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Abstract

This article presents a survey of published and unpublished material of the intersection of algorith-
mic information theory with various areas of physics including quantum mechanics, thermodynam-
ics, Newtonian physics, black holes, and constructor theory. The relationship between algorithmic
information and quantum measurements is explored. There are no benefits to using quantum me-
chanics to compress classical information. One of the surprising results is that an overwhelming
majority of non-pointer quantum (pure and mixed) states, when undertaking decoherence, will
result in a classical probability with no algorithmic information. Thus most non-pointer quantum
states decohere into white noise. Algorithmic information theory presents new complications for
the many worlds theory, as it conflicts with the Independence Postulate. As for thermodynamics,
new definitions of algorithmic coarse and fine grained entropy are introduced. The algorithmic
fine grained entropy function oscillates during the course of dynamics. Small fluctuations are com-
mon and larger fluctuations are more rare. Coarse grained entropy is shown to be an excellent
approximation to fine grained entropy. Marginal algorithmic thermodynamic entropies cannot be
synchronized during the course of joint or independent dynamics. For Newtonian physics, a typical-
ity measure is introduced that scores the level of algorithmic typicality of a position in Newtonian
space. During the course of an orbit around a mass point, a point will oscillate in typicality.
Furthermore two orbits that are not exotic cannot have synchronized typicality measures. The
Kolmogorov complexity of Black holes is detailed and its relation to the Complexity/Volume Cor-
respondence is described. The Independence Postulate is shown to be in conflict with the Many
Worlds Theory and Constructor Theory.
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Chapter 1

Some Surprises About Algorithmic
Physics

This manuscript deals with the application of algorithmic information theory to physics, namely
quantum information theory, thermodynamics, newtonian gravity, and black holes. The reader is
assumed to be familiar with these three areas, and the reader is refered to the books [LO97, Wil13,
She15]. The main references to this manuscript are [Eps19c, G0́1, Gac94, HR09, SBC01, Vit01,
NS19, Vai98, Eve57, Eps20, Vit00, BvL01, Mue07, Mul08, Mul09] and unpublished material from
the author. In particular, the references of special import are [G0́1, Gac94] The reference [G0́1]
introduces the central quantum matrix µ, which is used the quantum equivalent to the algorithmic
semi-measurem and is used define quantum complexity, quantum mutual information, and to prove
properties of quantum measurements. The reference [Gac94] introduces algorithmic (coarse and
fine grained) thermodynamic entropy with the key insight that it is the negative logarithm of a
universal lower computable test over the phase space. We now present some interesting facts about
algorithmic physics that are detailed in this manuscript.

1.1 Müller’s Theorem

A central topic of investigation in computer science is whether leveraging different physical models
can change computability and complexity properties of constructs. In a remarkable result, Shor’s
factoring algorithm uses quantum mechanics to perform factoring in polynomial time. One ques-
tion is whether quantum mechanics provides benefits to compressing classical information. In this
manuscript, a negative answer is detailed and new shortened proofs are given. The plain Kol-
mogorov complexity of a string x ∈ {0, 1}n is C(x), the size of the smallest program to a (plain)
classical universal Turing machine that can produce x. The quantum Kolmogorov complexity of
an n qubit state |ψ⟩, which we call BvL complexity (named after its originators), is Hbvl(|ψ⟩),
the size of the smallest mixed quantum state input to a universal quantum Turing machine that
produces |ψ⟩ up to arbitrary fidelity. Due to [Mue07, Mul09],

C(x)=+Hbvl(|x⟩ ⟨x|).

Thus there are no benefits to using quantum mechanics to compress classical information. The
quantitative amount of information in bits is invariant to the physical model used.

7



Figure 1.1: Over the uniform distribution of n qubit pure states |ψ⟩, the self information
function I(|ψ⟩ : |ψ⟩) is almost always near 0, with sporadic spikes (such as at the basis
state |x⟩ for random string x.)

1.2 Quantum States Have No Self-Information

All strings of high Kolmogorov complexity have high self information, with I(x : x)=+K(x).
However the situation is much different in the quantum world, with respect to the definition of
mutual information of quantum mixed states σ and ρ introduced in Chapter 8: I(σ : ρ). Almost
all pure states |ψ⟩ have low I(|ψ⟩ : |ψ⟩), as shown in Figure 1.1. Indeed, let Λ be the uniform
distribution over n qubit pure states:

∫
2I(|ψ⟩:|ψ⟩)dΛ = O(1).

This upper bound has several consequences, one being that given a (POVM) measurement,
its application to overwhelming majority of quantum states produces white noise, as shown in
Chapter 9. In addition, an overwhelming majority of non-pointer quantum states decohere into
random noise. These results are a consequence of the vastness of Hilbert spaces opposed to the
limited discretionary power of measurements. Conservation inequalities prevent any type of post-
processing of the measured information. As discussed in Chapter 11, the only means to infuse
quantum self information is with a projection operation caused by a quantum measurement.

1.3 Algorithmic Thermodynamic Entropy and Fluctuations

Thermodynamic entropy is subject to fluctuations. It will spend most of its time at its maximum
value, will exhibit frequent small flucuations, and rarer large fluctuations. In this manuscript, we
show that algorithmic fine grained entropy exihibits such oscillations, and even go one step further
in proving the existence of synchronized oscillations for discrete dynamics.
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The phase space Ω describes all possible states of the dynamic system, such as all the particles
momentums and positions. The phase space is paired with (not necessarily probability) computable
measure µ that represents the volume of the space. Like classical thermodynamic entropy, algo-
rithmic fine grained entropy is defined with respect to a particular measure µ and phase space,
denoted Hµ(x) over x ∈ Ω.

Due to the Liouville theorem, the dynamics of the system are volume invariant In this manuscript,
it is proved that during the course of such dynamics, algorithmic fine grain thermodynamic have
oscillations. Small dips in Hν are frequent, and larger dips are more rare. We get the following
inequalities, where K is the prefix-free Kolmogorov complexity. This parallels the discrete ergodic
transformation case, detailed in Chapter 16.

Let L be the Lebesgue measure over R, and (X , µ) be a computable measure space and
α ∈ X with finite mutual information with the halting sequence. For transformation
group Gt acting on X , there is a constant c with

2−n−K(n)−c < L{t ∈ [0, 1] : Hµ(G
tα) < logµ(X )− n} < 2−n+c.

The above result proves the existence of oscillations in thermodynamic entropy. However the
situation becomes more complicated if one were to examine the thermodynamic entropies of two
independent systems. If combining the systems into a joint product space where combined state is
typical, then the two systems cannot have thermodynamic entropies that oscillate in synch.

Let (X ×Y, µ× ν) be a non-atomic computable product measure space. Let GtX and GtY
be ergodic transformation groups over X and Y respectively. Let (α, β) ∈ X × Y . If
Hµ×ν(α, β) > −∞ and (α, β) has finite mutual information with the halting sequence
then supt∈N |Hµ(G

t
X(α))−Hν(G

t
Y (β))| = ∞.

1.4 Typicality and Newtonian Physics

This manuscript has the first, to the author’s knowledge, application of algorithmic information
theory to Newtonian Physics. Given a system representing a finite number of mass points, an
infinite measure κ is defined equal to the magnitude of the gravitational vector field. In addition, a
universal lower computable κ-test Tκ is defined that represents an atypicality score of points in this
space. Points at the center of mass points have infinite atypicality, and somewhat surprisingly, Tκ

functions like a typical universal test over compact spaces with suitable computability properties.
This machinery can be applied to orbits, which are one dimensional rings around mass points. An
orbit is specified by (z, r, x̂, ŷ), where z is the center of the orbit, r is its radius, and (x̂, ŷ) is its axis
of rotation. As a object orbits a body of large mass, it will oscillate in algorithmic typicality, much
like with oscillations of algorithmic fine grained entropy over dynamics. A graphical representation
of this oscillation can be found in Figure 1.2

Let L be the one-dimensional Lebesgue measure. Let κ be a computable system with
mass point z ∈ R3 and O be an orbit centered at z whose encoding has finite mutual
information with the halting sequence. There is a c ∈ N where for all n ∈ N,

2−n−cK(n) < L{x : x ∈ O,Tκ(x) > 2n}.

The above result shows that non-exotic orbits will oscillate in typicallity. The following result
extends this result to the surfaces of spheres. Given a non-exotic sphere C, there is a lower bound
on the measure of atypical points on the surface of C.
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Figure 1.2: Orbits in Euclidean space will oscillate in typical measure Tκ. Larger
oscillations will be less frequent.

Let κ be a computable system. If sphere C = (z, r) has finite mutual information with
the halting sequence then there is a c ∈ N where for all n ∈ N, 2−n−cK(n) < LC{α :
∥α− z∥ = r,Tκ(α) > 2n}, where LC is the uniform measure over C.

1.5 The Kolmogorov Complexity of Black Holes

This manuscript details and expands on the work of [BS18], which introduces the Kolmogorov
complexity of black holes. Black holes are modelled as quantum circuits, or unitary matrices in
SU(2K), where K is the number of qubits. The SU(2K) space is partitioned into cells by epsilon
balls. This induces a graph where an edge is between two vertices (cells) if there is a k-local all-
to-all gate between the two unitary operators. The k-local, all-to-all, requirement matches certain
properties of black holes (namely that they are fast scramblers). Each vertex is assigned a label
and the complexity of a unitary operator is the Kolmogorov complexity of the label of the cell.
Dynamics of the black hole are modelled as a random walk along the graph, as seen in Figure 1.3.

Why is complexity important in the study of black holes? With this definition, [Sus20] conjec-
tured the Complexity/Volume Correspondence, which states the growth of the volume of wormholes
(Einstein-Rosen bridges) in black holes match their Kolmogorov complexity/time profile. The ben-
efit to this definition of the Kolmogorov complexity of black holes can be summarized by the
following statement.

The study of the Kolmogorov complexity of black holes can be reduced to the study of a
fictious particle moving in the SU(n) space.

1.6 The Independence Postulate

The ManyWorlds Theory [Eve57] was formulated by Hugh Everett as a solution to the measurement
problem of Quantum Mechanics. Branching (a.k.a. splitting of worlds) occurs during any process
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Figure 1.3: The dynamics of black holes can be absracted as a random walk in SU(2K).
The starting position is the identity matrix 1.

that magnifies microscopic superpositions to the macroscale. Thus occurs in event including human
measurements such as the double slit experiment.

Conflicts emerge between the Many Worlds Theory and Algorithmic Information Theory. In
particular, the Independence Postulate [Lev84, Lev13] is a finitary Church-Turing thesis, postulat-
ing that certain infinite and finite sequences cannot be found in nature i.e. have high addresses.
One such class of forbidden sequences are large prefixes of the halting sequence. If a forbidden se-
quence is found in nature an “information leak” occurs. In this manuscript we detail the following
assertion.

In the Many World Theory information leaks can occur.

Another theory that comes into conflict with the Independence Postulate is Constructor Theory.
Constructor Theory aims to unify many areas of science with counterfactuals. Counterfactuals
describe whether a process can or cannot occur. The central tenet of Constructor Theory is as
follows:

All other laws of physics are expressible entirely in terms of statements about which
physical transformations are possible and which are impossible, and why.

However the Independence Posultate poses the following unresolved question:

Is it possible or impossible to create or find large prefixes of the halting sequence?

11



Chapter 2

Conventions

The following chapter details the conventions in algorithmic information theory, which will be
used throughout the manuscript. We use N, Z, Q, R, C, {0, 1}, {0, 1}∗, and {0, 1}∞ to denote
natural numbers, integers, rational numbers, reals, complex numbers, bits, finite strings, and infinite
sequences. {0, 1}∗∞ def

= {0, 1}∗ ∪{0, 1}∞. ∥x∥ denotes the length of the string. Let X≥0 and X>0 be

the sets of non-negative and of positive elements of X. [A]
def
= 1 if statement A holds, else [A]

def
= 0.

For set of strings A ⊆ {0, 1}∗, JAK = {xα : x ∈ A,α ∈ {0, 1}∞}. When it is clear from the
context, we will use natural numbers and other finite objects interchangeably with their binary
representations. We let [A] = 1 if mathematical statement A is true, otherwise [A] = 0.

The ith bit of α ∈ {0, 1}∗∞ is denoted αi, and its n bit prefix is denoted α≤n. ⟨x⟩ ∈ {0, 1}∗ for
x ∈ {0, 1}∗ is the self-delimiting code that doubles every bit of x and changes the last bit of the
result. For positive real functions f , by <+ f , >+ f , =+ f , and <log f , >log f , ∼f we denote
≤ f+O(1), ≥ f−O(1), = f±O(1) and ≤ f+O(log(f+1)), ≥f −O(log(f+1)), = f±O(log(f+1)).

Furthermore,
∗
<f ,

∗
>f denotes < O(1)f and > f/O(1). The term and

∗
=f is used to denote

∗
>f and

∗
<f .

A probability measure Q over {0, 1}∗ is elementary if it has finite support and range that is a
subset of rationals. Elementary probability measures can be encoded into finite strings ⟨Q⟩ in the
standard way.

2.1 Algorithmic Information Theory

Ty(x) is the output of algorithm T (or ⊥ if it does not halt) on input x ∈ {0, 1}∗ and auxiliary input
y ∈ {0, 1}∗∞. T is prefix-free if for all x, s ∈ {0, 1}∗ with s ̸= ∅, either Ty(x)= ⊥ or Ty(xs)= ⊥ .

The complexity of x ∈ {0, 1}∗ with respect to Ty is KT (x|y) def
= inf{∥p∥ : Ty(p) = x}.

There exist optimal for K prefix-free algorithms U , meaning that for all prefix-free algorithms
T , there exists cT ∈N, where KU (x|y) ≤ KT (x|y) + cT for all x∈{0, 1}∗ and y ∈{0, 1}∗∞. For
example, one can take a universal prefix-free algorithm U , where for each prefix-free algorithm T ,
there exists t ∈ {0, 1}∗, with Uy(tx) = Ty(x) for all x ∈ {0, 1}∗ and y ∈ {0, 1}∗∞. K(x|y) def

=KU (x|y)
is the Kolmogorov complexity of x ∈ {0, 1}∗ relative to y ∈ {0, 1}∗∞. Similarly, plain Kolmogorov
complexity, C(x|y), is defined using algorithms that have a readable delimiter symbol # at the end
of their inputs.

The chain rule is K(x, y)=+K(x) + K(y|x,K(x)). The algorithmic probability is m(x|y) =∑{2−∥p∥ : Uy(p) = x}. By the coding theorem K(x|y)=+ − logm(x|y). The amount of mutual
information between two strings x and y is I(x : y) = K(x) + K(y) − K(x, y). By the chain
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rule K(x, y)=+K(x) + K(y|x,K(x)). The halting sequence H ∈ {0, 1}∞ is the infinite string

where Hi
def
= [U(i) halts] for all i ∈ N. The amount of information that H has about x ∈ {0, 1}∗ is

I(x;H) = K(x) − K(x|H). The randomness deficiency of x ∈ {0, 1}∗ with respect to elementary
probability P over {0, 1}∗ is d(x|P ) = ⌊− logP (x)−K(x|⟨P ⟩)⌋. we say t : {0, 1}∗ → R≥0 is a
P -test, for some probability P , if

∑
x t(x)P (x) ≤ 1. Let tP be a universal lower computable P -

test, where for any other lower computable P -test t, tP (x)
∗
> m(t)t(x). Then by the universality

of the deficiency of randomness, [G0́1], d(x|P )=+ log tP (x). The transform of a probability Q
by f : {0, 1}∗ → {0, 1}∗, is the probability fQ, where fQ(x) =

∑
f(y)=xQ(y). Both randomness

deficiency and information enjoy conservation inequalities.

Theorem 1 (See [G0́1]) d(f(x)|fQ)<+ d(x|Q).

Theorem 2 ([Lev84]) I(f(x) : y)<+ I(x : y).

Proof. Due to the chain rule,K(x, y, z)<+K(x,K(x))+K(y|x,K(x))+K(z|x,K(x))=+K(x, y)+
K(x, z)−K(x), since K(y, z|t)<+K(y|t) +K(z|t). So I((z, x) : y)>+ I(x : y). The statement fol-
lows from I(z : y)=+ I((z, x) : y) for x = A(z) since z andd (z,A(z)) are computable from each
other.

Lemma 1 ([Eps22a]) I(f(a);H)<+ I(a;H) +K(f).

Proof.

I(a;H) = K(a)−K(a|H)>+K(a, f(a))−K(a, f(a)|H)−K(f).

The chain rule applied twice results in

I(a;H) +K(f)>+K(f(a)) +K(a|f(a),K(f(a)))− (K(f(a)|H) +K(a|f(a),K(f(a)|H),H)

=+ I(f(a);H) +K(a|f(a),K(f(a)))−K(a|f(a),K(f(a)|H),H)

=+ I(f(a);H) +K(a|f(a),K(f(a)))−K(a|f(a),K(f(a)),K(f(a)|H),H)

>+ I(f(a);H).

□

Lemma 2 For program q that computes probability p over N, Ea∼p
[
2I(⟨q,a⟩;H)

] ∗
< 2I(q;H).

Proof. The goal is to prove
∑

a p(a)m(a, q/H)/m(a, q)
∗
<m(q/H)/m(q). Rewriting this inequal-

ity, it suffices to prove
∑

a

(
m(q)p(a)/m(a, q)

)(
m(a, q/H)/m(q/H)

) ∗
< 1. The termm(q)p(a)/m(a, q)

∗
<

1 becauseK(q)−log p(a)>+K(a, q). Furthermore, it follows directly that
∑

am(a, q/H)/m(q/H)
∗
<

1. □

The stochasticity of a string x ∈ {0, 1}∗ isKs(x) = minElementary QK(Q)+3 logmax{d(x|Q), 1}.
Strings with high stochasticity measures are exotic, in that they have high mutual information with
the halting sequence. A proof to the following result can be found in Lemma 34 of Appendix A.

Lemma 3 ([Lev16, Eps21b]) Ks(x) < I(x;H) +O(K(I(x;H))).

The following definition is from [Lev74] .
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Definition 1 (Information) For infinite sequences α, β ∈ {0, 1}∞, their mutual information is
defined to be I(α :β)= log

∑
x,y∈{0,1}∗ 2

I(x:y)−K(x|α)−K(y|β).

It is easy to see that I(f(α) : β)<+ I(α : β) +K(f).

Definition 2 (Randomness Deficiency of Infinite Sequences) The deficiency of randomness
of an infinite sequence α ∈ {0, 1}∞, relative to x ∈ {0, 1}∗∞ and (not necessarily probability) mea-
sure µ over {0, 1}∞ is

D(α|µ, x) = sup
n

− logµ(α[0 . . . n]))−K(α[0 . . . n]|µ, x).

We say D(α|µ) = D(α|µ, ∅).

2.2 Algorithmic Information Between Probabilities

We can generalize from information from strings to information between arbitrary probability
measures over strings.

Definition 3 (Information, Probabilities)
For semi-measures p and q over {0, 1}∗, IProb(p : q) = log

∑
x,y∈{0,1}∗ 2

I(x:y)p(x)q(y).

Definition 4 (Channel) A channel f : {0, 1}∗ × {0, 1}∗ → R≥0 has f(·|x) being a probability
measure over {0, 1}∗ for each x ∈ {0, 1}∗. For probability p, channel f , fp(x) =

∑
z f(x|z)p(z).

Lemma 4 Let ψa be an enumerable semi-measure, semi-computable relative to a.∑
c 2

I(⟨a,c⟩:b)ψa(c)
∗
< 2I(a:b)/m(ψ).

Proof. This requires a slight modification of the proof of Proposition 2 in [Lev84], by requiring
ψ to have a as auxilliary information. For completeness, we reproduce the proof. We need to show

m(a, b)/(m(a)m(b))
∗
>
∑

c(m(a, b, c)/(m(b)m(a, c)))m(ψ)ψa(c), or
∑

c(m(a, b, c)/m(a, c))m(c|a) ∗
<

m(a, b)/m(a), since m(c|a) ∗
>m(ψ)ψa(c). Rewrite it

∑
cm(c|a)m(a, b, c)/m(a, c)

∗
<m(a, b)/m(a)

or
∑

cm(c|a)m(a)m(a, b, c)/m(a, c)
∗
< m(a, b). The latter is obvious since m(c|a)m(a)

∗
< m(a, c)

and
∑

cm(a, b, c)
∗
<m(a, b). □

Theorem 3 For probabilities p and q over {0, 1}∗, computable channel f , IProb(fp : q)<
+ IProb(p :

q).

Proof. Using Lemma 1,

IProb(fp : q) = log
∑

x,y

2I(x:y)
∑

z

f(x|z)p(z)q(y)<+ log
∑

y,z

q(y)p(z)
∑

x

2I((x,z):y)f(x|z).

Using Lemma 4,

IProb(fp : q)<
+ log

∑

z,y

q(y)p(z)2I(z:y)=+ IProb(p : q).

□

Theorem 4 For enumerable semi-measures p, q, IProb(p : q)<
+ I(⟨p⟩ : ⟨q⟩).
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Proof. Let T be a Turing machine, that when given an encoding of a lower semi-computable
probabiliy p and an input x, lower enumerates p(x). IProb(p : q) = log

∑
x,y 2

I(x:y)Tp(x)Tq(y).
Using Theorems 3 and 4,

IProb(p : q)

<+ log
∑

x,y

2I(⟨x,p⟩:y)Tp(x)Tq(y)

<+ log
∑

y

2I(⟨p⟩:y)q(y)/m(T )

<+ log
∑

y

2I(⟨p⟩:⟨y,q⟩)q(y)/m(T )

<+ log 2I(⟨p⟩:⟨q⟩)/m(T )2

<+ I(⟨p⟩ : ⟨q⟩).

Thus processing cannot increase information between two probabilities. If the the probability
measure is concentrated at a single point, then it contains self-information equal to the complexity
of that point. If the probability measure is spread out, then it is white noise, and contains no
self-information. Some examples are as follows.

Example 1

• In general, a probability p, will have low IProb(p : p) if it has large measure on simple strings,
or low measure on a large number of complex strings, or some combination of the two.

• If probability p is concentrated on a single string x, then IProb(p : p) = K(x).

• The uniform distribution over strings of length n has self information equal to (up to an
additive constant) K(n).

• There are semi-measures that have infinite self information. Let αn be the n bit prefix of
a Martin Löf random sequence α and n ∈ [2,∞). Semi-measure p(x) = [x = αn]n

−2 has
IProb(p : p) = ∞.

• The universal semi-measure m has no self information.

Example 2 (Uniform Spread) An example channel f has f(·|x) be the uniform distribution
over strings of length ∥x∥. This is a cannonical spread function. Thus if p is a probability measure
concentrated on a single string, then IProb(p : p) = K(x), and I(fp : fp)=+K(∥x∥). Thus f results
in a decrease of self-information of p. This decrease of information occurs over all probabilities and
computable channels.
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Part II

Quantum Mechanics
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Chapter 3

Introduction

Classical information theory studies the communication of bits across a noisy channel. Quantum
Information Theory (QIT) studies the kind of information (“quantum information”) which is trans-
mitted by microparticles from a preparation device (sender) to a measuring apparatus (receiver) in
a quantum mechanical experiment—in other words, the distinction between carriers of classical and
quantum information becomes essential. The notion of a qubit can be defined at an abstract level,
without giving preference to any particular physical system such as a spin-12 particle or a photon.
Qubits behave very differently than bits. To start, qubits can be in a linear superposition between
0 and 1. Qubits can have entanglement, where two objects at a distance become a single entity.
The study of entanglement and in particular the question how it can be quantified is therefore a
central topic within quantum information theory. However, due to the no-cloning theorem [WZ82],
instant communication is not possible. Some other aspects of QIT are as follows.

1. Quantum Computing: includes hardware (quantum computers), software, algorithm such
as Shor’s factoring algorithm or Grover’s algorithm, and applications.

2. Quantum Communication: quantum networking, quantum internet, quantum cryptogra-
phy.

3. Applications in Physics: applications to convex optimizations, black holes, and exotic
quantum phases of matter.

4. Quantum Shannon Theory: quantum channels, quantum protocols, quantum information
and entropy.

One aspect of Quantum Shannon Theory (QST) that has had relatively little study is its
relationship to Algorithmic Information Theory (AIT). AIT, in part, is the study of the information
content of individual strings. A string is random if it cannot be compressed with respect to a
universal Turing machine. This paper surveys the current state of research of QST and AIT and
provides unpublished results from the author. Hopefully it will convince the reader that there is a
fruitful area of research of QST and AIT. Some areas of this intersection include algorthmic content
of quantum states, how typical a quantum state is with respect to a quantum source, and how to
quantify the algorithmic content of a measurement. One can also gain further insight into quantum
transformations, such as purification, decoherence, and approximations to quantum cloning.

As this manuscript will show, there are some aspects of AIT that directly transfer over to quan-
tum mechanics. This includes comparable definitions of complexity, and conservation inequalities.
In addition, there exist quantum versions of the EL Theorem, [Lev16, Eps19c] and the Outlier
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Theorem, [Eps21b]. However there are some aspects of AIT that are different in the context of
quantum mechanics. This includes the fact the self information of most quantum pure states is
zero, with I(|ψ⟩ : |ψ⟩) ≈ 0. This has implications on the algorithmic content of measurements and
decoherence. The main quantum mechanical areas covered in this manuscript are

• Chapter 4: This chapter covers the background material on quantum mechanics needed for
the article.

• Chapter 5: Three different algorithmic measures of quantum states are covered in the
manuscript.. In this chapter, Gács complexity and Vitányi complexity are detailed. Their
properties are described, including an addition inequality, a Quantum EL Theorem, and a
generalized no-cloning theorem. Inequalities between the two complexities are proven.

• Chapter 6. The algorithmic entropy called BvL complexity is detailed. It is compared
to Gács complexity and Kolmogorov complexity. This chapter contains two new proofs to
Müller’s Theorem. Quantum Unitary Complexity is introduced.

• Chapter 7: The notion of the algorithmic typicality of one quantum state with respect
to another quantum state is introduced. Typicality is conserved with respect to quantum
operations. A quantum outlier theorem is proven. This states that non-exotic projections
must have atypical pure states in their images.

• Chapter 8: The definition of quantum algorithmic information is introduced. Quantum
information differs from classical algorithmic information in that an overwhelming major-
ity of pure states have negligible self-information. Information is conserved over quantum
operations, with implications to quantum cloning, quantum decoherence, and purification.

• Chapter 9: Quantum algorithmic information upper bounds the amount of classical infor-
mation produced by quantum measurements. Given a quantum measurement, for an over-
whelming majority of pure states, the measurement will be random noise.

• Chapter ??: This chapter shows that with respect to a system-environment dynamics, an
overwhelming majority of non-pointer states will decohere into algorithmic garbage.

• Chapter 10: A quantum equivalent to Martin Löf random sequence is introduced. Such
quantum random states have incompressible initial segments with respect to Quantum Uni-
tary Complexity. This complexity term measures the cost of approximating a state with a
classical and quantum component.

• Chapter 11: This chapter concludes the quantum mechanical section of the manuscript
with a discussion of the boundary between quantum information and classical information.
We show that measurements are necessary to produce distributions over quantum states that
have cloneable information.

• Appendix A: An extended coding theorem is proved with applications to proving inequalities
of quantum complexities and the relation between dynamics and coarse grained entropy.
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Chapter 4

Background

4.1 Quantum Mechanic Tools

We use the standard model of qubits used throughout quantum information theory. We deal with
finiteN dimensional Hilbert spacesHN , with bases |α1⟩ , |α2⟩ , . . . , |αn⟩. We assumeHn+1 ⊇ Hn and
the bases for Hn are the beginning of that of Hn+1. An n qubit space is denoted by Qn =

⊗n
i=1Q1,

where qubit space Q1 has bases |0⟩ and |1⟩. For x ∈ Σn we use |x⟩ ∈ Qn to denote
⊗n

i=1 |x[i]⟩.
The space Qn has 2n dimensions and we identify it with H2n .

A pure quantum state |ϕ⟩ of length n is represented as a unit vector in Qn. Its corresponding
element in the dual space is denoted by ⟨ϕ|. The tensor product of two vectors is denoted by
|ϕ⟩ ⊗ |ψ⟩ = |ϕ⟩ |ψ⟩ = |ϕψ⟩. The inner product of |ψ⟩ and ⟨ϕ| is denoted by ⟨ψ|ϕ⟩.

The symbol Tr denotes the trace operation. The conjugate transpose of a matrix M is de-
noted by M∗. For Hermitian matrix with eigenvalue decomposition A =

∑
ai |ψi⟩ ⟨ψi|, |A| =∑ |ai| |ψi⟩ ⟨ψi|. The tensor product of two matrices is denoted by A⊗ B. Projection matrices are

Hermitian matrices with eigenvalues in {0, 1}. For tensor product space GX ⊗GY , the partial trace
is denoted by TrY . For B

X = TrYB, Tr(A·BX) = Tr((A⊗I)·B), which is used frequently through-
out the manuscript. For positive semidefinite matrices, σ and ρ we say σ ≤ ρ if ρ − σ is positive
semidefinite. For positive semidefinite matrices A, B, C, if A ≤ B then TrAC ≤ TrBC. Mixed
states are represented by density matrices, which are, self adjoint, positive semidefinite, operators
of trace 1. A semi-density matrix has non-negative trace less than or equal to 1. The von Neumann
entropy of a density matrix σ with orthogonal decomposition

∑
pi |ψi⟩ ⟨ψi| is S(σ) = −∑ pi log pi.

Relative entropy is S(ρ, σ) = −Trρ log σ−S(ρ). Holevo’s Chi is defined as follows. For an ensemble
E = {(ρi, pi)}, with ρ =

∑
i piρi, χ(E) = S(ρ)−∑i piS(ρi).

A number is algebraic if it is the root of a polynomial with rational coefficients. A pure quantum
state |ϕ⟩ and (semi)density matrix σ are called elementary if their real and imaginary components
have algebraic coefficients. The usual operations of linear algrebra such as orthogonalizaton, find-
ing eigenvalues and vectors can stay within the realm of elementary constructs. Furthermore,
elementary objects can be encoded into strings or integers and be the output of halting programs.
Therefore one can use the terminology K(|ϕ⟩) and K(σ), and also m(|ϕ⟩) and m(σ).

We say program q ∈ {0, 1}∗ lower computes positive semidefinite matrix σ if, given as input to
universal Turing machine U , the machine U reads ≤ ∥q∥ bits and outputs, with or without halting,
a sequence of elementary semi-density matrices {σi} such that σi ≤ σi+1 and limi→∞ σi = σ. A
matrix is lower computable if there is a program that lower computes it.

19



4.2 Quantum Operations

A quantum operation is the most general type of operation than can be applied to a quantum state.
In Chapters 7 and 8, conservation inequalities will be proven with respect to quantum operations.
A map transforming a quantum state σ to ε(σ) is a quantum operation if it satisfies the following
three requirements

1. The map of ε is positive and trace preserving, with Tr(σ) = Tr(ε(σ)).

2. The map is linear with ε(
∑

i piσi) =
∑

i piε(σi).

3. The map is completely positive, were any map of the form ε ⊗ M acting on the extended
Hilbert space is also positive.

Another means to describe quantum operations is through a series of operators. A quantum oper-
ation ε on mixed state σA can be seen as the appending of an ancillia state σb, applying a unitary
transform U , then tracing out the ancillia system with

ε(σA) = TrB (U(σA ⊗ σB)U
∗) . (4.1)

A third way to characterize a quantum operation is through Kraus operators, which can be derived
using an algebraic reworking of Equation 4.1. Map ε is a quantum operation iff it can be represented
(not necessarily uniquely) using a set of matrices {Mi} where ε(σ) =

∑
iMiεM

∗
i and

∑
iM

∗
iMi = I,

where I is the identity matrix.
A quantum operation ε is elementary iff it admits a represented of the form in Equation 4.1

where B, U , and σB are each elementary, in that they each can be encoded with a finite string. The
encoding of an elementary quantum operation is denoted by ⟨ε⟩ = ⟨B⟩⟨U⟩⟨σB⟩. Each elementary
quantum operation admits an elementary Kraus operator representation {Mi}, in that each Mi is
an elementary matrix. This elementary Kraus operator is computable from ⟨ε⟩.
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Chapter 5

Gács and Vitányi Complexity

In traditional Quantum Information Theory, the entropy of a pure or mixed state ρ is measured by
the von Neumann entropy, S(ρ) defined in Chapter 4. This measures the amount of mixing that a
state has, or put another way, the amount of departure of the the state from a pure state. Thus
the von Neumann entropy of a pure state is 0 and that of a totally mixed n qubit state is n. The
min-entropy of a quantum state is

Hmin(ρ) = max
Π

1

maxiTr(Πiρ)
,

where Π is over all projective measurements (as described in chapter 9). The min-entropy can be
interpreted as the distance of a state from a maximally entangled state. This concept is useful in
quantum cryptography, in the context of privacy amplification.

However these scores fail to measure how complicated the state is, or rather the amount of
computational resources it takes to create the state. For example take states |0n⟩ and |x⟩ where x
is a random n-bit string. For both strings, their von Neumann entropy is 0. Algorithmic Information
Theory provides a suitable area of research into the individual complexity of sequences of 1s and 0s.
This chapter details the application of AIT to quantum mechanics toward defining the algorithmic
content of quantum states.

The formal study of Algorithmic Information Theory and Quantum Mechanics began with the
introduction of three independent measures of the algorithmic content of a mixed or pure quantum
state, detailed in the papers [BvL01, G0́1, Vit01]. In [BvL01], the complexity of a pure or mixed
quantum state |ψ⟩ is measured by the length of the smallest input to a universal quantum Turing
machine that outputs a good approximation of σ. Vitányi complexity [Vit01] measures the entropy
of a pure state |ψ⟩ as the amount of classical information needed to reproduce a good approximation
of |ψ⟩. Gács complexity measures the entropy of a pure or mixed quantum state by using a quantum
analogue of the universal semi-measurem. In this chapter, Gács complexity and Vitányi complexity
are studied. In Chapter 6, BvL complexity is detailed.

5.1 Vitányi Complexity

One approach to measuring the algorithmic complexity of a state is to use a normal Turing machine
to measure the information content of a quantum state. Vitányi complexity, [Vit01], of a pure
state |ψ⟩ is equal to the minimum size of a program to a universal Turing machine that outputs an
approximation that is an elementary pure state |θ⟩ of the target state plus a score of their closeness.
The cost term is − log ⟨θ|ψ⟩. We use a slightly different definition than the original [Vit01], in that
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we use a classical universal Turing machine and not a quantum universal Turing machine . Let n
be the number of qubits. The Vitányi complexity, Hv, is defined by

Hv(|ψ⟩) = min
Elementary |θ⟩∈Qn

K(|θ⟩ |n)− log | ⟨ψ|θ⟩ |2.

Theorem 5 ([Vit01]) For all n qubit pure states |ψ⟩, Hv(|ψ⟩)<+ 2n.

Proof. Let |ψ⟩ ∈ Qn with basis vectors {ei}2ni=1 and
∑2n

i=1 |ei|ψ⟩2 = 1. So there is an i with
⟨ei|ψ⟩2 ≥ 2−n. Let p be an n + O(1) program that constructs |ei⟩. So Hv(|psi⟩) ≤ ∥p∥ −
log 2−n<+ 2n. □

Exercise 1 ([Vit01]) Show that for the uniform probability Λ over n qubit states,
Λ{|ψ⟩ : Hv(|ψ⟩ ≥ n− c)} > 1− 1/2c.

Exercise 2 ((Hard)[G0́1]) Prove that for large enough n, there are states |ψ⟩ ∈ Qn with Hv(|ψ⟩) >
2n− 2 log n.

Theorem 6 ([Vit01]) Let |ψ⟩ be a basis vector for an elementary orthonormal basis B,
K(|ψ⟩ |n)<+Hv(|ψ⟩) +K(B|n).

Proof. Let elementary |ϕ⟩ ∈ Qn be defined such that Hv(|ψ⟩) = K(|ϕ⟩ |n) − log ⟨ϕ|ψ⟩2. Let
{|ei⟩} be the basis vectors of B. So

∑
|ei⟩ ⟨ϕ|ei⟩

2 = 1. Let ni = ⟨ϕ|ei⟩2. So if |ψ⟩ = ei, we have
Hv(|ψ⟩) = K(|ϕ⟩ |n) + ni. Since

∑
i ni = 1, there is a prefix free code that can identify |ei⟩. So

K(|ψ⟩ |n)<+K(|ϕ⟩ |n)− log ni +K(B|n)<+Hv(|ψ⟩) +K(B|n). □

The following corollary shows that over classical strings, Vitányi complexity is equal to Kol-
mogorov complexity. This is also true for Gács complexity and BvL complexity.

Corollary 1 ([Vit01]) For x ∈ {0, 1}n, K(x|n)=+Hv(|x⟩).

Proof. This follows from the basis B corresponding to n bit classical strings, with K(B|n) = 0.
□

5.2 Gács Complexity

Gács complexity, [G0́1], takes a different approach. The Kolmogorov complexity of a string x is
equal to, up to an additive factor, − logm(x). Similarly Gács complexity is defined using the
following universal lower computable semi-density matrix, parametered by x ∈ {0, 1}∗, with

µx =
∑

Eementary |ϕ⟩∈Qn

m(|ϕ⟩ |x, n) |ϕ⟩⟨ϕ|.

The parameter n represents number of qubits used. We use µX to denote the matrix µ over the
Hilbert space denoted by symbol X. The matrix µ will be very useful in the subsequent chapters.
The Gács entropy of a mixed state σ, conditioned on x ∈ {0, 1}∗ is defined by

Definition 5 Hg(σ|x) = ⌈− log Trµxσ⌉.
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We use the following notation for pure states, with Hg(|ϕ⟩ |x) = Hg( |ϕ⟩⟨ϕ| |x). For empty x we
use the notaion Hg(σ). Whereas BvL complexity and Vitányi complexity are defined solely on
pure states, this definition also applies to mixed states. This generalizes the definition H in [G0́1],
which was solely over pure states.

Note than in [G0́1], there is another measure of quantum algorithmic entropy, H, which we will
not cover in this manuscript. An infinite version of algorithmic entropy can be found at [BOD14].

5.3 Properties of the Universal Matrix and Gács Complexity

The matrix µ is important in Algorithmic Information Theory and Quantum Mechanics, as it is the
foundation for the information term defined in Chapter 8. The following theorem shows that the
lower computable semi-density matrix µ is universal. It is greater than any other lower computable
matrix, weighted by their complexity. This parallels the classical case, where universal measure

m majorizes lower computable semi measure p, with m(x)
∗
> m(p)p(x). This theorem is used

throughout the paper, and will not be explicitly cited.

Theorem 7 ([G0́1]) Let q ∈ {0, 1}∗ lower compute semi-density matrix A, relativized to the num-

ber of qubits n,. Then µ
∗
>m(q|n)A.

Proof. A can be composed into a sum
∑

i p(i) |ψi⟩ ⟨ψi|, where each |ψi⟩ is elementary, p is a
semi-measure, with

∑
i p(i) ≤ 1, and p is lower computable from q and n. Thus,

A =
∑

i

p(i) |ψi⟩ ⟨ψi|
∗
<m(p|n)−1

∑

i

m(i|n) |ψi⟩ ⟨ψi|
∗
<m(q|n)−1

∑

i

m(i|n) |ψi⟩ ⟨ψi|
∗
< µ/m(q|n).

□

Exercise 3 ([G0́1]) Let ν vary over elementary matrices and P vary over elementary projections.

Prove µ
∗
=
∑

ν m(ν|n)ν ∗
=
∑

P m(P |n)P .

Theorem 8 ([G0́1]) µii
∗
= m(i|n).

Proof. The matrix ρ =
∑

im(i|n) |i⟩ ⟨i| is lower computable, so ρ
∗
< µ so µii

∗
>m(i|n). Further-

more, f(i) = ⟨i|µ |i⟩ is a lower computable semi-measure, so m(i|n) ∗
> µii. □

Theorem 9 ([G0́1]) TrY µXY
∗
= µX .

Proof. Let ρ = TrY µXY , which is a lower computable semi-density matrix because one can
enumerate elementary pure states |ψ⟩ ⟨ψ| in the space XY , take their partial trace, TrY |ψ⟩ ⟨ψ|,
and then add the resulting pure or mixed state to the sum ρ. Thus ρ

∗
< µX . Let σ = µX ⊗ |ψ⟩ ⟨ψ|,

where |ψ⟩ is a reference elementary state. Thus σ
∗
< µXY so

µX = TrY σ
∗
< TrY µXY .

□

Theorem 10 ([G0́1]) Hg(σ)<+Hg(σ ⊗ ρ).
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Proof. Note that this theorem is not less general than that of Theorem 12, because both σ and
ρ can be non-elementary. Using Theorem 9 and the properties of partial trace,

2−Hg(σ) ∗
> TrσµX

∗
> TrσTrY µXY

∗
> Tr(σ ⊗ I)µXY

∗
> Tr(σ ⊗ ρ)µXY

∗
= 2−Hg(σ⊗ρ).

□

Theorem 11 ([G0́1]) For mixed state ρ, unitary U , Hg(ρ)=+H(UρU∗)±K(U).

Proof. This follows from µ
∗
> UµU∗ and UµU∗ ∗

> U(U∗µU)U∗ ∗
= µ. □

Exercise 4 ([G0́1]) Let P be a lower semicomputable projection with d = TrP . Prove Hg(σ)<+K(P |n)+
log d− log TrσP .

Exercise 5

Prove the folllowing properties about Gács complexity.

1. 0<+Hg(ρ)<+ n.

2. Hg(|0n⟩) = O(1).

3. Trµ
∗
= O(1).

4. For the maximally mixed state U = 2−n1, Hg(U)=+ n.

5. For string x ∈ {0, 1}n, Hg(|x⟩)=+K(x|n).
6. Given mixed states σ and ρ, Hg(aσ + bρ) ≤ aHg(σ) + bHg(ρ).

5.4 Addition Inequality

The addition theorem for classical entropy asserts that the joint entropy for a pair of random
variables is equal to the entropy of one plus the conditional entropy of the other, with H(X ) +
H(Y/X ) = H(X ,Y). For algorithmic entropy, the chain rule is slightly more nuanced, with K(x)+
K(y|x,K(x))=+K(x, y). An analogous relationship cannot be true for Gács entropy, Hg, since as
shown in Theorem 18, there exists elementary |ϕ⟩ where Hg(|ϕ⟩ |ϕ⟩)−Hg(|ϕ⟩) can be arbitrarily
large, and Hg(|ϕ⟩ / |ϕ⟩)=+ 0. However, the following theorem shows that a chain rule inequality
does hold for Hg.

For n2 × n2 matrix A, let A[i, j] be the n × n submatrix of A starting at position (n(i − 1) +
1, n(j − 1) + 1). For example for n = 2 the matrix

A =




1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16




has A[1, 1] =

[
1 2
5 6

]
, A[1, 2] =

[
3 4
7 8

]
, A[2, 1] =

[
9 10
13 14

]
, A[2, 2] =

[
11 12
15 16

]
.

For n2 × n2 matrix A and n × n matrix B, let MAB be the n × n matrix whose (i, j) entry
is equal to TrA[i, j]B. For any n × n matrix C, in can be seen that TrA(C ⊗ B) = TrMABC.
Furthermore if A is lower computable and B is elementary, then MAB is lower computable.

For elementary semi density matrices ρ, we use ⟨ρ,Hg(ρ)⟩ to denote the encoding of the pair
of an encoded ρ and an encoded natural number Hg(ρ).
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Theorem 12 ([Eps19a]) For semi-density matrices σ, ρ, elementary ρ,
Hg(ρ) +Hg(σ|⟨ρ,Hg(ρ)⟩)<+Hg(σ ⊗ ρ).

Proof. Let µ2n be the universal lower computable semi density matrix over the space of 2n qubits,
Q2n = Qn⊗Qn = QA ⊗QB. Let µn be the universal matrix of the space over n qubits. We define
the following bilinear function over complex matrices of size n × n, with T (ν, δ) = Trµ2n(ν ⊗ δ).
For fixed ρ, T (ν, ρ) is of the form T (ν, ρ) = TrMµ2nρν. The matrix Mµ2nρ has trace equal to

TrMµ2nρ = T (ρ, I )

= Trµ2n(ρ⊗ I)

= Tr ((TrQBµ2n)ρ)
∗
= Trµnρ
∗
= 2−Hg(ρ),

using Theorem 9, which states TrY µXY
∗
= µX . By the definition ofM , since µ2n and ρ are positive

semi-definite, it must be thatMµ2nρ is positive semi-definite. Since the trace ofMµ2nρ is
∗
= 2−Hg(ρ),

it must be that up to a multiplicative constant, 2Hg(ρ)Mµ2nρ is a semi-density matrix.
Since µ is lower computable and ρ is elementary, by the definition of M , 2Hg(ρ)Mµ2nρ is lower

computable relative to the string ⟨ρ,Hg(ρ)⟩. Therefore we have that 2Hg(ρ)Mµ2nρ
∗
< µ⟨ρ,Hg(ρ)⟩.

So we have that − log Tr2Hg(ρ)Mµ2nρσ = −Hg(ρ) − log T (σ, ρ)=+Hg(σ ⊗ ρ) − Hg(ρ)>+ −
logµ(ρ,Hg(ρ))σ=

+Hg(σ|⟨ρ,Hg(ρ)⟩). □

Exercise 6 Prove that relativized to a basis |1⟩ , |2⟩ , . . . over elementary orthogonal states,
Hg(σ ⊗ |i⟩ ⟨i|)=+Hg(|i⟩) +Hg(σ| |i⟩ ,Hg(|i⟩)).

5.5 Subadditivity, Strong Subadditivity, Strong Superadditivity

Theorem 13 ([G0́1]) Hg(σ) is subadditive, with Hg(σ ⊗ ρ)<+Hg(σ) +Hg(ρ).

Proof.

2−Hg(σ)−Hg(ρ)

=(TrµXσ) (TrµY ρ)

=Tr(σ ⊗ ρ)(µX ⊗ µY )
∗
>Tr(σ ⊗ ρ)(µXY )
∗
=2−Hg(σ⊗ρ).

□

A function L from quantum mixed states to whole numbers is strongly subadditive if there
exists a constant c ∈ N such that for all mixed states ρ123, L(ρ123) + L(ρ2) < L(ρ12) + L(ρ23) + c.
Similarly L is strongly superadditive if there exists a constant c ∈ N such that for all mixed
states ρ123, L(ρ12) + L(ρ23) < L(ρ123) + L(ρ2) + c. In [G0́1], it was asked if Hg was strongly
superadditive. In this section we provide a negative answer, and it is also shown that Hg is not
strongly superadditive or subadditive.

Theorem 14 Hg is not strongly subadditive.
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Proof. We fix the number of qubits n, and for i ∈ [1..2n], |i⟩ is the ith basis state of the n
qubit space. Let |ψ⟩ =∑2n

i=1 2
−n/2 |i⟩ |i⟩. The pure state |ψ⟩ is elementary, with K(|ψ⟩ |22n)=+ 0.

We define the the 3n qubit mixed state ρ123 = .5 |ψ⟩ ⟨ψ| ⊗ |1⟩ ⟨1| + .5 |1⟩ ⟨1| ⊗ |ψ⟩ ⟨ψ|. ρ12 =
.5 |ψ⟩ ⟨ψ| + .5 |1⟩ ⟨1| ⊗ 2−nI. ρ23 = .5 ∗ 2−nI ⊗ |1⟩ ⟨1| + .5 |ψ⟩ ⟨ψ|. ρ2 = 2−nI. Hg(ρ12)=

+ −
log Trµ2nρ12<

+ − log Trµ2n |ψ⟩ ⟨ψ| <+ − logm(|ψ⟩ |22n)| ⟨ψ|ψ⟩ |2<+ 0. Similarly, Hg(ρ23)=
+ 0.

Hg(ρ2)=
+ n. So Hg(ρ123) + Hg(ρ2)>

+ n and Hg(ρ12) + Hg(ρ23)=
+ 0, proving that Hg is not

strongly subadditive. □

Theorem 15 Hg is not strongly superadditive.

Proof. We fix the number of qubits n, and for i ∈ [1..2n], |i⟩ is the ith basis state of the n qubit
space. Let |ϕ⟩ =

∑2n

i=1 2
−n/2 |i⟩ |i⟩ |i⟩, with K(|ϕ⟩ |23n) = 0. Let σ123 = |ϕ⟩ ⟨ϕ|. σ12 = σ23 =∑2n

i=1 2
−n |i⟩ ⟨i| ⊗ |i⟩ ⟨i|. Hg(σ123)=

+ − log Trσ123µ
3n<+ − log Trm(|ϕ⟩ |23n)| ⟨ϕ|ϕ⟩ |2<+ 0. Let D

be a unitary transform whereD |i⟩ |i⟩ = |i⟩ |1⟩ andK(D|22n)=+ 0. SoHg(σ12)=
+Hg(Dσ12D

∗)=+Hg(2−nI⊗
|1⟩ ⟨1|)=+ n − log Tr(I ⊗ |1⟩ ⟨1|)µ2n. By Theorem 8 and properties of partial trace, Hg(2−nI ⊗
|1⟩ ⟨1|)=+ n − log Tr |1⟩ ⟨1|µn=+ n. So Hg(σ12) = Hg(σ23)=

+ n. So Hg(σ123) + Hg(σ2)<
+ n,

and Hg(σ12) +Hg(σ23)>
+ 2n, proving that Hg is not strongly superadditive. □

5.6 Vitányi Complexity and Gács Complexity

A natural question to ask is the relationship betweenHg andHv. As this section will show, Vitányi
complexity and Gács complexity are viritually identical, except for a small subset of exotic states.
By definition Hg(|ψ⟩)<+Hv(|ψ⟩). In fact, as shown in the following theorem, Vitányi complexity
is bounded with respect to Gács complexity.

Theorem 16 ([G0́1]) Hg(|ψ⟩)<+Hv(|ψ⟩)<log 4Hg(|ψ⟩).

Proof. For semi-density matrix A with eigenvectors {|ai⟩} and decreasing eigenvectors {ai} with
⟨ψ|A |ψ⟩ ≥ 2−k and |ψ⟩ =∑ ci |ai⟩, let Am be a projector onto the m largest eigenvectors. Let m
be the first i where ai ≤ 2−k−1. Since

∑
ai ≤ 1, we have m ≤ 2k+1. Since

∑

i≥m
ai|ci|2 < 2−k−1

∑

i

|ci|2 = 2−k−1,

we have

⟨ψ|Am |ψ⟩ ≥
∑

i<m

|ci|2 ≥
∑

i<m

ai|ci|2 ≥ 2−k −
∑

i≥m
ai|ci|2 > 2−k−1.

Thus there is some i ≤ m such that | ⟨ψ|ai⟩ |2 ≥ 2−2k−2. Let ν = Trµ and νk ∈ Q be a rational
created from the first k digits of ν. Let µ̂ be a lower approximation of µ, with trace greater than
νk. So K(µ̂)<log k. Thus if ⟨ψ|µ |ψ⟩ ≥ 2−k, then ⟨ψ| µ̂ |ψ⟩ ≥ 2−k−1. Thus there is an eigenvector

|u⟩ of µ̂ of complexity K(|u⟩ |n)<log 2k and | ⟨ψ|u⟩ |2 ∗
> 2−2k, so

Hv(|ψ⟩) ≤ K(|u⟩ |n)− log | ⟨ψ|u⟩ |2<log 4k <log 4Hg(|ψ⟩).

□
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Definition 6 We now describe an infinite encoding scheme for an arbitrary (not necessarily ele-
mentary) quantum pure state |ψ⟩. This scheme is defined as an injection between the set of pure
states and {0, 1}∞. We define ⟨⟨|ψ⟩⟩⟩ to be an ordered list of the encoded tuples ⟨⟨|θ⟩⟩, q, [| ⟨ψ|θ⟩ |2≥ q]⟩,
over all elementary states |θ⟩ and rational distances q ∈Q>0.

The following theorem states that only exotic pure states will have a Vitányi complexity much
greater than Gács complexity. States are exotic if they have high mutual information, I (Definition
1), with the halting sequence H ∈ {0, 1}∞.

Lemma 5 For pure quantum state |ψ⟩,
min|ϕ⟩K(|ϕ⟩)− log | ⟨ψ|ϕ⟩ |2<log − log

∑
|ϕ⟩m(|ϕ⟩)| ⟨ψ|ϕ⟩ |2 + I(⟨|ψ⟩⟩ : H).

Proof. Let D be a finite set of elementary pure states, computable from ⟨|ψ⟩⟩ and the value
g = ⌈− log

∑
|ϕ⟩m(|ϕ⟩)| ⟨ψ|ϕ⟩ |2⌉ such that

− log
∑

|θ⟩∈D

m(|θ⟩)| ⟨ψ|θ⟩ |2≤ g+1.

It is computable because there exists an algorithm that can find D by the following method.
The algorithm enumerates all elementary states |θ⟩. This algorithm approximates the algorithmic
probabilities m(|θ⟩) (from below) with m̂(|θ⟩). This algorithm uses ⟨|ψ⟩⟩ to approximate | ⟨θ|ψ⟩ |2

from below with ̂| ⟨θ|ψ⟩ |
2
. This algorithm stops when it finds a finite set D such that

− log
∑

|θ⟩∈D

m̂(|θ⟩) ̂| ⟨θ|ψ⟩ |
2
≤ g + 1.

Thus we have that K(D|g, ⟨|ψ⟩⟩) = O(1). Let f :D→W be a elementary function such that
|− log | ⟨ψ|θ⟩ |2 − f(|θ⟩)| ≤ 1. One such f is computable relative to ⟨|ψ⟩⟩, and g. Firstly this
is because D is computable from ⟨|ψ⟩⟩ and g. The individual values of f are computable from
⟨|ψ⟩⟩, since | ⟨ψ|θ⟩ |2 can be computed to any degree of accuracy. So K(f |g, ⟨|ψ⟩⟩) = O(1) and
− log

∑
|θ⟩∈D m(|θ⟩)2−f(|θ⟩) ≤ g+2. One then has that

min
|ϕ⟩

K(|ϕ⟩)− log | ⟨ψ|ϕ⟩ |2<+ min
θ∈D

K(|θ⟩) + f(|θ⟩)

<log − log
∑

|θ⟩∈D

m(|θ⟩)2−f(|θ⟩) + I(⟨f⟩;H). (5.1)

<log g + I(⟨f⟩;H) (5.2)

<log g + I(⟨|ψ⟩⟩ :H) +K(⟨f⟩|⟨|ψ⟩⟩) (5.3)

<log g + I(⟨|ψ⟩⟩ :H) +K(g)

<log − log
∑

|ϕ⟩

m(|ϕ⟩)| ⟨ψ|ϕ⟩ |2 + I(⟨|ψ⟩⟩ :H).

Inequality 5.1 is due to Theorem 126. Inequality 5.2 is due to the definition of f and D. Inequal-
ity 5.3 is due to the definition of I, where I(x;H)<+ I(α : H) +K(x|α). □

Theorem 17 Hg(|ψ⟩)<+Hv(|ψ⟩)<log Hg(|ψ⟩) + I(|ψ⟩ : H|n).
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Figure 5.1: The no cloning theorem states that there is no method for cloning an
arbitrary quantum state. However, approximate quantum cloning is possible.

Proof. This follows directly from Lemma 5, relativized to n, and the fact that Hg(|ψ⟩)=+ −
log Trµ |ψ⟩ ⟨ψ| =+ − log

∑
|ϕ⟩m(|ϕ⟩ |n)| ⟨ϕ|ψ⟩ |2. □

5.7 No Cloning Theorem

In classical algorithmic information theory, one can easily reproduce a string x, with

K(x)=+K(x, x).

However the situation is much different in the quantum case. The no cloning theorem [WZ82]. is
as follows. Say Alice has arbitrary state |ψA⟩ in Hilbert space A and Bob has base state |ψB⟩ in
Hilbert space B, where spaces A and B are identical. Alice wants to perform to perform the two
operations to clone her state to produce |ψA⟩ ⊗ |ψB⟩ → |ψA⟩ ⊗ |ψA⟩:

1. An observation that will cause a collapse to an eigenstate.

2. A time independent Hamiltonian of the combined system .

The no-cloning theorem (Figure 5.1) says Alice will not be successful, she cannot clone all states.
In addition, there exists several generalizations to the no-cloning theorem, showing that imperfect
clones can be made. In [BH96], a universal cloning machine was introduced that can clone an
arbitrary state with the fidelity of 5/6.

The following theorem generalizes this no-go result, by showing there exist tensor products |ψ⟩m
that has significantly more algorithmic quantum complexity measure than |ψ⟩ |0⟩m−1. This result
can be proved for all three complexities: Hg, Hv and Hbvl.

Let HN be an N dimensional Hilbert space and let HNm be an m-fold tensor space of HN . Let
Sym(Hm

N ) be the subspace of HNm invariant under the orthogonal transformations arising from the
permutations of the form

|ψ1⟩|ψ2⟩ . . . |ψm⟩ 7→ |ψπ(1)⟩|ψπ(2)⟩ . . . |ψπ(m)⟩.

The subspace Sym(Hm
N ) is spanned by M basis vectors, where M is the number of multisets of

size m from the set {1, . . . , N}. This is because for each such multiset S = {i1, . . . , im}, one can
construct a basis vector |ψS⟩ that is the normalized superposition of all basis vectors of Sym(Hm

N )
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that are permutations of S. If S′ ̸= S, then |ψS⟩ is orthogonal to |ψS′⟩. Thus the dimension of
Sym(Hm

N ) M , is
(
m+N−1

m

)
because choosing a multiset is the same as splitting an interval of size m

into N intervals.

Lemma 6 ([Wey46])

1. Sym(Hm
N ) is invariant under unitary transformations of the form U⊗m.

2. If a density matrix over Sym(Hm
N ) commutes with all such transformations then it is a multiple

of unity.

Theorem 18 ([G0́1]) log
(
m+2n−1

m

)
<+ max|ψ⟩Hg(|ψ⟩⊗m)<+K(m) + log

(
m+2n−1

m

)
.

Proof. Let N = 2n. For the upper bounds, let PS be the projector onto Sym(Hm
N ). If |ψ⟩ ∈

Sym(Hm
N ), then ⟨ψ|PS |ψ⟩ = 1, so

Hg(|ψ⟩)<+K(PS/M |n ·m)− log ⟨ψ| 1

M
PS |ψ⟩ <+K(m) + log

(
m+N − 1

m

)
.

For the lower bound, let c = max|ψ⟩∈Qn Hg(|ψ⟩⊗m). We have for all |ψ⟩ ∈ Qn,

Trµ |ψ⟩m ⟨ψ|m ∗
> 2−c. (5.4)

Let PS be the projection onto Sym(Hm
N ). Let Λ be the uniform distribution on the unit sphere of

Qn. And let

ρ =

∫
|ψ⟩m ⟨ψ|m dΛ.

The density matrix ρ commutes with all unitary operations of the form U⊗m. So, due to Lemma
6,

ρ =

(
m+ 2n − 1

m

)−1

PS .

Integrating Equation 5.4, by dΛ results in

2−c
∗
< Trµρ

∗
= Trµ

(
m+N − 1

m

)−1

PS
∗
=

(
m+N − 1

m

)−1

c>+ log

(
m+N − 1

m

)
.

□

Corollary 2 ([Vit01]) log
(
m+2n−1

m

)
<+ max|ψ⟩Hv(|ψ⟩⊗m)<log 4

(
K(m) + log

(
m+2n−1

m

))
.

Proof. This follows from Theorems 18 and 16. □
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Figure 5.2: The proof of the Quantum EL Theorem relies on sampling a large number
(N) of pure n qubit states according to the uniform distribution. The proof has a
collection of elementary projections R under consideration. For most R, there will be a
randomly selected state |ψ⟩ that will have a high ⟨ψ|R |ψ⟩.

5.8 Quantum EL Theorem

In this paper we prove a Quantum EL Theorem. In AIT, the EL Theorem [Lev16, Eps19d] states
that sets of strings that contain no simple member will have high mutual information with the
halting sequence. It is also stated in Corollary 48.

For finite set D ⊂ {0, 1}∗,min
x∈D

K(x)<log − log
∑

x∈D
m(x) + I(D;H).

It has many applications, including that all sampling methods produce outliers [Eps21b]. The
Quantim EL Theorem states that elementary projections P of large rank must have simple quantum
pure states in their images, otherwise they have high I(P : H). By the Independence Postulate (see
Chapter 26), constructs with non-negligible information with the halting sequence cannot be found
in the physical world and are thus exotic. The Quantum EL Theorem has the following consequence.

Claim. As the von Neumann entropy associated with the quantum source increases, the lossless
quantum coding projectors have larger rank and thus must have simpler (in the algorithmic quantum
complexity sense) pure states in their images.

Theorem 19 (Quantum EL Theorem [Eps23d]) Fix an n qubit Hilbert space. Let P be a
elementary projection of rank > 2m. Then, relativized to (n,m), min|ϕ⟩∈Image(P )Hv(|ϕ⟩)<log 3(n−
m) + I(⟨P ⟩;H).

Proof. We assume P has rank 2m. Let Q be the elementary probability measure that realized
the stochasticity, Ks(P ), of an encoding of P . We can assume that every string in the support of Q
encodes an elementary projection of rank 2m. We sample N independent pure states according to
the uniform distribution Λ on the n qubit space, as shown in Figure 5.2. N is to be defined later.
For each pure state |ψi⟩ and projection R in the support of Q, the expected value of ⟨ψi|R |ψi⟩ is

∫
⟨ψi|R |ψi⟩ dΛ = TrR

∫
|ψi⟩ ⟨ψi| dΛ = 2−nTrRI = 2m−n.

Let random variable XR = 1
N

∑N
i=1 ⟨ψi|R |ψi⟩ be the average projection size of the random pure

states onto the projection R. Since ⟨ψi|R |ψi⟩ ∈ [0, 1] with expectation 2m−n, by Hoeffding’s
inequality,

Pr(XR ≤ 2m−n−1) < exp
[
−N2−2(m−n)−1

]
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Let d = d(P |Q). Thus if we set N = d22(m−n)+1, we can find N elementary n qubit states such
that Q({R : XR ≤ 2m−n−1}) ≤ exp(−d), where XR is now a fixed value and not a random variable.
Thus XP > 2m−n−1 otherwise one can create a Q-expectation test, t, such that t(R) = [XR ≤
2m−n−1] exp d. This is a contradiction because

1.44d<+ log(P )<+ d(P |Q, d)<+ d+K(d),

for large enough d which we can assume without loss of generality. Thus there exists i such
that ⟨ψi|P |ψi⟩ ≥ 2m−n−1. Thus |ϕ⟩ = P |ψi⟩ /

√
⟨ψi|P |ψi⟩ is in the image of P and | ⟨ψi|ϕ⟩ |2 =

⟨ψi|P |ψi⟩ ≥ 2m−n−1. The elementary state |ψi⟩ has classical Kolmogorov complexityK(|ψi⟩)<log logN+
K(Q, d)<log 2(m− n) +Ks(P ). Thus by Lemma 3,

min{Hv(|ψ⟩) : |ψ⟩ ∈ Image(P )}
≤ Hv(|ϕ⟩)
<log K(|ψi⟩) + | ⟨ψi|ϕ⟩ |2

<log 3(n−m) +Ks(P )

<log 3(n−m) + I(P ;H).

□

5.8.1 Computable Projections

Theorem 48 is in terms of elementary described projecctions and can be generalized to arbitrarily
computable projections. For a matrix M , let ∥M∥ = maxi,j |Mi,j | be the max norm. A program
p ∈ {0, 1}∗ computes a projection P of rank ℓ if it outputs a series of rank ℓ projections {Pi}∞i=1

such that ∥P −Pi∥ ≤ 2−i. For computable projection operator P , I(P ;H) = min{K(p)−K(p|H) :
p is a program that computes P}.

Corollary 3 ([Eps23d]) Fix an n qubit Hilbert space. Let P be a computable projection of rank
> 2m. Then, relativized to (n,m), min|ϕ⟩∈Image(P )Hv(|ϕ⟩)<log 3(n−m) + I(P ;H).

Proof. Let p be a program that computes P . There is a simply defined algorithm A, that
when given p, outputs Pn such that min|ψ⟩∈Image(P )Hv(|ψ⟩)=+ min|ψ⟩∈Image(Pn)Hv(|ψ⟩). Thus by
Lemma 1, one gets that I(Pn;H)<+ I(P ;H). The corollary follows from Theorem 48. □

5.8.2 Quantum Data Compression

The Quantum EL Theorem can be used to address open issues in Quantum Information Theory.
In [G0́1] the following remark was made.

Remark 1 ([G0́1]) Maybe the study of the problem for quantum description complexity helps with
the understanding of the problem for von Neumann entropy, and its relation to coding tasks of
quantum information theory.

A quantum source consists of a set of pure quantum states {|ψi⟩} and their corresponding
probabilities {pi}, where

∑
i pi = 1. The pure states are not necessarily orthogonal. The sender,

Alice wants to send the pure states to the receiver, Bob. Let ρ =
∑

i pi |ψi⟩ ⟨ψi| be the density
matrix associated with the quantum source. Let S(ρ) be the von Neumann entropy of ρ. By
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Schumacher compression, [Sch95], in the limit of n → ∞, Alice can compress n qubits into S(ρ)n
qubits and send these qubits to Bob with fidelity approaching 1. For example, if the message
consists of n photon polarization states, we can compress the inital qubits to nS(ρ) photons. Alice
cannot compress the initial qubits to n(S(ρ)− δ) qubits, as the fidelity will approach 0. The qubits
are compressed by projecting the message onto a typical subspace of rank nS(ρ) using a projector
P . The projection occurs by using a quantum measurement consisting of P and a second projector
(I − P ), which projects onto a garbage state.

The results of this manuscript says that as S(ρ) increases, there must be simple states
in the range of P . There is no way to communicate a quantum source with large enough
S(ρ) without using simple quantum states.
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Chapter 6

BvL and Quantum Unitary
Complexity

Kolmogorov complexity measures the smallest program to a universal Turing machine that pro-
duces a string. Thus it is natural to adapt this notion to defining the complexity of a pure or
mixed quantum state ρ to be the shortest program to a universal quantum Turing machine that
approximates or produces ρ. This definition was introduced in [BvL01] and we call it BvL complex-
ity. Whereas Gács complexity and Vitányi can be thought of as scores of the algorithmic entropy
of a state, BvL complexity enjoys a direct interpretation of the amount of resources in quantum
mechanics needed to approximate or produce a state.

All quantum Turing machines used in this manuscript are the well formed QTMs defined in
[BV93]. Well formed QTM preserve length and their time evolution is unitary. In this manuscript,
BvL complexity is defined with respect to a universal quantum Turing machine introduced in
[Mul08]. This is different than the work in [BvL01], which uses the universal quantum machine
from [BV93]. Another notion of algorithmic quantum complexity can be defined with respect
to deterministic control quantum Turing machines, as seen in [Lem]. This seems like a natural
definiton, as virtually all quantum algorithms known (such as Shor’s factoring algorithm) have
deterministic control. This notion enjoys the chain rule relation, but the complexity is not covered
in this manuscript.

The input, output and auxiliary tapes of M consists of symbols of the type Σ = {0, 1,#} . The
input is an ensemble {pi} of pure states |ψi⟩ of the same length n, where pi ≥ 0,

∑
i pi = 1, and

pi ∈ Q≥0. Each pure state |ψi⟩ is a complex linear superposition over all inputs of length n. Thus
the input can be seen as an ensemble of states |ψi### . . .⟩. This ensemble can be represented as
a mixed state ρ of n qubits. The auxiliary tape must contain classical information. The quantum
transition function is

δ : Q× Σ3 → CQ×Σ3×{L,R}3 .

Note that each complex number must be computable. Unlike [BV93], there is no time bounds on
computing the transition amplitudes. Q is the set of states, Σ is the alphabets on the auxiliary,
output, and input tapes, and {L,R}3 is the action taken by the three heads. The evolution of M
is a computable unitary matrix uM .

Definition 7 (Indeterminate Length Quantum States) The separable Hilbert space Q =
⊕

n∈WQn

is the space of indeterminate length quantum states. An example indeterminate length quantum
state is

|ψ⟩ = 1√
2
(|00⟩+ |11011⟩).
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There is a start state |sC⟩ and a final state |fC⟩. If there exists a t ∈ N, where during the
operation of M input ρ, the control state M t′

C (ρ) is orthogonal to the final state |fC⟩ for all t′ < t,
with ⟨fC |M t′

C (ρ) |fC⟩ = 0, and ⟨fC |M t
C(ρ) |fC⟩ = 1, then M(ρ) is defined to be the qubit mixed

state σ corresponding to the ensemble of pure states determined by ensemble of pure states over
the contents of the output tapes at halting time. If one such pure state of the output tape is
|ψ⟩ =

∑N
i=1 αi |si##### . . .⟩, where each ∥si∥ can be different, then the resultant output pure

state is |ψ̃⟩ = ∑N
i=1 αi |si⟩. In this case, M(σ) is defined. If M(σ) is defined and runs in time t,

then for times t′ > t, the output tape is not changed. Otherwise, if the the control state evolution
is not defined as above, M(σ) is undefined. Thus the output can be a superposition of pure states
of different lengths, indeterminate length quantum states. Thus QTMs M can be thought of as
partial functions of the following form.

M :
⋃

n

Qn → Q.

Thus we only consider fixed-length inputs to QTMs M . This consists of elements of Q that are
superpositions of basis quantum states |ei⟩ of the same length.

One might argue that this definition with regard to the halting state is too restrictive, but as
shown [Mue07], for every input σ to a QTM that almost halts within a certain computable level
of precision, there is another state σ′ such that ∥σ′∥<+ ∥σ∥ that makes the universal QTM U halt
perfectly.

Quantum machines are not expected to produce the target states exactly, only an approximation
is required. To measure the closeness of states, the trace distance function is used.

Definition 8 (Trace Distance and Fidelity of Quantum States) D(σ, ρ) = 1
2∥σ−ρ∥1, where

∥A∥1 = Tr
√
A∗A. The trace distance obeys the triangle inequality. Fidelity is F (σ, ρ) =

(
Tr
√√

σρ
√
ρ
)2

,

with F (|ψ⟩ , σ) = ⟨ψ|σ |ψ⟩ and 1−D(ρ, |ψ⟩) < F (ρ, |ψ⟩).

Theorem 20 ([Mul08]) There is quantum Turing machine U such that for every QTM M and
mixed state σ for which M(σ) is defined, there is mixed state σ′ such that

D
(
U(σ′),M(σ)

)
< δ,

for every δ ∈ Q>0 where ∥σ′∥<+ ∥σ∥+K(M, δ).

One can define the complexity of a state σ with respect to an arbitrary quantum Turing machine.

Definition 9 The BvL Complexity of mixed state ρ with respect to QTM M and trace distance ϵ
is

HbvlϵM (ρ) = min
σ

{∥σ∥ : D(M(σ), ρ) < ϵ}.

The BvL Complexity of mixed state ρ with respect to QTM M is

HbvlM (ρ) = min
σ

{
∥σ∥ : ∀k, D(M (σ, k) , ρ) <

1

k

}
.

Due to Theorem 20 and the fact that the trace distance D follows the triangle inequality, using
the universal quantum Turing machine U, one can define the BvL complexity of a quantum state.
This differs from the original definition in [BvL01] where the program must achieve any degree of
precision.
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Theorem 21 ([Mul08]) For δ < ϵ ∈ Q>0, universal QTM U, for every QTM M ,

• HbvlϵU(σ) < HbvlδM (σ) +K(ϵ− δ,M).

• HbvlU(σ) < HbvlM (σ) +K(M).

Definition 10 (BvL Complexity)

• Hbvlϵ(σ) = HbvlϵU(σ).

• Hbvl(σ) = HbvlU(σ).

Remark 2 In fact, U is constructed from two different quantum Turing machines. The first ma-
chine, U0, realizes Hbvlϵ and the second machine, U1 realizes Hbvl. A bit in the input selects
which machine to use.

6.1 An Elementary Approximation of U

Remark 3 Let Ht
k be the linear subspace of Qk that spans pure states |ψ⟩ ∈ Qk such that U0(|ψ⟩)

is defined and halts in t steps. Due to [Mue07, Mul08], if t ̸= t′ then Ht
k ⊥ Ht′

k .

Theorem 22 ([Mue07, Mul08]) Given k, t, there is an algorithm that can enumerate Ht
k in

the form of elementary projections {Pi}, such that PiPj = δijPi and
∑

i Pi projects onto Ht
k.

Furthermore, all valid inputs σ to U0 have σ ≤ Pi for some Pi.

Lemma 7 Given t, k, δ one can compute an elementary quantum operation Ψt,δ
k : Qk → Q such

that if σ ∈ Ht
k then D(Ψt,δ

k (σ),U0(σ)) ≤ δ.

Proof. Let Ψ = Ψt,δ
k . The quantum operation Ψ starts by first applying quantum operation E1,

which appends 2t spaces to the auxiliary, input, and output tape, and then treating the tapes as
loops. The start state is appended as well as the header pointer at origin. Then it applies the
approximating elementary unitary matrix ũ corresponding to the unitary matrix u of U0 (with
shortened tapes) t times. Then it applies quantum operation E2, which projects all configurations
in the halting state |qf ⟩ of the form |si## . . .⟩ to |si⟩ and projects configurations with states other
than |qf ⟩ to λ ∈ Q0. So Ψ(σ) = E2(ũtE1(σ)ũt∗). It remains to determine the approximation matrix
ũ.

Let C be the finite configuration space. Let γ be a parameter to be determined later. First
cover C by elementary mixed states ρ ∈ Q, such that maxσ∈C minρ∈QD(σ, ρ) < γ/3. Next run the
algorithm to compute the transition function of U0 long enough to produce unitary matrix ũ such
that for all ρ ∈ Q, D(uρu∗, ũρũ∗) < γ/3. This is possible because the amplitudes of the transition
function of U0 can be computed to any accuracy. Thus for any σ ∈ C, for proper choice of ρ ∈ Q,
by the triangle inequality of trace distance,

D(uσut, ũσũ∗) < D(uσu∗, uρu∗) +D(uρu∗, ũρũ∗) +D(ũρũ∗, ũσũ∗)

< D(σ, ρ) + γ/3 +D(ρ, σ)

< γ.
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If ũ is run twice with any input σ ∈ Cn, the error is bounded by

D(ũ2σũ2∗, u2σu2∗) < D(ũ2σũ2∗, ũuσuũ) +D(ũuσuũ, u2σu2∗)

< D(uσu∗, ũσũ∗) + γ

< 2γ.

With similar reasoning, one can see that running ũ a total of ℓ times will produce a maximum error
of γℓ. So γ is set to equal δ/t. So for all σ ∈ Qk,

D(utE1(σ)ut∗, ũtE1(σ)ũt∗) < δ. (6.1)

If σ ∈ Ht
k,n, then E2(utE1(σ)ut∗) = U0(σ), so

δ ≥ D(utE1(σ)ut∗, ũtE1(σ)ũt∗)
≥ D(E2(ũtE1(σ)ũt∗), E2(utE1(σ)ut∗))
= D(Ψ(σ),U0(σ)).

□

6.2 BvL Complexity and Gács Complexity

We lower and upper bound BvL complexity by Gács complexity.

6.2.1 Lower Bound

Theorem 23 For |ψ⟩ ∈ Qn, Hg(|ψ⟩)<+Hbvlϵ(|ψ⟩ |n) +K(Hbvlϵ(|ψ⟩ |n), ϵ|n)− log(1− 1.01ϵ).

Proof. Let k = Hbvlϵ(|ψ⟩ |n). We construct a lower computable semi-density matrix ν by using
the algorithm (relativized to n) in Theorem 22, with fixed k and all t, which results in the enumera-

tion {Pi}, Pi is a projection operator for Ht(i)
k . We define ν to be equal to 2−kQ

∑
iΨ

t(i),0.01ϵ
k (Pi)Q,

where Ψ is defined by Lemma 7, and Q projects out everything but n qubit outputs.
Let σ realize Hbvlϵ(|ψ⟩), where ρ = U0(σ) in s steps, and D(ρ, |ψ⟩) < ϵ, and due to Theorem 22,

σ ≤ Pi for some i. So due to Lemma 7, if ξ = Ψs,0.01ϵ
k (σ), thenD(ξ, ρ) ≤ 0.01ϵ. SoD(ξ, |ψ⟩) < 1.01ϵ.

Since |ψ⟩ ∈ Qn, D(QξQ, |ψ⟩) < 1.01ϵ. So, due to the definition of trace distances and fidelity of
quantum states, F (|ψ⟩ , QξQ) = ⟨ψ|QξQ |ψ⟩ > 1−1.01ϵ. So, using reasoning analogous to Theorem
9 in [G0́1],

m(k, ϵ|n)ν ∗
<m(k, ϵ|n)2−kQ

∑

j

Ψ
t(j),0.01ϵ
k (Pj)Q

∗
< µ

m(k, ϵ|n)2−kQΨ
t(i),0.01ϵ
k (Pi)Q

∗
< µ

m(k, ϵ|n)2−kQΨs,0.01ϵ
k (σ)Q

∗
< µ

m(k, ϵ|n)2−k ⟨ψ|QξQ |ψ⟩ ∗
< ⟨ψ|µ |ψ⟩

m(k, ϵ|n)2−k(1− 1.01ϵ)
∗
< ⟨ψ|µ |ψ⟩

k +K(k, ϵ|n)− log(1− 1.01ϵ)>+Hg(|ψ⟩).

□

Proposition 1 For k ∈ N, Hbvl
1
k (σ|k) ≤ Hbvl(σ).
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Proof. Let ρ be a mixed state such that U1(ρ|·) realizes Hbvl(σ). By Definition 10, there is an
input ρ′ such that D(U0(ρ

′|2k),U1(ρ|2k)) < 1/2k where ∥ρ′∥ < ∥ρ∥ + cU1 . Since D(U1(ρ|2k), σ) <
1/2k, it must be that D(U0(ρ

′|2k), σ) < 1/k. So Hbvl
1
k (σ|k)=+Hbvl

1
k (σ|2k) ≤ Hbvl(σ). □

Corollary 4 For |ψ⟩ ∈ Qn, Hg(|ψ⟩)<+Hbvl(|ψ⟩ |n) +K(Hbvl(|ψ⟩ |n)|n).

Proof. From Theorem 23,

Hg(|ψ⟩ |2)<+Hbvl
1
2 (|ψ⟩) +K(Hbvl

1
2 (|ψ⟩), 1/2|n, 2).

From Propositions 1 and 2,

Hg(|ψ⟩)<+Hbvl(|ψ⟩) +K(Hbvl(|ψ⟩)|n).

□

Proposition 2 For every c, there is a c′ such that if a < b+ c then a+K(a) < b+K(b) + c′.

Proof. So K(a − b) < 2 log c + O(1). So K(a) < K(b) + 2 log c + O(1). Assume not, then
b− a+ c′ < K(a)−K(b) +O(1) < 2 log c+O(1), which is a contradiction for c′ > 2 log c+O(1).□

6.2.2 Upper Bound

Theorem 24 ([Eps20]) for |ψ⟩ ∈ Qn, Hbvlϵ(|ψ⟩ |n)<log Hg(|ψ⟩), where ϵ =
√
1− 2−Hg(|ψ⟩)−O(logHg(|ψ⟩)).

Proof. We use reasoning from Theorem 7 in [G0́1]. From Theorem 127 there exists a ρ such that
K(ρ|n)− log ⟨ψ| ρ |ψ⟩ <log k. Let ⌈− log ⟨ψ| ρ |ψ⟩⌉ = m. Let |u1⟩ , |u2⟩ , |u3⟩ , . . . be the eigenvectors
of ρ with eigenvalues u1 ≥ u2 ≥ u3 . . . For y ∈ N, let ρy =

∑y
i=1 ui |ui⟩ ⟨ui|. We expand |ψ⟩ in the

basis of {|ui⟩} with |ψ⟩ =
∑

i ci |ui⟩. So we have that
∑

i ui|ci|2 ≥ 2−m. Let s ∈ N be the first
index i with ui < 2−m−1. Since

∑
i ui ≤ 1, it must be that s ≤ 2m+2. So

∑

i≥s
ui|ci|2 < 2−m−1

∑

i

|ci|2 ≤ 2−m−1,

⟨ψ| ρ2m+2 |ψ⟩ ≥ Tr ⟨ψ| ρs |ψ⟩ >
∑

i<s

ui|ci|2 ≥ 2−m −
∑

i≥s
ui|ci|2 > 2−m−1.

We now describe a quantum Turing machine M that will construct ρ2m+2 . The input σ is an
ensemble {ui}2m+2

i=1 of vectors {|cB(i)⟩}, where B(i) is the binary encoding of index i ∈ N which is
of length m+ 2. Helper code c of size =+K(p|n) transforms each |cB(i)⟩ into |ui⟩. Thus the size
of the input is <+K(p|n) +m<log k. The fidelity, F , of the approximation is

⟨ψ| ρ2m+2 |ψ⟩ > 2−m−1 ≥ 2−k−c log k,

for proper choice of c ∈ N. Thus, given the properties of trace distance and fidelity, D(M(σ), |ψ⟩) <√
1− 2−k−c log k. Thus there is a program σ′ to the universal QTM U0 with ∥σ′∥<+ ∥σ∥ and c′ > c

such that D(U0(σ
′; k, n), |ψ⟩) <

√
1− 2−k−c′ log k. The theorem follows from this inequality. □
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6.3 BvL Complexity and Kolmogorov Complexity

One question is whether quantum mechanics provides benefits to compressing classical information.
This section answers this question in the negative: there are no such benefits. The quantitative
amount of information in classical sources is invariant to the physical model used. These con-
sequences make this section arguably the most important part of this manuscript. This section
details the work of [Mue07, Mul09], which proves that plain Kolmogorov complexity equals BvL
complexity. The original theorems of [Mue07, Mul09] in this section require in depth properties
of universal QTM U0 in their proofs. In this section, a simpler proof is presented, only relying on
Theorem 22 for characterization of U0.

6.3.1 Prefix Free Complexity with Error

In this section, prefix free Kolmogorov complexity is related toHbvlϵ complexity. The first corollary
has n as a conditional term. In the rest of the section, the result of the corollary without this term
is proved.

Corollary 5 For x ∈ {0, 1}n,

K(x|n)<+Hbvlϵ(|x⟩ ⟨x| |n) +K(Hbvlϵ(|x⟩ ⟨x| |n), ϵ|n)− log(1− 1.01ϵ).

Proof. The corollary comes from Theorems 8 and 23. □

We use the notion of the universal lower computable semi density operator ν over the space Q of
indeterminate quantum states introduced in Section 6.7. The following theorem is an improvement
to results in [Mul09].

Theorem 25 K(x)<+Hbvlϵ(|x⟩ ⟨x|) +K(Hbvlϵ(|x⟩ ⟨x|), ϵ)− log(1− 1.01ϵ).

Proof. Let k = Hbvlϵ(|y⟩ ⟨y|). We use the algorithm in Theorem 22 to enumerate projections Pi

for Ht
k, for fixed k and all t. We construct the semi-density operator ν = 2−k

∑
iΨ

t(i),0.01ϵ
k (Pi) over

the space of indeterminate quantum states Q.
Let σ realize Hbvlϵ(|x⟩), where ρ = U0(σ) in s steps, and D(ρ, |x⟩) < ϵ, and due to Theorem 22,

σ ≤ Pi for some i. So due to Lemma 7, if ξ = Ψs,0.01ϵ
k (σ), thenD(ξ, ρ) ≤ 0.01ϵ. SoD(ξ, |ψ⟩) < 1.01ϵ.

So, due to the definition of trace distances and fidelity of quantum states, F (|ψ⟩ , ξ) = ⟨ψ| ξ |ψ⟩ >
1− 1.01ϵ. So, using reasoning analogous to Theorem 9 in [G0́1], and due to Theorem 35,

m(k, ϵ)ν
∗
<m(k, ϵ)2−k

∑

j

Ψ
t(j),0.01ϵ
k (Pj)

∗
< ν

m(k, ϵ)2−kΨ
t(i),0.01ϵ
k (Pi)

∗
< ν

m(k, ϵ)2−kΨs,0.01ϵ
k (σ)

∗
< ν

m(k, ϵ)2−k ⟨x| ξ |x⟩ ∗
< ⟨x|ν |x⟩

m(k, ϵ)2−k(1− 1.01ϵ)
∗
<m(x)

k +K(k, ϵ)− log(1− 1.01ϵ)>+K(x).

□
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Theorem 25 can be used to prove a weaker version of Müller’s Theorem, as shown in the following
corollary.

Corollary 6 K(x)<+Hbvl(|x⟩ ⟨x|) +K(Hbvl(|x⟩ ⟨x|)).

Proof. By Theorem 25,

K(x)<+Hbvl
1
2 (|x⟩ ⟨x|) +K(Hbvl

1
2 (|x⟩ ⟨x|), 1/2).

By Propositions 1 and 2 ,

K(x)<+Hbvl(|x⟩ ⟨x|) +K(Hbvl(|x⟩ ⟨x|)).

□

6.3.2 Müller’s Theorem

The following new proof of Müller’s Theorem is self contained, in that the only characterization of
the universal QTM U0 needed is Theorem 22.

Theorem 26 ([Mue07, Mul09])

C(x)=+Hbvl(|x⟩ ⟨x|).

Proof. Hbvl(|x⟩ ⟨x|)<+C(x) because a universal QTM can simulate a classical Turing ma-
chine. Let j = 2k+5 be the precision parameter. Let k = Hbvl1/j(|x⟩ ⟨x| |j). By Proposition

k <+Hbvl(|x⟩ ⟨x|). Let Ψt,δ
k (·|j) be equal to Ψt,δ(·) with the universal QTM U0 (and the QTMs it

simulates) with j on the auxilliary tape. Using Theorem 22, enumerate all projection operators Pi
of Ht

k (relativized to j) for fixed k over all t. So Tr
∑

i Pi ≤ 2k. For each Pi enumerated, compute

Oi = Ψ
t(i),1/j
k (Pi), where each Oi is a positive operator over Q with Tr

∑
iOi ≤ 2k.

Assume there is a k qubit input σ ≤ Pi and a pure state |ψ⟩ ∈ Qℓ such that D(U0(σ, j), |ψ⟩) <
1/j. If ξ = Ψ

t(i),1/j
k (σ|j) ≤ Oi then D(ξ,U0(σ, j)) < 1/j and by the triangle inequality of trace

distances, D(ξ, |ψ⟩) < 2/j and so 1 − 2/j < F (ξ, |ψ⟩) = ⟨ψ| ξ |ψ⟩ ≤ ⟨ψ|Oi |ψ⟩ = ⟨ψ|Oℓi |ψ⟩, where
Oℓi = QℓOiQℓ, where Qℓ is the projector onto Qℓ.

Let N ℓ
i be a projection over Qℓ defined from Oℓi in the following way. Since Oℓi =

∑
i vi |ei⟩ ⟨ei|

for some orthonormal basis {|ei⟩}, of Qℓ, we define N ℓ
i to be equal to

∑
i[1/2 ≤ vi] |ei⟩ ⟨ei|. So

TrN ℓ
i ≤ 2TrOℓi ≤ 2k+1. Some simple math shows that if ⟨ψ|Oℓi |ψ⟩ ≥ 1 − 2/j, then ⟨ψ|N ℓ

i |ψ⟩ ≥
1−4/j = 1−2−k−3. By Lemma 8, there can be only at most 2TrN ℓ

i classical states |y⟩, y ∈ {0, 1}ℓ,
with ⟨y|N ℓ

i |y⟩ ≥ 1− 2−k−3. Since Tr
∑

i,j N
j
i ≤ 2k+1, there only at most 2k+1 classical strings |y⟩

such that there is a k qubit state ρ such that D(U0(ρ, j), |y⟩) < j−1.
So we define an algorithm that takes in a k+1 bit number b. For all i, j, it enumerates Pi,

Oi, and then each Oji and N j
i . Then it determines the set {|y⟩} for classical strings y ∈ {0, 1}ℓ

such that ⟨y|N ℓ
i |y⟩ > 1 − 2−k−3 for some i ∈ N. If |y⟩ is the bth state discovered with this

condition, then return y. By the definition of k, there is a k qubit input ρ and Pi ≥ ρ such that
D(U0(ρ, j), |x⟩) < 1/j, so x will be returned for proper choice of b. So C(x)<+Hbvl(|x⟩). □

Lemma 8 For a rank m projection matrix P in Cn, assume there is a orthonormal set {|ei⟩}Ni=1

such that ⟨ei|P |ei⟩ > 1− 1/4m for all i. Then N < 2m.
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Proof. Let Q = In − P . So ⟨ei|Q |ei⟩ ≤ 1/4m. By the Cauchy Schwarz inequality | ⟨ei|Q|ej⟩ |2 ≤
⟨ei|Q |ei⟩ ⟨ej |Q |ej⟩ ≤ (1/4m)2. So | ⟨ei|Q|ej⟩ | ≤ 1/4m.

0 = ⟨ei|ej⟩ = ⟨ei|P +Q|ej⟩
0 = ⟨ei|P |ej⟩+ ⟨ei|Q|ej⟩

| ⟨ei|P |ej⟩ | ≤ | ⟨ei|Q|ej⟩ | ≤ 1/4m.

Let ci = (⟨ei|P |ei⟩)1/2, where c2i ≥ 1 − 1/4m. Let |fi⟩ = c−1
i P |ei⟩ be a normalized vector. So for

i ̸= j,
| ⟨fi|fj⟩ | ≤ | ⟨ei|P |ej⟩ |/(cicj) ≤ (1/4m)/(1− 1/4m) ≤ m−1/2/2.

The following reasoning is due to [Tao]. Suppose for contradiction N ≥ 2m. We consider the
2m× 2m Gram matrix (⟨fi|fj⟩), 1 ≤ i, j ≤ 2m. This matrix is positive semi-definite with rank at
most m. Thus if one subtracts off the identity matrix, it has an eigenvalue of −1 with multiplicity
at least m. Taking Hilbert-Schmidt norm, we conclude

∑

1≤i,j≤2n;i ̸=j
| ⟨fi, fj⟩ |2 ≥ m.

But the left-hand side is at most 2m(2m− 1) 1
4m = m− 1

2 , giving the desired contradiction. □

The following theorem compliments Corollary 5(1). The full proof is in [Mue07] and a proof
sketch is in [Mul09].

Theorem 27 ([Mue07, Mul09]) Given ϵ ∈ (0, 1/2e) ∩Q,

C(x)<+ 1

1− 4ϵ
Hbvlϵ(|x⟩) +K(ϵ).

6.4 BvL Complexity and Vitányi Complexity

Theorem 28 For |ψ⟩ ∈ Qn, Hbvlϵ(|ψ⟩ |n)<+Hv(|ψ⟩)+K(Hv(|ψ⟩)) where ϵ =
√
1− 2−Hv(|ψ⟩)−1.

Proof. Let k = ⌈Hv(|ψ⟩)⌉. Let |ϕ⟩ be the elementary state that realizes Hv(|ψ⟩). Thus ⟨ϕ|ψ⟩2 ≥
2−k, which implies D(|ψ⟩ , |ϕ⟩) ≤

√
1− 2−k. Let M be a quantum Turing machine that takes the

input |0⟩ to |ϕ⟩. Thus K(M)<+K(|ϕ⟩) ≤ k.
Thus there is an input to the universal quantum Turing machine U0 consisting of a description

(M, δ), where parameter δ such that
√
1− 2−k + δ =

√
1− 2−k−1, as well as the input |0⟩ to M .

This parameter δ is simple relative to k. Thus thus the input is size k + K(k) + O(1) and will
output a state |ϕ′⟩ such that D(|ψ⟩ , |ϕ′⟩) ≤

√
1− 2−k−1. □

The following inequality uses the Definition 6, ⟨|ψ⟩⟩ and Definition 1, I.

Theorem 29 Hv(|ψ⟩)<log Hbvlϵ(|ψ⟩) +K(ϵ|n) + I(⟨|ψ⟩⟩ : H|n)− log(1− 1.01ϵ).

Proof. This follows from Theorems 17 and 23. □
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6.5 Incompressibility of BvL Complexity

In this section, lower bounds on the BvL complexity of ensembles of quantum states is proved.
This is a presentation of Section 6.2 in [BvL01] with some clarifications added to the main proof.
We note that χ is Holevo’s Chi.

Theorem 30 (Lindblad-Uhlmann monotonicity) For ensemble E = {(ρi, pi)} and completely
positive, trace preserving mapping map Ψ, χ(Ψ(E)) ≤ χ(E), where Ψ(E) = {Ψ(ρi, pi)}.

Lemma 9 (Von Neumann Entropy Limit) If sequence ρ1, ρ2, . . . has limk→∞ ρk = ρ then
limk→∞ S(ρk) = S(ρ).

Theorem 31 ([BvL01]) For any set of states ρ1, . . . , ρM such that ∀iHbvl(ρi) ≤ l, then

l ≥ S(ρ)− 1

M

∑

i

S(ρi),

where ρ = 1
M

∑
i ρi.

Proof. Let σ1, . . . , σM be the minimal U0 programs for ρ1, . . . , ρM . Let ℓ = maxi ∥σi∥. Let $k be
the quantum operation associated with the universal QTM U0, with parameter k.

• E = {(ρi, 1
M )},

• Eσ = {(σi, 1
M )},

• Ek = {(ρk,i, 1
M )}, ρi = $k(σi).

By the monotonicity of Theorem 30, χ(Ek) ≤ χ(Eσ). The chi factor of the ensemble Eσ is upper
bounded by the maximum length of its inputs, with χ(Eσ) ≤ maxi ∥σi∥ ≤ ℓ. The only thing to
prove is that χ(Ek) for sufficiently big k is close to χ(E).

By definition , for all i, limk→∞D(ρi, ρk,i) = 0, so limk→∞ ρk,i = ρi. Because E and Ek have
only a finite number (M) of states, by Lemma 9, one has that limk→∞ χ(Ek) = χ(E). This means
for any δ there exists a k such that χ(E)− δ ≤ χ(Ek). With the above inequalities we can conclude
that χ(E)− δ ≤ l holds for arbitrarily small δ > 0 and so l ≥ χ(E). □

Corollary 7 For any set of orthogonal pure states |ϕ1⟩ , . . . , |ϕM ⟩ of length n, there is an i such
that Hbvl(ϕi) ≥ logM .

Proof. All pure states have zero entropy S(ϕi) = 0, hence by Theorem 31, l ≥ S(ρ). Because all
ϕis are mutually orthogonal, this Von Neumann entropy S(ρ) of the average state ρ = 1

M

∑
i |ϕi⟩ ⟨ϕi|

equals logM .

Corollary 8 For every length n, at least 2n − 2n−c + 1 qubit strings of length n have complexity
at least n− c.

Corollary 9 For any set of pure states |ϕ1⟩ , . . . , |ϕM ⟩ of length n, there is an i such that Hbvl(ϕi) ≥
S(ρ), where ρ = 1

M

∑
i |ϕi⟩ ⟨ϕi|.
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6.5.1 A Quantum Counting Argument

Lemma 10 (Fannes Inequality) For density matrices ρ and σ with D(ρ, σ) ≤ 1/e,

|S(ρ)− S(σ)| ≤ 2D(ρ, σ) log d+ η(2D(ρ, σ)),

where d is the dimension of the Hilbert space and η(x) = −x log x ≥ 0.

Lemma 11 ([Mue07, Mul09]) Let H and H′ be separable Hilbert spaces with 0 < d = Dim(H) <
∞ and 0 ≤ δ < 1

2e . If E is a quantum operation from H to H′ then the maximal number N of
mutually orthonormal vectors on H′ which are produced by H within trace distance δ is not more
than

logN ≤ log d+ 4δ log 1
δ

1− 4δ
.

Proof. For δ = 0 the theorem is trivial so we can assume that δ > 0. Let Nδ be a set of
orthonormal vectors |ψ⟩ ∈ H′ such that for each |ψ⟩ there is a density operator σ on H with

D(E(σ), |ψ⟩ ⟨ψ|) ≤ δ.

Let Nδ = {|φi⟩}Ni=1. Thus there exists σi on H with D(E(σi), |φi⟩ ⟨φi|) ≤ δ. For 1 ≤ i ≤ N , define

the projectos Pi = |φi⟩ ⟨φi| and PN+1 = I −∑N
i=1 |φi⟩ ⟨φi|. Let {|k⟩}Dim(H′)

k=1 be an orthonormal
basis of H′. We define a quantum operation Q : H′ → CN+1 with

Q(ρ) =
N+1∑

i=1

Dim(H′)∑

k=1

|ei⟩ ⟨k|PiρPi |k⟩ ⟨ei| .

The set {|ei⟩}N+1
i=1 is the canonical orthonormal basis of CN+1. The operation Q is completely

positive and trace-preserving. For j ∈ [1, . . . , N ],

Q(Pj) = |ej⟩ ⟨ej | .

Let Eσ be equal to the ensemble
{

1
N , σi

}N
i=1

and let σ = 1
N

∑N
i=1 σi. We have, with χ equal to

Holevo’s Chi, and S(·, ·) being relative entropy.

χ(Q ◦ E(Eσ)) =
1

N

N∑

i=1

S(Q ◦ E(σi),Q ◦ E(σ)) ≤ 1

N

N∑

i=1

S(σi, σ)

= χ(Eσ) ≤ log d.

Since trace distance is monotone, for every 1 ≤ i ≤ N .

D(Q ◦ E(σi),Q(Pi)) ≤ D(E(σi), Pi) = D(E(σi), |φi⟩ ⟨φi|) ≤ δ.

Let ∆ = 1
N

∑N
i=1Q(Pi) =

1
N

∑N
i=1 |ei⟩ ⟨ei|, with S(δ) = logN , and

D(Q ◦ E(σ)),∆)
1

N

N∑

i=1

D(Q ◦ E(σi),Q(Pi)) ≤ δ.

Using Fannes Inequality (Lemma 10) gives us

S(Q ◦ E(σi)) = |S(Q ◦ E(σi))− S(Q(Pi))| ≤ 2δ log(N + 1) + η(2δ),

|S(Q ◦ E(σi))− S(Q(∆))| ≤ 2δ log(N + 1) + η(2δ).
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So we get the final inequality, with

log d ≥ χ(Q ◦ E(Eσ)) = S(Q ◦ E(σ))− 1

N

N∑

i=1

S(Q ◦ E(σi))

≥ S(∆)− 2δ log(N + 1)− η(2δ)− 1

N

N∑

i=1

(2δ log(N + 1) + η(2δ))

= logN − 4δ log(N + 1)− 2η(2δ)

≥ (1− 4δ) logN − 4δ log 2 + 4δ log(2δ).

□

6.5.2 Incompressibility for Approximate BvL Complexity

Theorem 32 ([Mue07]) Let δ ∈
(
0, 1

2e

)
and let |ψ1⟩ , . . . , |ψn⟩ ∈ Q be e a set of mutually or-

thonormal pure qubit strings. Then there is an i ∈ {1, . . . , n} where

Hbvlδ(|ψi⟩) > (1− 4δ) log n− 1− 4δ log
1

δ
.

Proof. Let l = max{Hbvlδ(|ψi⟩ : i ∈ {1, . . . n}}. Then there exists σi, ∥σi∥ ≤ l whereD(U(σi), |ψi⟩ ⟨ψ|i) <
δ, where U is the quantum operation that corresponds to the universal QTM U0. Thus, Theorem
11 gives

log n ≤ l + 1 + 4δ log 1
δ

1− 4δ
.

So l > (1− 4δ) log n− 1− 4δ log 1
δ .

Theorem 33 ([Mue07]) Let |ψ1⟩ , . . . , |ψn⟩ ∈ Q be a set of pure states. There exists an i ∈
{1, . . . , n} such that

Hbvlδ(|ψi⟩) > S


 1

n

n∑

j=1

|ψj⟩ ⟨ψj |


− 4δ log

n+ 1

2δ
− 1,

where S is von Neumann entropy.

Proof. Let l = max{Hbvlδ(|ψi⟩) : i ∈ {1, . . . , n}}}. Then there exists operators {σi} of length
not more than l with D(U(σi), |ψi⟩ ⟨ψi|) < δ, where U is the quantum operation that corresponds
to the universal QTM U0.

Let H = Span({|ψi⟩ni=1}) and N = Dim(H) and V : H → CN+1 be an arbitrary isometry (a
unitary map from H to some N -dimensional subspace of CN+1). Let |e⟩ ∈ CN+1 be a normalized
vector from Range(V )⊥. Define a quantum operation O from Q to CN+1 with

O(ρ) = V PHρPHV
∗ +

∞∑

k=1

|e⟩ ⟨k| (I − PH)ρ(I − PH) |k⟩ ⟨e| ,

where {|k⟩}∞k=1 is an orthonormal basis of H⊥ in Q, and PH is the orthogonal projector onto H. It
easy to see that O is a trace preserving quantum operation. Also, for every i ∈ {1, . . . , n},

O(|ψi⟩ ⟨ψi|) = V |ψi⟩ ⟨ψi|V ∗
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Since trace distance is monotone with respect to quantum operations,

D(O ◦ U(σi),O(|ψi⟩ ⟨ψi|)) ≤ D(U(σi), |ψi⟩ ⟨ψi|) ≤ δ.

Let ∆ = 1
n

∑n
i=1O(|ψi⟩ ⟨psii|). Since the trace distance is jointly convex,

D

(
O ◦ U

(
1

n

n∑

i=1

σi

)
,∆

)
≤ 1

n

n∑

i=1

D(O ◦ U(σi),O(|ψi⟩ ⟨ψi|)) ≤ δ.

For i ∈ {1, . . . , n}, the Fannes inequality (Lemma 10) gives

∣∣∣∣∣S(∆)− S

(
1

n

n∑

i=1

O ◦ U(σi)
)∣∣∣∣∣ ≤ 2δ log(N + 1) + η(2δ),

|S(Q ◦ U(σ))− S(V |ψi⟩ ⟨ψi|V ∗)| ≤ 2δ log(N + 1) + η(2δ),

S(Q ◦ U(σ)) ≤ 2δ log(N + 1) + η(2δ),

where η(x) = −x log x > 0. Consider the ensemble Eσ =
{

1
n , σi

}n
i=1

. The monotonicity property of
Holevo’s χ results in

l + 1 > χ(Eσ) ≥ χ(U(Eσ)) ≥ χ(O ◦ U(Eσ))

= S

(
1

n

n∑

i=1

O ◦ U(σi)
)

− 1

n

n∑

i=1

S(O ◦ U(σi))

≥ S(∆)− 2δ log(N + 1)− η(2δ)− 1

n

n∑

i=1

(2δ log(N + 1) + η(2δ))

= S

(
1

n

n∑

i=1

|ψ⟩ ⟨ψ|
)

− 4δ log(N + 1)− 4δ log
1

δ
.

The theorem follows from the fact that N ≤ n.

6.6 No Cloning Theorem

Theorem 34 ([BvL01]) log
(
m+2n−1
m−1

)
≤ max|ψ⟩Hbvl(|ψ⟩m)<+ log

(
m+2n−1
m−1

)
+K(m,n).

Proof. Let N = 2n. We proof the upper bound first. Let Sym(Hm
N ) be the smallest linear space

that contains pure states of the form |ψ⟩m. As shown in the proof of Theorem 18, the dimension of
Sym(Hm

N ) is d =
(
n+N−1
N−1

)
. So there is a unitary transform u from Hd to Sym(Hm

N ). Thus there is
a quantum Turing machine M such that for every |ψ⟩ ∈ Sym(Hm

N ), there is a pure state |ϕ⟩ ∈ Qd,
such that M(|ϕ⟩) = |ψ⟩. Thus the universal QTM U0 on input (M, |ϕ⟩ , k) can produce an output
|ψ̃⟩ such that D(|ψ⟩ , |ψ̃⟩) < 1/k. This implies

Hbvl(|ψ⟩m)<+ log d+K(m,n).

Now we prove the lower bound. Consider an orthogonal basis of pure states {|ψi⟩} over Sym(Hm
N )

(defined in the proof of Theorem 18) with i ∈ {1, . . . , d}, where d =
(
m+N−1
m−1

)
. By Corollary 7,

there is an i where Hbvl(|ψi⟩) ≥ log d. □
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6.7 Indeterminate Gács Complexity

In this section, we introduce indeterminate Gács complexity, Hn, which is a version of Gács entropy,
except over the space Q of indeterminate length quantum states. Indeterminate Gács complexity
has deep connections to the universal QTM U0. Hn is related to the expected fidelity of a state
with the output of U0 when given a random input.

6.7.1 Properties of Hn

A semi-density operator σ is a positive semidefinite operator over Q of non negative trace no more
than 1. An elementary pure state |ψ⟩ ∈ Q is a normalized vector with elementary coefficients
residing in a finite number of subspaces Qn. An elementary semi-density operator can be decom-
posed into

∑N
i=1 vi |ψi⟩ ⟨ψi|, where |ψi⟩ is an elementary pure state and each vi ∈ R≥0 is algebraic.

A semi-density operator σ is lower computable if there is an algorithm that outputs a sequence
{vi, |ψi⟩}∞i=1, where each vi ∈ R≥0 is algebraic and |ψi⟩ is elementary and σ =

∑∞
i=1 vi |ψi⟩ ⟨ψi|.

The lower complexity of such σ is m(σ) =
∑{m(p) : p lower computes σ}. There exists a uni-

versal lower computable semi-density operator ν, such that for all lower computable semi-density

operators σ, ν
∗
>m(σ)σ. This is constructed in the standard way in algorithmic information theory.

Definition 11 (Indeterminate Gács Complexity) For operator σ over Q, Hn(σ) = ⌈− log Trνσ⌉.

Exercise 7 For density operator σ over Qn, prove Hg(σ)<+Hn(σ)<+Hg(σ) +K(n).

The following theorem is analogous to Theorem 8, except the conditioning on the number of qubits,
n, is removed. Thus, this theorem displays the advantage of using ν instead of µ.

Theorem 35 For x ∈ {0, 1}∗, Hn(|x⟩)=+K(x).

Proof. Since ν is a lower computable semi-density operator, its trace is not more than 1, so p(x) =

⟨x|ν |x⟩ is a lower computable semi-measure. So p(x)
∗
<m(x). Let σ be the lower computable semi

density operator σ =
∑

x∈{0,1}∗ m(x) |x⟩ ⟨x|. So ν
∗
> σ which implies ⟨x|ν |x⟩ ∗

> ⟨x|σ |x⟩ ∗
>m(x).□

Similarly to µ, the universal matric ν can be decomposed into a weighted sum of elementary
indeterminate states.

Theorem 36 ν
∗
=
∑{m(|ψ⟩) |ψ⟩ ⟨ψ| : |ψ⟩ is elementary}.

Proof. The operator ρ =
∑{m(|ψ⟩) |ψ⟩ ⟨ψ| : |ψ⟩ is elementary} is a lower computable semi-

density operator, so ν
∗
> ρ. Furthermore, any lower computable semi-density operator σ can be

decomposed into
∑

i∈N p(i) |ψi⟩ ⟨ψi|, where each |ψi⟩ is elementary and p is a lower computable

semi-measure. Thus we have that m(p)p
∗
< m and so σ

∗
<
∑

im(i) |ψi⟩ ⟨ψi| /m(p). Thus the
bounds come from setting σ to ν. □

Indeterminate Gács complexity is non increasing on elementary quantum operations that pre-
serve rank.

Theorem 37 Let E : Q → Q be an elementary quantum operation and let E(|ψ⟩) be a pure state.
Hn(E(|ψ⟩))<+Hn(|ψ⟩) +K(E).
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Proof. Let |ξ⟩ = E(|ψ⟩). The semi-density operator νE =
∑

Elementary |ϕ⟩∈Qm(E(|ϕ⟩ ⟨ϕ|))E(|ϕ⟩ ⟨ϕ|)
is lower computable, with m(E)νE

∗
< ν. So, due to monotonicity of fidelity with respect to quantum

operations and Theorem 36,

⟨ψ|ν |ψ⟩ =
∑

Elementary |ϕ⟩∈Q

m(|ϕ⟩)F (|ψ⟩ , |ϕ⟩)

≤
∑

Elementary |ϕ⟩∈Q

m(|ϕ⟩)F (|ξ⟩ , E(|ϕ⟩))

∗
<

∑

Elementary |ϕ⟩∈Q

m(E(|ϕ⟩))F (|ξ⟩ , E(|ϕ⟩))/m(E)

∗
= ⟨ξ|νE |ξ⟩ /m(E)
∗
< ⟨ξ|ν |ξ⟩ /m(E).

□

6.8 Serialization of Quantum States

In Chapter 9, it is shown that for any POVM, when it is applied to quantum states, the overwhelm-
ing result is a classical probability with no self-information. This implies a computational barrier
in learning the contents of a quantum state. This question looks into the question as whether
there is a quantum Turing machine that can directly transform quantum states into their classical
descriptions. The answer to this question is negative. We also prove the existence a universal de-
serializer, which converts classical descriptions into quantum states. The author considers results
in this section to be folklore.

6.8.1 No Universal Serializer

Theorem 38 A serializer M is a QTM such that M(|ψ⟩ |ϵ) = ⟨|ϕ⟩⟩ and D(|ψ⟩ , |ϕ⟩) < ϵ. Serializ-
ers don’t exist.

Proof. Let δ = 0.001. Due to Remark 3, the domain M is a set of orthogonal linear subspaces
Ht
k, which are inputs of size k that cause M(·|δ) to halt in t steps. Furthermore, Ht

k ⊥ Ht′
k when

t ̸= t′. It must be there is a (t, k) where Dim(Ht
k) > 1. Otherwise the domain ofM(·|δ) is countable,

causing a contradiction.
So there exists quantum states |ψ⟩ , |ϕ⟩ ∈ Ht

k where D(|ψ⟩ , |ϕ⟩) = 0.5. Let |Aξ⟩ = |⟨δ⟩⟩ |ξ⟩ |#2t⟩
represent the starting state of QTM M , |⟨δ⟩⟩ is the auxilliary tape, |ξ⟩ is the input tape, and |#2t⟩
is the output tape. So 0 < | ⟨Aψ|Aϕ⟩ |2.

Let UM , the finite unitary matrix associated with M ’s transition function when the tapes are
restricted to 2t cells (using wrap around to 0 for when a head moves right from the 2t position. So
0 < D(|Aψ⟩ , |Aϕ⟩) < 1. However

UM |Aψ⟩ = |x⟩ |y⟩ |⟨|ν⟩⟩⟩)
UM |Aϕ⟩ = |x⟩ |y⟩ |⟨|µ⟩⟩⟩),

where |ν⟩ ≠ |µ⟩. So UM |Aψ⟩ ⊥ UM |Aϕ⟩, causing a contradiction. □
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6.8.2 Universal Deserializer

Theorem 39 There is a QTM M , such that given elementary quantum state |ϕ⟩ and ϵ ∈ R>0,
D(M(⟨|ϕ⟩ , ϵ⟩), |ϕ⟩) < ϵ.

Proof. This follows almost immediately from Theorem 6.11 in [BV93]. The M simulates an
elementary unitary matrix U such that U |0n⟩ = |ϕ⟩ on |0n⟩ to an acceptable degree of accuracy.

6.9 Quantum Unitary Complexity

In this section, the quantum unitary complexity of a quantum state is introduced. In a canonical
algorithmic information theory example, Alice wants to send a single text message x to Bob. Alice
sends a program p to B such that x = U(p), where U is a fixed universal Turing machine. The
cost of the transmission is the length of p. Alice can minimize cost by sending K(x) bits to Bob,
where K is the Kolmogorov complexity function. We now look at the quantum case. Suppose
that Alice wants to send a (possibly mixed) n qubit quantum state σ to Bob. Alice has access
to two channels, a quantum channel and a classical channel. Alice can choose to send m ≤ n
qubits ρ on the quantum channel and P regular bits p on the classical channel, representing an
encoding of unitary operation V , and m, where U(p) = (V,m). Bob, upon receiving ρ and p,
constructs the unitary operation V , and then applies it to ρ (tensored with |0n−m⟩) to produce
σ′ = V (|0n−m⟩ ρ ⟨0n−m|)V ∗. Bob is not required to produce σ exactly. Instead the precision of the
attempt is measured by trace distance between σ and σ′.

A quantum unitary pair (V,m) consists of two parts, (1) an elementary unitary transform over
Qn, and (2) the number of qbits m ≤ n that are connected to the quantum input. Cn,m be the
set of all quantum pairs over n qbits with an input size of m. The precision is measured using the
trace distance D.

Definition 12 For density matrix σ, the quantum unitary complexity at accuracy ϵ is
Hucϵ(σ) = min{K(V,m) +m: (V,m) ∈ Cn,m, ξ ∈ S(Mm), D(σ, V (|0n−m⟩ ξ ⟨0n−m|)V ∗) < ϵ}.

Definition 13 For density matrix σ, its quantum unitary complexity is
Huc(σ|y) = min{K(V,m|y) +m: (V,m) ∈ Cn,m, ξ ∈ S(Mm), σ = V (|0n−m⟩ ξ ⟨0n−m|)V ∗}.

Lemma 12 Let Rj be the smallest subspace spanned by pure states produced by quantum unitary
pairs (V, z) ∈ Cn,z with K((V, z)) + z < j . Then Dim(Rj) < 2j.

Proof. Let b(y, z) be the number of programs of length y that outputs an quantum unitary pair
(V, z) ∈ Cn,z. Let b(y) =

∑
z≤n b(y, z)

Dim(Rj) ≤
∑

y+z<j

b(y, z)2z

= 2j
∑

y+z<j

b(y, z)2z−j

< 2j
∑

y,z

b(y, z)2−y

= 2j
∑

y

b(y)2−y

≤ 2j .

47



□

The following theorem uses Huc conditioned on n, which means the universal Turing machine
U has n on an auxiliary tape.

Theorem 40 Hg(σ)<+Hucϵ(σ|n)− log(1− ϵ).

Proof. Let quantum unitary pair (V,m) ∈ Cn,m and input ρ ∈ S(Mm) realize Hucϵ(σ|n), where
D(σ, ξ) < ϵ, and ξ = V (|0n−m⟩ ρ ⟨0n−m|)V ∗. Let Ik be the projection to k length inputs. So for
ν = V ImV

∗, Trνξ = 1. By the properties of trace distances, this implies that Trνσ > 1 − ϵ. We
define the following lower computable semi-density matrix,

λ =
n∑

m=1

2−m
∑

(V,m)∈Cn,m

m((V,m)|n)V ImV ∗,

where Im is the projection onto m length states. So

2−mm((V,m)|n)ν ≤ λ
∗
< µ.

This implies that

m((V,m)|n)2−m(1− ϵ) ≤ m((V,m)|n)2−mTrσν ∗
< Trµσ.

So
Hg(σ)<+K((V,m)|n) +m− log(1− ϵ)=+Hucϵ(σ|n)− log(1− ϵ).

□

Theorem 41 Hg(σ)<+Huc(σ|n).

Proof. Let quantum unitary pair (V,m) ∈ Cn,m and input ρ ∈ S(Mm) realize Hucϵ(σ|n), where
σ = V (|0n−m⟩ ρ ⟨0n−m|)V ∗. Let Ik be the projection to k length inputs. So for ν = V ImV

∗,
Trνσ = 1. We define the following lower computable semi-density matrix,

λ =
n∑

m=1

2−m
∑

(V,m)∈Cn,m

m((V,m)|n)V ImV ∗,

where Im is the projection onto m length states. So

2−mm((V,m)|n)ν ≤ λ
∗
< µ.

This implies that

m((V,m)|n)2−m ≤ m((V,m)|n)2−mTrσν ∗
< Trµσ.

So
Hg(σ)<+K((V,m)|n) +m=+Huc(σ|n).

□

Theorem 42 For x ∈ {0, 1}∗, K(x)<+Hucϵ(|x⟩)− log(1− ϵ).
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Proof. Let quantum unitary pair (V,m) ∈ Cn,m and input σ ∈ S(Mm) realize Hucϵ(|x⟩), where
D(|x⟩ ⟨x| , ξ) < ϵ, and ξ = V (|0n−m⟩σ ⟨0n−m|)V ∗. Let Ik be the projection to k length inputs. So
for ρ = V ImV

∗, Trρξ = 1. By the properties of trace distances, this implies that ⟨x| ρ |x⟩ > 1− ϵ.
We define the following lower computable semi-density matrix,

λ =
n∑

m=1

2−m
∑

(V,m)∈Cn,m

m(V,m)V ImV
∗,

where Im is the projection onto m length states. So, using the universal semi-density operator ν
over indeterminate length quantum states,

2−mm(V,m)ρ ≤ λ
∗
< ν.

This implies that

m(V,m)2−m(1− ϵ) ≤ m(V,m)2−m ⟨x| ρ |x⟩ ∗
< ⟨x|ν |x⟩ .

So by the definition of Gács Indeterminate Complexity and Theorem 35

K(x)=+Hn(|x⟩)<+K(V,m) +m− log(1− ϵ)=+Hucϵ(|x⟩)− log(1− ϵ).

□

Theorem 43 Let |ψ⟩ vary over pure n qubit states and Qϵ,n,m = max|ψ⟩Hucϵ(|ψm⟩). Then we

have that log
(
2n+m−1

m

)
<+Qϵ,n,m<

+K(n,m) + log
(
2n+m−1

m

)
.

Proof. Let M =
(
2n+m−1

m

)
. As seen in the proof of Theorem 18, for pure n qubit states |ψ⟩,

the smallest linear subspace S of pure states |ψm⟩ has dimension M . Let T be the subspace of
Qnm spanned by the basis states |B(i)⟩ |0mn−⌈logM⌉⟩, where B(i) is the binary representation of
the number i, ranging from 1 to M . Let V be an elementary unitary transform that maps T to S.
Thus every pure state |ψn⟩ in S can be reproduced by a pure state in T and a quantum unitary
group (V, ⌈logM⌉) of complexity <+K(n,m). Therefore Cϵ,n,m<

+K(n,m) + logM . Let Rj be
the smallest subspace spanned by pure states produced by quantum unitary groups (V, k) with
K(V, k) + k < j . By Lemma 12, Dim(Rj) < 2j . Thus there is pure state |ψm⟩ that is orthogonal
to the subspace R⌈logM⌉−1. Thus Cϵ,n,m>

+ log
(
2n+m−1

m

)
. □

A version of Müller’s Theorem can be proved for quantum unitary complexity.

Theorem 44 For x, y ∈ {0, 1}∗, K(x|y)=+Huc(|x⟩ |y).

Proof. Let ∥x∥ = n. Let V ∈ Cn,0 where V |0n⟩ = |x⟩. Thus K(V, 0|y)<+K(x|y) which implies
Huc(|x⟩ |y)<+K(x|y). Let V ∈ Cn,z where (V, z), ξ ∈ S(Mz) realizes Huc(|x⟩ |y). Let Iz be the
z-qubit identity matrix. Thus the set W = V |0n−z⟩ Iz ⟨0n−z|V ∗ has rank 2z and ⟨x|W |x⟩ = 1.
Thus for Z = {z : z ∈ {0, 1}n, ⟨z|W |z⟩ = 1} has |Z| ≤ 2z. So given (V, z) one can compute Z and
then x with a code of size log |Z| ≤ z. So K(x|y)<+K(V, z|y) + z=+Huc(|x⟩ |y). □

Theorem 45 Huc(σ)<+Huc(σ ⊗ ρ).
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Proof. Let quantum unitary pair (V,m) ∈ C2n,m and input ξ ∈ S(Mm) realize Huc(σ ⊗ ρ). Let
Im be the 2n rank projection to m length inputs. Thus V ImV

∗ = P1 ⊗ P2 where P1 and P2 are n
qubit projectors. Furthermore, for p1 = Rank(P1) and p2 = Rank(P2), we have that p1 + p2 = m
and also σ ≤ P1, and ρ ≤ P2. Let I

′
p1 be an n qubit projection onto p1 length inputs.

Let V1 be the unitary matrix that maps I ′p1 to P1 and let ξ1 = V ∗σ. Thus the quantum unitary
pair (V, p1) ∈ Cn,p1 realizes an upper bound on Huc(σ), and since K(V1, p1)<

+K(V,m) we have
that (V1, p1) + p1<

+K(V,m) +m, so Huc(σ)<+Huc(σ ⊗ ρ). □

Theorem 46 Huc(σ ⊗ ρ)<+Huc(σ) +Huc(ρ).

Proof. Let (V, g), σ′ and (W,h), ρ′ be the unitary transforms and inputs that minimize Hucϵ(σ)
and Hucδ(ρ), respectively. Thus V |0n−g⟩σ′ ⟨0n−g|V ∗ = σ and W |0n−h⟩ ρ′ ⟨0n−h|W ∗ = ρ. Let
|ψi0n−g⟩, ψi and |ϕi0n−h⟩, ϕi be the eigenvectors and corresponding eigenvalues of |0n−g⟩σ′ ⟨0n−g|
and |0n−h⟩ ρ′ ⟨0n−h|. Let U be the unitary condensation transform (see [SW01]) that transforms
each |ψi0n−g⟩ ⊗ |ϕj0n−h⟩ to |ψiϕj02n−g−h⟩. Let ν =

∑
i,j ψiϕj |ψiϕj02n−g−h⟩ ⟨ψiϕj02n−g−h|. Let

C be the unitary transform defined as C = (V ⊗ W )U∗. Therefore CνC∗ = σ ⊗ ρ. Therefore
Huc(σ ⊗ ρ) ≤ K(C, g + h) + g + h<+K(V, g) + g +K(W,h) + h=+Huc(σ) +Huc(ρ). □

Theorem 47 Hucϵ+δ(σ ⊗ ρ)<+Hucϵ(σ) +Hucδ(ρ).

Proof. Let (V, g), σ′ and (W,h), ρ′ be the unitary transforms and inputs that minimize Hucϵ(σ)
and Hucδ(ρ), respectively. Thus V |0n−g⟩σ′ ⟨0n−g|V ∗ = σ′′ andW |0n−h⟩ ρ′ ⟨0n−h|W ∗ = ρ′′, where
D(σ, σ′′) < ϵ and D(ρ, ρ′′) < δ. Let |ψi0n−g⟩, ψi and |ϕi0n−h⟩, ϕi be the eigenvectors and cor-
responding eigenvalues of |0n−g⟩σ′ ⟨0n−g| and |0n−h⟩ ρ′ ⟨0n−h|. Let U be the unitary condensa-
tion transform (see [SW01]) that transforms each |ψi0n−g⟩ ⊗ |ϕj0n−h⟩ to |ψiϕj02n−g−h⟩. Let ν =∑

i,j ψiϕj |ψiϕj02n−g−h⟩ ⟨ψiϕj02n−g−h|. Let C be the unitary transform defined as C = (V ⊗W )U∗.
Therefore CνC∗ = σ′′ ⊗ ρ′′.

Let ∥ · ∥Tr be the trace norm, where d(A,B) = ∥A − B∥Tr. Now, ∥σ ⊗ ρ − σ′′ ⊗ ρ′′∥Tr =
∥(σ − σ′′) ⊗ ρ + σ′′ ⊗ ρ − σ′′ ⊗ ρ′′∥Tr = ∥(σ − σ′′) ⊗ ρ + σ′′ ⊗ (ρ − ρ′′)∥Tr. So we have that
∥(σ− σ′′)⊗ ρ+ σ′′ ⊗ (ρ− ρ′′)∥Tr ≤ ∥(σ− σ′′)⊗ ρ∥Tr + ∥σ′′ ⊗ (ρ− ρ′′)∥Tr < ϵ+ δ. So, in conclusion,
∥σ ⊗ ρ − σ′′ ⊗ ρ′′∥Tr < ϵ + δ. Therefore Hucϵ+δ(σ ⊗ ρ) ≤ K(C, g + h) + g + h<+K(V, g) + g +
K(W,h) + h=+Hucϵ(σ) +Hucδ(ρ). □

A quantum version of the EL Theorem has been proved with Theorem 48 with respect to Vitányi
complexity. The following theorem shows that the EL Theorem can be extended to quantum unitary
complexity.

Theorem 48 (Quantum EL Theorem) Fix an n qubit Hilbert space. Let P be a elementary

projection of rank > 2m. Then, relativized to (n,m), min|ϕ⟩∈Image(P )Huc
√
1−2−m−n−1

(|ϕ⟩)<log 2(n−
m) + I(⟨P ⟩;H).

Proof. We assume P has rank 2m. Let Q be the elementary probability measure that realized
the stochasticity, Ks(P ), of an encoding of P . We can assume that every string in the support of
Q encodes an elementary projection of rank 2m. We sample N independent pure states according
to the uniform distribution Λ on the n qubit space. N is to be defined later. For each pure state
|ψi⟩ and projection R in the support of Q, the expected value of ⟨ψi|R |ψi⟩ is

∫
⟨ψi|R |ψi⟩ dΛ = TrR

∫
|ψi⟩ ⟨ψi| dΛ = 2−nTrRI = 2m−n.
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Let random variable XR = 1
N

∑N
i=1 ⟨ψi|R |ψi⟩ be the average projection size of the random pure

states onto the projection R. Since ⟨ψi|R |ψi⟩ ∈ [0, 1] with expectation 2m−n, by Hoeffding’s
inequality,

Pr(XR ≤ 2m−n−1) < exp
[
−N2−2(m−n)−1

]

Let d = d(P |Q). Thus if we set N = d22(m−n)+1, we can find N elementary n qubit states such
that Q({R : XR ≤ 2m−n−1}) ≤ exp(−d), where XR is now a fixed value and not a random variable.
Thus XP > 2m−n−1 otherwise one can create a Q-expectation test, t, such that t(R) = [XR ≤
2m−n−1] exp d. This is a contradiction because

1.44d<+ log(P )<+ d(P |Q, d)<+ d+K(d),

for large enough d which we can assume without loss of generality. Thus there exists i such that
⟨ψi|P |ψi⟩ ≥ 2m−n−1. Thus |ϕ⟩ = P |ψi⟩ /

√
⟨ψi|P |ψi⟩ is in the image of P and | ⟨ψi|ϕ⟩ |2 =

⟨ψi|P |ψi⟩ ≥ 2m−n−1. So D(|ψi⟩ , |ϕ⟩) ≤
√
1− 2−m−n−1. The elementary state |ψi⟩ has classi-

cal Kolmogorov complexity K(|ψi⟩)<log logN + K(Q, d)<log 2(m − n) + Ks(P ). Thus there is
a quantum unitary pair (V, 0) ∈ Cn,0 where V is a unitary matrix that maps |0n⟩ to |ψi⟩ and
K(V, 0)<+K(ψi). Thus by Lemma 3,

min{Huc
√
1−2−m−n−1

(|ψ⟩) : |ψ⟩ ∈ Image(P )}
<+K(V, 0)<+K(|ϕi⟩)
<log 2(n−m) +Ks(P )

<log 2(n−m) + I(P ;H).

□
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Chapter 7

Quantum Typicality

There is no standard definition for what constitutes an outlier. Some reasonable definitions are:

• An observation that deviates so much from other observations as to arouse suspi-
cion that it was generated by a different mechanism.

• A datapoint generated by contaminating models different from the one generating
the rest of the data.

• An observation that lies outside the overall pattern of a distribution. Usually, the
presence of an outlier indicates some sort of problem.

In machine learning, an outlier is a point residing a distance away from the general population,
usually in a low (compared to that used in complexity theory) dimensional space. An example of
an outlier in the task of regression is shown in Figure 7.1. If one were to define a score of how much

Figure 7.1: In the task of regression, a (usually parameterized) smooth function is fitted
to a population of datapoints. The datapoints which are far away from the curve can
be considered to outliers, i.e. the product of some sort of error or white noise effect.

a datapoint is an outlier, it should take into account perfectly randomly generated observations
have an absence of regularity. Thus the theory of algorithms and recursive functions should be
used to quantify this regularity.
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To this end, in Algorithmic Information Theory, outliers are modeledd with the randomness
deficiency function, which is defined to be d(x|p) = − log p(x)−K(x|p), where x is a string and p
is a computable probability. Thus it is the difference between the length of x’s Shannon-Fano code
with respect to p and its Kolmogorov complexity. It is a score in refutation of the statement thst
x was generated by model p. If the sequence is atypical, say x = 0n, for the uniform distribution p
over strings of length n, then − log p(a) = n which is much larger than K(a|p) = K(0n|p) = O(1),
causing a high deficiency of randomness, with d(a|P ) = n − O(1). Thus d is a score of how
sequences have regularities that makes them compressible.

The exponent of the randomness deficiency is a p- test, with
∑

x p(x)2
d(a|p) ≤ 1. The deficiency

of randomness has the benefit that its exponent is a universal test, where d(x|p)=+ log tp(x), where
tp is a universal lower-computable p-test. This is why randomness deficiency is a good candidate
as an outlier score. For the universal semi-measure m, we have that d(x|m) = O(1), thus giving
evidence that m is a universal apriori distribution, as there is no refutation to statement x is
generated by m.

Randomness deficiency can be generalized to infinite sequences and points in computable metric
spaces, as shown in Chapter 13. For the infinite sequences case, D(α|P ) = supn− logP (α[0..n]|P )−
K(α[0..n]). Like the strings case D(α|P )=+ log tP (α), where tP is a universal lower computable
P -test.

Obvious limitation of d is that is non-computable, there is no computable algorithm that can
even approximate d. This is due to d being defined using K which has uncomputability properties.

7.1 Definition of Quantum Randomness Deficiency

This chapter extends the definition of randomness deficiency to pure and mixed quantum state. In
[G0́1], the quantum notion of randomness deficiency was introduced. This quantum randomness
deficiency measures the algorithmic atypicality of a pure or mixed quantum state ρ with respect
to a second quantum mixed state σ. Mixed states σ are used to model random mixtures {pi} of
pure states {|ψi⟩}, so quantum randomness deficiency is a score of how atypical a quantum state
is with respect to a mixture. We first describe typicality with respect to computable σ, and then
generalize to uncomputable σ.

Given a density matrix σ, a σ-test is a lower computable matrx T such that TrTσ = 1. Let
Tσ be the set of all σ-tests. If σ is computable, there exists a universal σ test tσ, that is lower
computable relative to the number of qubits n, Trσtσ ≤ 1, and for every lower computable σ test
T , O(1)tσ >m(T |σ)T .

This universal test can be computed the following manner, analagously to the classical case (see
[G2́1]). A program enumerates all strings p and lower computes m(p|σ). The program then runs
p and continues with the outputs as long as p outputs a series of positive semi-definite matrices
Ti such that TrTiσ ≤ 1 and Ti ≤ Ti+1. If p outputs something other than this sequence or does
not halt, the sequence is frozen. tσ =

∑
pm(p|σ) limi Ti is the weighted sum of all such outputs of

progams p.

Definition 14 (Quantum Randomness Deficiency) For mixed states σ and ρ, computable σ,
d(ρ|σ) = logTr tσρ.

The quantum randomness deficiency, among other interpretations, is score of how typical a
pure state is with respect to an algorithmically generated quantum source. Indeed, suppose
there is a computable probability P over encodings of elementary orthogonal pure states {⟨|ψi⟩⟩}
of orthogonal pure states {|ψi⟩}, with corresponding density matrix σ =

∑
i P (⟨|ψi⟩⟩) |ψi⟩ ⟨ψi|.
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Then there is a lower-computable σ-test T =
∑

i 2
d(⟨|ψi⟩⟩|P ) |ψi⟩ ⟨ψi| with O(1)tσ > T . Thus

d(|ψi⟩ |σ)>+ d(⟨|ψi⟩⟩|P ), giving high scores to pure states |ψi⟩ which are atypical of the source.
In general the d(|ϕ⟩ |σ) score for arbitrary |ϕ⟩ will be greater than a combination of d(·|P ) scores,
with d(|ϕ⟩ |σ)>+ log

∑
2d(⟨|ψi⟩⟩|P )| ⟨ϕ|ψi⟩ |2. In fact d is equivalent to the classical definition of

randomness deficiency when σ is purely classical, i.e. only diagonal.

Exercise 8 For an orthogonal sequence of elementary states |1⟩ , |2⟩ , |3⟩ , . . . , prove that d(|i⟩ | |j⟩) =
∞ for i ̸= j.

Exercise 9 Show that d(σ|2−n1)=+ n − Hg(σ). This mirrors the classical case, where for a
uniform measure Un over strings x ∈ {0, 1}n, d(x|Un) = n−K(x|n).

Theorem 49 For diagonal σ =
∑

i p(i) |i⟩ ⟨i|, d(|i⟩ |σ)=+ d(i|p).

Proof. The positive semi-definite matrix T =
∑

i 2
d(i|p) |i⟩ ⟨i| is a σ-test, so T

∗
< tσ and thus

d(|i⟩ |σ)>+ log ⟨i|T |i⟩ =+ d(i|p). The function t(i) = ⟨i| tσ |i⟩ is a lower computable p-test, so
d(i|P )>+ d(|i⟩ |σ). □

The following theorem shows that randomness deficiency d(ρ|σ) parallels the classical definition
of randomness decificiency, d(x|P ) = logm(x)/P (x).

Theorem 50 ([G0́1]) Relativized to elementary invertible σ, logd(ρ|σ)=+ log Trρσ−1/2µσ−1/2.

Proof. The matrix σ1/2tσσ
1/2 is a lower-computable semi density matrix, so tσ

∗
< σ−1/2µσ−1/2.

This implies Trtσρ
∗
< Trρσ−1/2µσ−1/2. □

Exercise 10 ([G0́1]) Relativized to elementary invertible σ, show that d(ρ|σ)=+ log Tρ, where

T =
∑

|ψ⟩

m(|ψ⟩) |ψ⟩ ⟨ψ|
⟨ψ|σ |ψ⟩ .

Exercise 11 ([G0́1]) Relativized to elementary invertible σ, show that d(ρ|σ)=+ logSρ, where

S =
∑

F

m(F )F

TrFσ
,

where F varies over all elementary density matrices.

7.1.1 Uncomputable Mixed States

We now extend d to uncomputable σ. For uncomputable σ, Tσ is not necessarily enumerable, and
thus a universal lower computable randomness test does not necessarily exist, and cannot be used to
define the σ deficiency of randomness. So in this case, the deficiency of randomness is instead defined
using an aggregation of σ-tests, weighted by their lower algorithmic probabilities. The lower algo-
rithmic probability of a lower computable matrix σ is m(σ|x) =∑{m(q|x) : q lower computes σ}.
Let Tσ =

∑
ν∈Tσ m(ν|n)ν.

Definition 15 (Quantum Randomness Deficiency of Uncomputable States) The random-
ness deficiency of ρ with respect to σ is d(ρ|σ) = log TrTσρ.
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If σ is computable, then Definition 15 equals Definition 14. By definition, Tσ is universal, since for
every lower computable σ-test ν, m(ν)ν < Tσ.

Theorem 51 For n qubit density matrices σ, ρ, ν, and ξ, d(σ|ρ) + d(ν|ξ)<+ d(σ ⊗ ν|ρ⊗ ξ).

Proof.

d(σ|ρ) + d(ν|ξ) = logTr
∑

ρ′∈Tρ

m(ρ′)ρ′σ + logTr
∑

ξ′∈Tξ

m(ξ′)ξ′ν

= logTr




∑

ρ′∈Tρ

m(ρ′)ρ′


⊗


∑

ξ′∈Tξ

m(ξ′)ξ′




 (σ ⊗ ν)

= logTr


 ∑

ρ′∈Tρ,ξ′∈Tξ

m(ρ′)m(ξ′)ρ′ ⊗ ξ′


 (σ ⊗ ν)

<+ log Tr


 ∑

ρ′∈Tρ,ξ′∈Tξ

m(ρ′ ⊗ ξ′)ρ′ ⊗ ξ′


 (σ ⊗ ν)

<+ log Tr


 ∑

κ∈Tρ⊗ξ

m(κ)κ


 (σ ⊗ ν)

=+ d(σ ⊗ ν|ρ⊗ ξ).

□

7.2 Conservation Over Quantum Operations

Conservation of randomness was introduced by L. A. Levin, culminating to [Lev84]. It states
that deterministic or randomnized cannot increase the randomness deficiency of a finite or infinite
sequence. In [G2́1], this was generalized to computable metric spaces, and is detailed in Chapter
20. The conservation statement for deterministic processes A is

d(Ax|Ap)<+ d(x|p),

where Ap(x)
∑

y:A(y)=x p(y). The additive constant is proportional to the Kolmogorov complexity
of the probability p. Thus given a typical member x of a population, there is no method A that
“to single out” this data point from the population. The only way for this to occur is for A to
encode x. For example take a random uniform sample of n bit strings, at let x be random, with
K(x)=+ n. Since this string is incompressible, there exist no simple means to separate it from the
sample. This section shows conservation of randomness with respect to quantum mechanics. If a
state is typical of a source mixed state, there is no physical means to transform it to be atypical.

Proposition 3 For n qubit semi-density matrix ν, relativized to a finite set of elementary matrices
{Mi},
m(
∑

iM
∗
i νMi|n)

∗
>m(ν|n).
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Proof. For every string q that lower computes ν, there is a string qM of the form rq, that lower
computes

∑
iM

∗
i νMi. This string qM uses the helper code r to take the intermediary outputs ξi of

q and outputs the intermediary output
∑

iM
∗
i ξiMi. Since qM has access to {Mi} on the auxilliary

tape, m(qM |n) ∗
>m(q|n).

m(ν|n) =
∑

{m(q|n) : q lower computes ν}
∗
<
∑

{m(qM |n) : q lower computes ν}
∗
<
∑

{m(q′|n) : q′ lower computes
∑

i

M∗
i νMi}

∗
<m

(∑

i

M∗
i νMi/n

)
.

□
The following theorem shows conservation of randomness with respect to elementary quantum

operations. It generalizes Theorems 2 and 3 from [Eps19c].

Theorem 52 (Randomness Conservation) Relativized to elementary quantum operation ε, for
semi-density matrices ρ, σ, d(ε(ρ)|ε(σ))<+ d(ρ|σ).

Proof. Since the universal Turing machine is relativized to ε, there is an elementary Kraus
operator {Mi} that can be computed from ε where ε(ξ) =

∑
iMiξM

∗
i . If ν is a

∑
iMiρM

∗
i -test,

with ν ∈ T∑
iMiρM∗

i
, then

∑
iM

∗
i νMi is a ρ-test, with

∑
iM

∗
i νMi ∈ Tρ. This is because by

assumption Trν
∑

iMiρM
∗
i ≤ 1. So by the cyclic property of trace Tr

∑
iM

∗
i νMiρ ≤ 1. Therefore

since
∑

iM
∗
i νMi is lower computable,

∑
iM

∗
i νMi ∈ Tρ. From Proposition 3, m(

∑
iM

∗
i νMi|n)

∗
>

m(ν|n). So we have the following inequality

d

(∑

i

MiσM
∗
i |
∑

i

MiρM
∗
i

)
= log

∑

ν∈T∑
i MiρM

∗
i

m(ν|n)Trν
∑

i

MiσM
∗
i

<+ log
∑

ν∈T∑
i MiρM

∗
i

m

(∑

i

M∗
i νMi|n

)
Tr
∑

i

M∗
i νMiσ

<+ d(σ|ρ).

□

7.3 A Quantum Outlier Theorem

As discussed at the beginning of this chapter, outliers can be seen as generated from another
process. In other words, outliers can be seen as product of errors or contamination of white noise
into the generative model. However recent results [Eps21b] have proved a surprising consequence in
statistics: that all sampling algorithms produce outliers. The longer the sampling method operates,
the higher the outlier score of a datapoint that appears. In [Eps23b, Eps23c], this was generalized
to all physical processes. Thus there is something intrinsic in statistics that results in the ubiquitous
nature of anomalies. Note by outlier, we mean a finite or infinite sequence with high randomness
deficiency.
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These results can be derived from the fact that large sets of sequences with low randomness
deficiency are exotic, in that they have high mutual information with the halting sequence. In this
section we prove a quantum analog, in that a large collection of quantum states with low quantum
deficiency also have high mutual information with the halting sequence. By “large collection”
we mean the quantum projections of large rank. Such projections must have “outlier” states in
their images otherwise they are exotic. Thus quantum coding schemes that use projections such
ad Schumacher Compression must communicate using outlier quantum states. The classical and
quantum theorems are analogous, but their proofs are very different!

Theorem 53 ([Eps23e]) Relativized to an n qubit mixed state σ, for elementary 2m rank projector
P , 3m− 2n<log max|ϕ⟩∈Image(P ) d(|ϕ⟩ |σ) + I(⟨P ⟩;H).

Proof. We relativize the universal Turing machine to ⟨σ⟩ and (3m − 2n). Thus it is effectively
relativized to m, n, and σ. Let elementary probability measure Q and d ∈ N realize Ks(P ), where
d = max{d(P |Q), 1}. Without loss of generality we can assume that the support of Q is elementary
projections of rank 2m. There are d2n−m+2 rounds. For each round we select an σ-test T , that is
of dimension 1, TrσT ≤ 1, and for a certain Q-probability of projections B, TrTB is large. We
now describe the selection process.

Select a random test T to be 2m−2 |ψ⟩ ⟨ψ|, where |ψ⟩ is an n qubit state chosen uniformly from
the unit sphere, with distribution Λ.

E[TrTσ] = 2m−2

∫
Tr ⟨ψ|σ |ψ⟩ dΛ = 2m−2Trσ

∫
|ψ⟩ ⟨ψ| dΛ = 2m−n−2Trσ = 2m−n−2.

Thus the probability that T is a σ-test is ≥ 1 − 2m−n−2. Let Im be an n-qubit identity matrix
with only the first 2m diagonal elements being non-zero. Let Km = I − Im. Let p = 2m−n and
T̂ = T/2m−2. For any projection B of rank 2m,

Pr(TrBT̂ ≤ .5p)

=Pr(TrImT̂ ≤ .5p)

=Pr(TrKmT̂ ≥ 1− .5p)

E[TrKmT̂ ] = 1− p

Pr(TrKmT̂ ≥ 1− .5p) ≤ (1− p)/(1− .5p)

Pr(TrBT̂ ≥ .5p) = 1− Pr(TrKmT̂ ≥ 1− .5p)

≥ 1− (1− p)/(1− .5p)

= .5p/(1− .5p) ≥ .5p

Pr(TrBT ≥ 22m−n−3) ≥ .5p.

Let Ω be the space of all matrices of the form 2m−2 |ϕ⟩ ⟨ϕ|. Let R be the uniform distribution
over Ω. Let [A,B] be 1 if TrAB > 22m−n−3, and 0 otherwise. By the above equations, for
all A ∈ Support(Q),

∫
Ω[A,B]dR(B) ≥ .5p. So

∑
A

∫
Ω[A,B]Q(A)dR(B) ≥ .5p. For Hermitian

matrix A, {A} is 1 if TrAσ ≤ 1, and 0 otherwise. So
∫
Ω{A}dR(A) ≥ (1 − p2−2). Let f =

maxT {T}
∑
Q(A)[T,A].
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So

.5p ≤
∑

A

∫

Ω
[A,B]Q(A)dR(B)

=
∑

A

∫

Ω
{B}Q[A,B](A)dR(B) +

∑

A

∫

Ω
(1− {B})[A,B]Q(A)dR(B)

≤
∑

A

∫

Ω
{B}[A,B]Q(A)dR(B) +

∫

Ω
(1− {B})dR(B)

≤
∑

A

∫

Ω
{B}[A,B]Q(A)dR(B) + p2−2

p/4 ≤
∑

A

∫

Ω
{B}[A,B]Q(A)dR(B) =

∫

Ω

(
{B}

∑

A

[A,B]Q(A)

)
dR(B) ≤

∫

Ω
fdR(B)

p/4 ≤ f.

Thus for each round i, the lower bounds on f proves there exists a one dimensional matrix
Ti = 2m−2 |ψ⟩ ⟨ψ| such that TrTiσ ≤ 1 and

∑
R{Q(R) : TrTiR ≥ 22m−n−3} ≥ p/4 = 2m−n−2.

Such a Ti is selected, and the the Q probability is conditioned on those projections B for which
[Ti, B] = 0, and the next round starts. Assuming that there are d2n−m+2 rounds, the Q measure
of projections B such there does not exist a Ti with [Ti, B] = 1 is

≤ (1− p/4)d2
n−m+2 ≤ e−d.

Thus there exists a Ti such that [Ti, P ] = 1, otherwise one can create a Q test t that assigns ed to
all projections B where there does not exist Ti with [Ti, B] = 1, and 0 otherwise. Then t(P ) = ed

so
1.44d < log t(P )<+ d(P |Q, d)<+ d+K(d).

This is a contradiction, because without loss of generality, one can assume d is large. Let Ti =
2m−2 |ψ⟩ ⟨ψ| with [Ti, P ] = 1. Let |ϕ⟩ = P |ψ⟩ /

√
⟨ψ|P |ψ⟩. So ⟨ϕ|Ti |ϕ⟩ ≥ 22m−n−3 and |ϕ⟩ is in

the image of P . Thus by Lemma 3,

2m− n<+ log ⟨ϕ|Ti |ϕ⟩
2m− n<+ log max

|ϕ⟩∈Image(P )
⟨ϕ|Ti |ϕ⟩

2m− n<+ max
|ϕ⟩∈Image(P )

d(P |σ) +K(Ti)

2m− n<+ max
|ϕ⟩∈Image(P )

d(P |σ) + (n−m) + log d+K(d) +K(Q)

2m− n<+ max
|ϕ⟩∈Image(P )

d(P |σ) + (n−m) +Ks(P )

3m− 2n<log max
|ϕ⟩∈Image(P )

d(P |σ) + I(P ;H).

Note that due to the fact that the left hand side of the equation is (3m−2n) and it has log precision,
this enables one to condition the universal Turing machine to (3m− 2n). □

7.3.1 Computable Projections

Theorem 53 is in terms of elementary described projecctions and can be generalized to arbitrarily
computable projections. For a matrix M , let ∥M∥ = maxi,j |Mi,j | be the max norm. A program
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p ∈ {0, 1}∗ computes a projection P of rank ℓ if it outputs a series of rank ℓ projections {Pi}∞i=1

such that ∥P −Pi∥ ≤ 2−i. For computable projection operator P , I(P ;H) = min{K(p)−K(p|H) :
p is a program that computes P}.

Corollary 10 ([Eps23e]) Relativized to an n qubit mixed state σ, for computable 2m rank projec-
tor P , 3m− 2n<log max|ϕ⟩∈Image(P ) d(|ϕ⟩ |σ) + I(⟨P ⟩;H).

Proof. Let p be a program that computes P . There is a simply defined algorithm A, that when
given p and σ, outputs Pn such that max|ψ⟩∈Image(P ) d(|ψ⟩ |σ)=+ max|ψ⟩∈Image(Pn) d(|ψ⟩ |σ). Thus
by Lemma 1, one gets that I(Pn;H)<+ I(P ;H). The corollary follows from Theorem 53. □
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Chapter 8

Quantum Information

For a pair of random variables, X , Y, their mutual information is defined to be I(X : Y) =
H(X ) + H(Y) − H(X ,Y) = H(X ) − H(X/Y) =

∑
x,y p(x, y) log p(x, y)/p(x)p(y). This represents

the amount of correlation between X and Y. It is the amount of information, in bits, obtained
about Y when observing X . Another intrepretation is that the mutual information between X
and Y is the reduction in uncertainty of X after being given access to Y. If the two variables are
independent, then their mutual information is zero. Another property of mutual information is
that deterministic (or randomized) processing cannot increase information, with

I(X : f(Y)) ≤ I(X : Y).

Quantum mutual information between two subsystems described by states ρA and ρB of a
composite system described by a joint state ρAB is I(A : B) = S(ρA) + S(ρB) − S(ρAB), where
S is the Von Neumman entropy. Quantum mutual information measures the correlation between
two quantum states. It is defined as the amount of work that is required to erase the correlations
completely. Quantum mutual information is monotonic under quantum operations, with

I(A : ϵ(B)) ≤ I(A : B).

As stated in Chapter 4, The algorithmic information between two strings is defined to be
I(x : y) = K(x)+K(y)−K(x, y). By definition, it measures the amount of compression two strings
achieve when grouped together. A particular important property of I is that observes information
non growth properties ([Lev84]),

I(x : f(y))<+ I(x : y).

In this chapter we show that, like the above definitions, algorithmic mutual information of quantum
states I obeys processing non-growth laws, with respect to quantum channels, ε, with

I(σ : ε(ρ))<+ I(σ : ρ).

However there does exist properties of I which do not hold in the classical setting. In particular
most pure and mixed quantum states contain no self information. This is a consequence of the
vastness of high dimensional Hilbert spaces. This has far reaching applications, including that most
measurements produce white noise, as detailed in Chapter 9.

8.1 Definition of Quantum Algorithmic Information

The three definitions above are based off the difference between a joint aggregate and the separate
parts. Another approach is to define information between two semi-density matrices as the defi-
ciency of randomness over µ ⊗ µ, with the mutual information of σ and ρ being d(σ ⊗ ρ|µ ⊗ µ).
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This is a counter argument for the hypothesis that the states are independently chosen accord-
ing to the universal semi-density matrix µ. This parallels the classical algorithmic case, where
I(x : y)=+ d((x, y)|m ⊗ m)=+K(x) + K(y) − K(x, y). However to achieve the conservation in-
equalities, a further refinement is needed, with the restriction of the form of the µ ⊗ µ tests. Let
CC⊗D be the set of all lower computable matrices A ⊗ B, such that Tr(A ⊗ B)(C ⊗D) ≤ 1. Let
CC⊗D =

∑
A⊗B∈CC⊗D

m(A⊗B|n)A⊗B.

Definition 16 (Information) The mutual information between two semi-density matrices σ, ρ
is defined to be I(σ : ρ) = logTrCµ⊗µ(σ ⊗ ρ).

Up to an additive constant, information is symmetric.

Theorem 54 I(σ : ρ)=+ I(ρ :σ).

Proof. This follows from the fact that for every A ⊗ B ∈ Cµ⊗µ, the matrix B ⊗ A ∈ Cµ⊗µ.

Furthermore, sincem(A⊗B|n) ∗
= m(B⊗A|n), this guarantees that TrCµ⊗µ(σ⊗ρ) ∗

= TrCµ⊗µ(ρ⊗σ),
thus proving the theorem. □

Exercise 12 Show that relativized to an orthogonal sequence of elementary states |1⟩ , |2⟩ , |3⟩ , . . . ,
enumerated by strings i, j, k ∈ {0, 1}n,

1. I(|k⟩ : |i⟩)<+ I(|j⟩ : |i⟩) +K(k|j, n).

2. I(i : j|n)<log I(|i⟩ : |j⟩).

3. I(|i⟩ : |j⟩)<+ I(i : j|n) + I(i, j : χ|n).

4. K(i|n)<+ I(|i⟩ : |i⟩)<+K(i|n) + I(i : χ|n).

5. I(|i⟩ : |i⟩)<+ 4n/3.

6. I(|i⟩ : |j⟩)<+ I(|i⟩ : |i⟩) + I(i, j : χ|n).

8.2 Paucity of Self-Information

All strings of high Kolmogorov complexity have high self information, with I(x : x)=+K(x).
However the situation is much different in the quantum world, with respect to the definition of
mutual information of quantum mixed states σ and ρ introduced in this chapter: I(σ : ρ). In this
section we show that most pure and mixed states have low self information.

8.2.1 Pure States

Almost all pure states |ψ⟩ have low I(|ψ⟩ : |ψ⟩). In fact this is the case for most quantum states,
where for most n qubit pure states |ψ⟩,

Hg(|ψ⟩) ≈ n, I(|ψ⟩ : |ψ⟩) ≈ 0.

This has to do with the huge expanse of high dimensional Hilbert spaces versus the discretionary
power of µ × µ tests. The following theorem states that the information between two elementary
states is not more than the combined length of their descriptions.

Theorem 55 For elementary ρ and σ, I(ρ : σ)<+K(ρ|n) +K(σ|n).
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Proof. Assume not. Then for any positive constant c, there exists semi-density matrices ρ and
σ, such that

cm(ρ|n)m(σ|n)2I(ρ:σ) = cTrm(ρ|n)m(σ|n)Cµ⊗µ(ρ⊗ σ) > 1.

By the definition of µ, m(ρ|n)ρ ∗
< µ andm(σ|n)σ ∗

< µ. Therefore by the definition of the Kronecker
product, there is some positive constant d such that for all ρ and σ, dm(ρ|n)m(σ|n)(ρ⊗σ) < (µ⊗µ),
and similarly

dTrm(ρ|n)m(σ|n)Cµ⊗µ(ρ⊗ σ) < TrCµ⊗µ(µ⊗ µ).

By the definition of C, it must be that TrCµ⊗µµ⊗ µ ≤ 1. However for c = d, there exists a ρ and
a σ, such that

TrCµ⊗µµ⊗ µ > dTrm(ρ|n)m(σ|n)Cµ⊗µ(ρ⊗ σ) > 1,

causing a contradiction. □

Figure 8.1: The left figure shows the uniform distribution unit sphere over n qubit
space and the associated Hg(|ϕ⟩) values, which are overwhelmingly at the max n. The
right figure shows the I(|ψ⟩ : |ψ⟩) score over the same distribution. Most states have
negligible self information.

The following theorem shows that Hg(|ψ⟩) is high for most states and I(|ψ⟩ : |ψ⟩) is low, as
shown in Figure 8.1.

Theorem 56 ([Eps19b]) Let Λ be the uniform distribution on the unit sphere of HN , where
N = 2n.

(1) Hg(I/N)=+ n,

(2) I(I/N : I/N)<+ 0,

(3)

∫
2−Hg(|ψ⟩)dΛ

∗
= N−1,

(4)

∫
2I(|ψ⟩ : |ψ⟩)dΛ<+ 0.
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Proof.

(1) follows from Hg(I/N)=+ − log TrµI/N =+ logN − log Trµ=+ logN .

(2) This is due to Theorem 55, with I(I/N : I/N)<+ 2K(I/N |n)<+ 0.

(3) We use the fact that ρ =
∫
|ψ⟩ ⟨ψ| dΛ = I/N , because Trρ = 1, and ⟨ψ| ρ |ψ⟩ = ⟨ϕ| ρ |ϕ⟩. Thus∫

2−Hg(|ψ⟩)dΛ
∗
=
∫
Trµ |ψ⟩ ⟨ψ| dΛ ∗

= Trµ
∫
|ψ⟩ ⟨ψ| dΛ ∗

= N−1.

(4) We use the proof of Theorem 18, which states
∫
|ψ⟩⟨ψ| ⊗ |ψ⟩ ⟨ψ| dΛ =

∫
|ψψ⟩⟨ψψ| dΛ =(

N+1
2

)−1
P , where P is the projection onto the space of pure states |ψψ⟩. So

∫
2I(|ψ⟩ : |ψ⟩)dΛ =

∫
TrCµ⊗µ |ψ⟩⟨ψ| ⊗ |ψ⟩ ⟨ψ| dΛ

= TrCµ⊗µ

∫
|ψ⟩⟨ψ| ⊗ |ψ⟩ ⟨ψ| dΛ

= TrCµ⊗µ

(
N + 1

2

)−1

P

∗
< TrCµ⊗µN

−2I
∗
= 2I(I/N :I/N)

<+ 0.

□

8.2.2 Mixed States

The results of the previous section can be extended to mixed states. Given a uniform measure over
mixed states, an overwhelming majority of such states contain no algorithmic self information. Let
Λ be the uniform distribution of the unit sphere of HN , where N = 2n.

Definition 17 (Uniform Distribution over Mixed States) Fix any number M ∈ N. Let the
M -simplex be

∆M = {(pi)1≤i≤M |pi ≥ 0, p1 + · · ·+ pM = 1}.
Let η be any distribution over ∆M . Let

µ

(
M∑

i=1

pi |ψi⟩ ⟨ψi|
)

= η(p1, . . . , pM )
M∏

i=1

Λ(|ψi⟩),

Theorem 57
∫
2I(σ:σ)dµ(σ)<+ 0.

63



Proof.
∫

2I(σ:σ)dµ(σ)

=TrCµ⊗µ

∫

∆M

∫

Λ1

· · ·
∫

ΛM

(
M∑

i=1

pi |ψi⟩ ⟨ψi|
)

⊗
(

M∑

i=1

pi |ψi⟩ ⟨ψi|
)
dΛ1 . . . dΛMdη(p1, . . . , pM )

=TrCµ⊗µ

∫

∆M

∫

Λ1

· · ·
∫

ΛM




M∑

i,j=1

pipj |ψi⟩ ⟨ψi| ⊗ |ψj⟩ ⟨ψj |


 dΛ1 . . . dΛMdη(p1, . . . , pM )

=TrCµ⊗µ

∫

∆M

∫

Λ

M∑

i=1

p2i |ψψ⟩ ⟨ψψ| dΛdη(p1, . . . , pM )

+ TrCµ⊗µ

∫

∆M

∫

Λ1

∫

Λ2

∑

i,j∈{1,...,M},i ̸=j

2pipj |ψ1⟩ ⟨ψ1| ⊗ |ψ2⟩ ⟨ψ2| dΛ1dΛ2dη(p1, . . . , pM ).

The first term is not greater than

TrCµ⊗µ

∫

∆M

∫

Λ

M∑

i=1

pi |ψψ⟩ ⟨ψψ| dΛdη(p1, . . . , pM )

=TrCµ⊗µ

∫

∆M

M∑

i=1

pi

(∫

Λ
|ψψ⟩ ⟨ψψ| dΛ

)
dη(p1, . . . , pM )

=TrCµ⊗µ

∫

Λ
|ψψ⟩ ⟨ψψ| dΛ.

At this point, reasoning from the proof of Theorem 56 can be used to show that this term is O(1).
The second term is not greater than

TrCµ⊗µ

∫

∆M

∫

Λ1

∫

Λ2

(∑

i

pi

)(∑

i

pi

)
|ψ1⟩ ⟨ψ1| ⊗ |ψ2⟩ ⟨ψ2| dΛ1dΛ2dη(p1, . . . , pM )

=TrCµ⊗µ

∫

∆M

∫

Λ1

∫

Λ2

|ψ1⟩ ⟨ψ1| ⊗ |ψ2⟩ ⟨ψ2| dΛ1dΛ2dη(p1, . . . , pM )

=TrCµ⊗µ

∫

Λ1

∫

Λ2

|ψ1⟩ ⟨ψ1| ⊗ |ψ2⟩ ⟨ψ2| dΛ1dΛ2

=TrCµ⊗µ(I/N ⊗ I/N).

Again, at this point, reasoning from the proof of Theorem 56 can be used to show that this term
is O(1).

8.3 Information Nongrowth

Classical algorithmic information non-growth laws asserts that the information between two strings
cannot be increased by more than a constant depending on the computable transform f , with
I(f(x) : y) < I(x : y) + Of (1) (Theorem 2). Conservation inequalities have been extended to
probabilistic transforms, infinite sequences and points in computable metric spaces. The following
theorem shows information non-growth in the quantum case; information cannot increase under
quantum operations, the most general type of transformation that a mixed or pure quantum state
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can undergo. The following theorem shows information nongrowth with respect to elementary
quantum operations. It generalizes Theorems 5 and 10 from [Eps19c].

Theorem 58 (Information Conservation) Relativized to elementary quantum operation ε, for
semi-density matrices ρ, σ, I(ε(ρ) : σ)<+ I(ρ : σ).

Proof. Since the universal Turing machine is relativized to ε, there is an elementary Kraus
operator {Mi} that can be computed from ε where ε(ξ) =

∑
iMiξM

∗
i . Given density matrices A,

B, C and D, we define d′(A ⊗ B|C ⊗ D) = logCC⊗DA ⊗ B. Thus I(σ : ρ) = d′(σ ⊗ ρ|µ ⊗ µ).

The semi-density matrix
∑

iMiµM
∗
i is lower semicomputable, so therefore

∑
iMiµM

∗
i

∗
< µ and

also (
∑

iMiµM
∗
i ⊗ µ)

∗
< µ ⊗ µ. So if E ⊗ F ∈ Cµ⊗µ then Tr(E ⊗ F )(µ ⊗ µ) ≤ 1, implying

that Tr(E ⊗ F )(
∑

iMiµM
∗
i ⊗ µ) < O(1). Thus there is a positive constant c, where c(E ⊗ F ) ∈

C(∑iMiµM∗
i )⊗µ. So we have

d′

(∑

i

MiσM
∗
i ⊗ ρ|µ⊗ µ

)
= log

∑

E⊗F∈Cµ⊗µ

m(E ⊗ F |n)Tr(E ⊗ F )(
∑

i

MiσM
∗
i ⊗ ρ)

<+ log
∑

E⊗F∈Cµ⊗µ

m(c(E ⊗ F )|n)Trc(E ⊗ F )

(∑

i

MiσM
∗
i ⊗ ρ

)

<+ d′

(∑

i

MiσMi
∗ ⊗ ρ|

∑

i

MiµM
∗
i ⊗ µ

)
.

Using the reasoning of the proof of Theorem 52 on the elementary Kraus operator {Mi ⊗ I}
and d′, where C replaces T , we have that

d′

(∑

i

MiσM
∗
i ⊗ ρ|

∑

i

MiµM
∗
i ⊗ µ

)
<+ d′(σ ⊗ ρ|µ⊗ µ).

Therefore we have that

I

(∑

i

MiσM
∗
i : ρ

)
= d′

(∑

i

MiσM
∗
i ⊗ ρ|µ⊗ µ

)

<+ d′

(∑

i

MiσM
∗
i ⊗ ρ|

∑

i

MiµM
∗
i ⊗ µ

)

<+ d′(σ ⊗ ρ|µ⊗ µ)=+ I(σ : ρ).

□

8.4 Algorithmic No-Cloning Theorem

The no-cloning theorem states that every unitary transform cannot clone an arbitrary quantum
state. However some unitary transforms can clone a subset of pure quantum states. For example,
given basis states |1⟩ , |2⟩ , |3⟩ , . . . there is a unitary transform that transforms each |i⟩ |0⟩ to |i⟩ |i⟩.
In addition, there exists several generalizations to the no-cloning theorem, showing that imperfect
clones can be made. In [BH96], a universal cloning machine was introduced that can clone an
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arbitrary state with the fidelity of 5/6. Theorem 18 shows a generalization of the no-cloning
theorem using Gács complexity.

Given the information function introduced in this chapter, a natural question to pose is whether
a considerable portion of pure states can use a unitary transform to produce two states that share a
large amount of shared information. The following theorem answers this question in the negative. It
states that the amount of information created between states with a unitary transform is bounded
by the self information of the original state.

Theorem 59 ([Eps19b]) Let C |ψ⟩ |0n⟩ = |ϕ⟩ |φ⟩, where C is an elementary unitary transform.
Relativized to C, I(|ϕ⟩ : |φ⟩)<+ I(|ψ⟩ : |ψ⟩).

Proof. We have the inequalities

I(|ϕ⟩ : |φ⟩)<+ I(|ϕ⟩ |φ⟩) : |ϕ⟩ |φ⟩)<+ I(|ψ⟩ |0n⟩ : |ψ⟩ |0n⟩)<+ I(|ψ⟩ : |ψ⟩),

where the first inequality is derived using partial trace, the second inequality is derived using the
unitary transform C, and the third inequality is derived by appending of an environment, all con-
stituting quantum operations, whose conservation of information is proven in Theoerem 58. □

Theorem 59, combined with the paucity of self-information in pure states (Theorem 56) shows
that only a very sparse set of pure states can, given any unitary transform, can duplicate algorithmic
information.

8.5 Purification

Every mixed state can be considered a reduced state of a pure state. The purification process is
considered physical, so the extended Hilbert space in which the purified state resides in can be
considered the existing environment. It should therefore be possible to regard our system with its
mixed state as part of a larger system in a pure state. In this section we proof that the purifications
of two mixed states will contain more information than the reduced states.

Purification occurs in the following manner, starting with a density matrix ρ =
∑n

i=1 pi |i⟩ ⟨i|.
A copy of the space is defined with orthonormal basis {|i′⟩}. In this instance the purification of ρ
is |ψ⟩ =∑n

i=1

√
pi |i⟩ ⊗ |i′⟩. For a density matrix ρ of size n, let Pm

ρ be the set of purifications of ρ
of dimension m ≥ 2n.

Corollary 11 For all |ψσ⟩ ∈ Pn
σ , |ψρ⟩ ∈ Pn

ρ , d(σ|ρ)<+ d(|ψσ⟩ | |ψρ⟩).

Corollary 12 For all |ψσ⟩ ∈ Pn
σ , |ψρ⟩ ∈ Pn

ρ , I(σ : ρ)<+ I(|ψσ⟩ : |ψρ⟩).

This all follows from conservation of randomness (Theorem 52) and information (Theorem 58) over
quantum operations, which includes the partial trace function.

8.6 Decoherence

In quantum decoherence, a quantum state becomes entangled with the environment, losing deco-
herence. The off diagonal elements of the mixed state become dampened, as the state becomes
more like a classical mixture of states.
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The single qubit example is as follows. The system is in state |ψQ⟩ = α |0⟩ + β |1⟩ and the
environment is in state |ψE⟩. The initial state is |ψQE⟩ = |ψQ⟩ ⊗ |ψE⟩ = α |0, ψE⟩ + β |1, ψE⟩.
The combined system undergoes a unitary evolution U , becoming entangled, with the result
U |ψQE⟩ = α |0, E1⟩+β |1, E2⟩. The density matrix is ρQE = |α|2 |0, E1⟩ ⟨0, E1|+|β|2 |1, E2⟩ ⟨1, E2|+
α∗β |1, E2⟩ ⟨0, E1|+ αβ∗ |0, E1⟩ ⟨1, E2|. The partial trace over the environment yields

ρQ = |α|2 |0⟩ ⟨0| ⟨E1|E1⟩+ |β|2 |1⟩ ⟨1| ⟨E2|E2⟩+ α∗β |1⟩ ⟨0| ⟨E2|E1⟩+ αβ∗ |0⟩ ⟨1| ⟨E1|E2⟩ .

We have ⟨E1|E1⟩ = ⟨E2|E2⟩ = 1. Two environment-related terms are time dependent and can be
described by an exponential decay function

⟨E1|E2⟩ = e−γ(t).

The larger the decay, the more off diagonal terms are suppressed. So

ρQ ≈
(

|α|2 α∗βe−γ(t)

αβ∗e−γ(t) |β|2
)
.

The result is a classical mixture, representing an unentangled probability over the state space. The
above example can be generalized to n qubit density matrices. Let Decohere(σ, t) be a decoherence
operation that dampens the off-diagonal elements of σ with decay t. By definition, Decohere is a
quantum operation. Randomness is conserved over decoherence. Thus if two states decohere, the
first state does not increase in algorithmic atypicality with respect to the second state.

Corollary 13 d(Decohere(σ, t)|Decohere(ρ, t))<+ d(σ|ρ).

This is a corollary to Theorem 52. When a state loses coherence into the environment will not gain
information with any other state.

Corollary 14 For semi-density matrices σ and ρ, I(Decohere(σ, t) : Decohere(ρ, t))<+ I(σ : ρ).

8.7 Information via Gács Complexity

The algorithmic information between quantum states can be formulized in a second way. Let Hg
be the Gács complexity measure (Definition 5).

Definition 18 (Information) IG(σ : ρ) = Hg(σ) +Hg(ρ)−Hg(σ ⊗ ρ).

Theorem 60 IG(σ : ρ)=+ IG(ρ : σ).

Proof. The commutation matrix C is a unitary matrix such C(A ⊗ B)C∗ = B ⊗ A. Let

µ′ = CµC∗, with µ′ ∗
< µ. So Hg(ρ⊗ σ)

∗
< Hg(σ ⊗ ρ). □

Using this new information term, one can reiterate Theorem 56 that says most quantum states
have negligible self information.

Theorem 61 Let Λ be the uniform distribution over the unit sphere of Qn.∫
2IG(|ψ⟩ : |ψ⟩)dΛ = O(1).
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Proof. Due to Exercise 5, for any |ϕ⟩ ∈ Qn, Hg(|ϕ⟩)<+ n. Let P be the projection on the
smallest linear subspace containing state of the form |ψ⟩ |ψ⟩. By the reasoning in the proof of
Theorem 18, the rank of P is M =

(
2n+1
2

)
and

∫
|ψψ⟩ ⟨ψψ| dΛ = P/M . We recall that µ2n is the

2n qubit universal matrix discussed in Chapter 5. So

∫
2IG(|ψ⟩ : |ψ⟩)dΛ

∗
<22n

∫
2−Hg(|ψ⟩|ψ⟩)dΛ

∗
<22n

∫
Trµ2n |ψψ⟩ ⟨ψψ| dΛ

∗
<22nTrµ2nP/M

∗
<22n

(
2n + 1

2

)−1

= O(1).

□

Theorem 62 For x, y ∈ {0, 1}n, IG(|x⟩ : |y⟩)=+ I(x : y|n).

Proof. This follows from Theorem 8. □

Theorem 63 (Conservation of Information) Relativized to elementary unitary transform A,
for |ψ⟩ , |ϕ⟩ ∈ Qn, IG(A |ψ⟩ : |ϕ⟩)=+ IG(|ψ⟩ : |ϕ⟩).

Proof. This follows from Theorem 11. □
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Chapter 9

Quantum Measurements

In quantum mechanics, the measurement postulate states that the measured valued obtained will
be the eigenvalue of the observation operator. After the measurement is made, the wave function
collapses to the eigenspace associated with the eigenvalue. The probability of seeing a particu-
lar eigenvalue is proportionate to how much the wavefunction “overlaps” with the corresponding
eigenspace.

There is an inconsistency associated with observations in quantum mechanics. Whereas the
evolution of the wave function is deterministic (via a unitary transform), the wave function collapse
is a probabilistic operation. Furthermore, the exact time of the observation is not clear.

The Copenhagen interpretation scedes completeness, demarcating a quantum domain and an
“observer’s” domain. Interaction between the two regions results in wavefunction collapses and
transference of information. Another interpretation is the Many Worlds Theory, detailed in Chapter
??.

A central research is how to quantify the amount of information that an observer can obtain.
Limitations were discovered during the founding days of quantum mechanics. The Heisenberg
uncertainty principle states that an accurate position measurement of a particle will result in a lot
of uncertainty about its momentum, and vice versa.

This chapter deals with how to quantify the information that is acquired in measurements using
Algorithmic Information Theory. Surprisingly, we show that given an observable operator, for an
overwhelming majority of quantum states, white noise (or the empty signal) is produced.

This is one of central results of the manuscript. It indicates future research possibilities of how
to quantify information (or the lack thereof) in quantum mechanics. For example, one could adapt
these results to quantify the information content of measurements in quantum field theory

9.1 Definition of Measurements

In quantum mechanics, measurements are modeled by POVMs, which stands for positive operator
valued measure. A POVM E is a finite or infinite set of positive definite matrices {Ek} such that∑

k Ek = 1. For a given semi-density matrix σ, a POVM E induces a semi measure over integers,
where Eσ(k) = TrEkσ. This can be seen as the probability of seeing measurement k given quantum
state σ and measurement E. An elementary POVM E has a program q such that U(q) outputs an
enumeration of {Ek}, where each Ek is elementary. A quantum instrument with respect to POVM
E, is a quantum operation ΦE that takes a state σ to a set of outcomes and their probabilities,
ΦE(σ) =

∑
k E(σ(k)) |k⟩ ⟨k|.
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9.2 Typicality and Measurements

Theorem 64 shows that measurements can increase only up to a constant factor, the deficiency of
randomness of a quantum state with respect to another quantum state. The classical deficiency
of randomness of a probability with respect to a another probability is denoted as follows. This
definition is well known in the literature, one appearance is

Definition 19 (Deficiency, probabilities (Folklore)) For probabilities p and q over {0, 1}∞,
d(q|p) = log

∑
x q(x)m(x)/p(x).

Note that in the following theorem, d(Eσ|Eρ) term represents the classical deficiency of ran-
domness of a semimeasure Eσ with respect to a computable probability measure Eρ. The term
d(σ|ρ) is from Definition 15.

Theorem 64 ([Eps19b]) For density matrices σ, ρ, relativized to elementary ρ and POVM E,
d(Eσ|Eρ)<+ d(σ|ρ).

Proof. 2d(Eσ|Eρ) =
∑

k(TrEkσ)m(k|n)/(TrEkρ) = Tr(
∑

k(m(k|n)/TrEkρ)Ek)σ = Trνσ, where
the matrix ν = (

∑
k(m(k|n)/TrEkρ)Ek) has ν ∈ Tρ, since ν is lower computable and Trνρ ≤ 1. So

2d(σ|ρ) ≥ m(ν|n)Trνσ = m(ν|n)2d(Eσ|Eρ). Since m(ν|n) ∗
> 1, d(Eσ|Eρ)<+ d(σ|ρ).

9.3 Information and Measurements

Given two mixed states σ and ρ and POVM E, the mutual information between the probabilities
of Eσ and Eρ, from Definition 3, is IProb(Eσ : Eρ). The following theorem states that given two
states, the classical (algorithmic) information between the probabilities generated by two quantum
measurements is less, up to a logarithmic factor, than the information of the two states. Thus I
represents an upper bound on the amount of classical algorithmic information that can be extracted
between two states.

Theorem 65 Relative to POVMS E and F , IProb(Eσ : Fρ)<log I(σ : ρ).

Note than since the universal Turing machine is relativized to E and F , allK andm are conditioned
to the number of qubits n. Quantum instruments with respect to POVMs E and F produces two
mixed states ΨE(σ) =

∑m
i=1Ei(σ) |i⟩ ⟨i| and ΨF (ρ) =

∑m
j=1 Fj(ρ) |j⟩ ⟨j|, where, without loss of

generality, m can be considered a power of 2. By Theorem 8, the (i, i)th entry of µ is
∗
= m(i), so

Tij = 2K(i)+K(j)−O(1) |i⟩ ⟨i| |j⟩ ⟨j| is a µ ⊗ µ test, with TrTi,j(µ ⊗ µ) < 1. So, using the fact that
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x/ log x is convex, and conservation of information Theorem 58,

I(σ : ρ)>+ I(ΨE(σ) : ΨF (ρ))

>+ log
∑

i,j

m(Ti,j)Ti,jΨE(σ)⊗ΨF (ρ)

>+ log
∑

i,j

2K(i)+K(j)m(i, j,K(i) +K(j))Ei(σ)Fj(ρ)

>+ log
∑

i,j

2I(i:j)−K(I(i:j))Ei(σ)Fj(ρ)

>+ log
∑

i,j

2I(i:j)I(i : j)−O(1)Ei(σ)Fj(ρ)

>log log
∑

i,j

2I(i:j)Ei(σ)Fj(ρ)

>log IProb(Eσ : Fρ).

Exercise 13 For density matrices ρ and σ, and i, j ∈ N, relativized to POVMS E and F , show
that I(i : j) + logEi(ρ)Fj(σ)<

log I(ρ : σ).

9.4 Algorithmic Contents of Measurements

This sections shows the limitations of the algorithmic content of measurements of pure quantum
states. Theorem 66 says that given a measurement apparatus E, the overwhelming majority of
pure states, when measured, will produce classical probabilities with no self-information, i.e. ran-
dom noise. Theorem 3 shows that there is no randomized way to process the probabilities to
produce more self-information, i.e. process the random noise. This is independent of the number
of measurement outcomes of E.

To prove this result, we need to define an upper-information term Iupper that is defined using
upper computable tests. We say a semi-density matrix ρ is upper computable if there a program
q ∈ {0, 1}∗ such that when given to the universal Turing machine U , outputs, with or without
halting, a finite or infinite sequence of elementary matrices ρi such that ρi+1 ⪯ ρi and limi→∞ ρi = ρ.
If U reads ≤ ∥q∥ bits on the input tape, then we say q upper computes ρ. The upper probability
of an upper computable mixed state σ is defined by m(σ|x) =∑{m(q|x) : q upper computes σ}.

Let GC⊗D be the set of all upper computable matrices (tests) of the form A⊗B, where Tr(A⊗
B)(C ⊗ D) ≤ 1. Let GC⊗D =

∑
A⊗B∈GC⊗D

m(A ⊗ B|n)(A ⊗ B) be an aggregation of upper

computable C ⊗ D tests of the form A ⊗ B, weighted by their upper probability (which is a
summation of lower-computable m measures of strings).

Definition 20 The upper information between semi-density matrices A and B is Iupper(A : B) =
log TrGµ⊗µ(A⊗B).

Proposition 4 Iupper(I/2
n : I/2n) = O(1).

Proof. 1 ≥ TrGµ⊗µ(µ⊗ µ)
∗
> TrGµ⊗µ(I/2

n ⊗ I/2n)
∗
> 2I(I/2

n:I/2n). □

Lemma 13 Let Λ be the uniform distribution on the unit sphere of an n qubit space. Let µ be the
uniform distribution over mixed states introduced in Definition 17.
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•
∫
2Iupper(|ψ⟩ : |ψ⟩)dΛ = O(1),

•
∫
2Iupper(σ :σ)dµ(σ) = O(1).

Proof. The proof follows identically to that of Theorems 56 and 57, with reference to Proposition
4. The main benefit in using Iupper is that it achieves an additive majorization over the information
of the probabilities resultant from applying measurements. This is in contrast to the standard
definition of information, I, which achieves only logarithmic majorization (see Theorem 65).

Lemma 14 ([Eps21a]) Relativized to POVM E, IProb(Eσ:Eσ)<
+ Iupper(σ:σ).

Proof. Note that all complexity terms are relativized to the number of qubits n, due to the

relativization of E. Since z(k) = TrµEk is lower semi-computable and
∑

k z(k) < 1,m(k)
∗
> TrµEk,

and so 1 > 2K(k)−O(1)TrµEk. So νi,j = 2K(i)+K(j)−O(1)(Ei ⊗ Ej) ∈ Gµ⊗µ is an upper-computable

(µ× µ)-test , with m(νi,j)
∗
>m(i, j).

Iupper(σ:σ) = log
∑

A⊗B∈Gµ⊗µ

m(A⊗B)(A⊗B)(σ ⊗ σ)

>+ log Tr
∑

ij

νi,jm(νi,j)(σ ⊗ σ)

>+ log
∑

2K(i)+K(j)m(i, j)Eσ(i)Eσ((j)

>+ IProb(Eσ:Eσ).

□

Remark 4 The following theorems state that given a quantum measurement, for an overwhelming
majority of pure or mixed quantum states, white noise (or the empty signal) will be produced. They
are a part of the central results of the manuscript.

Theorem 66 ([Eps21a]) Let Λ be the uniform distribution on the unit sphere of an n qubit space.
Relativized to POVM E,

∫
2IProb(E|ψ⟩:E|ψ⟩)dΛ = O(1).

Proof. By Lemma 14, 2Iupper(|ψ⟩:|ψ⟩)
∗
> 2IProb(E|ψ⟩:E|ψ⟩). From Lemma 13,

∫
2Iupper(|ψ⟩:|ψ⟩)dΛ =

O(1). The integral
∫
2IProb(E|ψ⟩:E|ψ⟩)dΛ is well defined because 2IProb(E|ψ⟩:E|ψ⟩) = Tr

∑
i,j m(i, j)νi,j(|ψ⟩ ⟨ψ|⊗

|ψ⟩ ⟨ψ|), for some matrices νi,j which can be integrated over Λ. □

Theorem 67 Relativized to POVM E,
∫
2IProb(Eσ:Eσ)dµ(σ) = O(1).

Proof. By Lemma 14, 2Iupper(σ:σ)
∗
> 2IProb(Eσ:Eσ). From Lemma 13,

∫
2Iupper(σ:σ)dµ(σ) = O(1). □

9.5 PVMs

However the measurement process has a surprising consquence, whereas for most states, an initial
measurement produces no signal, the subsequent wave function collapse causes a massive uptake in
algorithmic signal strength of the states. Thus a second measurement will produce a valid signal.
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Quantum measurements is also of the form of PVMs, or projection value measures. A PVM
P = {Πi} is a collection of projectors Πi with

∑
iΠi = I, and TrΠiΠj = 0 when i ̸= j. When a

measurement occurs, with probability ⟨ψ|Πi |ψ⟩, the value i is measured, and the state collapses to

|ψ′⟩ = Πi |ψ⟩ /
√
⟨ψ|Πi |ψ⟩.

Further measurements of |ψ′⟩ by P will always result in the i measurement, so P |ψ′⟩ (i) = 1.
Let F be a PVM of 2n−c projectors, of an n qubit space and let ΛF be the distribution of pure

states when F is measured over the uniform distribution Λ. Thus ΛF represents the F -collapsed
states from Λ. Note that if F has two few projectors, it lacks discretionary power to produce a
meaningful signal when the states are in distribution ΛF .

Theorem 68 n− 2c<+ log
∫
2IProb(F :|ψ⟩:F |ψ⟩|n)dΛF .

Proof. Note that
∫
⟨ψ|Πi |ψ⟩ dΛ = Dim(Πi)2

−n. Furthermore, let κ ⊂ {1, . . . , 2n−c} be the set

of numbers a ∈ κ such that K(a|n)>+ n − c. So |κ| ∗
> 2n−c. We have that if ⟨ψ|Πi |ψ⟩ = 1 then

IProb(F |ψ⟩ : F |ψ⟩ |n) = IProb(j 7→ [i = j] : j 7→ [i = j]|n) = I(i : i|n)=+K(i|n).
∫

2I(F :|ψ⟩:F |ψ⟩)dΛF

=

2n−c∑

i=1

Dim(Πi)2
−n2K(i)

∗
>
∑

i∈κ
Dim(Πi)2

−n2n−c

∗
>|κ|2−n2n−c
∗
>2n−2c.

□

9.6 Quantum Decoherence

The following letter of Einstein to Born (April 1954) illustrated the problem of superposition of
quantum macrosystems.

Let Ψ1 and Ψ2 be two solutions to the Same Schrödinger equation. . .When the system
is a macrosystem and when Ψ1 and Ψ2 are ‘narrow with respect to position, then in
by far the greater number of cases this is no longer true Ψ12 = Ψ1 + Ψ2. Narrowness
with respect to macrocoordinates is not only independent of the principles of quantum
mechanics, but is, moreover, incompatible with them.

This letter brings up the astonishing fact that observables on the microscale and absent from
everyday experiments. In fact, quantum decoherence and einselection show that such superpositions
are highly fragile and decay exponentially fast. The root cause of this phenomena is caused by
interactions between a system and environment. A closed system assumption is a fundamental
obstacle to the study of the transition of the quantum domain to the classical domain.

In this light, the setup is a (microscopic) system and (macroscopic) environment. Given joint
Hamiltonian dynamics between the system and environment, there are two main consequences.
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1. The effective disappearance of coherence, the source of quantum interference effects, from the
system.

2. The dynamical definition of preferred “pointer states”, which are unchanged by the sys-
tem/environment dynamics.

The phenomena of (1) is called decoherence (see [Sch10] for an extensive overview). The phenomena
(2) is called einselection, short for Environment INduced Selection [Zur03]. In Einselection, the
system-environment Hamiltonian “selects” a set of prefered quasi-classical “pointer states” which
do not decohere. Einselection explains why we only observe a few “classical” quantities such as
momentum and positon, and not superpositions of these pointer states.

We begin our explanation with a two state case, which can be generalized to arbitrary number
of pointer states. Suppose the system is described by a superposition of two quantum states |ψ1⟩
and |ψ2⟩ which for example can be thought of as two localization of two positions x1 and x2 in a
double slit experiment. The system/environment interaction results in

|ψ1⟩ |E0⟩ → |ψ1⟩ |E1⟩
|ψ2⟩ |E0⟩ → |ψ2⟩ |E2⟩ .

So the state of the environment evolves according to the state of the system. Now if the system is
in a superposition of |ψ1⟩ and |ψ2⟩, we get the dynamics

1√
2
(|ψ1⟩+ |ψ2⟩) |E0⟩ →

1√
2
(|ψ1⟩ |E1⟩+ |ψ2⟩ |E2⟩)

The reduced density matrix of system (with the environment traced out) is

1

2
(|ψ1⟩ ⟨ψ1|+ |ψ2⟩ ⟨ψ2|+ |ψ1⟩ ⟨ψ2| ⟨E2|E1⟩+ |ψ2⟩ ⟨ψ2| ⟨E1|E2⟩) .

The last two terms correspond to the interference between the state |ψ1⟩ and |ψ2⟩. If the environ-
ment recorded the position of the particle, then |E1⟩ and |E2⟩ will be approximately orthogonal. In
fact, it can be shown that in many dynamics, ⟨E1|E2⟩ ≤ e−t/τ , where t is the time of the interaction
and τ is a positive constant. In this case

ρ ≈ 1

2
(|ψ1⟩ ⟨ψ1|+ |ψ2⟩ ⟨ψ2|) .

Thus virtually all coherence between the two states |ψ1⟩ and |ψ2⟩ is lost. The states |ψ1⟩ and |ψ2⟩
are called invariant to the dynamics, and will not undergo decoherence. They are called “pointer
states” because they induce an apparatus with a pointer mechanism to be orientated at a particular
angle. Einselection preserves “pointer states” but superpositions of them are fragile and do not
survive the dynamics with the system.

9.6.1 Predictability Sieve

In general, there is not a clear division between pointer and non-pointer states. Instead one can use
a score to measure how much of the state has been preserved. The interaction of pointer states with
the environment is predictable; they are effectively classical states. However a state that is heavily
decohered is unpredictable. Let |ψ⟩ be an initial pure state, and ρ|ψ⟩(t) be the density matrix of
the system state after interacting with the environment for time t. The loss of predictability caused
by the environment can be measured in the following two measures
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• ςT|ψ⟩(t) = Trρ2|ψ⟩(t).

• ςS|ψ⟩(t) = S(ρ|ψ⟩(t)).

The first measure, uses squared trace of the density matrix whereas the second measure uses von
Neumann entropy. The first measure will start at 1 and then decrease proportionately to much
much the state decoheres. This is similarly true for the von Neumann entropy predictability sieve,
except the measure starts at 0.

In this section we introduce an algorithmic predictability sieve ςA. Assume a basis of 2n pointer
states. Let the system be |ψ⟩, an arbitrary pure state. We consider the limit of interacting with
the environment as time approaches infinity. In this idealized case, the decoherence |ψ⟩ ⟨ψ| into a
classical probability, with the off-diagonal terms turned to 0. Let p|ψ⟩ be the classical probability
that σ decoheres to, with p|ψ⟩(i) = |ψ⟩ ⟨ψ| (ii).

Definition 21 (Algorithmic Predictability Sieve) ςA(|ψ⟩) = IProb(p|ψ⟩ : p|ψ⟩|n).

Thus, ςA is the self information of the probability measure induced by the diagonal of the density
matrix |ψ⟩ ⟨ψ|. Note that this self information is relativized to n, that is the universal Turing
machine U has n on an auxiliary tape. We first show that, on average, pointer states |i⟩ have high
algorithmic predictability.

Theorem 69

1

2n

2n∑

i=1

ςA(|i⟩)=+ n.

Proof. By the definition of IProb, we have that ς
A(|i⟩)=+K(i|n). Since K(i) is a prefix free code,

1
2n
∑2n

i=1K(i) ≥ H(un) = n, where H(un) is the entropy of the uniform distribution un over strings
of length n. Furthermore, the upper bound comes from the fact that maxi∈{1,...,2n}K(i|n)<+ n.□

We now show that an overwhelming majority of pure states over the pointer basis decohere into
algorithmic white noise. Due to algorithmic conservation inequalities (see Theorem 3), there is no
(even probabilisitic) method of processing this white noise to produce a signal. Thus superpositions
of pointer bases will produce garbage that can’t be measured. The following corollary to Theorem
66 follows from the fact that there is a POVM E, where Ei = |i⟩ ⟨i| with Ei |ψ⟩ = p|ψ⟩(i).

Corollary 15 Let Λ be the uniform distribution on the unit sphere of an n qubit space.
∫

2ς
A(|ψ⟩)dΛ = O(1).

Apriori distributions which are close to Λ also have this property.

Proposition 5 Let Γ be a distribution over n qubit pure states such that Γ(|ψ⟩) ≤ 2cΛ(|ψ⟩) for all
|ψ⟩.

log

∫
2ς
A(|ψ⟩)dΓ<+ c.

Proof. Using Corollary 15,
∫

2ς
A(|ψ⟩)dΓ ≤ 2c

∫
2ς
A(|ψ⟩)dΛ

∗
< 2c.

□
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Chapter 10

Infinite Quantum Spin Chains

A qubit abstracts the properties of a single spin 1/2 particle. A complex system can be described
by the collection of qubits, which model properties of superposition and entanglement. It can be
convenient to consider a system’s thermodynamic limit, which is the limit of a system of infinite
size. In this chapter we use an infinite quantum spin chain as our model. In the study of infinite
quantum spin chains one can make a distinction between local and global effects. In addition, one
does not need to consider boundary conditions.

A Martin Löf random sequence is the accepted definition in AIT for a random infinite sequence.
Can one define a quantum Martin Löf infinite quantum state? This chapter shows that this can be
answered in the affirmative, and even landmark theorems in AIT like the Levin-Schnorr theorem
can transfer over to the quantum domain.

We first review Martin Löf random sequences. A Martin Löf test is an effective null set of the
form

⋂
nGn, where the measure of open set Gn of the Cantor space goes toward zero. An infinite

sequence passes a Martin Löf test if it is not contained in its null set. A Martin Löf random infinite
sequence passes all Martin Löf tests. Let MLR be the set of Martin Löf random sequences.

In [NS19], the set of random infinite quantum states was introduced, which we call NS random
states. Just like the classical setting, a NS random state passes allso-called NS tests. An NS test
is a quantum analog to Martin Löf tests, and it is defined by projections instead of open sets.

10.1 Infinite Quantum Bit Sequences

Before we introduce NS random sequences, we revisit the notion of C∗ algebras and functional
states. A C∗ algebra, M, is a Banach algebra and a function ∗ : M → M such that

• For every x ∈ M, x∗∗ = x.

• For every x, y ∈ M, (x+ y)∗ = x∗ + y∗ and (xy)∗ = y∗x∗.

• For every λ ∈ C and x ∈ M, (λx)∗ = λx∗.

• For all x ∈ M, ∥x∗x∥ = ∥x∥∥x∗∥.

A C∗ algebra M is unital if it admits a multiplicative identity 1. A state over unital M is a positive
linear functional Z : M → C such that Z(1) = 1. States are used to define NS random sequences.
The set of states of M is denoted by S(M). A state is tracial if Z(x∗x) = Z(xx∗), for all x ∈ M.

The C∗ algebra over matrices of size 2k over C is denoted by Mk. Each state ρ ∈ S(Mk), can
be identified with a density matrix S such that ρ(X) = TrSX, for all X ∈ M. States that cannot
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be represented as the convex combination of other states are called pure states. Otherwise they
are called mixed states. States are used interchangeably with density matrices, depending on the
context. The tracial state τn ∈ S(Mn) corresponds to the matrix 2−nI2n . The algebra M∞ is the
direct limit of the ascending sequence of Mn. . A state Z ∈ S(M∞) over M∞ can be seen as a
sequence of density matrices {ρn} that are coherent under partial traces, with TrMn+1ρn+1 = ρn.
We use Z↾n to denote the restriction of state Z to the algebra Mn. There is a unique tracial state
τ ∈ S(M∞), where τ↾n = τn. A projection p ∈ M∞ is a self adjoint positive element such that
p = p2. A special projection p ∈ Mn is a projection represented by an elementary matrix.

10.1.1 NS Randomness

An NS Σ0
1 set is a computable sequence of special projections {pi} in M∞ with pi ≤ pi+1 over all

i. For state ρ and NS Σ0
1 set G, ρ(G) = supi ρ(pi).

We define NS tests. But initially, we will provide the definition for the classical Martin Löf
random sequence, to provide a point of reference. A classical Martin Löf test, is a sequence {Un} of
uniformly Σ0

1 sets of infinite sequences Un ⊆ {0, 1}∞ such that µ(Un) ≤ 2−n. An infinite sequence
α ∈ {0, 1}∞ is Martin-Löf random if there is no Martin Löf test {Un} such that α ∈ ⋂n Un. There
is a universal Martin Löf test {Vn} such that if α ̸∈ ⋂n Vn, then α is random.

Mirroring the classical case, a NS test is an effective sequence of NS Σ0
1 sets ⟨Gr⟩ such that

τ(Gr) ≤ 2−r. Unlike a classical test, which can either pass or fail a sequence, a NS test can pass a
quantum state up to a particular order. For δ ∈ (0, 1), state Z ∈ S(M∞) fails test ⟨Gr⟩ at order
δ if Z(Gr) > δ for all r. Otherwise Z passes the test at order δ. We says Z passes a NS test if it
passes it at all orders δ ∈ (0, 1). A state is NS random if it passes every NS test at every order.

Theorem 70 ([NS19]) There exists a universal NS test ⟨Rn⟩, where for each NS test ⟨Gk⟩ and
each state Z and for each n there exists a k such that Z(Rn) ≥ Z(Gk).

Proof. Let ⟨Gkn⟩∞n=1 be an enumeration of NS tests, performed analgously to the classical case
(see [G0́1]). Furthermore let Ge,m = ⟨pe,mr ⟩r∈N. For each k, n ∈ N, let qnk =

∨
e+n+1≤k p

e,e+n+1
k .

Thus qnk ≤ qnk+1 and τ(qnk ) ≤
∑

e τ(p
e,e+n+1
k ) ≤ 2−n. The universal NS test is Rn = ⟨qnk ⟩k∈N. Since

τ(Rr) ≤ 2−n, ⟨Rn⟩ is a NS test. For a set e,

ρ(Rn) = sup
k
ρ(qnk ) ≥ sup

k
ρ(pe,n+e+1

k ) = ρ(Ge,n+e+1).

□

A state Z is NS random if it passes the test ⟨Rn⟩. More information about ⟨Rn⟩ can be found
in [NS19].

Exercise 14 ([NS19]) Let Sn,i be the subspace of C2n generated by |x⟩ where x ∈ {0, 1}n has
x[i] = 1. So for any state Z on M∞, the real Z(Sn,i) is the probability that a measurement of the
ith qubit of its initial segment Z↾n return 1. Prove that for NS random state Z,

lim
n→∞

1

n

∑

i<n

Z(Sn,i) = 1/2.

Exercise 15 ([NS19]) Let Z ∈ {0, 1}∞. Show that Z is ML random iff Z viewed as an element
of S(M∞) is NS random.
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10.2 Closure Properties

The set of NS random sequences has closure properties over (possibly noncomputable) convex
combinations, as shown in the following theorem.

Theorem 71 Every convex combination Z =
∑

i αZi of NS random states Zi, with
∑

i αi = 1 and
αi ≥ 0, is NS random.

Proof. Given an NS test ⟨Gr⟩ = ⟨prt ⟩, there exists a NS test ⟨Hr⟩ such that for all states Z,
infr Z(H

r) ≥ infr Z(G
r) and Hr ⊇ Hr+1. This is by setting Hr equal to

∨
i≥rG

i. More formally,

⟨Hr⟩ = ⟨qrt ⟩, where qrt =
∨t
i=1 p

r+i
t . Thus there exists a universal NS test ⟨Lr⟩ such that Lr ⊇ Lr+1.

Assume that Z is not NS random. Then

lim
r→∞

Z(Lr) > 0

lim
r→∞

∑

i

αiZi(L
r) > 0

∑

i

αi lim
ri→∞

Zi(L
ri) > 0.

So there exists an i such that limr→∞ Zi(L
r) > 0, and thus Zi is not NS random. □

10.3 Gács Complexity and NS Random Sequences

In this section, we characterize NS random states in terms of Gács complexity, Hg.

Lemma 15 Given state Z ∈ M∞, and program p that enumerates infinite set A ⊆ N, then
supn∈N n−Hg(Z↾n)<+ supn∈A n−Hg(Z↾n) +K(p).

Proof. There exists a program p′ of size ∥p∥+O(1) that outputs a list {an} ⊆ A such that n < an.
For a given an, σ = 2n−anµn ⊗ Ian−n is a lower computable 2an × 2an semi-density matrix. There
is a program q = q′⟨an, n⟩ that lower computes σ where q′ is helper code that uses the encodings

of an and n. By the universal properties of µ, we have the inequality m(q|an)σ
∗
< µan . So, using

properties of partial trace,

an + logm(q|an)TrσZ↾an<+ an + logTrµ(Z↾an)

an + logTr2n−an(µn ⊗ Ian−n)Z↾an −K(q|an)<+ an + logTrµ(Z↾an)

n+ logTr(µn ⊗ Ian−n)Z↾an −K(⟨n, an⟩|an)<+ an + logTrµ(Z↾an)

n+ logTr(µnTrnZ↾an)−K(p′|an)<+ an + logTrµ(Z↾an)

n−Hg(Z↾n)<+ an −Hg(Z↾an) +K(p).

So supn∈N n−Hg(Z↾n)<+ supan∈{an} an−Hg(Z↾an) +K(p)<+ supn∈A n−Hg(Z↾n) +K(p). □

Theorem 72 Suppose for state Z, and for infinite enumerable set A ⊆ N, supn∈A n − Hg(Z ↾
n) <∞. Then Z is NS random.
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Proof. Suppose Z is not NS random. Let Lr = ⟨prt ⟩ be the universal NS test. So Rank(prn) ≤
2n−r. Thus infr Z(L

r) = δ > 0. For each r, there exists an n such that Tr(prnzn) ≥ δ, where

zn = Z ↾ n. Since 2r−nprn is a computable semi-density matrix given n and r, m(r|n)2r−nprn
∗
< µ.

So m(r|n)2r−nδ ∗
< Trµzn, which implies that Hg(Z ↾ n)<+ n − r + K(r|n). Since this property

holds for all r ∈ N, supn n−Hg(Z ↾ n) = ∞. From Lemma 15, supn∈A n−Hg(Z ↾ n) = ∞. □

10.4 Encodings of States

Let [Z] ∈ {0, 1}∞ be an encoding of the state Z described as follows. For each n, let e(n,m) be
the mth enumeration of a pair (p, k) consisting of a special projection p of Mn and a rational
0 ≤ k ≤ 1. For [Z], the ith bit, where i = 2nm for maximum n, corresponds to 1 if and only if
TrpZ↾n > k, where (p, k) is the pair enumerated by e(n,m). We say that state Z ∈ QH if and only
if the halting sequence can be computed from [Z]. By the Independence Postulate (see Chapter
??), states in QH are exotic and non-physical.

10.5 Initial Segment Incompressibility

Due to Levin and Schnorr, [Lev74, Sch71] α is random iff there is an r such that for all n, K(α≤n) ≥
n − r, where α≤n is a prefix of α of size n, and K is prefix free Kolmogorov complexity. In this
section, we prove a quantum analog to this result. We show that NS states that are NS random
have incompressible prefixes with respect to quantum operation complexity. Otherwise the quantum
states are in QH. Theorem 73 builds upon the proof of the Theorem 4.4 in [NS19] using quantum
unitary complexity Huc.

Theorem 73 Let Z be a state on M∞.

1. Let 1 > ϵ > 0, and suppose Z passes each NS test at order 1 − ϵ. Then there is an r where
for all n, Hucϵ(Z↾n) > n− r.

2. Let 1 > ϵ > 0 be lower computable and Z fails some NS test at order 1 − ϵ. Then either
Z ∈ QH or for all r, there is an n where Huc

√
ϵ(Z↾n) < n− r.

Proof. (1). Let Kt(x) be the smallest program to produce x in time t. Let s(n, r, t) be the set of
pure n qubit states |ψ⟩ ∈ S(Mn) such that there exists a quantum unitary pair (V,m) ∈ Cn,m and
pure state |ϕ⟩ ∈ S(Mm) such that |ψ⟩ ⟨ψ| = V (|0n−m⟩ |ϕ⟩ ⟨ϕ| ⟨0n−m|)V ∗ andKt((V,m))+m ≤ n−r.
Let p(n, r, t) be the orthogonal projection inMn with minimum τ(p(n, r, t)) such that ρ(p(n, r, t)) =
1 for all ρ ∈ s(n, r, t). Let p(r, t) = supn≤t p(n, r, t). So p(r, t) is in Mt, p(r, t) ≤ p(r, t + 1), and
p(r, t) is computable from r and t. This is because one can compute a collection of sets Wn of
quantum unitary pairs (V,m) ∈ Cn,m, with n ≤ t, and Kt((V,m)) +m ≤ n − r. So we have that
p(r, t) = supn≤t sup(V,m)∈Wn

V (|0n−m⟩ Im ⟨0n−m|)V ∗, where Im is the m qubit identity matrix.
Let b(y, n, z) be the number of programs of length y which output an quantum unitary pair in
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Cn,z. Let b(y, n) =
∑

z≤n b(y, n, z). So

Range(p(n, r, t)) ≤
∑

y+z≤n−r
b(y, n, z)2z

τ(p(n, r, t)) ≤
∑

y+z≤n−r
b(y, n, z)2z−n

≤
∑

y+z≤n−r
b(y, n, z)2−y−r

≤
n−r∑

y=1

b(y, n)2−y−r

τ(p(r, t)) ≤
∞∑

n=1

τ(p(n, r, t))

≤
∞∑

n=1

n−r∑

y=1

b(y, n)2−y−r

= 2−r
∞∑

n=1

n−r∑

y=1

b(y, n)2−y ≤ 2−r.

So for NS Σ0
1 set Gr enumerated by the sequence {p(r, t)}t, ⟨Gr⟩ is a NS test. For each r

suppose there is an n such that Hucϵ(Z↾n) ≤ n − r. So there is a quantum unitary pair
(V, z) ∈ Cn,z and input ρ ∈ S(Mz) such that K((V, z)) + z ≤ n − r and D(Z↾n, ξ) < ϵ, where
ξ = V |0m−n⟩ ρ ⟨0n−m|V ∗. So ξ is in the range of p(n, r, t) for some t and so Trξp(n, r, t) = 1. This
implies 1−ϵ < Z(p(n, r, t)) ≤ Z(p(r, t)) ≤ Z(Gr). Since this is for all r, Z fails the test at order 1−ϵ.

(2). Let bb(n) be the longest running time of a halting program of length ≤n. Let ⟨Lr⟩
be the universal NS test, where each Lr is enumerated by {prt}, with prt ∈ Mn(r,t). Assume
there is an infinite number of r where TrZ↾n(r,bb(r/2))prbb(r/2) > 1 − ϵ. Fix one such r and let

n = n(r,bb(r/2)), and p = prbb(r/2). Projection p has eigenvectors {|ui⟩} and kernel spanned by

{|vi⟩}. Thus 2−r ≥ τ(p). Let p′ ≥ p with p′ ∈ Mn such that each ui is in the range of p′ and
{|vi⟩}ki=1 is in the range of p′ such that k is minimized such that τ(p′) = 2−r. Thus TrZ↾n(p′) > 1−ϵ.
The eigenvectors of p′ are {|wi⟩}2n−ri=1 and its kernel is spanned by the vectors {|yi⟩}2

n−2n−r

i=1 . Let
z′ = Proj(Z↾n; p′) be a density matrix with eigenvalues xi ∈ R corresponding to eigenvectors |wi⟩,
where Proj is defined in Proposition 6. For i ∈ [1, 2n], let B(i) ∈ {0, 1}∗ be an encoding of n bits
of the number i, with B(1) = |0(n)⟩, B(2) = |10(n−1)⟩, and B(2n) = |1(n)⟩. Let U be a 2n × 2n

unitary matrix, of the form U =
∑2n−r

i=1 |B(i)⟩ ⟨wi|+
∑2n−2n−r

i=1 |B(i+ 2n−r)⟩ ⟨yi|.

Proposition 6 ([NS19]) Let Proj(s;h) = 1
Tr[sh]hsh. Let p be a projection in Mn and σ be a

density matrix in Mn. If α = Trpσ and σ′ = Proj(σ; p) then D(σ, σ′) ≤
√
1− α.

Proof. Let |ψσ⟩ be a purification of σ. Then α− 1
2 p |ψσ⟩ is a purification of σ′. Uhlmann’s theorem

states F (σ, σ′) ≥ α− 1
2 ⟨ψσ| p |ψσ⟩ = α

1
2 , where F is fidelity, with F (σ, σ′) = Tr

√√
σ′σ

√
σ′. Thus

the proposition follows from D(σ, σ′) ≤
√
1− F (σ, σ′). □

For the diagonal 2n−r×2n−r matrix σ with entries {xi}2n−ri=1 , z′ = U(|0r⟩σ ⟨0r|)U∗. By Proposi-
tion 6, since 1− ϵ < Tr(p′Z↾n) and z′ = Proj(zn; p

′), it must be that D(z′, Z↾n) <
√
ϵ. Thus using
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the quantum unitary pair (U, n− r),

Huc
√
ϵ(Z↾n) ≤ Dim(σ) +K((V, n− r))

<+ n− r +K(n, r)

<+ n− r +K(bb(r/2), r)

<+ n− r + r/2 +K(r)

<+ n− r/3.

Thus for every r there exists an n where Huc
√
ϵ(Z↾n) < n−r. This is because the additive constant

of the above equation is not dependent on r.

Otherwise there is some R where for all r ≥ R, and q < bb(r/2), TrZn(r,q)p
r
q ≤ 1 − ϵ. Thus

given R, ⟨Lr⟩, [Z], and a lower enumeration of ϵ, one can iterate through each r ≥ R and return
an s such that TrZn(r,s)p

r
s > 1− ϵ.. This number s has the property that s ≥ bb(r/2), and can be

used to compute the prefix of the halting sequence over all programs of length ≤ r/2 as every such
program that will halt will do so in less than s steps. Thus the halting sequence is computable
relative to [Z] and thus Z ∈ QH. □

Corollary 16 Let state Z ̸∈ QH. Then Z is NS random iff for all 0 < ϵ < 1, there is an r, where
for all n, Hucϵ(Z ↾ n) > n− r.

Proof. Assume Z is NS random. Then for all 0 < ϵ < 1, Z passes each NS test at order 1 − ϵ.
Then by Theorem 73 (1), for all 0 < ϵ < 1 there is an r where for all n, Hucϵ(Z↾n) > n−r. Assume
Z is not NS random. Then there is some rational 0 < δ < 1 such that Z fails some NS test at order
1− δ. Then by Theorem 73 (2), for ϵ =

√
δ, for all r, there is an n where Hucϵ(Z↾n) < n− r. □

10.5.1 Prefix-Free Quantum Kolmogorov Complexity

Comparable result to Theorem 73 have been achieved in [Bho21b], using a definition called prefix-
free quantum Kolmogorov complexity, QK. Like Huc, the definition of QK uses the summation
of two parts: a classical component and a quantum component. We recall that U is the (classical
and prefix free) universal Turing machine.

Definition 22 QKϵ(σ) = min{∥x∥+ logRank(P ) : U(x) = Projection P and TrPσ > ϵ}.

Theorem 74 ([Bho21b]) Assume state ρ ∈ M∞ does not compute ∅′′. Then ρ is NS random iff
for all ϵ ∈ (0, 1) there exists c such that for all n, QKϵ(ρ ↾ n) > n− c.

10.6 Quantum Ergodic Sources

In [Bru78], Brudno proved that for ergodic measures η over bi-infinite sequences, for η-almost all
sequences, the rate of the Kolmogorov complexity of their finite prefixes approaches the entropy
rate of η. Therefore the average compression rate of sequences produced by η is not more than its
entropy rate. In [BKM+06], a quantum version of Brudno’s theorem was introduced relating, in a
similar fashion, Von Neumann entropy and complexity with respect to a quantum Turing machine.
The results provide two bounds with respect to two variants: an approximate-scheme complexity
and a finite accuracy complexity.
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In this subsection we provide a quantum variant of Brudno’s theorem with respect to quan-
tum unitary complexity Huc. Differently from the quantum Turing machine results, the bounds
provided below are for almost all n, invariant to the accuracy term ϵ.

We define the quasilocal C∗ algebra A∞, which differs only from M∞ in that it is a doubly
infinite product space over Z. In particular, A is the C∗ algebra of qubits, i.e. 2×2 matrices acting
on C2. For finite Λ ⊂ Z, AΛ =

⊗
z∈ΛAz.

The quasilocal C∗ algebra A∞ is defined to be the norm closure of
⋃

Λ⊂ZAΛ. For states Ψ over
A∞, we use Ψ↾n to denote Ψ restricted to the finite subalgebra A{1,...,n} of A∞. The right shift T is
a ∗-automorphism on A∞ uniquely defined by its actions on local observables T : a ∈ A{m,...,n} 7→
A{m+1,...,n+1}. A quantum state Ψ is stationary if for all a ∈ A∞, Ψ(a) = Ψ(T (a)). The set of
shift-invariant states on A∞ is convex and compact in the weak* topology. The extremal points
of this set are called ergodic states. The mean entropy of a quantum state Ψ is limn→∞

1
nS (Ψ↾n),

where S is von Neumann’s entropy.

10.6.1 Quantum Unitary Complexity

Theorem 75 Let Ψ be an ergodic state with mean entropy h. For all δ > 0, for almost all n, there
is an orthogonal projector Pn ∈ An such that for all ϵ > 0,

1. Ψ↾n(Pn) > 1− δ.

2. For all one dimensional projectors p ≤ Pn, Hucϵ(p)/n ∈ (h− δ, h+ δ).

Proof. Let δ′ < δ′′ < δ. From [BDK+05], there is a sequence of projectors P ′
n ∈ An where

for almost all n, Ψ↾ n(P ′
n) > 1 − δ′, for all one dimensional projectors p′ ≤ P ′

n, 2−n(h+δ
′) <

Ψ↾n(p′) < 2−n(h−δ
′), and 2n(h−δ

′) < TrP ′
n < 2n(h+δ

′). Let S′
n be the subspace that P ′

n projects
onto. Let Rn be the smallest subspace spanned by all pure states produced by a quantum unitary
pair (V, g) where K((V, g)) + g < n(h − δ′′). Let Qn be the projector onto Rn. By Lemma 12,
Dim(Rn) < 2n(h−δ

′′). Let Sn be the largest subspace of S′
n that is orthogonal to Rn. Let Pn be the

orthogonal projector onto Sn. So for sufficiently large n, Ψ↾n(Pn) ≥ Ψ↾n(P ′
n)−Dim(Rn)2

−n(h−δ′) >
1− δ′ − 2n(h−δ

′′)2−n(h−δ
′) = 1− δ′ − 2n(δ

′−δ′′) > 1− δ, for large enough n.
By definition, since Pn is orthogonal to Rn, for all ϵ, for all one dimensional projectors p ≤ Pn,

Hucϵ(p) ≥ n(h − δ′′) > n(h − δ). Furthermore, all such p can be produced from an elemen-
tary quantum unitary pair (V, ⌈n(h(+δ′)⌉) that maps ⌈n(h(+δ′)⌉ qbit pure states and padded
zeros with unitary transform V . Therefore for large enough n, Hucϵ(p) ≤ K((V, ⌈n(h+ δ′)⌉)) +
⌈n(h+ δ′)⌉<+K(Ψ, n, h) + ⌈n(h+ δ′)⌉ < n(h+ δ). □

10.6.2 Gács Complexity

Theorem 76 Let Ψ be an ergodic state with mean entropy h. For all δ > 0, for almost all n,
there is an orthogonal projector Pn ∈ An such that Ψ↾n(Pn) > 1 − δ and for all one dimensional
projections p ≤ Pn, Hg(p)/n<+ h+ δ.

Proof. From [BDK+05], there is a sequence of projectors Pn ∈ An where for almost all n,
Ψ↾n(Pn) > 1 − δ, and 2n(h−δ) < TrPn < 2n(h+δ). Let p ≤ Pn be a one dimensional projection.
Hg(p)=+ − log Trpµ<+ log Trpm(Pn|n(Pn2−n(h+δ)))<+ n(h+ δ) +K(δ,Ψ). So for large enough
n, Hg(p)/n<+ h+ δ +K(δ,Ψ)/n<+Hg(p)/n<+ h+ δ. □
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10.7 Measurement Systems

We note that pre-measures are of the form γ : {0, 1}∗ → R≥0, where γ(x) = γ(x0) + γ(x1). By
Carathéodory’s Extension Theorem, each such pre-measure can be uniquely extended to a measure
Γ over {0, 1}∞. In Chapter 9, measurements of finite collections of qubits are studied. This section
deals with measurement systems, which can be applied to infinite quantum states.

Definition 23 (Meaurement System ([Bho21a])) An α-computable measurement system B =
{(|bn0 ⟩ , |bn1 ⟩)} is a sequence of orthonormal bases for Q1 such that each |bni ⟩ is elementary and the
sequence ⟨|bn1 ⟩ , |bn0 ⟩⟩∞n=1 is α-computable.

Note that the above definition can be generalized to a sequence of PVMs. We now define the
application of a measurement system B to an infinite quantum state Z which produces a pre-
measure p. Let ρn be the density matrix associated with Z↾n. For the first bit, we use the standard
definition of measurement, where

p(i) = Tr |b1i ⟩ ⟨b1i | ρ1.
Given ρ2, if i is measured on the first bit, then the resulting state would be

ρi2 =
(|b1i ⟩ ⟨b1i | ⊗ I)ρ2(|b1i ⟩ ⟨b1i | ⊗ I)

Tr(|b1i ⟩ ⟨b1i | ⊗ I)ρ2

So

p(ij) = p(i)p(j|i)

=
(
Tr |b1i ⟩ ⟨b1i | ρ1

)
Tr
(
I ⊗ |b2j ⟩ ⟨b2j |

)
((

|b1i ⟩ ⟨b1i | ⊗ I
)
ρ2
(
|b1i ⟩ ⟨b1i | ⊗ I

)
(
|b1i ⟩ ⟨b1i | ⊗ I

)
ρ2

)

Since Tr2ρ2 = ρ1, Tr |b1i ⟩ ⟨b1i | ρ1 = Tr
(
|b1i ⟩ ⟨b1i | ⊗ I

)
ρ2. Therefore

p(ij) = Trρ2
(
|b1i b2j ⟩ ⟨b1i b2j |

)
.

More generally for x ∈ {0, 1}n, we define the pre-measure p to be

p(x) = Trρn |⊗n
i=1b

i
xi⟩ ⟨⊗n

i=1b
i
xi | ;

It is straightforward to see that p is a pre-measure, with p(x) = p(x0) + p(x1). Let µBZ be the
measure over {0, 1}∞ derived from the described pre-measure, using measurement system B and
state Z. We recall that MLR is the set of Martin Löf random sequences.

Definition 24 (Bhojraj Random) A state Z is Bhojraj Random if for any computable measure-
ment system B, µBZ (MLR) = 1.

Theorem 77 ([Bho21a]) All NS Random states are Bhojraj Random states,

Proof. Let state Z be NS random. Let {ρn} be the density matrices associated with Z. Suppse
not. Then there is δ ∈ (0, 1) and computable measurement system B = {|bn0 ⟩ , |bn1 ⟩}∞n=1 where
µBZ ({0, 1}∞ \MLR) > δ. Let {Sm} be a universal ML test. Without loss of generality, this test is
of the form

Sm =
⋃

m≤i
JAmi K,
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where JAmi K ⊆ JAmi+1K, and Ami {τm,i1 , . . . , τm,i
km,i

} ⊂ {0, 1}i for some 0 ≤ km−i ≤ 2i−m. Thus
µ(Sm) ≤ 2−m, where µ is the uniform distribution over {0, 1}∞. We define an NS test as follows.
For all m and i, with m ≤ i, let τa = τm,ia and define the special projection

pmi =
∑

a≤km,i
|⊗i

q=1b
q
τα[q]

⟩ ⟨⊗i
q=1b

q
τα[q]

| .

We define Pm = {pmi }m≤i we have that ⟨Pm⟩ is an NS Test. The special tests pmi is uniformly
computable in i andm since B and Ami are uniformly computable in i andm. Since JAmi K ⊆ JAmi+1K,
Range(pmi ) ⊆ Range(pmi+1). So Pm is an NS Σ0

1 set for all m. Since km,i ≤ 2i−m for all m and i,
this implies τ(Pm) ≤ 2−m for all m.

For all m, {0, 1}∞ \MLR ⊆ Sm. Since by assumption µBZ ({0, 1}∞ \MLR) > δ, for all m there
exists i(m) > m such that

µBZ (JA
m
i(m)K) > δ.

Fix an m and i = i(m) and let Ami = {τ1, . . . , τkm,i}, where km,i ≤ 2i−m. Let µ be the pre-measure
associated with µBZ . So we have

δ <
∑

a≤km,i
µ(τa) =

∑

a≤km,i
Trρi |⊗i

q=1b
q
τ [q]⟩ ⟨⊗

i
q=1b

q
τ [q]| .

So we see that for all m there is an i such that

δ < Trρip
m
i ≤ Z(Pm).

So infm Z(P
m) > δ, contradicting that Z is NS random. □

Theorem 78 ([Bho21a]) There are states that are Bhojraj random and not NS Random.

10.8 NS Solovay States

A NS Solovay test is a sequence of NS Σ1
0 sets ⟨Gn⟩ such that

∑
n τ(G

n) < ∞. A state Z fails
a quantum NS test ⟨Gr⟩ at order δ ∈ (0, 1) if there is an infinite number of r ∈ R such that
infr∈R Z(G

r) > δ. Otherwise state Z passes the quantum NS test at order δ. A quantum state Z is
NS Solovay random if it passes all NS Solovay tests at all orders. The following theorem shows the
equivalence of NS randomness and NS Solovay randomness with respect to every order δ. Given
a special projection p, NS Σ1

0 set Q = {qn}, and state Z, we define Z(p \ Q) = infn Z(p \ qn). In
[Bho21a], it was proven that NS randomness is equivalent to NS Solovay randomness.

Proposition 7 Given a special projection p, NS Σ1
0 set Q, and state Z, Z(p)−Z(Q) ≤ Z(p\Q) ≤

Z(p).

The proof is straightforward.

Theorem 79 If a state Z fails an NS test at order δ then it fails an NS Solovay test at order δ.

Proof. Assume that state Z fails a NS test ⟨Gr⟩ at order δ. Since ∑r τ(G
r) ≤ 1, and each Gr is

an NS Σ0
1 set, ⟨Gr⟩ is a NS Solovay test. Furthermore since infr Z(G

r) ≥ δ, there exists an infinite
number of r such that Z(Gr) > δ. Thus Z fails a NS Solovay test at order δ. □

Theorem 80 For all δ′ < δ, if a state Z fails an NS Solovay test at order δ then it fails an NS
test at order δ′.
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Proof. Assume state Z fails NS Solovay test ⟨Gr⟩ at order δ. Given ⟨Gr⟩, where Gr = ⟨prn⟩n∈N,
we construct an NS test ⟨Hr⟩ as follows. There exists an m such that

∑
n>m τ(G

n) ≤ 1. Fix r.
Enumerate all unordered sets of r+ 1 natural numbers {Dr

n}n∈N, Dr
n ⊂ N, with infinite repetition.

Hr = {qrn}, qrn =
∨

ℓ<n

qrℓ
∨

 ∧

t∈Drn

ptn


 .

Each Hr can be seen to be an NS Σ0
1 set. In addition, 1 ≥∑m<n τ(G

n) ≥ 2rτ(Hr), so ⟨Hr⟩ is an
NS test. For each r, Z(Hr) > δ′. Assume not. Then there exists a k such that Z(Hk) ≤ δ′. Since
Z fails ⟨Gr⟩ at order δ, there exists an infinite number of r∈R and nr ∈ N such that Z(prnr) ≥ δ′′,
for some δ′ < δ′′ < δ. We reorder the NS Solovay test ⟨Gr⟩ such that r ranges over solely R. Let
zr = prn,r. Let Dn,ℓ be the set of all unordered subsets of {1, . . . , n} of size ℓ. For ℓ > n let Fn,ℓ = ∅.
Let

Fn,ℓ =


 ∨

A∈Dn,ℓ

∧

r∈A
zr


 \

∨

s>ℓ

Fn,s.

So for all n ∈ N, using Proposition 7,

n(δ′′ − δ′)

≤
n∑

r=1

(Z(zr)− Z(Hk))

≤
n∑

r=1

Z(zr \Hk)

≤
n∑

r=1

Z

(
k∨

s=1

Fn,s ∧ zr
)
.

Let Fn,s,r = Fn,s ∧ zr, with for a fixed s ≤ k,
∑n

i=1 Z(Fn,s,i) ≤ s.

n(δ′′ − δ′)

≤
n∑

r=1

Z

(
k∨

s=1

Fn,s,r

)

=
k∑

s=1

n∑

r=1

Z (Fn,s,r)

≤
k∑

s=1

s = O(k2).

This is a contradiction for large enough n. □

Corollary 17 A quantum state is NS random if and only if it is NS Solovay random.
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Chapter 11

Conclusions About Quantum
Mechanics

11.1 Signals from Classical and Quantum Sources

Information non-growth laws say information about a target source cannot be increased with ran-
domized processing. In classical information theory, where I is mutual information, and g is a
random function, one has

I(g(X) :Y ) ≤ I(X :Y ).

where g is a randomized function, X and Y are random variables, and I is the mutual informa-
tion function. Thus processing a channel at its output will not increase its capacity. Information
conservation carries over into the algorithmic domain, with the inequalities (as seen in Chapter 2)

I(f(x) : y)<+ I(x : y); I(f(a);H)<+ I(a;H).

These inequalities ensure target information cannot be obtained by processing. If for example
the second inequality was not true, then one can potentially obtain information about the halting
sequence H with simple functions. Obtaining information about H violates the Independence
Postulate, discussed in Chapter ??. Information nongrowth laws can be extended to signals [Eps23a]
which can be modeled as probabilities over N or Euclidean spac. In [Eps23a] probabilities over
{0, 1}∞ and T0 second countable topologies were also studied. The “signal strength” of a probability
p over N is measured by its self information.

IProb(p : p) = log
∑

i,j

2I(i:j)p(i)p(j).

A signal, when undergoing randomized processing f (see Section 2.2), will lose its cohesion.
Thus any signal going through a classical channel will become less coherent.

IProb(f(p) : f(p))<
+ IProb(p : p).

In Euclidean space, probabilities that undergo convolutions with probability kernels will lose
self information. For example a signal spike at a random position will spread out when convoluted
with the Gaussian function, and lose self information. The above inequalities deal with classical
transformations. One can ask, is whether, quantum information processing can add new surprises
to how information signals occur and evolve.
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One can start with the prepare-and-measure channel, also known as a Holevo-form channel.
Alice starts with a random variable X that can take values {1, . . . , n} with corresponding proba-
bilities {p1, . . . , pn}. Alice prepares a quantum state, corresponding to density matrix ρX , chosen
from {ρ1, . . . , ρn} according to X. Bob performs a measurement on the state ρX , getting a classical
outcome, denoted by Y . Though it uses quantum mechanics, this is still a classical channel X → Y .
So using the above inequality, cohesion will deteriorate regardless of X ′s probability, with

IProb(Y : Y )<+ IProb(X : X).

There remains a second option, constructing a signal directly from a mixed state. This involves
constructing a mixed state, i.e. density matrix σ, and then performing a measurement E on the
state, inducing the probability Eσ(k) = TrσEk. However from Theorem 4, for elementary (even
enumerable) probabilities Eσ,

IProb(Eσ :Eσ)<
+K(σ,E).

Thus for simply defined density matrices and measurements, no signal will appear. So experiments
that are simple will result in simple measurements, or white noise. However it could be that a
larger number of uncomputable pure or mixed states produce coherent signals. Theorems 66 and
67 say otherwise, in that the POVM measurement E of a vast majority of pure and mixed states
will have negligible self-information. Thus for uniform distributions Λ and µ over pure and mixed
states (see Section 8.2.2),

∫
2IProb(E|ψ⟩:E|ψ⟩)dΛ = O(1);

∫
2IProb(Eσ:Eσ)dµ(σ) = O(1).

The measure µ is a uniform measure over mixed states. This can be seen as a consequence of
the vastness of Hilbert spaces as opposed to the limited discriminatory power of quantum measure-
ments. In addition, there could be non-uniform distributions of pure or mixed states that could
be of research interest. In quantum decoherence, a quantum state becomes entangled with the
environment, losing decoherence. The off diagonal elements of the mixed state become dampened,
as the state becomes more like a classical mixture of states. Let pσ be the idealized classical proba-
bility that σ decoheres to, with pσ(i) = σii. Corollary 15 states that for an overwhelming majority
of pure or mixed states σ, pσ is noise, that is, has negligible self-information.

∫
2IProb(p|ψ⟩:p|ψ⟩)dΛ = O(1);

∫
2IProb(pσ :pσ)dµ(σ) = O(1).

This is to be expected, with one supporting fact being for an n qubit space, i ∈ {1, . . . , 2n},
EΛ[p|ψ⟩(i)] = 2−n. With Algorithmic Information Theory, this result was taken this fact one step
further, showing that p|ψ⟩ has no (in the exponential) self-algorithmic information and cannot be
processed by deterministic or randomized means to produce a more coherent signal. In addition,
it appears a more direct proof of the first decoherence inequality could be possible.

However the measurement process has a surprising consquence, in that the wave function col-
lapse causes an massive uptake in algorithmic signal strength. Let F be a PVM (defined in Chapter
9), of size 2n−c, of an n qubit space and let ΛF be the distribution of pure states when F is measured
over the uniform distribution Λ. Thus ΛF represents the F -collapsed states from Λ. Theorem 68
states

n− 2c<log log

∫
2IProb(F |ψ⟩:F |ψ⟩)dΛF .
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Figure 11.1: Each box on the top row represents an n qubit Hilbert space, with the
shaded rectangles being the subspaces of the PVM projectors. Thus there are three
PVMs. The self-information majorizes these subspaces, inversely weighted by the
PVM’s complexity.

11.2 Apriori Distributions

To avoid the pitfall of a signalless distribution that only produces white noise, we can conjecture
a new apriori distribution for quantum states that is not signalless. Note that we are dealing with
measures over the density operator space and not directly with density operators because we are
measuring properties, such as self-information, over all possible (pure or mixed) states. Research
into distributions over operators can be found in [SBC01]. Properties of this apriori distribution
can be discerned by working backwards. Indeed, suppose there are a set of (possibly infinite)
systems {|ψi⟩}, where for each system |ψi⟩, a measurement occurs, producing a discernable signal.
By Theorem 65, this implies the states |ψi⟩ have high I(|ψi⟩ : |ψi⟩), where I is the information
function between mixed states introduced in Definition 16. Thus any universal quantum apriori
distribution over these systems must be weighted toward states with high self information. One
candidate is an probability measure ξ over pure states where

ξ(|ψ⟩) ∝ 2I(|ψ⟩:|ψ⟩).

However this area of research is still ongoing. Another clue to this universal quantum apriori
distribution is the measurement operation, which as shown above, causes an uptake in signal
strength. Take a PVM measurement F , which procures a value i from a state |ψ⟩, projecting to a
new state |ψ′⟩. P |ψ′⟩ (i) = 1. By Exercise 13, this new state |ψ′⟩ has self information

K(i)<log I(|ψ′⟩ : |ψ′⟩).

The error term is on the order of K(P ). Most of the measurement values i of P will be random, i.e.
have large K(i) (just look at the Kolmorogov complexity of the first 2n numbers!). Thus simple
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quantum measurements increase the self information of most measured quantum states (see Figure
11.1). So this fact, and Theorem 56, leads us to the following conclusion.

Take a distribution over density operators, such as Λ, where an overwhelming majority
of states have negligible self-information. When each such state in its support is mea-
sured with a simple apparatus, the result is new a distribution where most of the states
have substantial self-information.

However, the situation is reversed for quantum channels. A quantum state that is transformed by
a quantum operation will not increase in self-information. So by Theorem 58, we get the following
claim, where equality occurs if the quantum operation is a unitary transform.

Given any distribution over density operators, if all the density matrices its support
are transformed by a simple quantum operation, then the resultant distribution will give
more measure to mixed states with less self-information.

Thus simple measurements with many operators can only increase self-information, simple quan-
tum operations can only decrease self-information, and simple unitary transforms leave the self-
information unaltered. If the operation is complex, then nothing so far has been proven.

11.3 Measurements Before Information Cloning

The no-cloning theorem states that every unitary transform cannot clone an arbitrary quantum
state. However there is the possibility of copying information from a subset of states. By “copying
information”, we mean that two measurements of two states will produce two values that are
similar. More formally, the information cloned from a state |ψ⟩ relative to unitary transform U ,
and POVMs E and F is,

IClone(|ψ⟩) = IProb(E |ϕ1⟩ :F |ϕ2⟩), where U |ψ⟩ |0⟩ = |ϕ1⟩ |ϕ2⟩ .

This represents the shared signal strength between |1⟩ and |2⟩ when the states1 were created from
a unitary transform U of |ψ⟩ tensored with an ancillia state |0⟩. Note that by Theorems 59 and 65,
cloneable information is less than self information, with

IClone(|ψ⟩)<log I(|ψ⟩ : |ψ⟩).

The question is, given an initial distribution over density operators with low expected IClone,
what sort of transform is required to increase this expectation. In this section, we discuss necessary
conditions of this transform. We require the following two assumptions.

Assumption (1): The initial distribution has low expected self information. Theorem 56
shows there is a large set of natural distributions that have this property. Any distribution Ω that is
less than 2cΛ will have log

∫
2I(|ψ⟩:|ψ⟩)dΩ<+ c. Another way to intrepret this assumption is through

parmeterized distributions. Let P be a probability over parameters θ over pure state distribution,
Γ(|ψ⟩ |θ). The distribution is balanced, where

∫
Γ(|ψ⟩ |θ)dP (θ) = Λ(|ψ⟩). Then because of Theorem

56,
P ({θ : E|ψ⟩∼Γ(·|θ)[I(|ψ⟩ : |ψ⟩)] ≥ m}) ≤ 2−m+1.

1Note this definition can be generalized to arbitrary states, with IProb(ETr2σ : FTr1σ), where σ = ε(|ψ⟩), for
quantum operation ε.

89



Figure 11.2: The intial distribution has low self information and cloneable information.
A measurement increases the self information and potentially increases the cloneable
information.

Assumption (2): The universal Turing machine is relativized to all the transforms
and operators. This assumption states that for a system, the operations are known quantities.
This is congruent with quantum information theory, in which actors are seen to compute unitary
transforms or quantum operations. It is asumed that these actors have knowledge of the transforms.

How do you create a distribution with high expected IClone, where most states can have cloneable
information? Any transform that increases cloneable information must increase self-information.
However Theorem 58, along with assumption (2) bars quantum operations as a means to create self-
information, as the complexity of the quantum operations is O(1). Thus the only way to potentially
increase self-information is to perform a measurement, which as Theorems 65 and 68 show, often
times cause an uptake in self-information (see Figure 11.2). This is also discussed in the quotes of
Section 11.2. Thus we get the following claim.

Measurements are required to produce distributions over quantum states that have clone-
able information.

For example, take the starting distribution to be the uniform measure over pure states, Λ. Let
E = F = {|i⟩ ⟨i|} be POVM measurements over projectors to the basis states and let U be any
unitary transform such that U |i⟩ |0⟩ = |i⟩ |i⟩ for i ∈ {1, . . . , 2n}. By Theorems 56 and 59, we have
that ∫

2IClone(|ψ⟩)dΛ = O(1).

Now suppose we apply the measurement G = E to Λ, producing a new distribution ΛG concentrated
evenly among the basis states, where ΛG(|i⟩) = 2−n. Thus we have that IClone(|i⟩) = IProb(E |i⟩ :
F |i⟩) = K(i). Since there are 2n−O(1) basis states |i⟩ where n<+K(i), we have the following
uptake in cloneable information.

n<+ log

∫
2IClone(|ψ⟩)dΛG.

Other such applications can be seen as generalizations from this extreme example. Future work
involves determining how tightly self information covers cloneable information.
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Part III

Thermodynamics
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Chapter 12

Introduction to Algorithmic
Thermodynamics

Classical thermodynamics is the study of substances and changes to their properties such as volume,
temperature, and pressure. Substances, such as a gas or a liquid, is modeled as a point in a phase
space. The phase space, X , is modeled by a computable metric space, [HR09], and a volume
measure µ, is modeled by a computable (not necessarily probabilistic) positive measure over X .
The continuous dynamics are modeled by a one dimensional transformation group Gt, indexed by
t ∈ R. Due to Louville’s theorem, the dynamics are measure-preserving, where µ(GtA) = µ(A),
for all Borel sets A ⊆ X . Discrete dynamics are modelled by functions X 7→ X , and considerable
attention is spent on the ergodic case.

Whether quantum or classical, the known laws of physics are reversible. Thus the dynamics G
of our system are also reversible, in that if β = Gtα, then there is some t′ such that the original
state can found with α = Gt

′
β. Thus if given a set of particles with position and velocity, by

reversing the velocities, a previous state can be found. This is contradiction to the second law of
thermodynamics, which states,

The total entropy of a system either increases or remains constant in any spontaneous
process; it never decreases.

This conforms to our experiences of broken vases never reforming. To reconcile this difference,
Boltzmann introduced macro-states, Πi, indexed by i ∈ N, which groups states together by macro-
scopic parameters, with corresponding Boltzmann entropy S(Πi) = kB lnµ(Πi). By definition, a
vast majority of typical states will experience an increase in Boltzmann entropy.

In [Gac94], coarse grained entropy was introduced as an algorithmic update to Boltzmann
entropy. This formulation was made to be independent of the choice of parameters of the macro
state. In this manuscript, a modified version of coarse grained entropy is introduced. We also
model the thermodynamic entropy of a micro-state with algorithmic methods. The micro-state of
a system contains the information of the entire physical state. For example, the microstate of a
system of N molecules is a point

(q1, . . . , q3N , p1, . . . , p3N ) ∈ R6N

where qi are the position coordinates and pi are the momentum coordinates. The set of states,
R3N is a computable metric space. To model the entropy of the state, we use slight variant to
algorithmic fine-grained entropy Hµ in [Gac94], using symbol Hµ. This entropy measure captures
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the level of disorder of the state. Continuing the example above, if all the particles are at rest, then
the thermodynamic entropy of the state of

(q1, . . . , q3N , 0, . . . , 0)

is expected to be very low.

The evolution of the system will be thermodynamic like if it spends most of the time
close to its maximum value, from which it exhibits frequent small fluctuations and rarer
large fluctuations.

In this paper, using the algorithmic definition of thermodynamic entropy, Hµ, we prove that such
fluctuations have to occur, and the greater fluctuations are more rare.

Throughout the part on thermodynamics, conditions will be proven for states, sets of states,
dynamics, and measures to have high or infinite mutual information in the halting sequence. As-
suming the Independence Postulate (see Chapter ??), such constructs with high information are
non-physical and can be considered non-realizable in nature. This also goes for the part of Quan-
tum Mechanics, in particular the Quantum EL Theorem 48 and the Quantum Outlier Theorem 53.
The thermodynamics section of this manuscript is arranged as follows.

• Chapter 13: Computable metric spaces and their relation to randomness is detailed. This
material is the foundation for which algorithmic coarse and fine grained entropy is based
upon. This chapter is a modification to the work in [HR09] to abritrary positive measures
and dual measure spaces.

• Chapter 14: Algorithmic fine grained entropy is introducd. This is a modification to the
definition in [Gac94], using computable measure theory. An entropy balance lemma is proven
with applications to Maxwell’s demon. We detail a result from [G2́1] that algorithmic fine
grain entropy is conformant to the addition additive equality analagous to that of string
algorithmic information theory.

• Chapter 15: In this chapter, algorithmic fine grained entropy is proved to oscillate in the
presence of dynamics, regardless of the choice of phase space and volume measure.

• Chapter 16: Discrete dynamics are studied in this chapter. It is proved that given a phase
space and two different volume measures of it, the algorithmic thermodynamic entropy will
oscillate in a synchronized fashion with respect to both volume measures.

• Chapter 17: It is shown in the course of dynamics on product spaces, for typical states,
the marginal entropies cannot be in sync. This is true for continuous dynamics and discrete
ergodic dynamics.

• Chapter 18: Algorithmic coarse grained entropy is defined and shown to be an excellent
approximation to algorithmic fine grained entropy. Algorithmic coarse grained entropy is
proved to oscillate in the presence of dynamics.

• Chapter 19: In this chapter, computability properties of algorithmic thermodynamics is
studied. It is proved that there is no computable means to select times where dynamics
produce states of continually decreasing entropy. It is also proved that algorithmic fine
grained entropy cannot be approximated.

• Chapter 20: In this chapter a stochastic transition function is defined, in the spirit of
stochastic thermodynamics. A conservation inequality is proven.
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Chapter 13

Computable Measure Spaces

The results in the manuscript of thermodynamics uses computable metric spaces and computable
measure spaces. We use the constructs from[HR09], where in the paper, they noted physics an
application of the paper. In [HR09, G2́1], computable metric spaces X were paired with a space
of Borel probability measures M(X ) and a computable measure is defined as a constructive point
in M(X ). Computable probabilities can lower compute the measure of open sets and the integral
lower semi-continuous functions. A key insight in [HR09] is that there exists morphisms mapping X
to the Cantor space {0, 1}∞. This is known as a binary represention, and they are used in the proofs
of many theorems in the Thermodynamics section of the manuscript. This chapter introduces some
generalizations to [HR09], including generalizing from probability measures to arbitrary nonnegative
finite measures, from computable measure spaces to dual computable measure spaces and from
binary representations to dual binary representations.

Definition 25 A computable metric space consists of a triple (X,S, d), where
• X is a separable complete metric space.

• S is an enumerable list of dense ideal points S in X.

• d is a distance metric that is uniformly computable over points in S.
For x ∈ X, r ∈ Q>0 a ball is B(x, r) = {y : d(x, y) < r}. The ideal points induce a sequence of

enumerable ideal balls Bi = {B(si, rj) : si ∈ S, rj ∈ Q>0}. We have B(si, rj) = {y : d(x, y) ≤ r},
which might not equal the closure of B(si, rj) if there are isolated points. A sequence of ideal
points {xn} ⊆ Y is said to be a fast Cauchy sequence if d(xn, xn+1) < 2−n for all n ∈ N. A point
x is computable there is a computable fast Cauchy sequence converging to x. Each computable
function f between computable metric spaces X and Y has an algorithm A such that if f(x) = y
then for all fast Cauchy sequences −→x for x, A(−→x ) outputs an encoding of a fast Cauchy sequence
for y.

Proposition 8 For x ∈ X, the following statements are equivalent.

1. x is a computable point.

2. Each d(x, si) are upper semi-computable uniformly in i.

3. dx = d(x, ·) → R+ is a computable function.

Exercise 16 Define computable metric spaces over the Cantor space, Euclidean space, and a prod-
uct space.
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13.1 Enumerative Lattices

An enumerative lattice is the tuple (X,≤,P) where (X,≤) is a complete lattice and P is a
numbered set such that if x ∈ X then x = supP , for some P ⊆ P. An element x ∈ X is called
lower-computable if there is some enumeration of {p : p ≤ x}.

Proposition 9 Let (X,≤,P) be an enumerative lattice. There is an enumeration of all its lower-
computable elements .

Proof. Using the universal Turing machine, enumerate all enumerable sets. That is, for each
enumerable E, there is an i such that E = {U(i, n) : n ∈ N}. Thus for each lower-computable
element x has an enumerated set E such that x = sup{pi : i ∈ E}. □

Definition 26 Given two enumerative lattices, Y and Z, a function f : Y → Z is Scott continuous
if it is monotonic and sup f(−→p ) = f(sup−→p ) for every increasing sequence −→p . We say f is bi-
lower-computable, if there exists a computable method that given an enumerable sequence −→p =
(pn1 , pn2 , . . . ) with y = sup−→p , outputs a sequence −→q = {qn1 , qn2 , . . . } such that f(y) = sup−→q .

Proposition 10 If a function f : Y → Z is Scott-continuous and all f(sup(pn1 , . . . , pnk)) are
lower-computable uniformly in (n1, . . . , nk), then f is bi-lower-computable.

Proof. Let −→p = (pn1 , pn2 , . . . ) be a sequence such that y = sup−→p ∈ Y . An algorithm works with
access to −→p works as follows. For all k, it lower computes f(sup(pn1 , pn2 , . . . ), which is possible due
to the assumption of the Proposition. The supremum of this sequence is supk f(sup{pn1 , . . . , pnk}),
which is lower computable due to f being Scott continuous. Thus the enumerated sequence is a
lower description of f(y). □

Definition 27 Given a computable metric space (X, d,L ) and an enumerative lattice (Y,≤,P),
we denote F to be the step functions from X to Y , where

f(i,j)(x) =

{
pj if x ∈ Bi
⊥ otherwise.

We define C (X,Y ) as the closure of F under pointwise suprema, with pointwise ordering ⊑. It
immediately follows that (C (X,Y ),⊑,F )) is an enumerative lattice. A function f : X → Y is
lower-computable if it is a lower-computable element of the enumerative lattice. (C (X,Y ),⊑,F )).

Example 3 The set R+
= [0,∞) ∪ {∞} has an enumerative lattice

(
R+

,≤,Q+
)
which induces a

lattice S (X,R+
) of positive lower semi-continuous functions from X to R+

. Its lower-computable
elements are the lower semi-computable functions.

Definition 28 A subset A of X is semi-decidable if it is an r.e. open set.

Proposition 11 Let (X, dX , SX) and (Y, dy, Sy) be computable metric spaces. A partial function
f : D ⊆ X → Y is computable if and only if the preimages of ieal balls are uniformly r.e. open in
D sets. So for all i, f−1(Bi) = Ui ∩D where Ui is an r.e. open set uniformly in i. □
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13.2 Computing with Measures

The computable metric space of all Borel probability measures over X is M(X). If X is separable
and compact then so is M(X). The ideal points of M(X) are D , the set of probability measures
that are concentrated on finitely many points with rational values. The distance metric on M(X)
is the Prokhorov metric, defined as follows.

Definition 29 (Prokhorov metric)

π(µ, ν) = inf
{
ϵ ∈ R+ : µ(A) ≤ ν(Aϵ) for Borel set A

}
,

where Aϵ = {x : d(x,A) < ϵ}.
In thermodynamics, the measure function representing the volume is not necessarily a probabil-

ity measure. Thus the results of [HR09] needs to be extended to nonnegative measures of arbitrary
size to prove a result about thermodynamics. Let (R+, dR,Q+) be the computable metric space
where R+ = [0,∞) is the complete separable metric space and nonnegative rationals Q+ consists
of the ideal points. The distance function is dR(x, y) = |x − y|, which is obviously computable
over Q≥0. The space of nonnegative Borel measures over a computable metric space is the space
M(X) = M(X)× R≥0, the product space of the space of probability measures of X, M(X), with
the space of nonnegative reals. We identify a measure with a pair (µ,m) ∈ M(X) where µ ∈ M(X)
is a Borel probability measure over X, and m ∈ R+ is the size of the measure.

The distance function of M is

dM((µ,m), (ν, n)) = max{π(µ, ν), dR(n,m)},

where π is the Prokhorov metric (see Definition 29). The ideal points of M(X) is the set DM of all
finite points with nonnegative rational values. This definition is different from the ideal points in
M(X) in that they don’t have to sum to 1. The computable measures of M(X) are its constructive
points, with respect to a fast Cauchy description.

Proposition 12 The tuple (M(X), dM,DM) is a computable metric space.

Proof. Let (µi, vi) and (µj , vj) be two ideal points of (M(X), dM,DM), where µi and µj are two
probability measures over X, assigning rational measure to a finite number of ideal points. In
addition vi, vj ∈ Q+. If U is a r.e. open subset of X, µi(U) is lower-computable uniformly in i and
U . This is because of (sn1 , qm1), . . . , (snk , qmk) are the mass points of µi with their weights then
µi(U) =

∑
snj∈U

qmj . As all snj ∈ U can be enumerated from a description of U this sum is lower

computable. So µi(Bi1∪. . . Bik) is lower-computable and µi(Bi1∪. . . Bik) is upper semi-computable,
uniformly in i and (i1, . . . , ik).

We show that π(µi, µj) is computable uniformly in (i, j). Since µi is an ideal measure concen-
trated over Si, we have π(µi, µj) = inf{ϵ ∈ Q : ∀A ⊂ Si, µi(A) < µj(A

ϵ) + ϵ}. Since µj is an
ideal measure and Aϵ is a finite union of open ideal balls, µj(A

ϵ) is lower computable, uniformly
in ϵ and j, so π(µi, µj) is upper computable, uniformly in (i, j). The term π(µi, µj) is lower com-

putable, uniformly in (i, j) because π(µi, µj) = sup{ϵ ∈ Q : ∃A ⊂ Si, µi(A) > µj(A
ϵ))}, with

Aϵ = {x : d(x,A) ≤ ϵ}, and using the upper semi-computability of µj(A
ϵ).

In addition, it easy to see that dR(vi, vj) is computable. Thus the following term is computable.

dM((µi, vi), (µj , vj)) = max{π(µi, µj), dR(vi, vj))}.

□
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Claim 1 If (µ,m) ∈ M(X) is a computable measure, then (µ, 1) ∈ M(X) is computable as well.
This follows from taking the fast Cauchy sequence for (µ,m) and normalizing each ideal point in
the series.

For a metric space X, let τ be the set of all open sets of X. The valuation operator v :
M(X) × τ → R+ maps ((µ,m), U) to mµ(U). More formally, for the first argument, v takes a
M(X) fast Cauchy sequence to a measure (µ,m), m ∈ R+, and a sequence of ideal balls Bi such
that U =

⋃
iBi and outputs {x : x < mµ(U)}.

Proposition 13 The valuation operator v is bi-lower computable, in the second argument.

Proof. Since v((µ,m), ·) is Scott-continuous, due to Proposition 10, the proof is satisfied if we
show that v((µ,m), ·) is uniformly lower-computable on finite union of ideal balls. For ideal proba-
bility measure µi ∈ M(X), due to the proof of Proposition 12, µi(Bi1∪· · ·∪Bik) is lower computable,
uniformly in (i, i1, . . . , ik).

Let ((µkn ,mn))n∈N be a description of a (not necessarily probability) measue (µ,m) ∈ M(X).
Thus π(µkn , µ) ≤ ϵn and |mn −m| ≤ ϵn, where ϵn = 2−n+1. For n ∈ N and U = B(si1 , qj1) ∪ · · · ∪
B(sik , qjk) we have

Un =
⋃

m≤k
B(sim , qjm − ϵn).

We have U ϵnn−1 ⊆ Un and U ϵnn ⊆ U , where Aϵ = {x : d(x : A) < ϵ}. We will show that µ(U) =
supn(µjn(Un) − ϵn). Since π(µjn , µ) ≤ ϵn, and we have that µjn(Un) ≤ µ(U) + ϵn for all n, so
µ(U) ≥ supn(µjn(Un) − ϵn). Similarly, we have µ(Un−1) ≤ µjn(Un) + ϵn, for all n. So as n → ∞,
µ(U) ≤ supn(µ(Un−1) − 2ϵn) ≤ supn(µjn(Un) − ϵn). Thus µ(U) = supn µjn(Un) − ϵn is lower
computable. In addition m = supnmn − ϵm is lower computable v((µ,m), U) = mµ(U) is lower
computable, uniformly in (i, i1, . . . , ik). □

Proposition 14 For measure (µ,m), if m is computable and measure µ(Bi1 ∪ . . . Bik) is uniformly
lower computable in (i1, . . . , ik) then (µ,m) is computable.

Proof. We show that π(µn, µ) is upper computable uniformly in n and then apply Proposition
8. Since π(µ, µ) < ϵ iff µn(A) < µ(Aϵ) + ϵ for all A ⊂ Sn where Sn is the finite support of µn, and
µ(Aϵ) is lower computable (as Aϵ is a finite union of open ideal balls) π(µn, µ) is semi-decidable,
uniformly in n and ϵ. Furthermore, for any ideal point (µn,mn) ∈ M(X ), since m is computable
dM((µn,mn), (µ,m)) = max{π(µn, µ), dR(mn,m)} is upper computable so Proposition 8 can be
applied. Thus one can construct a fast sequence of ideal measures converging to (µ,m). □

For the Cantor space {0, 1}∞ with the standard metric space structure, the ideal balls are the
cylinders x{0, 1}∞, for x ∈ {0, 1}∗.

Corollary 18 If a measure (µ,m) ∈ M({0, 1}∞) is computable and m is computable, then the
cylinders are uniformly computable.

Proposition 15 The integral operator
∫
: M(X)×C (X,R+) → R+

is bi-lower computable, in the
second argument.
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Proof. Let (µ,m) ∈ M(X). The integral of a finite supremum of steps functions can be expressed
by induction on the number functions, starting with m

∫
f(i,j)dµ = mqjµ(Bi) and

m

∫
sup

{
f(i1,j1), . . . , f(ik,jk)

}
dµ = mqjzµ(Bi1 ∪ · · · ∪Bik) +m

∫
sup

{
f(i1,j′1), . . . , f(ik,j′k)

}
dµ

where qjz = min{qj1 , . . . , qjk} and qj′i = qji − qjz . Since f(iz ,j′z) is zero, it can be removed. It is easy
to see that m can be computed, and by Proposition 13, the measure of finite balls can be lower
computed, uniformly in (Bi1 , . . . , Bim). For any measure (µ,m), the operator m

∫
dµ : C (X,R

+
) →

R+
is Scott continuous, so by Proposition 10, the opertor is bi-lower computable. □

Corollary 19 Let (fi)i be a sequence of uniformly computable functions, such that the function
(i, x) 7→ fi(x) is computable. If fi is bounded by Mi computable uniformly in i, then the function
((µ,m), i) 7→ m

∫
fiµ is computable.

Proof. fi+M andMi−fi are unifomly lower computable, som
∫
fidµ = m

∫
(f+Mi)dµ−mMi =

mMi −m
∫
(Mi − fi)dµ is lower and upper computable by Proposition 15.

13.3 Computable Measure Space

Definition 30

1. A dual measure space (X , (µ,m), (ν, n)) is a computable metric space X and two computable
Borel measures, (µ,m), and (ν, n) over X . A measure space (X , (µ,m)) is dual measure space
(X , (µ,m), (µ,m)).

2. A constructive Gδ-set is a set of the form
⋂
n Un where (Un)n is a sequence of uniformly r.e.

open sets.

3. For computable measure space (X , (µ,m)) and computable metric space Y, a function f :⊂
(X , (µ,m)) → Y is almost computable if it is computable on a constructive Gδ set of measure
m.

4. A morphism of computable probability spaces Q : (X , (µ,m)) → (Y, (ν,m)) is an almost
computable measure-preserving function Q : DQ ⊂ X → Y, where µ(Q−1(A)) = ν(A) for
all Borel sets A. An isomorphism (Q,R) is a pair of morphisms such that Q ◦ R = id on
R−1(DQ) and R ◦Q = id on Q−1(DR).

5. A dual binary representation of dual computable measure space (X , (µ,m), (ν, n)) is a tuple
(δ, µδ, νδ) where (µδ,m) and (νδ, n) are computable (not necesssarily probability) measures on
{0, 1}∞ and δ : ({0, 1}∞, (µδ,m)) → (X , (µ,m)) and δ : ({0, 1}∞, (νδ, n)) → (X , (ν, n)) are
surjective morphisms. Denoting δ−1(x) to be the set of expansion of x ∈ X:

• There is a dense full-measure constructive Gδ-set D of points have a unique expansion.

• δ−1 : D → δ−1(D) is computable.

• (δ, δ−1) is an isomorphism.

6. A binary representation of computable measure space (X , (µ,m)) is a dual representation of
the dual computable measure space (X , (µ,m), (µ,m)).
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7. A set A is almost decidable with respect to measures (µ,m) and (ν, n) if there are two. r.e.
open sets U and V such that U ⊂ A, V ⊆ AC , U ∪ V is dense and has full µ and ν measure.
We say the elements of a sequence {Ai} are uniformly almost decidable with respect to (µ,m)
and (ν, n) if there are two sequences {Ui} and {Vi} of uniformly r.e. sets satisfying the above
conditions.

Exercise 17 Explicitly define a binary expansion for the space ([0, 1], L), where L is the Lebesgue
measure.

The follow proof of existence of an almost decidable set is from [GHR11].

Lemma 16 Let X be R or R+ or [0, 1]. Let (µ,m) and (ν, n) be a computable measures on X.
Then there is a sequence of uniformly computable reals (xn)n which is dense in X and such that
µ({xn}) = ν({xn}) = 0 for all n.

Proof. Let I be a closed rational interval. Let M = max{m,n}. We construct x ∈ I such that
µ({x}) = ν({x}) = 0. To do this, we construct inductively a nested sequence of closed intervals
Jk of µ and ν measure < M2−k+1, with J0 = I. Suppose Jk = [a, b] has been constructed, with
µ(Jk) < M2−k+1 and ν(Jk) < 2−k+1. Let m = (b − a)/16 and ℓ = (b − a)/64: by the Markov
inequality one of the intervals [a + jm + ℓ, a + (j + 1)m − ℓ] j ∈ {0, . . . , 15} must have µ and ν
measure < M2−k and since these measures are upper computable, it can be found effectively, and
we denote it Jk+1. By enumerating all dydadic intervals (In)n, one can constuct xn ∈ In uniformly.
□

Corollary 20 Let (X , (µ,m), (ν,m)) be a dual measure space and (fi)i be a sequence of uniformly
computable real valued functions on X. There is a sequence of uniformly computable reals (xn)n
which is dense in R such that µ({f−1

i (xn)}) = ν({f−1
i (xn)}) = 0 over all i, n.

Proof. We define the uniformly computable measure (µi,m) where µi = µ◦f−1
i and (νi, n) where

νi = µ◦f−1
i . Define measure (λ,m), λ =

∑
2−iµi and (γ, n), γ =

∑
2−iνi. By Propositio 14, (λ,m)

and (γ,m) are computable measures so by Lemma 16 there is a sequence of uniformly computable
reals (xn)n which is dense in R such that λ({xn}) = γ({xn}) = 0 for all i, n. □

Corollary 21 There is a sequence of uniformly computable reals (rn)n∈N such that (B(si, ri)) is a
basis of almost decidable balls.

Proof. Apply Corollary 20 to (fi)i defined by fi(x) = d(si, x). □

Every ideal ball can be expressed as a r.e. union of almost decidable balls, and vice-versa. So
the two bases are constructively equivalent.

Definition 31 A set D is an ad-set if it is a finite union of almost decidable balls, with D =

Bi1 ∪ . . . Bik . We have D = Bi1 ∪ . . . Bik , which may differ than the closure of D if there are
isolated points.

Proposition 16 For computable measure space (X , µ) and ad-set D, µ(D) is computable.
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Proof. This follows from Proposition 14, which implies µ(D) and µ(X \ B) being lower com-
putable, noting the fact that all almost decidable balls have borders of null measure.

We fix computable measures (µ,m) and (ν, n), and their computable representations. We denote

B(si, rn) by Bk where k = ⟨i, n⟩ and rn is the sequence defined in 21. Let Ck = X \B(si, rn). For
w ∈ {0, 1}∗, the cell Γ(w) is defined by Γ(ϵ) = X, Γ(w0) = Γ(w) ∩ Ci and Γ(w1) = Γ(w) = ∩Bi,
where ϵ is the empty word and i = ∥w∥. This is an almost decidable set, uniformly in w.

Theorem 81 Every dual measure space (X , (µ,m), (ν, n)) has a dual binary representation.

Proof. We construct an encoding function b : D → {0, 1}∞, a decoding function δ : Dδ → X,
and show that δ is a multi binary representation, with b = δ−1.

Let D = ∩iBi ∪ Ci. The set D is a full-measure constructive Gδ-set. Define the computable
function b : D → {0, 1}∞ with

b(x)i =

{
1 if x ∈ Bi
0 if x ∈ Ci.

Let x ∈ D: ω = b(x) is also characterized by {x} = ∩iΓ(ω0...i−1). b can be computed from Γ(·).
Let (µδ,m) and (νδ, n) computable measures over {0, 1}∞, where µδ = µ◦b−1, and νδ = ν ◦b−1. Let
Dδ be the set of binary sequences ω such that ∩iΓ(ω0...i−1) is a singleton. The decoding function
δ : Dδ → X is defined by

δ(ω) = x if ∩i Γ(ω0...i−1) = {x}.
The next steps are to prove that δ is a surjective morphism. The center and radius of the ball
Bi will be si and ri, respectively. We say n is an i-witness for ω if ri < 2−(n+1), ω[i] = 1, and
Γ(ω[0..i]) ̸= ∅. We firts prove that

Dδ = ∩n{ω ∈ {0, 1}∞ : ω has a n-witness}.

Let ω = Dδ and x = δ(ω) For every n, x ∈ D(si, ri) for some i with ri ≤ 2−(n+1). Since
x ∈ Γ(ω[0 . . . i]), we have Γ(ω[0 . . . i]) ̸= ∅ and ω[i] = 1. So i is an n-witness for ω. Conversely

if ω has a n-witness in for all n, since Γ[0 . . . in] ⊆ Bin with radius going to zero, the sequence
Γ(ω[0 . . . n]) of closed balls has a non-empty intersection, due to the completeness of the space, and
it a singleton.

δ : Dδ → X is computable. For each n, find an n-witness in of ω: the sequence (sin)n is a fast
Cauchy sequence converge to δω). In addition, δ is surjective: each x ∈ X has at least one expansion.
We construct by induction a sequence ω = ω[0]ω[1] . . . such that for all i, x ∈ Γ(ω[0 . . . i]). Let
i ≥ 0 andd suppose that ω[0 . . . i − 1] has been constructed. Since Bi ∪ Ci is open and dense and
Γ(ω0 . . . i− 1) is open, Γ(ω0...i−1) = Γ(ω0...i−1) ∩ (Bi ∪ Ci) = Γω0...i−10 ∪ Γω0...i−11, so for some
ω[i] ∈ {0, 1}, has x ∈ Γ(ω0...i). So x ∈ ∩iΓ(ω0...i−1). Since (Bi)i is a basis and ωi = 1 whenever
x ∈ Bi, ω is an expansion of x.

13.4 Randomnesss

Definition 32 For a measure (µ,m) ∈ M(X), a (µ,m) ML randomness test is a sequence of
unifomly r.e. open sets (Un)n, satisfying mµ(Un) ≤ 2−n. The set ∩nUn is a null measure set and
is called an µ-effective null set. An alternative definition of null sets uses integrals (see [G2́1]),
with a slight modification as measures are being used. Given a measure (µ,m) ∈ M(X) a µ-

randomness test is a (µ,m) computable element of C (X,R
+
) such that m

∫
tdµ ≤ 1 Any subset of

{x ∈ X : t(x) = ∞} is called a µ-effective null set. The two definitions of null sets are equivalent.
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A point x ∈ X is (µ,m)-ML random it is in no effective null set. A uniform randomness test is a

computable function T from M(X) to C (X,R+
) such that m

∫
T (µ,m)dµ ≤ 1.

Using proposition 9, let (Hi)i∈N be an enumeration of all lower computable elements of the

enumerative lattice C (M(X),C (X,R+
))), such as Hi supk fϕ where ϕ : N2 → N is some recursive

dunction and fn are step functions.

Lemma 17 There is a computable function T : N×M(X) → C (X,R
+
) with

• For all i, Ti = T (i, ·) is a uniform randomness test.

• If
∫
mHi((µ,m))dµ < 1 for some (µ,m), then Ti(µ) = Hi(µ).

Proof. To enumerate only tests, we’d like to be able to semi-decidem
∫
supk<n fϕ(i,k)((µ,m))dµ <

1. Butm supk<n fϕ(i,k)((µ,m)) is only lower computable (relative to (µ,m)). Let Y be a computable
metric space. For an ideal point s ∈ Y and positive rations q, r, ϵ, define the hat function:

hq,s,r,ϵ(y) = q[1− [d(y, s)− r]+/ϵ]+,

where [a]+ = max{0, a}. This is a continuous function whose value is q in B(s, r) and 0 outside
B(s, r+ ϵ). It is easy to see there is a number (hn)n∈N of all the hat functions. They are equivalent

to step function in the enumerative lattice C (Y,R+
). The step functions can be constructed as the

supremum of such function f(i,j) = sup{hqj ,s,r−ϵ,ϵ:0<ϵ<r} with Bi = B(s, r) and conversely.
We let Y = M(X) ×X endowed with the canonical computable metric structure. By “curry-

fication” it provides functions hn ∈ C (∈ M(X),C (X,R
+
)) with which the Hi can be expressed:

there is a recursive function ϕ : N2 → N such that for all i, Hi = supk hϕ(i,k).
In addition, hn((µ,m)) is bound by a constant computable from n and independent of (µ,m).

Hence, by Corollary 19, the integration operator
∫
: M(X)×N → [0, 1] which maps ((µ,m)⟨i1, . . . , ik⟩)

to m
∫
sup{hi1((µ,m)), . . . , hik((µ,m))}dµ is computable. Thus T (i, (µ,m)) = sup{Hk

i ((µ,m)) :
m
∫
Hk
i ((µ,m)) ≤ 1} where Hk

i = supn<k hϕ(i,n). Since m
∫
Hk
i ((µ,m))dµ can be computed from

i, k, and a description of (µ,m), T is a computable function from N×M(X) to C (X,R+
). □

Theorem 82 There is a universal uniform randomness test, that is a uniform test t such that for
every uniform test T , there is a constant c > 0 with t >m(T )T .

Proof. Using Lemma 17, the universal test is defined by t =
∑

im(i)Ti: since every Ti is a
uniform randomness test, t is also a uniform randomness test. In addition, for every uniform test
T , there is an i such that T = Ti = Hi . □

The following corollary is due to [G2́1] with the proofs adapted to uniform tests. Assume there
is a fixed measure (ν, n) ∈ M(Y), where Y is a computable metric space. Let F : X → Z ∪ {−∞}
be upper computable, where X is another computable metric space. An F randomness test R is a
computable function from X to C (Y,R

+
) such that n

∫
Rxdν ≤ 2−F (y).

Corollary 22 There exists a universal F uniform test r such that n
∫
rxdν ≤ 2−F (x)) and for every

F randomness test R, m(R|⟨−→x ⟩)Rx
∗
< rx.
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Proof. The proof follows analogously to that of Lemma 17, except T (i, x, (µ,m)) = sup{Hk
i (x, (ν, n)) :

n
∫
Hk
i xy, (ν, n)) ≤ 2−F (x)} where Hk

i = supn<k hϕ(i,n,⟨−→x ⟩). The term ϕ(i, n, ⟨−→x ⟩) is the partial re-
cursive function being given the numbers i and n, and an encoding of a fast Cauchy sequence for
x ∈ X .

Definition 33 (Randomness Deficiency) We recall that the deficiency of randomness of an
infinite sequence α ∈ {0, 1}∞ with respect to a computable measure (P, p) over {0, 1}∞ is defined
to be

D(α|(P, p), x) = log sup
n

m(α[0..n]|x)/p·P (α[0..n]).

We have D(α|(P, p)) = D(α|(P, p), ∅). By [G2́1], 2D is a lower-computable (P, p)-test, in that

p

∫

{0,1}∞
2D(α|(P,p))dP (α) = O(1).

Proposition 17 Let ({0, 1}∞, (µ,m)) be a computable measure space. Then t(µ,m)(α)
∗
= 2D(α|(µ,m)).

Proof. There is a constructive element H of C (∈ M(X),C (X,R
+
)), such that H((ν, n), α) =

2D(α|(µ,m)). Thus there is some i, such that Hi = H. Furthermore Ti is a uniform test satisfying
Ti((µ,m)) = 2D(α|(µ,m)) because m

∫
Ti(µ,m)dµ = m

∫
H((µ,m))dµ < 1.

As described in [G2́1], 2D(α|(µ,m)) is a universal lower computable test. Thus t(µ,m)(α)
∗
<

2D(α|(µ,m)).

Proposition 18 For computable measure space (X, (µ,m)), every random point lies in every r.e.
open set of full measure.

Proof. Let U =
⋃

(i,j)∈E B(si, qj) be a r.e. open set of measure m, with E ⊆ N being r.e. Let F
be the r.e. set {(i, k) : ∃j, (i, j) ∈ Eqk < qj}. Let

Un =
⋃

⟨i,k⟩∩[0,n]

B(si, qk) and V
C
n =

⋃

⟨i,k⟩∩[0,n]

B(si, qk).

Then Un and Vn are r.e. uniformly in n, Un ↗ U and UC = ∩nVn. As µ(Un) is lower semi-
computable uniformly in n, a sequence (ni)i∈N can be computed such that mµ(Uni) > 1 − 2−i.
Thus mµ(Vni) < 2−i and UC = ∩iVni is a µ-ML test. Thus every (µ,m)-random point is in U . □

Lemma 18 Let Q : D ⊂ X → Y be a morphism of equal computable measure spaces (X, (µ,m))
and (Y, (ν,m)), with universal tests t(µ,m) and t(ν,m). Then there is some c with the following

properties. If x ∈ X and t(µ,m)(x) <∞, then Q(x) is defined and t(ν,m)(Q(x))
∗
< ct(µ,m)(x).

Proof. Assuming t(µ,m)(x) <∞, then x is a random point then x ∈ D, because due to Propostion
18, every random point lies in every r.e. open set of full measure, and D is an intersection of full-
measure r.e open sets. Thus Q(x) is defined.

We have that t(ν,m) ◦ Q ∈ C (X,R
+
) because there is an algorithm that enumerates all finite

prefixes of fast Cauchy sequences to Q and enumerates all resultant outputted ideal balls. Then
the algorithm sees which outputted ideal balls B are in the values ideals balls (B′, v) enumerated
by t(ν,m). If B ⊆ B′, then the algorithm outputs (B, v).

Since µ(D) = 1,
∫
t(ν,m) ◦Qdµ is well defined. As Q is measure-preserving, m

∫
t(ν,m) ◦Qdu =

m
∫
t(ν,m)dν ≤ 1. Hence t(ν,m) ◦Q is a µ-test, so there exists c ∈ N with t(ν,m) ◦Q

∗
< ct(µ,m). □

102



Corollary 23 Let (Q,R) : (X , µ) ⇄ (Y, ν) be an isomorphism of computable measure spaces, with
universal tests tµ and tν . Then there is a c ∈ N where tν(Q(x)) = tµ(x)±c and tµ(R(y)) = tν(y)±c.
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Chapter 14

Algorithmic Fine Grained Entropy

In this chapter we introduce the central term of algorithmic thermodynamics: algorithmic fine
grain entropy Hµ. We also show some canonical properties of Hµ, originating from [G2́1], with
modifications to the proofs as needed to be compatible with Chapter 13. In this chapter and in
subsequent ones, we represent (not necessarily probabilistic) measures as µ, dropping the (µ,m)
notation.

Definition 34 Given a measure space (X , µ), its corresponding algorithmic fine grained entropy is
Hµ(x) = − log tµ(x), where t is the universal uniform test introduced in Theorem 82.

The term Hµ is bounded from above by logµ(X) and can take arbitrary negative values, including
infinitely negative values. If x is in a µ constructive nullset then Hµ(x) = −∞.

Definition 35 For measure µ and lower continuous function f over metric space X , µxf(x) =∫
x∈X f(x)dµ(x).

Exercise 18 Prove that if µ is a probability measure, then Hν(y)>
+Hµ,ν(x, y).

Proof. 2−Hν(y) is a test for µ× ν, since µxνy2−Hµ(y) ≤ µx1 = 1. □

Proposition 19

(1) Hµ(x|⌈logµ(X)⌉)<+ logµ(X).

(2) Hµ(x)<
+ logµ(X) +K(⌈logµ(X)⌉).

Proof.

(1) We use the µ-test tµ(x) = 1/⌈µ(X)⌉, where
∫
tµdµ ≤ 1. Thus− logµ(X)<+ log tµ(x)<

+ log tµ(x|⌈µ(X)⌉).

(2) We use Proposition 25.

□

Definition 36 (Computable Transformation Group) A one dimensional transformation group
Gt, parameterized by t ∈ R over a measure space (X , µ) where each Gt is a homeomorphism of X
onto itself, where Gt(Gs(x) = Gt+s(x). And Gtx is continuously simultaneously in x and t. G is
measure preserving, where µ(Gt(A)) = µ(A), for all Borel sets A. Furthermore there is a program
that when given an encoding of a fast Cauchy sequence of t ∈ R and x ∈ X , outputs an encoding of
a fast Cauchy sequence of Gtx.
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Figure 14.1: A canonical example for algorithmic fine grained entropy. The space
consists of the momentum and position of N particles.

Example 4 (Particles in a Box) We detail a canonical example: particles in a box, as depicted
in Figure 14.1. Let there be a box containing N particles. Each particle has a position p ∈ [0,M ]×
[0,M ] × [0,M ] and momentum m ∈ [−M/2,M/2] × [−M/2,M/2] × [−M/2,M/2] and no other
degrees of freedom. The state space X is the position and volume of all particles, and using the
Lebesgue measure µ, the total volume is µ(X) = M6N . A state of this space can be represented as
ω ∈ X, with

(ω.q1, . . . , ω.q3N , ω.p1, . . . ω.p3N ).

When dynamics are applied to such a point, the particles will move from their positions according
to their momentum. If ω contains a computable coordinate, either an x, y, z value of momentum
or position, then Hµ(ω) = −∞. Indeed suppose it is a position coordinate k, where ω.pk = ϵ for
some computable value ϵ ∈ [0,M ] (it works similarly for a momentum coordinate). We define the
test t(α) =

∑
n[|α.pn − ϵ| < 2−n−1]m(n)2n/M6N . Thus since ϵ is computable, so is t, and since

t(ω) = ∞, Hµ(ω) = −∞.

Exercise 19 Prove that relativized to computable probability p over {0, 1}∗, Hp(x)=
+ − d(x|p).

Proposition 20 For rational t ∈ Q, Hµ(G
tx)−Hµ(x)<

+K(t).

Proof. This is because, since G is measure preserving, tµ(G
−tω) is a µ-test of complexity K(t).

Thus m(t)tµ(G
−tω)

∗
< tµ(ω).

14.1 Thermodynamic Information

Information between a point of the metric space and a binary sequence is introduced as well as the
information between two points in metric spaces. The term Hµ(α|t) is the fine grained algorithmic
entropy of α when the universal Turing machine is relativized to the sequence t.

Definition 37 (Information) Let (X , µ) and (Y, ν) be computable measure spaces. For α ∈ X ,
β ∈ Y and t ∈ {0, 1}∗ ∪ {0, 1}∞,
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• I(α; t) = Hµ(α)−Hµ(α|t).

• I(α : β) = Hµ(α) +Hν(β)−Hµ×ν(α, β).

If dynamics are used to increase or decrease algorithmic thermodynamic entropy by a non trivial
amount, then the encoded dynamics shares algorithmic information with the ending or starting
state, respectively. Proposition 21 is due to [Gac94], with usage of algorithmic fine grained entropy.

If you want to increase the entropy of a state, you need information about its ending
state and if you want to decrease the entropy of a state, you need information about its
starting state.

Proposition 21 −I(α; t)<+Hµ(G
tα)−Hµ(α)<

+ I(Gtα; t).

Proof. By definition

I(α; t) = Hµ(α)−Hµ(α|t)
I(Gtα; t) = Hµ(G

tα)−Hµ(G
tα|t).

Since the function 2−Hµ(Gtα) is a µ test,

Hµ(G
tα)>+Hµ(α|t) = Hµ(α)− I(α; t)..

Which gives us the first inequality. In addition 2−Hµ(Gtα) is also a µ test, so

Hµ(Gα)>
+Hµ(G

tα|t) = Hµ(G
tα)− I(Gtα; t),

which gives the second inequality. □

Proposition 22 (Conservation of Information) I(Gtα : β)<+ I(α : β).

Proof. We have that Gt and Gt × Id are µ and µ × ν preserving so 2−Hµ(G−tα) is a µ test and
2−Hµ×ν((Gt×Id)(α,β)) is a µ × ν test. So Hµ(G

−tα)>+H(α) implies Hµ(α)>
+H(Gtα). And also

Hµ,ν(α, β)<
+Hµ,ν(G

tα, β). So

I(Gtα : β) = Hµ(G
tα) +Hn(β)−Hµ,ν(G

tα, β)

<+Hµ(α) +Hn(β)−Hµ,ν(α, β).

□

14.2 Entropy Balance

The following section is due to [Gac94]. Lets say there exists two independent systems (X , µ) and
(Y, ν) represented as computable measure spaces that are put under joint dynamics G. We show
that under mild assumptions, an increase of entropy in one subsystem implies a decrease is entropy
in another system. Let (αt, βt) = Gt(α, β), and ∆Hµ(α) = Hµ(α

t) − Hµ(α), and similarly for
∆Hν(β).

Lemma 19 ∆Hµ(α) + ∆Hν(β)>
+ I(αt : βt)− I(α : β)− I((α, β); t).
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Proof. Due to Proposition 21 applied to (α, β), ∆Hµ×ν(α, β)>
+ − I((α, β); t). So

Hµ(αt) +Hν(βt) =Hµ×ν(αt, βt) + I((αt : βt)

>+Hµ×ν(α, β)− I((α, β); t) + I(αt : βt)

=+Hµ(α) +Hν(β) + I(αt : βt)− I(α : β)− I((α : β); t).

□

The last term is almost always negligible. If one wants to lower the thermodynamic entropy
of a state, the information of the state must be encoded into the dynamics or an independent
environment can be coupled with the system which will absorb the entropy.

14.3 Maxwell’s Demon

We revisit Maxwell’s demon, providing yet another interpretation. This is done by reworking
Lemma 19 to the specific case of binary sequences. For the recording space, we use the set {0, 1}∞
of infinite sequences with any computable probability measure λ over {0, 1}∞. Thus by Proposition
17, Hλ(α)=

+ − D(α|λ), where D is the deficiency of randomness. We couple the computable
measure space ({0, 1}∞, λ) with a typical system (X , µ), such as where the phase space is the
momentum and position of N particles, for large N . We couple a starting state α ∈ X , with
recording state β ∈ {0, 1}∞ that has room to record information, for example, where λ is the
uniform measure and β = 01000κ, for some ML random string κ. The states are independent, with
I(α : β) ≈ 0. Joint dynamics are applied to get (αt, βt) = G(α, β). By Lemma 19,

Hµ(α
t)−Hµ(α)>

+D(β|λ)−D(βt|λ)− I((α, β); t).

Again, for most times, I((α, β); t) will be negligible. Thus after α decreases in algorithmic fine
grain thermodynamic entropy, the contents of the register fills up, with a decrease is its deficiency
of randomness D. This shows that one benefit of an algorithmic formulation of thermodynamics is
that pure algorithmic information and thermodynamic entropy can be exhanged in the course of
joint dynamics. A graphical depiction of this phenomenon can be seen in Figure 14.2.

14.4 Distribution of Algorithmic Fine Grained Entropy

We say that measure ν is absolutely continuous with respect to µ, ν ≪ µ if µ(A) = 0 implies
ν(A) = 0 for all A ⊆ X. The Radon–Nikodym theorem states that if ν ≪ µ there exists a
measurable (over the Borel sets of X ) function f , uniquely defined up to a µ-nullset, such that for
any measurable set A ⊆ X,

ν(A) =

∫

A
fdµ.

The function f can be written as dµ
dν or µ(dx)

ν(dx) . If µ≪ ν, then ν(dx)
µ(dx) =

(
µ(dx)
ν(dx)

)−1
. If ν ≪ µ≪ then

dν
λ = dν

dµ
dµ
dλ . We use the short hand µxf(x) =

∫
fdµ. We define

Hν(µ) = −
∫

log

(
dµ

dν

)
dµ = −µx log µ(dx)

ν(dx)
= −νxf(x) log f(x).

If both ν and µ are probability measures, then −Hν(µ) = D(µ∥ν), where D is the Kullback–Leibler
divergence. The following proposition shows thatHν(µ) is non-positive when ν and µ are probability
measures.
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Figure 14.2: A graphical depciation of an algorithmic interpretation of Maxwell’s demon.
2D particles in a box are paired with a register of information, represented as an infinite
sequence with a high deficiency of randomness. After dynamics occur, the subsystem of
the particle box moves to a state of low entropy, in this case with particles in a smaller
region. Due to entropy balance Lemm 19, the register will fill up, moving to a sequence
with low deficiency of randomness.
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Proposition 23 Over a space X,

Hν(µ) ≤ −µ(X) log
µ(X)

ν(X)
.

Proof. We use the inequality −a ln a ≤ −a ln b + b − a. Letting a = f(x) and b = µ(X)/ν(X)
and integrating by ν gives us:

(ln 2)Hν(µ) = −νxf(x) ln f(x) ≤ −µ(X) ln
ν(X)

ν(X)
+
µ(X)

ν(X)
ν(X)− µ(X)

= −µ(X) ln
µ(X)

ν(X)
.

□

Theorem 83 For computable metric space X , let µ be measure that that µ(X) ≥ 1. Then

Hν(µ) ≤ µxHν(x).

Proof. Let δ be the measure with density tν(x) with respect ν, with tν(x) = δ(dx)
ν(dx) . Since

νxtν(x) ≤ 1, δ(X) ≤ 1. Since t is a universal uniform test, tnu(x) > 0. Thus δ ≪ ν, so by

properties of the Radon-Nikodym derivative, ν(dx)
δ(dx) =

(
δ(dx)
ν(dx)

)−1
. Using properties of the Radon-

Nikodym derivative and Proposition 23,

ν(µ) = −µx log µ(dx)
ν(dx)

−µxHν(x) = µx log
δ(dx)

ν(dx)
= −µx log ν(dx)

δ(dx)

Hν(µ)− µxHν(x) = −µx log µ(dx)
δ(dx)

≤ −µ(X) log
µ(X)

δ(X)
≤ 0.

□

14.5 Addition Equality

In this section, the universal Turing machine U is relativized to measures µ and ν. This means
there is a fast Cauchy sequence to the measures in M(X ) space encoded in two auxilliary tapes of
U . By Proposition 13, this means algorithms can lower compute the µ and ν measure of effectively
open sets.

Proposition 24 Hµ(x|ν)<+ − log νy2−Hµ,ν(x,y).

Proof. Let f(x) = − log νy2−Hµ,ν(x,y). The function f is upper computable and has µx2−f(x) ≤ 1.
Due to the universal properties of tµ and thus minimum property of Hµ, the inequality is proven.
□

Proposition 25 For a computable function f : N2 → N,

Hµ(x|y)<+K(z) +Hµ(x|f(y, z)).
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Proof. The function
g(x, y) =

∑

z

2−Hµ(x|f(y,z))−K(z),

is lower computable and µxg(x, y) ≤∑z 2
−K(z) ≤ 1. So g(x, y)

∗
< 2−Hµ(x|y). The left hand side is

a summation, so the inequality holds for each element of the sum, proving the proposition. □

Proposition 26 If i < j, then

i+Hµ(x|i)<+ j +Hµ(x|j).

Proof. Using Proposition 25, with f(i, n) = i+ n, we have

Hµ(x|i)−Hµ(x|j)<+K(j − i)<+ j − i.

The following proposition has a different proof to that of [G2́1], leveraging the results in Chapter
13. The Kolmogorov complexity of any upper computable function f : X → R ∪ {−∞} is K(f),
the length of the shortest program to upper compute f .

Proposition 27 Let F : Y → Z ∪ {−∞} be an upper semicomputable function. By Corollary 22,
among F uniform tests g(x, y) with νyg(x, y) ≤ 2−F (x) there is a maximal F uniform test f within
a multiplicative constant. For all y,

f(x, y)
∗
= 2−F (x)tν(y|x, F (x)).

Proof. To prove the inequality
∗
>, let g(x, y,m) = maxi≥m 2−itν(y|x, i). This function is lower

computable, and decreasing in m. Let g(x, y) = g(x, y, Fν(x)) is lower semicomputable since F is
upper semi-computable. The multiplicative form of Proposition 26 implies

g(x, y,m)
∗
= 2−mtν(y|x,m)

g(x, y)
∗
= 2−F (x)tν(y|x, F (x)).

Since tν is a test:

νy2−mtν(y|x,m) ≤ 2−m

νyg(x, y)
∗
< 2−F (x),

which implies

g(x, y)
∗
< f(x, y)/m(g|x) ∗

< f(x, y)2K(F ) ∗
< f(x, y)

by the optimality of f(x, y). Note that if F (x) = −∞, then g(x, y) = ∞ for all y and so f(x, y) =
2−F (x)tν(y|x, F (x)) = ∞. We now consider the upper bound. Given fixed x, 2F (x)f(x, y) is a ν-test
conditional on x and F (x). So

2F (x)f(x, y)
∗
< tν(y|x, F (x))/m(f(x, y)|x, F (x))) ∗

< tν(y|x, F (x))2K(F ) ∗
< tν(y|x, F (x)).

□

Theorem 84 Relativized to measures µ and ν,

Hµ×ν(x, y)=
+Hµ(x) +Hν(y|x, ⌈Hµ(x)⌉).
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Proof. Let f(x, y) = 2−Hµ,ν(x,y). Proposition 24 implies νyf(x, y)
∗
< 2−Hµ(x). Let F (x) =

⌈Hµ(x)⌉ + c for some proper constant c ∈ N. Note that if h is a lower computable function such

that νyh(x, y)
∗
< 2−Hµ(x), then µxνyh(x, y)

∗
< µxtµ(x)

∗
< 1, so h

∗
< f , so f is a universal F -test.

Proposition 27 (noting K(H) = O(1)) gives

Hµ,ν(x, y) = − log f(x, y, µ)=+ F (x) +Hν(y|x, F (x))=+Hµ,ν(x, y) +Hν(y|x, ⌈Hµ(x)⌉).

□

Exercise 20 ([Vov]) The randomness deficiency over the space {0, 1}∞×{0, 1}∞, is D(α, β)|µ, ν) =
supn− logµ(α[0..n])− log ν(β[0..n])−K(α[0..n]β[0..n]). Show that relativized to computable prob-
abilities µ and ν over {0, 1}∞,

D(α, β|µ, ν)=+D(α|µ) +D(β|ν, ⌈D(α|µ)⌉).

Exercise 21 Let X and Y be two computable metric spaces and let µ be a computable measure
over X . Let κ be a computable probability kernel between X and Y (see Definition 50). For the
joint distribution µκ(α, β) = µ(α)κα(β), prove, relativized to µ and κ,

Hµκ(α, β)=
+Hµ(α) +Hκα(β|α,Hµ(α)).
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Chapter 15

Oscillation of Algorithmic Fine
Grained Entropy

In this chapter, it is proven that the algorithmic fine grained entropy of states will oscillate in the
presence of continuous dynamics. This is over computable dynamics starting at a point that has
finite mutual information with the halting sequnce, H. To prove this result, properties abouts sets
of finite and infinite sequences and their relationship to H need to be proven, which is done in
Sections 15.1 and 15.2. The main theorem of this chapter matches entropy oscillations proven to
occur in the case of discrete ergodic dynamics, seen in Chapter 16.

15.1 On Exotic Sets of Natural Numbers

The following result also implies the existence of outliers in the physical world, which we detail
now. An outlier is an observation that is set apart from a population. There are many reasons
that such anomalies occur, including measurement error and human error. However recent results
have shown that outliers are ingrained into the nature of algorithms and dynamics. In [Eps21b],
anomalies were proven to occur in sampling algorithms. In [Eps22a], anomalies were proven to
exist in the outputs of probabilistic algorithms. They were also proven to be emergent computable
ergodic dynamics on the Cantor space. In [Eps22b] anomalies were shown to emergent in a more
general (but still computable) class of dynamics.

But what about measurements of systems that are too complex to be considered algorithmic?
One example is the global weather system. One can attest to the fact that there are many strange
formations that occur! To show that anomalies occur, one can use the Independence Postulate,
[Lev84, Lev13], which is introduced in Chapter ??. The Independence Postulate is a finitary
Church-Turing thesis, postulating that certain finite and infinite sequences cannot be easily be
found with a short “physical address”.

In this section, its proved that large sets of numbers whose members are typical (i.e. low d score)
with respect to two probabilities will have large information with the halting sequence. Therefore,
by the Independence Postulate, such set (i.e. meassurements) cannot be found in the physical
world. Thus all large sets of measurements that have small addresses must have large outlier (i.e.
d) scores.

Lemma 20 For computable probabilities p, q over N, D⊂N, |D| = 2s,
s < maxa∈Dmin{d(a|p),d(a|q)}+ I(D;H) +O(K(I(D;H), p, q, s)).

112



Proof. We relativize the universal Turing machine to ⟨s, p, q⟩. Let Q be a probability measure
that realizes Ks(D), with d = max{d(D|Q), 1}. Let F ⊆ N be a random set where each element
a ∈ N is selected independently with probability d2−s. E[p(F )] = E[q(F )] ≤ d2−s. Furthermore

E[Q({G : |G| = 2s, G ∩ F = ∅})] ≤
∑

G

Q(G)(1− d2−s)2
s
< e−d.

Thus finite W ⊂ N can be chosen such that p(W ) ≤ 4d2−s, q(W ) ≤ 4d2−s, and Q({G : |G| =
2s, G∩W = ∅}) ≤ e2−d. D∩W ̸= ∅, otherwise, using the Q-test, t(G) = [|G| = 2s, G∩W = ∅)]ed−2,
we have t(D = ed−2. So

1.44d<+ log t(x)<+ d(D|Q, d)<+ d+K(d),

which is a contradiction for large enough d which one can assume without loss of generality. Thus
there is an a ∈ D ∩W , where

K(a)<+ min{− log q(a),− log p(a)}+ log d− s+K(d) +K(Q)

s<+ min{d(a|p),d(a|q)}+Ks(D).

Making the relativization of ⟨s, p, q⟩ explicit, and using Lemma 3 results in

s<+ min{d(a|p),d(a|q)}+Ks(D) +O(K(s, p, q))

s < max
a∈D

min{d(a|p),d(a|q)}+Ks(D) +O(K(s, p, q))

s < max
a∈D

min{d(a|p),d(a|q)}+ I(D;H) +O(K(I(D;H), s, p, q))).□

□

Exercise 22 For computable probabilities {pi}ni=1 over N, D⊂N, |D| = 2s, show that
s < maxa∈Dmini{d(a|pi)}+ I(D;H) + log n+O(K(I(D;H), {pi}, s)).

15.2 On Exotic Sets of Reals

The results in Section 15.1 are limited in that each observation is a natural number. However
observations in the physical world oftentimes have an infinite degree of precision. To that end,
Lemma 20 can be extended to infinite sequences. That is, large sets Z ⊂ {0, 1}∞ with no high
randomness deficiency scores will have high mutual information with the halting sequence. To
prove this, one needs to manipulate prefixes Zn = {α[0..n] : α ∈ Z} of the original sets Z and then
apply Lemma 20. However the computation of the exact cutoff point n is tricky, because as we
will show, n must be simple relative to the halting sequence H, that is n must be in the range of a
so-called busy-beaver function, bb.

Remark 5 Let Ω =
∑{2−∥p∥ : U(p) halts} be Chaitin’s Omega and Ωt =

∑{2−∥p∥ : U(p) halts in time t}.
For a string x, let BB(x) = min{t : Ωt > 0.x+2−∥x∥}. Note that BB(x) is undefined if 0.x+2−∥x∥ >
Ω. For n ∈ N, let bb(n) = max{BB(x) : ∥x∥ ≤ n}. bb−1(m) = argminn{bb(n − 1) < m ≤
bb(n)}. Let bb(n) = argmaxx{BB(x) : ∥x∥ ≤ n}.

Lemma 21 For n = bb−1(m), K(bb(n)|m,n) = O(1).
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Enumerate strings of length n, starting with 0n, and return the first string y such that BB(y) ≥ m.
This string y is equal to bb(n), otherwise BB(y−) is defined and BB(y−) ≥ BB(y) ≥ m. Thus
bb(n− 1) ≥ m, causing a contradiction.

Proposition 28

1. K(bb(n))>+ n.

2. K(bb(n)|H)<+K(n).

The following lemma, while lengthy, is a series of straightforward application of inequalities.

Lemma 22 For computable probabilities P , Q, over {0, 1}∞, Z ⊂ {0, 1}∞, |Z| = 2s,
s < maxα∈Z min{D(α|P ),D(α|Q)}+ I(⟨Z⟩ : H) +O(K(s, P,Q) + log I(⟨Z⟩;H)).

Proof. We relativize the universal Turing machine to ⟨s, P,Q⟩, which can be done due to the
precision of the theorem. Let Zn = {α[0..n] : α ∈ Z} and m = argminm |Zm| = |Z|. Let
n = bb−1(m) and k = bb(n), where k ≥ m. Let p and q be probabilities over {0, 1}∗, where
p(x) = [∥x∥ = k]P (x) and ⟨p⟩ = ⟨k⟩ and let q(x) = [∥x∥ = k]Q(x) and ⟨q⟩ = ⟨k⟩. Using D = Zk,
Lemma 20, relativized to k, produces x ∈ Zk, where

s < min{d(x|p),d(x|q)}+ I(Zk;H|k) +O(K(I(Zk;H|k), q, p|k))
< max

α∈Z
min{D(α|P ),D(α|Q)}+K(Zk|k) +K(k)−K(Zk|k,H) +O(K(I(Zk;H|k), q, p|k)).

< max
α∈Z

min{D(α|P ),D(α|Q)}+K(Zk|k) +K(k)−K(Zk|k,H) +O(K(P,Q) + log I(Zk;H|k)).

Since K(k)<+ n+K(n), by the chain rule,

K(Zk|k) +K(k)

<+K(Zk|k,K(k)) +K(K(k)|k) +K(k)

<K(Zk, k) +O(log n)

<K(Zk) +O(log n).

So

s < max
α∈Z

min{D(α|P ),D(α|Q)}+K(Zk)−K(Zk|k,H) +O(log n+K(P,Q) + log I(Zk;H|k))).

Since K(k|n,H) = O(1), K(Zk|H)<+K(Zk|k,H) +K(n),

s < max
α∈Z

min{D(α|P ),D(α|Q)}+ I(Zk;H) +O(log n+K(P,Q) + log I(Zk;H|k)).

Furthermore since I(Zk;H|k) +K(k) < I(Zk;H) +O(log n),

s < max
α∈Z

min{D(α|P ),D(α|Q)}+ I(Zk;H) +O(log n+K(P,Q)) +O(log I(Zk;H)). (15.1)

By Lemma 21, K(bb(n)|Zk)<+K(n) so by Lemma 1 and Proposition 28, one gets

n<log I(bb(n);H)<log I(Zk;H) +K(n)<log I(Zk;H). (15.2)

Combining Equations 15.1 and 15.2, results in
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s < max
α∈Z

min{D(α|P ),D(α|Q)}+ I(Zk;H) +O(K(P,Q) + log I(Zk;H)). (15.3)

By the definition of mutual information I between infinite sequences

I(Zk;H)<+ I(Z : H) +K(Zk|Z)<log I(Z : H) +K(k|Z). (15.4)

Combining Equations 15.3 and 15.5 results in

s < max
α∈Z

min{D(α|P ),D(α|Q)}+ I(Z : H) +K(x|Z) +O(K(P,Q) + log I(Zk;H)). (15.5)

Now m is simple relative to Z and by Lemma 21, bb(n) is simple relative to m and n. Furthermore
k is simple relative to bb(n). Therefore using Equations 15.2 and 15.5

K(k|Z)<+K(n) < O(log I(Zk;H)) < O(log(I(Z : H) +K(k|Z))) < O(log(I(Z : H))). (15.6)

So combining Equations 15.5 and 15.6, one gets,

s < max
α∈Z

min{D(α|P ),D(α|Q)}+ I(Z : H) +O(log n) +O(K(P,Q) + log I(Z;H))

s < max
α∈Z

min{D(α|P ),D(α|Q)}+ I(Z : H) +O(K(s, P,Q) + log I(Z;H))).

□

Exercise 23 For computable probabilities {Pi}ni=1 over {0, 1}∞, Z ⊂ {0, 1}∞, |Z| = 2s, show that
s < maxα∈Z mini{D(α|Pi)}+ I(⟨Z⟩ : H) + log n+O(K(s, {Pi}) + log I(⟨Z⟩;H)).

15.3 Oscillations Occur

This section contains one the main results of the manuscript, that algorithmic fine grained entropy
will fluctuate during the course of dynamics. A fluction of entropy size n will occur at least
approximately 2−n amount of the time. In Section 15.4, it will be shown that such oscillations
rarely occur, making for tight lower and upper bounds on their frequency. These bounds only
occur if the starting point has finite mutual information with the halting sequence.

By the Independence Postulate (see Chapter ??), starting points with infinite mutual infor-
mation with the halting sequence can be seen as exotic on unphysical. Thus the results in this
section establish a deep connection between complexity theoretic notions of the halting sequence
with thermodynamic theoretic notions of entropy fluctuations. In Chapter 16, analagous results
are proven for discrete ergodic processes.

We first introduce a new definition, scoring the level of mutul information a point α in a
computable metric space has with the halting sequence H. The idea is to define a set A of all
encoded fast Cauchy sequences to α and then define information to be the infimum of mutual
information of elements of A with H. Thus this definition is independent of the way a point is
coded.

Definition 38 (Mutual Information with the Halting Sequence) An encoding of a fast Cauchy
sequence −→x is ⟨−→x ⟩ ∈ {0, 1}∞, with ⟨−→x ⟩ = ⟨x1⟩⟨x2⟩ . . . . Each xi ∈ −→x is an ideal point, and i is
its order in the enumeration of −→x . Each point x ∈ X has a certain mutual information with the
halting sequence I(x : H) = inf{I(⟨−→x ⟩ : H) : −→x is a fast Cauchy sequence for x}.
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The following theorem, stated in [Lev74] and reproved in [Ver21], says that randomized methods
cannot increase the average mutual information with the halting sequence.

Theorem 85 ([Ver21, Lev74]) Let Pρ, be a family of probability distributions over {0, 1}∞, in-
dexed by ρ ∈ {0, 1}∞. Assume that there is a Turing machine T such that for all ρ ∈ {0, 1}∞
computes Pρ having oracle access to ρ. By “compute” we mean all the measures of the cylinder sets
Pρ(x{0, 1}∞), can be computed, uniformly in x ∈ {0, 1}∗. Then there is a constant cT > 0 solely
dependent on T such that

Pρ{γ : I(⟨γ, ρ⟩ : H) > m} < 2I(ρ:H)−m+cT .

The following theorem shows oscilliations of entropy occur during dynamics. Note that for any
computable transform group Gt, and a, b ∈ Q>0, a < b, there exists another transformation group
F t such that F t = Ga−(a−b)t. This means that the entropy is constantly fluctuating at every time
interval, no matter how small. Theorem 104 in Chapter 19 is more general and the proof is more
straightforward, but the bounds are looser. Note that the measure preserving requirement for the
transformation group is not needed for Theorem 86.

Theorem 86 (Oscillation of Thermodynamic Entropy) Let L be the Lebesgue measure over
R, (X , µ) be a computable measure space, α ∈ X , with finite I(α : H). For transformation group
Gt acting on X , there is a constant c with L{t ∈ [0, 1] : Hµ(G

tα) < logµ(X)− n} > 2−n−K(n)−c.

Proof. We first assume not. There exists (Gt,X ) and computable measure space (X , µ) and there
exists α ∈ X such that for all c ∈ N, there exists n, where

L({t ∈ [0, 1] : Hµ(G
tα) < logµ(X )− n}) < 2−n−K(n)−c

L({t ∈ [0, 1] : n− logµ(X ) < log tµ(G
tα)}) < 2−n−K(n)−c.

We sample 2n+K(n)+c−1 elements F by choosing a time t uniformly between [0, 1]. The probability
that all samples β ∈ F have tµ(G

βα) ≤ n− logµ(X ) is

|F |∏

i=1

L{t ∈ [0, 1] : log tµ(G
tα) ≤ n− logµ(X )}

≥(1− |F |2−n−K(n)−c)

≥(1− 2n+K(n)+c−12−n−K(n)−c)

≥1/2.

Let ({0, 1}∞,Γ) be the Cantor space with the uniform measure. The binary representation (see
Theorem 81) creates an isomorphism (ϕ, ϕ−1) of computable probability spaces between the spaces
({0, 1}∞,Γ) and ([0, 1], L). It is the canonical function ϕ(γ) = 0.γ. Thus for all Borel sets A ⊆ [0, 1],
Γ(ϕ−1(A)) = L(A). Since {t ∈ [0, 1] : log tµ(G

tα) ≤ n− logµ(X )} is closed,

L{t ∈ [0, 1] : log tµ(G
tα) ≤ n− logµ(X )} = Γ{γ ∈ {0, 1}∞ : log tµ(G

ϕ(γ)α) ≤ n− logµ(X )}.

So

1/2 ≤
|F |∏

i=1

Γ{γ ∈ {0, 1}∞ : log tµ(G
ϕ(γ)α) ≤ n− logµ(X )}.
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Let (δ, µδ) be a binary representation (see Definition 30), for the computable measure space (X , µ).
Thus µδ is a computable (not necessarily probability) measure over {0, 1}∞. By Lemma 18, there
is a c′ > 0, where

|F |∏

i=1

Γ{γ ∈ {0, 1}∞ : log tµδ(δ
−1(Gϕ(γ)α)) ≤ n− logµ(X ) + c′} ≥ 1/2.

Let f : {0, 1}∞ × {0, 1}∞ → {0, 1}∞, where f(γ, ⟨−→ζ ⟩) = δ−1(Gϕ(γ)ζ). Note, f(γ, ⟨−→ζ ⟩) can be
undefined when tµ(G

ϕ(γ)ζ) = ∞, because the morphism δ−1 is only proven to be defined on a
constructive Gδ set of full measure which includes random points. Let ξ = ⟨−→α ⟩ be an encoding of
a fast Cauchy sequence −→α such that I(ξ : H) <∞. The sequence ξ is guaranteed to exist because
the assumption of the theorem statement. So

|F |∏

i=1

Γ{γ ∈ {0, 1}∞ : log tµδ(f(γ, ξ)) ≤ n− logµ(X ) + c′} ≥ 1/2.

By Proposition 17, (and also updating c′)

|F |∏

i=1

Γ{γ ∈ {0, 1}∞ : D(f(γ, ξ)|µδ) ≤ n− logµ(X ) + c′ +K(µδ)} ≥ 1/2.

Let µδ(α) = µδ(α)/µδ({0, 1}∞), which is a computable probability measure over {0, 1}∞.

|F |∏

i=1

Γ{γ ∈ {0, 1}∞ : D(f(γ, ξ)|µδ) ≤ n+ c′ +K(µδ)} ≥ 1/2.

Let Γn+c be a computable distribution over the product of 1 + 2n+K(n)+c−1 independent prob-
ability measures over {0, 1}∞, encoding into a {0, 1}∞ in the standard way. The first probability
distribution gives measure 1 to ξ and the last 2n+K(n)+c probability measures are the uniform
distribution Γ over {0, 1}∞. So

Γn+c(Encoding of 1 + 2n+K(n)+c−1 elements with the first encoded sequence being ξ

and the rest of encoded sequences β has D(f(β, ξ)|µδ) ≤ n+ c′ +K(µδ)) ≥ 1/2.

Let n∗ = ⟨n,K(n)⟩. There is an infinite sequence η = ⟨n,K(n), c⟩ξ and a Turing machine T , such
that T computes Γn+c when given oracle access to η. By Theorem 85, with the universal Turing
machine relativized to n∗, and folding the constants together,

Γn+c({γ : I(γ : H|n∗) > m})
<Γn+c({γ : I(⟨γ, η⟩ : H|n∗)>+m})
∗
<2−m+I(η:H|n∗)+cT

∗
<2−m+K(n,K(n),c|n∗)+I(ξ:H|n∗)+cT

∗
<2−m+K(c).

Therefore,

Γn,c({γ : I(γ : H|n∗)>+K(c)}) ≤ 1/4.
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Thus, by probabilistic arguments, there exists κ ∈ {0, 1}∞, such that κ = ⟨D, ξ⟩, whereD ⊂ {0, 1}∞
and |D| = 2n+K(n)+c−1 and each β ∈ D has D(f(β, ξ)|µδ) ≤ n+c′+K(µδ) and I(κ : H|n∗)<+K(c).
Thus since K(f(D, ξ)|κ, n∗) = O(1) we have I(f(D, ξ) : H|n∗)<+ I(κ : H|n∗)<+K(c). By Lemma
22, relativized to n∗, on the set D′ = f(D, ξ) and probability µδ, there exists constants d, f ∈ N
where

m = log |D| < max
β∈D′

D(β|µδ, n∗) + 2I(D′ : H|n∗) + dK(m|v) + fK(µδ|n∗)

m < max
β∈D′

D(β|µδ) +K(n) + 2I(D′ : H|n∗) + dK(m|n∗) + fK(µδ|n∗)

<+ max
β∈D′

D(β|µδ) +K(n) + 2K(c) + dK(m|v) + fK(µδ|n∗)

<+ n+K(n) + dK(m|v) + 2K(c) + (f + 1)K(µδ). (15.7)

Therefore:

m = n+K(n) + c− 1

K(m|n∗)<+K(c). (15.8)

Plugging Equation 15.10 back into Equation 18.1 results in

n+K(n) + c<+ n+K(n) + 2K(c) + d(K(c) +O(1)) + (f + 1)K(µδ)

c<+ (2 + d)K(c) + dO(1) + (f + 1)K(µδ).

This result is a contradiction for sufficiently large c solely dependent X , G, µ, and the universal
Turing machine. □

Corollary 24 (Oscillation of Marginal Thermodynamic Entropy) Let L be the Lebesgue mea-
sure over R, (X × Y, µ × ν) be a computable product measure space, (α, β) ∈ X × Y, with fi-
nite I((α, β) : H). For transformation group Gt acting on X × Y, there is a constant c where if
(αt, βt) = Gt(α, β), then L{t ∈ [0, 1] : Hµ(α

t) < logµ(X)− n} > 2−n−K(n)−c.

15.4 Oscillations are Rare

The following lemma shows that Theorem 86 is tight. It does require the measure preserving
condition of Gt. It is the same statement as Theorem 6 in [Gac94], with an updated proof.

Lemma 23 Let L be the Lebesque measure over R, (X , µ) be a computable measure space, and
α ∈ X . For transformation group Gt acting on X , there is a constant c where L{t ∈ [0, 1] :
Hµ(G

tα) < Hµ(α)−m} < 2−m+c.

Proof. Since
∫

X

∫

[0,1]
2−Hµ×L(α,t)dL(t)dµ(α) =

∫

X

∫

[0,1]
tµ×L(α, t)dL(t)dµ(α) ≤ 1,

the function f(α) =
∫
[0,1] 2

−Hµ×L(α,t)dL(t) is a µ-test. So

∫

[0,1]
2−Hµ×L(α,t)dt = f(α)

∗
< tµ(α)

∗
= 2−Hµ(α).
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So

{t ∈ [0, 1] : 2−Hµ×L(α,t) > 2m−Hµ(α)} ∗
< 2−m

{t ∈ [0, 1] : Hµ×L(α, t) < Hµ(α)−m} ∗
< 2−m

Hµ×L(α, t)<
+Hµ(G

tα) because

∫

[0,1]

∫

X
tµ(G

tα)dµ(α)dL(t)

=

∫

[0,1]

∫

X
tµ(α)dµ(G

−tα)dL(t)

=

∫

[0,1]

∫

X
tµ(α)dµ(α)dL(t),

=

∫

[0,1]
1dL(t)

≤1,

which means tµ(G
tα)

∗
< tµ×L(α, t) and thus 2−Hµ(Gtα)

∗
< 2−Hµ×L(α,t). Thus

{t ∈ [0, 1] : Hµ(G
tα) < Hµ(α)−m} ∗

< 2−m.

□

Exercise 24 Let L be the Lebesque measure over R, (X , µ) be a computable measure space, and
α ∈ X . For transformation group Gt acting on X , prove that there is a constant c where L{t ∈
[0, T ] : Hµ(G

tα) < Hµ(α)−K(T )−m} < 2−m+cT .

Combining Theorem 86 and Lemma 23 together, one gets a full characterization of the dynamics
of states in the phase space. This corollary was shown in the introduction, and is a central result
of the manuscript.

Corollary 25 Let L be the Lebesgue measure over R, and (X , µ) be a computable measure space,
and α ∈ X with finite I(α : H). For transformation group Gt acting on X , there is a constant c
with

2−n−K(n)−c < L{t ∈ [0, 1] : Hµ(G
tα) < logµ(X )− n} < 2−n+c.

15.5 Synchronized Oscillations

In this section, we prove joint flucuations of algorithmic thermodynamic entropies with respect to
two different measures µ and ν.

Theorem 87 (Synchronized Oscillation of Thermodynamic Entropies) Let L be the Lebesgue
measure over R, (X , µ, ν) be a dual computable measure space and α ∈ X , with finite I(α : H).
For transformation group Gt acting on X , there is a constant c with L{t ∈ [0, 1] : Hµ(G

tα) <
logµ(X )− n and Hν(G

tα) < log ν(X )− n} > 2−n−K(n)−c.
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Proof. We first assume not. There exists transformation group Gt and computable dual measure
space (X , µ, ν) with U = logµ(X ), V = log ν(X ) and there exists α ∈ X with finite I(α : H) such
that for all c ∈ N, there exists n, where

L({t ∈ [0, 1] : Hµ(G
tα) < U − n and Hν(G

tα) < V − n}) < 2−n−K(n)−c

L({t ∈ [0, 1] : n− U < log tµ(G
tα) and n− V < log tν(G

tα)}) < 2−n−K(n)−c.

We sample 2n+K(n)+c−1 elements F by choosing a time t uniformly between [0, 1]. The probability
that all samples β ∈ F have tµ(G

βα) ≤ n− V or tν(G
βα) ≤ n− V is

|F |∏

i=1

L{t ∈ [0, 1] : log tµ(G
tα) ≤ n− U or log tν(G

tα) ≤ n− V )}

≥(1− |F |2−n−K(n)−c)

≥(1− 2n+K(n)+c−12−n−K(n)−c)

≥1/2.

Let ({0, 1}∞,Γ) be the Cantor space with the uniform measure. The binary representation (see
Theorem 81) creates an isomorphism (ϕ, ϕ−1) of computable probability spaces between the spaces
({0, 1}∞,Γ) and ([0, 1], L). It is the canonical function ϕ(γ) = 0.γ. Thus for all Borel sets A ⊆ [0, 1],
Γ(ϕ−1(A)) = L(A). Since {t ∈ [0, 1] : log tµ(G

tα) ≤ n− U or log tν(G
tα) ≤ n− V } is closed,

L{t ∈ [0, 1] : log tµ(G
tα) ≤ n− U or log tν(G

tα) ≤ n− V }
=Γ{γ ∈ {0, 1}∞ : log tµ(G

ϕ(γ)α) ≤ n− U or log tν(G
ϕ(γ)α) ≤ n− V }.

So

1/2 ≤
|F |∏

i=1

Γ{γ ∈ {0, 1}∞ : log tµ(G
ϕ(γ)α) ≤ n− U or log tν(G

ϕ(γ)α) ≤ n− V }.

Let (δ, µδ, νδ) be a dual binary representation for the computable dual measure space (X , µ, ν).
Thus µδ and νδ are computable (not necessarily probability) measures over {0, 1}∞. By Lemma
18, there is a c′ > 0, where

|F |∏

i=1

Γ{γ ∈ {0, 1}∞ : log tµδ(δ
−1(Gϕ(γ)α)) ≤ n− U + c′

or log tνδ(δ
−1(Gϕ(γ)α)) ≤ n− V + c′} ≥ 1/2.

Let f : {0, 1}∞ × {0, 1}∞ → {0, 1}∞, where f(γ, ⟨−→ζ ⟩) = δ−1(Gϕ(γ)ζ). Note, f(γ, ⟨−→ζ ⟩) can be
undefined when tµ(G

ϕ(γ)ζ) = ∞ or tν(G
ϕ(γ)ζ) = ∞, because the morphism δ−1 is only proven to

be defined on a constructive Gδ set of full measure which includes µ and ν random points. Let
ξ = ⟨−→α ⟩ be an encoding of a fast Cauchy sequence −→α such that I(ξ : H) < ∞. The sequence ξ is
guaranteed to exist because the assumption of the theorem statement. So

|F |∏

i=1

Γ{γ ∈ {0, 1}∞ : log tµδ(f(γ, ξ)) ≤ n− U + c′ or log tνδ(f(γ, ξ)) ≤ n− V + c′} ≥ 1/2.
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By Proposition 17, (and also updating c′)

|F |∏

i=1

Γ{γ ∈ {0, 1}∞ : D(f(γ, ξ)|µδ) ≤ n− U + c′ or D(f(γ, ξ)|νδ) ≤ n− V + c′} ≥ 1/2.

Let µδ(α) = µδ(α)2
−U and νδ(α) = νδ(α)2

−V , which are computable probability measures over
{0, 1}∞.

|F |∏

i=1

Γ{γ ∈ {0, 1}∞ : D(f(γ, ξ)|µδ) ≤ n+ c′ or D(f(γ, ξ)|νδ) ≤ n+ c′} ≥ 1/2.

Let Γn+c be a computable distribution over the product of 1 + 2n+K(n)+c−1 independent prob-
ability measures over {0, 1}∞, encoding into a {0, 1}∞ in the standard way. The first probability
distribution gives measure 1 to ξ and the last 2n+K(n)+c probability measures are the uniform
distribution Γ over {0, 1}∞. So

Γn+c(Encoding of 1 + 2n+K(n)+c−1 elements with the first encoded sequence being ξ

and the rest of encoded sequences β has D(f(β, ξ)|µδ) ≤ n+ c′

or D(f(β, ξ)|νδ) ≤ n+ c′) ≥ 1/2.

Let n∗ = ⟨n,K(n)⟩. There is an infinite sequence η = ⟨n,K(n), c⟩ξ and a Turing machine T , such
that T computes Γn+c when given oracle access to η. By Theorem 85, with the universal Turing
machine relativized to n∗, and folding the constants together,

Γn+c({γ : I(γ : H|n∗) > m})
<Γn+c({γ : I(⟨γ, η⟩ : H|n∗)>+m})
∗
<2−m+I(η:H|n∗)+cT

∗
<2−m+K(n,K(n),c|n∗)+I(ξ:H|n∗)+cT

∗
<2−m+K(c).

Therefore,

Γn,c({γ : I(γ : H|n∗)>+K(c)}) ≤ 1/4.

Thus, by probabilistic arguments, there exists κ ∈ {0, 1}∞, such that κ = ⟨D, ξ⟩, whereD ⊂ {0, 1}∞
and |D| = 2n+K(n)+c−1 and each β ∈ D has D(f(β, ξ)|µδ) ≤ n + c′ or D(f(β, ξ)|νδ) ≤ n + c′ and
I(κ : H|n∗)<+K(c). Thus since K(f(D, ξ)|κ, n∗) = O(1) we have I(f(D, ξ) : H|n∗)<+ I(κ :
H|n∗)<+K(c). By Lemma 22, relativized to n∗, on the set D′ = f(D, ξ) and probabilities µδ and
νδ, there exists constant d ∈ N where (with the complexities of µδ and νδ folded into the additive
constants)

m = log |D′|<+ max
β∈D′

min{D(β|µδ, n∗),D(β|νδ, n∗)}+ 2I(D′ : H|n∗) + dK(m|v)

m<+ max
β∈D′

min{D(β|µδ),D(β|νδ)}+K(n) + 2I(D′ : H|n∗) + dK(m|n∗)

<+ max
β∈D′

min{D(β|µδ),D(β|νδ)}+K(n) + 2K(c) + dK(m|v)

<+ n+K(n) + dK(m|v) + 2K(c). (15.9)

121



Therefore:

m = n+K(n) + c− 1

K(m|n∗)<+K(c). (15.10)

Plugging Equation 15.10 back into Equation 18.1 results in

n+K(n) + c<+ n+K(n) + 2K(c) + d(K(c) +O(1))

c<+ (2 + d)K(c) + dO(1).

This result is a contradiction for sufficiently large c solely dependent (X , µ, ν,G), and the uni-
versal Turing machine. □

122



Chapter 16

Discrete Dynamics

In the previous chapter, results were proven about continuous dynamics were proven. In this chap-
ter, results about discrete dynamics are detailed, with an emphasis on ergodic dynamics. Theorem
28 shows that oscillations occur in ergodic dynamics. Furthermore, the longer the dynamics occur,
the greater the fluctuation is guaranteed to occur. This closely mirrors Corollary 25 (down to even
the error terms), which characterizes continuous dynamics. Results are also proven about ergodic
dynamics, showing that lower computable open sets will have a hitting frequency equal to their
measure.

Definition 39 (Discrete Dynamics) Discrete dynamics is modeled by a transform group Gt

from Definition 36, but with t ∈ Z, being an integer. This means Gt is measure preserving. We
assume there no α ∈ X with a finite orbit.

Proposition 29 The sets {α : Hµ(α) ̸= −∞} and {α : Hµ(α) = −∞} are conserved under a
discrete transformation group G.

Proof. If Hµ(α) = −∞, then α is in an effective null set
⋂
n Un. Thus Gtα is in the null set⋂

nG
tUn and thus Hµ(G

tα) = −∞. The same reasoning for −t proves that {α : Hµ(α) = −∞} is
closed under Gt, proving the case when Hµ(α) ̸= −∞.

16.1 Synchronized Oscillations

This section continues the discussion of Section 15.1 that outliers occur in algorithms, dynamic,
and the physical world. The result in this section generalize the results from infinite sequences of
numbers or reals to computable metric spaces, where the outlier score is the uniform universal test
tµ. Results in this section prove discrete dynamics will visit states with ever increasing tµ and tν
score. Otherwise the setup is exotic, with high mutual information with the halting sequence. By
the independence postulate, such constructs are non physical.

Definition 40 (Information of a Set of Points with H) Given a finite set D ⊂ X , with D =
{αi}ni=1, its mutual information with the halting sequence is defined by

I(D : H) = inf−→α1,...,
−→αn

I(⟨−→α1, . . . ,
−→αn⟩ : H),

which is the infimum over all encoded fast Cauchy sequences to members of D. This is a similar
construction to Definition 42.
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Lemma 24 Given dual computable measure space (X , µ, ν) with U = µ(X ) = ν(X ), there is a
constant cX ,µ,ν , with universal uniform tests tµ and tν , for a finite set Z ⊂ X with n = ⌈log |Z|⌉,

n < logmax
α∈Z

min{tµ(α), tν(α)}+ logU + I(⟨Z⟩ : H) +O(log I(⟨Z⟩ : H) +K(n)) + cX ,µ,ν .

Proof. Since µ and ν are computable, U is computable. Let ({0, 1}∞, µδ, νδ) be a dual bi-
nary represention that are isomorphic to computable measure spaces (X , µ) and (X , ν), with
δ : ({0, 1}∞, µδ) → (X , µ) and δ : ({0, 1}∞, νδ) → (X , ν). If maxα∈Z min{tµ(α), tν(α)} = ∞,
then the lemma is proven. Thus for all α ∈ Z, either tµ(α) < ∞ or tν(α) < ∞, so by Lemma
18, δ−1(α) is defined and unique. Let µδ = µδ/U and νδ = νδ/U be computable probability mea-
sures over {0, 1}∞. Let W = δ−1(Z) ⊂ {0, 1}∞. By Theorem 22 applied to W , µδ, and νδ with
s = n−O(1), gives

s <max
α∈W

min{D(α|µδ),D(α|νδ)}+ I(W : H) +O(log I(W : H) +K(s)) + cX ,µ,ν .

Due to Proposition 17,

n <max
α∈W

min{log tµδ(α), log tνδ(α)}+ I(W : H) +O(log I(W : H) +K(n)) + cX ,µ),

n <max
α∈W

min{log tµδ(α), log tνδ(α)}+ logU + I(W : H) +O(log I(W : H) +K(n)) + cX ,µ.

Since ({0, 1}∞, µδ) is isomorphic to (X , µ) and ({0, 1}∞, νδ) is isomorphic to (X , ν), due to Lemma
18,

n <max
α∈Z

min{log tµ(α), log tν(α)}+ logU + I(W : H) +O(log I(W : H) +K(n) + cX ,µ).

Given any encoding of the fast Cauchy sequences of the members of Z, one can compute W with
δ−1, thus K(W |Z) = O(1), so

n <max
α∈Z

min{log tµ(α), log tν(α)}+ logU + I(Z : H) +O(log I(Z : H) +K(n) + cX ,µ).

□
Thus as a consequence to Lemma 24 is that discrete time dynamics will hit ever lower entropy

scores Hµ as time approaches infinity. A stronger statement can be proven that states the dynamics
will repeatedly hit intermediate low Hµ scores.

Theorem 88 Let (X , µ, ν) be a dual computable measure space, with U = µ(X ) = ν(X ) and
α ∈ X , with finite I(α : H). For discrete time dynamics Gt, there is a c such that

max
γ∈G{1,...,2n}α

max{Hµ(γ),Hν(γ)} < logU − n+O(K(n)) + c.

Proof. Let Zn = G{1,...,2n}α. Lemma 24, applied to (X , µ, ν) and Zn, results in γ ∈ Zn such that

n <min{log tµ(γ), log tν(γ)}+ logU + I(Zn : H) +O(log I(Zn : H) +K(n)) + cX ,µ,ν,α.

So by using Definition 42, I(Zn : H)<+ I(α : H) +K(n), and one gets

n <min{log tµ(γ), log tν(γ)}+ logU + I(α : H) +O(log I(α : H) +K(n)) + cX ,µ,ν,α,G.

The theorem is proven by noting I(α : H) <∞. □

124



Figure 16.1: The question of ergodicity in a perfectly collisionless ideal gas with specular
reflections.

16.2 Ergodic Dynamics

This section deals in the case where the dynamics are ergodic. For a measure space (X , µ) a function
T : X → X is ergodic if it is measure preserving and all the invariant sets have measure 0 or µ(X),
as seen in Figure 16.1. Ergodic dynamics are prevalent in many areas of mathematics and physics.
For example, particles in box (as seen in Example 4) adhere to ergodic dynamics.

16.2.1 Single Points

The following theorem adapts Theorem 6 of [BDH+12] to computable measure spaces using the
recommendations of the proof sketch of Theorem 12. Comparable results can be found in [FMN12].
The main difference between this proof and that of Theorem 6 is that overlapping open balls are
used instead of cylinders.

Theorem 89 Let (X , µ) be a computable measure space. Let T : X → X be an computable ergodic
function. Let A be an effectively open subset of X, where µ(A) < µ(X). Let A∗ be the set of points
x ∈ X such that T i(x) ∈ A for all i ≥ 0. Then Hµ(x) = −∞ for all x ∈ A∗.

It is sufficient to prove A∗ is an effectively null set, introduced in Definition 32. We recall that
from Corollary 21, there is an enumeration {Bi} of the basis of “almost decidable” of open balls
such that their borders have null µ-measure. Let ν(x) = µ(x)/µ(X) be a computable probability
measure over X , due to Claim 1. Let r be a real number such that ν(A) < r < 1. Given an
enumerated ball Bj , we want to find an n such that ν(Bj ∩

⋂
i≤n T

−i(A)) ≤ rν(B). Note that it
could be that Bj ∩Bk ̸= ∅ for j ̸= k. This gives an effective open cover of A∗ ∩Bj having measure
at most rν(Bj). For each j you iterate the process until you get the an effectively open cover of
Bj∩A∗ with measure < r2−jν(Bj). Thus the union of all efffectively open covers of A∗ has measure
less than r. This process is repeated without end to get an ν effectively null set.

To estimate ν(B ∩⋂i≤n T
−i(A)), we note that it does not exceed mini≤n ν(B ∩ T−i(A)) which

does not exceed 1
n+1

∑
i≤n ν(B ∩ T−i(A)). This average,

1

n+ 1

[
ν(B ∩A) + ν(B ∩ T−1(A) + · · ·+ ν(B ∩ T−n(A))

]
(16.1)

is equal to

1

n+ 1

[
ν(T−n(B) ∩ T−n(A)) + ν(T−(n−1))(B) ∩ T−n(A) + · · ·+ ν(B ∩ T−n(A))

]
,
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because G is measure preserving. The latter expression is the scalar product of the indicator
function of T−n(A) and the average an = (10 + · · · + 1n)/(n + 1), where 1i is the indicator of
T−i(B).

As n→ ∞, the average an converges in L2 to the constant function ν(B) due to von Neumann’s
mean ergodic theorem. By Cauchy-Schwarz inequality this means the the scalar product converges
to ν(A)ν(B), so it does not exceed rν(B) for n large enough.

It remains to find an effective value for n for which the L2-distance between an and the constant
function ν(B) is small. Note that for all i the set T−i(B) is an effectively open set of measure
ν(B), and, since T is measure preserving, ν(B) is computable. There for any i and ϵ > 0, one can
uniformly approximate T−i(B) by its ad-set subset U (see Definition 31) where ν(T−i(B) \U) < ϵ
can be computed, due to Proposition 16. This means that the L2-distance between an and the
constant function ν(B) can be computed effectively, so one can continue computing this value
until it finds and n such that the average (Equation 16.1) is less than rν(B). We then have
ν(B ∩⋂i≤n T

−i(A)) < rν(B). □

The above theorem has implications for algorithmic coarse grain entropy and in particular
Theorem 97 which says that if a state travels through enough partitions (effective open sets) then
oscillations will occcur. Theorem 89 says that a state x ∈ X, with Hµ(x) ̸= −∞, under ergodic
dynamics will travel through all the partitions if there are finitely many of them or an ever increasing
number of partitions if there are infinite many of them.

16.2.2 Indicator Functions

The following theorem adapts Theorem 8 from [BDH+12] to computable measure spaces using the
proof sketch in Theorem 12.

Theorem 90 Let (X , µ) be a computable measure space. Let T : X → X be a computable ergodic
function. Let U be an effectively open set. If Hµ(ω) ̸= −∞ then

lim
n→∞

1

n

n−1∑

k=0

1U (T
k(ω)) = µ(U)/µ(X).

This also applies to effectively closed sets.

Proof. Let ν(x) = µ(x)/µ(X) be a computable probability measure over X due to Claim 1. Let
gn(ω) =

1
n

∑n−1
k=0 1U (T

k(ω)) be the frequency of U elements among the first n iterations of ω. We
first prove lim sup gn(ω) ≤ ν(U). We then prove lim inf gn(ω) ≥ ν(U).

Let r > ν(U) be some rational number and GN = {ω : (∃n ≥ N)gn(ω) > r} be the set of points
where some far enough frequency exceeds r. The set GN is an effectively open set; the functions
gn are lower computable uniformly in n; the condition gn(ω) > r is enumerable. The set GN is
decreasing in N . By the classical Birkhoff’s pointwise ergodic theorem that ν(

⋂
N GN ) = 0 as the

sequence of functions gn converges to ν(U) < r ν-almost everywhere. So there exists N , where
ν(GN ) < 1. We can then apply Theorem 89 to effectively open set Gn we get that for ω ∈ U with
Hµ(ω) ̸= −∞ and k such that T k(ω) ̸∈ GN . So lim supn gn(T

k(ω)) ≤ r Since finite number of
iterations does not change lim sup, we have gn(ω) ≤ r. Since r was an arbitray rational number
greater than ν(U) so lim sup gn(ω) ≤ ν(U).
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(2) We now prove that lim inf gn(ω) ≥ ν(U). Since U is open it is a countable union of almost

decidable balls. Taking ad-set D ⊂ U , we can apply the previous statement to X \D. It says the

orbit of a point ω with Hµ(ω) ̸= −∞ will be in D with frequence at least ν(D) = ν(D). Since
ν(D) can be arbitrarily close to ν(U), we have that lim inf gn(ω) ≥ ν(U). □

Proposition 30 For computable non-atomic measure space (X , µ),
(1) Every measurable set E with µ(E) > 0 contains measurable sets of arbitrarily small positive

measure.

(2) For any δ ∈ [0, µ(X)], there exists an measurable set A where 1
2δ ≤ µ(A) ≤ δ.

Proof.

(1) Let B1 ⊂ E be a set such that 0 < µ(B1) < µ(E). Then either µ(B1) ≤ µ(E)/2 and we set
A1 = B1 or µ(X \B1) ≤ µ(E)/2, and we set A1 = X \B1. Now repeat the process with A1 instead
of E, obtaining a measurable subset A2 of A1, with 0 < µ(A2) < µ(E)/4. Continuing in this way
we see that X contains subsets with arbitrary small measure.

(2) We prove the existence of a measurable set with the desired property and use the fact that
µ is regular to imply this set can be open. Let C be the collection of measurable subsets A of X
for which µ(A) < 1

2δ. If C is not closed under unions then the lemma is proved. For example, if
A,B ∈ C but A ∪ B ̸∈ C then 1

2δ ≤ µ(A ∪ B) ≤ δ. Therefore C is closed under binary unions.
Taking limits, this implies C is closed under countable unions.

Let β = supC∈C µ(C). There exists a sequence of sets {Bi} for which µ(Bn) ↗ β. Let B =
⋃
Bn,

this implies µ(B) = β and since B ∈ C, we have β < 1
2δ. But then by (2) we can find a subset

E ⊆ X \B whose measure is less than 1
2δ−β, which would imply B ∪E ∈ C contradicting the fact

that B attains supC∈C µ(C) □

Corollary 26 For computable non-atomic measure space (X , µ), for any δ ∈ [0, µ(X)], there exists
an open set A where 1

2δ ≤ µ(A) ≤ δ.

Proof. This follows from Proposition 30 and the fact that every finite Borel measure on a metric
space is regular.

Proposition 31 Given non-atomic computable measurable space (X , µ), there is a c ∈ N, where
for all n, µ(X)2−n−K(n)−c < µ({x : Hµ(x) < logµ(X)− n}) < µ(X)2−n.

Proof. By Corollary 26, for every δ ∈ [0, µ(X)]], there exists an open set A, with 1
2δ ≤ µ(A) ≤

δ. Thus one can uniformly, in n ∈ W, enumerate an effectively open sets {Dn} such that
m(n)µ(X)2−n−1 < µ(Dn) < m(n)µ(X)2−n such that Dn ∩ Dm = ∅ if n ̸= m, where µ(X) is
computable because µ is computable. The reasoning is as follows.

Let {D̂n} be current ad-sets all originally ∅ such that m̂(n)2−n−1µ(X) < µ(D̂n) < m̂(n)µ(X)2−n,
where m̂ is a lower approximation of m. One can lower compute the interval

[m(n)µ(X)2−n−1,m(n)µ(X)2−n]

for all n, and if the interval shifts by some rational amount, by Corollary 26, one can add an

ad-set D ⊆ X \ ⋃∞
i=1 D̂i, such that m̂(n)µ(X)2−n−1 < D ∪ D̂n < m̂(n)µ(X)2−n−1, and then set

D̂n = D ∪ D̂n, and continue with the enumeration.
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Let the µ-test t(α) = supn:α∈Dn 2
n−log µ(X). Thus since t is lower computable and

∫
X tdµ ≤

∑
n µ(Dn)2

n/µ(X) =
∑

nm(n) < 1, we have that t
∗
< tµ. Since µ{x : tµ(x) > 2n/µ(X)} <

µ(X)2−n, we get that there exists c ∈ N, with µ(X)2−n−K(n)−c < µ({x : Hµ(x) < logµ(X)−n}) <
µ(X)2−n. □

Corollary 27 Given non-atomic computable measurable space (X , µ), there is a c ∈ N, where for
all n, µ(X)2−n−K(n)−c < µ({x : tµ(x) > 2n/µ(X)}) < µ(X)2−n.

The following shows that during the course of ergodic dynamics, the state will be guaranteed
to oscillate in its algorithmic fine grained thermodynamic entropy. Small oscillations are frequent,
and larger flucuations are more rare. This theorem parallels Theorem 86 in its inequalities.

Theorem 91 (Discrete Oscillations) Let (X , µ) be a non-atomic computable measure space.
There is a c ∈ N with the following properties. Let T : X → X be a computable ergodic function,
and Un = {x : Hµ(x) < logµ(X)− n}. If ω ∈ X has Hµ(ω) ̸= −∞,

2−n−K(n)−c < lim
n→∞

1

n

n−1∑

t=0

1Un(T
t(ω)) < 2−n.

Proof. By Proposition 31, there is a c where µ(X)2−n−K(n)−c < µ(Un) < µ(X)2−n. By Theorem
90, limn→∞

1
n

∑n−1
k=0 1Un(T

k(ω)) = µ(Un)/µ(X). So

2−n−K(n)−c < lim
n→∞

1

n

n−1∑

k=0

1Un(T
k(ω)) < 2−n.

16.2.3 Lower Computable Functions

The following theorem adapts Theorem 9 in [BDH+12] to computable measure spaces.

Theorem 92 Let (X , µ) be a computable measure space. Let T : X → X be a computable ergodic
function. Let f : X → R+ ∪∞ be lower computable. If Hµ(ω) ̸= −∞,

lim
n→∞

1

n

n=1∑

k=0

f(T t(ω)) =
1

µ(X)

∫
fdµ.

Proof. Let ν = µ/µ(X ) be a computable measure over X , due to Claim 1. Let f be a lower
computable function with a finite integral. Let fn = 1

n(f+· · ·+f ·Tn−1). Let r >
∫
fdν be a rational

number and GN = {ω : (∃n ≥ N)fn(ω) > r}. The set GN is effectively open and ν(
⋂
N GN ) = 0 as

fn(ω) =
∫
fdν < r for ν-almost every ω by the classical version of Birkoff’s ergodic theorem. As a

result, there exists N where ν(GN ) < 1. By Theorem 89, if Hν(ω) ̸= −∞, then there exists k such
that T k(ω) ̸= Gn. So lim sup fn(T

k(ω)) ≤ r and lim sup fn(ω) = lim sup fn(T
k(ω)) ≤ r. Since r >∫

fdν can be arbitrarily close to the integral, we have that lim sup fn(ω)<
+
∫
fdν = 1

µ(X)

∫
fdµ.

It remains to prove that lim inf fn(ω) ≥
∫
dν. This is true for any lower semicontinuous f .

Consider some lower bound for f that is of the form f̂(ω) =
∑n

i=1 cn1Bn(ω), where each Bn is
an almost decidable ball. For these basic functions the statement of the theorem is true using the
reasoning of Theorem 90, and their integrals can be arbitrarily close to

∫
fν = 1

µ(X)

∫
fdµ. □
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Exercise 25 Let (X , µ) be a computable measure space and T : X → X be a computable ergodic
function. Prove that for ω ∈ X with Hµ(ω) ̸= −∞, then

µ(X) lim
n→∞

1

n

n−1∑

t=0

2−Hµ(T tω) < 1.
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Chapter 17

Dynamics on Product Spaces

Theorem 86 proves the existence of oscillations in thermodynamic entropy. However the situation
becomes more complicated if one were to examine product spaces. If a product state is typical of
the space then its marginal entropies cannot oscillate in synch. Furthermore if a joint system is
typical and non-exotic, then the independent systems will evolve in time such that their entropies
are out of sync. For example take N particles in a box. If one were to split the box down the
middle and let the N/2 particles of each subsystem evolve separately, then almost surely the two
subsystems will have times where their entropies are different by an increasing amount. This is one
of the central results of the manuscript. In this chapter, we prove this fact for two cases. The first
case is using continuous dynamics and the second case is using discrete ergodic dynamics. In both
such cases, marginal entropies cannot be synchronized.

17.1 Continuous Dynamics

The first result deals with continuous dynamics according to a transformation group (see Definition
36).

17.1.1 Exotic Intervals

Definition 41 An r-interval v ⊆ (0, 1) is a finite collection of open intervals with rational end-
points.

Lemma 25 For r-interval v, Lebesgue measure L, there exists a rational number r ∈ v such that
K(r)<log − logL(v) + I(⟨r⟩;H).

Proof. Let n = ⌈− logL(v)⌉. We condition the universal Turing machine on n, which can be
done given the precision of the theorem. Let Q be an elementary probability measure that realizes
the stochasticity of v (see Chapter 1), and d = max{d(r|Q), 1} and Ks(x) = K(Q) + 3 log d.
Without loss of generality, the support of Q can be assumed to consist entirely of r-intervals s with
n = ⌈− logL(s)⌉. We sample d2n real numbers R in the interval (0, 1) using L. For r-interval s,
R ⊂ R, we define the indicator function i(s,R) = [R ∩ s = ∅].

ER∼L(0,1)d2nEs∼Qi(s,R) = Es∼QER∼L(0,1)d2n i(s,R) = (1− s)d2
n ≤ (1− 2−n)d2

n
< e−d.
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Thus given Q and d, one can determine a set of d2n rationalsW ⊂ Q, such that Es∼Qi(s,W ) < e−d.
Thus t(s) = i(s,W )ed is a Q-test, with Es∼Q[t(s)] < 1. It must be that t(v) = 0, otherwise

1.44d ≤ log t(v)<+ d(v|Q, d)<+ d+K(d),

which is a contradiction for large d which one can assume without loss of generality. Thus there
exists a rational r ∈W ∩ v such that, using Lemma 3,

K(r)<+ log |W |+K(W )

<+ n+ log d+K(d,Q)

<+ n+ 3 log d+K(Q)

<+ n+Ks(v)

<log n+ I(⟨v⟩;H).

□

Exercise 26 A b-interval is a finite collection of rectangles with rational coordinates in [0, 1]×[0, 1].
Show that given b-interval w, there exists two rationals x, y ∈ [0, 1] such that (x, y) ∈ w and
K(x, y)<log − logL2(w) + I(w;H), where L2 is the 2D Lebesgue measure.

17.1.2 No Synchronization Under Continuous Dynamics

The following theorem states that, for typical systems, the marginal entropies will be increasing
out of sync. The theorem uses the following definition of the mutual information of two points in
metric spaces with the halting sequence.

Definition 42 (Mutual Information with the Halting Sequence) An encoding of a fast Cauchy
sequence −→x is ⟨−→x ⟩ ∈ {0, 1}∞, with ⟨−→x ⟩ = ⟨x1⟩⟨x2⟩ . . . . Each xi ∈ −→x is an ideal point, and i is
its order in the enumeration of −→x . A pair points x, y ∈ X has a certain mutual information with the
halting sequence I((x, y) : H) = inf{I(⟨−→x ⟩⟨−→y ⟩ : H) : −→x ,−→y are fast Cauchy sequences for x and y}.

Definition 43

Theorem 93 Let (X×Y, µ×ν) be a computable product measure space. Let Gt be a transformation
group with (αt, βt) = Gt(α, β). If Hµ(α, β) > −∞ and I((α, β) : H) <∞ then
supt∈[0,1]

∣∣Hµ(α
t)−Hν(β

t)
∣∣ = ∞.

Proof. Let µ = µ/µ(X) and ν = ν/ν(Y ) be computable probability measures due to Claim 1.
Assume not and d = ⌈supt∈[0,1]

∣∣Hµ(α
t)−Hν(β

t)
∣∣⌉ < ∞. Let Un ⊂ [0, 1] be an open set where

Un = {t : Hµ(α
t) < −n}. By Corollary 24, there is a c ∈ N where for Lebesgue measure L,

2−n−2 logn−c < L(Un).
Given (α, β) and n, one can enumerate an increasing r-interval v ⊆ Un and stop when L(v) >

L(2−n−2 logn−c−1). By Lemma 25, there exists a rational r ∈ v, with

K(r)<log n+ I(r;H)<log n+ I((α, β) : H) +K(n, c)<log n+ I((α, β) : H),

where K(c) is folded into the additive constants. Let An = {γ : tµ(γ) > 2n} and Bn = {γ : tν(γ) >
2n}. By the definition of tests, µ × ν(An × Bn) < 2−2n. This enables us to create the following
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µ× ν, test

tn(γ, λ) = [(γ, λ) ∈ G−r(An ×Bn−d)]2
2n−d

K(tn)<
+K(r, n)<log n+ I((α, β) : H)

<log n, (17.1)

where Equation 17.1 is due to the assumption that I((α, β) : H) <∞. It must be that tn(α, β) ̸= 0
because r ∈ Un. Thus

tµ×ν(α, β)
∗
>
∑

n

m(tn)tn(α, β)

∗
=
∑

n

2−n−O(logn)22n−d

= ∞.

Thus Hµ×ν(α, β) = −∞, which means Hµ×ν(α, β) = −∞, causing a contradiction. □

17.2 Ergodic Dynamics

17.2.1 Effective Convergence Time of Ergodic Dynamics

To prove properties of ergodic dynamics, an effective means of determining the convergence of
Birkoff averages was needed, and thus the results from [GHR10] were leveraged. So the contents
in this subsection reviews this referenced work.

Definition 44
Let (X , µ) be a computable measure space.

• Random variables fn effectively converge in probability to f if for each ϵ > 0 , µ{x : |fn(x)−
f(x)| < ϵ} converges effectively to 1, uniformly in ϵ. Thus there is a computable function
n(ϵ, δ) where for all n ≥ n(ϵ, δ), µ{|fn − f | ≥ ϵ} < δ.

• Random variables fn effectively converge almost surely to f if f ′n = supk≥n |fk− f | effectively
converge in probability to 0.

• A simple function f : X → Q is of the form f(x) = maxni=1 qi1Bi(x), where each qi is a
rational number an Bn is an almost decidable ball.

• The quotient space L1(X,µ) can be made into computable metric space. Let d1(f, g) =
∫
X |f−

g|dµ be the distance metric, with the relation f ∼ g if d1(f, g) = 0. The ideal points are simple
functions. An integral function f : X → R>0 is L1(X,µ) computable if it is a computable
point of the computable metric space L1(X,µ). Basic operations L1(X,µ) such as addition,
multiplication by a scalar, min, max, are computable. If f is computable, then so is

∫
fdµ.

Proposition 32 If f is a computable element of computable metric space L1(X,µ) and if T : X →
X is computable and µ-measure preserving, then f ◦ T is computable.
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Proof. Since f is computable, there is a computable fast Cauchy sequences of simple functions
(f1, f2, . . . ) converging to f . Given a simple function g(x) = q1B(x), we will show how to compute
a simple function h such that d1(h, g ◦ T ) can be arbitrarily small. The process can be easily
generalized to arbitrary simple functions and thus to each fi. Since B is almost-decidable µ(B)
can be computed, and thus the effectively open set T−1(B) can be enumerated by ad-sets A such
that µ(A) is arbitrarily close to µ(B). Thus one can get the simple function ℓ(x) = q1A(x) such
that d1(ℓ, g) is arbtitrarily close. □

Proposition 33 Let (X , µ) be a computable metric space and T : X → X be a computable ergodic
function. Let f be a computable element of L1(X,µ). The L1 convergence of Birkhoff averages of
f is effective.

Proof. Replacing f with f −
∫
fdµ, we can assume

∫
fdµ = 0. Let An = (f + f ◦ T + · · · +

f ◦ Tn−1)/n. The sequence ∥An∥ is computable and converges to 0 by Birkoff’s Ergodic Theorem.
Given p ∈ N we have m ∈ N where m = np+ k, with 0 ≤ K < p. So

Anp+k =
1

npk

(
n−1∑

i=0

pAp ◦ T pi + kAk ◦ T pn
)

∥Anp+k∥ =
1

npk
(np∥Ap∥+ k∥Ak∥)

≤ ∥Ap∥+
∥Ak∥
n

≤ ∥Ap∥+
∥f∥
n

Let ϵ >). We can copmute some p = p(ϵ) such that ∥Ap∥ < ϵ/2. Then we can compute some
n(ϵ) ≥ 2

ϵ∥f∥. The function m(ϵ) = n(ϵ)p(ϵ) is computable and for all m ≥ m(ϵ), ∥Am∥ ≤ ϵ. □

Lemma 26 (Maximal Ergodic Theorem) For f ∈ L1(X,µ) and δ > 0, µ{x : supn |Afn(x) >
δ} ≤ 1

δ∥f∥1.

Theorem 94 Let (X , µ) be a computable measure space and T : X → X be a computable ergodic
function. If f is L1(X,µ)- computable, then the Birkoff average effectively converge almost surely.

Proof. Let ϵ, δ > 0. Compute p such that ∥Afp∥ ≤ δϵ/2. Applying the maximal ergodic theorem
with g = Atp has

µ{x : sup
n

|Agn(x)| > δ/2} ≤ ϵ. (17.2)

One has that

Agn = Afn +
u ◦ Tn − u

np
,

where u = (p−1)f+(p−2)f ◦T+ · · ·+f ◦T p−2. ∥u∥∞ ≤ p(p−1)
2 ∥f∥∞ so if n ≥ n0 ≥ 4(p−1)∥f∥∞/δ

then ∥Agn − Afn∥∞ ≤ δ/2. So if |Afn(x)| > δ for some n ≥ n0, then |Agn(x)| > δ/2. Using Equation
17.2, we get

µ{x : sup
n≥n0

|Afn(x)| > δ} ≤ ϵ.

As n0 can be computed from δ and ϵ, we prove the theorem. □
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17.2.2 Busy Beaver Functions

We review the material on busy beaver functions, detailed in 15.2. Let Ω =
∑{2−∥p∥ : U(p) halts}

be Chaitin’s Omega and Ωt =
∑{2−∥p∥ : U(p) halts in time t}. For a string x, let BB(x) =

min{t : Ωt > 0.x + 2−∥x∥}. Note that BB(x) is undefined if 0.x + 2−∥x∥ > Ω. For n ∈ N,
let bb(n) = max{BB(x) : ∥x∥ ≤ n}. bb−1(m) = argminn{bb(n − 1) < m ≤ bb(n)}. Let
bb(n) = argmaxx{BB(x) : ∥x∥ ≤ n}.

Lemma. For n = bb−1(m), K(Ω[n]|m,n) = O(1).

17.2.3 Marginal Entropies of Ergodic Dynamics

Theorem 95 Let (X ×Y, µ× ν) be a non-atomic computable product measure space. Let Gt be an
ergodic transformation group. Let (α, β) ∈ X × Y , with (αt, βt) = Gt(α, β). If Hµ×ν(α, β) > −∞
and I((α, β) : H) <∞ then supt∈N |Hµ(α

t)−Hν(β
t)| = ∞.

Proof. Let µ = µ/µ(X) and ν = ν/ν(Y ) be computable probability measures due to Claim
1. Assume not. Then there exists c ∈ N, c > ⌈maxt |Hµ(α

t)−Hν(β
t)|⌉. Fix n ∈ N. Let

Un = {(γ, λ) : Hµ(γ) < −n}. By Proposition 31, there exists d ∈ N where µ(Un) > 2−n−2 logn−d.
Given n, one can compute an ad-set Vn ⊂ Un with computable pn = − logµ(Vn) and n+2 log n+d <
pn < n + 2 log n + d + 1. Let Bn

m = (1Vn + 1Vn ◦ T + · · · + 1Vn ◦ Tm−1)/m, which is computable,
as T is measure preserving and due to Proposition 32. By Theorem 94, given δ, ϵ > 0, there
is a computable m(δ, ϵ, n) such that µ{(γ, λ) : supm>m(δ,ϵ,n) |Bn

m(γ, λ) − 2−pn | > δ} < ϵ. Let

mn = m(2−pn − 2−1.5pn , 2−n, n). Let Wn = {(γ, λ) : supm>mn |Bn
m(γ, λ)− 2−pn | > 2−pn − 2−1.5pn}.

Either (1) there is an infinite number of n where (α, β) ∈Wn, or (2) there is an infinite number of
n where (α, β) ̸∈Wn.

Case (1). Each Wn is an effectively open set, computable uniformly in n. Furthermore,

µ(Wn) < 2−n. Thus t(γ, λ) = supn[(γ, λ) ∈Wn]m(n)2n is a µ×ν test. So∞ = t(α, β)
∗
< tµ×ν(α, β),

which implies Hµ×ν(α, β) = −∞, causing a contradiction.

Case (2). Fix one such n ∈ N, where (α, β) ̸∈ Wn. Thus supm>mn |2−pn − Bn
m(α, β)| ≤

2−pn−2−1.5pn implies supm>mn B
n
m(α, β) ≥ 2−1.5pn . Each T−ℓVn is an effectively open set, uniformly

in k and ℓ. So for all m > mn, there are at least 2−1.5pnm indices ℓ, where (α, β) ∈ T−ℓVn. Let
bn = bb−1(mn + 1) and N be the smallest power of 2 not less than bb(bn). Thus, due to Lemma
21, K(N |(α, β))<+K(n, bn). Thus there are at least 2−1.5(n+2 logn+d+1)N indices ℓ ∈ [1, . . . , N ]
where (α, β) ∈ T−ℓVn. Let D ⊆ {0, 1}logN , where if x ∈ D then (α, β) ∈ T−Num(x)Vn and
|D| ≥ 2−1.5(n+2 logn+d+2)N . The function Num : {0, 1}logN → {1, 2, . . . , N} converts strings to
numbers in the natural way. Thus K(D|(α, β))<+K(n, bn). This is because T

−ℓVn are effectively
open sets, uniformly in ℓ and it is guaranteed that at least 2−1.5(n+2 logn+d+1)N indices ℓ have
(α, β) ∈ T ℓVn. So after 2−1.5(n+2 logn+d+2)N indices have been found, they can be collected into a
set D. Let Uniform(N) be the uniform measure over {0, 1}logN . By the EL Theorem (Corollary

48), applied to Uniform(N)
∗
<m/m(N), and the definition of I, there exists xn ∈ D, with

K(xn)<
log K(Uniform(N))− log |D|+ I(D;H)

<log K(N) + 1.5n+ 3 log n+ I((α, β) : H) +K(n, bn)

<log K(Ω[bn]) + 1.5n+ I((α, β) : H) +K(bn). (17.3)
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Due to Lemma 21, K(Ω[bn]|(α, β), n, bn) = O(1). Furthermore, it is well known that for bits of
Chaitin’s Omega, K(Ω[bn]|H)<+K(bn) and that bn<

+K(Ω[bn]). So

bn<
+K(Ω[bn])<

log I(Ω[bn];H)<log I((α, β) : H) +K(bn, n)<
log I((α, β) : H) +K(n) (17.4)

Combining Equations 17.3 and 17.4 together, we get

K(xn)<
log 1.5n+ 2I((α, β) : H).

We define the test

tn,y(γ, λ) =
[
Hµ(T

Num(y)(γ, λ)1) < −n and Hν(T
Num(y)(γ, λ)2) < −n+ c

]
22n−c,

tµ×ν(γ, λ)
∗
>
∑

n

m(tn,xn)tn,xn(γ, λ),

∗
>
∑

n

[
Hµ(T

Num(xn)(γ, λ)1) < −n and Hν(T
Num(xn)(γ, λ)2) < −n+ c

] 2.5n−2I((α,β):H)

(n+ I((α, β) : H))O(1)
.

In recap, since (α, β) ̸∈Wn, |Bn
N (α, β)−2−pn | > 2−pn−2−1.5pn , so Bn

N > 2−1.5pn > 2−1.5(n+2 logn+d).
Thus one can create a large enough set D ⊂ {0, 1}N , and find a simple enough xn ∈ D such that
(α, β) ∈ T−Num(xn)Vn. By the assumptions of the theorem

Hµ(T
Num(xn)(α, β)1) < −n and Hν(T

Num(xn)(α, β)2) < −n+ c.

Thus m(tn, xn)tn,xn(α, β) = 2.5n−2I((α,β):H

(n+I((α,β):H))O(1) . Furthermore, since I(α, β) < ∞ and there is an

infinite number of n where (α, β) ̸∈ Wn, tµ×ν(α, β) = ∞, so Hµ×ν(α, β) = −∞, causing a contra-
diction. □

Corollary 28 (Independent Systems) Let (X ×Y, µ× ν) be a non-atomic computable product
measure space. Let GtX and GtY be ergodic transformation groups over X and Y respectively.
Let (α, β) ∈ X × Y . If Hµ×ν(α, β) > −∞ and I((α, β) : H) < ∞ then supt∈N |Hµ(G

t
X(α)) −

Hν(G
t
Y (β))| = ∞.

The above theorem has immediate applications to the Cantor space. Let σ be the shift operator
and (α, β) = α[1]β[1]α[2]β[2] . . . Let λ be the uniform distribution over {0, 1}∞.

Exercise 27 Show that if (α, β) ∈ {0, 1}∞ × {0, 1}∞ is ML Random and I((α, β) : H) < ∞ then
supn |D(σ(n)α|λ)−D(σ(n)β|λ)| = ∞.
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Chapter 18

Algorithmic Coarse Grained Entropy

18.1 Fundamentals of Coarse Grained Entropy

Coarse grained entropy was introduced in [Gac94] as an update to Boltzmann entropy. The goal
was a parameter independent formulation of entropy. It was defined using cells. In this section we
define coarse grained entropy with respect to open sets, leveraging Chapter 13. Let Π(·) be a set
of disjoint uniformly enumerable open sets in the computable metric space X , as shown in Figure
18.1.

Definition 45 (Algorithmic Coarse Grained Entropy) Hµ(Πi) = K(i|µ) + log µ(Πi).

Remark 6 (Paradox of Typicality) Discrete dynamics are subject to a paradox of typicality,
which is due to a remark by Vladimir Vovk and detailed in [Gac94]. This remark generalizes
Example 5. Lets say P is a partition and state ω is a typical state in partition Γ, which has low
entropy, thus Hµ(Γ) is low. Thus Hµ(α) ≈ H(Γ). Say ω is subject to discrete time dynamics, for
some simple t ∈ N. This new state ω′ = Gtω is in a partition Γ′ of much greater entropy. Since t
is simple, by Proposition 20, Hµ(ω

′) is still low. However the coarse grain entropy of ω′ is Hµ(Γ
′)

which is high. So the locally typical state ω turns into locally non-typical state ω′. Assuming only
the macroscopic variablesof ω′ are detectable, its low algorithmic fine grain entropy and history is
inaccessible to observers.

Note that this violation of typicality is in effect for a single, simple transform. For continuous
transform groups or the averages ergodic discrete ones, this phenomenon is not guaranteed to occur.

Coarse grained entropy is an excellent approximation of fine grained entropy, as shown by Propo-
sition 34 and Lemma 28.

Proposition 34 Let (X , µ) be a computable measure space. If µ(Πi) is uniformly computable and
α ∈ Πi then Hµ(α)<

+Hµ(Πi) +K(Π).

Proof. Let t(α) =
∑

i[α ∈ Πi]m(Πi)/µ(Πi). t is lower semi-computable and
∫
X t(α)dµ(α) =

∑
i

∫
Πi
(m(Πi)/µ(Πi)dµ(α) =

∑
im(Πi) ≤ 1. Thus tµ(α)

∗
> t(α).

Example 5 We detail changes in fine and coarse grained entropy during the course of dynam-
ics, adapted from Example 6.7 from [Gac94], and described in Figure 18.2. Let ({0, 1}Z, µ) be
a computable measure space consisting of all bi-infinite sequences. The distance metric between
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Figure 18.1: Partition of phase space into macro sets Γν , with the thermal equilibrium
set ΓEq taking up most of the volume.

Figure 18.2: The following figure shows an example of changes in coarse grained entropy
and fine grained entropy. One the first bi-infinite sequence, there are zeros between the
position −n/2 and n/2 are 0, and beyond that are random. Thus both the coare grained
entropy using cells of length n and the fine grained entropy are zero. After dynamics
causing the sequence to shift by n positions, the coarse grained entropy is high but the
fine grained entropy is still low.
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two points α, β ∈ {0, 1}Z, is d(α, β) = exp (− argmaxn α[−n/2, n/2] = β[−n/2, n/2]). We use the
uniform distribution, where the measure of a cylinder C = {0, 1}Nx{0, 1}N is µ(C) = 2−∥x∥. The
dynamics is the shift operation, a.k.a. Baker’s map. We use the partitions Γx, over x ∈ {0, 1}n,
where ω ∈ Γx if ω[−n/2, n/2] = x. Thus for all x ∈ {0, 1}n, µ(Γx) = 2−n. Let ω ∈ {0, 1}Z, where
ω[−n/2, n/2] = 0n, and all other bits are ML random. Thus the coarse grained entropy of ω is
equal to

Hµ(Γ0n)=
+K(0n) + log µ(Γ0n)=

+K(n)− n.

Since K(µ(Γx))=
+K(n), due to Proposition 34,

Hµ(ω)<
+ 2K(n)− n.

Now suppose we subject ω to dynamics, by applying the shift operator n times to produce ω′.
Thus ω′ ∈ Γx, for some random string x ∈ {0, 1}n. Thus ω′ has algorithmic coarse grained entropy,

H(Γx)=
+K(x) + log µ(Γx)=

+ 0.

However, while the coarse entropy has changed dramatically for ω′, its fine grained entropy has only
gradually shifted. Due to Proposition 20,

Hµ(ω
′)<+K(n) +Hµ(ω)<

+ 3K(n)− n.

Lemma 27 For computable measure space (X , µ), for lower computable function f , and enumer-
able open set U ,

∫
U fdµ is lower computable.

Proof. For a finite union of balls V =
⋃n
j=1Bij and an enumerable open set W =

⋃∞
j=1Bkj and

a computable measure µ, the term µ(V ∩W ) is lower computable. Due to Proposition 13, the term
µ(
⋃{B : ∃s,t such that B ⊆ Bis and B ⊆ Bkt}) = µ(V ∩W ) is lower computable.
The integral of a finite supremum of step functions over U is lower computable by induction.

For the base case
∫
U fi,jdµ = qjµ(Bi ∩ U) is lower computable by the above reasoning. For the

inductive step

∫

U
sup{fi1,j1 , . . . fik,jk}dµ = qjmµ ((Bi1 ∪ · · · ∪Bik) ∩ U) +

∫

U
sup{fi1,j′1 , . . . fik,j′k}dµ,

where qjm is minimal among {qj1 , . . . , qjk} and qj′1 = qj1 − qim , . . . , qj′k = qjk − qik . The first term
on the right is lower-computable and by the induction assumption, the last term on the right is
lower-computable. □

The following lemma is an update to the Stability Theorem 5 in [Gac94], using open sets instead
of cells.

Lemma 28 For computable measure space (X , µ), µ{α ∈ Πi : Hµ(α) < Hµ(Πi) −K(Π) −m} ∗
<

2−mµ(Πi).

Proof. Let f(i) =
∫
Πi

tµ(α)dµ(α). By Lemma 27, the function f(i) is lower computable, and
∑

i f(i) ≤ 1. Thus f(i)
∗
<m(i|µ)/m(Π). So

µ(Πi)
−1

∫

Πi

2−Hµ(α)dµ(α)
∗
< 2−Hµ(Πi)+K(Π).
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By the Markov inequality,

µ{α ∈ Πi : Hµ(α) < Hµ(Πi)−K(Π)−m} ∗
< 2−mµ(Πi).

□

Corollary 29 For computable measure space (X , µ), µ{α : Hµ(α) < logµ(X )−m} ∗
< 2−mµ(X ).

Theorem 96 For non-atomic computable mesure space (X , µ), with uniformly computable µ(Πi),

µ{α ∈ Πi : Hµ(α) < Hµ(Πi) +K(Π)−m} ∗
> µ(Πi)2

−m.

Proof. Similar to that of the proof of Proposition 31, one can compute, uniformly in m, an ad-set
Dm ⊂ Πi such that µ(Πi)2

−m−2 < µ(Dm) < µ(Πi)2
−m−1 and Dn ∩Dm = ∅ for n ̸= m. Suppose

this has been done for Dm−1. The open set Πi \ Dm−1 can be enumerated and µ(Πi \ Dm−1)

can be lower computed. The enumeration of Πi \Dm−1 stops when µ(Πi \Dm−1) > µ(Πi)2
−m−1.

Using Proposition 30, one can find an ad-set (see Definition 31) Dm ⊂ µ(Πi \ Dm−1), such that
µ(Πi)2

−m−2 < µ(Dm) < µ(Πi)2
−m−1. We define µ-test t to be t(α) =

∑
m[α ∈ Dm]m(m)2m/µ(Πi).

Since m(i)m(Π)t
∗
< tµ, for universal lower computable test tµ and Hµ = − log tµ,

µ(Πi)2
−m < µ{α : Hµ(α) < K(i) +K(Π) + log µ(Πi)−m}

µ(Πi)2
−m < µ{α : Hµ(α) < Hµ(Πi) +K(Π)−m}.

□
The following Theorem is the coarse grained entropy to the oscillation Theorem 86. As a state

travels through different cells Πi and Πj , the coarse grained entropy will oscillate, in that its max
value Hµ(Πimax) will become increasingly larger than its min value, Hµ(Πimin). If the dynamics are
ergodic, then by Theorem 89, the state is guaranteed to hit every cell if there are a finite number
of them, and if there are an infinite number of cells, the state is guaranteed to hit an unbounded
number of cells.

Theorem 97 Let (X , µ) be a computable measure space, Gt be a tranformation group, and {Πi} a
partition of X . If i 7→ µ(Πi) is uniformly computable and if a state α ∈ X , travels through at least
2n partitions {Πi}2ni=1 over t ∈ [0, 1], then, relativized to µ,

min
i∈{1,...,2n}

Hµ(Πi)<
log max

i∈{1,...,2n}
Hµ(Πi)− n+ I(α : H).

Proof. Let f(i) = ⌈logµ(Πi)⌉. Let D ⊂ N, |D| = 2n be a set of partitions that α travels through
in time t ∈ [0, 1], so K(D|α)<+K(n). Theorem 126, on f : D → N, produces x ∈ D, where

f(x) +K(x)<log − log
∑

a∈D
m(a)2−f(a) + I((f,D);H)

f(x) +K(x) + n<log max
a∈D

f(a) +K(a) + I((f,D);H)

Hµ(x) + n<log max
a∈D

Hµ(a) + I(α : H).

□
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18.2 Entropy Variance in Cells

In this section, we will prove a lower bound of states with low algorithmic fine grained entropy
with respect to the uniform distribution over a particular cell. Thus, regardless of what measures
are used to define entropy, low entropy states are bound to occur in cells. A result is first proved
about infinite sequences, and measures over the Cantor Space, relying on Lemma 15.2.

Theorem 98 For computable probability measures µ, ρ and nonatomic λ over {0, 1}∞ and n ∈ N,
λ{α : D(α|µ) > n and D(α|ρ) > n} > 2−n−K(n,µ,ρ,λ)−O(1).

Proof. We first assume not. For all c ∈ N, there exist computable nonatomic measures µ, ρ
λ, and there exists n, where λ{α : D(α|µ) > n and D(α|ρ) > n} ≤ 2−n−K(n,µ,λ)−c. Sample
2n+K(n,µ,ρ,λ)+c−1 elements D ⊂ {0, 1}∞ according to λ. The probability that all samples β ∈ D
has D(β|µ) ≤ n or D(β|ρ) ≤ n is

∏

β∈D
λ{D(β|µ) ≤ n or D(β|ρ) ≤ n} ≥

(1− |D|2−n−K(n,µ,λ,ρ)−c) ≥
(1− 2n+K(n,µ,λ,ρ)+c−12−n−K(n,µ,λ,ρ)−c) ≥ 1/2.

Let λn,c be the probability of an encoding of 2n+K(n,µ,λ,ρ)+c−1 elements each distributed according
to λ. Thus

λn,c(Encoding of 2n+K(n,µ,λ,ρ)+c−1 elements β, each having D(β|µ) ≤ n or D(β|ρ) ≤ n) ≥ 1/2.

Let v be a shortest program to compute ⟨n, µ, ρ, λ⟩. By Theorem 85, with the universal Turing
machine relativized to v,

λn,c({γ : I(γ : H|v) > m}) ∗
< 2−m+K(λn,c|v) ∗

< 2−m+K(n,K(n,µ,λ,ρ),c,λ|v) ∗
< 2−m+K(c).

Therefore,

λn,c({γ : I(γ : H|v) > K(c) +O(1)}) ≤ 1/4.

Thus, by probabilistic arguments, there exists α ∈ {0, 1}∞, such that α = ⟨D⟩ is an encoding of
2n+K(n,µ,ρ,λ)+c−1 elements β ∈ D ⊂ {0, 1}∞, where each β has D(β|µ) ≤ n or D(β|ρ) ≤ n and
I(α : H|v)<+K(c). By Lemma 22, relativized to v, there are constants d, f, g ∈ N where

m = log |D| < max
β∈D

min{D(β|µ, v),D(β|ρ, v)}+ 2I(D : H|v) + dK(m|v) + fK(µ|v) + gK(ρ|v)

m < max
β∈D

min{D(β|µ),D(β|ρ)}+K(v) + 2I(D : H|v) + dK(m|v) + fK(µ|v) + gK(ρ|v)

<+ n+K(n, µ, λ, ρ) + dK(m|v) + 2K(c) + (f + g)O(1). (18.1)

Therefore:

m = n+K(n, µ, ρ, λ) + c− 1

K(m|v)<+K(c).
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Plugging the inequality for K(m|v) back into Equation 18.1 results in

n+K(n, µ, λ, ρ) + c<+ n+K(n, µ, λ, ρ) + 2K(c) + dK(c) + (f + g)O(1)

c<+ (2 + d)K(c) + (f + g)O(1).

This result is a contradiction for sufficiently large c solely dependent on the universal Turing
machine. □

Theorem 99 Given computable measures µ, ρ, and computable non-atomic probability measure λ,
over a computable metric space X , there is a c ∈ N, where for all n,
λ({α : Hµ(α) < logµ(X)− n and Hρ(α) < log ρ(X)− n}) > 2−n−K(n)−c.

Proof. We fix the algorithmic descriptions of λ, µ, ρ, and X . By Theorem 81, easily generalized
to three measures, fix a multi representation (δ, λδ, µδ, ρδ) for computable multi measure space
(X , λ, µ, ρ). Note that δ is a measure-preserving transform, where λ(A) = λδ(δ

−1(A)) for all Borel
sets A. Due to Lemma 18, there is a c ∈ N,

η = λ({β : Hµ(β) > logµ(X)− n or Hρ(β) ≥ log ρ(X)− n})
=λ({β : tµ(β) ≤ 2n/µ(X) or tρ(β) ≤ 2n/ρ(X)}) (18.2)

=λδ(δ
−1({β : tµ(β) ≤ 2n/µ(X) or tρ(β) ≤ 2n/ρ(X)}))

<λδ(δ
−1({β : tµδ(δ

−1(β)) < 2n+c/µ(X) or tµρ(δ
−1(β)) < 2n+c/ρ(X)}))

=λδ(δ
−1({β ∈ δ({α : tµδ(α) < 2n+c/µ(X) or tρδ(α) < 2n+c/ρ(X)})}))

=λδ(δ
−1(δ({α : tµδ(α) < 2n+c/µ(X) or tρδ(α) < 2n+c/ρ(X)}))

<λδ({α : tµδ(α) < 2n+c/µ(X) or tρδ(α) < 2n+c/ρ(X)}). (18.3)

Let µδ = µδ/µ(X) and ρδ = ρδ/ρ(X) be two computable probability measures over {0, 1}∞. From
Equation 18.3, and Proposition 17, we get,

η <λδ{α : D(α|µδ)<+ n+ c− logµ(X) or D(α|ρδ)<+ n+ c− log ρ(X)}
=λδ{α : D(α|µδ)<+ n+ c or D(α|ρδ)<+ n+ c}. (18.4)

From Theorem 98, we get

η <λ({β : Hµ(β) > logµ(X)− n or Hρ(β) ≥ log ρ(X)− n})
<λδ{α : D(α|µδ)<+ n+ c or D(α|ρδ)<+ n+ c}
<1− 2−n−c.

□

Corollary 30 Given computable measure µ and computable non-atomic probability measure λ,
over a computable metric space X , there is a c ∈ N, where for all n, λ({α : tµ(α) > 2n/µ(X)}) >
2−n−K(n)−c.

The following corollary states, given a uniform measure over a cell, there is a lower bound over the
measure of the states with low algorithmic entropy with respect to two measures. Note that the
corollary can be easily generalized to any finite number of measures.

Corollary 31 For dual computable measure space (X , µ, ν), and with partition Π, let λ be a com-
putable uniform probability measure over cell Πi. There is a constant c ∈ N where λ({α : Hµ(α) <
logµ(X)− n and Hν(α) < log ν(X)− n}) > 2−n−K(n)−c.
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Proof. This follows directly from Theorem 99. □

Corollary 32 Let (X , ν, µ) be a dual measure space with non-atomic probability ν. There is a
c ∈ N with the following properties. Let T : X → X be a computable ν-ergodic function, and
Un = {x : Hµ(x) < logµ(X)− n}. If ω ∈ X has Hµ(ω) ̸= −∞,

2−n−K(n)−c < lim
n→∞

1

n

n−1∑

t=0

1Un(T
t(ω)).
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Chapter 19

Computability of Algorithmic Entropy

In this chapter, computability properties of algorithmic entropy are studied. It is easy to see that
algorithmic fine grained entropy is uncomputable. In Section 19.1, it is shown that there is no
effective method for chooosing times where the entropy of a typical state is continually decreasing.
In Section 19.2, it is shown if a function can approximate algorithmic fine grained entropy for an
infinite amount of typical states, then it has infinite mutual information with the halting sequence.

19.1 Uncomputability of Decreasing Entropy

If a physicist were given the state of a system, (say particles in a box), she could compute times
of decreasing entropy (just wait until the particles are in smaller and smaller spaces). However
without access to the state, there are no computable method to predict the times in which the
state continually decreases.

Theorem 100 Let (X , µ) be a computable measure space and T : X → X be a computable ergodic
function. If α ∈ X, and Hµ(α) > −∞, then there does not exist a computable function f : N → N,
such that Hµ

(
T f(n)α

)
< −n.

Proof. Assume not, and such a computable function f exists. Let Un = {β : Hµ(β) < −n},
which is an effectively open set, uniformly in n. One can construct a µ-test, where t(β) = supn[β ∈
T−f(n)Un]m(n)2n. Thus ∞ = t(α)

∗
< tµ(α), and thus Hµ(α) = −∞, causing a contradiction. □

Corollary 33 Let (X , µ) be a computable measure space and Gt and transformation group. If
α ∈ X, and Hµ(α) > −∞, then there does not exist a computable function f : N → R>0, such that
Hµ(G

f(n)α) < −n.

Proof. The proof follows analogously to that of Theorem 100. □

19.2 Non-Approximability of Algorithmic Entropy

19.2.1 Kolmogorov Complexity is Exotic

We review the material on busy beaver functions, detailed in 15.2. Let Ω =
∑{2−∥p∥ : U(p) halts}

be Chaitin’s Omega, Ωn ∈ Q≥0 be be the rational formed from the first n bits of Ω, and Ωt =∑{2−∥p∥ : U(p) halts in time t}. For n ∈ N, let bb(n) = min{t : Ωn < Ωt}. bb−1(m) =
argminn{bb(n − 1) < m ≤ bb(n)}. Let Ω[n] ∈ {0, 1}∗ be the first n bits of Ω. For t ∈ N
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define the function mt(x) =
∑{2−∥p∥ : U(p) = x in t steps} and for n ∈ N, we have mn(x) =∑{2−∥p∥ : U(p) = x in bb(n) steps}.

The following lemma can be strengthened to just I(X;H), but with an increase to the complexity
of the proof.

Lemma 29 A relation X = {(xi, ci)}2ni=1 ⊂ {0, 1}∗ ×N, |K(xi)− ci| ≤ s, has n<log 2s+2I(X;H).

Proof. We relativize the universal Turing machine to (n, s), which can be done due to the precision
of the theorem. Let T = min{t : |⌈− logmt(xi)⌉−ci| < s+1}. Let N = bb−1(T ) andM = bb(N).
So for all xi, − logmM (xi)−K(xi)<

+ 2s. Let Q be an elementary probability measure that realizes
Ks(X) and d = max{d(X|Q), 1}. Without loss of generality, the support of Q is restricted to binary
relations B ⊂ {0, 1}∗×N of size 2n. Let B1 =

⋃{y : (y, c) ∈ B}. Let S =
⋃{B1 : B ∈ Support(Q)}.

We randomly select each string in S to be in a set R independently with probability d2−n. Thus
E[mM (R)] ≤ d2−n. For B ∈ Support(Q),

EREB∼Q[[R ∩B1 = ∅]] = EB∼Q Pr(R ∩B1 = ∅) = (1− d2−n)2
n
< e−d.

Thus there exists a set R ⊆ S such that mM (R) ≤ 2·2−n and EB∼Q[[R ∩ B1 = ∅]] < 2e−d. Let
t(B) = .5[R ∩B1 = ∅]2d. t is a Q-test, with EB∼Q[t(B)] ≤ 1. It must be that t(X) ̸= 0, otherwise,

1.44d− 1 < log t(X)<+ d(X|Q, d)<+ d+K(d),

which is a contradiction for large enough d, which one can assume without loss of generality. Thus
t(X) ̸= 0 and R ∩X1 ̸= ∅. Furthermore, if y ∈ R, K(y)<+ − logmM (x)− n+ log d+K(d,M,R).
So for x ∈ R ∩X1, .

K(x)<+ − logmM (x)− n+ log d+K(d,M,R)

K(x)<+K(x) + 2s− n+ log d+K(M) +K(R, d)

n<+ 2s+K(M) + log d+K(Q, d)

n<+ 2s+K(Ω[N ]) +Ks(X)

n<+ 2s+K(Ω[N ]) + I(X;H) (19.1)

From Lemma 21, K(Ω[N ]|T,N)=+K(Ω[N ]|X,N) = O(1). Furthermore it is well known for the
bits of Chaitin’s Omega, N <+K(Ω[N ]) and K(Ω[N ]|H)<+K(N). So, using Lemma 1,

N <+K(Ω[N ])<log I(Ω[N ];H)<log I(X;H) +K(N)<log K(X;H). (19.2)

So combining Equations 19.1 and 19.2, one gets

n<log 2s+ 2I(X;H).

□

Exercise 28 (Hard) Show that if relation X = {(xi, ci)}2ni=1 ⊂ {0, 1}∗ ×N has 0 ≤ ci−K(xi) ≤ s
then n<log s+ I(X;H).

Lemma 30 Given a computable probability measure µ, over {0, 1}∞, for an infinite set of unique
infinite sequences {αi}∞i=1 where D(αi|µ) < ∞ for all i, and an infinite set of numbers {ci}∞i=1, if
supi |D(αi|µ)− ci| <∞, then I({(αi, ci} : H) = ∞.
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Proof. Suppose c = maxiD(αi|µ) < ∞. Then let Dn = {αi}2ni=1. So K(Dn|{αi})<+K(n). By
Lemma 22, n<log c+ I(Dn : H)<log I({αi} : H) +K(n). Since this holds for all n,

∞ = I({αi} : H) = I({(αi, ci)} : H).

Suppose supiD(αi|µ) = ∞ and r = maxi |D(αi|µ)− ci| <∞. Given n and {(αi, ci)}, one can find
2n unique infinite sequences αi, such that |ci − cj | > 5s for i ̸= j, i, j ∈ {1, . . . , 2n}, and using
computable µ, due to the definition of D, one can compute prefixes xi ⊏ αi where | − logµ(xi) −
K(xi)−ci|<+ 2r. Setting Xn = {(xi, ⌈− logµ(xi)− ci⌉)}, and s = 2r+1, invoking Lemma 29 gives

n<log 4r + 2I(Xn;H)<log 4r + I({(αi, ci)} : H) +K(n),

Thus since this hold for arbitrary n, I({(αi, ci)} : H) = ∞. □

19.2.2 Algorithmic Fine Grain Entropy Cannot be Approximated

It is easy to see that algorithmic fine grained entropy is uncomputable. In this section. we go
one step further and show that information about algorithmic fine grained entropy coincides with
information about the halting sequence.

Definition 46 (Mutual Information of Infinite Set of Points with H) Given an infinite set
of infinite sequences {αi}∞i=1, we encode them into a single infinite sequence ⟨{αi}⟩ in the standard
way, in that α1 is encoded into every other bit, α2 is encoded into every other free space, and so
on. Given computable metric space X , the set of encodings for an infinite set of points in X, {αi},
αi ∈ X, [{αi}], is the set of all encoded ⟨{βi}⟩, where βi is an encoding of a fast Cauchy sequence
for αi. The mutual information that an infinite set {αi} of points has with the halting sequence is
I({αi} : H) = infβ∈[{αi}] I(β : H). In a standard way, a number can be appended to the start of
each fast Cauchy sequence.

Theorem 101 Let (X , µ) be a computable measure space and {αi}∞i=1 be an infinite set of unique
points in X where Hµ(αi) < ∞, for each αi. For the infinite set of numbers, {ci}∞i=1, if supi | −
Hµ(αi)− ci| <∞, then I({(αi, ci)} : H) = ∞.

Proof. Let µ = µ/µ(X) be a computable probability measure due to 1. Let (δ, µδ) be a binary
representation for (X , µ). Since (δ, δ−1) is an isomorphism, by Corollary 23 and Proposition 17,
and since Hµ(αi) <∞, there is a constant c, where, for all α ∈ {αi},

c >| − log tµδ(δ
−1(αi)|µδ)−Hµ(αi)|

c >| −D(δ−1(αi)|µδ)−Hµ(αi)|.

Let β minimize ⌈I({(αi, ci)} : H)⌉. So by applying δ−1 to each of the fast Cauchy sequences of αi
encoded in β, with γi = δ−1(αi), one can construct an infinite set {(γi, ci)}∞i=1 of infinite sequences
where supi |D(γi|µδ)− ci| <∞. So, using Lemma 30,

∞ = I({(ci, γi)}∞i=1 : H) = I(β : H) = I({(αi, ci)} : H).

□
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19.3 Computability of Measures

In this section, we provide sufficient conditions for a measure to be uncomputable.

Theorem 102 Let X be a computable metric space and µ be a non-atomic measure over X . If
µ({α : Hµ(α) < −n}) < 2−n−K(n)−ω(1) then µ is uncomputable.

Proof. Assume µ is computable. Let µ = µ/µ(X) be a computable probability measure due to
Claim 1. Let (δ, µδ) be a binary representation for (X , µ). Thus µδ is computable. Fix n. Let
Un = {α ∈ X : Hµ(α) < −n} and δ−1(Un) = Vn. Then there is some c ∈ R≥0, independent of n,
such that Vn ⊇ {α ∈ {0, 1}∞ : D(α|µδ) > n − c}. By Theorem 98, there is a d, independent of n,
where µδ(Vn) > 2−n−K(n)−d. Since δ is a measure-preserving morphism, µ(Un) > 2−n−K(n)−d for
all n, causing a contradiction.

Definition 47 (Mutual Information of Measures with H) Let X be a computable metric space
µ ∈ M(X) be a measure over this space. Its mutual information with the halting sequence is
I(µ : H), where µ is treated as a point in the computable metric space M(X), and Definition 42 is
used.

Definition 48 (Neutral Measures) Let X be a computable measure space. A measure µ is
weakly neutral if ∀α∈XHµ(α) > −∞. A measure µ is neutral if infα∈X Hµ(α) > −∞,

Lemma 31 (Sperner’s Lemma) Let p1, . . . , pk be points of some finite-dimensional space Rn.
Suppose that there are closed sets F1, . . . , Fk with the property that for every subset 1 ≤ ik < · · · <
ij < k, the simplex S(pi1 , . . . , pij ) spanned by pi1 , . . . , pij is covered by the union Fi1 ∪ · · · ∪ Fij .
Then the intersection ∩iFi is not empty.

Proposition 35 Let X be a computable measure space. For every closed set A ⊂ X and probability
measure µ, if µ(A) = 1 then there exists a ∈ X, tµ(x) ≤ 1.

Proof.
∫
X tµdµ = µx1A(x)tµ(x) ≤ 1. □

Part (1) of the following theorem is due to [Lev76], and conveyed in [G2́1].

Theorem 103 Let X be a computable metric space.

1. If X is compact then it has a neutral measure.

2. If µ is weakly neutral then I(µ : H) = ∞.

Proof. (1) For every x ∈ X, let Fx be the set of measures for which tµ(x) ≤ 1. Since X is compact,
the space of Borel probability measures M(X) over X is compact. Therefore, due to compactness,
if every finite subset of {Fx : x ∈ X} of closed sets has a nonempty intersection, then ∩xFx ̸= ∅.
Let S(x1, . . . , xk) be the simplex of probability measures concentrated on x1, . . . , xk. Proposition
35 implies each such measure belongs to one of the sets Fxi .Thus S(x1, . . . , xk) ⊂ Fx1 ∪ · · · ∪ Fxk
and this is true for any subset of the indices {1, . . . , k}. Lemma 31 implies Fx1 ∩ · · · ∩ Fxk ̸= ∅.

(2) Let µ = µ/µ(X), where given a fast Cauchy sequence for µ, one can easily compute a fast
Cauchy sequence for µ (just normalize the ideal points). Let (δ, µδ) be a binary representation of
(X , µ). Due to Lemma 18, tµδ(α) <∞, for all α ∈ {0, 1}∞, so µδ is a weakly neutral measure. Due
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to [DJ13], some PA degree is computable from any encoded Cauchy sequence ⟨−→µδ⟩ ∈ {0, 1}∞ of µδ
in M({0, 1}∞) space. Due to [Lev13], I(⟨−→µδ⟩ : H) = ∞. So by

∞ = inf−→
µδ

I(⟨−→µδ⟩ : H) = I(µδ : H)<+ I(µ : H)<+ I(µ : H).

□

19.4 Exotic Dynamics

Definition 49 (Mutual Information of Transformation Group with H) Let X be a com-
putable metric space. Let α ∈ X be a point in this space and Gt a (potentially uncomputable)
transformation group over X . For β ∈ {0, 1}∞, let Num(β) ∈ [0, 1] convert the infinite sequence β
into a real in [0, 1] in the standard way. Let [(Gt, α)] consist of all infinite sequences γ such that
Uβ(γ) outputs an encoding of a fast Cauchy sequence to GNum(β)α. The amount of information
that (Gt, α) has with the halting sequence is infγ∈[(Gt,α)] I(γ:H).

The following theorem states that if entropy does not oscillate enough during the course of dynamics,
then the dynamics and starting point are exotic, containing infinite mutual information with the
halting sequence. This theorem is a generalization of Theorem 86 in Chapter 15, though the bounds
are looser.

Theorem 104 Let L be the Lebesgue measure. Let (X , µ) be a computable measure space. There
is a c ∈ N such that for (potentially uncomputable) transformation group Gt and point α ∈ X if
L{t : Hµ(G

tα) < logµ(X)− n} < 2−n−cK(n), then I((Gt, α) : H) = ∞.

Proof. Fix n. Let ({0, 1}∞,Γ) be the Cantor space with the uniform measure. The binary
representation (see Theorem 81) creates an isomorphism (ϕ, ϕ−1) of computable probability spaces
between the spaces ({0, 1}∞,Γ) and ([0, 1], L). It is the canonical function ϕ(γ) = 0.γ. Thus for all
Borel sets A ⊆ [0, 1], Γ(ϕ−1(A)) = L(A). So

L{t : Hµ(G
tα) < logµ(X)− n}

=Γ{β : Hµ(G
ϕ(β)α) < logµ(X)− n}

=Γ{β : log tµ(G
ϕ(β)α) > 2n/µ(X)}

<2−n−cK(n).

Let (δ, µδ) be a binary representation for (X , µ). Let µδ = µδ/µδ({0, 1}∞) be a computable prob-
ability measure over {0, 1}∞. Thus, due to Lemma 18 and Proposition 17, there is a d ∈ N with
ψ(β) = δ−1(Gβα) and

2−n−cK(n) >Γ{β : log tµ(G
ϕ(β)α) > 2n/µ(X)}

>Γ{β : log tµδ(ψ(β)) > 2n−d/µ(X)}
>Γ{β : D(ψ(β)|µδ) > n− logµ(X) + d}
>Γ{β : D(ψ(β)|µδ) > n+ d}.

Let W ∈ {0, 1}∞2n+cK(n)−1

be a set of 2n+cK(n)−1 infinite sequences with each sequence cho-
sen independently the uniform distribution over {0, 1}∞. The probability that all β ∈ W has
D(ψ(β)|µδ) ≤ n+ d is

(1− 2−n−cK(n))2
n+cK(n)−1 ≥ (1− 2n+cK(n)−12−n−cK(n)) ≥ 1/2.
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Let U be a distribution over {0, 1}∞ that is the uniform measure applied independently to
2n+cK(n)−1 encoded sequences. Let γ ∈ [(Gt, α)] that minimizes ⌈I((Gt, α) : H)⌉+ 1 and λ = ⟨p⟩γ,
where p is a program to compute U . By Theorem 85,

Pr
β∼U

[I(⟨β, λ⟩ : H) > m]
∗
< 2−m+I(λ:H).

Therefore by probabilistic arguments, there exist a setW ∈ {0, 1}∞2n+cK(n)

such that for all β ∈W ,

D(ψ(β)|µδ) ≤ n+ d and I(ψ(W ) : H)<+ I(W : H)<+ I(⟨W,λ⟩ : H)<+ I(λ : H)=+ I((Gt, α) : H).

Thus Lemma 22 applied to ψ(W ) and µδ, results in

log |W | < max
β∈ψ(W )

D(β|µδ) + 2I((ψ(W ) : H) +O(K(|W |))

< max
β∈ψ(W )

D(β|µδ) + 2I((Gt, α) : H) +O(K(|W |))

n+ cK(n) < n+ d+ 2I((Gt, α) : H) +O(K(n))

cK(n) < d+ 2I((Gt, α) : H) +O(K(n)).

Thus for proper choice of c, I((Gt, α) : H) = ∞. □

Corollary 34 Let L be the Lebesgue measure. Let (X , µ) be a computable measure space. There
is a c ∈ N such that for (potentially uncomputable) transformation group Gt and point α ∈ X if
L{t : tµ(Gtα) > 2n/µ(X)} < 2−n−cK(n), then I((Gt, α) : H) = ∞.
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Chapter 20

Stochastic Thermodynamics

In Stochastic Thermodynamics [Sei08], the evolution operator can randomized. In our manuscript,
the evolution operator is the probability kernel, which is defined as follows.

Definition 50 (Probability Kernel) Given two measurable spaces A and B, a probability kernel
is a function κ : A×B → R≥0 such that for all a ∈ A, κ·a is a probability measure over B, and for
all measurable sets B ⊆ B, κB· is a measurable function.

Given a probability kernel κ, to each measure µ over A corresponds to a measure over A× B.
Its marginal over B is κ∗µ. For every measurable function g over B, we define (using Einstein
notation)

f(x) = κxg = κyxg(y).

The operator κ is linear and monotone. Let {gi} be the hat functions used in the proof of Lemma
17. Let ϕ be a surjective computable function from N to finite sets of N. We say probability kernel
κ is computable if

fi(x) = κyx max
j∈ϕ(i)

gj(y),

is uniformly computable in i.

The following theorem is from [G2́1], with a change to the end of the proof.

Theorem 105 (Conservation of Randomness) Let X ,Y be a computable metric spaces and
let (X , µ) be computable probability measure space. Given computable probability kernel κ,

κyxtκ∗µ(y)
∗
< tµ(x). (20.1)

Proof. Let tµ(x) be the universal test over X . The left hand side of Equation 20.1 can be
written as uµ = κtκ∗µ. Thus µuµ = (κ∗µ)tκ∗µ ≤ 1 since t is a uniform test. We now show that
uµ(x) is lower computable. By its construction in the proof of Lemma 17, tµ(x) can be effectively
constructed as the supremum of hat functions. Thus for hat functions {gi}, there is an enumerable
set N ⊆ N such that uµ = κ supi∈N gi. Since κ is computable, uµ is lower computable. □
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Part IV

Newtonian Gravity

150



Chapter 21

Introduction

The universal law of gravitation states that the force between two objects is

F = G
m1m2

r2
,

where G is the gravitational constant, m1 is the mass of the first object, m2 is the mas sof the
second object, and r is the distance between the two objects. The gravitational field is a vector
field describing the force of several (usually enormous) objects on a receiving object. The force
vector applied to an object at position x by n objects at positions {xi}ni=1 with masses {mi}ni=1 is

Gκ(x) = −G
n∑

i=1

mi
x− xi

∥x− xi∥3
.

The question is how to determine typical points in this vector field. In this chapter we proceed
with the following approach to tackle this issue. We treat the magnitude of the force vector as a
measure κ and define tests t to be lower computable functions over R3 such that κ(t) < 1. We
prove the existence of a universal lower computable test Tκ and use that a a score of atypicality of
points in the vector field. This is in line with the construction of algorithmic entropy, introduced
in [G2́1].

There are several differences in this approach than that of computable measure spaces in Chapter
13. First off, κ is infinite, so the space M of finite measures introduced in Chapter 13 cannot be
leveraged. However, because the measure can be defined as a finite number of real numbers, there
is a standardized method to encode them for the output of programs or as oracles.

Somewhat surprisingly, we show that Tκ acts like a traditional test over compact spaces with
suitable computability properties. Another difference is the assumption of R3 space instead of
a complete, separable space, which enables theorems to leverage this property. In particular,
interesting properties we proven about circular orbits of mass points.

The universal test Tκ obeys conservation inequalities and can be defined similarly to the ran-
domnes deficiency term described in Definition 2. It is infinite over the mass points and decreasing
in average as a point travels away from the mass point.

Another area covered in this chapter is the orbits of points around mass points. It is proved
that typicality Tκ of a point will oscillate as it orbits around a mass point. In addition, under
mild conditions, it is proved that two points orbiting around two different mass points cannot have
synchronized typicality scores, Tκ. On the surface of a sphere, a lower bound is proved on the
uniform measure of atypical points that can occur. The chapters in this part of the manuscript are
as follows.
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• Chapter 22: In this chapter, an atypicality score Tκ is defined and some of its fundamental
characteristics are detailed.

• Chapter 23 It is shown thatTκ agree with the universal uniform test tµ up to a multiplicative
constant in compact spaces. These results are then applied to orbits and surfaces, including
showing that two points orbiting two different paths must be out of sync with respect to their
typicality measure Tκ.

• Chapter 24: In this chapter a chain rule similar to that in Chapter 14 is proven.
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Chapter 22

Algorithmic Typicality and
Newtonian Gravity

This chapter introduces the Newtonian typicality measure Tκ and describes some fundamental
properties about the function. The function Tκ shows a number of interesting properties, including
that Tκ(x) = ∞ is x is located at a mass point. As x ∈ R3 moves away from the mass points, then
Tκ(x) approaches 0, in general. Tκ can seen as supremum of terms similar to how the randomness
deficiency over infinite sequences, D, is defined, except it uses open boxs instead of cylinders α[0..n].
Conservation of randomness is proven when the system contains a single mass point. It is still an
open question whether conservation occurs for systems with multiple mass points.

22.1 Preliminaries

Definition 51 L is the Lebesgue measure over R3. L1 is the Lebesgue measure over R.

Definition 52 (Rational boxs) The set of all open boxs s ⊂ R3 with rational coefficients is S.
Elements of S are also referred to as rational open boxs.

This chapter will leverage computable metric spaces and computable measure spaces, detailed in
Chapter 13. It will be particularly useful to define computable measure spaces over closed rational
boxs located in R3. After such a space is defined then results of the previous chapters can be
leveraged.

Definition 53 (Computable Measures) When we say that a measure is R3-computable if it is a
computable measure of the computable metric space (R3, ∥·∥,Q3). Equivalently, due to Propositions
13 and 14, measure µ is R3-computable if µ(R3) is computable and for any finite set of open rational
boxs V ⊂ S, µ(∪V ) is lower computable.

Definition 54 (Gravitational Field) The gravity field κ caused by n point masses {xi} is

Gκ(x) = −G
n∑

i=1

Mi
(x− xi)

∥x− xi∥3
.

Each Mi is the mass of mass point xi and G is the gravitational constant. The magnitude of the
gravitational field is ∥Gκ(x)∥. We denote κ also as a Borel measure, where for a lower semi-
continuous function f over R3,

κ(f) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x, y, z)∥Gκ(x, y, z)∥dxdydz.
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For Borel set S, κ(S) = κ(1S). The system κ is computable if {(mi, xi)} is computable and thus
the magnitude of the gravitational field at every point can be computed with a program. If κ is given
as an oracle, then {(mi, xi)} is provided in a standardized fashion and thus for all simple functions
f , κ(f) can be computed.

Remark 7 (Standard Representation) A representation γ ∈ {0, 1}∞ of a system κ is an in-
finite sequence such that U(γ) outputs, with increasing precision, the position and mass of each
mass point of κ. A representation λ of κ is standard if for every representation γ of κ there is a
program that on input γ outputs λ. In this chapter, when κ is given as an oracle or as an output
of a program, it is given as a standard representation. Given a representation α ∈ Rep(κ), its
corresponding system is κ = System(α).

Definition 55 A set W ⊂ R3 is away from a system κ with mass points {xi} if infi,x∈W ∥x−xi∥ >
0.

Simple functions are defined as follows. They are used as building blocks for lower computable
functions and also tests.

Definition 56 (Simple Function) A simple function is of the form f(x, y, z) = [(x, y, z) ∈ s]q,
where q ∈ Q>0 and s is a rational box in S. Simple functions can be enumerated as {fn}. Given a
represenetaion of κ, κ(fn) is uniformly computable in n.

Definition 57 (Tests) A lower computable function T is of the form T (x, y, z) = supn∈N fn(x, y, z),
where N is an enumerable subset of N. The set of of all lower computable κ-tests is [κ], where lower
computable functions T is in [κ] if

κ(T ) ≤ 1.

Among all κ-tests there exist universal tests which dominant every member of [κ]. This universal
test is the key metric for determining the level of atypicality of points in a gravitational field. The
greater the score, the greater the level of strangeness of the point. Note that equivalently, Tκ can
be defined using lower computable tests over open spheres with rational centers and radii.

Definition 58 (Universal Test) The universal test is Tκ(x) =
∑

Ti∈[κ]m(i|κ)Ti(x). Dr(x) =
logTr(x).

Exercise 29 Show that Tκ can be equivalently defined using lower computable functions that are
built using rational open balls in R3.

22.2 Properties of Universal Tests

Despite the fact that for a system κ with mass point xi, limx→xi Gκ(x) = ∞, κ(B) is proportional
the radius of balls centered on xi. Thus, as shown below, as points approach the positions of mass
points, they will become more atypical with respct to Tκ.

Theorem 106 Let κ be a system with mass points {xi}. Given i, there exists c, d ∈ R+ such that
for all open spheres Gr centered on xi with radius r < c, κ(Gr) < d · r.
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Proof. Choose c such that xj ̸∈ Gc for all j ̸= i. Let κj be the system containing just mass
point xj . κ(Gr) ≤ ∑n

j=1 κj(Gr). It is easy to see that since xj ̸∈ Gc, for j ̸= i, we have that∑
j ̸=i κ(Gr) < fr3 for all r < c and some f ∈ R>0. κi(Gr) =

∫ r
0
mi
r2
4πr2dr = 4miπr = gr, for some

g ∈ R>0. Thus for all r < c, κ(Gr) < fr3 + gr < d · r. □

Corollary 35 System κ is a locally finite Borel measure.

Corollary 36 For each mass point xi of a system κ, for each c > 0 there is an r > 0 such that
∀x:∥xi−x∥<rTκ(x) > c.

Proof. Let Gr be an open ball centered on xi with radius r. By Theorem 106, there is an rc where

κ(Grc) < 2−n. We define the test tc(x) = [x ∈ Grc ]2
n. Thus for all x ∈ Grc , Tκ(x)

∗
> 2n−2 logn. □

Exercise 30 Show that system κ, Tκ is positive over all R3.

Thus each center of mass will have infinite atypicality score.

Corollary 37 For system κ with mass point x, Tκ(x) = ∞.

The following theorem says that the Tκ score will be high near the mass points of the system
κ, and then drop off as one moves away from the mass points, as shown in Figure 22.1.

Theorem 107 Let κ be a system and let w = max{∥xi∥ : xi is a mass point of κ}. Let Ur be the
uniform distribution over the subspace {x : r < ∥x∥ < 2r}. Then there is a c where if r > 2w then
Ur(Tκ) < c/r.

Proof. Let Tr
κ(x) = [r < ∥x∥ < 2r]Tκ(x). Let θ(z) = tan−1(w/z). Then there is a c ∈ N where

1 > κ(Tr
κ) =

∫

x,y,z:r<∥(x,y,z)∥<2r
Tκ(x, y, z)

∥∥∥∥∥
n∑

i=1

mi

̂(x, y, z)− (xi)

∥(x, y, z)− (xi)∥3

∥∥∥∥∥ dxdydz

≥
∫

x,y,z:r<∥(x,y,z)∥<2r
Tκ(x, y, z)

∥∥∥∥∥
n∑

i=1

mi
cos θ(r)

4r2

∥∥∥∥∥ dxdydz

≥ c

r2

∫

x,y,z:r<∥(x,y,z)∥<2r
Tκ(x, y, z)dxdydz

=
c

r2
Ur(Tκ)

4

3
π
(
(2r)3 − r3

)

Ur(Tκ) <c/r.

□

Corollary 38 Let κ be a system with a single mass point at the origin. Let Ur be the uniform
distribution over the subspace {x : r < ∥x∥ < 2r}. Then there is a c where if 1 ≤ r then Ur(Tκ) <
c/r.

Theorem 108 If point x ∈ R3 is a computable distance r from a computable point y, then Tκ(x) =
∞.
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Figure 22.1: The Tκ scores will be high close to the mass points of system κ and then
drop off as one moves away from their positions.
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Proof. For positive rational q ∈ Q>0, let Vq = {z : r− q < ∥z− y∥ < r+ q}. Let Wq consist of all
unions Z of a finite number of open boxs in S such that Vq ⊂ Z. We define the test tn as follows:
enumerate all open sets of Wq for all q ∈ Q ∩ (0, 1] and stop when an open set Z ∈ ∪q∈Q∩(0,1]Wq

is found such that κ(Z) < 2−n. Then we define the following test, with tn(x) = [x ∈ Z]2n. Since

x ∈ Z, tn(x) = 2n. Thus Tκ(x)
∗
>
∑

nm(n)tn(x)
∗
>
∑

n 2
n−2 logn = ∞. □

Corollary 39 If a point x ∈ R3 is a computable distance from the mass point of a system κ then
Tκ(x) = ∞.

Proof. Though the mass points may not be computable, κ is given as an oracle to the universal
test Tκ, and thus the mass points are effectively computable. □

Theorem 109 Given system κ, every point x on a complutable line ℓ in R3 has Tκ(x) = ∞.

Proof. Let x1 and x2 be two computable points on ℓ such that x is on the line segment [x1, x2].
Let Cn be the open cylinder between x1 and x2 with radius 2−n. Volume(Cn) = π2−2n∥x1 − x2∥.
Let test tn ∈ [κ] be defined by tn(y) = [y ∈ Cn]/Volume(Cn). Since for all n ∈ N, tn(x) ̸= 0,

Tκ(x)
∗
>
∑

nm(tn)tn(x)
∗
>
∑

nm(n, x1, x2)2
2n/(π∥x1 − x2∥) = ∞. □

Exercise 31 Show that every point x on a computable plane has Tκ(x) = ∞, for any system κ.

22.3 Conservation of Randomness

A key property universally shared between notions of typicality and randomness deficiency is con-
servation of randomness. The author cannot think of a single example of a robust randomness
deficiency property that doesn’t have this property. Conservation of randomness says that if the
measure and the point are transformed by the same means (usually a total computable function)
then its randomness deficiency is constant (or usually changed up to an order of the complexity
of the transformation function). For example Theorem 52 is a conservation of quantum typicality,
over quantum operations. In this section we show that random deficiency with respect to the typi-
cality function Tκ is conserved over non-singular linear transformsations and systems with a single
mass point. It is an open question whether there is conservation of randomness over systems with
multiple mass points.

For system κ and invertible matrix A, Aκ is the system where all the mass points have the matrix
A applied to them. For invertible matrix A and lower computable functin f , Af(x) = f(A−1x).
So ATκ(x) =

∑
Ti∈[κ]m(i|κ)Ti(A−1x). Similarly, for 3-vector k, κ+ k displaces all mass points by

k and (T+ k)κ(x) =
∑

Ti∈[κ]m(i|κ)Ti(x− k). (AD+ k)(x) = log(AT+ k)(x).

Theorem 110 (Conservation of Randomness) For system κ with a single mass point (xi, yi, zi),
for computable invertible 3×3 matrix A and vector k, We define the transformation of a randomness
deficiency function by (AD+ k)Aκ+k(x)<

+Dκ(x).

Proof. Let {λ1, λ2, λ3} be the eigenvalues of A, m = min |λi| and M = max |λi|. We use the fact
that m∥x∥ ≤ ∥Ax∥ ≤M∥x∥. We restrict our attention to simple functions, and the generalization
to lower computable functions is straightforward. Let simple function f be defined by f(x, y, z) =
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[(x, y, z) ∈ ((x1, x2), (y1, y2), (z1, z2)]v, with v ∈ Q>0.

Aκ(f) =

∫ ∫ ∫
s(x, y, z)

∥∥∥∥mi
A(xi, yi, zi)− (x, y, z)

∥A(xi, yi, zi)− (x, y, z)∥3
∥∥∥∥ dxdydz

=v

∫ x2

x1

∫ y2

y1

∫ z3

z1

∥∥∥∥mi
A(xi, yi, zi)− (x, y, z)

∥A(xi, yi, zi)− (x, y, z)∥3
∥∥∥∥ dxdydz

Aκ(Af) =v

∫ x2

x1

∫ y2

y1

∫ z2

z1

∥∥∥∥mi
A(xi, yi, zi)−A(x, y, z)

∥A(xi, yi, zi)−A(x, y, z)∥3
∥∥∥∥ dxdydz

≤ v

m3

∫ x2

x1

∫ y2

y1

∫ z2

z1

∥∥∥∥mi
A(xi, yi, zi)−A(x, y, z)

∥(xi, yi, zi)− (x, y, z)∥3
∥∥∥∥ dxdydz

≤vM
m3

∫ x2

x1

∫ y2

y1

∫ z2

z1

∥∥∥∥mi
(xi, yi, zi)− (x, y, z)

∥(xi, yi, zi)− (x, y, z)∥3
∥∥∥∥ dxdydz.

∗
<κ(f).

Furthermore, since A is computable, m(Af |κ) ∗
< m(f |κ)/m(A). The k offset argument is self

evident. □

Corollary 40 For computable matrix A with eigenvalues that have identical absolute values, com-
putable vector k, and system κ. (AD+ k)Aκ+k(x)<

+Dκ(x)

Proof. This corollary follows from the reasoning in the proof of Theorem 110. □

22.4 Comparable Definitions of Typicality

A point x ∈ R3 is test random with respect to system κ iff Tκ(x) <∞. A κ-ML test is a series of
uniformly effectively open sets {Vn}, relative to oracle κ, such that

κ(Vn) < 2−n.

There is a universal ML test Un such that if x ∈ ∩nVn, then x ∈ ∩nUn. We say that a point x is
ML random if x ̸∈ ∩nUn.

Proposition 36 For system κ, Tκ(x) ̸= ∞ iff x is ML random.

Proof. We define the ML test Vn = {x : Tκ(x) > 2n}. Clearly κ(Vn) < 2−n, since Tκ is a
test. Thus if Tκ(x) = ∞, then x ∈ ∩nVn ⊆ ∩nUn. Given a ML test Vn, we define the test
T (x) = supnm(n)[x ∈ Vn]2

n. So if x ∈ ∩nVn, then T (x) = ∞ and thus Tκ(x) = ∞. □

Definition 59 (Randomness Deficiency) The randomness deficiency of a point x ∈ R3 with
respect to a system κ is d(x|κ) = supx∈s∈S − log κ(s)−K(s|κ), where S ranges over all open boxs.

Definition 60 (Mixed boxs) Let Ŝ consist of all “mixed” boxs with rational boundaries, and
each boundary can be open or closed. Thus there are 26 types of such boxs. One example box is
{(x, y, z) : x ∈ [x1, x2), y ∈ (y1, y2], z ∈ [z1, z2]}. Let d̂(x|κ) = supx∈ŝ∈Ŝ − log κ(ŝ)−K(ŝ|κ).

Proposition 37 Given a system κ and mixed box ŝ ∈ Ŝ there exists a rational open box s ∈ S
such that ŝ ⊆ s, κ(s) < 2κ(ŝ), and K(s|κ)<+K(ŝ|κ).

158



Proof. Because every locally finite Borel measure on a separable complete metric space is regular,
κ is regular. So there exists an open cover W ⊂ R3 such that ŝ ⊆ W and κ(W ) < 2κ(ŝ). So there
exists an open box s ∈ S, s ⊆ W that contains ŝ. This box can be found using brute force search
given ŝ and κ. □

Note that the following terms hold over the range of R ∪ {∞}.
Theorem 111 For system κ, d(x|κ)=+Dκ(x).

Proof.

(1) d(x|κ)<+Dκ(x). For each s ∈ S, one can define a test T (x) =
∑

s∈S [x ∈ s]m(s|κ)/κ(s).
It is easy to see that κ(T ) ≤ ∑

s∈S m(s|κ)(κ(s)/κ(s)) < 1, and that T is lower computable. So
d(x|κ)<+ log T (x)<+Dκ(x).

(2) If Dκ(x) ∈ R, then Dκ(x)<
+ d(x|κ). One can assume, without loss of generality, the range

of Tκ are 0 and powers of 2. For n ∈ Z, Let Wn = {x : Tr(x) = 2n}. Thus since Tr is a test,
r(Wn) ≤ p(n)2−n, for some probability p over Z. Let Vn ⊂ S be the (uniformly in n) enumerable
set of disjoint boxs ŝ ∈ Ŝ such that ∪ŝ∈Vn ŝ = Wn. Each ŝ ∈ Vn can be identified by a code of size
K(ŝ|κ)<+ − log κ(ŝ)− n. Thus if n = Dκ(x)<

+ − log κ(ŝ)−K(ŝ|κ)<+ d̂(x|κ).
Let ŝ ∈ Ŝ realize Dκ(x)+O(1), that is the subset of Wn that x is a member of. Thus by Propo-

sition 37 there is an open box s ∈ S such that s ⊃ ŝ, κ(ŝ) < κ(s) < 2κ(ŝ) and K(s|κ)<+K(ŝ|κ).
Thus d̂(x|κ)<+ − log κ(ŝ)−K(ŝ|κ)<+ − log κ(s)−K(s|κ)<+ d(x|κ).

(3) If Dκ(x) = ∞ then d(x|κ) = ∞. Thus there is a ML test {Vn} such that x ∈ ∩nVn. Fix n.
Thus there is a finite or infinite set Wn ⊂ Ŝ of disjoint mixed boxs such that ∪ŝ∈Wn ŝ = Vn. Since
κ(Vn) < 2−n, each ŝ ∈ Wn can be identified by a code of size K(ŝ|κ)<+ − log κ(s)− n+K(n|κ).
Thus there is some ŝ ∈ Wn such that x ∈ ŝ. So − log κ(ŝ) − K(ŝ|κ)>log n. Since this occurs for
each n, d̂(x|κ) = supx∈ŝ∈Ŝ − log κ(s) −K(ŝ|κ) = ∞. Using the same reasoning as in (2), one can
see that d(x|κ) = ∞. □

Corollary 41 For computable invertible 3×3 matrix A and vector k, d(Ax+k|Aκ+k)<+ d(x|κ).

22.5 Systems with Single Mass Points

In this section, we investigate the special case of systems with a single mass point. The mass point
is assumed to be at the origin, but the results still hold if it is at any location.

Theorem 112 Let κ be a computable system with a single mass point z at the origin. For all
computable c ∈ R>0, Tκ(x)

∗
= Tκ(cx).

Proof. The case for x = (0, 0, 0) is trivial, so we assume ∥x∥ > 0. Assume t ∈ [κ]. We construct
a new test t′ such that ct′(cx) = t(x). Select a simple function f(x) = v[x ∈ s] of t, where s ∈ S is
an open rational box and enumerate all open rational balls B ∈ s. For each ball B, create a new
simple function f ′(x) = [x ∈ cB]v/c to be aggregated into the new test t′. Obviously ct′(cx) = t(x).
Furthermore t′ ∈ [κ] because of the following reasoning.

κ(cB) =

∫

(x,y,z)∈cB
κ(x, y, z)dxdydz.
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Substituting x′ = x/c, y′ = y/c, z′ = z/c, we get

κ(cB) =

∫

(x′,y′,z′)∈B
κ(cx′, cy′, cz′)c3dx′dy′dz′.

=c

∫

(x′,y′,z′)∈B
κ(x′, y′, z′)dx′dy′dz′.

=cκ(B).

Thus each ball cB has c more κ measure than B, but this is offset by the fact that t′ values are

c-times less than that of t. Thus Tκ(cx)
∗
>
∑

nm(n|κ)t′n(cx)
∗
=
∑

nm(n|κ)tn(x)/c ∗
= Tκ(x). Since

this holds for c and 1/c, the theorem is proved. □

Theorem 113 For computable rotation matrix A, and computable system κ with a single mass
point at the origin, Tκ(x)

∗
= Tκ(Ax).

Proof. Let Rt be the computable transformation group associated with A. Let t ∈ [κ]. We
construct a t′ ∈ [κ] such that t′(A−1x) = t(x). Let f(x) = v[x ∈ s ∈ S] be a simple function
enumerated by the algorithm to compute t. The algorithm to computable t′ enumerates open balls
B ⊂ S with center y and radius r and applies Rt to y. By Claim 2 this produces a fast Cauchy
sequence {yi} that converges to y such that ∥y− yi∥ < 2−i. As this sequence is enumeratd, t′ takes
the supremum of the function f ′(x) = supi v[x ∈ Bi], where Bi = {z : ∥z − yi∥ < r − 2−i}. Since
κ(B) = κ(RtB), t′ ∈ [κ]. Furthermore K(t′)=+K(t), up to an additive constant dependent on A.

Thus Tκ(x)
∗
= Tκ(Ax). □

Corollary 42 For system κ with a single mass point at the origin and orbit O = ((0, 0, 0), r, x̂, ŷ),
with computable (x̂, ŷ), and rotational transformation group Rt (from Definition 64), for any com-
putable ℓ ∈ [0, 1], x ∈ O, supt∈[0,1] |Tκ(R

tx)−Tκ(R
t+ℓx)| <∞.

Definition 61 (Unit Sphere Computable Metric Space) Let C = {x : ∥x∥ = 1} be the sur-
face of the unit sphere and D = {(x, y, z) : ∥(x, y, z)∥ = 1, (x, y, z) ∈ Q × Q × Q} be its ideal
points. Let w = (0, 0, 0). We define the following computable metric space W = (C, d,D), where
the distance metric d is the radian angle between point in the sphere, with d(y, v) = cos−1(−→wy ·−→wv).
The basis open sets are B(v, ϵ) = {y : d(y, v) > ϵ, ∥−→wy∥ = ∥−→wv∥ = 1}, where ϵ ∈ Q≥0 and
(x, y, z) ∈ Q × Q × Q. Let LC be the uniform metric over C. Thus (W, LC) is a computable
measure space.

The folllowing theorem says that the points along a ray starting from origin will have decreasing
Tκ score, where κ is a system containing a single point at origin, as shown in Figure 22.2. Otherwise
the ray will be highly atypical. Atypicality is measured using univerisal uniform tests t over a
computer measure space, introduced in Chapter 13. The computable metric space used is the set
of vectors of norm 1. Note that all x with ∥x∥ = 1 has Tκ(x) = ∞.

Remark 8 Given a unit vector v ∈ C and given a system κ, let Rn(v) =
1
n

∫ 2n
r=nTκ(r∗v)dr.

Theorem 114 Given a computable metric space W = (C, d,D) with computable measure space
(W, LC), if the ray of the unit vector v ∈ C, has the following lower bound of its Tκ measure, with
Rn(v) = ω(1/m(n)n), then it is very atypical, with tLC (v) = ∞.
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Figure 22.2: The system κ has a single mass point at the origin. All typical rays will
start with high Tκ measure, and then the scores will drop off toward 0 as one follows
the ray away from origin.
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Proof. Let Ur be the uniform distribution over the subspace {x : r < ∥x∥ < 2r}. By Corollary
38, there is a c where if 1 ≤ r then Ur(Tκ) < c/r, where Ur be the uniform distribution over the
subspace {x : r < ∥x∥ < 2r}. Thus tn(x) =

n
cRn(x) =

∫ 2n
r=nTκ(r∗x)dr is a LC-test over W. Thus

tLC (x)
∗
>
∑

nm(n)tn(x). Since tn(v) =
n
cω(1/m(n)n), tLC (v)

∗
>
∑

n ω(1) = ∞. □

22.6 Electrostatics

The results of this part of the manuscript can be readily applied to electrostatics. Coulomb’s
law parallels Newton’s law of gravity, and a universal lower computable test T can be defined
with respect to systems involving a finite number of negative point charges. However, further
generalizations quickly reach roadblocks. For example, the magnitude of electric field of an idealized
dipole is ≤ c/r3, for some constant c and large enough r, the distance from the origin. The
corresponding universal test for the dipolte is T ∈ ω(rϵ), for any ϵ ∈ [0, 1). Thus for a finite set of
negative charges limr→∞T(r) = 0, but for dipoles, limr→∞T(r) = ∞, contradicting the goal for
coherent properties of T.
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Chapter 23

Subspaces, Orbits, and Spheres

In this chapter, properties of the universal test Tκ are proven over sufficiently computable subspaces
of R3. Over such structures, the T is shown to be asymptotically balanced. Orbits are defined,
which are one dimension rings in R3, and a lower bound of Tκ on rings is proved. Properties of Tκ

are proved with respect to surfaces of spheres.

23.1 Subspaces

23.1.1 Computable Open Sets

Definition 62 An open set W ⊆ R3 is computable if given an open rational box s ∈ S, 1W (s) =
[s ⊆W ] is computable. Thus 1W (x) = [x ∈W ] is lower computable. Examples of computable open
sets can be found in Figure 23.1.

Theorem 115 Let V ⊆ R3 be an open computable subset, κ be a computable system, and let κ(V )
be computable and finite. There is a constant c ∈ N where 2−n−K(n)−c < κ({x : x ∈ V,Tκ(x) >
2n}) < 2−n+c.

Proof. For Borel set X, let κ′(X) = κ(X∩V ). So R = (R3, ∥·∥,Q3) is a computable metric space
and (R, κ′) is a computable measure space. This is because κ′ is a R3-computable measure since

Figure 23.1: A graphical depiction three computable open sets, provided that their
positions and shape parameters are computable. Any finite combination of the sets are
also computable. There also exists non-compact computable open sets.
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Figure 23.2: For compact open sets, there is a lower bound on the Tκ measure, with
respect to the Lebesgue measure, L.

Proposition 14 applies because κ′(V ) = κ(V ) is computable and for every s ∈ S,

κ′(s) = κ
(⋃

{s′ : s′ ⊆ s and s ⊆ V }
)

is lower computable because V is computable and κ is computable. Since V is computable, and

tκ′(V ) < 1, tκ′
∗
< Tκ. Also t′κ(x)

∗
> [x ∈ V ]Tκ(x). So over x ∈ V tκ′

∗
= Tκ. By Proposition 27,

there is a c ∈ N where for all n ∈ N

κ′(V )2−n−K(n)−c < κ′{x : x ∈ V, tκ′(x) > 2n/κ′(V )} < κ′(V )2−n.

The κ′(V ) term can be folded in the constant c. So,

2−n−K(n)−c < κ{x : x ∈ V,Tκ(x) > 2n} < 2−n+c.

□

The following Corollary provides a lower bound for the Tκ measure in open computable sets,
with respect to the Lebesgue measure, as shown in Figure 23.2.

Corollary 43 Let V be a compact computable open set and let κ be a computable system with
computable L(V ). Then there is a c ∈ N such that for all n ∈ N, L{x : x ∈ V,Tκ(x) > 2n} >
2−n−K(n)−c.

Proof. For Borel set W , the function λ(W ) = L(W ∩ V )/L(V ) is a R3-computable probability
measure. By Corollary 30, there is a c ∈ N where

λ{x : x ∈ V, tκ(x) > 2n} > 2−n−K(n)−c.

Using the reasoning in Theorem 115, tκ
∗
= Tκ over V . So

λ{x : x ∈ V,Tκ(x) > 2n} > 2−n−K(n)−c.

The corollary follows from the fact that in the domain of V , L(V )λ(·) = L(·). □

Corollary 44 Let V be an open compact computable set away from a computable system κ and let
κ(V ) be computable. There is a constant c ∈ N where 2−n−K(n)−c < L{x : x ∈ V,Tκ(x) > 2n} <
2−n+c.
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Proof. Since V is compact and away from κ, there are constants b1, b2 ∈ R>0 such that b1 <
κ(x) < b2 for all x ∈ V . So for Borel set A ⊆ V , b1

∫
A dxdydz < κ(A) < b2

∫
A dxdydz. This

means b1L(A) < κ(A) < b2L(A), for A ⊆ V . Applying this equation to Theorem 115 results in the
corollary. □

23.1.2 Borel Compact Sets

Theorem 116 Let V be a Borel compact set, κ be a computable system κ, and R3-computable
non-atomic probability measure λ have support equal to V . Then there is a c ∈ N where λ{x : x ∈
V,Tκ(x) > 2n} > 2−n−K(n)−c.

Proof. Let W be a open computable compact set containing V and let κ′(A) = κ(A∩W ). Thus
R = (R3, ∥·∥,Q3) is a computable metric space and (R, κ′) is a computable measure space. Using

the arguments in Theorem 115, for all x ∈ W , tκ′
∗
= Tκ(x). Applying Corollary 30 to λ and κ′

provides a c ∈ N such that

2−n−K(n)−c <λ{x : tκ′(x) > 2n},
2−n−K(n)−c <λ{x : x ∈ V,Tκ(x) > 2n}.

□

23.2 Orbits

Notions of typicality can be applied to orbits. Orbits are circular 1 dimensional paths typially
around a mass point. If an orbit is at a computable distance from a mass point, then all its points
will have infiniteT-scores. Otherwise, as a point orbits around a mass point, it will have oscilliations
of typicality, similarily to oscillations of algorithmic fine grained entropy during dynamics.

Definition 63 (Orbit) Let x̂ and ŷ be two perpendicular unit vectors in R3. Let κ be a system.
An orbit is defined by {r cos(θ)x̂+ r sin(θ)ŷ+ z : θ ∈ [0, 2π], r ∈ R>0}, where z ∈ R3 is typically at
a mass point. A representation α ∈ Rep(O) ⊂ {0, 1}∞ of an orbit O = (r, x̂, ŷ, z) is any sequence
such that U(α) outputs r, z, x̂, and ŷ to any degree of precision. An orbit is computable if it
has a computable representation. The amount of information that an orbit O has with the halting
sequence H is I(O : H) = infα∈Rep(O) I(α : H). We use the notation (r, z)-orbit to specify an orbit
with arbitrary x̂ and ŷ vectors.

Definition 64 (Rotational Transformation Group) A rotational transformation group Rt is
a transform group (from Definition 36) and is defined by (z, x̂, ŷ), with center z ∈ R3 and an axis
of rotational, with unit vectors x̂, ŷ ∈ R3. It performs a rotation around the center aligned with the
axis of rotation. In addition, for all x ∈ R3, R0x = x and Rt = Rt+1. Obviously every orbit defines
a rotational transformation group. A representation of a transformation group Rt = (z, x̂, ŷ), is
any sequence α ∈ Rep(Rt) is any sequence such that U(α) outputs z, x̂, and ŷ to any degree of
precision. The amount of information that a rotation group has with the halting sequence is I(Rt :
H) = infα∈Rep(Rt) I(α :: H). For x ∈ R3, I((Rt, x) : H) = infα∈Rep(Rt),−→x ∈Cauchy(x) I(⟨α, ⟨−→x ⟩⟩ : H).

Claim 2 Given a representation α of an orbit O, there is a computable rotational transformation
group Rt around orbit O, such that for all x ∈ O, R0x = R1x = x. Furthermore given a program or
representation of Rt, one can compute a rotation. That is, given a fast cauchy sequence sequence
of x and an t ∈ R≥0 one can compute a fast Cauchy sequence for Rtx.
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Figure 23.3: Orbits will oscillate in Tκ value.

Corollary 45 If any of the following conditions occur for an orbit O then Tκ(x) = ∞, for all
x ∈ O.

(1) O is computable,

(2) O is a computable distance from a mass point of system κ,

(3) O is centered at a mass point with a computable axis of rotation,

Proof. (1) and (2) follow from Theorem 108. For (3), otherwise let O = (r, x̂, ŷ, z), where z is a
mass point and (x̂, ŷ) is computable. Let r1 < r < r2, r1, r2 ∈ Q>0. Let

Wq = {x : r1 < ∥x− z∥ < r2, x differs from (x̂, ŷ) axis by q radians}
Given n, one can find a qn such that κ(Wqn) < 2−n and define a test tn(x) = [x ∈ Wqn ]2

n. So for

all x ∈ O, Tκ(x)
∗
>
∑

nm(n|κ)tn(x)
∗
>
∑

n 2
n−2 logn = ∞. □

Corollary 46 Let κ be a system with mass point xi. For all c > 0, there is an r > 0 such that for
all (r, xi) orbits O, Tκ(x) > c, for all x ∈ O.

Proof. This follows from Corollary 36. □

Remark 9 We recall that the mutual information of a point x ∈ R3 with the halting sequence H,
is I(x : H), and is introduced in Definition 42.

23.2.1 One Orbit

As described in the introduction, orbits will oscillate in Tκ values with larger fluctuations being
more rare. A graphical depiction of Theorem 117 can be found in Figure 23.3

Theorem 117 Let κ be a computable system with mass point z and O = (r, x̂, ŷ, z) be an orbit
such that I(O : H) <∞. There is a c ∈ N where for all n ∈ N,

2−n−cK(n) < L1{x : x ∈ O,Tκ(x) > 2n}.
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Proof. By Claim 2, given O, one can computable a (potentially uncomputable) rotational tranfor-
mation groupRt such that for all x ∈ O, Rtx ∈ O for t ∈ [0, 1], R0x = R1x = x. This transformation
group Rt is a rotation centered around mass point z and oriented with the axis (x̂, ŷ). Furthermore
there is an x computable from O. Using Definition 64, I((Rt, x) : H)<+ I(O : H) < ∞. Let
β ∈ {0, 1}∞ realize ⌈I((Rt, x) : H)⌉+ 1.

Let B = {y : ∥y − z∥ < R} where r < R, R ∈ Q>0. For Borel set A, let κ′(A) = κ(A ∩ B).
Thus R = (R3, ∥·∥,Q3) is a computable metric space and (R, κ′) is a computable measure space.
In addition B is a compact open computable set with computable κ(B). Thus using arguments in

the proof of Theorem 115, tκ′(x)
∗
= Tκ(x) for all x ∈ B. The application of Corollary 34, applied

to κ′ and the representation β of (Rt, x) that will realize Definition 49 using Claim 2, and noting
that the transform group need not be measure preserving, with the dynamics starting at x results
in a c ∈ N where

2−n−cK(n) <L1{t ∈ [0, 1], tκ′(R
tx) > 2n}

2−n−cK(n) <L1{y : y ∈ O, tκ′(y) > 2n}. (23.1)

If the system κ only contains a single mass point z and (x̂, ŷ) is computable, then Rt is a com-
putable transformation tranform rotating around z. Furthermore Rt is measure preserving over
the computable measure space (R, κ′). Thus applying Theorem 23 results c ∈ N where

2−K(n)−n−c <L1{t : t ∈ [0, 1], tκ′(R
tx) > 2n} < 2−n

2−K(n)−n−c <L1{y : y ∈ O, tκ′(y) > 2n} < 2−n. (23.2)

The fact that tκ′(x)
∗
= Tκ(x) for all x ∈ O ⊂ B can be applied to Equation 23.1, proving the

theorem. □

23.2.2 Two Orbits

In Theorem 117, it was shown that non-exotic orbits will oscillate in typicallity. Theorem 118
extends this result to two orbits. Given two orbits with two starting points that are not atypical
or exotic, the typicality of the points will be out of sync as they orbit the mass points. Thus this
theorem applies to cases where two points are orbiting the origin, but with very small (uncom-
putable) orbit error vectors. This is consistent with reality, as absolutely perfect orbits don’t exist.
A graphical depiction of Theorem 118 can be seen in Figure 23.4.

Definition 65 (Extended Universal Tests) The set of cylinders in the Cantor space is denoted
by C, where ζ ∈ C if there is an x ∈ {0, 1}∗ such that ζ = {α : x ⊏ α ∈ {0, 1}∞}. Given the space
Z = R3×R3×{0, 1}∞×{0, 1}∞, a basis extended box p ∈ P with respect to Z, are two rational boxs
and two intervals p = (s1, s2, ζ1, ζ), where s1, s2 ∈ S and ζ1, ζ2 ∈ C. A simple function f : Z → R≥0

is of the form fs1,s2,ζ1,ζ2(w, x, y, z) = v[w ∈ s1, x ∈ s2, y ∈ ζ1, z ∈ ζ2], with v ∈ Q>0. Simple
functions can be enumerated producing the list {fn}. A lower computable function F is of the
form F (w, x, y, z) = supn∈N fn(w, x, y, z) where N is an enumerable subset of N. Given computable
measure µ over {0, 1}∞ and system κ, a lower computable function F is a (κ, κ, µ, µ)-test, or
f ∈ [κ, κ, µ, µ] if

(κ, κ, µ, µ)(F ) =

∫

α,β∈{0,1}∞

∫

x1∈R3,x2∈R3

F (x1, x2, α, β), dκ(x1)dκ(x2)dµ(α)dµ(β) ≤ 1.

Given κ and µ, the set [κ, κ, µ, µ] is enumerable, so there exists a universal lower computable test
T(κ,κ,µ,µ)(w, x, y, z) =

∑
fi∈[κ,κ,µ,µ]m(i|κ, µ)fi(w, x, y, z).
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Figure 23.4: Two points rotating under two rotational transformation groups, centered
around a single mass point at the origin. Provided that the two starting points and
encodings of the transformation groups are typical and not exotic, the Tκ score of the
two points will be out of sync as they rotate around the mass point.

Definition 66 This definition introduces the mutual information between two points in R3 and
two infinite sequences with the halting sequence H. Let Cauchy(x) be all the fast Cauchy sequences
converging to x ∈ R3, using the computable metric space (R3, ∥·∥,Q3). For ζ ∈ Cauchy(x), ⟨ζ⟩ ∈
{0, 1}∞ is an encoding of the fast Cauchy sequence by an infinite encoding of each index of the ideal
points converging to x. For points x1, x2 ∈ R3 and infinite sequences α, β ∈ {0, 1}∞, their multiple
information with the halting sequence is

I((x1, x2, α, β) : H) = inf
(ξ,ζ)∈(Cauchy(x1),Cauchy(x2))

I(⟨⟨ξ⟩, ⟨ζ⟩, α, β⟩ : H).

Remark 10 We recall Definition 41, where an r-interval v ⊆ (0, 1) is a finite collection of open
intervals with rational endpoints.

Theorem 118 Let κ be a computable system with a single mass point at the origin, µ a computable
probability measure over {0, 1}∞ and Rt1 and Rt2 be rotational transformation groups orbiting the
origin, with (α1, α2) ∈ (Rep(Rt1),Rep(R

t
2)) and x1, x2 ∈ R3. If T(κ,κ,µ,µ)(x1, x2, α1, α2) < ∞ and

I((x1, x2, α1, α2) : H) <∞ then supt∈[0,1] |Tκ(R
t
1x1)−Tκ(R

t
2x2)| = ∞.

Proof. Assume not and let

d = ⌈ sup
t∈[0,1]

|Tκ(R
t
1x1)−Tκ(R

t
2x2)|⌉ <∞.

Let O1 be the orbit of x1 with Rt1. Thus I(O1 : H)<+ I((x1, x2, α1, α2) : H) < ∞. Thus by
Theorem 117, for all x ∈ O1 and c ∈ N where

2−n−c logn < L1{t ∈ [0, 1] : Tκ(R
tx) > 2n},

2−n−c logn < L1{t ∈ [0, 1] : Tκ(R
tx1) > 2n}.
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Let Un = {t : Tκ(R
tx1) > 2n}. Given x1 and α1, one can enumerate an increasing r-interval v ⊆ Un

and stop when L(v) > 2−n−c logn−1. By Lemma 25, there exists a rational r ∈ v, with

K(r)<log n+ I(v;H)<log n+ I((x1, x2, α1, α2) : H) +K(n)<log n+ I((x1, x2, α1, α2) : H).

Let An = {x : Tκ(x) > 2n}. Thus κ(An) < 2−n. Thus one can create the following Z-test

tn(x, y, α, β) = [x ∈ R−r
1 An, y ∈ R−r

2 An−d]2
2n−d

K(tn)<
+K(r, n)<log n+ I((x1, x2, α1, α2) : H)

<log n, (23.3)

where Equation 23.3 is due to the fact that I((x1, x2, α1, α2) : H) is finite.
∫
tn because Rt1 and R2

t

are κ measure preserving. One can impliment tn to be a lower computable function in the following
manner. As open balls B with center x and radius s are enumerated that are subsets of An (or
An−d), the algorithm for tn rotates them with Rt1 (and also Rt2), consistently with Claim 2.

As tn reads the bits of α and β it produces a fast Cauchy sequence {xn} of points that converge
to R−rx where ∥xn − x∥ < 2−n. The algorithm for test tn creates as sequence of balls {Bi},
Bi = {y : ∥y − xi∥ < s− 2−i} such that Bi ⊆ Bi+1 and limi→∞Bi = R−rB.

Thus for each B ⊃ An, C ∈ An−d, tn enumerates two balls Bi and Ci (one for Rt1 and another
for Rt2) and if a point (y, z) ∈ Bi × Ci, then t(y, z, α1, α2) = 22n−d. Let Bi and Cj be the balls
enumerated by tn where κ(Bi) ≤ κ(B) and κ(Ci) ≤ κ(C). Furthermore, let tn numerate m balls
after reading m bits of the encoded rotation matrices R1

t and Rt2. The function tn ∈ [κ, κ, µ, µ]
because

(κ, κ, µ, µ)(tn) =

∫

α,β∈{0,1}∞

∫

x1,x2∈R3

tn(x1, x2, α, β)dκ(x1)dκ(x2)dµ(α)dµ(β)

≤ sup
n→∞

∑

a,b∈{0,1}n
µ(a)µ(b)

∫

x1,x2∈(
⋃n
i=1B

a
i ,
⋃n
j=1 C

b
j )
22n−ddκ(x1)dκ(x2)

≤22n−d sup
n→∞

∑

a,b∈{0,1}n
µ(a)µ(b)

∑

i,j

∫

x1,x2∈(
⋃n
i=1B

a
i ,
⋃n
j=1 C

b
j )
dκ(x1)dκ(x2)

≤22n−d sup
n→∞

∑

a,b∈{0,1}n
µ(a)µ(b)κ

(
n⋃

i=1

Ba
i

)
κ




n⋃

j=1

Cbj




≤22n−d sup
n→∞

∑

a,b∈{0,1}n
µ(a)µ(b)κ

(
n⋃

i=1

Bi

)
κ




n⋃

j=1

Cj




≤22n−d sup
n→∞

∑

a,b∈{0,1}n
µ(a)µ(b)

∑

i,j

κ(An)κ(An−d)

≤ 1,

where Ba is the intermediate ball create by the tn algorithm when just using the bits a ∈ {0, 1}∗
(and similarly for Cb). By construction, such balls will have κ(Ba) < 2−n and κ(Cb) < 2−n+d.
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It must be that tn(x1, x2, α1, α2) ̸= 0 because r ∈ Un. Thus

T(κ,κ,µ,µ)(x1, x2, α1, α2)
∗
>
∑

n

m(tn|κ, µ)tn(x1, x2, α1, α2)

∗
>
∑

n

m(n, rn)tn(x1, x2, α1, α2)

∗
>
∑

n

2−n−O(logn)22n−d

= ∞,

causing a contradiction. □

23.3 Surfaces of Spheres

The same techniques used on orbits can also be applied to surfaces of spheres. If a sphere has finite
mutual information with the halting sequence , then there will be a lower bound on the measure
of the surface of the sphere of points with high atypicality Tκ scores.

Definition 67 A sphere C is given by (x, r) where x ∈ R3 is its center and r ∈ R>0 is it radius.
A representation of a sphere is any sequence in Rep(C) ⊂ {0, 1}∞ that can produce (x, r) to any
degree of precision I(C : H) = infα∈Rep(C) I(C : H).

23.3.1 Uniform Sampling on a Sphere

Using inverse transform sampling, one can uniformly sample point on the unit sphere. This can be
seen in Figure 23.5.

Proposition 38 Given a representation of a sphere C there is a computable mapping from the
distribution Uniform([0, 1], [0, 1]) to Uniform(C). That is, two independent uniformly distributed
numbers between 0 and 1 can be used to create the uniform measure over C.

Proof. Let v be a point on the unit sphere C. We want the probability density f(v) to be
constant for a uniform distribution. So f(v) = 1

4π since
∫ ∫

C f(v)dA = 1 and
∫ ∫

C dA = 4π. So,
using spherical coordinates,

f(v)dA =
1

4π
dA = f(θ, ϕ)dθdπ.

Since dA = sin(ϕ)dϕdθ, it follows that f(θ, ϕ) = 1
4π sin(ϕ). The marginal distribution are

f(θ) =

∫ π

0
f(θ, ϕ)dϕ =

1

2π

f(ϕ) =

∫ 2π

0
f(θ, ϕ)dθ =

sin(ϕ)

2
.

The cumulative distribution of f(ϕ) is

F (ϕ) =

∫ ϕ

0
f(ϕ̂)dϕ̂ =

1

2
(1− cos(ϕ)).

The inverse is F−1(u) = arccos(1−2u). We then proceed with inverse transform sampling. Let U be
the random number in [0, 1]. Noting that Pr(U ≤ F (ϕ)) = F (ϕ), we get Pr(F−1(U) ≤ ϕ) = F (ϕ).
So one can generate a point on the uniform sphere, one samples θ from 2π×U and sample ϕ from
F−1(U). □
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Figure 23.5: Using inverse transform sampling, random points in [0, 1] × [0, 1] can be
mapped uniformly to the unit sphere. This process is used in the proof of Lemma 32.

23.3.2 Spheres and Computable Measure Spaces

Lemma 32 Let R = (R3, ∥·∥,Q3) be the standard computable metric space over R3 and let (R, µ)
be a computable measure space, as defined in Chapter 13. Let C = (x, r) be a sphere in R3, and
let LC be the uniform measure over the sphere. There is a c ∈ N such that if LC{α : ∥α − x∥ =
r, tµ(α) > 2n/µ(X)} < 2−n−cK(n), then I(C : H) = ∞.

Proof. We assume C has radius 1, the general case is straightforward. Let L2 be the two di-
mensional Lebesgue measure. Fix n. Let ({0, 1}∞,Γ) be the Cantor space with the uniform
measure. The binary representation (see Theorem 81) creates an isomorphism (ϕ, ϕ−1) of com-
putable probability spaces between the spaces ({0, 1}∞,Γ) and ([0, 1]× [0, 1], L2). It is the function
ϕ(γ) = (0.γ[0, 2, 4, . . . ], 0.γ[1, 3, 5, . . . ]). Let J : [0, 1]× [0, 1] → C uniformly map the unit interval to
C, as defined by Proposition 38. Thus for all 2D Borel sets A ⊆ [0, 1]× [0, 1], Γ(ϕ−1(A)) = L2(A).
So

LC{α : ∥α− x∥ = r, tµ(α) > 2n/µ(X)} < 2−n−cK(n)

L2{t, s : tµ(J(t, s)) > 2n/µ(X)} < 2−n−cK(n)

Γ{α : tµ(J(ϕ(α)) > 2n/µ(X)} < 2−n−cK(n).

Let (δ, µδ) be a binary representation for (R, µ). Let µδ = µδ/µδ({0, 1}∞) be a computable prob-
ability measure over {0, 1}∞. Thus, due to Lemma 18 and Proposition 17, there is a d ∈ N with
ψ(α) = δ−1(J(ϕ(α))) and

2−n−cK(n) >Γ{α : tµ(J(ϕ(α)) > 2n/µ(X)}
>Γ{β : log tµδ(ψ(α)) > 2n−d/µ(X)}
>Γ{β : D(ψ(α)|µδ) > n+ d− logµ(X)}
>Γ{β : D(ψ(α)|µδ) > n+ d}.

Let W ∈ {0, 1}∞2n+cK(n)−1

be a set of 2n+cK(n)−1 infinite sequences with each sequence chosen
independently according to the uniform distribution over {0, 1}∞. The probability that all α ∈W
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Figure 23.6: A graphical depiction of the Tκ measure over the surphace of the sphere.
As a point travels across its surphace, its Tκ score will oscillate.

has D(ψ(α)|µδ) ≤ n+ d is

(1− 2−n−cK(n))2
n+cK(n)−1 ≥ (1− 2n+cK(n)−12−n−cK(n)) ≥ 1/2.

Let U be a distribution over {0, 1}∞ that is the uniform measure applied independently to
2n+cK(n)−1 encoded sequences. And let γ ∈ Rep(C) minimize ⌈I(C : H)⌉+ 1 and λ = ⟨p⟩γ, where
p is a program to compute U . By Theorem 85,

Pr
α∼U

[I(⟨α, λ⟩ : H) > m]
∗
< 2−m+I(λ:H).

Therefore by probabilistic arguments, there exist a setW ∈ {0, 1}∞2n+cK(n)

such that for all α ∈W ,

D(ψ(α)|µδ) ≤ n+ d and I(ψ(W ) : H)<+ I(W : H)<+ I(⟨W,λ⟩ : H<+ I(λ : H)=+ I(C : H).

Thus Lemma 22 applied to ψ(W ) and µδ, results in

log |W | < max
β∈ψ(W )

D(β|µδ) + 2I((W : H) +O(K(|W |)).

< max
β∈ψ(W )

D(β|µδ) + 2I((C : H) +O(K(|W |)).

n+ cK(n) < n+ d+ 2I(C : H) +O(K(n)).

cK(n) < d+ 2I(C : H) +O(K(n)).

Thus for proper choice of c, I(C : H) = ∞. □

23.3.3 Typicality on a Sphere’s Surface

Theorem 119 proves a lower bound on the Tκ score across points of a sphere’s surface. A graphical
depiction of this phenomena can be seen in Figure 23.6.

Theorem 119 Let κ be a computable system For sphere C = (z, r) and uniform measure LC over
the surface of C, if I(C : H) <∞ then there is a c ∈ N where for all n ∈ N,

2−n−cK(n) < LC{α : α ∈ C,Tκ(α) > 2n}.
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Proof. Let B = {y : ∥y− z∥ < R} where r < R, R ∈ Q>0. For Borel set A, let κ
′(A) = κ(A∩B).

Thus R = (R3, ∥·∥,Q3) is a computable metric space and (R, κ′) is a computable measure space.
In addition B is a compact open computable set with computable κ(B). The application of Lemma
32 results in a c ∈ N where for all n,

2−n−cK(n) < LC{α : ∥α− z∥ = r, tκ′(α) > 2n}

Thus using arguments in the proof of Theorem 115, tκ′
∗
= Tκ′

∗
= Tκ, for all x ∈ B, proving the

theorem. □

23.3.4 Spheres Around Systems with Single Mass Points

If there is a system with a single mass point at origin and a sphere around (0, 0, 0), then one can
prove a stronger result than Theorem 119. That is, with the halting sequence requirement removed.
In addition the bounds are improved.

Theorem 120 Let κ be a system with a single mass point at origin w = (0, 0, 0) and C = (w, r)
be a sphere with an uncomputable radius r. There is a c ∈ N where for all n ∈ N,

2−n−K(n)−c < LC{α : ∥α∥ = r,Tκ(α) > 2n},

where LC is the uniform measure over the surface of the sphere C.

Proof. Let r1 < r < r2 with r1, r2 ∈ Q>0. Let W be the computable metric space consisting
of the unit sphere, as introduced in Definition 61. We define the Borel measure κ′ over W, where
κ′(B(v, ϵ)) =

∫
B(v,ϵ) κ(x, y, z)dxdydz, where B(v, ϵ) = {r′y : cos−1(−→wy · −→wx) > ϵ, ∥−→wy∥ = ∥−→wx∥ =

1, r1 < r′, < r2}. Since κ is a radial measure κ′(B(v, ϵ)) ∝ LC(r·B(v, ϵ)).
By Corollary 26, for every n > max{− log κ′(S), 0}, there exists an open set An, such that

− log κ′(An)=
+ n+K(n). Thus one can upper compute K(n) and enumerate an open A′

n consisting
of a finite union of basis sets B(v, ϵ) such that − log κ′(A′

n)=
+ n+K(n). Let A

′′
n = {x : x ∈ r′ ·A′

n :
r1 < r′ < r2}. Thus − log κ(A

′′
n)=

+ n + K(n). Thus for given (r1, r2), one can create the κ-test

t(x) = supn∈N[x ∈ A
′′
n]2

n−O(1). Thus for x ∈ A
′′
n, Tκ(x)

∗
> 2n. Furthermore − logLC(r · A′

n)=
+ −

log κ′(A′
n)=

+ n+K(n), proving the theorem. □
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Chapter 24

Chain Rule

In this chapter, a chain rule is proved analagously to the proof of Theorem 121 in Chapter 14.
The original proof is in [G2́1]. The difference is this chapter does not deal with computer measure
spaces and κ is an infinite measure.

Definition 68 (Two Point Tests) Given the space Y = R3×R3, a basis extended box q ∈ Q with
respect to Y, are two rational boxs q = (s1, s2), where s1, s2 ∈ S. A simple function f : Y → R≥0

is of the form fs1,s2(x, y) = v[x ∈ s1, y ∈ s2], with v ∈ Q>0. Simple functions can be enumerated
producing the list {fn}. A lower computable function F is of the form F (x, y) = supn∈N fn(x, y)
where N is an enumerable subset of N. Given computable measure µ over {0, 1}∞ and system κ, a
lower computable function F is a (κ, κ)-test, or f ∈ [κ, κ] if

(κ, κ)(F ) =

∫

x1∈R3,x2∈R3

F (x1, x2), dκ(x1)dκ(x2) ≤ 1.

Given κ and µ, the set [κ, κ] is enumerable, so there exists a universal lower computable test
T(κ,κ)(x, y) =

∑
fi∈[κ,κ]m(i|κ)fi(x, y).

Remark 11 (Relativized Typicality) Given a system κ, a typicality score of a point x ∈ R3

relativized to α ∈ {0, 1}∗∞, is Tκ(x|α), which is equal to Tκ(x), except the universal Turing machine
has α on an auxilliary tape. This similarly holds for Tκ,κ(x, y|α). When a point x ∈ R3 is in the
conditional of Tκ, then the universal Turing machine is given acces to some standard representation
of the point.

Definition 69 (Newtonian Complexity) Given system κ, x, y ∈ R3, z ∈ R3 ∪ {0, 1}∗∞,

• Kκ(x|z) = − logTκ(x|z),

• K(κ,κ)(x, y|z) = − logTκ,κ(x, y|z).
Newtonian complexity can take arbitrary values in R ∪ {−∞}. It is the measure of the entropy of
a point in Newtonian space. Computable points will have −∞ Newtonian complexity. Newtonian
complexity cannot take values of ∞, because Tκ is positive over the whole space R3.

Remark 12 In this chapter we prove the following equivalent equations. Let κ be a system.

• Kκ,κ(x, y)=
+Kκ(x) +Kκ(y|x, ⌈Kκ(x)⌉),

• Tκ,κ(x, y)
∗
= Tκ(x)Tκ(y|x, ⌈− logTκ(x)⌉).

Definition 70 Note that we use κwf(w) =
∫
(x,y,z)∈R3 f(x, y, z)dκ(x, y, z).
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24.1 Derivation

Proposition 39 Kκ(x)<
+ − log κy2−Kκ,κ(x,y).

Proof. Let f(x) = − log κy2−Kκ,κ(x,y). The function f is upper computable and has κx2−f(x) ≤ 1.
Due to the universal properties of Tκ and thus minimum property of Kκ, the inequality is proven.
□

Proposition 40 For a computable function f : N2 → N,

Kκ(x|y)<+K(z) +Kκ(x|f(y, z)).

Proof. The function
gκ(x, y) =

∑

z

2−Kκ(x|f(y,z))−K(z),

is lower computable and κxgκ(x, y) ≤
∑

z 2
−K(z) ≤ 1. So gκ(x, y)

∗
< 2−Kκ(x|y). The left hand side

is a summation, so the inequality holds for each element of the sum, proving the proposition. □

Proposition 41 If i < j, then

i+Kκ(x|i)<+ j +Kκ(x|j).

Proof. Using Proposition 40, with f(i, n) = i+ n, we have

Kκ(x|i)−Kκ(x|j)<+K(j − i)<+ j − i.

Definition 71 (G-test) Let the universal Turing machine be relativized to system κ. Let G :
R3 → Z ∩ {−∞} be an upper computable function. We recall that the Kolmogorov complexity of
an upper computable function f : R3 → R ∪ {∞} is K(f), the length of the shortest program to
upper compute it. A G-test is an upper computable function g from R3 × R3 to R≥0 ∪ {∞} such
that κyg(x, y) ≤ 2−G(x).

Proposition 42 Let the universal Turing machine be relativized to system κ. Let G : R3 →
Z∩{−∞} be an upper computable function with K(G) = O(1). There is a universal G-test g where

for any other G-test h, for all x ∈ R3, h(x, ·) ∗
< g(x, ·).

Proof. The algorithm for g is as follows. Given x, it lower computes 2−G(x), it also enumerates
all lower computable f(x, ·) and adds them to the weighted sum with coefficient m(t|κ, x) if κ(f)
is not greater than the current lower computed value of 2−G(x). If a test t has κ(t) ≤ 2−G(x), then
eventually m(t|κ, x)t will be completely added to the weighted sum. Thus g is a universal test.

Proposition 43 Let the universal Turing machine be relativized to system κ. Let G : R3 →
Z ∩ {−∞} be an upper computable function. By Proposition 42, among G-tests g(x, y) there is a
maximal G-test f within a multiplicative constant. For all y,

f(x, y)
∗
= 2−G(x)Tκ(y|x,G(x)).
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Proof. To prove the inequality
∗
>, let g(x, y,m) = maxi≥m 2−iTκ(y|x, i). This function is lower

computable, and decreasing in m. Let g(x, y) = g(x, y,G(x)), which is lower semicomputable since
G is upper semi-computable. The multiplicative form of Proposition 41 implies

g(x, y,m)
∗
= 2−mTκ(y|x,m)

g(x, y)
∗
= 2−G(x)Tκ(y|x,G(x)).

Since Tκ is a test,

κy2−mTκ(y|x,m) ≤ 2−m

κyg(x, y)
∗
< 2−G(x),

which implies

g(x, y)
∗
< f(x, y)/m(g|x) ∗

< f(x, y)2K(G) ∗
< f(x, y)

by the optimality of f(x, y). Note that if G(x) = −∞, g(x, y) = ∞ for all y and thus f(x, y) =
2−G(x)Tκ(y|x,G(x)) = ∞. We now consider the upper bound. For fixed x, 2G(x)f(x, y) is a κ-test,
conditioned on x and G(x). So

2G(x)f(x, y)
∗
< Tκ(y|x,G(x))/m(f |x,G(x)) ∗

< Tκ(y|x,G(x))2K(G) ∗
< Tκ(y|x,G(x)).

□

Theorem 121
Kκ×κ(x, y)=

+Kκ(x) +Kκ(y|x, ⌈Kκ(x)⌉).

Proof. Let f(x, y) = 2−Kκ,κ(x,y). Proposition 39 implies κyf(x, y)
∗
< 2−Kκ(x)+c. Let G(x) =

⌈Kκ(x)⌉ + c for proper choice of c ∈ N. Note that if h is a lower computable function such that

κyh(x, y)
∗
< 2−Kκ(x), then κxκyh(x, y)

∗
< κxTκ(x)

∗
< 1, so h

∗
< f , so f is a universal G-test.

Proposition 27 (noting K(−Kκ) = O(1)) gives

Kκ(x, y) = − log f(x, y)=+G(x) +Kκ(y|x,G(x)).
Kκ(x, y) = − log f(x, y)=+Kκ(x) +Kκ(y|x, ⌈Kκ(x)⌉).

□

Exercise 32 Prove that for system κ, x, y ∈ R3, Tκ,κ(x, y)
∗
> Tκ(x)Tκ(y).
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Part V

Black Holes

177



Chapter 25

Kolmogorov Complexity of Black
Holes

25.1 The CV Correspondence

In this section, Algorithmic Information Theory is applied to the study of the interior of black
holes. The main references for this chapter are [BSZ17, Sus20, BS18]. By abstracting black holes
as quantum circuits, researchers can study the complexity of black holes by solely investigating
complexity theoretic aspects of SU(n), and thus can skip to Section 25.2. This chapter leads to
the following conclusioin

The study of the Kolmogorov complexity of black holes can be reduced to the study of a
random fictious particle in the SU(n) space.

This chapter provides proofs to some of the claims in [BS18] and introduces a new continuous model
that generalizes the discrete case.

In 1935, Einstein and Rosen published a paper describing a wormhole, or “Einstein Rosen
Bridge” (ERB) as seen in Figure 25.1. This connects the parallel universes of regions 1 and 3 of the
Penrose’s Diagram, though prospective explorers should be discouraged, as one must travel faster
than the speed of light to traverse it. However it is theoretically possible for two adventerers to
jump in at either side and meet at the middle. In [MS13], the “ER=EPR” principle was introduced.

Figure 25.1: The Einstein Rosen Bridge.
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This conjectures a link between the Einstein Rosen paper describing wormholes and the Einstein,
Podolsky, Rosen paper describing entanglement. The principle states that entangled black holes
share an ERB between them. This is one resolution to the AMPS Firewall paradox. The way in
which two black holes can be entangled is when multiple EPR entangled pairs clump together and
collapse into two black holes, as seen in Figure 25.2. The volume of ERBs increase over time. To

Figure 25.2: The formation of two entangled black holes. After a certain period of time,
the mass of EPR particles will cause collapses into two black holes.

see this we look at the Penrose diagram of an Ads eternal black hole, or rather two entangled black
holes connected by an ERB, as seen in Figure 25.4. In fact, the rate of of the volume growth is
linear, with

dV (t)

dt
≈ ladsAT.

where t is the anchoring time, A is the horizon area, T is the black hole temperature, and lads is
the AdS length scale. This can be seen in Figure 25.3. This follows directly from the AdS black
hole metric tensor.

Exercise 33 Prove, using the eternal AdS black hole metric, that the Einstein Rosen bridge will
continue to grow linearly.

According to classical generality the ERB will continue to grow forever. This is occurs for an
exponential (in the number of qubits) amount of time. However at some point classical general
relativity will break down due to the quantum reccurrence theorem. The quantum recurrence
theorem states the non-integrable system with a finite density of states will be quasiperiodic with
a recurrence time doubly exponential in the entropy, S. This applies to AdS black holes. One
question is when does the expected value of the wormhole stop growing? In the black hole, there
are only exp(S) number of mutually orthogonal states. Other states must be superpositions of the
previous states, all which have sub-exponential wormhole length. Thus the expected value of the
length of the wormhole must sharply stop growing at time t ≈ expS. Thus the curve of the volume
graph can be seen in Figure 25.5. The question answered is what other property of black holes is
dual to this behavior? In [BSZ17, Sus20, BS18], this question was addressed. The answer cannot
be the entropy, as thermalization occurs at a logarithmically shorter time span. As shown in the
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Figure 25.3: For an initial, exponential amount of time, the ERB will grow linearly.
Eventually, classical general relativity will break down, and the ERB will reach a max
volume.

Figure 25.4: The linear time grow of an ERB in a Penrose diagram. Each horzontal line
represents a time slice, with t = 0 being the center line where quadrants two and four
connect. As time moves up, each slice has a longer volume between the two horizons.
In classical general relativity, the limit is infinity at the singularity.

next section, one can define a notion of the complexity of the black hole, and this notion is has dual
properties as the volume of an ERB. This is known in the literature as the Complexity/Volume
Correspondence, CV Correspondence for short. In addition this is a statement of duality, and not
causation. Recently, linear growth of the circuit complexity of quantum circuits was proven in
[HFK+22], proving the linearity part of the CV Correspondence for circuit complexity. They do
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Figure 25.5: The volume vs. time graph of an ERB as seen in [BS18]. The growth
continues linearly for an exponential amount of time until it eaches exp(S), where S
is the entropy. Small pertubations occur as time continues and once every double
exponential in S time, the volume is expected to dip to near its initial value. The
thermalization of the black hole occurs at a much shorter time scale than the evolution
of the volume of an ERB.
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Figure 25.6: An example of a random circuit with K = 6, k = 2, and depth 4. At each
round the qubits are randomly paired and sent through a random gate. τ is the Rindler
time. This circuit is believed to be a fast scrambler.

not prove oscillations of complexity. The problem is still open for Kolmogorov complexity.

25.2 Black Hole Quantum Circuit Correspondence

Currently it is conjectured that black holes with entropty S can be represented by a random
quantum circuits of K ≈ S qubits. This implies modelling black holes using a stochastic random
model, i.e. with time dependent Hamiltonians. This is assuming the temperature is high enough
such that every degree of freedom carries order one unit of entropy. In addition, whereas the black
hole uses clock time, the quantum circuit uses Rindler time:

tRindler = 2πTtSwarzschild,

where T is the black hole temperature and tSwarzschild is the Swarzschild time from the perspective
of an observer at infinity. Rindler time is preferred because it is dimensionless, like the time used in
circuits in quantum complexity theory. Properties of black holes suggests that the quantum gates
are not restricted by locality. In fact, the allowable interaction between the qubits is k-local and
all-to-all, where k ≪ K is much less than the number of qubits. This is due to the fact that black
holes are fast scramblers (see [SS08]). Fast scramblers mix up information so that any subsystem
smaller than half the whole system has maximum entangled entropy. This is done in logarithm
time. Random k-local quantum circuits are conjectured to be fast scramblers.

The random quantum circuit with k = 2 proceeds as follows. At each discrete time step, K
qubits are randomly paired and each pair is sent through a randomly chosen gate. The specific
gate set is not important, as long as it is universal. At the next step, the qubits are randomly
regrouped, as shown in Figure 25.6.

This represents the discrete abstraction of black holes to quantum circuits. The CV Correspon-
dence states that the behavior of complexity of these circuits over time is a dual to the volume
growth of ERBs, that is they behave according to Figure 25.4. The next sections will be concerned
with defining the Kolmogorov complexity of the circuits and giving support to its version of the
CV Correspondence.
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25.3 Kolmogorov Complexity of Circuits

In [BS18] two definitions of the complexity of circuits C were introduced, one involving quantum
circuit complexity KQ(C) and the other involving Kolmogorov complexity, K(C). Complexity can
be defined on states, but it is more convenient to define the complexity of quantum circuits in
SU(2K). In this manuscript, we will focus solely on Kolmogorov complexity. One naive way to
define K(C) is the minimal size of the program that will print out the circuit. However, this means
that quantum circuits can have unbounded complexity. Instead, the desired approached is to give
the same complexity to circuits that behave similarly, i.e. coarse graining the SU(2K) space.

First we start with the inner product metric between two unitary matrices U, V ∈ SU(2K),

d(U, V ) = arccos (TrU∗V ) (25.1)

where Tr is the normalized trace function. Since maxU,V ∈SU(2K) d(U, V ) = π/2, SU(2K) is a

compact metric space. We then partition SU(2K) space into ϵ ∈ R>0 ball of the same dimension
(22K − 1). From [Sus20, BST03], we get that

# of the number of unitaries ≈
(
2K

ϵ2

)4K/2

(25.2)

log# of the number of unitaries ≈ 4K

2
K log 2 + 4K log

1

ϵ
.

Thus for small enough fixed ϵ and large enough K in the limit we can assume the number of
unitaries is ≈ e4

K
. We provide two definitions for the complexity of a unitary operator. In

[Sus20, BS18, BSZ17], emphasis was put towards studying the circuit complexity, whereas this
chapter will study the Kolmorogov complexity. The benefits of using Algorithmic Information
Theory is that whether one chooses finite strings, infinite sequences, or computable metric spaces,
as shown in this manuscript, oscillations of Kolmogorov complexity, randomness deficiency, or
algorithmic entropy is guaranteed to occur in dynamics. The hard part is to show the linear
increase of the expected value at the beginning of the dynamics. This was recently proven in the
quantum circuit complexity case [HFK+22].

Definition 72 (Kolmogorov Complexity of a Unitary Operator) We define an algorithm
A that takes in K and ϵ as parameters and labels each epsilon ball of SU(2K) with a unique
string of length 4K . Furthermore we assume A is the simpliest program to perform this task. The
Kolmogorov complexity of a unitary operator U is equal to the Kolmogorov complexity K(x) of the
label x of the epsilon ball which U is in. The universal Turing machine is relativized to K. One may
argue that the labelling is arbitrary, but given labeling algorithm B, |KA(U)−KB(U)|<+K(A,B).
Thus all simple labellng algorithms will provide the approximately the same complexity. Further-
more the node corresponding to the epsilon ball that has the identity matrix 1 will have Kolmogorov
complexity O(1).

Definition 73 (Circuit Complexity of a Unitary Operator) Let G be the allowable gate set,
that is k-local, all-to-all circuits. The circuit complexity of a unitary operator, KQ(U) is the mini-
mum size of a sequence of gates g1, g2, . . . , gn ∈ G such that g1g2 . . . gnU = 1, where 1 is the identity
operator.

25.4 Graph Interpretation

The discretation of the SU(2K) space can be modeled with a undirected graph, termed G(K). The
dynamics of the black hole is approximated by a random walk on this graph. Each node corresponds
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1. # of vertices is ≈ e4
K

Fact

2. G(K) is regular and sparse with degree ≈
(
2K
e

)K
2 Fact

3. G(K) is vertex transitive Fact

4. The diameter of G(K) is logarithmic in the number vertices Conjecture

5. Loops of length less than 4K are rare or absent. Conjecture

6. G(K) is an expander graph Conjecture

Figure 25.7: The proven and conjectured properties of G(K) representing unitary op-
erators where the evolution of the quantum circuit is equivalent to a random walker.

to an epilson ball and its label is equal to the A-label of the epsilon ball. Two nodes share an edge
if there is a permissible gate g ∈ G that connects the epsilon balls. The graph G(K) is undirected,
implying if g ∈ G, then so is g∗ ∈ G. Since the SU group space is homogeneous, G(K) is vertex
transitive. At each vertex, the number of possible choices in the discrete evolutationary step is the
same, equalling

d ≈ K!

(K/2)!
≈
(
2K

e

)K
2

Since the number of vertices of G(K) is ≈ e4
K
, the graph is sparse. Furthermore, assuming minimal

collisions, the number of unitaries reached after D steps is conjectured to be

Number of unitaries after d steps = dD ≈
(
2K

e

)DK/2
. (25.3)

Thus approximately, the diameter is not larger than the number of steps it takes for all unitaries
reached, so combining Equations 25.2 and 25.3.

(
2K

e

)Diameter/2

≤
(
2K

ϵ2

)4K/2

Diameter ≤ 4K
(
2 + 3

| log ϵ|
logK

)
.

Thus assuming minimal collisions, the diameter is logarithmic in the number of vertices of G(K).
All the properties described or conjectured implies that G(K) is an expander graph. To recap,
Figure 25.7 shows proved and conjectured properties about G(K).

Assuming scarcity of small loops, locally at each vertex, the graph G(K) looks like the exponen-
tial expansion shown in Figure 25.8. Thus a random walk on G(K) corresponds to random motion
in the SU(2K) space, as shown in Figure 25.9. Assume that all the conjectured properties of G(K)
hold. At each vertex, there are d choices for the random walk. Therefore, using the assumption that
there are virtually no loops less than 4K , the expected Kolmogorov complexity of the vertex will
increase by log d ≈ K logK at each step until the max of 4K is reached. Because we assume we are
working with an regular expander graph, the distribution over the vertices from the random walk
will converge to the uniform distribution in logarithmic time, that is 4K steps. We will show this
property in the next section. At this point, with a uniform stationary distribution, the Kolmogorov
complexity of the random walker will oscillate, with a dip of n points of complexity will occur every
e4
K

expected steps. Thus Figure 25.10 shows the behavior of the complexity of the system. The
similarity of Figures 25.5 and 25.10 represent the Complexity-Volume Correspondence.
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Figure 25.8: If G(K) has only minimal loops of subexponential size, then locally at each
vertex, G(K) looks like the following graph, where there is an exponential expansion.

25.5 Sufficient Conditions for Linear Growth

In this section, we provide two sufficient conditions for linear growth the Kolmogorov complexity
of black holes, namely, expander graphs and exponentially small return probabilities. When we
use the graph G(K), we assume the universal Turing machine U is relativized to K and thus by
extension, G(K). Let M(K) be the random walk matrix of G(K), where vertex i goes to vertex j
with probability M(K)i,j . We assume G(K) has 2n vertices.

Definition 74 (Expected Complexity) Given probability π over the vertices of G(K), its ex-
pected complexity value is K(π) =

∑
Vertex v∈G(K) π(v)K(v).

Let d(K) be the vertex degree of G(K). For probability π over G(K), πt is used to denote πM t.

Proposition 44 For any distribution π over G(K), K(π)<+K(π1)<+K(π) + log d(K).

Proof. The second inequality follows from the fact that if vertices v and w are connected by an
edge then K(v)<+K(w) + log d(K). For the first inequality, we assume π is concentrated on a
single vertex x, and the general case follows simply. Assume K(π1) < K(π)− b, for some constant

b to be determined later. Let xi be the neighbors of x, for i ∈ {1, . . . , d}. Thus 1
d(K)

∑d(K)
i=1 K(xi) ≤

K(x)− b. So m(x)
∗
>
∑d(K)

i=1 2−K(xi)−log d(K) ∗
= Ei∼Uniform[2

−K(xi)]
∗
> 2−Ei∼Uniform[K(xi)]

∗
> 2−K(x)+b.

This is a contradiction for large enough b. □
The following corollary generalizes Proposition 44.

Corollary 47 For any distribution π over G(K), K(π)<+K(πt) +K(t).
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Figure 25.9: The random walk along the approximating graph G(K) corresponds to the
dynamics of an eternal AdS black hole in SU(2K) space. The random walk starts at
the identity matrix 1.

Proof. We assume π is concentrated on a single vertex x, and the general case follows sim-
ply. Assume K(πt) < K(π) − b − K(t), for some constant b to be determined later. Let pi
be the probability x travels to node xi in a random walk of size t. This is also equal to the
probability that xi travels to x in t random steps. Thus

∑
i piK(xi) ≤ K(x) − b − K(t). So

m(x)
∗
>
∑

i 2
−K(xi)−log pi−K(t) ∗

= 2−K(t)Ei∼pi [2
−K(xi)]

∗
> 2−K(t)2−Ei∼pi [K(xi)]

∗
> 2−K(x)+b. This is a

contradiction for large enough b. □

25.5.1 Expander Assumption

In this section, we assume G(K) is an expander graph, that is we assume properties 1, 2, 3, and
6 of Figure 25.7. Let u(K) be the uniform distribution over the vertices of G(K). We define the
following expander property of graphs.

Assumption 1 (Expander Graphs) Let λ(K) be the second largest eigenvalue of M(K). An-
other equivalent definition is

λ(K) = max
π

∥πM(K)− u(K)∥
∥π − u(K)∥ = max

x⊥u(K)

∥xM(K)∥
∥x∥ .
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Figure 25.10: The time evolution of the Kolmogorov complexity of a quantum circuit
modelling the black hole. The complexity/time graph parallels the evolution of the
volume growth of the ERB, as shown in Figure 25.5.

Thus the maximum is over all probability π over the vertices of G(K). The term x ⊥ u(K) means
the sum of the components of x is 0. By definition λ(K) ∈ [0, 1]. The lower the λ(K) score, the
higher the expanding qualities of G(K). In this section, it is assumed that the expansion property
of the graphs is supk λ(K) = λ < 1.

One useful property of expanders is that random walks will converge to the stationary probability
in logarithmic time, as shown by the following well known theorem.

Theorem 122 For every initial distribution π over the vertices of G(K),

|πt − u(K)|∞ ≤ λt.

Definition 75 The entropy of a distribution π over G(K) is H(π) = −∑i∈G(K) πi log πi.

Proposition 45 ([G2́1]) K(π) ≥ H(π).

Proof. H is the size of the smallest π-expected length of a prefix free encoding of the vertices of
G(K). Since K is a prefix free code, it majorizes H.

We assume a fixed K and remove its notation, and assume |G| = 2n.

Theorem 123 Given Assumption 1, for probability πt concentrated on the node in G with the
identity matrix, for 0 < t < n/(log(1/λ)), t log(1/λ)− 1 ≤ K(πt) < t(log d+O(1)).
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Proof. The upper bound is from Proposition 44. For the lower bound, let pMax = maxi pi, where
p is a probability over G. It is easy to see that H(p) ≥ pMax. Using Proposition 45 and Theorem
122, one gets for 0 < t ≤ n/(log /λ),

K(πt) ≥ H(pt) ≥ − log πtMax ≥ − log(λt + 2−n),

and the theorem follows directly.

25.5.2 Return Probability Assumption

The graphsG(K) are vertex transitive graphs. We fix aK and remove its notation, and let |G| = 2n.
Let ψ(v, w, t) be the probability that a node v is on node w after a random walk of t steps.

Assumption 2 (Exponential Return Probability) In this section we assume that there is a
λ ∈ (0, 1), such that for all random walks of G of size 0 < 1 < n/(log(1/λ)), p(v, v, 2t) < λt.

Theorem 124 Given Assumption 2, for probability π concentrated on the node in G with the
identity matrix, for 0 < t < n/(log(1/λ)), we have that t log(1/λ) ≤ K(π2t) < 2t(log d+O(1)).

Proof. The upper bound is from Proposition 44. For the lower bound, due to [AS04], since G is
vertex transitive, we have that p(u, u, 2t) ≥ p(u,w, 2t) for v, w ∈ G, v ̸= w. Thus, using Proposition
45,

K(π2t) ≥ H(π2t) ≥ − log p(u, u, 2t) ≥ t log(1/λ).

25.6 Weighted Random Walker

Assume that the stochastic random model is much more chaotic, and the dynamics are not modelled
as a random walk on G(K), but a walk along a recurrent markov model M(K). In this section, we
investigate what properties can be proven. If one assumes M(K) has expander properties, then by
Section 25.5.1, the expected complexity reaches the maximum in time ≈ 4K .

The following proposition shows that oscilliations in complexity have to occur, though it might
be more frequent than the G(K) case. Let p be the computable ergodic measure corresponding
to the weighted walk on M(K), and for simplicity suppose there are 2n vertices. Each vertex is
assigned a string x ∈ {0, 1}n and the complexity of the vertex is the Kolmogorov complexity of the
string, K(x). We first prove the simple bounds and then prove the more complex tighter bounds.

25.6.1 Simple Bounds

Proposition 46 There is a c where for probability p over {0, 1}n, for all m > K(p) + c,
p{x : K(x) < m} > 2m−2K(m,p)−n−c.

Proof. Order strings x of size n by p(x) value, with largest values first, and breaking ties through
any simple ordering on {0, 1}n. It must be the first 2ℓ strings X has p(X) ≥ 2ℓ−n−1 Otherwise
the average value of p(x), x ∈ X, is less than 2−n−1. Thus for the remaining 2n − 2ℓ strings Y ,
p(y) < 2−n−1, So

p({0, 1}n) = p(X) + P (Y )

< 2ℓ−n−1 + (2n − 2ℓ)(2−n−1)

= 2ℓ−n−1 + 2−1 − 2ℓ−n−1

= 1/2,
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which is a contradiction. Furthermore, the first 2ℓ elements x have complexity K(x|p)<+ ℓ+K(ℓ)
or K(x)<+K(p, ℓ) + ℓ. Let m = ℓ+K(ℓ, p) +O(1). By Proposition 48, m− 2K(m, p)<+ ℓ. □

Proposition 47 For every c, n ∈ N, there exists c′ ∈ N where for all a, b ∈ N, if a < b+n log a+ c
then a < b+ 2n log b+ c′.

Proof.

log a < log b+ log log a+ log cn

2 log a− 2 log log a < 2 log b+ 2 log cn

log a < 2 log b+ 2 log dn.

Combining with the original inequality

a < b+ n log a+ c

a < b+ n(2 log b+ 2 log dn) + c

= y + 2n log y + c′,

where c′ = 2n log cn+ c. □

Proposition 48 For all d ∈ N there is a d′ ∈ N where if x + K(x, z) + d > y then x + d′ >
y − 2K(y, z).

Proof. If x+ d > y, then the lemma is satisfied, so x+ f ≤ d. Thus y − x < K(x, z) + d implies
K(y−x)<+ 2 logK(x, z)+2 log d. Thus K(x, z)<+K(y, z)+K(y−x)<+K(y, z)+2 logK(x, z)+
2 log d. Applying Proposition 47, where a = (x, z), b = (y, z) and c = 2 log d+O(1) and n = 2, we
get a c′ dependent on c and n where K(x, z) < K(y, z) + 4 logK(y, z) + c′ < 2K(y, z) + c′ +O(1).
So

x+K(x, z) + d > y

x+ (2K(y, z) + d′ +O(1)) + d > y

x+ d′′ > y − 2K(y, z),

where d′′ = d′ +O(1) + d. □

25.6.2 Tighter Bounds

Theorem 125 There is a c ∈ N where for probability p over {0, 1}n, for m > K(p) + c,
p{x : K(x) < m} > 2m−n−2I(p;H)−O(K(n,m)).

Proof. Without loss of generality, p can be assumed to have a range in powers of 2. Assume not,
then there exist ℓ ∈ (K(p)+c, n) such that p{x : K(x) ≤ ℓ} < 2−k, where k = n− ℓ−c−2I(p;H)−
O(K(n, ℓ)) and c solely depends on the universal Turing machine. K(k)<+K(n, ℓ, c, I(p;H),K(n, ℓ)).
Suppose max{p(x) : K(x) > ℓ} ≥ 2−k. Then

K(p) +O(1) > K
(
argmax

x
p(x)

)
> ℓ > K(p) + c,
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causing a contradiction, for choice of c dependent on U . Sample 2k−2 elements D without replace-
ment according to p. p∗ is the probability of D, where K(p∗)<+K(p, n, ℓ,K(n, ℓ), c, I(p;H)). Even
if every element x chosen has p(x) = 2−k−1, the total p mass sampled is not greater than

2k−12k−2 ≤ 2−3.

The probability q that all x ∈ D has K(x) > ℓ is

q >
(
1− 2−k/(1− 2−3 + 2−k)

)2k−2

>
(
1− 2k+1

)2k−2

= 1/2.

Thus, by Lemmas 2 and 1,

Pr
S∼p∗

[I(S;H) > I(p∗;H) +m]
∗
< 2−m,

Pr
S∼p∗

[I(S;H) > I((p, n, ℓ,K(n, ℓ), I(p;H));H) +m]
∗
< 2−m.

So by probabilistic arguments, there exists D ⊂ {0, 1}n, where for all x ∈ D, K(x) > ℓ and

I(D;H)<+ I(p∗;H)<+ I((p, c, n, ℓ,K(n, ℓ), I(p;H));H)<+ I(p;H) +K(ℓ, n, I(p;H), c).

So by Lemma 20, applied to D and the uniform measure Un over strings of length n,

k <max
a∈D

d(a|Un) + I(D;H) +O(K(I(D;H), k, Un))

n− ℓ+ c+O(K(ℓ, n)) + 2I(p;H) <n− ℓ+K(n) + I(p;H) +O(K(n, ℓ, c, I(p;H)))

c <O(K(c)).

which is a contradiction for large enough c dependent solely on the universal Turing machine
U . □

25.7 Continuous Model

In this section, we examine the feasibility a continuous version to the discrete random walk on
G(K). The time is still discrete and the evolution is still k-local and all-to-all, but at each time
step, each gate is a random 2k unitary operator instead of being chosen from a finite gate set. Thus
the state space is all of SU(2K) instead of an approximating graph.

To this end, let X (K) = (SU(2K), dK , Q(K)) be a sequence of parameterized computable metric
spaces. As stated before, SU(2K) is the set of all K-qubit unitary operators. The distance function
dK : SU(2K)× SU(2K) → [0, π/2] is the inner product distance defined in Equation 25.1. The set
of ideal points Q(K) is all K-qubit operators with rational coefficients. The volume measure µK
is the Haar measure over SU(2K) multiplied by e4

K
, which due to [PSZ20], is computable. Thus

(X (K), µK) is a computable probability measure space.
One property of HµK is that it can take arbitrary negative values which is not desirable. To

this end we redefine HµK . A capped, parameterized, uniform test takes in a natural number K and
a measure µ over SU(2K), and outputs a µ-test over SU(2K), of the form SU(2K) 7→ [0, 1]. Notice
that each test cannot have a value more than 1 which differs from the original definition of uniform
tests. Using slightly modified reasoning of Lemma 17, there exists a universal test tK,µK (x), that
multiplicatively dominates all capped parameterized uniform tests. The complexity of a unitary
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operator U is defined using this test, with HK(U) = − log tK,µK (U). By definition, for each K,
HK takes values between 0 and 4K , which is the desired property to have.

The evolution operator randomly groups k qubits together then applies a random k-qubit uni-
tary operator on them, distributed according to the Haar measure distribution over SU(2k).

However, as shown in [HFK+22], the set of unitary operators U ∈ SU(2K) formed from less than
an exponential number of gates has measure 0 with respect to the Haar measure over SU(2K). This
leads one to conjecture that HK(U) = 0, diverging from the linear complexity conjecture. Thus it
appears that the best way to characterize black holes with algorithmic information theory is with
coarse-graining.
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Part VI

Independence Postulate
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Chapter 26

Physics and the Independence
Postulate

The Many Worlds Theory (MWT) was formulated by Hugh Everett [Eve57] as a solution to the
measurement problem of Quantum Mechanics. Branching (a.k.a splitting of worlds) occurs during
any process that magnifies microscopic superpositions to the macro-scale. This occurs in events
including human measurements such as the double slit experiments, or natural processes such as
radiation resulting in cell mutations.

One question is if MWT causes issues with the foundations of computer science. The physical
Church Turing Thesis (PCTT) states that any functions computed by a physical system can be
simulated by a Turing machine. A straw man argument for showing MWT and PCTT are in
conflict is an experiment that measures the spin of an unending number of electrons, with each
measurement bifurcating the current branch into two sub-branches. This results in a single branch
in which the halting sequence is outputted. However this branch has Born probability converging
to 0, and can be seen as a deviant, atypical branch.

In fact, conflicts do emerge between MWT and Algorithmic Information Theory. In particular,
the Independence Postulate (IP) [Lev84, Lev13] is a finitary Church-Turing thesis, postulating that
certain infinite and finite sequences cannot be found in nature, i.e. have high “addresses”. One
class of of forbidden sequences are large prefixes of the halting sequence. One such set of forbidden
sequences is large prefixes of the halting sequence. If a forbidden sequence is found in nature, an
information leak will occur. However MWT represents a theory in which such information leaks
can occur.

Another promising area of research is Constructor Theory (CT) [Deu13] with main proponents
David Deutsch and Chiara Marletto. CT aims to unify many areas of science with counterfactuals.
Counterfactuals describe which processes that can occur or not occur. These counterfactuals are
principles which it is conjectured that all laws of physics must adhere to. The basis tenet of CT is
[Deu15]

All other laws of physics are expressible entirely in terms of statements about which
physical transformations are possible and which are impossible, and why.

In an online colloquium [Soc22], David Deutsch was asked if Gödel’s Incompleteness Theorem
or the halting problem would be incorporated into CT. David Deutsch responded with:

“No they wouldn’t, at least we don’t expect them to be added because those issues only
arise in infinite sets and constructor theory regards. . . physical systems as always finite.
It only makes statements about finite systems.”
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However, among other things, IP is a finitary version of the halting problem, so we believe it
must be reconciled with CT. The main issue is the following question. Is it possible or impossible
to create or find a large prefix of the halting sequence? Is this even a well formed (answerable)
question? For example, it is possible to create one such large prefix h one were to find any y of the
same length and y ⊕ h. But obviously such a construction seems lacking.

26.1 The Independence Postulate

In [Lev84, Lev13], the Independence Postulate, IP, was introduced:

Let α ∈ {0, 1}∗∞ be a sequence defined with an n-bit mathematical statement (e.g., in
Peano Arithmetic or Set Theory), and a sequence β ∈ {0, 1}∗∞ can be located in the
physical world with a k-bit instruction set (e.g., ip-address). Then I(α : β) < k+n+ c,
for some small absolute constant c.

Exercise 34 Show that assuming IP, finite strings with recursive description that are much higher
than higher-level math descriptions will have large addresses.

Exercise 35 Describe how conservation inequalities, such as Theorem 2 and Lemma 2 support IP.

The I term is an information measure in Algorithmic Information Theory. For this chapter, the
information term used is I(x : y) = K(x) +K(y)−K(x, y), where K is the prefix-free Kolmogorov
complexity. This definition of I can be used because the thought experiment only deal with finite
sequences.

Let Ωm be the first m bits of Chaitin’s Omega (the probability that a universal Turing machine
will halt). It is well known thatm<+K(Ωm). Furthermore Ωm can be described by a mathematical
formula of size O(logm). Thus by IP, where Ωm = α = β, Ωm can only be found with physical
addresses of size at least m − O(logm). Thus finding any sufficiently large sequence Ωm is not
physically possible. This is due to fact that the observable universe is 8.8 × 1026 meters across
and a transistor can only be made to be 2× 10−9 meters long. Thus if the minimum length of an
address for a sequence is greater than a thousand, it cannot exist in nature. This sentiment was
reflected in [Lev13], where sequences with small addresses are called “physical”, and thus sequences
with only high addresses are “unphysical”. As we shall see in the next parts of this chapter, the
sequence Ωm for large enough m will cause trouble for both MWT and CT.

26.2 Many Worlds Theory

Some researchers believe there is an inherent problem in quantum mechanics. On one hand, the
dynamics of quantum states is prescribed by unitary evolution. This evolution is deterministic and
linear. On the other hand, measurements result in the collapse of the wavefunction. This evolution
is non-linear and nondeterministic. This conflict is called the measurement problem of quantum
mechanics.

The time of the collapse is undefined and the criteria for the kind of collapse are strange. The
Born rule assigns probabilities to macroscopic outcomes. The projection postulate assigns new
microscopic states to the system measured, depending on the the macroscopic outcome. One could
argue that the apparatus itself should be modeled in quantum mechanics. However it’s dynamics is
deterministic. Probabilities only enter the conventional theory with the measurement postulates.
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MWT was proposed by Everett as a way to remove the measurement postulate from quantum
mechanics. The theory consists of unitary evolutions of quantum states without measurement
collapses. For MWT, the collapse of the wave function is the change in dynamical influence of one
part of the wavefunction over another, the decoherence of one part from the other. The result is a
branching structure of the wavefunction and a collapse only in the phenomenological sense.

26.2.1 Branching Worlds

An example of a branching of universes can be seen in an idealized experiment with a single
electron with spin |ϕ↑⟩ and |ϕ↓⟩. This description can be found in [SBKW10]. There is a measuring
apparatus A, which is in an initial state of |ψA

ready⟩. After A reads spin-up or spin-down then it

is in state |ψA
reads spin ↑⟩ or |ψA

reads spin ↓⟩, respectively. The evolution for when the electron is solely
spin-up or spin-down is

|ϕ↑⟩ ⊗ |ψA
ready⟩

unitary−→ |ϕ↑⟩ ⊗ |ψA
reads spin ↑⟩

|ϕ↓⟩ ⊗ |ψA
ready⟩

unitary−→ |ϕ↓⟩ ⊗ |ψA
reads spin ↓⟩ .

Furthermore, one can model the entire quantum state of an observer O of the apparatus, with

|ϕ↑⟩ ⊗ |ψA
ready⟩ ⊗ |ξOready⟩

unitary−→ |ϕ↑⟩ ⊗ |ψA
reads spin ↑⟩ ⊗ |ξOready⟩

unitary−→ |ϕ↑⟩ ⊗ |ψA
reads spin ↑⟩ ⊗ |ξOreads spin ↑⟩

|ϕ↓⟩ ⊗ |ψA
ready⟩ ⊗ |ξOready⟩

unitary−→ |ϕ↓⟩ ⊗ |ψA
reads spin ↓⟩ ⊗ |ξOready⟩

unitary−→ |ϕ↓⟩ ⊗ |ψA
reads spin ↓⟩ ⊗ |ξOreads spin ↓⟩ .

For the general case, the electron is in a state |ϕ⟩ = a |ϕ↑⟩ + b |ϕ↓⟩, where |a|2 + |b|2 = 1. In this
case, the final superposition would be of the form:

a |ϕ↑⟩ ⊗ |ψA
reads spin ↑⟩ ⊗ |ξOreads spin ↑⟩

+b |ϕ↓⟩ ⊗ |ψA
reads spin ↓⟩ ⊗ |ξOreads spin ↓⟩ .

This is a superposition of two branches, each of which describes a perfectly reasonable physical
story. This bifurcation is one method on how the quantum state of universe bifurcates into two
branches.

26.2.2 Müller’s Theorem Revisited

Quantum computers have an interesting interpretation with respect to MWT. A quantum com-
puter is realized by a number of qubits which can implemented in a number of ways such as trapped
ions that behave as magnets. The qubits are isolated from the outside environment to make the
decoherence time as long as possible. When the quantum computation begins, unitary transforms
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are performs on the qubits, which in the context of MWT, causes an exponential branching on
worlds, each containing a different qubit value. The operations of the quantum computer cause
interference effects between the branches until a measurement at the end produces the same result
for all branches. Müller’s Theorem provides concrete limitations to this computational power.

Interaction between branches provides no benefit in compressing classical information.

26.2.3 Deriving the Born Rule

In the author’s opinion, one of the main problems of MWT is its reconciliation of the Born
rule, for which no proposed solution has universal consensus. In standard quantum mechanics,
measurements are probabilistic operations. Measurements on a state vector |ψ⟩, which is a unit
vector over Hilbert space H, are self-adjoint operators O on H. Observables are real numbers that
are the spectrum Sp(O) of O. A measurement outcome is a subset E ⊆ Sp(O) with associated
projector PE on H. Outcome E is observed on measurement of O on |ψ⟩ with probability P (E) =
⟨ψ|PE |ψ⟩. This is known as the Born rule. After this measurement, the new state becomes
PE |ψ⟩ /

√
⟨ψ|PE |ψ⟩. This is known as the projection postulate.

However, the Born rule and the projection postulate are not assumed by MWT. The dynamics
are totally deterministic. Each branch is equally real to the observers in it. To address these
issues, Everett first derived a typicality-measure that weights each branch of a state’s superposition.
Assuming a set of desirable constraints, Everett derived the typicality-measure to be equal to the
norm-squared of the coefficients of each branch, i.e. the Born probability of each branch. Everett
then drew a distinction between typical branches that have high typicality-measure and exotic
atypical branches of decreasing typicality-measure. For the repeated measurements of the spin of
an electron |ϕ⟩ = a |ϕ↑⟩ + b |ϕ↓⟩, the relative frequencies of up and down spin measurements in a
typical branch converge to |a|2 and |b|2, respectively. The notion of typicality can be extended to
measurements with many observables.

In a more recent resolution to the relation between MWT and probability, Deutsch introduced
a decision theoretic interpretation [Deu99] that obtains the Born rule from the non-probabilistic
axioms of quantum theory and non-probabilistic axioms of decision theory. Deutsch proved that
rational actors are compelled to adopt the Born rule as the probability measure associated with
their available actions. This approach is highly controversial, as some critics say the idea has
circular logic.

Another attempt uses subjective probability [Vai98]. The experimenter puts on a blindfold
before he finishes performing the experiment. After he finishes the experiment, he has uncertainty
about what world he is in. This uncertainty is the foundation of a probability measure over the
measurements. However, the actual form of the probability measure needs to be postulated:

Probability Postulate. An observer should set his subjective probability of the outcome of a
quantum experiment in proportion to the total measure of existence of all worlds with that outcome.

Whichever explanation of the Born rule one adopts, the following section shows there is an issue
with MWT and IP. There exist branches of substantial Born probability where information leaks
occurs.
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26.3 Violating the Independence Postulate

IP can be violated in the following idealized experiment measuring the spin |ϕ↑⟩ and |ϕ↓⟩ of m
isolated electrons. We denote |ϕ0⟩ for |ϕ↑⟩ and |ϕ1⟩ for |ϕ↓⟩. The “address” (in the sense of IP)
of this experiment (such as the physical address of the Large Hadron Collider) is < O(logm). The
measuring apparatus will measure the spin of m electrons in the state |ϕ⟩ = 1

2 |ϕ↑⟩+ 1
2 |ϕ↓⟩. There

is a measuring apparatus A with initial state of |ψA⟩, and after reading m spins of m electrons, it
is in the state |ψA[x]⟩, where x ∈ {0, 1}m, whose ith bit is 1 iff the ith measurement returns |ϕ1⟩.

The experiment evolves according to the following unitary transformation:

m⊗

i=1

|ϕ⟩ ⊗ |ψA⟩ unitary−→
∑

a1,...,am∈{0,1}m
2−m/2

m⊗

i=1

|ϕai⟩ ⊗ |ψA[a1a2 . . . am]⟩ .

If the bits returned are Ωm then a memory leak of size m−O(logm) has occurred, because Ωm
has been located by the address of the experiment, which is O(logm). Thus

Born-Probability(a memory leak of size m−O(logm) occurred) ≥ 2−m.

26.4 Reconciling MWT and IP

There are multiple variations of MWT when it comes to consistency across universes. In one
formulation, all universes conform to the same physical laws. In another model, each universe has
its own laws, for example different values of gravitational constant, etc. However, the experiment
in the previous section shows that mathematics itself is different between universes, regardless of
which model is used. In some universes, IP holds and there is no way to create information leaks. In
other universes information leaks occur, and there are tasks where randomized algorithms fail but
non-algorithmic physical methods succeeds. One such task is finding new axioms of mathematics.
This was envisioned as a possibility by Gödel [G6̈1], but there is a universal consensus of the
impossibility of this task. Not any more! In addition, because information leaks are finite events,
the Born probability of worlds containing them is not insignificant. In such worlds, IP cannot
be formulated, and the the foundations of Algorithmic Information Theory itself become detached
from reality.

Formulated another way, let us suppose the Born probability is derived from the probability
postulate. We have a “blindfolded mathematician” who performs the experiment described above.
Before the mathematician takes off her blindfold, she states the Independence Postulate. By the
probability postulate, with measure 2−m over all worlds, there is a memory leak of sizem−O(logm)
and IP statement by the mathematician is in error.

26.4.1 The Probability Rebuttal

As a rebuttal, one can, with non-zero probability, just flip a coin N times and get N bits of
Chaitin’s Omega. Or more generally, how does one account for a probability P over finite or
infinite sequences learning information about a forbidden sequence β with good probability? Due
to probabilistic conservation laws [Lev74, Lev84], we have

Pr
α∼P

[I(α : β) > I(⟨P ⟩ : β) +m]
∗
< 2−m.
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Thus the probability of a single event creating a leak is very small. However if many events occur,
then the chances of a memory leak grows. However as there is many events, to locate one such
leak, one will probably need a long address to find the leak, balancing out the IP equation.

This still leaves open the possibility of a memory leak occurring at an event with a small address.
For example, say someone assigns a random 1 trillion bit sequence to every ip-address. What are
the chances that one of them is Ω1012? Since there are a small number of events that have a small
address, the probability of a significant memory leak is extremely small. In physics on can postulate
away events with extremely small probabilities. For example, the second law of thermodynamics
states that entropy is non-decreasing, postulating away the extremely unlikely event that a large
system suddenly decreases in thermodynamic entropy, i.e. a broken vase forming back to together.

26.4.2 Memory Leaks

There is no way to postulate away such memory leaks in MWT. Assuming the probability postulate,
probability is a measure over the space of possible worlds. Thus when Bob now threatens to measure
the spin of m particles, Alice now knows 2−m of the resultant worlds will contain m bits of Chaitin’s
Omega, violating IP.

26.5 Constructor Theory

CT aims to define a set of principles, or counterfactuals that constrain how laws of the physics. For
more motivation onCT, I refer the readers to [Deu13, Mar21]. Fundamental inCT are constructors
which change substrates,

Input Substrate
Constructor−−−−−−−→ Output Substrate.

A constructor task A is a set of pairs each designating an input state for the task and an output
state for that input. For example,

A = {x1 → y1, x2 → y2, . . . }.

A constructor is capable of performing task A, if whenever it is given a substrate in a input
attribute of A, it transforms them to one of the output attribute that A associates with that input.

Definition 76 A task A is impossible if there is a law of physics that forbids it being carried out
with arbitrary accuracy and reliably by a constructor. Otherwise, A is possible, with A✓.

However a possible task is not guaranteed to occur. The central tenet of CT is that the laws of
physics must conform to a set of counterfactuals or principles which are statements on whether
tasks are possible or impossible. CT has been applied to large number of areas, including (but not
limited to) classical information, quantum information theory, probability, life, and thermodynamics
[Deu13, Deu15, Mar15, Mar16]. In the next section we will review the intersection of CT and
information.

26.5.1 Information

In my opinion, the most successful endeavour of CT is its application to classical and quantum
information. We review the work in [Deu15]. Any set of disjoint attributes is called a varriable.
Whenever a substrate is in a state with attribute x ∈ X, where X is a variable, we say X is
sharp with value x. Einstein’s (1949) principle of locality has an intepretation as a counterfactual
[Deu15],
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There exists a mode of description such that the state of the combined system S1 ⊕ S2

of any two substrates S1 and S2 is the ordered pair (x, y) of the states x of S1 and y of
S2, and any construction undergone by S1 and not S2 can change only x and not y.

The theory of information relies on a CT theoretic description of computation. A reversible com-
putation CΠ(S) is the task of performing a permutation Π over some set S of at least two possible
attributes of some substrate:

CΠ(S) =
⋃

{x→ Π(x)} .

A computation variable is a set S of two or more possible attrbutes for which C✓
Π for all permutation

Π over S. A computation medium is a substrate with at least one computation variable. With
computation formalized, we are now ready to define information.

The cloning task for a set S of possible attributes of substrate S is the task

Rs(x0) =
⋃

{(x, x0) → (x, x)}.

on substrate S ⊕ S, where x0 is some attribute realizable from naturally occurring resources. We
will revisit this statement later. An information variable is a cloneable computation variable. An
information attribute is a member of an information variable, and an information medium is a
substrate that has at least one information variable.

A set X of possible attributes of a substrate S is distinguishable if

(⋃

x∈X
{x→ Ψx}

)✓

,

where {Ψx} is a information variable. If the original substrate continues to exist and the process
stores its result in a second output substrate, the input variable X is measurable:

(⋃

x∈X

{
(x, x0) → (yx, ‘x

′}
)✓

.

The output substrate is prepared with a ‘receptive’ attribute x0. We introduce the task of preparing
a substrate. A variable X in a substrate S is preparable if there is a information medium R with
an information variable W and a possible task A✓ such that for all x ∈ X there is a w(x) ∈ W
such that {w(x) → x} ∈ A. Thus (⋃

x∈X
{w(x) → x}

)✓

.

26.6 Reconciling CT and IP

We discuss three issues between IP and CT. First, we recall from Section 26.3, that Ωm is a
forbidden string, and can only be found with a physical address of size at least m − O(logm).
However the following principle [Deu15] states

VI. Any number of instance of any information medium, with any one of its information-
instantiating attributes, is preparable from naturally occurring substrates.
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Take the information medium of a computer that has information variable {0, 1}m, for very large
(but finite) m. By Principle VI, Ωm can be prepared by naturally occurring substrates. However
IP postulates that all such Ωm cannot be found without an address almost the size of Ωm. There is
a difference in language from “naturally occurring substrates” and “high address” but the conflict
remains.

We point out the second issue. An information variable S is a (cloneable) computation variable,
such that every task permuting S with permutation Π is possible. Let the information variable
S consist of all strings of length m for very large m. Let Π be a permutation that sends 0m to
Ωm. By definition 76, this task is possible because there are no laws of physics which forbid this
transformation to occur. However if this task is possible, 0m is an address that can be compressed
to a O(logm) address for Ωm, contradicting IP. Thus by IP no information variables can exist.

We now point out the third issue. Let us say there is a task B that maps a preparable variable
S in a substrate S to a measurable variable T in substrate T. Since S is preparable, there is an
information medium R with information variable R that can be mapped onto X with possible
task A. Furthermore, since T is measurable, it can be mapped onto an information variable U in
an information medium U with possible task C. In CT, one must conclude either the task A is
possible or impossible. Assume A is possible. Then the combined task

(ABC)✓

is possible. However if ABC sends 0m to Ωm, then by IP, the combined task is impossible, and
thus task B is impossible. So now the question of possibility or impossibility of a task must take
into account whether it can be combined with a preparer and a measurer to create an information
leak. This is an intractable question that applies to every task with preparable input variables and
measurable output variables.

26.6.1 The Halting Sequence Revisited

We revisit the question posed in the introduction:

Is it possible or impossible to create or find a large prefix of the halting sequence?

If we assert that this task is possible, then a violation of IP occurs. If we assert that this task
is impossible, then this statement will be in conflict with how information variables are defined in
CT. Thus there is a definite conflict between IP and CT.

26.7 Conclusion

As discussed in Section 26.4, IP postulates away a union of “bad” events. Such “forbidden” events
break the inequality of IP and were initially called “information leaks”. One can postulate away
such leaks because the probability of single leak occurring is astronomically small [Lev13]. It
remains to be seen how to reconcile MWT, CT, and IP. The simplest way to reconcile the MWT
and IP is to just acknowledge there are branches where IP fails. Similarly, the easiest way to
reconcile CT and IP is to discard one of them. Otherwise one would need statements like A✓∗,
which means that task A is possible, but where ∗ is some additional theoretical equipment, such as
an address system or a condition that a memory leak does not occur. However this reconciliation
would be cumbersome, spoiling the elegance of CT. It remains to be seen how to overcome these
obstacles.
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of philosophy. In: Kurt Gödel. Collected Works. Volume III. Oxford University Press.,
1961.
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Appendix A

An Extended Coding Theorem

In [Lev16, Eps19c], a new inequality in the field of algorithmic information theory was proven.
For a finite set of natural numbers D, it was shown that the size of the smallest description of an
element of D, minx∈DK(x), is not much smaller than the negative logarithm of the algorithmic
probability of the set, − log

∑
x∈Dm(x). This inequality holds for non-exotic sets whose encoding

has little mutual information with the halting sequence, I(D;H) = K(D)−K(D|H).

min
x∈D

K(x)<log − log
∑

x∈D
m(x) + I(D;H).

Due to algorithmic conservation laws, there are no algorithmic means to produce sets with arbitrary
high mutual information with the halting sequence. In this appendix, we introduce an update on
the above inequality, proving for non-exotic maps f between whole numbers with a finite domain,
minx∈Dom(f)K(x) + f(x) is close to the amount − log

∑
x∈Dom(f)m(x)2−f(x). Exotic maps f have

encodings with high mutual information with the halting sequence, I(f ;H), with

min
x∈Dom(f)

K(x) + f(x)<log − log
∑

x∈Dom(f)

m(x)2−f(x) + I(f ;H).

The above inequality can be seen as an extended coding theorem.

A.1 Left-Total Machines

The notion of the “left-total” universal algorithm is needed for the proof of both the mixed state
and pure state coding theorems. We say x ∈ {0, 1}∗ is total with respect to a machine if the machine
halts on all sufficiently long extensions of x. More formally, x is total with respect to Ty for some
y ∈ {0, 1}∗∞ iff there exists a finite prefix free set of strings Z ⊂ {0, 1}∗ where

∑
z∈Z 2−∥z∥ = 1

and Ty(xz) ̸=⊥ for all z ∈ Z. We say (finite or infinite) string α ∈ {0, 1}∗∞ is to the “left” of
β ∈ {0, 1}∗∞, and use the notation α◁ β, if there exists a x ∈ {0, 1}∗ such that x0⊑α and x1⊑β.
A machine T is left-total if for all auxiliary strings α ∈ {0, 1}∗∞ and for all x, y ∈ {0, 1}∗ with
x◁ y, one has that Tα(y) ̸=⊥ implies that x is total with respect to Tα. An example can be seen
in Figure A.1.

For the remaining part of this chapter, we can and will change the universal self delimiting
machine U into a universal left-total machine U ′ by the following definition. The algorithm U ′

enumerates all strings p∈{0, 1}∗ in order of their convergence time of U(p) and successively assigns
them consecutive intervals ip⊂[0, 1] of width 2−∥p∥. Then U ′ outputs U(p) on input p′ if the open
interval corresponding to p′ and not that of (p′)− is strictly contained in ip. The open interval in
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Figure A.1: The above diagram represents the domain of a left total machine T with
the 0 bits branching to the left and the 1 bits branching to the right. For i ∈ {1..5},
xi ◁ xi+1 and xi ◁ y. Assuming T (y) halts, each xi is total. This also implies each x−i
is total as well.

[0,1] corresponding with p′ is ([p′]2−∥p′∥, ([p′]+1)2−∥p′∥) where [p] is the value of p in binary. For
example, the value of both strings 011 and 0011 is 3. The value of 0100 is 4. The same definition
applies for the machines U ′

α and Uα, over all α∈{0, 1}∗∞. We now set U to equal U ′.

B

v

0

0

0

1

1

1

1

b b

Figure A.2: The above diagram represents the domain of the universal left-total algo-
rithm U , with the 0 bits branching to the left and the 1 bits branching to the right. The
strings in the above diagram, 0v0 and 0v1, are halting inputs to U with U(0v0) ̸=⊥ and
U(0v1) ̸=⊥. So 0v is a total string. The infinite border sequence B ∈ {0, 1}∞ represents
the unique infinite sequence such that all its finite prefixes have total and non total
extensions. All finite strings branching to the right of B will cause U to diverge.

Without loss of generality, the complexity terms of Chapter 1 are defined in this section with
respect to the universal left total machine U . The infinite border sequence B ∈ {0, 1}∞ represents
the unique infinite sequence such that all its finite prefixes have total and non total extensions. The
term “border” is used because for any string x ∈ {0, 1}∗, x◁B implies that x total with respect to
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U and B◁ x implies that U will never halt when given x as an initial input. Figure A.2 shows the
domain of U with respect to B. The border sequence is computable from H.

For all total strings b ∈ {0, 1}∗, we define the semimeasure mb(x) =
∑{2−∥p∥ :U(p) = x, p ◁

b or b ⊑ p}. If b is not total then mb(x) =⊥ is undefined. Thus the algorithmic weight mb of a
string x is approximated using programs that either extend b or are to the left of b.

A.2 Extended Coding Theorem

Lemma 33 Let f be a elementary map and m be a elementary semi measure. Let a ∈ W vary
over Dom(f). Then mina f(a) +K(a|m)<log − log

∑
am(a)2−f(a) +Ks(f |m).

Proof. If m is not a proper probability measure, and R is the support of m, we modify m to give
an arbitary b ∈ W, the value of 1 −m(R). So m can be assumed to be an elementary probability
measure. Since all terms in the theorem are conditioned on ⟨m⟩, we will also condition all com-
plexity terms in the proof on ⟨m⟩ and drop its notation. More formally, U(x) is used to denote
U⟨m⟩(x), K(x) is used to denote K(x|m), and Ks(f) is used to denote Ks(f |m).

For any elementary map g, let gn = g−1(n)∩ Supp(m) and let g≤n = ∪ni=0gi, for n∈W∪{∞}. Let
s = ⌈− log

∑
a∈f≤∞

m(a)2−f(a)⌉. Using the reasoning of Markov’s inequality,

∑

a∈f≤∞

m(a)2−f(a) ≥ 2−s, (A.1)

∑

a∈f≤∞\f≤s

m(a)2−f(a) ≤
∑

a∈f≤∞\f≤s

m(a)2−s−1 ≤ 2−s−1, (A.2)

∑

a∈f≤s

m(a)2−f(a) ≥ 2−s−1. (A.3)

Equation (A.1) follows from the definition of s and Equation (A.3) follows from Equations (A.1)
and (A.2). We now turn our attention to creating an elementary probability measure Q with the
following properties:

1. f is typical of Q and Q is simple, i.e. there is a v ∈ {0, 1}∗ with U(v) = ⟨Q⟩ and ∥v∥ +
3 logmax{d(f |Q, v), 1} is not much larger than Ks(f).

2. All strings in the support of Q encode elementary functions g whose range contain a lot of
values that are not greater than s, with

∑
a∈g≤sm(a)2−g(a) ≥ 2−s−1.

To accomplish this goal, we start with the program v′ ∈{0, 1}∗ and elementary probability
measure Q′ that realizes the stochasticity of f , with U(v′) = ⟨Q′⟩, and also with the relation
Ks(f)= ∥v′∥+3 logmax{d(f |Q′, v′), 1}. Note that this implies ⟨f⟩ ∈ Supp(Q′). Let Q be the
elementary probability measure equal to Q′ conditioned on the set of (encoded) elementary maps
g such that

∑
a∈g≤sm(a)2−g(a) ≥ 2−s−1. Thus Q(⟨g⟩) = [g ∈S]Q′(g)/Q′(S), where S ⊂ {0, 1}∗ ,

the support of Q, is defined as S = {⟨g⟩ : g ∈ Supp(Q′),
∑

a∈g≤sm(a)2−g(a) ≥ 2−s−1}. This Q is

computable from v′ and s. Using this fact, define the Q program v ∈ {0, 1}∗, to be of the form
v = v0vsv

′, where v0 ∈ {0, 1}∗ is helper code of size O(1), and vs ∈ {0, 1}∗ is a shortest U -program
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for s. So ∥v∥<+ ∥v′∥+K(s). We define d = max{d(f |Q, v), 1} and we have that

∥v∥<+ ∥v′∥+K(s),

∥v∥+ 3 log d<+ ∥v′∥+K(s) + 3 log d

<+ ∥v′∥+K(s) + 3 log(max{− logQ(f)−K(f |v), 1})
<+ ∥v′∥+K(s) + 3 log(max{− logQ′(f)−K(f |v), 1}) (A.4)

<+ ∥v′∥+K(s) + 3 log(max{− logQ′(f)−K(f |v′) +K(v|v′), 1}) (A.5)

<+ ∥v′∥+K(s) + 3 log(max{− logQ′(f)−K(f |v′) +K(s), 1}) (A.6)

<log ∥v′∥+K(s) + 3 log(max{− logQ′(f)−K(f |v′), 1}),
∥v∥+ 3 log d<log Ks(f) +K(s). (A.7)

Equation (A.4) follows from Q(f)=Q′(f)/Q′(Supp(Q)), and thus − logQ(f)≤ − logQ′(f). Equa-
tion (A.5) follows from the inequality K(f |v′)<+K(f |v) +K(v|v′). Equation (A.6) follows from v
being computable from v′ and vs, and thus K(v|v′)<+K(s).

We now create a small set of lists of numbers A that will intersect with the range of a large
percentage of the support of Q. We do so by using the probabilistic method. Let c ∈ N be a
constant solely dependent on the universal Turing machine U to be determined later. We use an
elementary measure wn over lists An of (possibly repeating) whole numbers of size cd2s+1−n where

wn(A
n) =

∏cd2s+1−n

i=1 m(Ani ). For a set of s + 1 lists A = {An}sn=0, we a measure w over A, where
w(A) =

∏s
n=0wn(A

n).
For a set of lists A and elementary function g, let 1(g,A) = 1 if gn ∩ An = ∅ for all n∈ [0, s],

and 1(g,A) = 0, otherwise. Thus

Eg∼QEA∼w[1(g,A)] =
∑

g

Q(g)

s∏

n=0

(1−m(gn))
|An|

≤
∑

g

Q(g)

s∏

n=0

exp{−|An|m(gn)} (A.8)

=
∑

g

Q(g) exp

{
−

s∑

n=0

|An|m(gn)

}

=
∑

g

Q(g) exp

{
−

s∑

n=0

cd2s+1−nm(gn)

}

=
∑

g

Q(g) exp

{
−cd2s+1

s∑

n=0

m(gn)2
−n

}

Eg∼QEA∼λ[1(g,A)] ≤
∑

g

Q(g) exp {−cd} = exp {−cd} . (A.9)

Equation (A.8) follows from the inequality (1−a)≤e−a over a∈ [0, 1]. Equation (A.9) follows from
the definition of the support of Q, where g ∈ Supp(Q) iff

∑
a∈g≤sm(a)2−g(a) ≥ 2−s−1. By the

probability argument, there exists a set of lists A= {An}sn=0 such that |An|= cd2s+1−n and

Eg∼Q[1(g,A)] ≤ exp{−cd}.
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There exists a brute force search algorithm that on input c, d, v, outputs A. Note that the strings
s and ⟨Q⟩ are computable from v. This algorithm computes all possible sets of lists A′ = {A′n}sn=0,
|A′n| = cd2s+1−n, A′n ⊆ Supp(Q) and outputs the first A′ such that Eg∼Q[1(g,A

′)] ≤ exp{−cd}.
The existence of such an A′ is guaranteed by Equation (A.9). So

K(A)<+K(c, d, v). (A.10)

We now show that there is an n where fn ∩ An ̸= ∅. To do so, we show that any function g
in the support of Q whose range does not interesct with A, i.e. 1(g,A) = 1 will have a very high
deficiency of randomness with respect to Q and v. For all such g and proper choice of c solely
dependent on U ,

d(g|Q, v) = ⌊− logQ(g)⌋ −K(g|v)
> − logQ(g)− (− log 1(g,A)⌊ecd⌋Q(g) +K(1(·, A)⌊ecd⌋Q(·)|v))−O(1) (A.11)

> cd log e−K(1(·, A)⌊ecd⌋Q(·)|v)−O(1)

> cd log−K(A, c, d|v)−O(1)

> cd log e−K(c, d) > d. (A.12)

With c being chosen, it is removed from consideration for the rest of the proof, with c ∈
Ø(1). Equation A.11 is due to the fact that for any elementary semimeasure P , K(x)<+K(P )−
logP (x). Equation A.12 is due to Equation A.10. So 1(f,A) = 0, otherwise by the above equation,
d(f |Q, v) > d, causing a contradiction. So there exists n∈ [0, s] with a ∈ fn ∩An and

K(a)<+ log |An|+K(An)

<+ log |An|+K(A)+K(An|A)
<+ (log d+ s−n)+K(d, v)+K(n) (A.13)

=+ log d+ s− f(a)+K(d, v)+K(f(a))

K(a) + f(a)<+ log d+ s+K(v) +K(d) +K(f(a))

K(a) + f(a)<log s+ ∥v∥+3 log d (A.14)

K(a) + f(a)<log s+χ(f) (A.15)

min
a∈f≤∞

K(a)+ f(a)<log − log
∑

a∈f≤∞

m(a)2−f(a)+χ(f). (A.16)

Equation (A.13) follows from Equation (A.10), and from c ∈ O(1). Equation (A.14) follows from
K(x)<log ∥x∥ for x ∈ {0, 1}∗ ∪ W. Equation (A.15) follows directly from Equation (A.7). Equa-
tion (A.16) follows from the definition of s and its form proves the theorem.

Proposition 49 For border prefix b ⊑ B, K(b|H)<+K(∥b∥) and ∥b∥<+K(b).

Proof. The border B is computable from the halting sequenceH, so it follows easilyK(b|H)<+K(∥b∥).
We recall that Ω =

∑
xm(x) is Chaitin’s Omega, the probability that U will halt. It is well

known that the binary expansion Ω′ ∈ {0, 1}∞ of Ω is Martin Löf random. Given b ⊏ B,
∥b∥ ∈ {0, 1}n, one can compute Ω̂ =

∑{2−∥y∥[U(y) ̸=⊥] : y ◁ b} with differs from Ω in the
summation of programs which branch from B at positions n+ 1 or higher. Thus Ω− Ω̂ ≤ 2−n. So
n<+K(Ω′[0..n− 1])<+K(Ω′[0..n− 1], b)<+K(Ω′[0..n− 1]|b) +K(b)<+K(b).

Proposition 50 If b ∈ {0, 1}∗ is total and b− is not total, then b− is a border prefix, with b− ⊏ B.
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Figure A.3: The above figure shows an example of the domain of left-total U with the
terms used in Lemma 34. x∗ = 0110010 and v = 01100. Since v is total and v− is not,
v− is a prefix of the border sequence B. In the above example, assuming all halting
extensions of v produce a unique output, |Support(Q)| = 5, and Q(x) = 2−∥x∗∥+∥v∥ =
0.25.

Proof. If b ∈ {0, 1}∗ is total and b− is not, then b− has a total extension b−0 and a non total
extension b−1, thus by the definition of the border sequence, b− ⊏ B. The following lemma shows
that non-stochastic strings x are “exotic,” i.e. have high I(x ;H) information with the halting
sequence.

Lemma 34 For x ∈ {0, 1}∗, Ks(x)<log I(x ;H).

Proof. Let U(x∗) = x, ∥x∗∥ = K(x), and v be the shortest total prefix of x∗. We define the
elementary probability measure Q such that Q(a) =

∑
w 2−∥w∥[U(vw)= a]. Thus Q is computable

relative to v. In addition, since v ⊑ x∗, one has the lower bound Q(x) ≥ 2−∥x∗∥+∥v∥ = 2−K(x)+∥v∥.
Therefore

d(x|Q, v) = ⌊− logQ(x)⌋ −K(x|v)
≤ K(x)− ∥v∥ −K(x|v)
<+ (K(v) +K(x|v))− ∥v∥ −K(x|v)
<+ (∥v∥+K(∥v∥) +K(x|v))− ∥v∥ −K(x|v),

d(x|Q, v)<+K(∥v∥). (A.17)

Since v is total and v− is not total, by proposition (50), v− is a prefix of the border sequence
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B (see Figure A.3). In addition, Q is computable from v. Therefore

K(x|H)<+K(x|Q) +K(Q|H)

<+K(x|Q) +K(v|H)

<+ − logQ(x) +K(∥v∥) (A.18)

<+K(x)− ∥v∥+K(∥v∥),
∥v∥<+K(x)−K(x|H) +K(∥v∥),
∥v∥<log I(x;H). (A.19)

Equation (A.18) is due to Proposition (49). SinceQ is computable from v, one getsKs(x)<+K(v)+
3 log(max{d(x|Q, v), 1})<+ ∥v∥ +K(∥v∥) + 3 log(max{d(x|Q, v), 1}). Due to Equation A.17, one
gets Ks(x) ≤ ∥v∥+O(K(∥v∥))<log ∥v∥. Due to Equation A.19, one gets Ks(x)<log I(x;H).

Theorem 126 For elementary map f , mina∈Dom(f) f(a)+K(a)<log −log
∑

a∈Dom(f)m(a)2−f(a)+
I(⟨f⟩;H).

Proof. Let s = ⌈1− log
∑

a∈Dom(f)m(a)2−f(a)⌉ and let S(z) = ⌈− log
∑

a∈Dom(f)mz(a)2
−f(a)⌉

be a partial recursive function from strings to rational numbers. S is defined solely on total
strings, where S(z) ̸=⊥ iff z is total. For total strings z, z−, one has that mz−(x)≥mz(x) and
therefore S(z−) ≤ S(z). Let b be the shortest total string with the property that S(b)<s. This
implies S(b−) =⊥ and thus b− is not total. So by proposition (50), b− ⊑ B is a prefix of border.
Lemma 33, with U containing b on an auxilliary tape, withm(a) = mb(a), provides a ∈ W such that
K(a|m, b)+f(a)<log s+Ks(f |m, b). Since K(m|b) = O(1), we have Equation (A.20). Lemma (34),
conditional on b, results in Equation (A.21), with

K(a|b) + f(a)<log s+Ks(f |b), (A.20)

K(a|b) + f(a)<log s+ I(f ;H|b), (A.21)

K(a|b) + f(a)<log s+K(f |b)−K(f |b,H). (A.22)

Using the fact that K(a)<+K(a|b) + K(b), we get K(a) − K(b)<+K(a|b), and combined with
Equation (A.22), we get Equation (A.23). Equation (A.24) is due to the chain rule K(b) +
K(f |b)<log K(f) + K(b|f). Equation (A.25) follows from the inequality K(f |H)<+K(f |b,H) +
K(b|H).

K(a) + f(a)<log s+K(b) +K(f |b)−K(f |b,H), (A.23)

K(a) + f(a)<log s+K(f) +K(b|f)−K(f |b,H), (A.24)

K(a) + f(a)<log s+K(f) +K(b|f)−K(f |H) +K(b|H), (A.25)

K(a) + f(a)<log s+ I(f ;H) + (K(b|f) +K(b|H)). (A.26)

The remaining part of the proof shows that K(b|f)+K(b|H) = O(log(s+K(b))). This is sufficient
to proof the theorem due to its logarithmic precision and by the right hand side of the inequality
of Equation (A.23) being larger than s +K(b) (up to a logarithmic factor). Since b is a prefix of
border, due to proposition (49), one gets that K(b|H) < O(K(∥b∥)) < O(log ∥b∥) < O(logK(b)).
Thus combined with Equation (A.26) and also Equation (A.23), one gets

K(a) + f(a)<log s+ I(f ;H) +K(b|f). (A.27)
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We now prove K(b|f) <+ K(s, ∥b∥). This follows from the existence of an algorithm, that when
given f , s, and ∥b∥, computes S(b′) for all b′ ∈ {0, 1}∥b∥ ordered by ◁, and then outputs the first
b′ such that S(b′)<s. This output is b otherwise there exists total b′◁ b, with ∥b′∥= ∥b∥, and
S(b′)<s. This implies the existence of total string b′− such that S(b′−)<s. This contradicts the
definition of b being the shortest total string with S(b)<s. So K(b|f) <+ K(s, ∥b∥) and thus one
gets the final form of the theorem, as shown below. Equation (A.28) is again due to the right hand
side of Equation (A.23).

K(a) + f(a)<log s+ I(f ;H) +K(s, ∥b∥),
K(a) + f(a)<log s+ I(f ;H), (A.28)

min
a∈Dom(f)

K(a) + f(a)<log − log
∑

a∈Dom(f)

m(a)2−f(a) + I(f ;H).

Corollary 48 (EL Theorem) For finite D ⊂ {0, 1}∗, minx inDK(x)<log − log
∑

x∈Dm(x) +
I(x;H).
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Appendix B

Mixed State Quantum Coding
Theorem

In Lemma 5, a coding theorem was introduced for pure states. In this appendix, a mixed state
coding theorem is proven. We assume that the universal Turing machine U is left-total, as defined
in Appendix A. We define B to be the infinite border sequence, also defined in Appendix A. The
information term I is from Definition 2. The following proof uses notation from quantum mechanics,
defined in Part II of the manuscript.

Theorem 127 For each density matrix σ with k = ⌈− log
∑

ρm(ρ)Trρσ⌉, there is an elementary
density matrix ρ such that

1. K(ρ)− log Trρσ <log k,

2. K(ρ)<log I(⟨σ⟩ : H) +K(k).

Proof. By definition of µ, we have that k=+ − log Trµσ. For a given sequence x, we define
the following semi-density matrix with the form ν[x] =

∑{2−∥y∥ |ϕ⟩ ⟨ϕ| :x ⊑ y, U(y) = |ϕ⟩}.
Thus Trν[x] ≤ 2∥x∥. For i ∈ N, if B[i] = 0, let νi be a 0 matrix, otherwise if B[i] = 1, then
νi = ν[B[0..i − 1]0]. This definition makes sense because B[0..i−1]0 is total whenever B[i] = 1. A
visual description of νi can be seen in Figure B.1.

So 2−k
∗
= Trµσ

∗
=
∑∞

i=1Trνiσ. Since the trace of ν[i] is the weighted sum of prefix free

extensions of a string of length i, (or 0), Trνi ≤ 2−i. So 2−k
∗
=
∑k+1

i=1 Trνiσ +
∑∞

i=k+2Trνiσ
∗
<∑k+1

i=1 Trνiσ + 2−k−1.

So
∑k+1

i=1 Trνiσ
∗
> 2−k−1. So there is an j, 1 ≤ j ≤ k + 1 such that Trνjσ > c2−k−1/(k + 1),

where c is a positive rational constant solely dependent on the universal Turing machine U . Let j
be the smallest index where this occurs.

We define ρ to be equal to νj/Trνj . ρ is an elementary density matrix, which is computable
from the first j − 1 bits of the border sequence, with K(ρ)<+K(B[0..j − 1])<+ j + 2 log k. Since
Trνj ≤ 2−j , we have that − log Trρσ <+ k − j + log k. So K(ρ) − log Trρσ <+ k + 3 log k, proving
(1).

It remains to prove that K(B[0..j−1])<log I(⟨σ⟩ : H)+K(k). Using the definition of I, we have
that K(B[0..j−1])−K(B[0..j−1] | ⟨σ⟩)−K(B[0..j−1] |H)<+ I(⟨σ⟩ : H). Since the border sequence
is computable from the halting sequence K(B[0..j−1] |H)<+K(j), therefore it is sufficient to prove
K(B[0..j − 1] | ⟨σ⟩)<+K(k, j).
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x3 x4 x5 x6 U(x1) = |θ1〉
U(x2) = Garbage
U(x3) = |θ3〉
U(x4) = |θ4〉
U(x5) = Garbage
U(x6) = |θ6〉

ν[i] =
∑

j∈{1,3,4,6} 2
−‖xj‖|θj〉〈θj |

b b

b b b b

Figure B.1: The above figure shows an example vi, where B[i] = 1. Two extensions of
B[0..i− 1]0 do not produce elementary pure states when given as input to the universal
Turing machine U . They are x2 and x5. The semi density matrix vi has Trvi ≤ 2−i and
is the weighted sum of elementary density matrices |θi⟩ ⟨θi|.

Given k, j and ⟨σ⟩ there is a program that can enumerate ν[x] over all total strings x of
length j. This program also uses ⟨σ⟩ to compute from below Trν[x]σ, until it finds a string y
such that Trν[y]σ > c2−k−1/(k + 1). Note that there is a unique string y with this property and
y = B[0..j − 1]0. Otherwise y = B[0..h − 1]0z, for some h < j, ∥h∥ + ∥z∥ = j, with B[h] = 1.
However, then Trνh > c2−k−1/(k + 1), causing a contradiction for the definition of j. Thus the
program can find B[0..j − 1], completing the proof for (2). □
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