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Abstract

This paper contains a simple proof of the sampling theorem in [Eps21] with exponentially
improved bounds. A sampling method A is a probabilistic function that maps an integer N with
probability 1 to a set containing N different strings. In the limit, greater outliers are guaranteed
to exist in the output of A.

1 Discrete Sampling Theorem

A sampling method A is a probabilistic function that maps an integer N with probability 1 to a
set containing N different strings. Let P = P1, P2, . . . be a sequence of measures over strings. For
example, one may choose P1 = P2 . . . or choose Pn to be the uniform measure over n-bit strings.
A conditional probability bounded P -test is a function t : {0, 1}∗ × N → R≥0 such that for all
n ∈ N and positive real number r, we have Pn({x : t(x|n) ≥ r}) ≤ 1/r. If P1, P2, . . . is uniformly
computable, then there exists a lower-semicomputable such P -test t that is “maximal” (i.e., for
which t′ ≤ O(t) for every other such test t′). We fix such a t, and let dn(x|P ) = log t(x|n).

Lemma 1 Let P be a computable measure on strings and let A be a sampling method. For all
integers M and N , there exists a finite set S ⊂ {0, 1}∗ such that P (S) ≤ 2M/N , and with probability
strictly more than 1− 2e−M : A(N) intersects S.

Proof. We show that some possibly infinite set S satisfies the conditions, and thus, some finite
subset also satisfies the conditions due to the strict inequality. We use the probabilistic method:
we select each string to be in S with probability M/N and show that 2 conditions are satisfied
with positive probability. The expected value of P (S) is M/N . By the Markov inequality, the
probability that P (S) > 2M/N is at most 1/2. For any set D containing N strings, the probability
that S is disjoint from D is

(1−M/N)N < e−M .

Let Q be the measure over N -element sets of strings generated by the sampling algorithm A(N).
The left-hand side above is equal to the expected value of

Q({D : D is disjoint from S}).

Again by the Markov inequality, with probability greater than 1/2, this measure is less than 2e−M .
By the union bound, the probability that at least one of the conditions is violated is less than
1/2 + 1/2. Thus, with positive probability a required set is generated, and thus such a set exists.�
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Theorem 1 Let P = P1, P2 . . . be a uniformly computable sequence of measures on strings and let
A be a sampling method. There exists c ∈ N such that for all n and k:

Pr

(
max

a∈A(2n)
dn(a|P ) > n− k − c

)
≥ 1− 2e−2

k
.

Proof. We now fix a search procedure that on input N and M finds a set SN,M that satisfies the
conditions of Lemma 1. Let t′(a|n) be the maximal value of 2n/2k+2 such that a ∈ S2n,2k for some
integer k. By construction, t′ is a computable probability bound test, because P ({x : t′(x|n) =
2`}) ≤ 2−`−1, and thus P (t′(x|n) ≥ 2`) ≤ 2−`−1 + 2−`−2 + . . . With the given probability, the set
A(2n) intersects S2n,2k . For any number a in the intersection, we have t′(x|n) ≥ 2n−k−2, thus by

the optimality of t and definition of d, we have dn(a|P ) > n− k −O(1). �

An incomplete sampling method A takes in a natural number N and outputs, with probability
f(N), a set of N numbers. Otherwise A outputs ⊥. f is computable.

Corollary 1 Let P = P1, P2 . . . be a uniformly computable sequence of measures on strings and
let A be an incomplete sampling method. There exists c ∈ N such that for all n and k:

Pr
D=A(n)

(
D 6=⊥ and max

a∈D
dn(a|P ) ≤ n− k − c

)
< 2e−2

k
.

2 Continuous Sampling Method

Let µ = µ1, µ2, . . . be a uniformly computable sequence of measures over infinite sequences. Similar
way as for strings in the introduction, the randomness deficiency Dn(ω|µ) for sequences ω is defined
using lower-semicomputable functions {0, 1}∞ × N → R≥0. A continuous sampling method C is
a probabilistic function that maps, with probability 1, an integer N to an infinite encoding of N
different sequences.

Theorem 2 There exists c ∈ N where for all n:

Pr

(
max

α∈C(2n)
Dn(α|µ) > n− k − c

)
≥ 1− 2.5e−2

k
.

Proof. For D ⊆ {0, 1}∞, Dm = {ω[0..m] : ω ∈ D}. Let g(n) = arg minm PrD=C(n)(|Dm| < n) <

0.5e−2
n

be the smallest number m such that the initial m-segment of C(n) are sets of n strings
with very high probability. g is computable, because C outputs a set of distinct infinite sequences
with probability 1. For probability ψ over {0, 1}∞, let ψm(x) = [|x| = m]ψ({ω : x @ ω}). Let µg =

µ
g(1)
1 , µ

g(2)
2 , . . . be a uniformly computable sequence of discrete probability measures and let A be

a discrete incomplete sampling method, where for random seed ω ∈ {0, 1}∞, A(n, ω) = C(n, ω)g(n)

2



if |C(n, ω)g(n)| = n; otherwise A(n, ω) =⊥. So Pr[A(n) =⊥] < 0.5e−2
n
.

Pr

(
max

α∈C(2n)
Dn(α|µ) ≤ n− k −O(1)

)
≤ Pr
Z=C(2n)

(
(|Zg(n)| < 2n) or (|Zg(n)| = 2n and max

α∈Z
Dn(α|µ) ≤ n− k −O(1)

)
≤ Pr
D=A(2n)

(
D =⊥ or (D 6=⊥ and max

x∈D
dn(x|µg) ≤ n− k −O(1))

)
<0.5e−2

n
+ 2e−2

k
(1)

≤2.5e−2
k
,

where Equation 1 is due to Corollary 1. �

3 Output of Randomized Algorithms

In this section, we prove that the non-automatic output of randomized algorithms are guaranteed to
have high D scores, i.e. be outliers. Let λ = λ1, λ2, . . . and µ = µ1, µ2, . . . be uniformly computable
sequences of measures over infinite sequences. Each λn is non-atomic.

Theorem 3 There is a constant f ∈ N, dependent on µ and λ, where for all n ∈ N,
λn

{
α : Dn(α|µ) > n− f

}
> 2−n−f .

Proof. We define the continuous sampling method C, where on input n, randomly samples n
elements from λn. Let dn = λn{α : Dn(α|µ) > n − b}, where b is the constant in Theorem 2.
Evoking this theorem, with k = 0, and f = max{b, c},

Pr

(
max

α∈C(2n)
Dn(α|µ) > n− b

)
>1− 2.5e−1

1− (1− dn)2
n
>1− 2.5e−1

1− 2ndn <2.5/e

dn >(1− 2.5/e)2−n

λn{α : Dn(α|µ) > n− b} >2−n−c

λn{α : Dn(α|µ) > n− f} >2−n−f .

�
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