: Prompt : /. 

{g, = AM, Wi >2}^ 

{qi UM, Ti Wi, if fi — 0 then Wij := 0}. 

In general we describe algorithms in the format of a sequence 

of steps. At the step “Prompt” describes the set of neuroids 

that the peripherals force to fire (or prevent from firing) at time t 

macrounits after the start. The transitions that are described fol¬ 

lowing this are those that are expected to be invoked during the 

time unit that follows at the relevant neuroids (unless prevented 

by latency). In order to effect the prompt itself some global or¬ 

chestration will be required from the peripherals. All other aspects 

of the algorithm are fully distributed. Its course at any neuroid 

not directly prompted is completely determined by the transition 

rules and by the conditions at that neuroid and at its immediate 
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neighbors. The overall algorithm can be invoked at any time by 

having the preconditions of the first step satisfied as a result of an 

appropriate prompt. 

As explained earlier, for economy of notation we shall describe 

as a single rule the transitions that can be invoked by a neuroid for 

any one precondition. The lefthand side describes the necessary 

precondition. The righthand side describes the update to the mode, 

as well as the updates to all the weights. The latter may take the 

form of a conditional statement since the update to each weight may 

depend on whether the corresponding adjacent neuroid is firing. In 

this way we shall write on a single line a combination of 6 and A 
transitions. The conditions in a rule always refer to time t, while 

the changes produced happen at time ^ + 1. Default threshold 

transitions are instantaneous but are implied to exist only for modes 

that do not appear in a precondition in any explicitly stated rule. 

Algorithm 7.1 will provide the following behavior to any neuroid 

i that is initially in state AM and has all incoming weights equal 

to one. The neuroid will be inactive until the first occasion when 

at least two of its presynaptic neighbors fire. When that happens 

Wi >2 will hold, since each incoming weight is one and their sum 

over all edges coming from firing neighbors will then be at least 

two. If this condition is first satisfied for the neuroid at time t, then 

three changes to the neuroid will occur simultaneously one unit of 

time later. Its state will become UM, its threshold will become 

equal to Wi, and the weights on the edges that come from nodes 

not firing at time t will be made zero. The first of these is intended 

to ensure that no attempt to allocate this neuroid at any later time 

will succeed. The last two changes ensure that the neuroid will 

undergo threshold firing whenever in the future its neighbors in I 

that fired at time fire again. 

This algorithm can be seen as a first attempt at learning the 

conjunction Xi Ax2, if we interpret I as x\yjx2. For nodes connected 

to at least one member of x\ and at least one member of X2, 

the algorithm will work as required, as illustrated in Figure 7.1. 

Unfortunately, nodes connected to two nodes in x\ and none in X2, 

or to two nodes in X2 and none in Xi, will also be updated, as if they 

had learned the intended conjunction. The effect is that whenever 

just one of xi or X2 fires an allocation of new neuroids may be 
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AM AM am am am AM 

z 

Figure 7.1. Illustration of the effects of Algorithm 7.1. The upper diagram 

shows a circuit fragment in its initial condition. The lower diagram shows it 

with all the weights, thresholds, and states updated. In each diagram the eight 

nodes at the bottom illustrate four X\ nodes and four X2 nodes. The nodes 

allocated to 5 are the leftmost five among the six nodes in the top row. Note 

that the leftmost amongst these has no connection from any X2 node. 

made, and these will behave as replicas of xi or :r2. This problem 

of potentially uncontrolled sequences of redundant allocations of 

storage is a serious one. Fortunately, any one of several approaches 

may be taken to overcome it. For example, one could attempt to 

ensure that no two elements of any set representing one item have 
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a common neighbor. This could be achieved either by making an 

appropriate initial assumption about the network or by executing an 

algorithm that somehow “bums out” these connections (i.e. makes 

them have weight zero) when xi and X2 are first allocated. 

We shall take a different approach here. The problem that needs 

to be overcome is that Algorithm 7.1 treats all pairs of nodes 

in xi U X2 as having identical roles, which they do not. Those 

spanning the two sets should have a different effect from those 

entirely within only one of them. In other words, we need to break 

symmetry. The basic technique we will use for this here, and also 

subsequently, is timing. We will allocate to a peripheral the task 

of firing Xi alone at one time, and firing X2 alone at a later time. 

This peripheral can be thought of as an attentional mechanism that 

recognizes xi and X2 as distinct, and is able to effect the firings of 

the corresponding nodes at distinct times. 

Algorithm 7.2 

Step 0: Prompt: xi. 

ANl, Wi ^=4^ ^Qi .= AMI, Ti .= Wi^ 

if fj = 1 then Wji := 2}. 

Step 1: Prompt: X2. 

{qi = AMl,'u;i > 1} => •= UM, T, := Ti + Wi, 

if fj = 0 and wji = 1 then wji := 0, 

if fj = 0 and Wji = 2 then Wj^ := 1} 

{qi = AMl,ii;^ < 1} 

[qi := AM, Ti := oo, Wji := 1 for all j.}. 

The result of the execution of Algorithm 7.2 is shown below in 
Figure 7.2. 
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AM AM am am am AM 
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Figure 7.2. Illustration of the effects of Algorithm 7.2. The upper diagram 

shows a circuit fragment in its initial condition while the lower diagram shows 

it with all the weights, thresholds and states updated. In each diagram the eight 

nodes at the bottom illustrate four X\ nodes and four X2 nodes. The nodes 

allocated to i are the central four nodes among the six illustrated in the top 

row. 

In this algorithm the nodes x\ fire first. All AM nodes adjacent 

to a member oi x\ go into state AMI, record the value of Wi in Ti, 

and adjust the weights on the edges from Xi to 2, leaving the values 

of the others as 1. In the second step the X2 nodes fire (and the Xi 

nodes have ceased firing by default). Those AMI nodes that are 

adjacent also to some X2 node now go into unsupervised memory 
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state (UM), update their threshold to equal the total number of xi 

and X2 nodes to which they are adjacent, and update their weights 

so as to be one on edges coming from the Xi and X2 nodes, and to 

be zero from all the others. The remaining AMI nodes, those not 

adjacent to X2 nodes, revert to have the original mode and weights 

of available memory neuroids. We conclude, therefore, that this 

algorithm does indeed perform unsupervised memorization of 2- 

conjunctions as desired. We note also that only the Xi and X2 nodes 

fire in the course of the algorithm. The AMI nodes do not undergo 

threshold firings since, when alternative transitions are available, 

as they are here, these are invoked instead. This allows Ti to be 

used to memorize a number rather than to represent a real threshold 

when a node is in state AMI. The avoidance of inessential firings 

can be important for an algorithm, since this will also minimize 

the side-effects. In this algorithm, for example, if the AMI nodes 

had been allowed to fire then these would have caused a cascade of 

unintended storage allocations of a similar nature to the intended 

one. 

Returning now to the problem of learning conjunctions of ar¬ 

bitrary length we observe simply that this can be done by means 

of the algorithm for 2-conjunctions, as long as the peripherals do 

appropriately more work. To learn xi A X2 A X3, for example, the 

peripherals would find some ordering on these three items, such 

as X2, X3. They would then supply Xi and X2 in a call of Algo¬ 

rithm 12 so that a new item 2:1 = A X2 is memorized. Finally, 

they would supply zi and X3 in a second call of that algorithm, so 

that Z2 = zi A X3 = Xi A j:2 A X3 is memorized. By supplying zi 

we mean that zi will be made to fire, which will be achieved by 

causing xi and X2 to be fired simultaneously. It is easy to see that 

this strategy can be iterated so that conjunctions of any length n, 

not just 2 or 3, can be learned. The time needed for learning by 

this method would, of course, increase with n. Note that the or¬ 

der in which xi, X2, X3 are presented does affect the structure of the 

circuit, which may be of the form {xi AX2) AX3 or Xi A (x2 AX3) or 

(xi A X3) A X2. When used for recognition, these circuits undergo 

threshold firing only, and xi,X2,X3 can be presented simultane¬ 

ously. Hence the order in which the three items are associated 

in the learning process will not, at this level, affect the predicate 
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recognized. 

In later chapters we shall discuss further the importance of gen¬ 

eral “systems” questions that arise whenever many instances of 

many functionalities coexist in the same neuroidal system. It will 

suffice here to observe that the specification of even a single algo¬ 

rithm for a single task poses some nontrivial problems if we allow 

that the algorithm be invoked more than once. Suppose that in this 

present case of unsupervised memorization, we use the algorithm 

to learn a sequence of concepts hierarchically. Suppose, in partic¬ 

ular, that we are learning a conjunction, say of and ^6? where 

both constituents had been learned previously in terms of lower 

level items, such as ys = y\ A y2 and y^ = y3 A y4. Whenever the 

peripherals need to fire ys and y^ they will also have to fire the 

lower level nodes yi, y2, ys and y^. There is, therefore, the danger 

that in addition to the intended conjunction, other unintended con¬ 

junctions, involving lower level items, such as y\ Ays will also be 

memorized as separate items. We shall return to general systems 

problems in Chapter 13. It will suffice here to note that, in this 

instance of pure conjunctions, there is nothing semantically wrong 

with memorizing unintended low level conjunctions in addition to 

the higher level ones. All the unintended conjunctions, such as 

y\ A ys A ys, are conjunctions of recognized attributes present in 

the input and it is not incorrect to memorize them in unsupervised 

node. We will take steps to control these unintended memory al¬ 

locations, but only in order to minimize memory usage. 

When several functionalities that relate to each other are sup¬ 

ported within one system, then more particular requirements will 

need to be satisfied to ensure consistency. The functionality of 

memorization that we have been discussing is clearly related to 

the functionalities that correspond to the various possible meth¬ 

ods of memory access. We shall return to this question of how 

information is retrieved from memory in Chapters 12 and 13. 

We note, in conclusion, that as we introduce each new algorithm, 

we shall, for the sake of simplicity, examine it essentially in isola¬ 

tion in the first instance. Details not revealed in their descriptions 

will be assumed to be irrelevant or missing. In Figures 7.1 and 7.2, 

for example, it is assumed that the x\ and X2 nodes only fire when 

prompted, since no information about their state is given. It is also 
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assumed that there are no edges among the x nodes, among the z 

nodes, or from the ^ nodes to the x nodes. These last assumptions 

(or close approximations to them) are guaranteed by the random 

graph assumptions. For example, if r = 50, > 10^ and the edge 

probability p = then the probability that the neuroids 

representing two arbitrary items have even one of the potential 

edges between them present is remote. 



Chapter 8 
Supervised Memorization 

8.1 Introduction 

We formalize the problem of supervised memorization in a similar 

way to that of the unsupervised case. The main difference is that 

now the neuroids representing the item being learned are already 

allocated at the start of this process. This makes the problem 

both easier and harder than the unsupervised case. It is easier in 

the sense that no memory allocation mechanism is needed. On the 

other hand, it is harder in the sense that the constructed circuit now 

has to link nodes that have been previously selected and allocated, 

and the nodes for storing the target item can no longer be chosen 

for their convenient connectedness to other nodes. 

More precisely, learning a conjunction ^ = xi A X2 A • • • A 

now means that for previously fixed node sets xi, X2, • • •, and 

i, a circuit has to be established such that whenever xi, • • •,x^ all 

fire in the future, so will z. If, before this interaction, all incoming 

edges to z had weight zero, then we can make the stronger claim 

that the only future condition that will make z fire is the firing 

of xi, • • •,Xn together. The more realistic case is one where the 

z were allocated in the first place by unsupervised memorization 

and, therefore, some of their incoming edges already have positive 

weights. Then the previously stated conditions for firing z are 

still sufficient but no longer necessary since mixtures of subsets 

of the nodes that partook in the unsupervised learning and of the 
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new nodes Xi, • • may also suffice. Spurious behavior of this 

kind can be avoided by more complex mechanisms that ensure that 

either one of the intended inputs is sufficient to cause z to fire, but 

partial mixtures of the two are not. However, as mentioned in §4.5, 

it is not clear whether the brain has mechanisms to prevent such 

mixed mode behavior. 
We shall describe two algorithms for the basic task of supervised 

memorization. The first is simple and has the further advantage 

that it does not require edges to be bidirectional. The much more 

complex second algorithm assumes bidirectionality. Both algo¬ 

rithms, as described, implement a graded approximation of the 

true Boolean conjunction xi A • • • A While most of the z nodes 

will respond to exactly this conjunction, a small fraction, depend¬ 

ing on the parameter described in §6.4, will be connected to 

representatives of only certain subsets of these n items and will 

respond to the firing of these subsets. Note that the graded qual¬ 

ity here is provided by the random connectivity of the network. 

This quality may be desirable in cognitive modeling, to refiect the 

graded nature of concepts that has been detected in psychological 

experiments. At the expense of complicating the algorithms, the 

grading can be removed by having the nodes that fail to have the 

required connections detect and somehow eliminate themselves. 

The main difference between what the two algorithms achieve 

lies in the fact that the first one allows some unintended inter¬ 

ference effects from irrelevant inputs, though with provably small 

probability, while the second does not. In the second, bidirectional 

edges are used to reserve certain relay nodes for the exclusive use 

of just the one conjunction in hand. In contrast, relay nodes in the 

first algorithm are essentially shared among all the nodes that have 

edges directed toward them and realize the claimed functionality 

only with high probability. Both algorithms can be implemented 

on either random graphs or on random multipartite graphs. The 

diagrams suggest the latter case since that is the slightly easier one. 
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Our first algorithm for supervised memorization of a conjunction 

2 = x\ /\ ‘' • /\ Xn is illustrated in Figure 8.1. The i nodes are 

initially in unsupervised memory state, UM, suggesting that they 

were initially allocated by some process such as Algorithm 7.2. 

The weights on the relevant edges incoming to the 2 nodes can be 

assumed then to be zero, since that is how Algorithm 7.2 leaves all 

such edges, except for those coming from the nodes representing 

the features of the unsupervised memorization process. The initial 

values of the thresholds of the 2 nodes are immaterial to the algo¬ 

rithm. The states of the x nodes are also immaterial provided that 

they only fire when prompted, which is what we assume. Also, 

since the main advantage of the algorithm is that it does not re¬ 

quire bidirectionality, we shall assume that there are no edges from 

2 back to the R nodes, or from the R nodes back to the x nodes. 

In other words, we have a multipartite graph, such as shown in 

Figure 6.1(b), but in which all edges are directed upward. 

Communication will take place through nodes in relay state R 

that have threshold one, and weight one on all incoming edges. 

A relay node is never updated, except that it undergoes threshold 

firing if at least one of its inputs is firing. 

Algorithm 8.1 is then simply the following: 

Step 0: Prompt: xi, :r2, • • •, 2. 

{q, = UMF} {q, := UMl, if A = 1 then := 1}. 

Step 1: Prompt: xi, X2, • •, x^. 

{q, = UMl} ^ {q, := SM ,T, Wi). 

This algorithm works as follows: When the nodes xi, • • ,x^ 

fire, all the relay nodes to which they have directed edges undergo 

threshold firing essentially instantaneously. If the 2 nodes in state 

UM are made to fire at the same time, then the edges to these 2 

nodes from the firing relay nodes will have their weights changed 

to one. Also each 2 node will go into state UMl. At the next 
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Figure 8.1. Illustration of the effects of Algorithm 8.1. The top diagram shows 

a circuit fragment in its initial condition. The lower diagram shows the states, 

weights and thresholds after the algorithm has been executed. In each case there 

are six X nodes illustrated at the bottom of the circuit and two z nodes at the 

top. 

Step the nodes xi, • • •, will be prompted again, thereby causing 

the same relay nodes to fire as before. The z nodes will update 

their state to SM and their threshold to Wi, the number of edges 

incoming from firing relay nodes. 

Many complications may arise when several algorithms are to be 

run compatibly on one network. To mention just one, we note that 



8.2 A Simple Algorithm 93 

when a i node first memorizes something in unsupervised mode 

and then goes on to memorize something in supervised mode, it 

is important that the latter process not destroy the effects of the 

former. In the present case changing the threshold may have such 

a deleterious effect. This problem can be overcome, however, by 

having the weights created in the second process adjusted so as 

to fit the old threshold. This can be done by replacing 

Wi" in the transitions specified in Algorithm 8.1 by “if fk = I 

then Wki WkiTilwi'\ where Ti denotes the threshold before 

the current update (i.e. the threshold acquired in the process of 

unsupervised memorization). 

It remains to explain why the sharing of a relay node, among 

all the nodes from which there are connections to it, gives rise to 

unwanted effects only with negligible probability. For this pur¬ 

pose consider the r fixed nodes 5, the nr fixed nodes xi, • • •, Xn, 

and also consider some kr other fixed nodes that form k disjoint 

sets yi,- - ,yk. We want to show that the weights that have been 

changed to 1 by Algorithm 8.1 will not have the effect of causing 

many of the 5 nodes to fire in the future when some spurious set of 

items , • • •, fire* In order to estimate this number, let j be any 

relay node, let p be the probability of an edge being present from 

any fixed node to any other, and let us assume that this probability 

is independent for the various pairs of nodes. Then the probabil¬ 

ity that this j is involved in such a damaging weight change is 

the probability that j is connected simultaneously to at least one 

member of z, at least one member of xi, • • •, x^, and to at least 

one member of • • •, This probability is 

i-pr][i-(i-pr][i-(i-p) 
kr 

since {l—pY, (1 —and {l—pY^ are the respective probabilities 

of each of these events not happening. Applying the Binomial 

Theorem to each component gives that the overall probability is 

nkr^p^ + 0(p'^). We argue that if this quantity is less than about 

IjN, then this source of interference is negligible in the sense 

that the expected number of offending nodes j is less than one. 

Consider p = {y/{rN))2 with ^ — 4, as suggested in §6.5, and 

N = 10^^. Then we need Nnkr^p^ < 1, if the 0{p'^) term can be 



94 Supervised Memorization 

ignored, or Snkr^^^ <10^. If r = 50 then restricting n, /c < 5 is 

sufficient. 

We have shown that the expected number of relay nodes, intrin¬ 

sic to the circuit for memorizing 2: = A ^2 A • • • A Xn, that a 

particular spurious conjunction , • • •, causes to fire, is at most 

one (i.e. N x 1 /N). This is small compared with the number of 

corresponding nodes in the intended circuit, which is about rn. 

A simple calculation shows that if this expected number is one, 

then it is extremely unlikely that a significant fraction of x will be 

caused to fire if, say, z is of size r = 50. The restrictions that 

were sufficient to guarantee all this were that n, the length of the 

conjunction, is at most five, and that /c, the number of items fir¬ 

ing spuriously at that instant is similarly bounded. The necessity 

of a bound of this latter kind is discussed further in §12.2 (and 

enunciated there as Principle 3). We note that at each instant a 

different set of k items may be firing. It is sufficient to show, as 

we have, that whichever set this is, the probability of unwanted 

side effects will be small at that instant. The phrasing of the proof 

was that the k items are first fixed, and the graph is randomly gen¬ 

erated afterward. The meaning, however, is that the random graph 

is generated first, and the k items are chosen randomly afterward, 

but independently of the graph. 

8.3 A Second Algorithm 

The algorithm described below. Algorithm 8.2, is much more com¬ 

plex than the previous one, but guarantees that the interference ef¬ 

fect analyzed above never occurs. It illustrates how on bidirected 

networks it is possible to control the behavior of subnetworks very 

precisely. The positive weight paths to UM nodes only carry in¬ 

fluences that are intended. The issues that arise in this section are 

somewhat specialized and illustrate the programming possibilities 

for bidirected networks. We shall not have reason to revisit them. 

As before, this algorithm has the target nodes 2 initially in un¬ 

supervised memory state (UM). The 2 nodes will establish com- 
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munication with the x nodes via some nodes initially in available 

relay (AR) state. Initially all weights on edges toward AR nodes 

have weight one, and those away from AR nodes have weight zero. 

The fact that the weights of the edges from the AR nodes to the 

UM nodes are initially zero is consistent with the scenario of the 

UM node having been previously trained by Algorithm 7.2, which 

leaves all such weights zero. The initial thresholds of the UM and 

AR nodes are immaterial to the algorithm and may be regarded as 

infinite. The effect of the algorithm is illustrated in Figure 8.2. 

Algorithm 8.2 

Step 0: Prompt: xi,X2, — ' ,Xn, z. 

{qk = AR, Wk>2}^ {qk := ARIF } 

{q, = UMF } {q, := UMl}. 

Comment: AR nodes connected to at least two of the prompted 

nodes will go to state ARIF at time 1. (This transition is not 

to be regarded as an instantaneous threshold transition since it is 

explicitly written out. Hence it takes unit time.) Also, at time 1 

the z nodes will be in state UMIF because they transited to state 

UMl and are prompted at that time, but the x nodes will have 

ceased firing, being assumed to be in a state that has that default. 

Step 1: Prompt: z. 

{qk = ARIF ,Wk > 1} ^ {qk ■= AR2} 

{q, = UMIF } ^ 

{qi := UM2, if fk = l then Wk^ := 1} 

{qk = ARIF, Wfc < 1} {qk := AR }. 

Comment: Those ARIF nodes that are connected to z will go to 

state AR2, the edges from the former to the latter being given 

weight 1. The remaining ARIF nodes, those not connected to any 

z node, will revert to the pristine AR state, while the z nodes 
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Figure 8.2. Illustration of the effect of Algorithm 8.2. The top diagram shows 

a circuit fragment in its initial condition. The lower diagram shows the changes 

to the weights, states, and thresholds after the algorithm has been executed. In 

each diagram there are six x nodes illustrated at the bottom of the circuit and 

two z nodes at the top. 

will proceed to state UM2. (Note that by having state ARIF, we 

are using the firing status of a node to communicate information 

between steps. We could avoid this by having the Wki 1 updates 

done in an extra step having xi, • • •, as the prompt, and added 

between the current Step 2 and Step 3.) 
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Step 2: Prompt: xi, • • •, 

AR2 ^ .— BR, T]^ 

if // = 0 then wik := 0} 

{q^ = UM2 } ^ {q, := UM3 } 

i^Qk AR2, Wj^ <C 1 ]■ 

{qk := AR ,wik := 0 for all /}. 

Comment: The AR2 nodes connected to some x nodes have T set 

to the number of such nodes. All weights to them from other nodes 

are set to zero, and they themselves go to busy relay (BR) state. 

The AR2 nodes not connected to any x nodes become isolated by 

having all incoming weights set to zero. The 2 nodes progress to 

state UM3. 

Step 3: Prompt: Xi, • • •, x^. 

{qi = UM3 } => {qi := SM, T* := Wi}. 

Comment: By threshold firings all the BR nodes adjacent to the 

prompted x nodes are caused to fire. The 2 nodes progress to 

supervised memory state (SM). Their thresholds are adjusted to 

the number of BR nodes through which they are connected to 

some X nodes. 

As in the unsupervised case the issue arises as to how these 

algorithms fare when learning is hierarchical, or, in other words, 

when to make Xi, • • •, x^ fire it is also necessary to make some 

lower level items fire. The observation made in the previous case, 

that no semantic problems occur if all the items are pure conjunc¬ 

tions, holds here also. Every item that is true of an input, whether 

at a higher or lower level in the hierarchy, is a valid attribute of 

the input, and it is valid, though perhaps not efficient, to form 

the conjunction of all of them when memorizing the input as a 

conjunction. 
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Chapter 9 
Supervised Inductive 
Learning 

9.1 Introduction 

As explained earlier, we find it useful to divide knowledge acqui¬ 

sition mechanisms into two categories. In the first the acquisition 

mechanism is such that little room is left to question the validity 

of the acquisition process. Examples of acquisition methods of 

this first kind are: inheriting an algorithm at birth, memorizing the 

text of a program or recipe given to one explicitly, memorizing the 

features of an individual or of an event, and arriving at knowledge 

by logical deduction from knowledge already available. Whatever 

problems of computational implementation these processes may 

pose, none of them raises philosophical difficulties concerning the 

rational defensibility of the outcome. 

This chapter is devoted to knowledge acquisition mechanisms of 

the second kind where the process itself is no longer immediately 

defensible. While this definition may encompass a broad range 

of possibilities, there is an instance of it that we consider to be 

paradigmatic and this is learning by example. Here the teacher 

has a predicate or concept in mind, such as that of a chair. The 

learner is presented with a number of objects each identified by the 

teacher as either being an example of the concept or as not being 

an example of it. The task of the learner, in its most operational 
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form, is to acquire the capability of categorizing previously unseen 

objects as being or not being examples of the same concept (e.g. 

chairs or not chairs). The process of knowledge acquisition by such 

indefensible means is usually called inductive learning or often, in 

our case, just learning, for short. 

Our definition of inductive learning can be viewed as a negative 

one: any mechanism that is not defensible in a straightforward 

way, but has some validity, suffices. In general, inductive methods 

share the property that the learner acquires capabilities that are 

not logically implied by the information presented. Clearly these 

mechanisms embrace a rich variety of phenomena. The task to be 

learned may be that of learning new concepts, or that of increasing 

some measure of performance at some task that has been mastered 

qualitatively. Also, the interaction with the world may take many 

forms besides the paradigm of learning from examples. 

Induction has a paradoxical aspect in its very definition. How 

is it possible to abstract more useful information from information 

presented than is logically implied in it? Philosophers have given 

much thought to this question, and have often emphasized both its 

centrality and its problematic character. Hume described induction 

as a process in which the regularities observed through experience 

lead one to acquire habits of what to expect in the future. In 

an extreme case if occurrences of a situation in the past always 

had identical outcomes, then one expects a reoccurrence to lead 

to the same outcome the next time. His statement clearly has 

much verisimilitude, but it leaves unresolved the exact nature of 

the regularities that are useful for induction in general. Because of 

these difficulties some philosophers in the twentieth century have 

questioned the very existence of induction in the classical sense 

(N. Goodman 1983). 

In our view these philosophical questions can be finessed by 

regarding induction more as a natural phenomenon and less as a 

logical paradox. As in other areas of science it is then sufficient to 

model and explain some significant aspects of this phenomenon. 

We do not need to arrive at a formal definition that accounts for 

all senses in which the word induction is commonly used. 

The aspects of induction that are most promising for scientific 

investigation are those that are most mundane, mechanical, and ex- 
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perimentally repeatable. Every day millions of children learn new 

words for artifactual concepts, such as pieces of furniture, and it 

seems implausible that these concepts are somehow already prepro¬ 

grammed in the genes. Furthermore, simple inductive phenomena 

appear to go back a long way in evolutionary development. As 

mentioned in Chapter 4, there are many remarkable experiments 

that show that pigeons and other animals have substantial powers 

of generalization. We may view induction, therefore, as a concrete 

reproducible phenomenon in the same spirit as a physical phe¬ 

nomenon might be viewed in mechanics. We need to be aware, 

however, that there is a wide range of other phenomena, such as 

scientific discovery or artistic creativity, that may have features in 

common with this view of induction, but that also seem to have 

additional aspects. These phenomena have proved much more dif¬ 

ficult to specify or to reproduce under experimental conditions, and 

we make no attempt at considering them here. 

9.2 Pac Learning 

Since learning is a central aspect of cognition, we need to decide 

on what view to take of it. There is a field of computer science, 

called computational learning theory, that is concerned with mod¬ 

eling and understanding the learning capabilities of computational 

systems. A first aim of this field is to provide plausible specifi¬ 

cations of what a system that learns inductively can be expected 

to achieve. For a mathematically well understood task, such as 

integer multiplication, it is easy enough to specify what a program 

for accomplishing it should do. We need to have similarly clear 

criteria for learning if we are to evaluate whether various proposed 

mechanisms for realizing it are effective. For example, if we were 

to purchase a home robot that is advertised as adaptable or hav¬ 

ing learning capabilities, what kind of guarantee of performance 

should we look for? 

It seems that any acceptable criterion of inductive learning has 

to reconcile two opposing requirements. It has to be strict enough 
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that, if satisfied, induction in a useful and reliable sense is indeed 

achieved. On the other hand it should not be so strict that it is 

impossible to deliver that level of performance by any feasible 

computational mechanism. 

The criterion of learning that we shall follow here is what is 

called distribution-free or probably approximately correct learning 

(pac for short). An informal rendering of this on the guarantee of 

the stipulated home robot would read something as follows: what¬ 

ever home you take this robot to, after sufficient training on some 

tasks it will behave as expected most of the time, as long as the 

general conditions there are stable enough. To make this infor¬ 

mal statement into a usable criterion, some quantitative constraints 

are needed in addition. First, the number of training sessions re¬ 

quired should be reasonable, as should the amount of computation 

required of the robot to process each input at each such session. 

Second, the probability that the robot fails to learn because the 

training instances were atypical should be small. Lastly, the prob¬ 

ability that, even when the training instances were typical, an error 

is made on a new input should be small. Furthermore, in the last 

two cases the probability of error should be controllable in the 

sense that any level of confidence and reliability should be achiev¬ 

able by increasing the number of training instances appropriately. 

This intuition can be captured formally for several learning con¬ 

texts. In the simplest case, of learning from examples, this can 

be done as follows: All the examples, whether during training or 

testing, are considered to be drawn randomly and independently 

from one probabilistic distribution, one that describes the proba¬ 

bility of the various examples occurring in the real world. It is 

not necessary for the learner to understand the complexities of the 

distribution, but only to classify reliably new examples drawn from 

that distribution. Understanding the distribution would correspond 

to having complete information about the world. Classifying new 

examples corresponds to merely coping with it. The idea is that 

simple strategies may suffice to cope with a world that is too com¬ 

plex for us to fully understand. More importantly, these simple 

strategies may be leamable effectively through experience with 
the world. 

Details of how such a theory can be made precise can be found 
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elsewhere in the literature^^. Briefly, all the quantitative constraints 

can be stated, in the first instance, as requiring that the associated 

quantities grow only polynomially (i.e. as a fixed power of n such 

as or n^) as opposed to faster, such as exponentially (i.e. 2^). 

The parameter n represents the relevant measures of the problem. 

These include the size of the program or strategy being learned, and 

the inverse of the probability of error that is to be tolerated. A class 

of programs is learnable from examples in this sense if the number 

of training inputs and computational steps needed is bounded as 

a polynomially growing function of the relevant parameters. This 

framework can be used in richer settings also, such as when the 

learner can ask the teacher questions. We shall restrict ourselves 

here to the case of learning by example. We shall not need to go 

further into the technicalities of learning theory. It will be sufficient 

that the particular algorithms we implement on the neuroidal model 

be such that they are known to be learnable in this sense. 

It turns out that the classes of representations that are learnable, 

even when the learning process is allowed to run on a general pur¬ 

pose computer as is allowed by the pac learning model, is severely 

limited. Examples of simple classes that can be learned include 

Boolean conjunctions (e.g. x\ A A x^) and Boolean disjunc¬ 

tions (e.g. x\ V X3 V Xg). Because of their simplicity these classes 

are more appropriately called classes of knowledge representations 

rather than of programs, since the computational aspect of evaluat¬ 

ing these Boolean forms is trivial compared with the complexities 

that may be found in arbitrary programs. 

An important class that is not currently known to be learnable is 

disjunctive normal form (or DNF for short). As described in §4.2, 

this consists of expressions that are of the form of a disjunction 

over terms that are conjunctions themselves. Thus a; 1X2X3 VX1X2 V 

X2X4X7 is such a DNF expression where conjunctions such as Xi A 

X2 AX3 are abbreviated in standard product notation as x 1X2X3. This 

appears to be a most natural generalization of simple conjunctions 

from the viewpoint of modeling human concepts. It can express 

the idea that examples of a concept fall into a number of somewhat 

distinct categories, each corresponding to one of the conjunctions. 

When discussing inductive learning we have a hierarchical con¬ 

text in mind. If we wish to learn DNF formulae, but do not have an 
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algorithm for learning these directly, we can nevertheless attempt 

to learn these in stages. For example, to learn X1X2 V X2X3 Vv^e 

could first learn the simple conjunctions X\X2 and X2X3 separately 

in some fashion. Having learned these we can learn the DNF 

formula using an algorithm for simple disjunctions. Of course, 

when learning hierarchically in this way more is required of the 

teacher or environment than in the simplest case of learning by 

example. Somehow the subconcept X\X2 must be learned sepa¬ 

rately in supervised or unsupervised mode. In the former case, 

for example, a teacher may have to teach the name of this subcon¬ 

cept in unsupervised memorization mode and then identify positive 

or negative examples of it so that it is learned in supervised mode 

inductively. Alternatively, this subconcept may be learned in unsu¬ 

pervised mode either by memorization or by correlational learning. 

In this context, learning theory can be thought of as defining the 

granularity with which learning can proceed without intervention 

from the outside. The largest classes of programs that are leamable 

represent the largest chunks of information that can be learned 

feasibly without their having to be broken up into smaller chunks. 

Our current state of knowledge suggests that this granularity 

is small and that there are severe restrictions on the classes of 

knowledge representations that are leamable in polynomially many 

computational steps on general purpose computers. If we restrict 

ourselves to learning on our neuroidal model in at most ten or 

a hundred steps per input, then we are tying our hands behind 

our backs. Somewhat surprisingly, it appears that some of the 

most natural classes currently known to be leamable on the general 

model are not significantly restricted when we constrain ourselves 

in this particular way. In the next three sections we shall describe 

known pac learning algorithms for three classes: conjunctions, 

disjunctions, and linear threshold functions. We shall show that 

they are implementable on the neuroidal model. 

One plausible approach for dealing with DNF representations 

on a general purpose computer is the following: First, restrict the 

constituent conjunctions to those that are somehow leamable in 

unsupervised mode, and then learn the DNF as a supervised dis¬ 

junction over these.The unsupervised learning may consist of 

identifying sets of variables that are found to be true simultane- 
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ously in natural examples with unexpectedly high probability and 
memorizing their conjunctions. The supervised learning consists 
then of finding a subset of these conjunctions whose disjunction ap¬ 
proximates the function being learned. It turns out that this strategy 
remains essentially feasible in the more restricted neuroidal model! 
This gives us some confidence that the bounds of leamability, at 
least for the style of knowledge representation that we consider 
here to be relevant to cognition, have some robustness to changes 
of computational model. This is exactly what is required for a 
robust theory. 

9.3 Learning Conjunctions 

Suppose that a system is learning a recognition rule that is known 
a priori to be a conjunction of a subset of the Boolean predicates 
Xi, • • • for each of which a recognition algorithm is already 
available to the system. Suppose that the true rule is X2X7X9. This 
means that every possible positive example will have these three 
attributes true and, conversely, that whenever all three are true then 
the example is a positive one. To induce such a rule from examples 
there is an obvious and classical method called elimination. In 
this we consider a set K that initially includes all n of the Xi 
predicates. Each time we see a positive example where some Xj is 
false, we eliminate this Xj from K, since any such single example 
is sufficient evidence to confirm that Xj cannot occur in the correct 
rule. At each stage in this process the hypothesis is made that the 
correct rule is the conjunction of all the predicates that have not 
been eliminated from K. 

This simple algorithm has some strong properties. First, it is 
clear that it uses only positive examples and no negative ones. Sec¬ 
ond, it will never misclassify a real negative example as positive. 
At each step when a predicate is eliminated from K the exam¬ 
ples that are newly accepted as positive by the altered hypothesis, 
namely the conjunction of the members of AT, are guaranteed to 
be truly positive since the truth of the eliminated predicate cannot 
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have been a condition necessary for positivity. If the true rule is 

X2XjXg, then at any stage of this process these three predicates will 

remain members of K. Hence the only possible source of error in 

this algorithm is that some positive examples are not recognized as 

such by the current conjunction because the latter contains some 

extra predicates that are not satisfied by every positive example. 

For example, K may contain X4 in addition to xi, X7, and xg. It is 

possible to show, however, that if the examples are drawn randomly 

from some arbitrary probability distribution — the arbitrariness re¬ 

flecting the complexities of the real world — and if the hypothesis 

is to be tested on a random example from the same distribution, 

then this source of error is well controlled. The essential point is 

that if there are predicates, such as X4, that the examples ought to 

eliminate but fail to then, unless the examples drawn were atypical 

of the distribution, it must be the case that most positive examples 

do have these variables true. Hence retaining them in the hypoth¬ 

esis will have the effect of misclassifying only a few rare positive 

examples for which these predicates are false.This probably ap¬ 

proximately correct, or pac, behavior is acceptable, and is the best 

that can be hoped for. 

Our first algorithm for implementing the inductive learning of 

conjunctions will be this elimination algorithm. We have items 

xi, • • •, Xn and a target item z. In the interaction the positive 

example will be presented. The peripherals will prompt simultane¬ 

ously 5, as well as every xj such that Xj is true for this example. 

The task for the learning algorithm is to ensure that after i such 

examples, a connecting circuit will exist between the x's and the 

5, that will behave as follows: On a future input 5 will be caused 

to fire by threshold firings through this circuit if and only if all 

those Xj that fired in all the i positive examples already seen are 

firing. This is another way of saying that the circuit implements 

the elimination algorithm. (As in the algorithms described in the 

previous chapter the “only if” part of the claim applies only to the 

effect on 5 of the new circuit that is being set up. In general, the i 

nodes may also fire under additional conditions imposed by other 

circuitry previously established. For example, they may respond to 

inputs corresponding to their name learned earlier in unsupervised 
mode.) 
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We assume that some nodes have the capacity to leam conjunc¬ 

tions. On having succeeded these will be in supervised conjunctive 

(SC) state. We assume that initially they are allocated by some un¬ 

supervised process and hence we call their state UC for unsuper¬ 

vised conjunctive. They have the potential to leam a conjunction 

inductively exactly as a UM node has the potential to memorize 

a conjunction. Initially all the incoming weights have value one, 

and the threshold is effectively infinite. 

At the presentation of the first example, any algorithm for su¬ 

pervised conjunctions in the style of Algorithms 8.1 or 8.2 may be 

used to leam the conjunction of all the attributes tme in this first 

example. The only difference needed is that the 2 nodes, rather 

than going through the state sequence UM => UMl => SM 

or UM ^ UMF UMIF UM2 UM3 => SM, 

as in these previous algorithms, go instead through a renamed 

but otherwise identical sequence UC ^ UCl SC or 

UC UCF ^ UCIF ^ UC2 ^ UC3 ^ SC. What 

the first stage achieves is effectively to assign to K the set of all 

variables that are tme for the first positive example. 

Each successive stage will be prompted by the presentation of a 

further positive example, and will result in the execution of Algo¬ 

rithm 9.1. Each such execution will have the effect of eliminating 

any member of K that is false for that current example. To achieve 

this, it will simply set to zero the weight of any edge coming to the 

SC node from relay nodes that are not made to fire by the example. 

Also the threshold of the SC node will be reduced at each stage to 

compensate for the reduced weight sum of its edges. Note that w^ 

will have unit contributions from every Wji such that j represents 

one of the items remaining in K. It will have zero contribution 

from every other j. 

Algorithm 9.1 

Step 0: Prompt: 2, tme for current example}. 

{q, = SCF } ^ 

{g* := SC, Ti := w^, if /fc = 0 then Wki '■= 0}. 
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Figure 9.1. Illustration of the elimination algorithm for learning conjunctions, 
in the case that Algorithm 8.1 is used to process the first example. The top 
diagram shows a circuit fragment after a first example has been processed, in 
which X\ = X3 = X4 = X5 = 1 and all other Xi = 0. The lower diagram 
shows the result of subsequently executing Algorithm 9.1 for a second example 
in which Xi = x^ = x^ = I and all other Xi = 0. 

If a relay node that is connected to a i node is connected to more 

than one x group, say xj and Xk, then eliminating its connection to 

i because xj fails to hold for a positive example would eliminate 

Xk also, possibly mistakenly. Fortunately, this happens very rarely 

under the random graph assumptions made. By a calculation sim¬ 

ilar to the one used in §8.2 it can be deduced that the probability 
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that any fixed relay node is connected to z and to Xj and for 

some j and /c (1 < j < /c < n), is 

1 - (1 - (1 - (1 -py][n{n - l)/2 

< 

< 

< 

< 

+ 0{py 

V? 

y 7VV2 
if p = (^pj {vNyyi^ 

'fjp t 
— • — if r < 100, /i = 4 and TV = 10^^ 

1/TV ify<25. 

We conclude that if n < 5 then the expected number of such relay 

nodes is at most one, and hence that the elimination algorithm 

works on most of the r nodes of z as intended with high probability. 

As an alternative, if we wish to avoid having such a graded 

response, then we can use Algorithm 8.2 and adapt it so that the 

offending relay nodes are identified and isolated. For example, 

when processing the first example, we could add an extra step be¬ 

fore the current Step 3 of Algorithm 8.2: 

Prompt: Xi, • • •, 

{qk = BR, Wfc > 2} => {wik := 0 for all /}. 

This will ensure that relay nodes made busy by more than one x 

node will be effectively eliminated, before the last, now fourth, 

step of the algorithm is executed. 

As a general remark, we note that it is very desirable that a 

learning algorithm be resilient to errors in the data. In the case of 

supervised learning this means, for example, that if a small fraction 

of the examples are presented to the NTR as exemplifying the item 

being learned when they do not, and vice versa, then the learning 

algorithm should still succeed. The simple elimination algorithm 

just described is not robust, since a variable may be mistakenly 

eliminated from K once and for all, by just one example that 

is mistakenly labelled as being negative. The algorithm can be 

adapted, however, to be resistant to a small error rate by having 
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a variable removed from K only if in a sufficient fraction of the 

positive examples this variable is false.^^ 

A further general consideration in any inductive algorithm is 

that its behavior be appropriate for all interactions after the initial 

one. In the algorithm described above the precondition that the 

SC state be firing is intended to express the situation that this node 

is being prompted to indicate that the current example is positive. 

As specified the algorithm would be invoked also, however, by 

any input that causes the SC node to undergo threshold firing by 

virtue of all x nodes corresponding to the variables in K firing. 

Fortunately, the algorithm would then make no updates, and hence 

remains correct. 

9.4 Learning Disjunctions 

When learning disjunctions we assume that the examples and coun¬ 

terexamples presented are consistent with a Boolean disjunction 

over a subset of previously recognized Boolean predicates xi, • • •, 

Xn- If the rule is xi V X5 V xn, then all positive examples have at 

least one of xi,X5 or xn true, while all negative examples have 

all these attributes false. 

The elimination algorithm described for conjunctions has a pre¬ 

cise dual, in which learning takes place from negative examples 

alone. We start by considering the disjunction of the set K of all 

the variables. Each negative example is then taken in turn and any 

x^ that is true in any negative example is eliminated from K since 

its truth is then known not to be sufficient to guarantee an exam¬ 

ple being positive. After any number of examples the rule that is 

hypothesized is the disjunction of the members of K that remain. 

This algorithm can be analyzed in a similar manner to its dual for 

conjunctions, and shown to increase in reliability in the pac sense 

in the same way as the number of examples seen increases. 

Implementing this algorithm for disjunctions in a neuroidal net¬ 

work involves some new complications. As in the case of conjunc¬ 

tions it is impractical to start eliminating with a starting situation 
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that has K containing all the predicates in the NTR. For conjunc¬ 

tions we had the easy solution of taking the initial members of K 

to be all the predicates that are true in the first example, since the 

predicates occurring in the true rule must be a subset of these. For 

disjunctions there is no comparably simple solution. If the true 

rule is x\ V X5, it may be that the first example has and some 

other predicates true, but Xx false. 

The algorithm we propose is the following. After each example 

we have a circuit as in Algorithms 8.1, 8.2 or 9.1, except that each 

target node has threshold one, so that it recognizes a disjunction 

rather than a conjunction. When a negative example is seen then 

some variable may be eliminated from the disjunction by setting 

some weights of the target node to zero. When a positive example 

is seen that is already covered by the current value of K then no 

updates are made. If the positive example does not make positive 

any member of A", then the attributes that are true in it are added 

to K. This augmentation of the circuit is carried out by running 

a version of Algorithm 8.1 or 8.2 on it as described below. Thus 

every attribute that is ever witnessed as occurring in even one 

positive example that is not already accounted for by the current 

K, is given consideration as a potential member of the disjunction 

being learned. 

The sequence of interactions that result in learning a disjunc¬ 

tion by elimination will first need, therefore, the input of a pos¬ 

itive example. For dealing with this first example our algorithm 

will be essentially the same as Algorithm 8.1 or 8.2 except now 

the state sequence executed will be renamed UD UDl =4^ 

SD or UD =4 UDF =4 UDIF =4 UD2 ^ UD3 =4 SD, 

where D denotes disjunctions. The only additional modification is 

that when the final state SD is entered, the threshold is made one, 

rather than so that a disjunction is realized. For example, for 

Algorithm 8.1 the last step would become: 

= UDl}^{q,:= SD, T, := 1}. 

How do we adapt the algorithm so that it can add predicates 

to K that are present only in positive examples subsequent to the 

first? It suffices to use an algorithm that is essentially the same 
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as that used for the first example, except that it starts in state SD 

and goes through the sequence SD SD or SD => SDF =» 

SDIF =4> SD2 SD3 SD in analogy with Algorithm 8.1 

or 8.2, respectively. We need to make two observations about this 

part of the algorithm. First, since no edge of weight 1 in an SD 

node will be made zero, no items from the current set K, over 

which a disjunction is being computed, will be removed from it. 

Second, any attribute in the new example that is not already present 

in the disjunction will be added as a disjunct. We note that this 

algorithm only needs to be invoked for those positive examples 

that fail to make Wi> 0 for the SD node. 

It remains to say how negative examples are treated. In this case 

the supervised disjunctive nodes SD are prevented from firing by 

the prompt. We wish to make zero all edges to them from nodes 

that are firing, since these correspond to items that are clearly not 

sufficient to make the disjunctive concept being learned true. To 

achieve this it is sufficient to add the transition: 

{qi = SD} => {if fk = 1 then Wki := 0}. 

This completes our description of a simple elimination algorithm 

for learning disjunctions. Since any positive example may add 

spurious predicates to the disjunction, reliable learning can only 

be considered to have taken place if enough negative examples 

have been seen after the last positive one to ensure that all harmful 

predicates have been eliminated with high probability. Hence this 

algorithm may be thought of most simply as follows: First, enough 

positive examples are considered that all the predicates appearing in 

the true disjunction are seen at least once. Subsequently sufficiently 

many negative examples are seen that spurious items are eliminated 

from the disjunction with high probability. This two phase training 

sequence can be repeated, of course, any number of times. 

One further point about the algorithm is that, as described, it 

will reintroduce an attribute that was previously eliminated by a 

negative example, if it occurs again in a positive one. Eliminating 

items previously eliminated has the same cost in further negative 

examples as newly added items not previously eliminated. Hence 

the degradation in performance is not of a radical nature. At the 
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expense of making the algorithm more complex, we can modify 

it, however, so that eliminated attributes are never reintroduced. 

9.5 Learning Linear Threshold Functions 

A linear threshold function over real variables xi, • • •, is deter¬ 

mined by a set of real parameters u\,' - ,Un and 6. Its value is 

defined to be one or zero according to whether the values , • • •, 

satisfy 

yj\X\ “h U2X2 “h * ■ ■ “h UyiXji ^ 0 

where 6 is called the threshold parameter. In cases where the co¬ 

efficients Ui are allowed to be negative, an equivalent formulation 

of the criterion is 

U\X\ + U2X2 + • • • + Tin+l^n+l ^ 

since we can choose to be a predicate that always equals one, 

and Un+\ to equal —0. In the context of neuroids, we can associate 

with each neuroid a linear threshold function, interpret Uj as the 

weight of the edge coming to that neuroid from neuroid j, and 

interpret Xj as the firing status fj of j. 

When xi, • • •, are restricted to have values one or zero, then 

threshold functions can be viewed as Boolean functions and be¬ 

come candidates for representing items in a neuroidal net. Linear 

threshold functions are quite expressive as Boolean functions, be¬ 

ing able to represent conjunctions, disjunctions, and more. A con¬ 

junction xi Ax3 Ax4 would correspond to 6^ = 3, ^ U4 ^ 1 

and the remaining Uj =0. In other words, 

X\ -\~ X3 X4 A 3. 

A disjunction xi V X3 V X4 would be expressed as 

X\ “h X3 X4 A 1. 
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Finally, a threshold function expressing the condition that at least 

k of a set of variables are true can be expressed as 

Xi X2 Xn > /c. 

In any of these a negation ^x^ can be represented by substituting 

(1 - x^) for Xi (e.g. in this last threshold function making = 

-1 and 0 one smaller than it would be otherwise). In particular, 

x\ A {-^x^) would become Xi + (1 — X3) > 2, or 

Xi — Xi, > I. 

Note that one can avoid the arbitrary use of negative coefficients 

by introducing new variables. For example, in this case we could 

introduce a variable, say X4, such that X4 = ^^3, and then use 

the inequality xi X4 > 2. In the case, for example, that X3 is 

an item expressing the predicate “green” and has some neuroids 

representing it, there would be further neuroids representing the 

item “not green.” 

Linear threshold functions are of interest to us here for at least 

three reasons. First, it turns out that despite their expressive power 

being greater than that of conjunctions and disjunctions, they are 

still leamable though not quite as easily. Second, they capture 

the functional dependence of our neuroids on their inputs, and 

hence can be represented easily and naturally in our networks. 

Lastly, there are algorithms for learning them in significant special 

cases, where the update algorithms themselves are ideally suited 

to implementation on neuroids. 

Interest in learning algorithms for linear threshold functions goes 

back several decades, in particular to the discovery (F. Rosenblatt 

1962) of the very elegant perceptron algorithm. It can be applied in 

the following context. We assume that each example is presented 

as a vector e = (ei, • • •, e^) where each ej equals 0 or 1. We 

further assume that there exists a linear inequality 

UlX\ “h U2X2 “h ■ * ■ “h UyiXji ^ 0 (^’1) 

that expresses the true predicate being learned. In other words, 

a vector e = (ei, • • •, e^) is a positive or negative example of the 
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predicate according to whether inequality (9.1) is or is not satisfied 

when Cj is substituted for Xj for every j. What the algorithm does 

is the following. It makes an initial hypothesis 

ViXi + V2X2 H-VnXn > 0 (9.2) 

by making an arbitrary choice for each of the coefficients vi,- -Vn. 

Choosing them all to be zero is an appropriate choice. It then 

considers each example e presented in turn. If the hypothesis 

gives the same classification for e as the true classification (i.e. if 

e either satisfies both of (9.1) and (9.2), or neither of them) then 

the algorithm leaves the hypothesis unchanged. Otherwise, if e is 

a positive example but does not satisfy the hypothesis (9.2) then 

Cj is added to Vj for every j. (Intuitively, this will tend to have 

the effect that the hypothesis is pushed toward being satisfied on 

future presentations of the same example e). Conversely, if e is a 

negative example and does satisfy (9.2) then Cj will be subtracted 

from Vj for every j. 

This algorithm is in a family of related algorithms that we char¬ 

acterize as local, and are well suited to implementation on neu- 

roidal circuits. The basic property they share is that the update to 

each Vj is a function of quantities on which updates to neuroidal 

weights are allowed to depend. In particular we define an algo¬ 

rithm for learning Y^VjXj > ^ to be local if, when an example 

with attribute values Xi, • • •, is presented, the update to each Vj 

depends only on (i) the value of J^XjXj, (ii) the value of Xj, (iii) 

the value of Vj, and (iv) whether the current example is positive 

or negative. If we implement the threshold function at neuroid i 

and the variables {xj] at appropriate neighboring nodes {j} with 

Wj^ = Vj, then condition (i) refers to w^, condition (ii) refers to the 

firing status fj of neighbor j, condition (iii) refers to the previous 

value of Wji and condition (iv) refers to the correct classification 

of the example, which can be represented at i by the state The 

weight transition function A, as we defined it for neuroids in Chap¬ 

ter 5, is allowed to depend on all four of these quantities. Note that 

local algorithms can be viewed as capturing the power of a single 

neuroid in the case that the mode has just two allowed values, 

(indicating whether the example seen is positive or negative). 



116 Supervised Inductive Learning 

We can implement local algorithms as follows. The target nodes 

will be initially in SL (supervised local) state. We need to set up 

a connecting circuit between the relevant nodes xi, • • •, and the 

target nodes in the manner of Algorithms 8.1 or 8.2. Hence the first 

phase will be to supply a number of examples (whether positive 

or negative) that between them contain all the variables necessary 

for a linear threshold function to exist for the desired predicate. 

Exactly as in the algorithm for supervised disjunctions, a connect¬ 

ing circuit from the items representing these variables to the target 

nodes will be formed first. 
In the second phase the local algorithm is executed directly as 

each further example is presented. The weights {wji] of the nodes 

originally in state SL correspond to the coefficients {uj} of the 

threshold function being learned. If a target node is connected to 

more than one member of an Xj (i.e. via distinct relay nodes), 

then we have the slight complication that the set of relevant items 

{xj} effectively contains repetitions. This is no problem, however, 

for the perceptron or any other reasonable local algorithm, since 

if the Xj occurs with coefficient Uj in the true threshold function 

but now has k incarnations, say • • •, xf"^ , then we still have 

ample choices for the coefficients of these incarnations, such as 

having the value Uj/k for each of them. For similar reasons, these 

algorithms are robust against irrelevant attributes since these can 

be given coefficient zero. Thus a relay node connecting a target 

node to nodes from more than one Xj will do no harm either since, 

at worst, it will be treated as an irrelevant attribute by the learn¬ 

ing algorithm. The generic reasons that make the learning graded, 

however, do remain. Each target node has connections to the rele¬ 

vant Xj only with high probability. Hence a few of the target nodes 

may fail to learn the correct function. 

Rosenblatt’s perceptron algorithm can learn any linear threshold 

relation ^UjXj > 0 or Y^UjXj > 6. There is only one obstacle 

to implementing it directly on neuroids. This is that a coefficient 

Vj may become negative in the course of the algorithm, even if 

it is nonnegative in the linear threshold function that holds and is 

eventually learned. This violates the assumption that the values 

that the weights of any one edge can take have a predetermined 
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fixed-sign (§5.2). The converse situation of a nonpositive fixed- 

sign weight going through a positive value is, of course, equally 

possible. Fortunately, it is easy to adapt the perceptron algorithm 

so that it works with fixed-sign weights, as is necessary here. The 

adaptation needed is that whenever an example would cause a 

weight to be updated so as to have a value with the disallowed 

sign, then this update to this weight is simply not carried out. 

It can be proved that this modified algorithm does learn any lin¬ 

ear threshold function whose coefficients are consistent with the 

fixed-signs.^^ A second property that it is desirable to have if real 

neurons are being modeled, is that the threshold of the neuroid 

have some nonzero constant value throughout learning. The mod¬ 

ified algorithm we describe in the Notes therefore works with a 

hypothesis of the form (9.2) with a fixed value ^* > 0, rather than 

0, on the righthand side, that never changes in the course of the 

algorithm. While it may not be unrealistic to allow the threshold 

to vary in the course of a single interaction, we certainly need 

to avoid allowing the weights or threshold to grow uncontrollably 

in the course of a sequence of interactions, as the conventional 

version of the perceptron algorithm would allow. 

Attractive alternative algorithms for linear threshold functions 

are also known. An interesting group of them resemble the per¬ 

ceptron algorithm in form, except for the significant difference that 

updates are multiplicative rather than additive (N. Littlestone 1988, 

N. Littlestone 1989a). As in the perceptron algorithm, updates oc¬ 

cur only when a prediction is incorrect, and only those Vj are 

updated for which the current example has Cj = 1. One of these 

algorithms, called winnow2, assumes that every Uj > 0, and works 

with nonnegative Vj throughout. It initializes each Vj to be 1. For 

an appropriate constant o > 1 it updates Vj = avj (rather than the 

perceptron’s Vj = -f 1) in the case that the example is positive 

and the current hypothesis would predict negative. If the example 

is negative and the prediction positive then it updates Vj = Vj/a 

(rather than the perceptron’s Vj — Vj — l). The algorithm maintains 

a hypothesis ^ keeping 0 constant throughout. It can 

be analyzed and has particularly good behavior in cases where the 

number of relevant attributes, i.e. those Xj for which Uj > 0 in the 

true function, is small.Littlestone has proved an upper bound 
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on the number of times winnow2 predicts incorrectly for any, pos¬ 

sibly infinite, sequence of examples, in terms of the parameters 

k = Y^ Uj, n, 0 and 6. The last parameter S defines the distance by 

which separates the positive from the negative examples. 

In particular, ^ (0 < ^ < 1) and the Uj have to be such that for 

any positive example > 1 and for any negative example 

E UjXj < 1-6. Littlestone showed that if 0 is chosen to equal n, 

then the number of mistakes made grows at most proportionally to 

k log n in any sequence of examples, provided 6 can be regarded 

as a constant. A variant of it, called the balanced algorithm, can be 

adapted to deal with the general fixed-sign case and also maintains 

a fixed threshold, just like the adapted perceptron algorithm we 

describe in the Notes. 

A problematic issue with any supervised algorithm for induc¬ 

tive learning is what to do if the function being learned cannot 

be expressed in terms of the knowledge representation assumed 

by the learning algorithm, or if learning fails for any other rea¬ 

son. We need algorithms to be self-checking in the sense that they 

can determine for themselves whether their current hypothesis is 

reliable. 

The elimination algorithms for conjunctions and disjunctions de¬ 

scribed earlier in this chapter are both examples of local algorithms 

that are easily adapted to be self-checking. In the former case, if 

the examples are not consistent with any conjunction then all the 

variables will be eliminated after enough examples and all the in¬ 

coming weights to the target node from the connecting circuit will 

be zero. The same will result for the algorithm for disjunctions 

once no new items are being added. If no item in the circuit is 

sufficient to guarantee that every example in which it is true is pos¬ 

itive, then all of them will be eliminated from the candidate set. 

In other words, in both cases, the target nodes will be connected 

to the nodes of the hypothesized set {xj} only via edges of weight 

zero. 

More complex local algorithms may need to be adapted more 

substantially if they are to become self-checking in a useful way. 

One generic approach is to have the T component of the mode 

of the target node keep track of some measures of reliability. In 

addition to having a numerical value for the threshold, one or 
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more additional numerical measures would also be tracked. Ex¬ 

amples of measures that are useful for evaluating the reliability 

of a hypothesis include the total number of misclassifications (and 

hence updates) performed to date in the course of learning at the 

current target, and the number of examples seen since the last one 

that was misclassified. These measures are easy enough to track 

by means of the neuroidal update function 8. 

These performance measures are known to be useful indica¬ 

tors of reliability. For example, the main theoretical results about 

both the perceptron algorithm and Littlestone’s winnow2 are upper 

bounds on the total number of mistakes made on any sequence of 

examples. Furthermore, it is also known that such bounds on the 

total number of mistakes imply good performance in the pac sense 

for algorithms such as the perceptron and winnow2 algorithms (D. 

Haussler 1988). Even better provable pac performance can be 

achieved if some modification is first made (N. Littlestone 1989b). 

An example of such a modification is to have the hypothesis that 

agreed with the longest sequence of examples retained as the most 

reliable one, even if it was subsequently contradicted. 

Once such measures are recorded in the mode of the target neu- 

roid they can be used in various ways. In the simplest case a node 

initially in state SL undergoes an initial learning phase. If and 

when its reliability measure exceeds a certain level, it proceeds to 

a new SLL state. In this new state the default threshold transition 

Ti > is allowed to operate. The node can then recognize the 

concept learned in the sense that it can undergo threshold firings 

triggered by the connecting circuit. In the training phase such fir¬ 

ings are disallowed. Of course, if the reliability measure never 

reaches the required level, the node will be never considered to 

have learned. 

This strategy can be adapted to allow the target node to be used 

for recognition while it is still learning. In this case a timing mech¬ 

anism has to be employed to distinguish the situation of the target 

being fired by the connecting circuit being learned, as opposed 

to being fired by the circuit that computes the correct classifica¬ 

tion. Reliability measures are also essential in this case since if the 

examples and counter examples of the concept are not consistent 

with a linear threshold function, then the fact that the hypothesis 
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generated contains no useful information has to be recognized. 

Analysis in the pac model provides guaranteed performance 

bounds for arbitrary distributions or worlds. In practice, fewer ex¬ 

amples or simpler algorithms often suffice. This can be explained 

sometimes by analyzing the relevant algorithms for particular dis¬ 

tributions and arguing that the additional assumptions are not un¬ 

reasonable. For example, it can be shown that for appropriate dis¬ 

tributions the perceptron algorithm requires fewer examples to con¬ 

verge than the above analysis implies (E.B. Baum 1990). In some 

cases particularly simple algorithms suffice, ones that are provably 

highly resilient to errors (M. Golea and M. Marchand 1993). 

Finally, we have to ask how these inductive learning algorithms 

fare in a hierarchical setting. The answer is that they are well 

suited. The complication created by hierarchies is that unintended 

lower level firings may accompany those occurring at the higher 

level. Fortunately all the algorithms we discussed in this chapter 

whether for conjunctions, disjunctions, or linear thresholds are ro¬ 

bust to irrelevant attributes. In other words, given enough training 

examples, the hypothesis learned will not be perverted by such at¬ 

tributes. The only issue is the quantitative one that if these lower 

level firings are excessive, then the connecting circuits become 

large, waste space and may require many examples for reliable 
learning. 



Chapter 10 
Correlational Learning 

10.1 An Algorithm 

Humans appear to have an aptitude for noticing pairs of attributes 

that occur together with above average odds. We can easily identify 

acquaintances who are frequently late or streets that are often busy. 

In performing this task some attentional mechanism appears to 

mediate. It allows us to spot correlations only between those pairs 

of attributes that we have some reason to have noticed. Thus, even 

if it rained every Wednesday we may not observe this correlation 

unless this fact had some other special consequence for us. We 

hypothesize, however, that through learning experiences we can 

develop such an interest for arbitrary pairs of the attributes that 

we can recognize individually, and not just for those pairs that 

have some special semantic or other relationship. The problem we 

pose is, therefore, the following: How can a general correlation 

detecting capability, potentially able to spot correlations between 

arbitrary pairs of attributes, be feasible at all in a sparse network 

model such as the NTR we have defined? 

Suppose that at an instant we have M items in the NTR with 

plenty of free space still unallocated. We hypothesize that there is 

an attentional peripheral that processes each input and, for the sake 

of argument, presents just two items to the NTR at any time. This 

is a special instance of Principle 3 that we shall discuss in Chapter 

12 in connection with more general systems questions concerning 
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the NTR. The assumption that the number of items here is two 

simplifies the presentation. We would find similar phenomena, 

however, if we had taken any other small constant number larger 

than two. 

We first observe that, for any one random pair of the M at¬ 

tributes, it is extremely unlikely that the pair is presented by the 

attentional peripheral even once in a human lifetime for reasonable 

values of the parameters. Suppose that M exceeds 10^ and that at 

any step each of the M{M - l)/2 possible pairs occurs with the 

same probability (i.e. 2/(M^ - M)). Then for any fixed pair, say 

X and y, their conjunction occurs in any one step with probability 

less than about p = 2 x 10“^®, since M > 10^. But the number 

of inputs to the NTR in a human lifetime is probably best thought 

of as substantially less than ^ x 10^^ (since there are about 

3 X 10^ seconds in a century). We conclude that for any fixed pair 

of items x, y the expectation of ever having an input causing x 

and y to fire simultaneously is small, provided that x and y occur 

with the same frequency as the typical item, and they occur prob¬ 

abilistically independently of each other. Clearly, the probability 

of seeing such a conjunction more than once in a lifetime is even 

smaller. 

This argument suggests that if any conjunction is witnessed two 

or more times, then it is reasonable to assume that the constituent 

items are statistically correlated. This fits in well with the scheme 

we described in Chapter 7 for unsupervised memorization. If a 

conjunction is seen once, then we allocate neuroids to it and re¬ 

gard it is representing the memory of some attributes that occurred 

together. If a conjunction is seen more than once, then we shall 

regard it additionally as the manifestation of an exceptional cor¬ 

relation. In that case we shall store in the neuroids representing 

the conjunction some measure of the frequency with which the 

conjunction has been observed. It seems impractical to maintain 

correlation information about every pair of items in memory, sim¬ 

ply because the number of such pairs is too large. Hence some 

scheme such as ours that restricts the number of the pairs tracked 

to those that have been witnessed at least once seems essential. 

We can regard correlational learning as taking place only at 

nodes initially in available probabilistic (AP) state. The algorithm 
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that applies to this initial state is exactly like Algorithm 7.2 except 

that the state history AM AMI ^ UM is replaced by 

AP ^ API —> UP, and the history AM AMI —^ AM 

by AP ^ API ^ AP. It has a component in T that 

measures the number of times the conjunction has been recognized. 

When state UP is reached for the hrst time is given value one. 

Each time the node subsequently undergoes threshold firings 

is increased by 1 (or perhaps by a decreasing amount as its value 

increases). 

If we can afford to allocate new neuroids to any new conjunction 

of a pair of attributes experienced, then this simple approach is 

optimal. It can keep track of all the frequency information and 

hence no information is lost. Also this method can be extended to 

detect co-occurrences among sets of more than two elements by 

allocating storage to some pair first, and then to the conjunction of 

the item formed from this pair and the third element, etc. 

On the other hand, the correlation detection capability of this 

algorithm is limited in other ways, since the algorithm assumes 

that each potential pair of attributes in a scene enjoys a separate 

presentation to the NTR. Thus if there are a hundred attributes in a 

scene we would need about 5,000 presentations. It would be inter¬ 

esting to determine whether humans do have correlation detection 

mechanisms that are too powerful to be explained by any algorithm 

such as ours in which only pairs or other small fixed size sets of 

attributes are presented to the NTR at any one time. Consider, 

for example, the following format for a psychological experiment. 

Suppose that there is a number, say 20, of lightbulbs. Each one, 

in each period of (say) one second, is on with probability p, and 

off with probability I — p. The one second periods are synchro¬ 

nized for all the lightbulbs. Suppose also that the randomization 

controlling the lightbulbs is independent for all pairs, except for 

one unknown pair which is correlated (e.g. these two bulbs are 

on together with probability p significantly higher than p^). The 

problem here is that of determining the limits of human correlation 

detection in this setting in terms of the number of bulbs, the value 

of p, and the degree of correlation p of the chosen pair. We note 

that even if we free ourselves from the constraints of our neuroidal 

model and are satisfied with detecting correlations on a von Neu- 



124 Correlational Learning 

mann computer, there appear to be non-trivial lower limits on the 

number of computational steps required. For example, if we have 

m lightbulbs and choose p = no algorithm is known for detect¬ 

ing the pair with the highest correlation in a number of steps linear 

or close to linear in m. There is an obvious algorithm that checks 

out each potential pair in turn and, therefore, takes time quadratic 

in m. Some nontrivial improvements on this simple algorithm are 

known, but they do not adapt well to our neuroidal model.It 

would be interesting to determine experimentally how far human 

performance can be pushed for this variety of correlation detection. 

As pointed out in Chapter 3 learning correlations can be viewed 

as unsupervised inductive learning. It is induction in the sense that 

there is some element of inference that is not strictly deductive. 

It is statistical inference. If a conjunction is witnessed a large 

number of times, then it is inferred that the conjunction is indeed 

frequent in the world. It shares with unsupervised memorization, 

discussed in Chapter 7, the important aspect that it allocates its 

own storage. Consequently it has the same problem that, when an 

item X fires, we do not want to waste space by allocating nodes 

that are adjacent to two members of x, which are clearly highly 

correlated. Hence breaking symmetry among a set of nodes, as 

Algorithm 7.2 does by timing, is also important here. Exactly 

as for unsupervised memorization we expect the peripherals to 

select by some attentional mechanism the pair of attributes to be 

presented, and to input each component of the pair at a distinct 
time. 

10.2 Computing with Numerical Values 

Since this chapter is concerned with information that has a numer¬ 

ical rather than Boolean nature, it is appropriate to address this 

broader issue here. The general position we have been taking is 

that for the functionalities considered in the previous chapters, the 

Boolean versions are the easier ones to conceptualize and will need 

to be solved first, even if more elaborate versions with real num- 
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her parameters turn out to be more accurate. Of course, some of 

the functionalities, such as perceptron learning, adapt to the real 

number domain without modification. 

It is believed that when a neuron in the cortex produces spikes 

at a significantly higher rate than its background rate, then some 

information is being conveyed. Furthermore, the frequency of the 

spikes is often associated with a real number that is some measure 

of the intensity level of the information. This immediately suggests 

a method for programming neuroids to process real valued data. 

Each number u that is processed will be represented as a sequence 

of firings of some neuroids. The frequency or rate will correspond 

to that number. The task of a neuroid will be to take such trains 

of spikes as inputs, and produce an output train of some desired, 

possibly different rate. 

We shall give two illustrations of this. First, we shall show that 

a neuroid can compute a linear function of its inputs. Suppose 

that neuroid i is postsynaptic to neuroids 1,2, • • •, n, and suppose 

that neuroid j (1 < j < n) emits spikes at the average rate of 

Uj spikes per time unit where 0 < Uj < 1. \i v\^ • — ^Vn are real 

coefficients such that u = ^ I? then neuroid i will 

produce spikes at the average rate of u if it is defined as follows. 

For each j {I < j <n) let weight wji equal Vj, let := 0 initially, 

and let 6 be such that 

{Ti + > 1} {Ti := Ti Wi — 1, := 1}, 
{Ti + < 1} => {Ti Ti Wi^ fi := 0}. 

Suppose that time t has elapsed and that neuroid j has fired ix* 

times in the first t time units. Then Uj approximates u*/t and 

the desired value u approximates {^VjU*)/t, The transitions will 

make neuroid i fire every time the accumulated value of J] ^ 

tu increases by another unit. In other words it will fire at the 

approximate rate of u spikes per time unit, as desired. 

As a second illustration, we observe that it is also easy to have 

a neuroid i recognize whether the weighted average rate of spikes 

XX, as defined above, exceeds a certain rate u. If we replace Wi in 

the righthand side of both transitions by Wi — u, then neuroid i will 

produce spikes at the approximate rate of xx — xx provided that this 

is positive. 
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We note that in either application is used to store a num¬ 

ber rather than act as a threshold. Default threshold transitions 

are never invoked since the explicitly stated transitions cover all 

eventualities. 



Chapter 11 
Objects and Relational 
Expressions 

11.1 Multiple Object Scenes 

We regard a function of inputs as propositional if the function is 

best viewed as a predicate on the totality of the input. For exam¬ 

ple, when referring to a complex visual scene such predicates as 

“there is a green apple” or “there are three apples” can be viewed 

as propositions applying to the whole scene. Alternatively, if the 

input scene consists only of the image of an apple, then “green” 

is an appropriate propositional description. The representation of 

knowledge in the NTR can be viewed in the first instance as es¬ 

sentially propositional, each predicate being regarded as applying 

to the undivided totality of the input that is presented by the pe¬ 

ripherals. 

In order to have useful descriptions of the world, one appears 

to need more expressive representations than this. If a scene con¬ 

taining both a green apple and a yellow pear is presented to such 

a purely propositional system then the truth of each of the four 

predicates “green”, “apple”, “yellow”, and “pear” may be recog¬ 

nized, but there is no way of representing the essential asymmetry 

among them, namely that the “green” is to be associated with the 

“apple” and the “yellow” with the “pear.” 

In classical predicate calculus logic this particular problem is 
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overcome by introducing variables to represent the various objects 

that correspond to parts of the input. The case described here 

would be represented as: 

3a 36 green(a) A apple(a) A yellow(6) A pear(6). (11.1) 

This expression states that there exist objects a and 6 with the 

required respective properties. Clearly there are great advantages 

of expressiveness in going beyond propositional representations. 

Unfortunately there are also very substantial computational costs. 

We know of no direct encoding of expressions of this kind with 

multiple objects that can be learned and manipulated satisfactorily 

in an NTR. Our solution will be to have a representation that is 

indirect, in the sense that it is purely propositional in terms of the 

NTR itself, but when interpreted through interactions with suitable 

peripherals can express multiple objects and more. 

The fundamental technique that we use to enhance the expressive 

power of the NTR is timing. When expression (11.1) is to be 

memorized the peripherals will attend to the two objects a and 6 

in turn. When attending to the first object the nodes representing 

green and apple will fire and their conjunction will be memorized. 

At a subsequent time the second object will be attended to and 

the conjunction of its two attributes memorized. Finally a timed 

conjunction (to be defined below) of the two conjunctions just 

learned will be learned. The neuroids representing this will fire in 

the future whenever the two lower level conjunctions fire at distinct 

times within a certain interval of time of each other. Thus the 

symmetry among the four predicates is broken by timing. During 

both learning and recognition any information presented to the 

NTR has to be broken up and time-stepped according to some 

appropriate time schedule. This task is executed under the control 

of the peripherals that implement the attentional mechanism. 

In order to interpret information stored in the NTR in the correct 

nonpropositional way, we need to ascribe to the peripherals the 

abilities to segment scenes into objects, attend to each separately, 

and to schedule in time the necessary inputs to the NTR. We do 

not specify how the peripherals execute these tasks. The important 

point is that these tasks are not, in the first instance, random access 
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tasks. Special purpose algorithms working from a visual image of 

the scene can be envisioned for them. The peripherals may use 

interactions with the NTR to help, but as long as no random access 

task (i.e. a task involving access to contents of the main memory 

other than through conventional access to the NTR) is ascribed to 

the peripherals, this approach is consistent with our methodology. 

As noted in §4.5, there is ample psychological evidence sug¬ 

gesting that humans also use timing mechanisms for performing 

multi-object tasks. As the number of objects distinguished by pred¬ 

icate pairs increases in a scene, the more time it takes to process 

the scene. If less than sufficient time is allowed, then humans of¬ 

ten perform the pairings incorrectly. For example, if a green apple 

and a yellow pear are presented for a short enough time, the four 

basic predicates may be correctly identified but some subjects will 

be confident that they have seen a yellow apple and a green pear. 

11.2 Relations 

We have seen that we need to go beyond a purely propositional 

representation if we are to represent multiple objects. Once we 

allow multiple objects, however, further opportunities for expres¬ 

siveness present themselves. In the above example each predicate 

was unary in the sense that it applied to just one object at a time. 

With the possibility of naming several objects it becomes natural to 

allow predicates to apply and, in fact, to relate to several objects. 

Such predicates are called relations. For objects a and h typical 

relations may be 3ihove{a,b) to denote that object a is above object 

6, or fat her (<2,/?), to denote that a is the father of b. The order 

in which the objects are listed in the parentheses is considered to 

matter. Thus the semantics of fRther(a,b) is different from that 

of father(/?,(2). For certain particular relations the semantics may 

ensure that the order does not matter. 

By means of relations one can write statements in the style of 

classical predicate calculus, such as: 
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3(2 36 3c father(a, 6) A father(6,c) A george(a). (11.2) 

The literal interpretation of such a statement is that there exist 
objects called a, 6, and c such that a is the father of 6, 6 is the 
father of c and a has the property “george.” Thus if one wished 
to express the fact that there is a grandfather called George, one 
could write such an expression. 

In representing and computing with such relational expressions 
there is one pervasive problem called variable binding. This refers 
to the question of how correspondences among the objects are han¬ 
dled. The problem arises in at least two varieties, variable binding 
in representation and variable binding in recognition. To illustrate 
the former consider an expression of the form (11.2). How should 
a circuit in the NTR express the fact that the second argument in 
the first occurrence of father needs to refer to the same object as 
the first argument in the second occurrence? Since the NTR does 
not work with variable names, such as 6, this conventional pred¬ 
icate calculus solution does not appear to work unless somehow 
implemented indirectly. Also, we cannot represent 6 by a neuroid 
representing a particular memorized item, since 6 is really a vari¬ 
able that may be satisfied by any person who is a father and at 
the same time the son of someone called George. Turning to the 
second aspect of the variable binding problem, that occurring in 
recognition, we consider now the problem of identifying whether 
(11.2) holds for a particular input. In this case the peripherals 
will have identified a number of objects in the scene and are left 
with the problem of determining whether there is an assignment of 
these objects to the object variables in the expression (11.2) that 
satisfies the expression. This latter task can be done, in principle, 
by trying all possibilities, but that would take time exponential in 
the number of object variables. 

Our approach here will be to define a class of expressions called 
h-expressions (for ‘‘labeled” expressions) that have less expres¬ 
sive power than the general expressions of predicate calculus, but 
offer the crucial advantage that they are computationally tractable 
on our NTR model. The basic idea is that, in addition to rela¬ 
tions, these expressions also contain unary predicates describing 
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each object that, in effect, label the object uniquely by some at¬ 

tributes. Thus we would make (11.2) into an L-expression if we 

conjoined it with the predicates 

old(a) A middle-aged(6) A young(c), (H-^) 

as long as no object simultaneously satisfied more than one of these 

additional predicates. It is an empirical question as to whether L- 

expressions, when learned hierarchically in the manner described 

here and starting from some plausible basis of preprogrammed 

functions, are indeed expressive enough to comprise a usable sche¬ 

ma for describing relational aspects of the world. We are not 

suggesting that L-expressions can describe all useful relations. It is 

more than likely that several distinct such schemas are needed. Our 

purpose in discussing L-expressions in detail here is to demonstrate 

that at least some relational knowledge can be adequately processed 

in the neuroidal model. 

We shall describe two positive computational results about L- 

expressions. The first deals with learning L-expressions containing 

only relations that are already implemented (i.e. preprogrammed 

in the system or previously learned). The second explains how 

new relations defined in terms of L-expressions can be learned. 

We consider a relation to be implemented at a certain time if 

there are circuits in the NTR at that time that behave in an appro¬ 

priate way when objects satisfying the relation are presented by 

the peripherals. In particular for a relation rel of, say, three argu- 

ments, there will be stored in the NTR three items rel , rel , rel , 

whose nodes can fire only after three objects, say, a, 6, and c, sat¬ 

isfying the relation have been presented to the NTR. Furthermore, 

ref fires only if within a certain period after the identification of 

the three objects a, 6, c, the among the three is presented again 

to the NTR, but by itself. In other words if rel(a,6, c) holds and 

a, 6, c are all presented together to the NTR within a certain period, 

then if any one of a, 6, or c is presented separately within a certain 

period afterward, then the neuroids representing rel , rel , or rel 

will fire at this subsequent presentation depending on which one 

of these three arguments is being presented. 

It seems plausible to hypothesize that animals have the equiva- 
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lent of some preprogrammed relations at birth. In order to be able 

to interpret the visual world, for example, an understanding of rela¬ 

tionships such as “close to” or “bigger than” seems necessary. Our 

first result, therefore, describes how such L-expressions, involving 

only previously implemented relations, can be memorized. 

In addition to this faculty, there seems to be a need also for some 

ability to acquire new relations. Hence, as our second result, we 

shall describe how a new relation, expressed as an L-expression 

in terms of preprogrammed or memorized relations, can be mem¬ 

orized. An example would be that of memorizing the notion of 

“grandfather” assuming that the relation “father” is already imple¬ 

mented. The aim is to set up circuits for the grandfather relation 

that will make the grandfather relation into an equal citizen with 

the father relation in future computations. We note that we are 

using the grandfather relation as an example simply because it is 

easy to discuss and not because it is among those for which there 

is compelling evidence that humans have a circuit. 

For both of our results we use the mechanism of a timed conjunc¬ 

tion, which we describe in the next section. As already mentioned, 

this is essentially like an ordinary conjunction, except that the con¬ 

dition for the target node to fire is that its arguments fire at distinct 

times within a given time interval, rather than simultaneously. 

Our approach to relations is similar to the one used for mul¬ 

tiple objects. The representation is essentially propositional, but 

becomes relational when interpreted by the peripherals through 

timing. Thus the items rel , rel , • •, rel , for a /c-argument rela¬ 

tion rel, are represented in the NTR exactly as propositional items. 

In the case that rel is preprogrammed the knowledge that these k 

items are somehow related is contained in the peripherals. For ex¬ 

ample, the relation above being preprogrammed means that there 

exist items above and above in the NTR, that some appropriate 

peripheral can recognize the truth of a relation above(a, b) when 

a suitable pair of objects a, 6 is presented, and that the peripherals 

can cause to fire above or above while simultaneously present¬ 

ing a or b, as appropriate, to the NTR. Figure 11.1 illustrates this. 

(In the case that rel is a learned relation the corresponding relevant 

information is shared between the peripherals, which store the re- 
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NTR 

Figure 11.1. Schematic diagram of the implementation of the preprogrammed 
relation above. It is assumed that the peripheral can store images of a fixed 
number of objects, say seven, and can determine whether any of its prepro¬ 
grammed relations hold for any subset of these objects. If it detects one such 
relation (e.g. above(a, b)) then it can schedule the inputting of a or 6 to the 

NTR and the firing of the above and above neuroids within the NTR, ac¬ 
cording to some schedule of its choice. In particular, it can resolve the binding 
problem by inputting a and firing above^ simultaneously, and at a later time 
inputting b and firing above^ simultaneously. 

levant information about the constituent preprogrammed relations, 

and the NTR, which contains the newly learned circuits.) 

11.3 Timed Conjunctions 

A timed conjunction is a circuit in the NTR that has a similar role 

to that of regular conjunctions in Chapter 7. In order to make the 

target node fire, it is no longer sufficient, however, that the argu¬ 

ment items fire once simultaneously. They must fire according to 

some other more complex time schedule. A timed conjunction will 

be denoted by to distinguish it from an ordinary conjunction. 

The main application is for cases in which the arguments of the 

conjunction are items that are themselves conjunctions of various 
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z 

Figure 11.2. Schematic representation of a predicate involving two objects hav¬ 

ing the form of a timed conjunction of conjunctions. 

sets of lower level items. An example would be the memorization 

or recognition of an expression such as (11.1). This would be done 

by a circuit of the form shown in Figure 11.2. This diagram and 

the ones to follow are schematic. For example, the replication of 

nodes representing any one item is omitted. 

Here the top node is a timed conjunction and its two sons are 

ordinary conjunctions. Note that in a timed conjunction the target 

only fires if its arguments fire at distinct times within a certain 

interval. 

In the memorization of the expression (11.1) by means of a 

timed conjunction as in this figure, the peripherals first identify the 

two objects as distinct, and memorize each separately as regular 

conjunctions to form circuits with targets x and y respectively. 

Subsequently the target nodes 2 are programmed to act as timed 

conjunctions of x and y. 

During recall the peripherals again identify the two objects. 

They present these objects to the NTR at distinct times so as to 

cause X and y to fire at appropriate distinct times within the in¬ 

terval required to make the timed conjunction target nodes fire in 
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Z 

Figure 11.3. Schematic representation, using two levels of timed conjunctions, 

of the predicate (11.4). 

turn. 

We can also define trees of timed conjunctions of greater depth. 

These may be needed for expressing relational expressions, such 

as those of the form 

3a 36 3c r(a,6) A s(6, c) A u(a) A v(6) A w(c). (11-4) 

This we will represent as a depth two tree of timed conjunctions 

as shown in Figure 11.3. The root timed conjunction is there to 

conjoin the two relations r(a,6) and s(6, c). Each of these two 

relations is itself expressed as a timed conjunction of ordinary 

conjunctions. Here x = A u expresses the fact that the first 

argument of r is the one with property u, and ^ A v the fact 

that the second argument of r is the one with property v. 

We now define the behavior of a timed conjunction more pre¬ 

cisely. Suppose that tq is some time period in terms of which the 

peripherals can synchronize and operate. Then a timed conjunc¬ 

tion at depth one in a tree operates with period t\ = mro where 

m is the maximum number of arguments allowed in such a con¬ 

junction. In the examples above, all the timed conjunctions had 
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two arguments. We envisage, however, that m may be some other 

small number also, such as three. The intention is that the tar¬ 

get node will fire at some time within the interval [jrijri + Ti 

for some integer j, if its arguments fire within distinct subinter¬ 

vals [jri -h krojri + (/c -f l)ro], (i.e. for distinct values of k 

{0 < k < m — 1)). Thus if j = 0, m = 3 and if the timed conjunc¬ 

tion in question does have three arguments represented by items 

x,y,z, then x,y,z would each fire in a distinct one of the subinter¬ 

vals [0, To], [to, 2ro], and [2ro, 3ro] for the target timed conjunction 

to fire. The definition allows the target to fire at the end of the last 

interval, at time 3to in this case. We envisage tq as being rather 

larger than the smallest time unit of the NTR (i.e. corresponding 

to a macrounit rather than a microunit, in the terms discussed in 

§5.4). 

There are several choices available for programming such a 

timed conjunction in the neuroidal model. We shall not go into 

the programming details here, but it should be clear that it can be 

done in a similar style to the neuroidal programs of the previous 

chapters. 

For timed conjunctions at a greater depth in a tree of timed 

conjunctions, neuroids will need to be cognizant of larger intervals 

still. At depth two we need T2 = mT\ — w^tq. In general at depth i 

we need = mVo. In other respects the implementation 

of a depth i timed conjunction in terms of one of depth i — I is 

similar to that of depth one. 

11.4 Memorizing Expressions Containing 

Relations 

A conventional propositional conjunctive expression is of the form 

H = Xi^ A Xi^ A • • • A Xi^ 

where each is a predicate. In the propositional representation 

considered in previous chapters the firing of the neuroids corre¬ 

sponding to H and to each depend on the truth of the corre- 
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sponding predicate when applied to the totality of the current input 

to the NTR. Thus it would be more precise to introduce an object 

variable a to denote the totality of the scene throughout, and write 

the expression as 

H{a) = (a) A (a) A • • • A Xi^ (a). (H-^) 

With such a terminology we can define an L-expression 

having k relations reli, • • •, rel^ and I object variables 

ai, • • ,a/ as the conjunction of a ‘iabelling conjunction” Hj{aj) 

for every object aj (1 < j < /), and a relational statement 

rel^(a[z, 1], • • •, mi]) for every relation relj {I < i < k). Here 

rel^ has arguments which we denote respectively by a[i, 1], • • •, 

a[i, mi] G {ai, • • •, a/},. For the various values of 2, the rel^ need 

not all be distinct relations. The same relation may occur with 

different sequences of object variables. In (11.2), for example, 

the relation father occurs twice. The TTi, • • •, are each con¬ 

junctions of unary predicates applied to the respective a^. Thus 

(11.3) can be interpreted as Hi{ai) A H2{a2) A where each 

Hi consists of one predicate. The resulting expression is an L- 

expression if iTi, iT2, • • •, i// are incomparable. The syntactic def¬ 

inition of incomparability is that for any two distinct numbers 

^17^2 (1 ^ < 0 there is some predicate u in Hj^ that is 
missing from Hj^. Then no Hj^ in the set is logically redundant 

in the sense that it is always true for an object whenever some 

other Hj^ is true. For L-expressions to be useful we will need in 

addition that the Hj be semantically incomparable with respect to 

H in the following sense: for any set of objects occurring in a 

“natural” scene that satisfies H, each object that satisfies some Hj^ 

will fail to satisfy any other Hj^. 

An example of an L-expression that conforms to this syntactic 

definition can be obtained, therefore, by conjoining the expres¬ 

sions (11.2) and (11.3). It expresses the grandfather relationship 

gfs(a,6, c): 

father(a, b) A father(6, c) A old(a) 

A middle-aged(6) A young(c). (1L6) 

We note that some of the predicates which we describe here as 
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z 

Figure 11.4. Schematic representation using two levels of timed conjunctions 

of the grandfather relationship defined in expression (11.6). 

unary, such as old, may be more accurately viewed as having in 

reality two arguments, the particular object they apply to as well 

as the totality of the scene. In other words the totality of the 

scene or context may be useful as an extra argument in all the 

predicates and relations. In this example the truth value of old 

may not be determined by a strict numerical criterion of age, but 

some, possibly more complex condition on the totality of the input, 

in this case perhaps the age relative to that of others in a group 

photograph. Clearly, however, we need to avoid the circularity of 

having a relation defined in terms of predicates that already express 

the same meaning. 

Our claim is that L-expressions are expressive enough to be use¬ 

ful, and, at the same time, both varieties of the variable binding 

problem can be solved for them in the NTR model. The com¬ 

putational tractability of L-expressions is based on the fact that 

they can be represented by timed conjunctions of depth two. The 

expression (11.6) can be represented, for example, as shown in 

Figure 11.4. 

Here x is a timed conjunction recognizing father (a, b) A old (a) 

A middle-aged (6) and ^ is a timed conjunction recognizing 



11.5 Memorizing New Relations 139 

father(6, c) A middle-aged(6) A young(c). The identity of 

the second argument of x and the first argument of y is ensured by 

the fact that they have the same precondition to fire, namely the 

predicate middle-aged. Also, by incomparability, when this con¬ 

dition holds, and the nodes representing middle-aged fire, then 

the conditions that label each of the other objects will fail to hold. 

When memorizing such an L-expression, with the constituent re¬ 

lations already preprogrammed or previously memorized, the pe¬ 

ripherals need first to identify the objects in the scene and the 

relevant relations among them. Note that we are assuming that 

the peripherals can evaluate the truth of any of the preprogrammed 

relations for any subset of the objects depicted in the relevant pe¬ 

ripheral. Once the three objects a, 6, c have been selected, and the 

truth of the relations father (a, h) and father (6, c) confirmed, the 

peripherals focus on the four argument occurrences in turn. First a 

and father^ are input, causing all the predicates that hold for a to 

fire at the same time. A conjunction of father^ and all these unary 

predicates will be memorized at this time. Subsequently father 

and b are input in similar fashion. After that the timed conjunction 

X is memorized, and this is achieved by ensuring that the two con¬ 

stituent conjunctions just memorized are made to fire according to 

the appropriate schedule. In similar fashion y is memorized. Fi¬ 

nally by inputting again the appropriate objects a, 6, c and making 

father and father fire, all according to an appropriate schedule, 

the target timed conjunction z will be memorized. 

When recognizing this L-expression, the peripherals again have 

to identify the three objects a, 6, c and the validity of the two rela¬ 

tions father(a, 6) and father(6, c). They will need to input this 

information to the NTR according to a time schedule similar to 

that used for memorization. We note that for such timed conjunc¬ 

tions of depth two the only knowledge required to determine an 

appropriate schedule is the number of relations and the numbers of 

their arguments. Since there is no requirement on the ordering in 

time of the firing of the constituents of a timed conjunction, widely 

differing time schedules may be employed on different occasions 

when recognizing the same relation. 
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11.5 Memorizing New Relations 

In the previous sections we assumed that any relation occurring 

in the expression to be memorized is already implemented (i.e. 

preprogrammed or previously memorized). As outlined previously, 

a relation rel(ai, a2, ^3) is considered implemented if there are 

items rel^, rel^, rel^ in the NTR such that (1) they never fire unless 

three objects satisfying the relation rel have been identified, and (2) 

refi does fire if within a certain period following the identification 

of the three objects, the object that fits as the argument of 

rel is input by itself. 
When memorizing a new relation we have to set up a circuit 

having just these properties. Suppose we want to memorize the 

relation gf(a, c) defined as: 

3b father(a, b) A father(6, c) A old(a) 

A middle-aged(6) A young(c). (11-7) 

The task of memorizing this is more onerous than that of memo¬ 

rizing the predicate gfs(a, 6, c) of (11.6). In the case of gfs we are 

memorizing just one item, while in the case of gf we are memo- 

rizing two items gf and gf . The difference is that in the latter 

case we wish to be able to use gf as a constituent relation in ar¬ 

bitrary L-expressions at later times, with the same flexibility that 

preprogrammed relations allow. 

The circuit that needs to be set up is shown in Figure 11.5. Here 

the circuit up to node ^ acts exactly as in Figure 11.4. We will have 

2: continue to fire for a longer period than before, once it has been 

caused to fire. If, within this period, either the object satisfying 

old(Ae. a) or the one satisfying young(Ae. c) is input, then the 

corresponding one of gf or gf will fire. This is exactly what 

is required for a relation to be implemented. Memorizing such 

a circuit requires a time schedule only slightly more complicated 

than that for memorizing an L-expression. 

The conclusion, therefore, is that the mechanism used for mem¬ 

orizing L-expressions can be used also for the more complex task 

of memorizing a new relation, provided that the latter is expressible 

as an L-expression in terms of previously implemented relations. 



11.6 Discussion 141 

Figure 11.5. Schematic representation of the grandfather relationship compo¬ 

nents gf^ and gf^ of the relation gf(a, c) defined in expression (11.7). 

11.6 Discussion 

We see that establishing circuits for expressing relational informa¬ 

tion appears to be substantially more involved than is the case for 

propositional information. Much more is required of the periph¬ 

erals both during memorization as well as recognition. It is not 

clear what degree of intricacy in the mechanisms required should 

be considered acceptable. There is considerable evidence that in 

the brain the task of laying down long term memory is a complex 

one involving little understood interactions between the hippocam¬ 

pus and the cortex that may sometimes take at least several weeks 

to complete. Hence we should expect that at least some of the 

basic algorithms involving the NTR would be as complex as the 

L-expression algorithms we have described. On the other hand, the 

difficulties of dealing with relations suggest to us that relational in¬ 

formation is memorized as sparingly as possible, and all manner 

of tricks might be used to compensate for this shortcoming. 
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It is important to note that the algorithms in this chapter dealt 

with what is the most onerous case, where relational information 

has to be recognized in a single interaction with the NTR. In Chap¬ 

ter 13 we shall discuss the issue of multiple interactions in which 

the information obtained from the NTR by the peripherals in one 

interaction may influence the next interaction with the NTR. Con¬ 

sider the human ability to recognize the outline map of a country, 

such as France, an example we discussed earlier. We appear to be 

able to make a correct positive identification, even if the outline is 

partially inaccurate or the map has on it additional data that we rec¬ 

ognize as erroneous. This suggests that our recognition algorithm 

does not contain all our knowledge about France. It is merely a 

‘‘rule of thumb” procedure or “reflex” that we have acquired and 

is, presumably, reliable in making us think of France when that 

is appropriate. Once recognition at this level has taken place, any 

amount of additional information may be evoked as a consequence. 

In this instance of a map, this may mean the names of a certain 

number of major cities and their relative positions. This additional 

information may involve a substantial number of relations. It is 

not essential, however, to have this relational information as an in¬ 

tegral part of the basic concept of a map of France that is invoked 

at the first level of recognition. It can be accessed by association 

whenever recognition at this first level occurs. 

The algorithm for recognizing the grandfather relation should be 

considered in a similar light. First, it is possible that in practice 

humans learn the explicit definition of a grandfather, in a form 

similar to (11.2), and reason with it, formally (by means of “Tur¬ 

ing reasoning” in the sense of §13.2) in the course of a sequence 

of interactions with the NTR. The relation “cousin four times re¬ 

moved” is an example of a relation that is almost certainly in that 

category. It seems implausible that we need a precompiled circuit 

able to recognize this relationship in one act of circuit evaluation. 

The complications described in this chapter are, of course, not rel¬ 

evant to relations for which precompiled circuits are not needed. 

Furthermore, even if the NTR does contain a circuit equivalent 

to Figure 11.5 for grandfather, this circuit needs to be used only 

when identifying for the first time whether this relationship holds 

for a set of individuals. Once the identification has been made that 
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George is the grandfather of Joe, this fact can be stored using con¬ 

ventional propositional representations, without the need for timed 

conjunctions. For example, identifying George with the conjunc¬ 

tion of Joe and gf^ will have this effect. Thus the strategy of 

choice for the NTR is to store information in purely propositional 

form whenever possible. 

In spite of these disclaimers, we believe that some account, such 

as ours, is needed to explain how fast recognizers for concepts in¬ 

volving relational information can be supported at all in the NTR. 

Suppose, for example, that on seeing a group photograph one in¬ 

stantly recognizes it as a family group and identifies the grandfa¬ 

ther in it without any conscious reasoning process being used. One 

possible mechanism for performing this identification is the eval¬ 

uation of an appropriate L-expression. The facts that the person 

we identify as the grandfather is, in fact, old, and that there are 

other people on the photograph who are young and middle-aged, 

respectively, appear to facilitate our recognition process. The la¬ 

beling of the objects by distinguishing predicates, which is what 

L-expressions contain, seems relevant and useful. 

As mentioned earlier, it is probable that not one, but several 

schemas or tricks are needed to cope with the full spectrum of 

relations humans need. Clearly relations in space, such as above, 

are vital to us, and we may have special purpose help in handling 

them in our vision system. Also, it is plausible that we make full 

use of any special facility that we may have with spatial relation¬ 

ships in other areas also, by using analogies that map otherwise 

unrelated problems to spatial ones. In some instances we may 

imagine the family relationships we discussed by visualizing the 

grandfather, father, and son as arranged from top to bottom spa¬ 

tially according to age, and this may help us reason instantly about 

them. Our discussion of L-expressions is intended to show merely 

that relations in some generality can be accommodated within the 

neuroidal model. In many instances other methods may be more 

appropriate or computationally simpler. Consider, for example, 

relations such as samecolor(a, b) or sibling (a, b) that are sym¬ 

metric in the sense that the order of the arguments does not effect 

the semantics. L-expressions are not well suited to such relations. 

Alternative mechanisms may be preferable when reasoning about 
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them. For example, one may hypothesize a mechanism that in 

any situation regards the equivalence class of all objects that are 

brothers, or of the same color, as one entity. 



Chapter 12 
Systems Questions 

12.1 Introduction 

In previous chapters we demonstrated how any one instance of any 

one of several different functionalities can be realized in an NTR. 

When we wish to realize all these functionalities together and to 

invoke them not just on one occasion but in arbitrary sequences, 

then significant additional problems arise. These systems problems 

fall broadly into two categories, depending on whether they relate 

essentially only to the internal working of the NTR or whether 

they concern directly the particulars of the interactions with the 

peripherals. 

In the first category are the problems of ensuring that the func¬ 

tionalities have compatible implementations that allow their invo¬ 

cations to be cumulative. We need to explain how, even after a 

long sequence of updates, using each of the several algorithms 

that implement the various functionalities, the NTR is still in a 

suitable condition to execute further invocations without unduly 

disturbing the effects of the earlier ones. This cumulative feature 

needs both qualification and quantification since, clearly, if knowl¬ 

edge is constantly added and never deleted, then the NTR will 

run out of storage space eventually. This particular problem could 

be overcome, in principle, by allowing a “forgetting” mechanism. 

We have not included one, mainly because we do not know of a 

natural criterion of what should be forgotten. A further reason is 

145 
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that the numerical estimates discussed earlier, of neurons and of 

lifetime limits for humans, suggest that it may not be strictly nec¬ 

essary. We note that in line with our general approach, we wish 

to solve all the systems problems in the NTR by mechanisms that 

can be implemented within the model that we have defined, and 

do not require additional mechanisms, such as global operations. 

It is quite possible, of course, that global operations realized by 

chemical action, for example, do play important roles in the brain. 

Systems problems falling in the second category arise neces¬ 

sarily in any neuroidal system where peripherals mediate between 

the NTR and the outside world. Since the outside world may be 

arbitrarily complicated, a first task of the peripherals is to restrict 

the amount of information presented to the NTR at any instant. A 

second role is to perform this restriction in a useful way. In more 

psychological terms, what the peripherals need to do is to solve 

the problem of focus or attention, which is concerned with restrict¬ 

ing the incoming information at any time to that which describes 

particular objects or semantic units in the world. 

12.2 General Organizational Principles 

In order to make the various mechanisms described have the de¬ 

sired effect in the neuroidal system we find that the following three 

general principles appear to help. We shall turn in the next section 

to the issues of how the particular mechanisms described for the 

NTR can be made compatible. 

Principle I: The mechanisms that set up connections in the NTR 

in one direction (i.e. LINK, JOIN) have analogues that can set up 

connections in a reverse direction. For example, when an image 

in a low level vision peripheral can cause the neuroids of a high 

level item in the NTR to fire, mechanisms for the inverse causation 

of firings are also available. In particular, the firing of the high 

level item will cause firings in the peripheral, corresponding to the 

appropriate image. 

Principle 2: The nodes in the NTR that are firing can detect for 
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themselves whether they are the highest levels of nodes firing at 

that time. When a node fires and detects itself as being at the 

highest level of firing, it is said to be charged. 

Principle 3: The peripherals, in conjunction with the NTR, im¬ 

plement an attentional mechanism that at any instant imposes the 

following limitations on the NTR: (i) it limits the input to the at¬ 

tributes of one or a small number of objects in the scene observed, 

and (ii) it limits the number of nodes charged to a fixed small num¬ 

ber Afg of items. The latter limitation implies that for any object 

in the scene only a bounded number of attributes can be given the 

highest level of attention. 

Principle 1 seems essential if we desire that changes in the NTR 

be able to effect action in the outside world. If we wish that the 

firing of higher level neuroids in the NTR result in changes in 

the peripherals, then connections realizing the associations in this 

reverse direction need to be in place. 

Implementing Principle 1 poses no fundamental problem. Ev¬ 

ery time a new forward connection is implemented by a LINK or 

JOIN operation in the NTR, (whether by a simple direct vicinal 

algorithm as in Chapters 7 and 8, or in some more involved way 

as in Chapter 14) we can follow it by a LINK operation in the re¬ 

verse direction, using new relay nodes. Although, as we claimed, 

there may be no fundamental impediments to doing this, the de¬ 

tails of how it should be done to obtain the desired behavior may 

be complicated. It may turn out, for example, that in certain hu¬ 

man memory disorders the difficulty with adding near memories 

is not with the allocation of new storage, but with these reverse 

associations which are necessary for recall. 

In one method for realizing Principle 2 it will be useful for 

relay nodes that realize reverse connections to be in a state that 

distinguishes them as “reverse relay” nodes, both before and after 

they have been allocated. This can be achieved by, for example, 

having relay nodes of the two kinds initialized to different states. 

For our applications it is sufficient, in fact, that on each reverse 

chain at least one relay node be distinguished as “reverse relay.” 

Principle 2 can be implemented in various ways, among which 

the following is one. Suppose that Principle 1 is implemented 

and in each reverse connection at least one node is in “reverse 
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relay” state. Suppose also that once such a node is fired it emits 

a train of signals in a time pattern unique to reverse relay nodes. 

Suppose further that in a cascade of firings, once a non-relay node 

fires it remains in a “pseudo-refractory” condition until stability is 

reached. In this condition the node keeps firing, independent of its 

neighbors, but its state may otherwise depend on its neighbors. We 

can program this pseudo-refractory condition so as to be able to 

detect the signature of any reverse relay node from which signals 

are coming via relay nodes. The result will be that every non-relay 

node in the cascade that is not at the highest level will receive a 

signal train from a reverse relay node, but those at the highest 

level will not. Hence nodes in the pseudo-refractory condition 

that do not receive the reverse relay signal can rightfully identify 

themselves as charged. 

A different approach would be to dispense with reverse relay 

nodes having distinguishing signature patterns of firings, and in¬ 

stead have weights on reverse edges that differ sufficiently in mag¬ 

nitude from those on the forward edges that nodes can distinguish 

the direction from which a signal is coming. Then nodes that 

do not receive reverse signals can again recognize themselves as 

charged. 

One important consequence of Principle 2 is that it allows for 

supervised learning at target nodes that have been allocated hierar¬ 

chically. For example, if the recognizer for the sound of the word 

“dinosaur” is itself a hierarchy, the desired result of learning the 

meaning of the word is that, on seeing examples of a dinosaur, 

the highest level nodes of the sound hierarchy should fire, and not 

lower level ones such as those corresponding to “dino.” In order to 

achieve this we need that the highest level nodes in the sound hier¬ 

archy be able to distinguish themselves by becoming charged and 

going into a different state than the others. They can then correctly 

learn in supervised mode without any undesirable side-effects. 

Principle 3 is concerned with attentional mechanisms, among 

which we distinguish two varieties. The first provides a way for 

the system to identify parts of scenes that are integral objects, and 

to input to the NTR attributes of such objects as well as relation¬ 

ships among a small number of them. In a visual scene such an 

object may be a group of people, a person, a face, or a nose. The 
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choice among these will be determined via interactions between 

the peripherals and the NTR. Some such interaction appears also 

to be useful for isolating the attributes of objects, since knowl¬ 

edge that is not preprogrammed in the peripherals resides in the 

NTR. Also, some version of Principle 2 seems necessary if we 

are to distinguish one level of the knowledge representation hier¬ 

archy (e.g. a face) from the others (e.g. a nose). The peripherals 

will have some further special purpose functionality in addition. 

For example, a low level vision peripheral may have capabilities 

for detecting boundaries and color information, that do not require 

interaction with the NTR. 

Principle 3 also states that a second type of attentional mech¬ 

anism is needed, that restricts at any time the total number of 

neuroids that are effectively in charged condition. This is impor¬ 

tant for several technical reasons. First, if we have I items firing 

and we allocate new storage by unsupervised memorization as in 

Chapter 7, then we are allocating storage for all the /(/ — l)/2 dif¬ 

ferent pairs. If the value of I is not restricted, then storage might 

be used up much too fast. If, on the other hand, we require an 

item to be charged in order to take part in any such allocation, 

then by restricting the number of charged items to, say, 1 = 5, 

we keep good control of memory utilization. A second context 

in which Principle 3 is beneficial, is in implementations, such as 

Algorithm 8.1, where relay nodes are shared among many target 

items. In order to avoid target items being fired by the firing of 

spurious combinations of nodes, it greatly helps if the number of 

nodes firing at any time is restricted. The same effect can be 

achieved by restricting the number of charged nodes and ensuring 

that only these have influence. Of course, we need to adapt the 

corresponding earlier algorithms so that they are influenced only 

by charged nodes, which distinguish themselves from the others 

somehow by, for example, their pattern of firing. More generally, 

our previous algorithms for memorizing conjunctions in Chapter 8 

and L-expressions in Chapter 11, should be reinterpreted to mean 

that the predicates being conjoined are not all the items true for 

the input scene, but only those that are being attended to, in the 

sense that the neuroids representing them have become charged. 

To implement this second kind of attentional mechanism one ap- 
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pears to need some process that involves the NTR interacting with 

some kind of imagery peripheral. This interactive process would 

stabilize when a small enough set of items is charged in the NTR, 

a set that corresponds to a consistent image. Such a mechanism 

necessarily has to resolve among competing sets of predicates. 

When we view a picture that has two alternative interpretations, 

we clearly need to use some such resolving mechanism. In more 

frequent situations a picture has just one dominant interpretation, 

and the alternatives are not serious competitors. One can, there¬ 

fore, hypothesize some iterative improvement strategy that finds 

a good consistent interpretation. This may be most aptly viewed 

as a continuous rather than discrete process. For example, the 

lengths of the spike trains may play a quantitative part. Although 

the choice of this resolving strategy is crucial in determining the 

behavior of a neuroidal system, it is enough here to hypothesize 

that one exists. Further, we hypothesize that it is the ability to learn 

from situations where the wrong conclusion is reached that makes 

it effective. In any instance in which the resolving strategy gives 

an unsatisfactory answer, some learning in the NTR will take place 

that will give higher weight to the correct solution when a similar 

instance is presented in the future. Clearly we cannot attempt to 

specify the particulars of the resolving strategy without specifying 

the particulars of the peripherals. As we have argued earlier, we 

omit giving these particulars and this omission is consistent with 

our declared methodology. Substantial research efforts have been 

expended, however, in studying such iterative optimization pro¬ 

cesses in other neural network models, and the phenomena found 

there may translate to our framework. 

Finally, we need to discuss whether it is plausible that the human 

brain implements the three principles outlined above. 

As a preliminary we need to repeat that there may be several 

alternative correspondences between real neurons and spikes, on 

the one hand, with neuroids and their firings, on the other. A 

neuroid may model either one neuron or a group of them. A firing 

may correspond to a single spike or a train of them. On this second 

point we take the view that the recognition of Boolean items in 

neurons is communicated by trains of spikes. In some of our 

mechanisms, as in simulating LINK and JOIN on sparse random 
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graphs in Chapter 14, we do use such trains. Even in cases where 

the high level algorithms do not require them, it would appear that 

an implementation in terms of spike trains may be desirable. The 

length or frequency of the train may provide a numerical value, 

beyond the Boolean bit, that adds richness to the computations, in 

dimensions that we have not modeled here. This general picture of 

information being conveyed in trains of spikes is consistent with 

experimental evidence. For example, neurons in monkeys that 

have been identified as responding to the sight of faces, transmit 

long bursts of spikes (e.g. 100 in half a second) when the monkey 

is presented with a view of a face. In the absence of any such 

stimulus the same neuron produces spikes apparently randomly, 

and at a lower rate (e.g. 5 per second.) These single random spikes, 

according to this general picture, provide background noise to the 

more purposeful events that are modeled by vicinal algorithms. 

In low level vision areas of the cortex it is found that a complex 

scene presented to an animal may cause a substantial percentage 

of the neurons to fire at above the resting rate. This is consistent 

with our hierarchical representation of knowledge. Presumably 

a substantial fraction of these neurons correspond to low level 

items that are each made to fire by a significant fraction of natural 

scenes. In visual scenes such items may correspond to circular 

patches, comers, etc. It may be that in low level sensory areas of 

the cortex one needs larger numbers of less dominant responses, 

while in higher areas the few neurons that correspond to each high 

level item, fire in more dominant bursts on the rare occasions that 

they are called on to do their jobs. 

For Principle 1 there is some corroborating evidence that has 

been referred to earlier. Neuroanatomists have investigated in great 

detail which areas of the cortex have connections to which others, 

and which have connections to subcortical areas of the brain. It 

has been found, almost invariably, that whenever there are connec¬ 

tions in one direction between one area and another, there are also 

connections in the reverse direction. 

We conclude by noting again that we are not claiming that there 

is convincing evidence that the algorithms and mechanisms we de¬ 

scribe here are those that are implemented in the human cortex. 

We are claiming only that we have a fairly detailed model that is 
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demonstrably able to implement some interesting cognitive func¬ 

tions, and that its nature and mechanisms are not inconsistent with 

current knowledge of the brain. In the light of new knowledge the 

model may need to be refined, adapted, or changed. But the valid¬ 

ity of any alternative model will have to be demonstrated, in the 

same spirit as here, by exhibiting concrete algorithms that demon¬ 

strate that, at least in principle, it can support interesting cognitive 

functions. 

12.3 Compatibility of Mechanisms 

In earlier chapters we described neuroidal algorithms for a variety 

of tasks with the suggestion that all of them could be supported 

simultaneously in a single system. We refrained, however, from 

detailing a single “megasystem” that incorporates them all, both 

because that would have introduced excessive complications, but 

also because we do not wish to discourage the exploration of al¬ 

ternative algorithms for any one of them. The question of whether 

the algorithms described contain major contradictions is, of course, 

a significant one. We believe that they do not. We shall illustrate 

here how this issue might be considered more systematically by 

considering just one instance of it, namely the co-existence of un¬ 

supervised memorization with inductive learning. 

Consider the process in which the spelled word “dinosaur” is 

first memorized, and subsequently a recognition algorithm for this 

concept in terms of other categories, such as “extinct” or “large”, 

is learned by induction. Figure 12.1 shows a schematic diagram 

of the circuit that results from this process when the algorithms 

of Chapters 7 and 9 are invoked. The right hand side of the dia¬ 

gram illustrates the hierarchy of nodes allocated by unsupervised 

memorization by the fragments of the word. The choice of frag¬ 

ments may, of course, depend on various factors such as whether 

the input of the spelled word was visual or auditory. The final 

result of this part of the process is to allocate to the set of nodes 

at the top the word “dinosaur” and to have these nodes in state 
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Nodes initially allocated 
unsupervised memorization 
nodes by word "dinosaur", 
and subsequently trained by 
inductive learning from semantic 
inputs. 

Figure 12.1. Schematic illustration of a subcircuit. The nodes at the top were ini¬ 

tially allocated by unsupervised memorization following the input of the spelled 

word “dinosaur.” Subsequent to this allocation, these same nodes induced some 

information as a result of a number of further inputs, in each of which the 

spelled word “dinosaur” was presented in conjunction with additional semantic 

information about this animal. 

UM. The second part of the process, that of inductive learning, is 

responsible for setting up the circuit shown in the left hand part of 

the diagram. First, communication between the relevant semantic 

nodes, such as those representing “extinct”, and the target nodes 

is established by means of relay nodes. Subsequently the weights 

in this part of the circuit are adjusted so that it will subsequently 

evaluate to the function that has been induced. 

In order to verify that the algorithms involved can be imple¬ 

mented compatibly, we need to examine the assumed preconditions 

of, and the transformations resulting from each one. In the case 
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at hand, prior to the unsupervised memorization process the target 

nodes are in state AM and have incoming weights all equal to one. 

After these nodes have been allocated their state will be UM and 

the weights on edges not involved in transmitting information from 

the spelled inputs will be zero. The remaining weights and thresh¬ 

olds will be such that a future presentation of the word “dinosaur” 

will make these target nodes undergo threshold firings. Suppose 

now that these UM nodes have a capability to learn conjunctions 

inductively. (We could equally assume here disjunctions or linear 

threshold functions. We could even assume that each node attempts 

first to learn one of these, say conjunctions, and if that fails it then 

tries another class.) The inductive learning algorithm will make 

nonzero some of the zero weights, namely those on edges coming 

from the relevant semantic items via the relay nodes. A circuit 

recognizing the induced function will be created. The weights and 

thresholds of the target nodes will then be such that at later times 

they will fire whenever either the word or the semantic description 

is presented. 

The issue of compatibility has to be addressed explicitly when 

one attempts to model significant psychological phenomena that in¬ 

volve more than one functionality. As an illustration consider how 

the circuit shown in Figure 12.1 might be used to model the phe¬ 

nomenon of priming that we discussed in §4.5. This phenomenon 

is concerned with a subject being exposed to information that is 

not consciously recollected later, but that measurably changes the 

subject’s performance in a related task at a later time. If one has ex¬ 

plicit hypotheses about the circuits of memory, then one can make 

explicit theories about the nature of priming. As an illustration 

consider the theory that when an input has caused a subcircuit to 

undergo threshold firing, then the edges whose weights contributed 

to the firing of some node will increase for some temporary du¬ 

ration. For any particular set of circuits such a theory will make 

predictions and these can be tested by experimentation. For the 

simple circuit shown in Figure 12.1, for example, some predic¬ 

tions can be read off immediately. An example of such a simple 

prediction is that exposure to a spelled word will produce differ¬ 

ent priming effects from those produced by exposure to a picture, 

since these two conditions will change different sets of weights. 
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In particular, performance will be increased most for those inputs 
that have the same modality as the original priming, an effect that 
is consistent with current psychological evidence. There is a large 
body of experimental results about priming already available (D.L. 
Schacter 1992, J. Bowers and D.L Schacter, 1994) and this may be 
one of the areas of psychology where detailed neuroidal modeling 
may be already viable and fruitful. 
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Chapter 13 
Reasoning 

13.1 Introduction 

Adaptability and flexibility are traits that are particularly associ¬ 

ated with humans, who can often react to situations not previously 

experienced with inexplicable speed and competence. These traits 

have proved particularly difficult to emulate in machines. There 

have been many attempts to endow computers with large amounts 

of knowledge, but for large systems the result is usually brittle. The 

systems do not work competently in situations not foreseen by the 

programmer. This failure contrasts with the often impressive per¬ 

formance even of certain nonhuman species. The following experi¬ 

ment has been reported (D. Premack 1983): Two widely separated 

deep containers in a room or field are pointed out to a chimpanzee. 

An apple is then placed in one and a banana in the other before 

the animal is temporarily removed from the scene. The animal is 

then brought back, at which time it sees the experimenter eat a 

fruit, either an apple or a banana. Does the chimpanzee behave 

sensibly by moving toward the bin containing the remaining fruit? 

The answer reported is yes. Performance on this task was found 

to be comparable to four and a half year old humans. 

What view should we take of this kind of behavior? Aristotle 

claimed that all knowledge is derived either through what he called 

induction or through deductive reasoning, to which he referred to as 

syllogism. Our treatment follows essentially the same distinction. 

157 
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but perhaps with a different emphasis. While his writings tend to 

detail and highlight reasoning over induction, the balance here is 

tilted in the opposite direction. 

A summary of our general viewpoint is the following: Much 

knowledge and most skills are acquired inductively. These ac¬ 

quisitions take the form of a large number of short programs or 

reflexes, which are useful for coping with inputs from the world 

or for resolving among other reflexes. These reflexes derive their 

validity only from the fact that they work in the complex world 

and can be justified intellectually in the framework of pac learning. 

The availability of large numbers of inductively learned reflexes is 

not quite enough, however, to provide an explanation of the full 

range of human intellectual responses, or even of the chimpanzee 

behavior described above. In new situations we appear to be able 

to put together information from a well chosen subset of these re¬ 

flexes that we had no reason to consider together before, and to 

arrive at a new course of action. Each time we hear and under¬ 

stand a sentence containing some new or surprising information 

we must be doing something like this. It is internal computations 

of this kind, that pull together a novel combination of pieces of 

information already known, that we consider here to character¬ 

ize reasoning. Aristotle’s notion of syllogism may be considered 

perhaps as a special case of a more general class of phenomena. 

Formalizations of reasoning are often at odds with formaliza¬ 

tions of inductive learning. One central problem is that the notion 

of consistency is at the heart of most formal systems of reasoning. 

For example, in some systems each proposition is either true or 

false, and the deductions that can be made have to yield consistent 

truth values for all the propositions that can be expressed within the 

system. In pac learning reflexes relate to the world in a statistical 

manner. More importantly, it is acknowledged that the statistics 

of the world are typically complex and the system should be able 

to cope with the world effectively without needing to know much 

about these complex statistics. The traditional insistence on con¬ 

sistency is somewhat at odds with this view of knowledge, though 

some reconciliation is nevertheless possible. 

The view of reasoning that emerges from the neuroidal model 

is the following. Knowledge can be added to the NTR both by 
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memorization as well as by induction, as the algorithms described 

in the previous chapters suggest. There are additional processes, 

which we call reasoning, by which new conclusions can be reached 

based on information already stored in the NTR. These processes 

may need the use of the peripherals, not only to schedule firings, 

but also as temporary repositories for the information that is newly 

brought together in a deduction. The peripherals that take part we 

shall call imagery peripherals. This choice of words is intended to 

suggest that visual metaphors and concrete examples, rather than 

the abstractions of mathematical logic, may have the more central 

role in human reasoning. 

The aspect of reasoning that we are particularly concerned with 

here is so called commonsense reasoning. This is the process that 

humans use to cope with the mundane but complex aspects of the 

world in evaluating everyday situations. It is reasoning that is 

generally done subconsciously. It is perhaps precisely because we 

have no awareness of these processes that it has proved so diffi¬ 

cult to simulate them in machines. No one has yet made a home 

cleaning robot that can execute its task with reasonable flexibility 

and commonsense. 

We believe that the subconscious processes that manifest them¬ 

selves as commonsense reasoning constitute fundamental parts of 

the substrate of cognition. The more complex reasoning tasks that 

are typified by puzzle solving, and which humans perform con¬ 

sciously, may use them as building blocks. We shall not pursue 

here the phenomena of higher level reasoning, aspects of which 

have been investigated extensively by psychologists (K.J.W. Craik 

1943, P.N. Johnson-Laird 1983). Some activities that are conven¬ 

tionally associated with higher level reasoning, such as chess play¬ 

ing, have proved easier to mechanize than commonsense reasoning, 

though not by methods that attempt to emulate the psychological 

processes. 
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13.2 Reflex Reasoning 

We shall distinguish among three kinds of reasoning activity in 

terms of the computational demands they make on the neuroidal 

system. They are of increasing power and make increasing de¬ 

mands on the peripherals, but all work with an NTR that is con¬ 

strained by the neuroidal model described in earlier chapters. 

The most basic of the three kinds of reasoning responses consists 

of the peripherals presenting some information to the NTR and the 

NTR undergoing a single cascade of threshold firings as a result. 

We shall call this circuit evaluation or simple reflex reasoning.^^ 

The computations involved are essentially the same as those used 

in recognizing a memorized item or an example of an inductively 

learned concept. We shall argue, however, that these computations 

can also be viewed as supporting the kind of simple reasoning that 

humans appear to perform particularly fast. Within the category of 

simple refiex reasoning we shall allow processes in which the main 

act of circuit evaluation is preceded by some interactions between 

the NTR and the peripherals that perform such auxiliary tasks as 

scene segmentation. We shall further include tasks that may in¬ 

volve several circuit evaluations, each prompted by the attention 

mechanism focusing on distinct parts of the input successively. 

The main criterion that distinguishes simple refiex reasoning from 

what we describe next, is that the output of a circuit evaluation is 

not evaluated again within the one reasoning response. 

There exist other tasks that humans can also do essentially sub¬ 

consciously, for which it is implausible that simple reflex reasoning 

is sufficient. Understanding a complex sentence or a picture, or 

planning how to maneuver out of a room are examples of them. 

We call them compound reflex responses and characterize them 

as those that are done in several phases of interaction between the 

NTR and some imagery peripheral. We think of them as having the 

following general scheme. Given some input the NTR performs a 

simple reflex task and outputs its deduction to a peripheral. The 

contents of this peripheral are then added as part of the input for 

a second simple reflex response, and the result of that is output in 

turn to the same or some other peripheral. At each phase some 



13.3 Simple Reflex Reasoning 161 

immediate consequences of the new input to the NTR are derived 

and made available so that further consequences can be made. In 

hearing a sentence, each phrase may conjure up an image which 

we add to the total picture in our mind’s eye. Therefore, as this 

picture builds up its contents may influence our interpretation of 

each further phrase. By means of a sequence of such simple reflex 

responses we attempt to build up an overall picture. In the course 

of this process we may use additional reflexes to eliminate and 

correct for inconsistencies. 

Compound reflex responses, complex though they may be, we 

still think of as corresponding to subconscious processes in hu¬ 

mans. They are under the automatic control of some algorithms 

in the peripherals and the NTR, although their course may be in¬ 

fluenced by new external inputs or recalled memories. Clearly 

humans can do reasoning that is even more flexible than this. We 

call this Turing reasoning since, in fact, humans can simulate in 

their mind any reasoning algorithm consciously, much as universal 

Turing machines can simulate any particular Turing machine given 

sufficient work space. In solving nontrivial puzzles, for example, 

we may go through some systematic reasoning procedure that we 

have acquired only after extensive study. Although the study of 

human puzzle solving or conscious reasoning is of intrinsic inter¬ 

est, we believe that among the three modes of reasoning that we 

have just enumerated it is the furthest removed from the cognitive 

substrate that we are seeking to uncover and we shall not discuss 

it in any further detail here. 

13.3 Simple Reflex Reasoning 

The most basic computation performed by the NTR is a cascade of 

threshold firings, prompted by some input from the peripherals. Its 

primary purpose is that of recognition, but, by means of reverse 

edges or other connections, it can also give rise to a response. 

Responses that consist of simple circuit evaluations of this nature 

appear to be limited in their flexibility. They correspond, perhaps. 
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to what are sometimes called “precanned” responses. The number 

of circuits in an NTR or the brain is clearly limited. For example, 

it is implausible that humans have a circuit, analogous to an NTR 

circuit, for evaluating when to answer “yes” for any question stated, 

say, in English, since it is difficult to imagine how such a circuit 

could be set up in the brain and updated as new knowledge is 

acquired. We believe, however, that precanned responses do have a 

large and important role in intelligence. Reaction time experiments 

support this view by confirming that humans can perform complex 

recognition tasks in time that is no more than enough for at most 

a few dozen neuronal firings. 

It is plausible, for example, that associating “56” with the sight 

of “8 X 7” is performed by humans as a precanned response, at 

least after extensive training. If the numerals are handwritten, then 

their recognition, a nontrivial task which presumably is learned 

in inductive mode, has to precede this, also presumably as a pre¬ 

canned response. Precanned responses may be sufficient for many 

commonsense tasks that humans can perform without thinking, 

but which have nevertheless proved difficult to simulate in pro¬ 

grammed systems. It is perhaps best to think of a precanned re¬ 

sponse as a reflex in the context of intelligent behavior. A reflex is a 

program or circuit that under certain input conditions gives rise to a 

certain output to or through the peripherals. The justification of its 

validity is the purely empirical one, that it “works” in the world in 

which it must. How can a system containing a large set of reflexes 

work without being brittle? Our answer is that each reflex draws 

its validity of being well tuned to the world from which it has been 

learned, through the fact that it has been learned in the pac sense. 

What happens if two reflexes suggest contrary behavior in certain 

situations? Our solution is that a third reflex that resolves correctly 

between the two, again in the pac sense, has to be learned or other¬ 

wise acquired. Thus at the heart of our theory is the idea that a large 

number of refiexes learned hierarchically in the pac sense can give 

rise to a robust intelligent system. The viewpoint that intelligence 

should be viewed as a large number of largely independent units 

is held widely and from a great variety of perspectives in artificial 

intelligence (A. Newell and H.A. Simon, 1972, M. Minsky 1986, 

A. Newell 1990, R.A. Brooks 1991). Our view is consistent with 
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this general philosophy but contains an additional notion, which is, 

we believe, central. The additional notion is that it is the very fact 

that the units are learned rather than programmed, which makes 

robust systems possible. Thus learning is not the unexplicable 

obstacle to understanding intelligence, but the key. 

We shall discuss in this section four distinct paradigms of rea¬ 

soning all of which can be viewed as exemplifying simple reflex 

responses. The first one of these is Boolean circuit evaluation. 

This can be viewed as an implementation of one of the few sys¬ 

tems of logical reasoning known to be computationally tractable, 

namely Horn clause deduction (H. Levesque 1986). In this, some 

Boolean implications of the form xi f\ xi ^ x^, Xi A x^ X4 

are known, and the truth of some variables is given. The task 

is to determine which other variables are then implied to be true 

also. In this case, for example, from the truth of xi and X2 one 

can deduce the truth of X3 using the first implication. The sec¬ 

ond implication then gives the truth of X4. The restriction on the 

form of the implications that characterizes Horn clauses and makes 

them tractable is that no negated variables are allowed to occur. 

Horn clause deductions, however, are exactly what circuit evalua¬ 

tion performs. If we have a circuit for X3 = A X2 and another 

for X4 = xi A X3, then the prompting of the nodes corresponding 

to xi and X2 will, within one cascade of firings, also cause the 

nodes of X3 and X4 to fire. Hence, in principle, arbitrary depths of 

Horn clause deductions can be carried out in a single act of reflex 

reasoning. The one limitation to this in our system is Principle 3 

of the previous chapter that asserts that the number of features of 

an input that can be presented simultaneously is limited. For this 

reason some Horn clause deductions may take more than one step 

and, therefore, take the form of compound refiex reasoning, to be 

discussed in the next section. 

We note that in this, as in all the later paradigms of reasoning, 

we can invoke Principle 1 of the previous chapter to obtain ad¬ 

ditional interpretations of the reasoning act. This means that we 

consider circuit evaluation to be accompanied by reverse flows of 

information that give rise to images in the peripherals that some¬ 

how correspond to the highest level items fired in the NTR. This 

paradigm therefore corresponds, in human terms, to recalling, be- 
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ing reminded of, making an association, or deducing an implica¬ 

tion. 

The importance of context in human recall and reasoning has 

been emphasized frequently. A person’s behavior in, for example, 

a restaurant will be governed by detailed previous knowledge rel¬ 

evant to this particular context and will differ from the behavior 

in, say, a store or office context (M. Minsky 1975, R.C. Schank 

and R.P. Abelson 1977). We envisage that the role of context in 

reasoning and recall can be accommodated in the following way. 

In a restaurant context, the neuroids corresponding to restaurants 

would be in a high state of activity. Also, the other items that 

are particularly relevant to restaurants will be those that can be 

brought most easily nearer to threshold firing when the restaurant 

neuroids fire. This can be achieved by, for example, having these 

other items to be conjunctions, with “restaurant” as one conjunct. 

Hence the restaurant context will effectively bias the items seman¬ 

tically related to it to be the ones that need the least additional 

stimulus to make them fire. 

We now turn to three further paradigms of simple refiex reason¬ 

ing. These are more complex than circuit evaluation in the sense 

that they each require a response to a query. The queries will be 

expressed in terms of the quantifiers “there exists” and “for all”, 

denoted by 3 and V, respectively as in the predicate calculus. These 

three further paradigms will be distinguished by the subscripts s, 

m, and w, which denote respectively whether the quantification is 

over items in the current scene, items in memory, or items in the 

world. For example, 

3ni a actor(a) A US-president(a) (13.1) 

denotes the query whether there is an item in memory correspond¬ 

ing to an individual that has both of the asserted properties. Re¬ 

placing 3m by 3s would be the same question, but now restricted 

to objects depicted in the particular scene currently input. Instead 

of asking whether you can think of an actor president, you are 

asked whether there is an actor president in a specific picture. The 

third category 3w refers to the possible existence in the world of 

an object with the stated attributes. While positive responses to 
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either of the first two queries would normally imply the same for 

the last, this does not hold for negative responses since the absence 

of an instance that would confirm some proposition is not taken 

necessarily as proof of impossibility. On the other hand, based on 

what we believe to be universal truths, we might deduce that some¬ 

thing is indeed impossible in the world. One might, for example, 

have a belief about a characteristic essential to presidents that is 

inconsistent with one’s beliefs about actors. Although reasoning 

about universals in this way may be perilous, humans indulge in 

it freely and some view of this process, even at its least reliable 

level, needs to be taken. If we see a blue apple, then using some 

such reasoning we deduce that it is artificial and will desist from 

taking a bite. 

All three kinds of quantification appear to be important. Search¬ 

ing one’s memory for examples that satisfy some conjunction of 

criteria is something humans appear to be able to do remarkably 

well. It is a fundamental random access task that any plausible 

model of neural cognition needs to address. Answering similar 

questions about a particular input, say a picture, is a different task 

which is also within human capabilities. The category of queries, 

where quantification is over all possibilities in the world, is also 

essential. Since earlier we labeled Boolean circuit evaluation as the 

first paradigm of simple reflex reasoning, we shall label responses 

to queries using each of these three forms of quantification as the 

second, third, and fourth paradigms respectively. 

Starting with quantifications over memory, which we shall call 

the second paradigm, consider queries of the form 

3m • * * 7 Tf(ai, • • •, ak). 

For what values of k and for which classes of expressions H can 

these be answered by a simple reflex response? By an answer 

we mean the recollection of objects ai, • •, a/c with the required 

properties, if these exist in memory, and an answer “no” otherwise. 

Two subcases stand out. In the first there is just one object 

variable and H is a. conjunction of unary predicates: 

3m CL Ui(a) A U2(a) A • • • A u^(a). 
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The task is to identify an item in memory having all n of the 

properties Ui, • • •, u^. Query (13.1) is an instance of this having 

n — 2. Our observation here is merely that these conjunctions can 

be accessed by firing the neuroids corresponding to these prop¬ 

erties simultaneously, which will cause the nodes representing the 

conjunctions to fire or come close to firing. If the conjunction used 

for memorization has more components than that in the query, then 

this method will bring the desired nodes only closer to the thresh¬ 

old rather than to it. This may be sufficient if the general level 

of activity is suitably increased so that the threshold will then be 

exceeded. In practice, we expect that n will equal two or perhaps 

three. There are various possible algorithmic schemes for achiev¬ 

ing the actual retrieval. The important point is that the connections 

required to channel activity to the sought after conjunction, given 

activity at the neuroids corresponding to the separate attributes, are 

already in place in the NTR. Thus the difficult part of the retrieval 

is solved by the nature of the knowledge representation used. 

One specific mechanism for ensuring that a conjunction as in 

(13.1) can cause the item that it uniquely characterizes to fire, 

rather than just to come closer to firing, is supplied by the notion 

of continuous learning, which we regard as a crucial aspect of the 

NTR. By this notion we mean that once neuroids have been al¬ 

located for a set of items, these items will learn continuously in 

inductive mode in terms of each other thereafter. Each input to the 

NTR causes some item representatives to fire, and others not to. 

Each such input can be regarded, therefore, as being an input for 

further refining every item that is being learned inductively even if 

it is a negative example for most of them. Thus the NTR is con¬ 

tinuously refining the accuracy of all its concepts as a background 

activity. Suppose now that this continuous learning happens to 

do disjunctions by the elimination algorithm. Suppose also that a 

conjunction for actor and US-president has been memorized in 

unsupervised mode. Then after a long period of continuous learn¬ 

ing one expects that this conjunction will remain an uneliminated 

disjunct for just one item in memory. Hence, whenever this con¬ 

junction is caused to fire by the query, then so will the sought after 

item, but nothing else. 

The second subcase of this paradigm of retrieval from memory 
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that we would like to mention is one where H is more complex. In 

particular, assume that it is an L-expression that is closely related 

to an L-expression already stored. The difficulty here is that, unlike 

the case of conjunctions, an implemented L-expression may not be 

accessible by all possible subexpressions of it. For example, if 

3 a, 6, c r(a, b) A s(6, c) A u(a) A v(6) A w(c) 

is implemented as defined in Figure 11.3 the query 

3m CL-, b^ c r(a, b) A s(6, c) 

will not retrieve it since the nodes A u, etc., will not be made 

to fire. Queries containing the whole expression will, of course, 

retrieve it just like a presentation of a scene satisfying it would. 

Also queries, such as 

3m b r(a, b) A u(a) A v(6), 

which correspond to a subtree in the representation, would get 

closer. There appears to be plenty of scope for experimentation 

to study how humans cope with this issue. Do humans need the 

labeling predicates that correspond to the u and v that are used in 

L-expressions, in order to execute such relational queries? 

Next we consider the third paradigm of simple reflex responses, 

those involving queries in which quantification is limited to objects 

in a particular scene: 

3s tti, • • •, a/c //(ai, • • •, a^). 

In this case the peripherals will assist in trying all possible ways 

of identifying ui, • • •, with objects in the scene that are viable. 

If some or all of the are labeled uniquely by predicates (e.g. 

u^(a^) is part of the conjunction and does not occur elsewhere 

in the expression) then fewer ways of identifying them need to be 

tried. We note that in the 3s paradigm a richer set of queries can be 

processed than in the 3m case. They no longer need to be limited 

to those that relate closely to expressions already memorized. On 

the other hand, the price that has to be paid is that extra costs may 
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be incurred in enumerating the various permutations of objects in 

the scene. 

A second instance of the paradigm is a query of the form 

Vs a u(a) => v(a). 

The query asks whether every object in the scene satisfying u also 

satisfies v. This can be answered also by examining the objects in 

turn. 

Returning now to the previous paradigm, how can we answer 

the corresponding query 

Vm CL u(a) v(a) (13.2) 

which seems at least equally important? There are at least three 

distinct mechanisms that may be appropriate. First, if we can 

access items satisfying u, and there are not too many, then we can 

retrieve them in turn and test for v. Second, if there is an item v 

that is the negation of v, then we can test for 

3m CL u(a) A v(a) 

since this is an instance of a conjunction of the form (13.1) dis¬ 

cussed earlier. (An alternative to this is the situation in which v is 

not an item, but there exist items, say Vi, V2, and V3 which exhaust 

the alternatives to v. For example, if v = green then we could 

have vi = blue, V2 = red, • •, etc. and look for u(a) A v^(a) in 

turn. This is a good strategy, but perhaps beyond what we would 

typify as a simple reflex.) Finally, if v stands for an item learned 

inductively as a disjunction, then the mechanism of continuous 

learning described above is satisfactory. A positive answer to the 

current query is equivalent to u not having been eliminated as a 

disjunct during the process of learning v. 

The fourth and last paradigm that we introduced involves quan¬ 

tification over all possibilities in the world. It relates to statements 

such as. 

Vw Cl grass(a) green(a). (13.3) 
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We consider that the implementation of such a statement will be a 

circuit in which whenever the grass nodes fire the green nodes 

will also fire. Such a circuit can be acquired either by induction 

or by memorization. In the former case continuous learning of 

disjunctions suffices yet again, providing yet a third role for this 

mechanism. In the latter case we can imagine that the statement 

(13.3) is input as a statement of universal fact, as happens in human 

instructional contexts, and some mechanism akin to supervised 

memorization is invoked to create the appropriate circuit. 

13.4 Compound Reflex Reasoning 

Simple refiex responses are those that, once interactions to achieve 

attention or to resolve among competing responses are laid aside, 

consist essentially of one circuit evaluation or a sequence of them 

applied to different parts of the input in turn. They already capture 

some complex behaviors. The more remarkable aspects of hu¬ 

man commonsense reasoning probably require that these simpler 

responses be put together into compound reflex responses. Our ba¬ 

sic view of how this is done is the following. We have peripherals 

which we call imagery peripherals. These may correspond to the 

same mechanisms that are also variously associated with what is 

sometimes called working memory. Initially we place information 

from an input or from the result of an internal computation into 

these peripherals. Each simple refiex takes the information from 

them and makes a response that may be considered to be the most 

immediate deduction that may be made, given the available circuits 

in NTR and the algorithms that control simple reflex responses. It 

then adds the result of this response back into the peripherals. As 

a result of such a succession of simple reflexes, a complex picture 

will typically evolve in the imagery peripherals. 

The imagery peripheral may contain information about several 

objects and, therefore, the issue of variable binding also arises in 

this context. L-expressions that label objects distinctly by means of 

unary predicates appear to be appropriate for this role and therefore 
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issues similar to the ones discussed in Chapter 11 are also relevant 

here. 

The process that guides such a succession of images to a sensible 

outcome may involve several mechanisms. A philosophical aside 

is that since simple reflexes are thought of as entirely automatic, 

there is no reason for any intervention or interruption by the system 

in the middle of the execution of one such response once initiated. 

Hence there is no reason for the system to examine or be conscious 

of the mechanics internal to any one simple reflex. It is, of course, 

important that the sequence of responses be kept on a productive 

track. The primary mechanism that might help guide this is one 

that invokes the most relevant reflexes in the NTR to evaluate 

each image produced and produce the next. For example, in a car 

driving situation we may have an image that triggers in the mind 

a subsequent image suggesting danger. A suitable reflex from the 

NTR may then be invoked to generate the next image, which has 

the result of producing evasive physical action. Such a sequence 

of images may be exactly the appropriate snapshots of points at 

which new “options” for action are available. At each snapshot 

information input from the outside or freshly recalled from memory 

can be incorporated to influence the subsequent snapshots. 

This notion of a process being led to a sensible outcome needs 

further refinement. One aspect of it is consistency checking. When 

we try to interpret a blurred picture, we may make hypotheses 

about various parts and use our knowledge and expertise to rule 

out internally inconsistent interpretations. In addition to learned 

knowledge we may have innate expertise on, for example, three 

dimensional space. Our reaction to a glass of water being spilled 

at our table may be viewed as a compound response built up of 

expert simple reflexes. Each execution of a simple reflex in such 

a sequence somehow evaluates the outcome of the previous stage. 

Clearly there must be some resolving mechanism that picks out 

one outcome from a range of possibilities. There must exist some 

control algorithms responsible for this. We suspect that a viable 

system needs to be in possession of reflexes that are good enough, 

that in real world situations each execution typically gets pulled 

toward one outstandingly attractive option, as opposed to being 

tom between alternatives whose desirability is roughly equal. 
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This view of reasoning is to be contrasted with the one that 

emerges from formal logic and has been adapted by some workers 

in artificial intelligence — namely that reasoning involves some 

substantial search among alternatives. Indeed, unless one imposes 

very severe limitations on expressive power, reasoning in systems 

of formal logic appears to require exponential search and is, to 

the best of current knowledge, intractable for significant size prob¬ 

lems. This, together with various other evidence, has persuaded 

many other researchers also to seek explanations of human reason¬ 

ing that are not based on deduction in formal logics. Some of these 

have much overlap with our view. Craik and Johnson-Laird have 

developed the notion of “mental models”, particularly for the level 

of reasoning used in puzzle solving. They argue that we reason not 

in generalities but by imagining particular instances, the models, 

that satisfy the generalities. Levesque, influenced by the appar¬ 

ent intractability of logical reasoning, has suggested the notion of 

“vivid” reasoning, where again one argues about single instances 

having the required properties rather than the truth of the gener¬ 

alities themselves (H. Levesque 1986). In the context of robotics 

the notion of “reactive” systems has been explored, in which re¬ 

sponses to sensed inputs are effected without formal reasoning or 

representation of state (P. Maes 1990, R.A. Brooks 1991). 

Compound reflex responses are under the control of internal 

algorithms exactly as are the simple reflexes. These algorithms 

have a tendency to push the computation deterministically forward 

rather than to allow for all possibilities that have not yet been con¬ 

tradicted. This tendency makes for computational feasibility, but 

necessarily incurs the cost that the conclusions reached will be col¬ 

ored by the prejudices and irrationalities embodied by the control 

algorithms. Prejudices and irrationality in general thought pro¬ 

cesses have been studied experimentally in humans. For example, 

the irrationality of our commonsense view of probabilities has been 

amply demonstrated (D. Kahneman and A. Tversky 1973). There 

is also much evidence that humans do not argue readily from the 

contrapositive (PC. Wason 1983). Subjects told that implies v"" 

for appropriate predicates instantiated in real world examples, do 

not easily conclude that “not v implies not tx” although this is log¬ 

ically implied. Of course, algorithms for any function in a neural 
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system, including inductive learning, may have similar idiosyn¬ 

cratic tendencies of rushing to judgment. 

13.5 Nonmonotonic Phenomena 

In the previous sections we argued that several basic processes in 

commonsense reasoning may be viewed in terms of neuroidal com¬ 

putations. The question arises whether it is possible to understand 

the essential nature of commonsense reasoning in its entirety from 

a standpoint as strongly procedural as this. A contrasting alterna¬ 

tive approach would be to follow classic logic and to regard the 

relationship between the reasoning process and the reality about 

which the reasoning is being performed, as the central and pri¬ 

mary concern. In this latter approach reasoning consists typically 

of operations on formal statements that assert facts of truth, belief, 

or probability about the world. 

We shall argue here that the neuroidal model offers a framework 

within which the central issues in commonsense reasoning can be 

studied successfully. The view of reasoning that emerges from this 

approach has both a strong procedural component by virtue of its 

empiiasis on constructive algorithms, as well as a semantic compo¬ 

nent that derives from the pac interpretation of learned knowledge. 

This duality has an important advantage. It recognizes that much 

knowledge is learned empirically through experience. At the same 

time it acknowledges that in the course of reasoning, arguments 

may be invoked that have been acquired by memorization, possi¬ 

bly in the course of instruction from a teacher, and about which 

no other corroboration is available. 

The study of commonsense reasoning has been central to the 

field of artificial intelligence from the beginning. A number of 

paradigmatic examples have been used in the literature to illustrate 

the fundamental difficulties and the various attempts at overcoming 

them (R. Reiter 1987). We shall use some of these examples below 

to illustrate the neuroidal approach. 

We start by observing that the primitive notion of knowledge in 
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a neuroidal system is that of an item, as defined in earlier chapters. 

The firing of the neuroids that represent an item, such as bird, 

has a particular meaning that is not identical to any notion in 

logic or probably in any other system. The firing of the bird 

neuroids means, at the first level, that “confirmation of birdhood 

has been established by the current circuits in the system, from the 

information available to them, which may be incomplete.” This 

characterization is complicated by the fact that there is a duality in 

the possible meanings of “birdhood” that are allowed here, which 

refiects the basic duality in the knowledge acquisition process itself. 

Inductively learned knowledge can be given a precise semantics in 

terms of the pac interpretation: the bird nodes will fire on those 

occasions when a true bird is to be recognized. Errors are allowed, 

but only with small probability on natural examples. Memorized 

knowledge, on the other hand, typically includes rules, such as 

“a phoenix is a bird,” for which no other supporting evidence is 

available. 

We shall now turn to some particular phenomena of common- 

sense reasoning that have been identified repeatedly as problematic. 

Consider the following pair of assertions: 

(i) Quakers are pacifists. 

(ii) Republicans are nonpacifists. 

Generalizations of this kind appear to be widely used, even though 

their meaning may not be clear. Statements of this form may be 

true by definition, assertions of statistical fact, or nothing more than 

slogans designed to elicit certain associations in humans. Such 

rules of thumb appear to be useful, nevertheless, in coping in a 

complex world. It is reasonable, therefore, that circuits to execute 

them should be acquirable by memorization, as discussed in §13.3. 

A serious problem does arise, however, if invocations of the var¬ 

ious assertions in the system lead to contradictory conclusions, as 

would happen, for example, if the system encountered an individ¬ 

ual, such as R. Nixon, who is both a Quaker and a Republican. In 

classical logic this would be intolerable, but in the neuroidal frame¬ 

work no fundamental difficulty arises. The firing of the nodes cor¬ 

responding to R. Nixon would cause a chain of firings that would 

ultimately cause both the pacifist and the nonpacifist nodes to fire, 

assuming for now that nodes of both kinds, or their equivalents. 
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exist. This information would be output to an imagery peripheral, 

and the contradiction detected there and then. The contradiction 

may be resolved by the invocation of appropriate further reflexes, 

or it may be left unresolved. The detection of contradictions is 

therefore a natural process within neuroidal reasoning. 

Let us now go on and consider the following two assertions: 

(iii) Typically high school dropouts are adults. 

(iv) Typically adults are employed. 

Here the input of a description that satisfies the criterion of high 

school dropout will, in two stages, lead to the firing of the nodes for 

employed. This example illustrates that each stage of compound 

reflex reasoning needs to be done on the totality of the information 

available, rather than merely on the output of the stage before. 

As discussed in the previous section, we envisage that an imagery 

peripheral stores both the original input as well as the deductions 

made at intermediate stages of the reasoning. Hence when the 

employed nodes fire, the reference to high school dropout is still 

available, and any implied contradiction can be detected. 

The two examples just presented are of limited interest, perhaps 

exactly because simple procedural solutions appear to suffice for 

them. They do serve, however, to introduce a more general and 

fundamental class of reasoning processes, that are variously de¬ 

scribed as nonmonotonic or default reasoning. These are character¬ 

ized by situations in which reasoning is performed and conclusions 

arrived at when some relevant information is still unavailable. For 

example, if we know that Nixon is a Quaker, then we may draw 

conclusions about his pacifism. This is the default assumption to 

be made about Quakers in accordance with the first of the two 

rules. The reasoning becomes nonmonotonic when, as a result of 

a new piece of information, such as that Nixon is a Republican, a 

previously reached conclusion is withdrawn or changed. 

We have emphasized that neuroidal systems need to tolerate hav¬ 

ing pieces of knowledge that are inconsistent with each other. An 

important feature of nonmonotonic phenomena, however, is that 

they occur even in contexts in which one can argue that no incon¬ 

sistencies exist at all. The most celebrated example of nonmono¬ 

tonic reasoning is specified by the following pair of statements, 

that are to be considered in sequence: 
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(v) Tweety is a bird. 

(vi) Tweety is a penguin. 

On seeing the first we draw the conclusion that ‘Tweety flies,” if 

we have available the default rule that “birds fly.” Once we see 

the second statement, we not only withdraw the conclusion just 

reached, but arrive at one that contradicts it. Therefore, we have a 

phenomenon in which the addition of a premise that superficially 

does not appear to contradict the previous premises, leads to a 

conclusion that directly contradicts the previous conclusion. This 

phenomenon is inconsistent with classical logic on the surface. 

Numerous approaches have been explored to find a theory that ac¬ 

commodates it (J. McCarthy 1980, M.L. Ginsberg 1989) and many 

obstacles encountered. 

One approach is based on the observation that default reason¬ 

ing usually treats an unconfirmed proposition as a false proposition. 

The proposition that “Tweety is a penguin,” for example, is uncon¬ 

firmed and therefore assumed to be false prior to the availability 

of statement (vi). This approach has been characterized by the 

so-called Closed World Assumption, that can be paraphrased as 

asserting that “what I don’t know to be true I can assume to be 

false.” 

We shall argue here that the neuroidal approach provides a satis¬ 

factory view of nonmonotonic reasoning almost immediately, with¬ 

out needing any such additional assumptions. In particular, the 

combination of a positive representation of items together with a 

pac interpretation of their semantics provides an intuitively plausi¬ 

ble explanation of how reasoning with incomplete information can 

be made intellectually defensible. 

As we suggested earlier, an item such as penguin corresponds 

roughly to the predicate “confirmed to be a penguin by the existing 

circuits.” The nonfiring of these penguin nodes corresponds to 

“not confirmed to be a penguin by the existing circuits.” (There 

may be represented, of course, a separate item “confirmed to be a 

nonpenguin by existing circuits,” but we shall assume for now the 

simplest case in which items do not typically have their negations 

represented explicitly like this.) 

The crucial point is that the main dichotomy in the neuroidal 

circuit is between “confirmed to be a penguin” and “not confirmed 
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to be a penguin,” rather than the dichotomy “is a penguin” ver¬ 

sus “is not a penguin,” that characterizes the world. The main 

difference is that the former accommodates incomplete informa¬ 

tion seamlessly, while the latter does not. The consequence is that 

learning in the circuit takes place in terms of variables that take 

on values “confirmed” or “not confirmed”, and therefore allow for 

incomplete information. The realm of incomplete information is 

the natural domain in which learning takes place. If a recognition 

circuit for flies is learned inductively, the circuit will process the 

values of such variables as “confirmed to be a bird” and “con¬ 

firmed to be a penguin.” If the resulting circuit makes flies fire 

whenever bird fires, and penguin does not, then it must be the 

case that for natural inputs that make bird fire but fail to confirm 

penguinhood, it is appropriate in the pac sense that flies fires also. 

The question of whether such a circuit is appropriate is more than 

a simple statistical question about the world, since it depends both 

on the functions of the existing circuits in the system, as well as 

on the probability distribution of the examples experienced by the 

system. The particular circuit in question may be a valid one for 

an urban inhabitant, who may find that the circuit shown in Figure 

13.1(a) “works.” For an Antarctic explorer this circuit may not 

produce the right result for many natural examples. The circuit 

shown in Figure 13.1(b) with nodes for the item “confirmed not to 

be 3 penguin,” may be more appropriate in that environment. The 

point is that, in either case, learning takes place from examples in 

which the truth of “is a penguin” may or may not be determined. 

The circuit learned will need to be valid according to the pac crite¬ 

rion on new examples in which also this predicate may or may not 

be determined. To illustrate this further we note that if the inputs 

are all visual, it may be that the circuit in Figure 13.1(a) is quite 

adequate for the Antarctic explorer after all. If penguins are al¬ 

ways visually identifiable as penguins, then birds of unidentifiable 

species can be assumed not to be penguins. 

To summarize, instead of needing a hypothesis, such as the 

Closed World Assumption, we now have a derived principle that 

explains why learned information can be applied with some con¬ 

fidence to situations with incomplete information. This may be 

called the Closed Mind Principle. Rather than saying “what I 
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Figure 13.1. Two circuits that embody alternative treatments when information 
about penguinhood is incomplete. 

don’t know I can assume to be false,” it says “what I don’t know 

I am fairly sure I can do without knowing.” 
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Chapter 14 
More Detailed Neural Models 

14.1 Implementing Vicinal Algorithms 

In previous sections we described a number of algorithms for solv¬ 

ing our various idealizations of simple cognitive tasks. The al¬ 

gorithms were all vicinal in the sense that whenever two nodes 

wished to communicate in some manner either they had a com¬ 

mon neighbor and the necessary communication could be realized 

through that node, or there was none, but this mattered little since 

the replication of nodes having the same intended function ensured 

that a sufficient fraction of the parallel attempts at communication 

succeeded. 

Vicinal algorithms have the clear conceptual advantage that they 

are simple to describe and understand. The difficulties that may 

arise in realizing communication through an arbitrary network have 

been factored out. This is achieved, however, not without cost. 

Some apparently severe constraints appear to be needed if the al¬ 

gorithms described in the previous chapters are to be implemented 

exactly as described. First, they appear to require that any node be 

reachable from any other with high probability via just one inter¬ 

mediate node. Second, the algorithms as described all assume that 

the weight of an edge can be as high as the neuroid’s threshold. 

A signal in just one incoming edge is then sufficient to make the 

neuroid fire. 

The purpose of this chapter is to show that all the vicinal al- 
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gorithms described can be implemented, though less directly, on 
much wider classes of graphs and with neuroids having smaller 
weights relative to their threshold. We interpret this as providing 
further support to our central thesis that the simple functions im¬ 
plemented in the previous chapters are within the computational 
capabilities of biological neural systems. We note that the models 
described in §14.2 and §14.3 are somewhat detailed. These are the 
ones that attempt to go the furthest toward modeling the cortex 
itself. The last two models, described in §14.4 and §14.5 are less 
realistic, and we include them here only to make some theoretical 
points about the algorithmic possibilities. We emphasize, however, 
that even in the case of §14.2 and §14.3, while the parameters we 
assume are not inconsistent with current knowledge, there is no 
experimental evidence to date to suggest that the mechanisms or 
representations we describe there are, indeed, used in the brain. 

The implementations in §14.2 and §14.3 may be viewed as re¬ 
lating two hypotheses about the cortex to each other and to the 
implementability of vicinal algorithms. The primary hypothesis is 
the following: At least a certain fraction, say in the range 0.1% to 
1.0%, of those neuron pairs that synapse on each other have the 
further property that it is possible for one of the pair to be caused 
to fire at a significantly different rate from the background as a 
result of the other firing at such a different rate. This hypothesis 
will be shown to be sufficient for supporting vicinal algorithms. 
The implementations described imply a secondary hypothesis that 
provides a detailed theory of how the primary hypothesis might be 
realized. This secondary hypothesis suggests that the neuron pairs 
that have the potential for such an exceptionally large influence, 
are those few that make a significantly above average number of 
synapses on each other. It is quite sufficient for our purposes, of 
course, that the primary hypothesis be true, without the secondary 
one also being true. 

Randomness assumptions similar to those used in §14.2 and 
§14.3 have been used previously to compute the probability of 
synapsing between pairs of neurons in close proximity 
(V. Braitenberg 1978, M. Abeles 1991). Here we shall use them 
to analyze the related phenomenon of multiple synapsing, which 
is at the heart of the relationship we demonstrate between the two 
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hypotheses. 

The vicinal algorithms described in previous chapters are all 

based on two stereotypes of communication, JOIN and LINK, 

which implement storage allocation and associations, respectively. 

We shall show that both of them can be simulated, in a certain 

probabilistic sense, on the various new models we consider in this 

chapter. It will then follow that all our vicinal algorithms can be 

implemented on each of these classes of graphs. 

The operation JOIN(x, y) has the two items x and y as arguments 

and performs the following memory allocation task. For items x 

and y for which storage has been previously allocated to node sets 

X and y, respectively, it allocates a set i of about r nodes and 

changes some weights so that whenever x and y fire in the future, 

so will 5 (but if just one or if neither of the sets x ox y fires, then 

5 will not be made to fire, at least not as a result of these weight 

changes alone). 

The operation LINK( x,z) is also performed on two items, x 

and 2: in this case, that have storage already allocated. It can 

be considered as one establishing an association between the two 

items. It will cause weight changes in such a way that whenever 

X fires in the future so will z (and if X does not fire then i will 

not either, at least not as a result of these weight changes alone). 

We note that these statements about the sets x,y,z firing should 

not be interpreted as implying that at any time either every member 

or no member of these sets fires. If close to all of x fire then x will 

be considered to fire and the item x will be considered to have been 

recognized. On the other hand, if only a small fraction, say less 

than lyr of the nodes fire, for u substantially less than one, then x 

will be considered as not firing and x as not being recognized. Note 

also that in order to simplify the discussion, we shall throughout 

this chapter refer rather loosely to the expected number of nodes 

that have a certain property, as if it were the actual number. We 

shall also make without comment various other approximations 

that hold for the range of parameters of interest but not necessarily 

in general. 

As described, all the circuits that are established are purely ex¬ 

citatory. They can be adapted, however, to have inhibitory effects 

on the target nodes as required if there is a sufficient density of 
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neurons having inhibitory effects that they can be called upon to 

form an additional penultimate link in the chains of neurons. In¬ 

hibitory neurons in the cortex are believed to have only short range 

connections. As long as they can be found near every pyramidal 

neuron, they can be used to invert the effect on that neuron of any 

long range pyramidal axon passing in its vicinity. 

14.2 A Laminar Model 

First we shall discuss a graph model that is based on the avail¬ 

ability both of dense local connections as well as of sparser global 

connections. A special characteristic of local connections in the 

cortex is that any two neurons physically close together, say within 

a fraction of a millimeter, have a significant probability of synaps- 

ing on each other. We shall define a parameter p to be the expected 

number of synapses that a neuron makes on another that is within a 

certain distance of it. A high value of p is clearly favorable for the 

network to have the potential to disseminate information from one 

point in many directions. This favorable density, however, exists 

in the cortex only locally, and is not enough by itself to support 

random access tasks. Long distance connections enjoy what can be 

viewed as the reverse combination of attributes. While they sup¬ 

port random access tasks by connecting distant parts of the cortex 

directly, by themselves they form only a sparse network. We will, 

therefore, need to combine the best of both in order to achieve our 

aims. 

The major goal that we want to achieve with this model, is to 

implement vicinal algorithms with neuroids having smaller weights 

than hitherto assumed. We define the parameter a to be the min¬ 

imal number of weights that can add up to the threshold needed 

for a neuroid to fire. The algorithms described in previous sec¬ 

tions assume a = 1 implicitly, since weight iVji = 1 and threshold 

= 1 are allowed simultaneously. Here we shall show that much 

less stringent requirements are sufficient, such as o = 5, with ap¬ 

parently realistic parameters. The extreme possibility, that a = 1 
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characterizes major computations in the cortex, is not supported 

by current experimental evidence, but has not been completely ex¬ 

cluded either. Some of the vicinal algorithms described in previous 

chapters for o = 1 require only a fraction of one percent of the 

synapses to have such high values. It is not surprising, perhaps, 

that experiments to date have not detected any such synapses even 

if they exist. Synapses corresponding to a = 5 have, however, 

been found in the cortex, and it is, therefore, significant that our 

algorithms can be implemented on a model with a in this range. 

We note also that it is conceivable that the physical reality corre¬ 

sponds to a = 5, say, but the computations performed have the 

character of a smaller a. This would be the case, for example, if 

the background random firings in the cortex maintained neurons 

close to the threshold voltage, so that it is enough for just one or 

two synapses from purposeful neighbors to push any one neuron 

over the edge. 

The simplest rendering of the model that we use here has two 

further attributes that are reminiscent of the cortex. First, it is lam¬ 

inar, in the sense that the neurons are most conveniently regarded 

as being organized in layers. Second, it allows for cortex to be 

partitioned into areas, where each pair of areas may be connected 

in one or both directions. In §14.3 and §14.5 we also consider the 

columnar aspect of the cortex. 

The neuroids of each area A are partitioned into two layers A and 

A*. The former basis layer contains the neuroids that represent the 

items most directly. They have local connections to the secondary 

layer A*. A* has long range connections shared in equal numbers 

among 0 distant areas. These distal axonal branchings synapse 

on the neuroids of the basis layers of these distant target areas. 

We shall assume that there is a parameter x that equals both the 

number of synapses on the local connections, as well as the number 

on the distal connections, and that its value is 20,000 as given in 

§2.3. We shall also use the value that is given in that section as 

the estimate of r], the number of neurons in each cubic millimeter 

of cortex. This value also happens to equal 20,000. The analysis 

treats the local and distal connections somewhat differently, and 

we shall consider these two cases in turn. 

The fact that we wish to establish before analyzing the imple- 
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mentations of JOIN and LINK in detail, is that the primary hypoth¬ 

esis stated in §14.1 follows from the secondary one under some 

reasonable assumptions. We define [3 to be the expected number of 

nodes in that synapse with any one node in A at least a times. 

We view (3 as an amplification factor since for any small random 

number of the nodes in A that fire, about (3 times as many may be 

caused to fire in A*. Showing that an amplification factor of P = 

100 is possible, for example, speaks to the primary hypothesis by 

asserting that a node can by itself cause to fire one hundred of its 

neighbors, which is a fraction of one percent of their total number. 

In the analysis of the local connectivity we shall make the fol¬ 

lowing simplifying assumptions. Suppose that each local axonal 

branching occupies an effective volume of a cubic millimeters. 

One possible estimate is that a = 0.5, corresponding approxi¬ 

mately to a sphere of radius 0.5 mm, which would have volume 

(4/3)7r(0.5)^ 0.52 cubic millimeters. Using the estimate that 

there are 77 == 20,000 neurons in each cubic millimeter of cortex, 

we also suppose that this space of a cubic millimeters is shared 

by the dendritic trees of p = r]a neurons in A*. Finally, we also 

suppose that each such local axonal branching forms x = 20,000 
synapses with neurons in ^4*. If the synaptic connections are ran¬ 

dom, then any fixed neuron in A will form its x local axonal 

synapses randomly with the p = rja neurons in ^4* sharing the 

same volume. Hence the expected number of synapses with any 

one such neuron is p = x/^ = x/{v^) which, for the numerical 

parameters assumed, equals 20,000/(20,000(7) = 1/cr. These lo¬ 

cal connections are illustrated schematically in Figure 14.1 below. 

We now wish to estimate p{k,p), the probability that a fixed 

node in A synapses with a fixed node in A* exactly k times. This 

is given by the Poisson distribution 

k 

p(A;, p) = (14.1) 

where e = 2.71828... is the exponential constant. (In the terminol¬ 

ogy of gambling, this expression approximates the probability of 

winning exactly k times when playing a series of m independent 

games in which the expected total number of wins is p, and m 

is very large. In this interpretation each game corresponds to one 
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Dendritic tree 

Figure 14.1. Schematic diagram of connections in the laminar model, between 

the local axonal branching of a neuroid i in the base layer A and the dendritic 
tree of a neuroid j in the secondary layer The same diagram has an alter¬ 
native interpretation in terms of distal connections. In that case i is interpreted 
as being in the secondary layer of one area, the axonal branching illustrated 

is its distal one, and j is in the base layer A2 of the distant area. 

of the synapses of the A neuron, and a win corresponds to this 

synapse being made on the fixed A* neuron rather than some other 

neuron.) The quantity we really want is f3, which we define as the 

expected number of nodes in A* that synapse with a fixed node 

in A at least a times. To obtain this we shall sum p{k, p) for all 

k > a, and multiply this by which is the number of candidate 

nodes in A*. Hence, putting = x/p we get 

(14.2) 
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Figure 14.2. Each curve illustrates one choice of ct, the ratio of threshold 

to maximal edge weight. The horizontal axis [5 measures the amplification 

factor, which is the expected number of neuroids with which a single neuroid 

synapses at least ct times in the model described. The vertical axis measures 

p, the expected number of synapses between two neuroids. Both axes are on a 

logarithmic scale. 

Figure 14.2 above shows solutions to this equation with x = 

20,000 for a = 3, 4, 5, 6, 10, 15 and 20. It shows, for example, 

that for the estimate a = 0.5 and hence p = l/a = 2, amplification 

by [3 in excess of 100 can be achieved by realistic values of a 

such as 6. With more modest estimates of p one can also achieve 

significant magnification. For example, with a = 4 the value 

p — 0.5 would give /3 > 70, and the value p — 0.25 would give 

p > 10. 

The important point is that even when a is significantly greater 
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than the average number of synapses p, each neuron in A can have 

its influence in A* amplified by a large factor (3. The amplification 

is afforded by the fact that the random connections ensure that the 

influence of each neuron on a small lucky subset of its neighbors is 

much larger than its influence on its typical neighbor. The benefit 

of random connections that is exploited here is that synapsing at 

well above the average rate is ensured for a small but sufficient 

fraction of the neurons in A*. 

In obtaining these figures several numerical estimates of the 

parameters of the cortex were made, as were some further as¬ 

sumptions. The conclusion was that for some parameters p, 'ip, the 

expression 

oo k 

k=a 

gives the number of neurons on which one other neuron synapses 

at least a times. The general form of this expression is plausible 

if one assumes that axonal branchings and dendritic trees that fill 

approximately the same volume, synapse randomly. Our analysis 

is consistent with a reasonably large range of values of p and a 

and it remains to be confirmed that the corresponding parameters of 

cortex are indeed within these ranges. In §14.3 we will extend the 

analysis to an even broader range, by incorporating some further 

plausible assumptions about the cortex. 

We go on now to analyze how this amplification phenomenon 

can be exploited when implementing JOIN. We suppose that two 

items X and y are represented by sets of r nodes each, x and y, 

respectively. We wish to allocate storage to represent z = x Ay. 

We shall assume that x and y are both in area A^ and z is to be 

allocated in an area A2 to which there are connections from Ai. 

This arrangement will also allocate x Ay in each of the other areas 

to which Ai projects. We could equally have x, y in distinct areas, 

both projecting to A2, in which case an allocation will be only in 

areas to which the areas of both x and y project. 

The nodes x and y lie in the base layer A\ of Ay. We define 

to be the set of nodes in layer A\ to which there are at least 

a synapses from x, y, respectively. The algorithm JOIN will then 
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A 
1 

Figure 14.3. Schematic illustration of the implementation of JOIN in the laminar 

model. If x, y represent X, ^ in layer A\ of area A\, then 5 will represent 

Z = X f\y in layer A2 of area A2. 

allocate i to be exactly those nodes in the base layer A2 of the 

second region ^42, that are synapsed at least a times from both of 

X* and We note that by modifying the algorithm suitably we 

could reduce this requirement from a to a/2 and thus allow for 

an even wider range of consistent parameters. 

Assume that the number of synapses on the distal axonal branch¬ 

ing of a neuroid is the same % = 2 x 10"^ as on the local branchings, 

and that each dendritic tree that receives these distal connections 

occupies the same a cubic millimeters of volume, as one that re¬ 

ceives local connections. Then Figure 14.1 captures this case also. 

The analysis used to derive equation (14.2) will, therefore, apply 

in relating the number of synapses of an A\ neuroid on an A2 

neuroid, just as it relates the number of synapses of an A1 neuroid 

on an Aj neuroid. For simplicity we shall assume that A^ and A2 

each contain N nodes. Given any p and a, a value of (5 is implied 

by Figure 14.2. Now if the r nodes of x fire in Ai, then about 

rP nodes will fire in provided r/? is substantially smaller than 

N. Among these only a fraction 0~^ will have axons going to A2, 
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and the remainder go to other regions. Hence the number of nodes 

in A2 that will be caused to fire by x will have expectation about 

if this number is sufficiently smaller than N. 

If we wish that i be an equal citizen with x and y and, therefore, 

have expected size r, then we need that the probability that a 

randomly chosen node in A2 be caused to fire by both x and y 

firing alone, be equal to r/N if the number of nodes in A2 is TV. 

Since the probability that a random one of the TV nodes in A2 is 

made to fire by x is {rf]^)/{N0), and the same expression holds 

for y, it follows that we need that 

Putting n = TV/r, which roughly equals the number of items that 

can be stored in area A2, gives 

(14.4) 

We claim that in the full range of values of k and 0 that we 

envision, the required value of (3 can be achieved for reasonable 

values of the parameters p, a and 'ip on which f3 depends. What 

ranges of values of k and 0 are reasonable? If the total number 

of neurons in cortex is 10^^ and the replication factor r is of the 

order of 10^, then we expect to represent at most 10^ items. Also, 

if there are cp areas of equal size, then 0/^ = 10^. To reconcile this 

with = (3^ we need (p(3‘^ = 10^^^ or /? = 100(^^/(/))^/'^. Now, if 

we consider, for example, the case in which each area is connected 

to the square root of the total number of areas, then 0 — and 

we get P — 100. How large a multiplicative factor can 

become in other cases? It seems that it cannot exceed unity by 

much. For example, if cp — 1000, i.e. we have 10^ areas of 10^ 

neurons each, and if each is connected to ^ = 100 others, then 

this factor becomes 10^/"^ 1.78. At the opposite end of the range 

it is conceivable to have p — 1000 and ^ = 2, in which case 

P = 100/250^/"^ 25 is sufficient. 

If equations (14.2) and (14.3) are satisfied then Algorithm 7.2 

can be supported on this neuroidal scheme. The weights of the 
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neuroids in A\ are never modified, essentially being fixed to a 

fraction 1 /o of the magnitude of the threshold T. It is the neuroids 

in A2 that are modified and execute the algorithm. The effect of 

Al is simply to create much enlarged sets x* and y* to represent 

X and y in order to increase the number of synapses that are made 

in A2. 

In what sense have we implemented an algorithm for unsuper¬ 

vised memorization? Clearly the circuit constructed will be such 

that whenever x and y fire, so will Is there a possibility that 

the weight changes made in z will cause it to fire on future oc¬ 

casions even when not both of x and y are firing? A worst case 

for this is that of having just one of x or ^ firing simultaneously 

with a number of spurious sets Xi, • • •,We will show that, if 

k is small, then it is unlikely that too many members of 5 will be 

caused to fire in this way. If we regard the item z as Boolean, 

then we can consider that its truth is indicated only when a certain 

fraction vr of its nodes fire, for some constant 0 < v < 1. We can 

then deduce that spurious inputs will not make 2: appear to be true 

when it is not, except very rarely. 

Suppose, therefore, that after the circuit for 2: = x A ^ has been 

established by means of Algorithm 7.2, x, xi, • • •, x^ in Ai all fire, 

but y does not. These will cause the r[3 nodes x* in Ajf to fire, as 

well as a further krf3 nodes in A^. Now among these latter kr(3 

nodes, krf5/0 will have axons going to A2, and each of these will 

cause /3 nodes to fire in A2. The probability that these rf3^k/0 

nodes include exactly i that are in 2 is no more than 

after substituting n = N/r and ac = from (14.4)^^. If we 

assume that N > 10^, then rk/< 1 provided rk < 10^/^/r^/^. 

For this r = 50 and /c = 8 is sufficient. Hence the bound in (14.5) 

is then at most I/z!, which in turn is (10!)“^ < 10“^ for i > 10. 

Hence if r = 50, for example, then a random set of k = S items 

xi, • • •,xg firing will cause no more than 10 members of 2 to fire. 
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Figure 14.4. Schematic illustration of an implementation of LINK from x in 

area Ai to z in area A2. Each large ellipse represents one layer of one area. 

except with probability 10~^. We conclude that, under these con¬ 

ditions, the possible unwanted side effects of this implementation 

of JOIN will not be harmful. 

Now we turn to how LINK is to be implemented. We have 

items X and 2: in areas Ai and A2, respectively. We need to set up 

a circuit such that at any later time whenever x fires so will 5. 

Several implementations are possible. We will consider one 

here in which there is a third area A^ such that Ai projects to A3 

and A3 projects to A2. Each area is composed of two layers, the 

base layers Ai, A2 and A3 and the secondary layers A^, A2, AJ. We 

assume that all the parameters are exactly as in the implementation 

of JOIN except now the neurons of A2, A2, as well as A^ all act 

as relay nodes, just as those in A^ did in JOIN. Their weights 

are fixed to a fraction I/a of their firing threshold and are never 

modified. 

In this configuration the r neurons of x in Ai, can cause to 

fire an expected number of about r/3 nodes in Aj, rp^/0 nodes in 

A3, and rP^/0 nodes in A3, provided each of these forms a small 

fraction of the respective areas. Further, each of the latter will 

synapse at least a times with each of P/0 nodes in A2. (Note that 

the less stringent requirement that a synapses altogether be formed 

on sufficiently many nodes in A2 would be enough here.) We need 

that with high probability each of the nodes in i be amongst those 
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that are synapsed at least a times by at least one of the rj3^ jO 

nodes in for then Algorithm 8.1 or 8.2 can be executed for the 

2 nodes. Now the probability that all such opportunities 

miss any one fixed 2 node is 

r 13^/0^ 
Ne^ rj3^ 

< e (14.6) 

If we want this to be for some k > 0, then we need (log^ k)K.O^ 
= which is the same as equation (14.4) with the exception of 

the logg/c factor. If we want 98% of the nodes of 2 to fire then 

k = 50 and log^ k ^ 3.91. We can accommodate equations (14.4) 

and (14.6) in the same system in many ways. In particular, since 

the parameters 0 and P associated with the special area A3 may 

be different from those of other areas, we could distinguish them 

as different parameters having slightly different values and hence 

have the corresponding modifications of (14.4) and (14.6) satisfied 

simultaneously. For example, the 6 in (14.6) could be replaced by 

0i ^ 6 jl to achieve this result for log^ /c ^ 4. 

We note that in the representation described here, in the base 

layer A of an area A we use grandmother cells, while in the sec¬ 

ondary layer A* we have essentially population coding. Further¬ 

more, we could change our viewpoint and regard the A* nodes 

as being the true representatives of the item. The function of the 

grandmother cell coding in A is to help assign storage and to make 

the firing conditions for the representations of the different items 

distinct. The function of population coding in A* is then to al¬ 

low the toleration of higher values of a than would be otherwise 

possible. 

14.3 A Columnar Model 

The analysis given in §14.2 presupposed that the r neuroids repre¬ 

senting an item were uniformly scattered at random in the appro¬ 

priate layer or area. This assumption is clearly attractive from the 
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viewpoint of fault-tolerance since it minimizes the negative effects 

of neuroid damage within any one locality. 

Various arguments suggest that one should also consider repre¬ 

sentations where items are stored with more locality. One source 

of motivation is the observation made by many neuroanatomists 

that the cortex is not laterally uniform, but divided up into vertical 

units, that are sometimes called columns. Estimates of the size of 

these units vary from the order of tens of neurons to tens of thou¬ 

sands. Also there is no concensus on how much more dense the 

connections internal to one such column are as compared with the 

connections between distinct columns. As we shall see, a columnar 

organization with some locality properties has some advantages for 

realizing random access tasks. 

We shall describe a very simple way of modeling locality. Anal¬ 

ysis will show that locality does make the model more robust than 

the simple laminar model, in allowing even higher values of a to 

suffice in supporting vicinal algorithms. For example, a value of 

o = 15 now suffices where a < 5 was needed in the previous 

section. 

We need to define locality as it affects both the representation of 

an item in the base layer Ai as well as in the long range connections 

from AI to the base layer, say A2, of another area. Our model uses 

a parameter ^ that expresses the degree of locality, and takes on 

some positive value, such as <^ = 5. We identify a column here as 

consisting of roughly = r]a neurons in each of the two layers, 

corresponding to the volume occupied by the local or distal axonal 

branchings of a neuron. To capture the columnar model at the 

local level we assume that an item is represented not by r random 

neurons in Ai, but by r/^ groups of ^ neurons each, where each 

such group is within one column but the rgroups are in randomly 

chosen columns of Ai. At the global level we assume that the rjo 

long range axons from any column of go to only (3^ distinct 

columns, shared equally among 0 areas, of which A2 is one. This 

choice is made here mainly for ease of analysis, and for a value 

of to be defined below (14.8). In a more detailed analysis we 

would give the parameter ^ different names and values in the local 

and gobal contexts, but, for simplicity, we do not do that here. 

We shall adapt our analysis of JOIN to this model. First we 
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One of P^/0 columns of 
Aj to which Y projects. 

?/rof X*. 

Figure 14.5. Schematic illustration of a part of a circuit that implements JOIN 

in the columnar model. Each large ellipse represents a layer in one column. 

consider the synapsing of the Ai nodes on the A\ nodes. The 

probability that any set of ^ nodes in a column in Ai synapse with 

a fixed node in the same column in A*^ exactly k times between 

them is 

p(A:,Cp) = e (14.7) 

by analogy with (14.1). This follows since the expected number 

of synapses between the ^ chosen nodes in A{ and the one chosen 

node in A^, is now ^ times greater than in the case expressed by 

(14.1), in which just one node in Ai was considered. Let us define 

to be r~^ times the expected number of the nodes x* in A\ that 

are synapsed at least a times by the representatives of an item x in 

Ai. Since there are p ija = x/P nodes in A\ that are candidate 

targets for each of the r/^ groups of ^ nodes in the expected 

number of nodes in x* is 
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or 

(14.8) 

Thus the number neuroids that can be caused to fire in A\ in this 

columnar model is given by the same expression (14.2) as before, 

except that p is replaced by In other words, when the same 

value of P is to be realized in both models, a higher value of a can 

be tolerated in the columnar model, and this value can be read off 

from Figure 14.2. For example, (5^ — 100 can be achieved with 

o = 15 if ^ 9.1, for which p « 1.8 is sufficient if = 5, for 

example. In contrast, the simple laminar model described in §14.2 

would achieve /? = 100 with a = 15, only with the much less 

realistic value of p ^ 9.1. With the same /? and (f, o = 10 can be 

supported with p < 1. Furthermore, for /? > 70, = 5 and a = 5, 

p — 02 is sufficient. 

Turning to the analysis of the role of the distal connections 

from Al to A2, we observe first that x* is now represented as 

rf3^ neurons in A^, in r/^ columns with in each column. In 

this model the axons from each column go in equal numbers to 

distinct columns in other areas (rather than the pa as in the 

original laminar model) of which P^/0 are columns in A2. Each 

such column will then receive ^ axons from the representatives of 

x* on the average, since there are P^ choices of such columns and 

^P^ choices of such axons. 

Hence on the average r neurons in Ai are connected between 

them to r/^ columns in Aj with ^P^ neurons in each, and between 

them these are connected to {r/p){P^/0) columns in A2, with ^ 

axons from x* arriving at each such column. Hence if we define 

P\ such that rP^Px is the number of nodes in A2 synapsed at least 

a times by axons from x*, then the argument used to derive (14.2) 

gives 
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or 

e -ip 

k\ 
(14.9) 

We conclude that if a neighbors are required to fire a neuron, 

then the r representatives of x can make fire rp>yO neurons in A2, 

exactly as in the analysis of (14.3), except now we define /3^ as we 

defined P in (14.2) but with p replaced by Hence the condition 

(14.4) is still sufficient to support JOIN, except now much lower 

values of p suffice for the same o, or much higher values of a for 

the same p. 

We have, therefore, shown that JOIN can be implemented on 

the columnar model for less stringent values of o; or p than needed 

in the simpler laminar model. The same analysis shows that LINK 

can be supported similarly. Hence it follows that all vicinal algo¬ 

rithms based on these primitives can also be implemented. As men¬ 

tioned before, values of a as high as 15 suffice to have (3^ — 100 

with ^ = 5 while maintaining p < 2. With the same parameters, 

a = 10 can be supported with p<\. 

14.4 Sparser Random Graphs 

In this section we shall show how JOIN and LINK can be imple¬ 

mented on the random graph model defined in §6.3 even when the 

edge probability p is much smaller than the value {pN Iry/yN 

considered there. For example, if p = {pN/rY^'*/N, then the 

implied algorithms are still plausibly simple. They can be sup¬ 

ported, however, on graphs with an expected number of as few as 

168 edges to and from each node, if we use the estimates N = 
lOio ^ p — 4. The assumption of p = {pN/rY^^/N of 

§6.3 would imply a degree of about 2.8 x 10"^. 

First we shall summarize the properties of random graphs that 

we need. Let G = (L, .E) be a directed graph drawn according to 

such a probability distribution. We let N ^ 00 and consider the 

edge probability p to be a function of N such that p{N) 0 as 

N ^ 00. We say that node i is at distance k from node j if there is 
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a path from j to i containing k edges, but no path containing fewer 

than k edges. Then we define T^^^ to be the expected number of 

nodes that are at distance k from at least one member of a randomly 

chosen set r nodes in V. 

Bounds on Tk,r can be proved by adapting some closely related 

results from the theory of random graphs (B. Bollobas 1981). Note 

that the expected out-degree of (i.e. edges directed away from) any 

node is pN. From any one node, naively, one would expect there 

to be about {pN)^ nodes at distance 2, {pNy at distance 3, or, in 

general {pN)^ nodes at distance k as long as (pN)^ is rather less 

than N. It can be shown, that under suitable conditions, this is 

indeed the case, and can be generalized to r nodes rather than one. 

The result that can be proved is that for any constants r and Av, if 

{pNY~^ = o{N) then 

Tfc.. = r(j9Ar)'=(l+o(l)) (14.10) 

as long 2LS I < k < K and pN/ log N oo. 

We shall use this result for the case that r is the replication 

factor, Av is an even constant (e.g. ac = 4), and p = {pN/rY^^/N 

for some constant p. 

First we show how to implement JOIN. For this we use a tech¬ 

nique we call train attenuation. For signaling among neuroids 

we shall use sequences of firings with short intervals between the 

firings (e.g. the intervals have the same order of length as each fir¬ 

ing). In real neurons this corresponds to trains of spikes traveling 

down an axon. In order to realize JOIN we will have each node in 

X and y emit trains of a^ + 1 spikes. We shall assume for simplicity 

that all the nodes in the network can act as relay nodes that behave 

as follows: whenever a train of j spikes arrives at a node, the node 

fires j — 2 times so as to produce trains of length j — 2 along its 

outputs. The reader can verify that such a program can be easily 

written for a neuroid that is in a certain waiting state. The result 

is that only nodes within distance Av/2 of some member of x or ^ 

will be influenced at all. Moreover a node can detect whether it 

is exactly at distance a^/2 from a relevant node by detecting that it 

has received a train of length one. 

Our implementation of JOIN will allocate io z = x /\y those 
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neuroids 5 that are at distance exactly njl from some node in x 

and from some node in y, and are not within a shorter distance of 

any of these nodes. Exactly as in Algorithm 7.2, which is a vicinal 

algorithm for this same problem, we will break symmetry between 

X and y by having them fire at sufficiently separated times that the 

trains coming from x and y cannot be confused. We note that we 

can make sure that the presence of more than one path to a 2 node 

from the x nodes (say) can be accommodated by the algorithm. 

For X and y we define the node sets and to be the 

nodes at distance k/I from some nodes of x and y, respectively. 

Using the pristine conditions assumption and relation (14.10) one 

can deduce that the expected size of is yr{l +o(l)). 

In the implementation of LINK described below we need that y 

be a constant slightly larger than one (e.g. y = 4). Hence in this 

implementation of JOIN we will have each node in n 
first recognize itself as such, by going into a special state. From 

there it will make a random decision that with probability y~^ will 

take it to a state that will make it behave as a member of 2, and 

with probability I — y~^ will make it revert to pristine state. 

Now we turn to the problem of implementing LINK(:r, z). We 

shall use train attenuation here again, but this time to have the 

nodes in recognize themselves. For example, we can have 

the nodes in x emit trains of length — 1, with intermediate nodes 

always retransmitting trains of length shorter by two than the ones 

they detect. Once the nodes in have detected themselves, a 

second stage starts where, as a result of an appropriate schedule of 

firings of 2 and any edges from to 2 will be given 

some high weight, say 10. 

We need to show that the probability that any fixed node in 2 

is not adjacent to any node in is small. Using the pristine 

conditions and some independence assumptions it is easy to show 

that any fixed node in 2 has an edge from an expected number of 

/i + o(l) members of and the probability that it has no such 

edge is e“^(I + o(I)), if /i is a constant. 

Hence, if /i = 4, for example, and the o(I) term is ignored, we 

get that whenever x fires so will an expected fraction of I e ~ 

0.98 of the nodes of 2. 

In order to establish the correctness of LINK we need to verify an 
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additional condition, namely that the changes made in the weights 

by the algorithm will not inadvertently cause z to fire when x is 

not firing but some other items are. Such a calculation can be 

made in the same manner as for the laminar model in S14.2. 

14.5 Another Columnar Model 

Lastly, we shall consider a simple model that is inspired by the 

column structure of the cortex and is very similar to one proposed 

previously by Braitenberg (V. Braitenberg 1978). Its advantage is 

that it allows for implementations that are almost as simple as those 

on the random graph model considered in earlier chapters, but can 

additionally realize algorithms such as Algorithm 7.2 that exploit 

bidirectionality, without any assumptions being necessary about the 

bidirectionality of the long distance connections. Its disadvantages 

are the same as those of the basic random graph model, that the 

degree grows as and that, when interpreted in terms of the 

cortex, the axons from one small contiguous area go uniformly to 

all the other areas. 

The model is defined probabilistically for N node directed graphs 

as follows: For an appropriate number m, take m disjoint complete 

directed subgraphs of N/m nodes each (i.e. in each subgraph each 

pair of nodes has connections in each of the two directions). Then 

each of the N nodes will lie in one of these subgraphs. For each 

such node i, choose one of the complete subgraphs at random (other 

than its own, say) and add directed edges from i to each one of 

the N/ m nodes in the chosen subgraph. To define this graph class 

it remains to specify m. We shall choose m — 

where r is the replication factor and fi is a. small constant. 

The intended correspondence with cortical structure is the fol¬ 

lowing. A complete subgraph corresponds to an idealized column 

in cortex, a column being a set of neurons in close physical prox¬ 

imity that is richly interconnected. The edges from a node to the 

members of a distinct subgraph correspond to the long distance 

axon going to a distant cortical region and synapsing, via axonal 
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branchings, to a large number of neurons in the column to which 

the axon goes. The assumptions that one neuron is connected to 

many, both within its column as well as in a single distant column, 

are reasonable since this rich connectivity is only required in small 

physical regions. The most problematic aspect of the model is that 

it requires that the axons emanating from a single column go to 

a large number, N/m = , of distinct and widely 

distributed columns. Under the numerical assumptions above of 

N = 10^^, T = 50, and /x = 4, this number would be about 5.3 

X 10"^. Our aim in discussing this model is to suggest a further 

possible role for column-like structure in the realization of vicinal 

algorithms, rather than to suggest that the model is realistic. 

In order to implement JOIN consider arbitrary sets x and y of 

r nodes each. Their elements will be assumed distributed with 

at most one member in each subgraph since, if they are scattered 

at random among the N nodes, they will be so distributed with 

overwhelming probability as —> oo. Let kx E x and ky E y 

be arbitrary points in these two sets. We first compute the ex¬ 

pected number of pairs of nodes (x, j) such that i^j are recipro¬ 

cally connected, i is in the same subgraph as kx and j is in the 

same subgraph as ky. This expected number is {Nsince 

there are N/m choices of each i or j, and is the probability 

that any one node is connected to any one subgraph. Substitut¬ 

ing m = gives /x/r as the sought after expected 

number. 

For implementing JOIN(:r, y) we shall represent x Ay by the set 

of nodes x that consists of the union of all pairs (x, j) defined in the 

previous paragraph. Assuming that these sets are disjoint for the 

choices of (x, j), which they will be with high probability, we 

can approximate the expected size of x by 2(/x/r)r^ since there are 

choices of the pair {kx,ky) and for each such pair (/x/r) pairs 

of nodes are contributed on the average. Hence y = 0.5 makes 

this value equal to r and ensures that x is of the correct expected 

size. 

The algorithm to implement JOIN will fire x and y according to 

some schedule that will make the node pairs (x, j) just described 

recognize themselves as being reciprocally connected. The weights 

will then be changed so that x and j act as virtually one node, and 
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the algorithms in Chapter 7 can then be implemented with these 

nodes as target nodes. 

In order to implement LINK(x, z) we will again use node pairs 

{z, j} as defined for JOIN. We will need to set up a circuit such 

that if the r nodes of x fire then so will a large fraction of 5. Let 

kz be any node in i. Then the probability that its subgraph is 

reciprocally connected to some member of x is 1 — (1 —pY, where 

p is the probability that any fixed pair of subgraphs is reciprocally 

connected. To obtain a value for p we first note that the probability 

that at least one node in one fixed subgraph is connected to the 

nodes of a fixed other subgraph is 

/ 1 \ / / 1 \ ^\ 

l-fl--) = 
\ mj \\ mj ) 

for the assumed value of m. Hence p is the square of this quantity. 

Hence if we take r = 50 and p = 2, wt can approximate p by 

(1 - 0.033 and 1 - (1 - pY by 0.81. 

There is, therefore, an algorithm for implementing LINK(x, z) 

that consists of a first stage where the node pairs (z, j) recognize 

themselves and go into special states, followed by a second phase 

where weight changes are made as in the vicinal algorithms of 

Chapter 8. The effect of future firings of x will be to fire an 

expected fraction 0.81 of 5 in the case that /i = 2 and r = 50. A 

network based on a value of p that suffices to implement LINK 

can realize JOIN also. As noted in previous chapters, this can be 

done by invoking JOIN and then randomly freeing an appropriate 

fraction of the nodes allocated by JOIN so as to simulate the lower 

value of p appropriate to this latter function. 
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Chapter 15 
Afterword 

Speculation about the nature of the mind is an enduring human 

preoccupation. For this reason it may be presumptuous for any 

one generation to believe that it can add significantly to all that 

has been said by its predecessors. Nevertheless, intellectual op¬ 

portunities may arise from time to time that offer hope of progress 

even on this question. In this volume we have advocated the view 

that the study of appropriately fiexible but detailed computational 

models comprises one such opportunity. For the first time, we now 

collectively have substantial experience with large scale computa¬ 

tions, and, more significantly, have had a few decades to refiect 

on their possibilities and limitations. Consequently we may have 

an unprecedented opportunity to make progress. The magnitude of 

the opportunity is enhanced, of course, by advances in cognitive 

psychology and neurobiology. It is the results of experiments in 

these fields that will provide the empirical data which any ulti¬ 

mate theory will have to fit. The theories needed, however, are 

fundamentally computational and we will first have to gain some 

understanding of their expected general nature. 

The author’s interest in this field was sparked more than a decade 

ago by simple curiosity. Were plausible theories of cognition based 

on plausible models of neural computation now within our grasp? 

The major stumbling block at first seemed to be the philosophical 

problem raised by inductive learning, an aspect of cognition that 

seems impossible to evade. We believe now that computational 

learning theory gives an adequate view on this. It explains how 

it may be possible for a system to learn to cope in a world that 

203 
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is too complex for it to describe or understand. The concrete task 

that then remained to be carried out was that of assembling and 

explaining a range of specific functionalities that could be argued 

both to be central to cognition and to address a significant fraction 

of its phenomena. While a good theory need not be a theory of ev¬ 

erything, in this field it needs to be a theory of enough things. For 

this reason the range of functionalities that we chose and on which 

this volume is based is quite broad. It embraces memorization and 

learning in its various forms. It allows knowledge to be acquired 

incrementally and to be hierarchical. It includes aspects of knowl¬ 

edge representation that are variously propositional, multi-object, 

and relational. It takes a view on reasoning. A computational 

theory of the mind has to address all these issues, and more. 

What has been described in this book is a computationally spe¬ 

cific theory of such a set of cognitive tasks. It is offered in the 

spirit of being a first theory that follows our methodology. If it 

contributes to progress it will do so by encouraging the develop¬ 

ment of a range of theories of equal or preferably even greater 

specificity, and experimentation to resolve among them. One of 

the levels at which it will be appropriate ultimately to evaluate our 

approach, therefore, will be at this most general methodological 

level. 

How probable is it that beyond the general methodology, some 

of the specifics described here are correct? The cognitive functions 

selected were chosen both for being demonstrably implementable 

on the neuroidal model, as well as for capturing what we believe 

to be central aspects of cognition. Since computational capabilities 

are often robust over large ranges of related models, it is a dis¬ 

tinct possibility that our set of functionalities is close to some of 

those implemented by the brain, even if the details of their imple¬ 

mentation as described here are not. The accuracy with which the 

functions that are explained model real cognition offers a second 

and more demanding level at which a theory of the mind can be 

evaluated. 

Evaluation can and should be done also at the even more detailed 

levels of the knowledge representation and the algorithms, which 

may be regarded as the third and fourth levels in this scheme. 

Since there are usually many algorithmic solutions to any problem 
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that has at least one, it is quite probable that even if the func¬ 
tions and knowledge representation used in a theory are accurate, 
the actual algorithms are not. We suspect that the range of viable 
knowledge representations is much more limited than the range of 
viable algorithms, and, therefore, it will be easier to make progress 
on understanding the former. In this connection, we note that the 
representation we have been using here is specific in nature, and 
fairly easy to characterize. We represent each item of knowledge 
by a set of neurons, there being no requirement that these neurons 
be interconnected in any special way. The overall representation 
is hierarchical and structured. The items represented are some¬ 
times very specific, for example, referring to just one event, and 
sometimes very general, applicable to a wide variety of objects or 
events. Following the presentation of an input neurons represent¬ 
ing several such items may be triggered. The items will be those 
that correspond semantically to various aspects of the input and at 
various levels of generality. Not all combinations of basic concepts 
are assigned neurons, only those that have been experienced and 
noticed by the attentional mechanisms. The relationships among 
the concepts represented can be approximated by Boolean func¬ 
tions, but their boundaries are made less sharp by several factors, 
such as the fact that the connections among the neurons that are 
needed ideally, are present only with a certain probability. 

The parts of our theory that are specific do not attempt to pro¬ 
vide a theory of everything, and even depend on other parts that 
we describe only informally. Explanations to a similar level of 
specificity are needed for all the functions we discussed such as 
attention, resolving among competing concepts, low level vision, 
and imagery peripherals, as well as possibly others that we have 
omitted to consider. 

In all these cases the resulting theories may be judged at the four 
levels described. The lowest, the algorithmic level of explanation, 
is always the most irksome. While it is needed indispensably 
to support the theory, it is the part that is likely to involve the 
most unconstrained guesswork. Each algorithm in this text should 
be viewed primarily, therefore, as a claimed proof that the corre¬ 
sponding task is within the computational capabilities of the brain, 
rather than as a conjecture about the actual mechanisms used by 
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the brain. 

With any theory of the mind there arises the question of whether 

any progress toward improved machine simulations of human ca¬ 

pabilities is implied. The picture of cognition that emerges from 

our algorithms, while overlapping with that of other authors in 

various significant respects, is nevertheless distinctive. It may be 

sketched as follows: Acquired knowledge is represented as a large 

number of circuits or reflexes that may interact with each other. 

Each one may be able to take as input both the output from other 

circuits, as well as information from the sensory or other periph¬ 

erals. These reflexes are acquired either by memorization or by 

inductive learning, using data that is either input from the outside, 

or deduced internally. There is no general mechanism for check¬ 

ing that they are globally consistent with each other. If harmful 

inconsistencies are detected new reflexes are learned, or internally 

derived, to resolve between them. The response to a new input is 

expressible in terms of these previously acquired reflexes. While 

there is always a capability for learning new notions, once some 

have been acquired there may be a tendency for the older ones to 

ramify. From the same starting point such a system may evolve 

along widely different paths as a result of divergent experiences. 

Some preprogrammed expertise may also play a crucial role, in 

the form of algorithms for implementing attention, reflex reason¬ 

ing, conflict resolution, as well as possibly other generic tasks. 

Preprogrammed knowledge more directly related to the particular 

environment of the system, for example, for interpreting the three 

dimensional world, may also be necessary. The algorithms we 

have described in this volume can be used to give substance to a 

small part of this overall picture but clearly much remains to be 

done before a plausible completion of it can be attempted. We sus¬ 

pect, nevertheless, that constructing artificial intelligence systems 

that incorporate the range of functionalities that we have shown to 

be supported by the neuroidal model, would already be of some 

interest. We consider it particularly encouraging that this model 

suggests a plausible integrated view of learning and reasoning. 

It is perhaps appropriate to conclude by recalling that the efforts 

made in recent centuries toward understanding the relationship be¬ 

tween mind and brain were preceded by a lengthly debate about 



207 

whether such a relationship existed at all. In the ancient world men¬ 

tal functions were often associated with the heart rather than the 

brain. Aristotle, whose father had been a physician and who him¬ 

self contributed much to biology, supported this view. His teacher 

Plato had believed for theoretical reasons that the head was the true 

location of the mind. The sphere was the most perfect shape and 

the head resembled a sphere. An Egyptian papyrus, from more than 

a millennium earlier had detailed the effects of injuries to various 

parts of the head on the functions of other, sometimes distant, parts 

of the body. It was not until a few centuries ago that some consen¬ 

sus on the modem view of the functions of the brain had emerged. 

It should be encouraging to present day scientists that in the midst 

of this confusion, and at an early date, some understanding of this 

question had been reached and expressed with eloquence. Approx¬ 

imately contemporaneously with Plato, Hippocrates — or perhaps 

one of his followers — wrote^^: “. . . from the brain, and from 

the brain only, arise our pleasures, joys, laughter and jests, as well 

as our sorrows, pains, griefs and tears. Through it, in particular, 

we think, see, hear, and distinguish the ugly from the beautiful, 

the bad from the good, the pleasant from the unpleasant, in some 

cases using custom as a test, in others perceiving them from their 

utility ... In these ways I hold that the brain is the most power¬ 

ful organ of the human body, . . . the brain is the interpreter of 

consciousness. 
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Notes 

^See (G. Boole 1854, D. Man* 1970, A. Newell 1990, J.L. MeClel- 

land and D.E. Rumelhart 1986). 

^See (G.M. Shepherd 1990, E.R. Kandel, J.H. Schwartz and T.M. 

Jessell 1991, J.G. Nicholls, A.R. Martin and B.G. Wallace 1992.) 

^See (J.G. Eccles 1989). 

^See (A.M. Turing 1936, J.E. Hopcroft and J.D. Ullman 1979). 

^See (A. Karatsuba and Y. Ofman 1962, A.V. Aho, J.E. Hopcroft and 

J.D. Ullman 1974). 

^See (S.A. Cook 1971, R.M. Karp 1972, J.E. Hopcroft and J.D. Ull¬ 

man 1974). 

^For more on each of these three areas see (J.E. Hopcroft and J.D. 

Ullman 1979, M. Li and R Vitanyi 1993, M. Kearns and U. Vazirani 

1994) respectively. 

^ These results are proved in the framework of pac learning in com¬ 

putational learning theory. They suggest that some surprisingly simple 

computational mechanisms when observed only through input-output be¬ 

havior cannot be distinguished from sources of random behavior without 

an exponential amount of effort. See (M.J. Kearns and L.G. Valiant 

1989, M. Kharitonov 1993). 

^This is a remark made by J. McCarthy in a lecture in 1990. 

^^This terminology was used in (L.G. Valiant 1984). 

Extensive discussions can be found in (E. Rosch 1977, E.E. Smith 

and D.C. Medin 1981). 

^^There are numerous sources of reviews of broad areas of cogni¬ 

tive psychology (Eysenck 1984, F. Klix and H. Hagendorf 1986, P.N. 

Johnson-Laird 1988, M.I. Posner 1989). 

^^This example is due to R.J. Hermstein. 

^^P.N. Johnson-Laird pointed out this example to us. 

There is evidence that the notion of inside versus outside with refer¬ 

ence to the outline of a shape, is difficult to infer directly by pigeons, but 
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becomes tractable after some preliminary training in the course of which 
these regions are differentiated by color (RJ. Hermstein et al 1989). 

^^The possible benefits of allowing randomizing steps as a generic 
resource in algorithms was first emphasized in (M.O. Rabin 1976). In 
this volume we use randomization for only this one limited purpose, but 
more general applications in neuroidal algorithms can be easily imagined. 

^^In order to specify an arbitrary function of a set of arguments each 
taking one of a discrete set of values, it is enough to list all combinations 
of values that the arguments can take, and give for each one the corre¬ 
sponding value of the function. In the case of X{si,Wi,Wji^ fj), fj can 
have two values, Si some constant number, while Wi and Wji can take at 
most N to some fixed constant power. Hence the product of these four 
bounds is bounded by a constant power of as grows. 

^^The yellow Volkswagen example is from (C.S. Harris 1980). 
^^In all asymptotics where we use the “O” notation that was discussed 

in §3.1, we shall assume that all quantities are constant except for N, 

which asymptotes to infinity, and any variables that are defined in terms 
of A^. In this case, since p = and r is a constant independent 
of TV, p asymptotes to 0. 

The instance of the Binomial Theorem needed is that for any integer 
r > 1 and any number x, (1 + xY = 1 + rx + (r(r — l)/2)x^ + • • + 
(^)x* + •' • + x^. Putting X — —p gives (1 — pY = 1 — rp -\- O(p^). 

For an introduction to probability theory see: W. Feller, An Introduc¬ 

tion to Probability Theory and its Applications, vol 1, Wiley. 

^^For X > 1, (1 — ^Y — e“^(l + 0(^))- To derive the asymp¬ 

totic value of (1 — fi/N -h where y = 0(TV^^/^) we let 
1/x = {y — y)lN so that the expression becomes (1 — l)2^(^-2r)/x _ 

0(iV->/2)), 

2'See J.L. Carter and M.N. Wegman. Universal classes of hash func- 
tions. J. Comput. Syst. Sci. J8 (1979) 143-154. 

^^See for example, (D. Angluin 1992, M. Anthony, et. al 1992, M. 
Kearns and U. Vazirani 1994, L.G. Valiant 1984). 

23See (L.G. Valiant 1985). 
^^See references in note (22) above. 

^^See (L.G. Valiant 1985, M. Kearns and U. Vazirani 1994). One way 
of achieving an adaptation of this nature is to replace the weight update 
‘‘if //c = 0 then Wkt := 0” by “if fk=0 then Wki max{0, Wkz - v} 

else Wki = mm{l, Wki + u}”, where 0 < u < x < 1 are suitable real 
numbers. The intention is that if Xk is true in more than a fraction 
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v/{u^-v) of the positive examples then it should be taken as belonging 

to the true rule. 

^^We shall describe a variant of the perceptron algorithm for learning 

a threshold function = ux> 6 that maintains a hypothesis with 

a fixed threshold that is nonzero, and has fixed-signs. We assume that 

(i) the expression for the threshold is normalized so that = 1, (ii) 

for some m, for every example e = (ei, • • • ^Cn) ^ {0,1}^ presented 

\ e^= < m, and (iii) for some ^ > 0 for every example e either 

ue>0 + d ox ue <0 — 6. We also assume that a function sgn: 

{l,- *,n} { + ?“} is given, that assigns to each j a sign that is 

positive if Uj > 0, negative if Uj < 0, and either one if uj = 0. 

The algorithm will maintain a hypothesis of the form VjXj > Om/6 

where Vj > 0 if sgn(j) = + and Vj < 0 if sgn(j) = —. Initially vj = 0 
for every j. Following each example e on which the true function and 

the hypothesis disagree, the Vj will be updated as follows: For j with 

sgn(j) = +, whenever u e > 0 and v e < Om/6 then Vj Vj ej, 

and whenever u e < 0 and v e > Om/6 then Vj := max{^j — ej,0}. 

Conversely for j with sgn(ji) = —, whenever u e> 0 and v e < Om/6 

then Vj := min{vj + Cj,0}, and whenever ue<0 and ve> Om/6 then 

We shall show that for any sequence of examples, the number on which 

a misclassification is made and hence an update is required is at most 

m/6'^. To prove this we shall show that the quantity H =\ v — [m/6)u p 

which initially equals w?- /6'^ and can never be negative, decreases by at 

least m as a result of each misclassification. 

Let 2/ = v-\-x ho the new hypothesis vector after an update to the old 

vector V. Then x will have all nonnegative or all nonpositive components, 

depending on which of the two updates is being performed. But ej 

and I Xj I will differ only for those j for which Vj — 0, and hence 

vx 1 = 1 ve I. (Here we are using the fact that Vj has an integral initial 

value and is updated by +1 or — 1, so that it must go through 0 when it 

changes sign). If we define c to be the increase that H undergoes in an 

update, then 

c = {v — {m/6)ux) — {v 

< 2v X — 2{m/6)u x-h m. 

{m/6)u)^ 

Case(i): If v e < Om/6 and u e > 0 < 6 then x > 0. Hence 

V X = V e < Om/6. Also Xj differs from only for j such that uj < 0. 

Let u* be the sum of all such Uj so that ux = (ue — u*) and u* < 0. 
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Then 

c < 2v e —{2m/6)(ue —u*) + m 

< 20m/6 — {2m/6){08 — u*)m 

< —m. 

Case (ii): If V e > Om/S and u e < 0 — 6 then x < 0. Hence 

V X = —V e < —Om/6. Also Xj differs from —Cj only for j such that 

Uj > 0. Let u* be the sum of all such uj so that ux = — (u e — u*) and 

u* > 0. Then 

c < —2ve — {2m/6){—{ue — u'))-\-m 

< —29m/8 + {2m/8){0 — 8 — u*) + m 

< —m. 

^^Littlestone’s upper bound on the number of mistakes for a = 1 +<5/2 

is Sn/{8^0) + (5/(5 + (14/^^)ln6>) The bound grows inversely 

as 8^ and becomes very large only if 8 becomes vanishingly small (i.e. 

if the threshold separates the positive and negative examples by very 

little). If the function being learned is a disjunction then <5=1. 

^^See (R. Paturi, S. Rajasekaran and J.H. Reif 1989). 

^^Variable binding in recognition, when formulated with no restric¬ 

tions, is NP-complete and therefore according to general current con¬ 

jecture, requires exponential time, even if just one binary relation r is 

allowed. To see this consider an undirected graph on n nodes, with the 

nodes designated as objects ai, • • •, a^, and the relation r(a^, aj) defined 

to be true if and only if there is an edge from node ai to node aj in the 

graph. Then the truth of the expression 

< 12 < ' < 1 < j ) 

is equivalent to testing whether the graph has a k-clique, which is known 

to be NP-complete. A /c-clique is a set of k nodes each pair of which is 

connected by an edge. 

^^See R. Khardon and D. Roth, Learning to reason, manuscript. Har¬ 

vard University, 1994. 

^^L. Shastri’s use of the expression reflexive reasoning (L. Shastri 

and V. Ajjanagadde 1993) also refers to reasoning that is fast. Our use 
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of the word reflex differs in that we emphasize both that reflexes are 

typically simple modules, and also that mechanisms need to be exhibited 

for learning them. 

are using (“) = 

^^Hippocrates. The Loeb Classic Library, Vol 2: The Sacred Disease, 

pp 175-179, Harvard University Press, 1959. 
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Exercises 

The exercises below are intended to amplify some of the issues 

mentioned in the text but not explored there in detail. The first 

digit in the numbering references the chapter to which the exercise 

relates most directly. 

5.1 Define a neuroid and some initial conditions for it at time 

t = 0, such that \i t = t' is the first time some of its inputs fire, 

then it will fire for the first time at time t' + 2. 

5.2 Define a neuroid and some initial conditions for it at time 

t = 0, such that if t = ti,^2, • * * the times that some of its 

inputs fire, then ^o + 2,ti+2,^2 + 2, - - are the times when it will 

fire. 

5.3 Define a neuroid and some initial conditions for it at time 

t = 0, such that it will fire at time ^ -f 2 for each t such that some 

input fires at time t — 2 but none fires at time t — 1. 

5.4 Given a neuroidal net where the states may have various 

latencies, how could the neuroids be reprogrammed so that they 

all have latency one? By reprogramming we mean the program¬ 

ming of another neuroidal net that computes the same function, 

but possibly with a different coding of the inputs and the outputs. 

5.5 Suppose that we have a neuroidal net NN and wish to 

construct another one NN* that simulates it at half speed, and 

represents each single firing as a succession of two firings. First 

construct a neuroid that behaves as follows: if it receives inputs at 

successive times t and t -h 1, it will fire at times t + 2 and t + 3, 

and otherwise it does not fire. How would you perform the general 

conversion of NN to NN*. 

5.6 Given a neuroidal net in the standard model where A may 

depend on wi, how could it be reprogrammed to remove this de- 
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pendency? 

5.7 In the standard model wji^Qi and Ti can all be updated at 

instants when i is not firing. How could a neuroidal net in this 

model be reprogrammed so that wji and Ti can be updated only 

when i is firing? 

5.8 Suppose that we allow IV to be any finite set, and A to be any 

function of its arguments. Show that any neuroidal net expressed 

in this model can be reprogrammed so that A does not depend on 

the mode Si. 

7.1 Suppose that the nodes of any one item x can be caused 

to fire together, with no other nodes firing. Describe an algorithm 

that reduces to zero the weights of any edges that go from an x 

node to any node to which another edge goes from x. In what way 

does this make the allocation of further items easier? 

7.2 Write out explicitly the A and S transitions for (i) Algorithm 

7.1 and (ii) Algorithm 12. 

7.3 Adapt Algorithm 7.1 so that it works for neuroids in which 

the allowed values of the threshold cannot be changed. 

7.4 Adapt Algorithm 7.2 so that it works for neuroids in which 

the allowed values of the threshold is restricted to the interval [1,2] 

of real numbers. 

8.1 Suppose that we allocate x as a result of a series of hierarchi¬ 

cal allocations by unsupervised memorization. In other words x is 

at the apex of some such hierarchy. Suppose that we now wish to 

learn at x a conjunction by supervised memorization. What prob¬ 

lems arise if we use the algorithms of Chapters 7 and 8 directly? 

8.2 Suppose that x is not allocated hierarchically, but controlled 

directly by the peripherals. Suppose, however, that at x we wish 

to memorize in supervised mode a conjunction of items that were 

previously learned, that may contain disjunctions. What problems 

arise if we use the algorithms of Chapters 7 and 8 directly? 

8.3 Construct a scheme that allows for the memorization of the 

name for an item x in unsupervised mode, and subsequently the 

memorization of a conjunction for it in supervised mode, such that 

at subsequent times either the name or the conjunction will fire 

appropriate sets of nodes, but no partial mixture (mixed media) of 

the two kinds of inputs will fire any of them. 

8.4 Adapt Algorithm 8.1 so that it achieves a nongraded memo- 
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rization of a supervised 2-conjunction z ^ x\ /\ X2. In particular, 

the final state of each 2 node needs to indicate whether X\I\X2 has 

been successfully memorized at that node. 

8.5 Mnemonists use a variety of tricks to enable them to mem¬ 

orize apparently arbitrary sequences of almost arbitrary length for 

long periods. One such trick for memorizing a list of famous peo¬ 

ple is to imagine each one standing in front of a different house 

in one’s street, the person in the list in front of the house. 

Discuss how this method would be implemented on the neuroidal 

model, and suggest some alternative methods. 

9.1 Pavlovian conditioning is a phenomenon in which an ani¬ 

mal can be conditioned to produce a response R to an apparently 

unrelated stimulus A. First a stimulus S and a response R are 

chosen such that S naturally elicits R (c.g. S can be a puff of air 

in the eye, and R a blink.) The unrelated stimulus A, the sight of 

a green circle, say, is presented repeatedly to the animal in con¬ 

junction with stimulus S', eliciting R each time as expected. The 

basic phenomenon of conditioning is that the presentation of A by 

itself will eventually elicit R even in the absence of S. A second 

phenomenon, called extinction, occurs if subsequent to this basic 

training process A is presented a large number of times in the ab¬ 

sence of any stimulus that would evoke R. It is found that A will 

then cease to elicit R by itself. A third phenomenon, called inhi¬ 

bition, also starts with the basic training process, but subsequently 

randomly mixes presentations of A and S with presentations of A 

and B where ^ is a further stimulus that does not elicit R by itself. 

It is found that after sufficient training A will continue to elicit R, 

but A and B together will not. Give a neuroidal explanation that 

accounts for all three of these phenomena. (See (J.E. Mazur 1990) 

for further phenomena. Note also that inhibitory effects are be¬ 

lieved to be implemented as pathways separate from the excitatory 

ones, and this may be a reflection of the fact that individual neu¬ 

rons are either excitatory or inhibitory.) 

9.2 Consider the elimination algorithm described in Section 9.4. 

Explain how it can be modified so that predicates eliminated by 

negative examples are never reintroduced as candidate predicates 

by a positive example. 

9.3 We shall say that an inductive algorithm is teachable by s ex- 
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amples, if there exists a sequence of ^ examples (carefully chosen 

by a teacher!) that drive the algorithm to the correct hypothesis. 

For each of the three algorithms (i) elimination for conjunctions, 

(ii) elimination for disjunctions, and (iii) winnow2, discuss how 

many examples are required for training them. 

10.1 Consider a neuroidal net that at different nodes can support 

Algorithm 7.2 for unsupervised memorization. Algorithm 8.1 for 

supervised memorization, winnow2 of Chapter 9, as well as the cor¬ 

relation detection mechanism of Chapter 10. Describe some set of 

initial conditions that are sufficient to support these four functions 

together. (No detailed quantitative analysis of the numbers of the 

various kinds of nodes in necessary.) Describe the condition of 

the circuit after some learning in each of the four modes has been 

accomplished. 

11.1 Consider a neuroid i that has two nonzero weights Wj^i and 

Wk,i, both equal to one. Describe an algorithm for it that will make 

it perform timed conjunctions in the following sense: It will fire 

at time t 2 if and only if exactly one of j or k fires at time t, 

and the other one fires at time t -h 1. 

11.2 Describe a neuroid that has many inputs ii, • • and 

can be programmed by means of a suitable input schedule, to be¬ 

come equivalent to the timed conjunction neuroid described in the 

previous exercise, for any pair of its inputs. 
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Index of Notation 

A 

A 

B 

C 

D 

E 

E(x) 

Exp( ) 

F 

H 

1C 

IS 

IJ 
K 
L 

M 

M 

Me 

N 

p 

Q 
R 
S 

c 
h 

u 

Available state. 

A cortical area. 

Busy state. 

Conjunctive state. 

Disjunctive state. 

Set of edges of a graph. 

Set of directed neighbors of node set x in 

directed graph with edge set E. 

Expected value of a random variable. 

Firing state. 

A logical expression. 

Initial conditions (§5.2). 

Input sequence (§5.2). 

Sets of neuroids prompted by peripherals. 

A set. 

Local state. 

Memorization state. 

Number of items stored in the NTR. 

Maximum number of items in the NTR that can 

be charged simultaneously. 

Number of neuroids in the NTR or in one area 

(§5.2 and §14.2). 

Probabilistic or correlational state. 

Set of states. 

Relay state. 

Supervised state. 

Value of threshold for neuroid i. 

Vector of numerical values held by neuroid i. 

Unsupervised state. 

Set of nodes of a graph. 
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Set of weights allowed on the edges. 

Set of modes. 

Index of Notation 

W 
X 

a, Z?, c 

u 

e 

et 

e 
ij, k^l^m^n 

p 

Qi 

r 

Si 

t 

M, V 

Objects in relational expression. 

Firing status of neuroid i. 
2.71828. 

A Boolean variable. 

Vector (ei, • •, Cu) of Boolean variables. 

Nonnegative integer variables, sometimes used 

to identify individual neuroids from {1,2, -',A^}. 

Latency of a state. 

The value of a probability. 

The state of neuroid i. 
Replication factor in a neuroidal system (§6.1). 

The mode of neuroid i. In general Si = (qi^Ti). 
Integer representing time. 

Real numbers. 

Weight on edge from neuroid i to neuroid j. 
Sum of weights of edges from currently firing 

neuroids to neuroid i. 
Items, Boolean variables, predicates, {0,1} real 

variables. 

Neuroids representing items x,y,z, respectively. 

r Number of nodes within a certain distance of 

others (§14.4). 

a Minimum number of synapses needed to fire a 

neuron (§2.3, §14.2). 

P Number of neighbors a neuroid can cause to fire 

by itself (§14.2). 

7 Number of elements in vector T. 
6 Update function for mode (§5.2). 

6 Parameter in winnow2. 

7] Number of neurons in each cubic millimeter of 

cortex. 

0 Parameter in linear inequality (§9.5). 

0 Number of areas to which axons from one area 

project (§14.2). 

hi Ratio N/r (§14.2). 

hi Parameter of graph related to diameter (§14.4). 

A Weight update function (§5.2). 



Constant multiplier in graph density (§6.4, §14.2). 

Proportion of representatives of an item that 

need to fire (§14.3). 

Degree of locality (§14.4). 

3.14159... 

Measure of connectivity of neurons in close 

proximity (§14.2). 

Volume in cubic millimeters occupied by an 

axonal branching. 

Units of time at various scales (§11.3). 

Number of cortical areas (§14.2). 

Number of synapses on an axonal branching 

(local or distal) (§12.2). 

Number of dendritic trees occupying approxi¬ 

mately some volume as one axonal branching 

(§14.2). 

Number of elements in set K. 
Directed edge from node i to node j. 
Then one time unit later .... 

Logarithm to the base 2. 

Boolean conjunction (x A is sometimes 

abbreviated to xy). 
Boolean disjunction (x V ^ is sometimes abbrevi¬ 

ated to X + y)- 
Boolean negation. 

Logical equivalence of expressions. 

Denotes any function h that grows at most as 

fast as some constant multiple of the function g, 

where both h and g are functions of TV. Thus for 

some constant /c > 0, A < /c^ for all TV > 0. 

Denotes any function h that grows more slowly 

than g, where both h and g are functions of TV. 

Thus for any constant £ > 0 there is an TVq such that 

h < eg for all TV > TVq. 

Infinity. 

Set. 

Set membership. 
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Index 

All the terms listed here are used in the text in some technical sense. 

Some are given mathematical definitions or are biological terms. The 

remainder are specified less precisely, but their inclusion here is intended 

to emphasize that some specific technical meaning is implied. 

action potential 17 

adjacent 51 

algorithm, neuroidal 61 

allocation of storage 69, 79, 187 

areas in cortex 12, 68, 183, 189 

assembly 22 

association 73, 181, 191 

attention 44, 121, 147 

attentional peripheral 121, 147 

available state 81 

axon 11 

axonal branching 17 

bidirected edge 67 

Boolean functions 35 

charged 147 

cognitive substrate 5, 33, 161, 206 

colunms 22, 192, 199, 

compatible implementations 152 

complete graph 199 

compound reflex 160, 169 

computational complexity 29 

conjunction 37 

context 164 

continuous learning 166 

correlational learning 40, 121 

cortex 11 

cumulative learning 79, 145 

degree 70 

dendritic tree 17 

descriptional complexity 30 

directed graph 51 

disjunction 110 

disjunctive normal form (DNF) 37, 

103 

distance in graph 196 

distribution free learning 101 

elimination algorithm 105 

excitatory 17 

expectation 71 

firing 18, 53 

fixed-sign 55, 117 

frontier 67, 69 

frontier properties 67, 69 

graded representation 41, 65, 90 

grandmother cell 64 

graph 51 

gray matter 11 

hashing 67, 75 

hierarchy 48, 64, 72, 80, 97, 148 

high level algorithms 61 

illusory conjunctions 45 

imagery peripheral 45, 159, 160, 

169 

implemented relation 131 



236 Index 

incomparable expressions 137 

inductive learning 38, 39 

inhibitory 17, 38, 55, 182 

initial conditions (IC) 50, 57 

input sequence (IS) 50, 57 

interaction 62 

item 63 

JOIN 69, 147, 181 

knowledge representation 63, 103 

labeling in L-expressions 130 

labeling in supervised learning 39 

latency 56 

layers in cortex 22, 183 

learning 31, 38 

learning by example 99 

L-expressions 130 

linear threshold function 113 

LINK 73, 147, I8I 

local learning algorithm 115 

macrounits 60 

memorization 38 

microunits 60 

mistake-bounded learning 119 

mixed mode representations 44, 90 

mode 50, 52 

model of computation 2, 27 

multigraph 57 

multipartite graph 67 

multiple object scene 44, 127 

multiple representations 66 

naming 72 

neighbor 51 

negative weights 55 

neocortex 11 

neuroid 51 

neuroidal algorithm 61 

neuroidal net 49 

neuroidal system 49 

neuroidal tabula rasa (NTR) 44, 49, 

60 

object 127, 130 

outdegree 197 

pac learning 101, 106, 119 

perceptron 114 

peripherals 4, 60, 159, 160 

Poisson distribution 184 

population coding 64, 192 

positive representation 64 

postsynaptic 17 

precanned response 161 

predicate 36 

presynaptic 17 

priming 47, 154 

pristine conditions assumptions 70 

prompt 81 

propositional 127 

pyramidal cell 11 

query 164 

quiescent state 53 

random access task 3 

random graph 67, 196 

randomized transition 58, 73, 198 

reflex 6, 158, 160, 162 

refractory period 20 

relation 129 

relation peripherals 131 

relay nodes 74, 90 

replication factor 65 

resilience to errors 109, 120 

resolving among items 150, 162, 

170, 206 

reverse connections 14, 146, 147, 

151 

robustness of neuroidal model 28, 

56 

scene 36 

self-checking learning algorithm 118 

simple reflex 160, 161 

spike 17 

stability of allocation mechanism 71 



state 20, 53 

step of neuroidal algorithm 61 

supervised conjunctive state (SC) 

107 

supervised learning 39 

synapse 17 

threshold 53 

threshold transition 57 

time schedule 53, 84, 128 

timed conjunction 128, 132, 133 

timing 60, 128 

train attenuation 197 

unit of time 60-62 

unsupervised learning 39 

unsupervised memory state (UM) 

81 

update function 50, 53 

variable binding in recognition 130 

variable binding in representation 

130 

variance 71 

vector of thresholds 52 

vicinal algorithm 66, 179 

weight 19, 50, 52 

white matter 11 

winnow algorithm 117 
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