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Survey and basic notions 

The study of decidability involves trying to establish, for a given 
mathematical theory T, or a given problem P, the existence of a decision 
algorithm AL which will accomplish the following task. Given a sentence A 
expressed in the language of T, the algorithm AL will determine whether A 
is true in T, i.e. whether A E T. In the case of a problem P, given an 
instance Z of the problem P, the algorithm AL will produce the correct 
answer for this instance. Depending on the problem P, the answer may be 
“yes” or “no”, an integer, etc. 

If such an algorithm does exist, then we shall variously say that the 
decision problem of T or P is solvable, or that the theory T is decidable, or 
simply that the problem P is solvable. Of AL we shall say that it is a 
decision procedure for T or P. Let us illustrate our concepts by two 
celebrated decidability results. 

Let L be a first-order language appropriate for expressing statements 
about planar Euclidean Geometry. Thus L has individual variables ranging 
over points; two ternary predicates t(x,y, z )  and B(x,y, z )  to denote 
colinearity and betweenness; two predicates C(x, y, z, u, u, w 1 and 
A (x, y, z, u, u, w )  to denote congruence of triangles and congruence of 
angles (i.e. Axyz = Auuw and Qxyz = Q u u w ) ;  and a quaternary predicate 
E ( x ,  y, u, u )  to denote equality of length (i.e. = Fu). The formula 

for example, is an expression in L of the  famous high school problem to the 
effect that if in a triangle the angle hisectors are equal, then the triangle is 
isosceles. 

TARSKI [1951] has proved that the  theory E G  consisting of all sentences 
of L true in planar Euclidean Geometry, the so-called elementary 
geometry, is decidable. 

Actually Tarski proved a stronger result. Let 3 = (R, + , .) be the field 
of real numbers, then the  first-order theory Th(3)  is decidable. This last 
result implies the decidability of elementary geometry via the introduction 
of Cartesian coordinates and the reduction of geometric statements to 
equivalent algebraic statements. 

Our second example is also related to Euclid. The problem GCD 
consists of finding for pairs a, b of natural numbers their greatest common 
divisor (a, 6).  A slight variant of the famous Euclid’s algorithm is based on 
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the facts that (a ,  0) = a and, for a 5 b, (a ,  b )  = (a ,  b - a ) .  A succession 
of steps of the  second type will transform any g.c.d. (a ,  b )  into ( G O ) ,  SO 

that (a, b )  = c. Thus (27,15) = (12,15) = (12,3) = (9,3) = (6,3) = (3,3) = 

The assignment of a precise mathematical meaning to decidability 
involves the notion of a computable or recursive function. By an appro- 
priate Godel numbering G, the set of all sentences of a language L is 1-1 
mapped onto a recursive subset S C N of the set N of natural numbers. This 
transforms T into a set G ( T )  C S. The theory T is, by definition, decidable 
if and only if G ( T )  is a recursive set, i.e. its characteristic function fT is 
computable. Solving the  decision problem of T involves producing a 
program or algorithm for computing fT, or at least proving that fT is 
computable. The notion of solvability of a problem P is explicated in a 
similar fashion. 

As explained elsewhere in this volume, the theory T is defined to be 
undecidable if fT is not recursive. 

There is a significant methodological difference between the study of 
decidability and the study of undecidability, and this despite the obvious 
fact that the two concepts are just the opposite sides of the same coin. 
Attempts to establish the undecidability of a theory T must presuppose a 
mathematically precise notion of computable functions. For only after we 
know what a computable function is, can we prove that fT is not 
computable. 

On the other hand, the decision problem of a theory T can be solved by 
exhibiting a decision algorithm AL which is directly recognized and 
accepted by mathematicians as being an effective computational proce- 
dure. Thus, for example, Euclid’s algorithm given above, when sup- 
plemented by explicit rules for comparison and subtraction of natural 
numbers, is universally agreed upon as constituting a computational 
met hod. 

This state of affairs accounts for the historical fact that some decidability 
results preceded the definition of recursive functions in the mid-Thirties, 
whereas the first undecidability results only followed the formulation of 
this definition. 

There are three main methods for establishing decidability of theories. 
The first and oldest is elimination of quantifiers. This method consists of 
transforming the given sentence A into another sentence B such that 
T 1 A c* B and B belongs to a class .Y of sentence for the members of 
which we can directly determine whether they are in T. 

The second method is model-theoretic. In its typical form it involves a 

(3,O) = 3. 
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(recursive) set of axioms AX for the theory T. Model-theoretic methods 
are employed to either show that AX is complete, in which case T is 
readily seen to be decidable, or to systematically survey all completions of 
AX. In the latter case we shall know for each sentence A whether 
T U { - A }  is consistent and consequently whether T t A. 

In certain cases a combination of the two methods is used. Namely a set 
X of sentences of L is judiciously chosen, the fact that for every sentence A 
of L there exists a sentence B E X equivalent to A by T is then established 
by model-theoretic means. Also the sentences B E X true in T are picked 
out by a survey of models of T. 

The third method involves interpretations. Let To be a theory known to 
be decidable, and let T be any theory. Assume that we have a (comput- 
able) map t which transforms or translates each sentence A of the 
language L into a sentence t ( A )  of the language L,, so that ( (A)  E To if and 
only if A E T. Under these conditions T is decidable. For in order to 
determine whether A E T we just find t (A ) and check whether t ( A  ) E To. 
Usually the interpretation t involves model-theoretic considerations. It is 
shown that models of T can be isomorphically reproduced from models of 
To by relations definable in L,,. This method was used in RABIN [1969] to 
establish most of the  then known decidability results as well as several new 
ones. 

The method of interpretations is, mutatis-mutandis, also a powerful tool 
for proofs of undecidability. For if the theory T is known to be undecid- 
able, and is interpretable in To in the manner of the previous paragraph, 
then T,, must be undecidable, see RABIN [1965]. 

The study of decidability should be viewed as a component, or natural 
outgrowth, of Hilbert’s Program for the  foundations of mathematics. 
Hilbert envisioned a codification of the  various branches of mathematics by 
systems of axioms, with an axiomatized logic serving as a common basis for 
deduction of consequences (theorems) from the axioms. Hilbert hoped that 
such a formalization would turn the derivation of mathematical results into 
a mechanical game with strings of symbols. According to Hilbert’s plan, 
this would give us such a comprehensive survey of all formal theorems 
within any mathematical discipline, that we would be able to demonstrate 
that n o  formal statement and its negation are jointly provable, thereby 
demonstrating the  consistency of mathematics. Also implied by Hilbert’s 
Programme is the belief that t h e  process of theorem-proving is mechaniz- 
able or, in modern parlance, that mathematical theories are decidable. 
Failing to implement Hilbert’s plan for mathematics as a whole, by proving 
the consistency and decidability of, say, set theory, researchers turned their 
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attention to more restricted segments of mathematics. Many of the 
decidability results which we shall discuss later on, such as Presburger’s 
decision method for the theory of addition of natural numbers, were 
obtained in the Twenties and early Thirties and were motivated by 
Hilbert’s plan. 

Godel’s celebrated Incompleteness Theorems and Church’s Undecid- 
ability result, dating back to the early and mid-Thirties, dashed the hopes 
for realization of Hilbert’s Programme in its original form. Namely, Godel 
demonstrated the impossibility of proving the consistency of any appreci- 
able portion of mathematics by the finitist methods advocated by Hilbert. 
And Church proved that the predicate calculus, as well as the arithmetic of 
addition and multiplication of natural numbers, are undecidable. These 
results put into perspective the study of decidability and engendered a 
considerable body of research into the decidability and undecidability of 
various mathematical theories. 

Only in recent years attention turned to the issue of the computational 
complexity of solvable decision problems. In the spirit of Hilbert’s Pro- 
gramme and of Turing’s analysis of computability, it was tacitly assumed 
that for a theory T proved decidable, the question whether a given- 
sentence is a theorem of T is a trivial one. For one needs only to 
mechanically apply the decision procedure in order to answer any such 
question. No creative or intelligent thinking is required for this process. 
From this point of view, any decidable theory is trivial and uninteresting. 
Work of Fischer, Meyer, Rabin, and others has caused a reevaluation of 
this attitude. They have shown that many theories, even though decidable, 
are from the practical point of view undecidable because any decision 
algorithm would require a practically impossible number of computation 
steps. For the arithmetic of addition of natural numbers, proved decidable 
by Presburger, FISCHER and RABIN [1974] have proved that for every 
decision algorithm AL there exist sentences A of size (i.e. number of 
symbols) n such that AL requires 2’” computational steps to decide A. 
MEYER [ 19751 has proved even more devastating complexity results 
for theories such as the theory of linear-order. Fischer and Rabin have also 
shown that Elementary Geometry has a decision problem which is 
inherently of exponential complexity. Results such as these cast doubt on 
the assertion that any theory proved decidable is trivial because its 
theorems could be checked by a computer program. Computations involv- 
ing, say, 2’” steps cannot be considered as a feasible method for establish- 
ing the truth of a mathematical statement. 

Are there any  theories with a practically solvable decision problem? 
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Startlingly enough the  answer to this fundamental question is as yet 
unknown. It is readily seen that the decision problem of any formalized 
theory is at least as complex as the decision problem PC of the proposi- 
tional calculus. Now COOK [ 1971) has observed that many combinatorial 
decision problems which have defied attempts at producing an efficient, not 
exponentially complex, decision procedure, are reducible to PC. This lends 
credence to the  conjecture that PC is exponentially complex. Cook has 
related this question, via a use of Turing machines, to the  question whether 
non-deterministic computations requiring a number of steps polynomial in 
the problem size, are always equivalent to ordinary deterministic computa- 
tions requiring a polynomial number of steps. This so-called P = NP 
problem is, as of the time of writing of this paper, one of the central open 
questions in theoretical computer science. It also relates to the older 
“spectrum problem” concerning models of sentences of the predicate 
calculus. Details will be given in the text. 

Since the study of decidability involves methods from propositional and 
predicate logic, theory of computable functions, and theory of models, we 
shall have to rely on  these prerequisites in our exposition. In most cases 
only the rudiments of these subjects will be required for following 
discussions. The uninitiated reader is urged to consult the relevant chapters 
of this book for any auxiliary information that he may need. 

1. The method of elimination of quantifiers 

1.1. Theories and models 
The theories dealt with in the study of decidability will present them- 

selves in one of two ways: axiomatically or semantically, as the set of 
sentences true in a structure or class of structures. Usually we shall 
consider first-order theories, i.e. theories expressible in some first-order 
predicate language. This rule will, however, have some very important 
exceptions. 

DEFINITION 1. Let L be some fixed first-order language and let H be a 
recursive consistent set of sentences of L. The theory axiomatized by H is, 
by definition, the set Th(H) of all logical consequences of H 

Th(H) = { A  1 H I- A } .  
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The theory Th(H) and the set of axioms H are called complete if for 
every sentence A of L we have A E Th(H) or i A E Th(H). 

THEOREM 1. If the theory T is axiomatizable and complete then T is 
decidable. 

PROOF. Let H be an axiomatization of T. The sequences S, = 

(A,l, A,z,.  . . ,A , , , ) ,  which are formal proofs from the axioms H, can be 
effectively enumerated. This can be done, for example, by enumerating all 
finite sequences (words) on the alphabet of L and deleting those sequences 
which are not proofs. The last members A , ,  of the proofs enumerated run 
through all statements A which are provable from H, i.e. througb all 
elements of Th(H) = T. 

Thus, the theorems of T can be effectively (computationally) enumer- 
ated in a sequence S = (A1 ,  Az, . . . ). Let now A be any sentence of L. Start 
enumerating S and for each A, obtained check whether A. = A or 
whether A, = i A. Since T is complete, one of the two alternatives must 
eventually occur, at which time we shall know whether A E T or 
A E T .  0 

People seeing the  above argument for the first time often encounter 
some difficulty in convincing themselves that the  proposed procedure is a 
valid computational process for deciding T. This is because an essential 
feature of a computation is that we are sure it will terminate, while here 
when given A we have no a-priori bound on the number of steps required 
before the computation terminates. However, the fact that T is complete 
ensures that the computation will terminate by either A or i A  being 
encountered in the enumeration. This constitutes a proof of termination of 
the algorithm. In fact, the number-of-steps function is thereby shown to be 
a calculable function, albeit not of the commonly encountered variety such 
as n". 

The idea underlying Theorem 1 can be extended to cases where the 
theory T is not complete. 

THEOREM 2. Let T be axiomatizable and assume that there exists a recursive 
(computable) sequence A l ,  Az, . . . , of sentences satisfying the following 
conditions. 

(1) T U {An}  is consistent for every n. 
( 2 )  Every completion T TI of T has a (not necessarily recursive) set of 

axioms B = {B1, .  . . , B k , .  . . }  such that T I  = Th(B), and for every k there 
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exists an n for which T I- A,, c* BI A * * * A Bk. Conditions (1)-(2) imply that T 
is decidable. 

PROOF. Let H be a recursive axiomatization for T. By a process resembling 
dovetailing we can computationally enumerate in one sequence 
D,,  Dz, . . . , the logical consequences of all the sets H. = H U {A"}, n = 
1,2, .  . . . Namely, start with an effective enumeration of the consequences 
of HI as in the proof of Theorem 1. When the first consequence HI t D ,  is 
encountered, start enumerating consequences of Hz until the first one, D2, 
is obtained. Now return to generate the second consequence, call it D3, of 
HI. Then return to Hz to obtain HzI-D4, and next obtain the first 
consequence, call it D5, of H3; and so on. 

Again dovetailing, effectively enumerate the above sequence 
D,, . . . , D,,, . . . , and also the sequence El , .  . . , E.,. . . , of all consequences 
of H. The second sequence is, in fact, an enumeration of T = Th(H). Thus, 
if A E T then A will appear among the E,'s. We claim that if A fZ T, then 
i A  will appear among the Di's. Thus the double enumeration will 
computationally yield an answer to the question whether A E T. 

To establish the  claim, note that if A fZ T, then T U { i A }  is consistent. 
Hence it is a subset of a complete theory T U { i A } C  TI. Let B = 
{Bl, BZ, . . .} be the set of axioms for TI mentioned in the assumptions on 
the sequence A I , A z , .  .. . Then B I- i A  and consequently for some 
integer k, B1 A . . . A Bk I - i  A. By our assumptions there exits an n so that 
T I- A,, c* B, A . . . A Bk. Hence T U {A"} I--I A, and i A  appears in the 
sequence D1, Dz, . . . . 0 

Theorem 2 is used to establish decidability in cases where T is not 
complete and yet we can somehow survey all possible completions of T. 

DEFINITION 2. Let '21 = (A, R 1 ,  Rzr . . . >  be a structure and L a first-order 
language appropriate for '21; that is, L has a symbol P, corresponding to any 
relation or function R, of H. The theory Th(H) of H is the set of sentences 
of L true in '21 

Th('2I) = {B I H I= B}. 

If X is a class of structures all of the same type, and L is a language 
appropriate to one and hence all structures in .X then by definition, 

Th(.X) = n Th(H). 
%EX 
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We shall now give examples of theories defined by axioms as well as 
examples of theories defined by models, i.e. defined semantically. 

EXAMPLE 1.  Let L be a language with just one binary predicate symbol s 
(greater or equal than). Consider the set of axioms OR: 

1. v X  v y  [X 5 y A y 5 X + X = y 1, 
2 .  

3. 

V x V y [ x s y  v y s x ] ,  

v X  v y  v Z  [X 5 y A y 5 Z + X 5 21. 

Any model (A,  5 ) I= OR is a totally ordered set. 
Let us introduce the abbreviation x < y to stand for x 5 y A 1 x = y. 

EXAMPLE 2. Consider the axioms DO obtained by adding to OR the 
axioms 

4. 3 x  v y  [y 5 x + x = y 1, 
5 .  

6. 

v X  3 y  [X < y  A v Z  [X  < Z + y  ‘Z]], 

VXvY [y < X - * 3 Z  v W  [Z < X  A [Z < W + X  5 W ] ] ] .  

Any model (A,  5 ) t D O  is a totally ordered set which has a first 
element, every element has a unique immediate successor, and every 
element except the first element has a unique predecessor. Such orders will 
be called discrete orders. 

Denoting, as usual, w = {0,1,2,. . . }  we see that ‘9 = (w ,  5 )I= DO. If we 
denote by w *  the reverse order-type of w (i.e. 0 > 1 > 2 > . * * ), then every 
ordered set which is a model of DO has order type w + ( w  * + w)A, where A 
is any order type. 

EXAMPLE 3. Consider the class Xu, of all structures ( A , f )  where f is a 
unary function f : A + A .  Th(Xur) is the theory of a unary function. 

EXAMPLE 4. Let (0, + )  be the structure of the integers with addition. 
Th((w, + )) = PAR will be called Presburger’s arithmetic or the theory of 
addition of natural numbers. 

1.2. Elimination of quantifiers for discrete orders 
Thus far we have seen examples of axiomatically defined theories and of 

semantically defined theories. We also gave two principles for establishing 
the decidability of axiomatized theories. We shall now illustrate the 
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method of elimination of quantifiers by proving the decidability of 
Th((w, s)), a result due  to C.H. Langford in 1927. 

THEOREM 3. Th(%) is decidable. 

PROOF. Let us enrich the structure 8 by making 0 a distinguished element 
and adding the successor function S(x)  = x + 1 (the element next t o  x in 
the ordering). Call the resulting structure Sl = (w, 0, 5 , S )  and denote the 
corresponding language by LI .  W e  shall decide Th(S l ) ,  from which the 
decidability of Th(%) follows. 

Let us use the abbreviation S " ( t )  t o  denote n applications of S t o  the  
term t ,  thus S'(x) = S(S(S(x))). In particular, So(y) = y. T h e  terms of the 
language a re  0, x, y, . . . , Sn(0), S"(X), . . . , 1 5 n. 

The class 9? of formulas to  which we shall reduce every formula of L1 
will be the following 

(1)  t ,  = t2 ,  1 ,  < t 2 ,  where t l ,  t 2  are  terms; 
( 2 )  formulas which are disjunction of conjunctions of formulas in (1). 

For example [S'(O) = x A S ( y )  < z ]  v S5(z) < S3(y)  is in 9. 
We shall show that every formula A of L I  is equivalent in S1 t o  a 

formula B E 9. O u r  proof will also provide a method for effectively 
transforming A into B. 

The  statement that two formulas C and D are  equivalent in Sl means 
that != C c, D. We shall make assertions concerning equivalence of 
formulas leaving verification to the reader. 

Let A be an open, i.e. quantifier-free formula. Express all other 
propositional connectives by means of v, A ,  1. Move all occurrences of i 
nex t  t o  the atomic formulas, using rules such as i [ C  v D ]  = i C A i D. 
Drop all occurrences of double-negation i h. Replace constituents of the  
form I ,  r 2  by r ,  = t 2  v t i  < t 2 ,  1 t ,  = f 2  by r I  < t 2  v r2 < t l ,  and i t l  < t2 by 
t i  = t z  v t2 < t l .  Finally, by use of the  distributive law for A and v, transform 
the formula into a formula in 9. Thus we see that repeated applications of 
the above rules will transform any open formula into an equivalent formula 
in 9. 

Assume now that A t  has the form 3 y  (C,  v . . .  v C,] where each C, is a 
conjunction of formulas t ,  = t 2  or t ,  < t 2 .  W e  have A = 3y CI v . . . v 3 y  C,. 
Thus it suffices to give rules for transforming a formula of the  form 

A I  = 3 y  [ti = 12 A ' * .  A f 2 , - 1  = t z ,  A 

f2g+t < f 2 8 + 2  h ' '  ' A f 2 k - 1  < t z k ] .  

The  reader can work out for himself how to treat the case that some 
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equation or inequality in A1 is of the form S m ( y )  = S ' ( y )  or S m ( y )  < S'(y) .  
Thus we may assume that in each equation or inequality in A ,  at most one 
side is of the form S'(y) .  

I= f1  < f2 f, S " ( t , )  < S" (f2) and similarly 
for t l  = r 2 .  By applying to both sides of all equations and inequalities in A 1  
appropriate powers S', we transform A I  into an equivalent formula in 
which all occurrences of y are of the form S" (y), with the same 1 < m. Let 
us assume A ,  already has this property. "Eliminate" 3 y  from A ,  by: 
(1) dropping 3y from A I ;  (2) for each conjunct S m ( y ) =  ti add a con- 
junct S " - I ( O )  < t, ; (3) for each s'" (y) < ti add S" (0) < ti; (4) if any equa- 
tion S m ( y )  = ti occurs in A l ,  replace all occurrences of S m ( y )  in Al  by f,; 

( 5 )  assuming that no such equations occur and that all inequalities are of 
the form S" (y)  < t,, or all are of the form ti < S" (y), drop all conjuncts 
involving S m ( y ) ;  (6) lastly, if no equation involving S m ( y )  occurs but 
inequalities of both types do appear, then for every pair t, < S m ( y )  and 
S"(y )  < tp add a conjunct S(t , )  < tp, and later drop all conjuncts involving 
S'"(y).  It is clear that steps (1)-(6) transform A I into an equivalent formula 
B E 52 which does not contain y. 

Let A be any formula of L1. Since V x F  = -I 3 x  -IF, we may assume 
that A contains just existential quantifiers, say n in number. Let 3 y D  be 
an innermost occurrence of 3, i.e. D is open. Transform D into a 
disjunction of conjunctions as explained before. Then 3 y D  = A I where A 1  
has the form treated above. Distribute 3y over the disjunctions, and treat 
each disjunct by steps (1)-(6). By these transformations 3 y D  is replaced in 
A by an equivalent open formula, and A is transformed into an equivalent 
formula with n - 1 quantifiers. Repeating this process n times, A will be 
effectively transformed into a B E 9. 

Finally, if A was a sentence, then the transformed formula is a sentence, 
hence a propositional combination of formulas S" (0) = Si(0) or S" (0) < 
Si(0). The truth or falsehood of such a sentence can be directly ascertained. 
Thus we have a decision procedure for Th(%,) and hence for Th(%). 0 

For any terms t , ,  f2 ,  and 1 5 n, 

Let us observe that we could have avoided the passage from % to and 
this because the relation y = S"(x) is definable by an appropriate formula 
D . ( x , y )  in 8. This enables us to translate all basic formulas t ,  < t2 and 
tl = tz into formulas of N, and thus get a reduction class of formulas of 2. 

Note that if we carry out  the quantifier-elimination procedure in 8 then 
we actually do not get rid of all quantifiers. Rather, we "hide" them in the 
formulas D.(x, y). But this still yields the desired results. In general, the 
elimination of quantifiers method should be construed in this broader 
sense. 
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The same decision procedure applies to Th(D0).  The only modification 
required is that the various statements concerning equivalence of formulas 
which were mathematically verified for %], must now be derived as formal 
consequences of the axioms D O .  Following this route, we not only decide 
T h ( D 0 )  but also show that T h ( D 0 )  = Th(%), i.e. T h ( D 0 )  is complete. 

1.3. Presburger's arithmetic 
The theory PAR was decided by PRESBURGER [1929] using the method of 

elimination of quantifiers. By an appropriate formula x <,y we can 
express, for each fixed n, the relation x < y A x = y (mod n). Thus, for 
example, x < 3 y  is 3 z  [ i z  = 0 A x + z + z + z = y]. Enrich the structure 
(w ,  +)  by making 0 , l  into distinguished elements. The terms of the 
language are now 0,1, x, y, . . . , and all expressions which are sums of these, 
e.g. x + z + z + 1 + 1 + 1 abbreviated by x + 22 + 3. 

The reduction set X will consist of all formulas obtained from the basic 
formulas t l  = f 2 ,  r l  <, t z  (rl, tz  are terms, n is an integer) by conjunctions and 
disjunctions. The proof, while not trivial, is not too hard and follows the 
lines of the proof of 1.2. 

1.4 Theory of real numbers 
This is perhaps the best known application of the elimination of 

quantifiers method. We consider the field of real numbers 8 = 
(R,O, 1, +;, I) as an ordered field. Instead of giving Tarski's original 
decision procedure we shall outline the algorithm of COHEN [1969] using 
the formulation in Monk's thesis. 

We introduce, on a provisional basis, certain algebraic-like functions. 
Let P ( x , ,  . . . , x . )  E Z [ x l , .  . . , x , ]  be a polynomial with integral coefficients, 
d , ( P )  be its degree in x,, and let 71 E R"-' .  Define P, , (x , )=  
P ( v l , .  . . , v,-~, x , ) .  For 1 I i 5 d , ( P )  define fp.i(q) to equal 0 if P,, = O  or P 
has no real roots, otherwise the i-th real root of P,, = 0 if there are at least i 
such roots, otherwise the largest real root. This makes fP..(xl,. . . , x.) a 
term which denotes the function fp,i : R"-'+ R. Call such terms algebraic 
functions. 

A polynomial relation is a Boolean combination of atomic formulas of 
the form 0 I P, where P E Z [ x , ,  . . . , x , ] .  An algebraic relation is a Boolean 
combination of polynomial relations and formulas of the forms, 0 5  
P [ x l , .  . . , X , , - ~ , ~ ~ ( X ~ ,  . . . , x,-J), or fl 5 f z ,  where P E Z [ x l ,  . . . , x , ]  and f l ,  f2 

are algebraic functions. With each algebraic relation a rank is associated in 
such a way that the rank of a polynomial relation is 0. 

The procedure for the elimination of quantifiers will reduce any formula 
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of the original language to an open formula (i.e. polynomial relation) and 
this by passing temporarily through the more general algebraic relations. 

The proof involves two lemmas. The first lemma asserts that a formula 
3x.A, where A is a polynomial relation, is equivalent to an algebraic 
relation B. The second lemma states that an algebraic relation B of rank 
1 s  k is equivalent to an algebraic relation of rank at most k - 1. This 
lemma implies by induction that every algebraic relation is equivalent to a 
polynomial relation. Taken together, these facts ensure that every formula 
is equivalent to an open formula. 

The proofs of the  lemmas make use of Rolle’s theorem to the effect that 
between every two consecutive roots of p ( x ) = O  there lies a root of 
p ’ ( x )  = 0. If p ( x )  is a polynomial, then the location of the roots of p ( x )  = 0 
can be determined, with sufficient accuracy for our purposes, from the 
location of roots of p ’ ( x )  = 0 and the values p (  - m), p (  + 03). Denote, for 
P E Z[x,,  . . . , x,], P’ = d P / d x . .  It turns out, roughly speaking, that state- 
ments involving f p . i ,  i.e. statements about the i-th root of P = 0, can be 
transformed into statements involving the terms fp..i. Within the framework 
of our notion of rank, this entails rank reduction which is the key point in 
the proof of the second lemma. 

1.5. Other theories 
Let us briefly mention some additional theories which we have shown 

decidable by the method of elimination of quantifiers. 
Let Q be the  rational numbers, 77 = (0, 5 )  their order-type. Th(9) is 

decidable. 
Let ALC be the class of algebraically closed fields, then Th(ALC) is 

decidable. Here every formula is equivalent to an open formula, a fact that 
can be established, for example, by employing the classical algebraic 
elimination theory. 

If BA is the class of all Boolean algebras, then Th(BA) is decidable. This 
result is due to TARSKI [1949] and is somewhat difficult. 

2. Model theoretic methods 

2.1. Categoricity, completeness and decidability 
A theory T is called categorical in cardinality (Y if all models %I= T of 

cardinality c ( 8 )  = cy are pairwise isomorphic. By the cardinality of % we 
mean the cardinality of the  domain of 8 .  The following simple observation 
is due to R. Vaught. It is assumed that T is countable. 
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THEOREM 4. If the theory T has no finite models and is categorical in some 
(necessarily infinite) cardinality a then T is complete. 

PROOF. Assume, by way of contradiction, that T is not complete. Then 
there exists a sentence S in the  language of T such that Tl = T U {S} and 
Tz = T U { i S} are consistent. Hence there are countable (i.e. finite or 
denumerable) models TI C at, Tzt= %,. Since T has no finite models, 
c(?ll)= c(2Iu,)= w. If a = w, then g1=%,,  but 2111=S and % , C i s ,  a 
contradiction. Otherwise there exist, by the Skolem-Tarski-Vaught 
theorem, elementary extensions < Bl,  %, < 2.3, so that c(BJ = c(%) = 

a. Again Bl = B,, Bl != S and B, C i S. 0 

The stipulation that T has no finite models is essential. Consider the 
theory E of just equality = . E is categorical in every cardinality. Yet 
E U {Vx Vy [x = y]}, as well as E U { 3 x  3 y  [ i x  = y]}, are consistent. 

Perhaps the simplest application is proving that Th(v) is decidable. 
Consider the axioms DNO consisting of the axioms for total-order together 
with 

v x v y  32 [x < y + x  < z < y ]  

v x  3 y  32 [z < x < y] .  

Every model (A, 5 )t= DNO is a totally and densely ordered set with- 
o u t  a first or last element. By Cantor's characterization of the  order 
type 7 = (Q, I ), i f  c ( A )  = w then  77 = (A, 5 ). Consequently, Th(DN0) 
is complete and hence, by Theorem 1, decidable. Now 77 t=DNO 
so that Th(DN0) Th(q), but Th(DN0) is complete so that Th(DN0) 
=Th(q) .  

2.2. Algebraically closed fields 
Next we consider the theory ALC of algebraically closed fields. This 

theory can be axiomatized in a language L having symbols 0, 1, + , - , by 
writing the usual field axioms and adding a sequence of axioms A., n = 
1 , 2 , .  . . , 

A. = Vyo * * * yn-l 3~ [yo + Y ~ X  + * * . + yn-lxn-' + X "  = 01. 

The axiom A, is written using some obvious abbreviations. 
The axioms ALC are not complete because the characteristic of the field 

has not been specified. This can be done by adding, for a prime p ,  an axiom 
C, = p - 1 = 0, where the left-hand side abbreviates a sum of terms 1. To 
obtain axioms for characteristic 0 put C, = {-I C,, -I C3, .  . . }. 
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We shall now show that Tp = ALC U {C,} is complete for any prime p, 
and To = ALC U C, is also complete. Let F t= T,, where p is a prime or 
p = 0, be an algebraically-closed field of characteristic p and cardinality 
w < c ( F )  = a. Let P C F be the prime-field in F, then P = Z / p Z  for p #  0, 
and P = Q if p = 0. By Steinitz’s structure theorem for algebraically-closed 
fields, there exists a set X C F of elements algebraically independent over 
P so that F 3 P ( X )  3 P is the algebraic closure of P ( X ) .  The isomor- 
phism type of F depends just on P (i.e. p) and c ( X ) ,  the so-called degree 
of transcendence of F. Now if w < c ( F )  then c ( X )  = c ( F )  = a. Hence for 
all p ,  T, is categorical in every non-countable cardinality w < a. 

By use of Theorem 1, this implies that for each p 2 0 ,  the theory 7’’ of 
algebraically-closed fields of characteristic P is decidable. 

Since ALC U Co, ALC U {Cp}, p prime, gives an enumeration of all 
completions of ALC, it follows from Theorem 2 that Th(ALC), the theory 
of algebraically-closed fields is decidable. 

2.3. Real-closed fields 
Tarski’s result concerning the decidability of the  theory of the field of 

real numbers can also be achieved by model theoretic methods. We first 
need a set of axioms for the field of real numbers. These were provided by 
Artin and Schreier in their famous study of real-closed fields. 

Consider a language L, which, like L of Section 2.2, has 0, 1, + , * ,  but in 
addition has a greater or equal symbol I. The axioms RLC consist of the 
following: the field axioms, axioms stating that I is a total order, and 
furthermore 

V x v y v Z [ x I y A O I Z + x Z I y Z ] ,  

v x  v y  V z  [x I y + x  + z ‘y + z],  

v x  3y [O 5 x + y 2  = X I ,  
A. f o r n = 1 , 3 , 5  , . . . .  

Here, as in 2.2, A. is the statement that the n-th degree polynomial 
equation has a root. 

The field of real numbers is a model of RLC but by no means the only 
model. Any ordered field (F,  0,1, + , - , 5 ) t= RLC will be called (ordered) 
real-closed. Th(RLC) is not categorical in any power, so that Vaught’s test 
cannot be used. Completeness, and consequently decidability, are proved 
by means of Robinson’s concept of model completeness. 

A theory T is model complete if for any two models TI= a, TI= ‘23 such 
that 2I C 23, we have 2I< ‘23 (‘23 is an elementary extension of 2I). 
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ROBINSON [1956] gave a test for model completeness. From this test the 
model completeness of RLC can be deduced. The proof, while not very 
hard, does require some effort. Alternatively one can use the following 
test. 

T is model complete if for any two models 8 C '23 of T there exists an 
elementary extension 8 < Q such that 23 C 6. Combining this with alge- 
braic properties of real-closed fields and with the method of pltraproducts 
we can get a somewhat different proof for the  model completeness of 
Th(RLC). 

Now a model complete theory T need not be complete. However, if T is 
model complete and has a prime model P which is, up to isomorphism, 
included as a submodel in every model of T, then T is complete. It is 
readily seen that under these conditions every two models of T are 
elementarily equivalent. 

The theory Th(RLC) has a prime model. Namely, every real-closed field 
F is of characteristic 0 and hence contains the field Q of rational numbers. 
It therefore also contains an isomorphic copy of the field of real-algebraic 
numbers and this is the common prime field. Consequently Th(RLC) is 
complete and decidable. The field 3 of real numbers satisfies %I= RLC, 
hence Th(3)  = Th(RLC) and is decidable. 

It should be remarked that this approach to the decidability of the field 
of real numbers is, despite the difference in methods, not too different from 
the  classical elimination of quantifiers method. At the bottom of the proof 
of model completeness lies the fact that if two ordered fields F, ,  F2 are 
isomorphic (the mapping preserves also the order) then their real-closures 
are isomorphic. This is proved by using information concerning the 
location of roots of equations. The analysis involved'is not too different 
from the examination of the location of roots in the elimination of 
quantifiers method. On the other hand, one can claim that the uniqueness 
of the real-closure is a basic algebraic result established on its own right. In 
the model-theoretic proof of the decidability of Th(RLC) we are thus 
quoting a standard result, and from this point of view the proof is more 
elementary. 

2.4. Theory of D O  revisited 
By way of illustrating how model-theoretic methods are useful for 

establishing decidability even in the absence of categoricity, let us re- 
examine Th(D0).  

In 1.1, Example 2, we observed that every model of D O  has the 
order-type w + ( w *  + w)A. We shall show that every countable model 
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2l = {A, 5 ) I= DO has an elementary extension 2l < 23 for which the A is 77. 
This will imply Th(2l) = Th(B), hence every two countable models of DO 
are elementarily equivalent, and hence Th(D0) is complete and decidable. 

Define an equivalence relation E on any model YI= DO. x E y  = 
c ( { z  I x < z < y v y < z < x } )  < w, i.e. the number of elements between x 
and y is finite. We see that the equivalence classes with respect to E are the 
“blocks” w, and each w *  + w, in the order type w + ( w *  + w)A of 91. 
Consider any two blocks (equivalence classes) B1, B2 of 8,  without loss of 
generality let x < y for all x E B,, y E B2. It is consistent with all the 
elementary statements about 3,  i.e. with the complete diagram CD(2l) of 
2l, to assume the existence of an element c such that x < c < y for all 
x E BI, y E B2. Thus CD(2l) and all these inequalities have a countable 
model 211 which is an elementary extension < 3 ,  of 2l. In this 211 the 
block B of c lies between BI and B2. Similarly we can construct an 
extension with a block above Bz. Because the extension 21<211 is 
countable, it is possible to construct a tower of elementary extensions 
2l < 8, < a ,  so that each ‘3“ is countable and for each pair B,, Bz of 
blocks of each 21n there exists an n < k and a block B of 21k situated 
between B, and Bz,  and similarly for a block above Bz. Let 23 = u,,, 21n, 
then 91 < 9, ‘pi is countable, and the blocks of ‘P are densely ordered. Thus 
the order type of ‘P is w + ( w *  + w ) ~ ,  which completes the proof. 

2.5. Further results 
Many additional important results we obtained by model-theoretic 

methods, sometimes in combination with the method of elimination of 
quantifiers. Let us mention without proofs a few outstanding theorems. 
The proofs usually involve deep mathematical results concerning the 
structures in question, making for an interesting combination of standard 
mathematics and logic. 

THEOREM 5 (Ax and KOCHEN [1965a, 1965b, 19661). The theory ofp-adic  
fields i s  decidable. 

This result laid to rest a long-standing conjecture that the only decidable 
fields are the real-closed and the algebraically closed fields. 

THEOREM 6 (Ax [1968]). The theory of rhe class of all finire fields is 
decidable. 

THEOREM 7 (SZMIELEW [1954]). The theory of commutative groups is  decid- 
able. 
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THEOREM 8 (EHRENFEUCHT [ 19591). The theory of linearly (totally) ordered 
sets is decidable. 

This result was announced in an abstract. The first full proof to be 
published is due to LAUCHLI and LEONARD [1966]. As will be seen in the 
next chapter, this result is an easy consequence of the method in RABIN 
[ 19691. 

Finally we shall quote a special case of more general results relating 
models to decidability. 

Let 8 =(A, fo  ,..., f i  , . . .  )i<, and 8 =@,go ,..., gi ,... ) i < p ,  a S w ,  be 
similar algebras of the same type, i.e. f i  and gi are ni-ary operations on ??I 
and 23 respectively. The direct product ?I x 'P is defined in t h e  obvious 
manner. 

THEOREM 9. If Th(8) and Th(8)  are decidable so is Th(??I X 8). 

This is but a special case of a general study of the first-order properties of 
products of structures and classes of structures initiated by MOSTOWSKI 
[1952] and developed by FEFERMAN and VAUGHT [1959]. We have restricted 
ourselves to a very special case in order to avoid the elaborate definitions 
appearing in the general theory. 

The method of products is a powerful tool for obtaining new decidability 
results from known ones. The following example is due to Mostowski. We 
know that Th((o, +)) is decidable, see Section 1.3. From the theory of 
general products it follows that the direct sum 8 of w copies of (w,  + ) has a 
decidable theory. The domain of P consists of all w-length vectors 

U = ( n o ,  ..., nk,o,o,  ...), I l iEw,  k = 0 , 1 ,  ..., 

and the operation is component-wise addition. Define a mapping 4 ( u )  = 
p p -  * e p ; " ,  where p,  is the ( i  + 1)-th prime. The mapping 4 is an isomor- 
phism 4 : 8 ---* ( w  - {0},  - ) = IDz onto the multiplicative semi-group of inte- 
gers. Hence Th(9.R) is decidable, a result due to Skolem. 

3. The method of interpretations 

3.1. Semantic interpretations 
We shall start by outlining what is meant by obtaining a structure 

8 = (A, R )  from a structure 8 = (B, S,,  S2 , .  . . )  by means of definable 
relations. We need some preliminary notions. Let L be the language of ??I 
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and L, be the  language of 9. Let D(x, y, . . . ) be a formula of L, with x as a 
free variable but possibly containing other free variables y, . . . , which will 
play the role of parameters. Abbreviate D(x,  y, . . . ) by  D ( x )  or even D. 

If F is a formula of L,, then the formula F D  obtained from F by 
relatiuiring all quantifiers of F to D, is defined inductively on the structure 
of F by the following rules. If F is quantifier-free then FD = E If 
F = E v G o r F = i E  t h e n D D = E D v G D o r F D = i E D , r e s p e c t i v e l y .  
The crucial cases are F = 3 u  G and F = Vu G :  

( ~ u G ) ~  = 3 u  [ D ( u )  A G D ] ,  ( V U G ) ~  = Vu [ D ( u ) +  G D ] .  

Here D ( u )  means D(u ,y ,  . . .), i.e. u substituted for x in D. Note that in 
order to correctly effect the relativization, we must sometimes alphabeti- 
cally change the names of certain variables in F in order to avoid binding a 
variable other than x, which is free in D. 

Let b E B, . . . , be a sequence of values in B for the parameters y, . . . , of 
D. Define C = { a  I 9l= D(a, b, .  . .)}. This is the domain defined by D and 
the specialization y = b, . . . of the parameters. The subset C C B induces a 
substructure & = (C, S, I C, S2 1 C, . . .) of 8. 

LEMMA. Let F ( s l , .  . . , 2, )  be a formula of L,, and let D, B, b E B, . . . , and 
C be as above, then for c l , .  . . , c,, E C 

8 t=FD(cl, .. . , c.) iff at= F(cl, .. . , c,,). 

Thus the effect of relativization is to convert satisfaction of the formula F 
in 9 to satisfaction in the substructure &. 

A somewhat more complex construction is the following. For the sake of 
the simplicity of the notation, let us restrict ourselves to a formula D ( x )  of 
L, containing just the free variable x (and no parameters) and a formula 
E(u,  u) with two free variables. 

DEFINITION 3. The structure 9(D, E) = (C, R )  induced in 8 by D ( x )  and 
E(u,  u )  has, by definition, the domain C = {c I B l= D(c)}  and the binary 
relation R C C X C, R = {(b,  c )  I b, c E C, 8 C E(b, c ) } .  

Let now F ( r , ,  . . . , 2.) be a formula in a language with a binary predicate 
symbol P and define F D e E  to be the formula obtained from F by first 
forming F D  and then replacing in F D  all atomic formulas P ( z , , z 2 )  by 
E(zl, z2). Note that the quantifiers in E(u,  u) are not being relativized to 
D. The following lemma is actually a corollary of the previous lemma. It 
relates satisfaction in the induced structure to  satisfaction in 8. 
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LEMMA. For e l , .  . . , c. E C, 

B(D, E)l= F(c l , .  . . , c,) i f  B t = F D . € ( c l , .  . . , c,). 

The application to decidability rests on the following theorem taken 
from RABIN [1965]. 

Let T and TI be theories in the languages L and L1, respectively, and let 
X and XI be classes of structures such that T = Th(X), TI =Th(XI). 
Assume that L has the predicate symbols Po, ..., Pk and no operation 
symbols. 

THEOREM 10. Let D(x,  y , .  . .) be a formula of LI, and E = (E, , ,  . . . , E,) be a 
sequence of formulas so that if P, is ni-ary then Ei has ni free variables, 
O l i l k .  

Assume that (1) For all B E XI and all values y = b, . . . of the parameters 
of D, B(D, E)I= T. (2)  For every S = (A, Ro,. . . , R r )  E X, there exists a 
model B E XI and a specialization y = b E B, . . . such that for this special- 
ization % = B(D,  E ) .  

Under these conditions, if TI is decidable then so is T. Conversely, i f  T is 
undecidable then so is TI. 

PROOF. Let F be a sentence of L, put G = Vy * * FD.€ where the universal 
quantification is over all the parameter-variables in D(x, y, . . .) (these 
variables are free in F, if F did contain quantifiers). By the second lemma, 
for any B E XI and specialization y = b E B * .  * 

(*I  81=FD*€(b, ...) i f  B(D,E) t=F.  

Let now F E T. Condition (1) implies B(D, E ) C  F for any B E XI, 
y = b, . . . . Hence the left side of (*)  holds, hence B I= G. But 8 E XI was 
arbitrary, hence G E Th(Xl) = TI. 

Next assume G E TI. Let SEX, then, by (2), for some B E X  and 
y = b, . . ., S = B(D, E). We have B I= G, hence B I= F D V E  (b, . . .). Therefore, 
by (*), B(D, E )  I= F, hence S t= F ;  consequently XI= F and F E T. 

Let TI be decidable and F be any sentence of L. Form G ; since G E TI 
iff F E T, we can determine whether F E T. 0 

Remark. It is readily seen that if T is finitely axiomatizable then condition 
(1) can be dispensed with by modifying the construction of G. 

We have stated Theorem 10 for first-order languages. With appropriate 
changes i t  also holds if  L, o r  even both L and L, are second-order 
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languages. The only case of second-order languages which is of any interest 
from the point of view of decidability is that of monadic second-order 
languages which have variables ranging over subsets of the domain but no 
variables ranging over relations on the domain. This is because once we 
have a variable ranging over, say, binary relations, the theory of all true 
sentences of the second-order language is undecidable. 

Assume that L1 has set variables A,  B, . . . . Then the relativizing formula 
D ( x )  may be of the form x E A and A will be a parameter in F".". If L has 
set variables then they must also be relativized to D by rules such as 

(VA F)" = V A  [Vx [x E A --* D (x)] + F"] .  

With these natural modifications, Theorem 10 holds for monadic second- 
order languages. 

3.2. Decidable second-order theories 
Let us consider monadic second-order languages L1 which have set 

variables A ,  B, . . . , and the E relation. To be appropriate for a structure 
'21 = (A, R )  where R is, say, a binary relation, L1 must also have a binary 
predicate symbol P. For such a language L1 the (monadic) second-order 
theory Th2('21) of '21 is the set of all sentences of L1 true in '21. Similarly we 
define Th2(X) for a class X of similar structures by Th2(X) = n ~ s ~ T h 2 ( X ) .  

The first significant results of second-order decidability, beyond the 
decidability of just pure monadic second-order logic, deal with the 
decidability of Th2((w, S ) )  where S ( x )  = x + 1 -is the successor function. 

THEOREM 11 (BUCHI [1962]). Th2((w, S ) )  is decidable. 

This result was actually preceded by a weaker version. Consider a weak 
monadic second-order language LW which has set variables a, /3,. . . which 
are restricted to range over finite subsets of the domain. The theory of a 
structure '21 in the language LW, will be called the weak (monadic) 
second-order theory of % and denoted by Th,(%). 

BUCHI [1960] and ELGOT [1961] have proved that Th, ( (w ,S) )  is 
decidable. 

For future reference, denote Thz(w, S )  = S l S  (the second-order theory of 
one successor function) and Th,((w, S ) )  = WSlS. 

We cannot enter into details of these decidability proofs. Let us just say 
that they utilize methods and results of automata theory. The case of WSlS 
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employs concepts and results from theory of automata operating on finite 
sequences and is very simple and transparent. The proof of decidability of 
S l S  required a new notion of an automaton operating on  an infinite 
w-sequence. 

3.3. The tree theorem 
Most of the proofs of decidability by interpretations involve the Tree 

Theorem due to Rabin [1969]. 
Let T = (0,1}* be the set of all finite words (sequences) x = x1x2 - x,, 

xi E (0,l) on the alphabet (0,1}. The empty sequence A is also in (0, l}*. 
The set T can also be interpreted as the infinite binary tree (see Fig. 1). 
Arbitrarily assigning 0 to left and 1 to right, the correspondence between 
node of the tree and T is as follows. The root corresponds to A ; the right 
successor (son) corrisponds to 1, and the left successor to 0; the left 
successor of 1 is 10, etc. 

Fig. 1.  

Thus we have on T the two successor functions ro(x) = x0, rl(x) = x l ,  
x E T. Let L, be an appropriate monadic second-order language having 
operation symbols To, T I .  The set of all sentences of L1 true in (T, ro, rl> will 
be denoted, as usual, by Thz(( T, To, r , ) ) .  

THEOREM 12 (Tree Decidability Theorem). The second-order theory of two 
successor functions S 2 S  = Thz(( T, rn, r l ) )  is  decidable. 

The proof of this theorem requires a far-reaching extension of the theory 
of automata to cover the case of a finite automaton operating on an infinite 
tree. One interesting feature of the proof is that even though we want to 
establish certain facts concerning finite objects, namely the finite automata, 
transfinite induction over ordinals up to the first uncountable cardinal w1 is 
used in an essential way. 
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3.4. Presburger’s arithmetic revisited 

of P A R .  

characteristic function of a. Define 

Buchi and Elgot used the decidability of WSlS to prove the decidability 

The key idea is to use finite sets a C w to code integers. Let x., be the 

n ( a )  = 1 . X . ( O ) +  2 * X P ( l ) + .  * . + 2’ . X.(X) + * * - . 

We shall construct a formula A (a, p, y )  in the language of WSlS which 
will be true in (w,  S) for a, P, y E w if and only if n ( a ) +  n ( P )  = n(y). This 
is done by considering the sequence xS of carriers in the addition of n ( P )  to  
n ( a )  as binary numbers. 

A ( a ,  p, y ) =  36 Vx [ i 0 E  6 A 

[S(x)E 6 - x  E a A x E p v x E a A 

X E 6 V X E p A X E  61 A [X E yf *  

X E a A X E p A X E 6 V  

x E a A - x  E /? A - x  E 6 a]]. 

By systematic use of A (a, 0, y )  to replace a + b = e in a sentence F of 
P A R ,  a sentence G in t h e  language of WSlS is obtained. We have 
F E Th((w, + )) iff G E WSlS so that we can decide whether F is true. 

3.5. Second-order theory of linear order 

countable domain, c ( A )  I w. 

Let KZ. be the class of all totally ordered sets (A, I ) I= OR with a 

THEOREM 13 ( R A B I N  [1969]). Th2(KZ.) is decidable. 

PROOF. We can define on T the partial-order x I y, x is an initial segment 
of y, by a formula x I y. Namely, 

x I y  = V A  [x € A  h V z  [ z  € A  + r o ( z ) E A  A r l ( z ) € A ] - + y  € A ] .  

Also the lexicographic order x < y is definable 

x < y = x ~ y v 3 z [ r ~ ( z ) ~ x  ~ r ~ ( z ) ~ y ] .  

The ordered set ({x 1 1 x E T}, < ) has order type 7. Therefore for every 
countable ordered set (A, I ) there exists a set A C T such that (A, 5 ) = 
(A, < ). Using the relativizing formula D(x,  A )  = x E A and replacing I 
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by <, we see that Th,(KZ) can be interpreted in S2S in the manner of 
Theorem 9. Hence Th2(KZ) is decidable. 0 

As simple corollaries we get difficult classical results. 

COROLLARY. Th(OR), the theory of linearly ordered sets, is decidable. 

The Skolem-Lowenheim theorem implies that every (A, 5 )I= OR is 
elementarily equivalent to a B E KZ. Hence Th(0R) = Th(KZ). The latter 
theory is, of course, decidable. 

The monadic second-order language is sufficiently powerful to express 
the fact that a set is well-ordered. Namely, the sentence 

W = VA Vx 3 y  Vz [x E A +y E A A [z E A + y  5 z]] 

has the property that a linearly ordered set '21 satisfies '21 I= W if and only if 
'% is well-ordered. This immediately leads to 

COROLLARY. The monadic second -order theory of countable well-ordered 
sets is decidable. 

PROOF. For any sentence F we have KZ I= W + F if and only if F is true in 
all countable well-ordered sets. 0 

Every well-ordered set (B, I ) has a countable elementary submodel 
'21 = (A, 5 ) < (B, I ). Hence the first-order theory of well-ordered sets is 
the same as the first-order theory of countable well-ordered sets which is 
decidable by the previous corollary. Thus the first-order theory of well- 
ordered sets is decidable, a result due to TARSKI and MOSTOWSKI [1949]. 

3.6. Decidability in topology 

root to infinity 
It is possible to define in S2S the notion of a path A C T going from the 

Path(A) = A E A A Vx Vy [x E A + [ r o ( x )  E A v r , ( x )  E A] A 

[ y 5 x - - , y E A ] h l  [ro(x)EA ~ r , ( x ) € A ] ] .  

Consider (0,l)" with the usual Tychonoff product topology. This is the 
well-known Cantor Discontinuum CD. For every point p : (0, 1}+ o, the 
set A C T of all finite initial segments of p ,  is a path of T and this is a one- 
to-one correspondence. We can also reproduce in S2S the topology of CD. 
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Let B C T be a set which is a union of paths, then the set of paths A C B is 
a closed subset of CD, and this again is a one-to-one correspondence. 
Define 

CL(B) = Vx [x E B + 3 A  [Path(A) A A c B A x E A]]. 

THEOREM 14 (RABIN [ 19691). The monadic second -order theory of CD, with 
the set variables restricted to range over closed sets, is decidable. 

PROOF. Let F be any sentence in the language of CD. Relativize all 
individual variables to Path(X) and all (closed) set variables to CL(B), 
replace all formulas x E B of F by X c B. The resulting sentence E is true 
in S2S if and only if CDFF.  0 

With slight changes, accounting for the fact that two different sequences 
p,  q E (0,l)" may represent the same element of the real-line segment 
[0,1], the above proof may be modified to cover the case of [0,1]. 

3.7. Boolean algebras 

tary theory of Boolean algebras and much more. 
The following theorem settles the decidability of Th(BA) - the elemen- 

THEOREM 15 (RABIN [1969]). Let Bu be the free Boolean algebra on w 
generators and let LI be a second-order language appropriate for Boolean 
algebras with set variables ranging over ideals of the algebras. Th,(B,), the 
theory of Bm in the language LI, is decidable. 

PROOF. The set of all closed-and-open (clopen) subsets of CD is a Boolean 
algebra isomorphic to B", hence we can identify it with 8". If Z C is any 
ideal then U ( I )  = USEIS is an open set U ( I )  C CD. The sets U(Z) run 
through all open sets of CD and the correspondence is 1-1. Furthermore, 
for S E B,,,, S 

Every sentence of LI can therefore be translated into a sentence about 
CD by relativizing the individual variables to set variables ranging over 
clopen subsets of CD, relativizing the ideal variables to variables ranging 
over open sets (i.e. complements of closed sets) of CD, and replacing x E Z 
by X C I. The transformed sentence is true in CD if and only if the original 
sentence is true in ThI(B,), and the former question is decidable. 0 

U ( I )  if and only if S E I. 

Let now B be any countable Boolean algebra. Then there exists an ideal 
J C B w  so that B =  B,/J, and the ideals ZCB are in a natural 1-1 
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correspondence with the ideal J C J1 C Bu. By the method of interpreta- 
tions, this will yield the  following theorem. Denote by BA" the class of all 
countable Boolean algebras. 

THEOREM 16. Thl(BA,), the theory in the language LI of all countable 
Boolean algebras, is decidable. 

If we restrict ourselves to sentences G = V I 1  * * * VIaF(Il,. . . , I,,), where 
F is a formula without any quantification over ideals, then G E Th,(BA") 
iff F(Z1, .. .,Zn) is true in every countable Boolean algebra '23 = 
( B ,  U, f l  , ' ,Z1 ,ZZ, .  ..), where Zl ,Z2,  .. ., are ideals of B .  Using the 
Skolem-Lowenheim theorem we immediately get: 

THEOREM 17 (RABIN [ 19691). The elementary theory of all Boolean algebras 
with a sequence of distinguished ideals is decidable. 

This theorem considerably strengthens the result of ERSHOV [ 19641 which 
asserts the decidability of Boolean algebras with a distinguished prime 
ideal (ultra-filter). 

3.8. Non-classical logics 
Thus far all the results presented in this paper dealt with theories 

formalized within classical logic. Many extensions and modifications of 
classical logic appear in the literature. These may take the form of rejection 
of certain axioms of classical logic, the intuitionistic logic is an example, or 
the addition of logical operators or connectives, as is being done in modal 
or tense logics. Important philosophical considerations and attitudes 
towards the foundations of mathematics and logic motivate the introduc- 
tion and study of these systems. 

While the decidability of the classical propositional calculus is trivial, the 
decidability of these fragments or  enrichments (by addition of logical 
operators) of even the propositional logic is in most cases far from obvious. 
The method of interpretations turned out to be a powerful tool for settling 
almost all the decidability questions in this field. We shall illustrate this by 
two examples. The interested reader should consult the article of GABBAY 
[1975], which is the source for these examples, and where many other 
results and references are to be found. 

The class of modal propositional logics to be considered here has, besides 
the usual propositional connectives, the operator 0 which is intended to 
express necessity, so that OA should be construed to mean: necessarily A. 
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A basic axiom system C-2, has all the theorems and rules of classical 
logic, and in addition the axioms and rules of inference 

o [ A  + B ] - + [ O A  +OBI, 

from F A + B to infer F O A  + U B .  

The system K is obtained from C-2 by adding the rule 

from t A to infer F OA.  

The system T is K plus the axioms o A  + A .  And the system S4 is T plus 
the axioms O A  +OOA. 

There are many other extensions of C-2. The particular axioms are 
chosen by the various authors on the basis of their b’eliefs as to what the 
correct properties of should be. 

Let us now describe the intuitionistic tense logic J,. This system will have, 
besides the connectives +, v ,  A ,  f (denoting falsehood), the operators G 
and H.  For a formula A, GA reads: “ A  will always be true”, and H A  
reads: “ A  was always true”. The formula i A abbreviates A -+ 1. 

The axioms and rules of inference for J, will be those for the intuitionis- 
tic propositional logic (including modus ponens), and in addition 

G [ A  + B ] + [ GA + G B  1, 
H [ A + B ] + [ H A - + H B ] ,  

A v G i H A ,  A v H i G A ,  

from FA to infer FGA and FHA. 

Kripke, Gabbay, and others, gave for many non-classical logics systems 
of semantics based on trees and valuations on trees. A formula would then 
be provable if i t  has a certain property under all possible valuations or 
interpretations. The detailed definition of interpretations would, of course, 
depend on the system of axioms in question. 

It turns out that these tree-semantics are expressible in S2S and variants 
thereof. This makes it possible to derive a multitude of positive decidability 
results from the Tree Theorem. 

4. Complexity of decision procedures 

4.1. Turing machine computations 
As remarked in the introduction, many results concerning lower bounds 

on the complexity of soluable decision problems appeared in recent years. 



622 RABIN/DECIDABLE THEORIES [CH. c.3, $4 

In  particular almost all the theories discussed in this chapter were shown to 
have decision problems which do not admit of any simple decision 
procedure. 

Since our aim will be to show that every decision procedure for a theory 
T is complex, we must settle on a definite formulation for algorithms and a 
definite convention for counting computational steps. We shall choose 
Turing-machine algorithms as our decision procedures, and the  execution 
of an atomic instruction will count as a basic step. 

The results will be of the  form that for any decision procedure P for the 
theory T in question, there are sentences A of size n (i.e. written by use of 
n symbols) for which P will require at least f ( c n )  steps to produce an 
answer as to whether A E T or not. The function f ( n )  will be at least 
exponential 2", and c will be a fixed number 0 < c. Because of the 
exponential nature of the  results, it will make little difference which model 
of algorithms and computations is chosen. Computation-times in different 
models for the same algorithm differ by at most a polynomial transforma- 
tion. 

The method for obtaining these inherent complexity results rests on the  
following observation. 

Let us transcribe programs for Turing machines in a uniform standard 
way by sequences P E {O, l}*. For any word x define l ( x )  to be the length 
of x, i.e. the number of symbols in x. In particular, for an integer written in 
binary notation, l ( n )  is the number of digits in n. 

Let T be a theory in the language L, and f ( k )  be a function satisfying the 
following conditions. There exists a constant O < d  so that for every 
program P and integer n, there exists a sentence S(n ,  P) of L satisfying: 

(i) l ( S ( n ,  P ) )  5 d ( l ( n )  + l ( P ) ) ,  
(ii) S ( n ,  P) E T if and only if a computation by the program P on input 

n (viewed as a 0-1 sequence) halts in fewer than f ( l ( n ) )  steps. 
(iii) The formula S(n ,  P) can be effectively computed from n, P in fewer 

than g ( l ( n ) +  l ( P ) )  steps, where g ( k )  is a fixed polynomial. 
If f ( k )  is a function growing at least at exponential rate, then under the 

above conditions there exists a constant 0 < c so that for infinitely many n 
there exists a sentence F of L, l ( F )  = n, for which P requires at least f ( c n )  
steps to decide whether F E  T. 

The proof of the  above statement is by a familiar diagonalization 
argument. One asssumes, by way of contradiction, that there exists a 
decision procedure P for T which requires for every sentence F, fewer than 
f ( c l ( F ) )  steps to decide whether F E  T. If c = 1/2d then, by use of the 
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sentence S(n ,  P), one can construct a Turing machine which stops on an 
input no if and only if i t  does not stop on that input. 

4.2. The theory WSlS 

high inherent complexity. 
MEYER [I9751 has proved that the decision problem of WSlS is of a very 

Define a function F(n, m )  by 

F(n ,  1) = 2", F(n ,  m + 1) = 2F(n.m), m = 1,2, .  . . . 

If 0 < d, then f ( n )  = F(n,  [ d n ] )  is a function which is an exponentiation 
by a linear stack of 2's. 

THEOREM 18. There exists a constant 0 < d so that for the function f ( n )  = 
F(n, [ d n ] ) ,  and every algorithm P for solving the decision problem of WSlS, 
there exist infinitely many formulas A so that P requires more than f ( l ( A ) )  
steps to decide whether A E WSlS. 

PROOF (outline). We have available in the language of WSlS variables 
a, fl, . . . , ranging over finite subsets of w. A pair of subsets a, /3 can be used 
to code a sequence p E {0 ,  I}*, / ( p )  = C((Y) .  If (Y = {i,,< i I  < ...  < i , - , } ,  then 
i, E p if and only if p ( j )  = 1. For a fixed a and variable P, the pairs (a, P )  
will run through codes of all sequences p such that l ( p )  = c ( a ) .  

For the above a and x E a, y E a, we shall say that x and y are d apart 
in a if  x = i,, y = i ,+d,  for some j 5 k - 1 - d.  

One can now show that for every n there exist two formulas A,(a)  and 
D,(a,x,y) of WSlS which are of length O(n) and have the following 
properties. A, (a )  implies that a has a certain structure and is at least of 
cardinality (F(n,  n))'. For sets a for which F,(a) holds, Dn(a, x , y )  means 
that x and y are at distance F ( n , n )  apart in a. 

Suppose that we have a Turing machine computation with fewer than 
F(n, n )  steps. Then the machine-head will never be farther than F(n, n )  
squares away from the starting square. We can assume without loss of 
generality that the machine never crosses to the left of the starting square. 

We can string out in order, from left to right, the  complete descriptions 
of the stretch of the first (leftmost) F(n, n )  squares after the execution of 
each of the machine-instructions. This will be a sequence of length at most 
(F(n ,  n))'. This sequence can be coded by use of an a C w which satisfies 
A,(a),  and additional sets P o ,  PI,. . . , P k .  The pair (a, P o )  will code the 
tape-contents, and ((a, PI), . . . ,(a, p k ) )  will code the sequence of head 
locations and machine states. 
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The formula D, (a, x, y )  will serve as a “ruler” measuring off stretches of 
length F(n, n ) .  Together with the  (definable) order on w, it will enable us to 
express the fact that two consecutive stretches of the sequence coded by 
(a, Po, .  . ., P e )  are related by an execution of a single Turing machine 
instruction. 

Filling out  the details and combining the above ideas, it is possible to 
show that there exists for WSlS a construction of a formula S(n,  P) with 
the properties enumerated in 4.1. This entails Theorem 18. 0 

It was independently observed by E. Robertson and by L. Stockmeyer 
(in his thesis) that a close examination of the  full proof of Theorem 18 
reveals that it will go through for sentences pertaining to (w,  5 ) which are 
universal monadic second-order. This means sentences which may contain 
set quantifiers but these are all V quantifiers and appear at the  beginning of 
the sentence. In fact, a single set variable will suffice. A method of direct 
interpretations will yield from this more detailed result the following 
theorem due to MEYER [1974, 197.51. 

THEOREM 19. The first-order theory Th(0R)  of linearly ordered sets has 
inherent complexity F(n,  [ d n ] )  for some 0 < d.  

The detailed formulation of Theorem 19, as well as of the results in the 
next subsection, is as in Theorem 18. 

An analysis of the automata-theory based decision procedures for WSlS 
and even S2S shows that they run in time F(n,  [ c n ] )  for formulas A of size 
n, for an appropriate 0 < c. In view of Theorems 18-19 these results are, 
qualitatively, best possible. There is, of course, the  question of the height 
[ c n ]  of the stack of 2’s, but this depends on the notation for the formulas 
and does not  seem to be readily answerable. 

4.3. Theories of addition and real-closed fields 
For the  classical theories Th((w, + )) = PAR, and the  theory of the  field 

of real numbers Th(RLC), the  inherent complexity results are not as 
devastating as for WSlS. It does, however, turn out that these theories are 
at least exponentially complex, and in some cases super-exponentially 
complex. Thus the  contention that the existence of a decision procedure 
trivializes these- theories is not justified. 

THEOREM 20 (FISCHER and RABIN [1974]). There exists a constant 0 < c so 
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that the decision problem of Presburger's arithmetic PAR is at least of 
complexity 2''". 

PROOF (outline). We saw that the ability to establish inherent complexity 
results foca complexity function f ( n ) ,  rests on the possibility to code within 
the theory by formulas of size O ( n )  sequences of length (f(n))' .  

There exist in the language of (w ,  +)  formulas P,,(x,y,  z )  of size O ( n ) ,  
which are true for any x ,  y ,  z E w if and only if x ,  y ,  z < F(n, 3 )  and 
x . y = z.  Thus such a formula, which involves only + and is of size O(n),  
codes the multiplication table up to 222". Using integers to code 0-1 
sequences, it is now possible to code sequences of length up to (2'")' by 
employing P,+,(x, y ,  2 ) .  El 

The lower bound for the complexity of Th(RLC) = Th((R, + , * )), where 
R is the field of real numbers, is obtained by considering just (R, +). 

THEOREM 21 (FISCHER and RABIN [1974]). Th((R, +)), and consequently 
also Th(RLC), are of inherent complexity at least 2'" for some 0 < c. 

The proof is similar to the proof of Theorem 20. In this case it is possible 
to reproduce (up to isomorphism) by a short formula the multiplication 
table of integers up to 2'". 

For the theory of 9X = (w,  .) of the integers under multiplication, the 
situation is even worse according to a theorem mentioned in FISCHER and 
RABIN [1974], the proof of which will be given in a forthcoming paper of 
Fischer and Rabin. 

THEOREM 22. The theory Th(w, * )) of multiplication of natural numbers is of 
inherent complexity at least F(cn, 3) ,  i.e. 222c', for some 0 < c. 

Algorithms carefully constructed by various researchers strongly suggest 
that the above lower-bound results are best possible. 

4.4. Propositional calculus and P = NP 
It is customary in the study of abstract computation-models ro make a 

distinction between deterministic and non-deterministic algorithms. When 
presented with a state-symbol combination, a Turing machine will execute 
a definite basic computational step (atomic move). The overall course of 
the computation is, therefore, completely determined by the Turing 
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machine (program), the starting state, and the initial tape-input. The 
deterministic mode is, of course, a feature of all present-day computers. 

The notion of non-deterministic computations, or programs, is of 
fundamental importance in theoretical studies of the properties of al- 
gorithms. A non-deterministic program P allows, when presented with a 
state-symbol combination, the execution of one out of possibly several 
basic moves. For example state q3, when presented with 1, may call for 
either (0, L, 7) (erase 1, move to left, go to state q,) or (1, R, 15). Thus, in a 
non-deterministic program, to each pair (4, b )  where q is a state and b a 
symbol, there corresponds a set of triplets (c, M, q, ) ,  c is a symbol, 
M E  { L ,  R}, q, is a state. 

When started in state qo on an input tape, the program P may be able to 
go through any one of several sequences of basis steps, i.e. perform 
different computations on  the input. It should be borne in mind that in each 
particular run a definite unique computation is performed. But several 
different runs, or threads, may be possible. 

Let us illustrate the idea by showing that there is a non-deterministic 
program P which will factor any composite number n in f ( l (n) )  steps 
where f(k) is a polynomial. 

The program P has non-deterministic instructions enabling it, when 
given input n (in binary notation), to write on  the tape any two numbers 
1 < b, c < n. As observed before, in any given run, one pair (6,  c )  will be 
written. But for every pair, there exists a run producing that pair. After b, c 
was produced, the program switches to a deterministic mode, calculates 
b . c and checks whether n = b . c. The machine will stop only if the test 
showed equality. 

We may observe the following features. Not every computation by P on 
n will halt. But if n is indeed composite then there are computations which 
will halt after a number of computational steps which is polynomial in the 
size I ( n )  of the input. 

This can be summarized by saying that compositeness of numbers can be 
non-deterministically recognized in polynomial time. 

Consider now the problem of determining whether a propositional 
formula F ( p l , .  . . , p n )  has a truth-values substitution for the propositional 
variables, so that F becomes true. This is the satisfiability problem for the 
propositional calculus. 

Since F(pl, . . . , p . )  is not satisfiable if  and only if F ( p l ,  . . . , p . )  is a formal 
theorem of propositional calculus, the satisfiability problem is closely 
related to the decision problem of PC. 

It is again easy to construct a non-deterministic program which will 
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determine whether F is satisfiable by a number of steps which is polyno- 
mial in l ( F ) .  

Does there exist an ordinary, deterministic, decision procedure for 
satisfiability which requires time (i.e. number of steps) which is just 
polynomial in the size of the formula? The polynomial in question may, of 
course, be faster growing than the polynomial for the non-deterministic 
progra m. 

The answer to this question is not known. However COOK [1971] has 
shown that: 

THEOREM 23. If the satisfiability problem of the propositional calculus can be 
(deterministically) solved in polynomial time, then any problem which can be 
solved non -deterministically in polynomial time can also be solved in 
polynomial time by a deterministic algorithm. 

Thus the question whether there exists an efficient (polynomial) al- 
gorithm for satisfiability is equivalent to the question whether the class P of 
algorithms requiring polynomial time is equipotent with the class N P  of 
non-deterministic algorithms requiring polynomial time. This is the cele- 
brated P = N P  problem. 

The algorithms in N P  are very powerful. For example, an isomorphism 
between two given graphs of size n can be non-deterministically found in 
polynomial time. Similarly for an Hamiltonian circuit. These are difficult 
combinatorial-computational problems which defied repeated attempts at 
simple solutions. 

Cook, KARP [1972], and others, found many examples of combinatorial 
decision problems which are reducible and in a certain sense equivalent to 
the satisfiability problem. The weight of this evidence may point in the 
direction that the satisfiability problem, being so powerful, is not of 
polynomial complexity and hence P# NP. But this fundamental question 
is, as yet, unanswered. 
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