
C H A P T E R

Space–Time Tradeoffs

An important question in the study of computation is how best to use the registers of a CPU
and/or the random-access memory of a general-purpose computer. In most computations, the
number of registers (space) available is insufficient to hold all the data on which a program
operates and registers must be reused. If the space is increased, the number of computation
steps (time) can generally be reduced. This is an example of a space–versus–time tradeoff. In
this chapter we examine tradeoffs between the number of storage locations and computation
time using the pebble game and the branching program model.

The pebble game assumes that computations are done with straight-line programs in a
data-independent fashion. Each such program is modeled by a directed acyclic graph. A
pebble on a vertex indicates that its value is in a register. The goal of the game is to pebble the
output vertices of the graph with numbers of pebbles (space) and steps (time) that are minimal,
that is, neither can be reduced without increasing the other.

A branching program models data-dependent computation under the assumption that in-
put variables assume a bounded number of values. Such a program is defined by a directed
acyclic multigraph (there may be more than one edge between vertices) that specifies the order
in which inputs are read. Time is the length of the longest path in a multigraph and space is
the logarithm of its number of vertices.

For both models we present techniques to derive lower bounds on the exchange of space S
for time T . For most problems examined here these exchanges are of the form ST = Ω(n2),
where n is the size of the problem input. Upper bounds on ST are obtained by evaluating S
and T for particular algorithms.

Because the branching program is more general than the pebble game, it is more difficult
to obtain good lower bounds with it, and for this reason we begin with the pebble game. In
addition, the pebble game is appropriate for problems such as integer multiplication, convo-
lution, and matrix multiplication on which only straight-line programs are used. For other
problems, such as merging and sorting, the algorithms used typically involve branching and
for them the branching program is the better model.

We also exhibit extreme results for the pebble game by showing that the time to pebble
some graphs goes from minimal to exponential in the size of the graphs when the number
of pebbles changes by 1, a warning against trying too hard to minimize the number of CPU
registers used in a computation.

461

462 Chapter 10 Space–Time Tradeoffs Models of Computation

10.1 The Pebble Game
The pebble game is a game played on directed acyclic graphs (DAGs), which capture the
dependencies of straight-line programs studied in Chapters 2 and 6. Algorithms for many
important problems, such as the FFT and matrix multiplication, are naturally computed by
straight-line programs. In the pebble game pebbles are placed on vertices of a DAG to indicate
that the value associated with a vertex resides in a register. Pebbles are placed on vertices in a
data-independent order.

In this game a pebble can be placed on an input vertex at any time and on any non-input
vertex whose immediate predecessor vertices carry pebbles. The goal of the game is to place
pebbles on each output vertex. A pebble can be removed from a vertex, including an output
vertex, at any time after it has been pebbled. These rules are summarized below.

The rules of the pebble game are the following:

• (Initialization) A pebble can be placed on an input vertex at any time.

• (Computation Step) A pebble can be placed on (or moved to) any non-input vertex only
if all its immediate predecessors carry pebbles.

• (Pebble Deletion) A pebble can be removed at any time.

• (Goal) Each output vertex must be pebbled at least once.

Placement of a pebble on an input vertex models the reading of input data. Placement of
a pebble on a non-input vertex corresponds to computing the value associated with the vertex.
The removal of a pebble models the erasure or overwriting of the value associated with the
vertex on which the pebble resides.

Allowing pebbles to be placed on input vertices at any time reflects the assumption that
inputs are readily available. (The multi-level pebble game introduced in the next chapter
models the case in which each access to secondary storage is expensive.) The condition that
all predecessor vertices carry pebbles when a pebble is placed on a vertex models the natural
requirement that an operation can be performed only after all arguments of the operation
are located in main memory. Moving (or sliding) a pebble to a vertex from an immediate
predecessor reflects the design of CPUs that allow the result of a computation to be placed in
a memory location holding an operand.

A pebbling strategy is the execution of the rules of the pebble game on the vertices of a
graph. We assign a step to each placement of a pebble, ignoring steps on which pebbles are
removed, and number the steps consecutively from 1 to T , the time or number of steps in
the strategy. The space, S, used by a pebbling strategy is the maximum number of pebbles
it uses. The goal of the pebble game is to pebble a graph with values of space and time that
are minimal; that is, the space cannot be reduced for the given value of time and vice versa.
In general, it is not possible to minimize space and time simultaneously. We derive upper and
lower bounds on the possible exchanges of space for time.

10.1.1 The Pebble Game Versus the Branching Program

As stated above, the branching program model introduced in Section 10.9 handles data-
dependent computation, and is thus a more general model than the pebble game. However,
there are three reasons to study the pebble game. First, the branching program assumes that

c©John E Savage 10.1 The Pebble Game 463

Figure 10.1 An FFT graph F (3) on n = 23 inputs. Input vertices are on the bottom; edges are
directed upward. Four pebbles are shown on the graph when pebbling the leftmost output.

input variables are held in an auxiliary random-access machine so that it can access them in
arbitrary order, a condition not imposed on pebble games. It follows that inputs to a pebble
game can be fetched in advance, since the times at which they are needed are data-independent.
Second, lower bounds on the exchange of space for time with branching programs are harder to
obtain due to their increased flexibility. Third, straight-line programs are used in many prob-
lems, such as integer multiplication, convolution, matrix multiplication, and discrete Fourier
transform, and the pebble game gives the relevant lower bounds. For other problems, such as
sorting and merging, the branching program model is the model of choice since these problems
are typically solved with branching programs. We expand upon this topic in Section 10.9.1.

10.1.2 Playing the Pebble Game

The pebble game is illustrated in Fig. 10.1 by pebbling the FFT graph F (3) with eight inputs
and 24 non-input vertices. This graph has the property that the set of paths from input vertices
to an output vertex forms a complete balanced binary tree. (See Fig. 10.2.) It follows that we
can pebble the FFT graph by pebbling each of the trees. Since two of the eight outputs share
the same tree at the next lower level, we can pebble two outputs at the same time.

Binary trees form an important class of graphs. A complete balanced binary tree of depth
4 is illustrated in Fig. 10.2. (The depth of a directed tree is the number of edges on the longest
path from an input vertex to the output (or root) vertex.) This tree has 16 input vertices and
one output vertex. A complete balanced binary tree of depth 0, T (0), consists of a single
vertex. A complete balanced binary tree of depth d > 0, T (d), consists of a root vertex and
two copies of T (d − 1) whose root vertices each have one edge directed from them to the
root vertex of the full tree. Thus in Fig. 10.2 the complete balanced binary tree of depth four
T (4) is constructed of two copies of T (3), which in turn are each constructed of two copies of
T (2), and so on. It follows by straightforward induction that a complete balanced binary tree
of depth d has 2d inputs and 2d+1 − 1 vertices. (See Problem 10.8.)

464 Chapter 10 Space–Time Tradeoffs Models of Computation

31

15 30

7 14 29 25

3 6 13 18 28 21 24

1 2 4 5 8

10

17 26 27 19 20 22 23169 11 12

Figure 10.2 A complete balanced binary tree T (4) of depth 4 on 16 inputs. At least five
pebbles are needed to pebble it.

The binary tree of Fig. 10.2 can be pebbled with five pebbles by pebbling the vertices in
the order shown. Five pebbles are needed at the time when vertex 27 is pebbled. After one
pebble is moved to vertex 30, the two outputs of the FFT of Fig. 10.1 to which vertices 15 and
30 are attached can be pebbled. This tree-pebbling strategy can be repeated on all remaining
outputs. It is a general strategy for pebbling complete balanced binary trees.

This pebbling strategy, explained in detail in the next section, demonstrates that an FFT
graph on n = 2k inputs can be pebbled with no more pebbles than are needed to pebble the
trees with n leaves contained within it, namely, k + 1. In the next section we show that this
is the minimum number of pebbles needed to pebble a complete balanced binary tree on 2k

leaves. This FFT pebbling strategy for the graph in Fig. 10.1 pebbles each vertex on the third
and fourth levels once, each vertex on the second level twice, and each vertex on the first level
four times. It is clear that inputs must be repebbled if the minimum number of pebbles is used.
This is an example of space–time tradeoff. We shall derive a lower bound on the exchange of
space for time for this problem.

In the next section we also examine the minimum space required to pebble graphs. In the
subsequent section we describe a graph that exhibits an extreme tradeoff. This graph requires
a pebbling time exponential in the size of the graph when the minimum number of pebbles is
used but can be pebbled with one move per vertex if one more pebble is available.

After studying extreme tradeoffs we define a flow property of functions that, if satisfied,
implies a lower bound on the product (S +1)T (or a related expression) involving the space S
and time T needed to compute such functions. This test is used to show that many standard
algorithms are optimal with respect to their use of space and time.

10.2 Space Lower Bounds
In this section we derive lower bounds on the minimum space Smin(G) needed to pebble a
graph G for balanced binary trees, pyramids, and FFT graphs, a representative set of graphs.

c©John E Savage 10.2 Space Lower Bounds 465

Any pebbling strategy will need to use at least as many pebbles as this minimum value of space.
It can be shown that no bounded-degree graph on n vertices requires more than O(n/ log n)
space (see Theorem 10.7.1) and that some graph requires space proportional to n/ log n (see
Theorem 10.8.1).

Complete balanced binary trees were introduced in the previous section. We now derive a
lower bound on the space (number of pebbles) needed to pebble them.

LEMMA 10.2.1 Any pebbling strategy for the complete balanced binary tree of depth k, T (k),
requires at least Smin(T (k)) = k + 1 pebbles and 2k+1 − 1 steps. There is a pebbling strategy of
T (k) that uses exactly this many pebbles and steps.

Proof Proof of the lemma requires a proof that k + 1 pebbles are necessary as well as a
strategy that pebbles the tree with k + 1 pebbles and makes one pebble placement per
vertex. Let’s first develop a pebbling strategy.

T (0) obviously can be pebbled with one pebble in one step. Assume that T (k − 1) can
be pebbled with k pebbles in 2k − 1 steps. To pebble T (k), advance a pebble to the root of
its left subtree (a copy of T (k − 1)) using k pebbles and 2k − 1 steps. Leave a pebble on its
root. Then pebble the right subtree of T (k) using k pebbles and 2k − 1 steps. (A snapshot
of T (k) when the number of pebbles is maximal under this pebbling strategy is shown in
Fig. 10.2.) Thus, T (k) is pebbled in 2× (2k −1)+1 = 2k+1 −1 steps with k +1 pebbles.

The lower bound is derived by showing that no pebbling strategy can use fewer than
k + 1 pebbles. The argument used is the following: initially no path to the root of the tree
(or output) from input vertices carries a pebble because there are no pebbles on the graph.
At the end of the computation a pebble resides on the root and all paths to the root carry
pebbles. Therefore, there must be a first point in time at which there is a pebble on each
path to the root. This must be a time at which a pebble is placed on an input vertex, thereby
closing the last path from that input to the root. Such a path is highlighted in Fig. 10.2.
Before a pebble is placed on the input vertex of this path, all other paths from input vertices
to the root carry pebbles. Each of these paths enters the highlighted path via one edge. Thus,
it follows that prior to the placement of this last pebble there is at least one pebble on the
tree for each of the k edges on this path except for the input vertex. Consequently, at least
k + 1 pebbles are on the tree when the last pebble is placed on it.

The FFT graph on 2k inputs, F (k), is defined recursively in terms of two sub-FFT graphs
F (k−1) as shown in Section 6.7.2. It follows that this graph contains many copies of the tree
T (k) as a subgraph (see Problem 10.11) and that any pebbling strategy for F (k) requires at
least k + 1 pebbles. Many other straight-line computations involve tree computations.

A pyramid graph on m inputs, P (m) (P (6) is shown in Fig. 10.3), is obtained by slicing
an m × m mesh into two parts along its diagonal, splitting all diagonal nodes (which are now
inputs), and then directing edges from the diagonal vertices in one part to the one remaining
unsplit corner vertex in this part of the graph. Edges are directed up, a convention we use
throughout this chapter. P (m) has n = m(m + 1)/2 vertices. (See Problem 10.1.)

We apply to the pyramid graph P (m) the lower bounding argument used in the preceding
proof based on closing the last open path to the output vertex.

LEMMA 10.2.2 Any pebbling strategy for the m-input, n-vertex (n = m(m + 1)/2) pyramid
graph P (m) requires at least m pebbles; that is, a minimum space Smin(P (m)) = m ≥

√
2n−

466 Chapter 10 Space–Time Tradeoffs Models of Computation

Figure 10.3 The pyramid graph on six inputs.

1. There exists a pebbling strategy that pebbles P (m) with m pebbles using one pebble placement
per vertex.

Proof The lower-bound proof again uses the fact that there is a first time at which all paths
from an input to the output carry pebbles. Highlighted in Fig. 10.3 is a last path to carry
a pebble. Prior to the placement of this last pebble, all paths to the output carry pebbles.
Thus, with the placement of the last pebble there must be at least as many pebbles on the
pyramid graph as there are vertices on a path from an input to the output, namely, m, and
m ≥

√
2n − 1. (See Problem 10.1.)

With m pebbles, the vertices can be pebbled in levels by first placing pebbles on each of
the m inputs. Pebbles are then advanced to vertices on the second level from left to right,
and this process is repeated at all levels to complete the pebbling. Each vertex is pebbled
once with this strategy.

In general, it is very hard to determine the minimum number of pebbles needed to pebble
a graph. In terms of the complexity classes introduced in Chapter 8, we model this problem as
a language consisting of strings each of which contains the description of a graph G = (V , E),
a vertex v ∈ V , and an integer S with the property that the vertex can be pebbled with S or
fewer pebbles. The language of these strings is PSPACE-complete (see Section 8.12).

10.3 Extreme Tradeoffs
We now show that extreme space–time tradeoff behavior is possible. We do this by exhibiting a
family of graphs, H1, H2, . . . , Hk, . . . (Fig. 10.4), that requires a number of steps exponential
in the size of the graph when the minimum number of pebbles is used but only one step per
vertex when one more pebble is available. This illustrates that excessive minimization of the
number of registers used by programs can be harmful!

H1 has one input and one output vertex and an edge connecting them, as shown in
Fig. 10.4. For k ≥ 2 the kth graph, Hk, has k + 1 output vertices and is constructed from
one copy of Hk−1, a tree (on the left) with k inputs, a two-level bipartite graph (on the top
right) with k inputs and k + 1 outputs, and a chain of k vertices that connects the tree to the
outputs of Hk−1 and the open vertex. (A bipartite graph is a graph in which the vertices are
partitioned into two sets and edges join vertices in different sets.)

We summarize our pebbling results for this family of graphs below. Here n! is the factorial
function with value n! = n · (n − 1) · (n − 2) · . . . · 2 · 1.

c©John E Savage 10.3 Extreme Tradeoffs 467

H1 H2

H1

3

k

Hk

Hk−1

k

k + 1

k

Figure 10.4 A family of graphs exhibiting an extreme tradeoff.

THEOREM 10.3.1 The graph Hk has N(k) = 2k2 + 5k − 6 vertices for k ≥ 2. Any pebbling

strategy for the graph Hk requires at least k pebbles, k = Θ(
√

N(k)). Any strategy to pebble Hk

with k pebbles requires at least (k + 1)!/2 = 2
Ω

(√
N(k) log N(k)

)
steps, whereas there exists a

pebbling algorithm using k + 1 pebbles that pebbles each vertex of Hk once.

Proof Consider a pebbling strategy that uses k + 1 pebbles to pebble Hk. For the case of
k = 1, Hk can be completely pebbled with one move per vertex. This is also true for H2

because we can move a pebble to the open vertex connected to the bipartite graph using two
pebbles, from which we can advance two of our three pebbles to the bottom layer of the
bipartite graph and have one additional pebble with which to pebble the output vertices.
Note that this pebbling strategy allows us to pebble output vertices of H2 from left to right
with three pebbles.

Assume that we can pebble the outputs of Hk−1 from left to right with k pebbles without
pebbling any vertex more than once. Then to pebble Hk, advance a pebble to the root of
the tree on the left and then pebble the outputs of Hk−1 from left to right using k pebbles
while keeping one additional pebble on the chain. Advance this pebble along the chain until
it reaches the open vertex. At this point k pebbles can be advanced to the bottom row of
vertices in the bipartite graph and the remaining pebble used to pebble outputs from left to
right. This shows that our assumption holds.

The minimum number of pebbles needed to pebble Hk is at least k because at least this
many are needed to pebble the tree on the left. To show that this value can be achieved, we
give a recursive pebbling strategy. Observe that H1 can be pebbled with k = 1 pebbles. To
pebble Hk, assume that we can pebble any one output of Hk−1 with k−1 pebbles. Advance
a pebble to the root of the left tree and then advance it along the chain by pebbling output
vertices of Hk−1 from left to right with k − 1 pebbles. Move a pebble to the open vertex
and then to all vertices on one side of the bipartite graph. Any one output vertex can now
be pebbled. However, doing so requires that one vertex on the bottom side of the bipartite
graph lose its pebble. Thus, no other output vertex can be pebbled without repebbling the
tree and all vertices of Hk−1.

468 Chapter 10 Space–Time Tradeoffs Models of Computation

As this pebbling strategy demonstrates, to pebble an output vertex, all k pebbles must
move to the bottom of the bipartite graph, thereby removing all pebbles from other vertices
of Hk. Let M(k) be the number of pebble placements to pebble Hk with k pebbles. It
follows that to pebble each of the (k + 1) outputs of Hk with k pebbles, we must pebble
each output of Hk−1 with k − 1 pebbles. Thus,

M(k) ≥ (k + 1) × M(k − 1)

≥ (k + 1)k(k − 1) · · · 3 · 1 = (k + 1)!/2

which provides the desired lower bound.
Let the graph Hk have N(k) vertices. Then N(1) = 2, N(2) = 12 and N(k) =

N(k − 1) + 4k + 3 for k ≥ 3. A straightforward proof by induction shows that N(k) =
2k2 + 5k − 6 (see Problem 10.13).

To show that M(k) ≥ (k + 1)!/2 is exponential in N(k) = 2k2 + 5k − 6, note that
p! = p ·(p−1) · . . . ·3 ·2 ·1, which is at least (p/2)(p/2) since each of the first p/2 terms is at
least p/2. Thus, M(k) ≥ .5[(k+1)/2](k+1)/2 Also, it is easy to see that N(k) ≤ 3(k+1)2

for k ≥ 1. Since this implies
√

N(k)/3 ≤ (k + 1), we have that

M(k) ≥ .5
[
(
√

N(k)/3)/2
](
√

N(k)/3)/2

which is exponential in N(k).

Many vertices in the graph Hk have a fan-in k. A new family {Gk} of graphs with fan-in
2 can be obtained by replacing the tree on the left in Hk with the pyramid graph of Fig. 10.3
and replacing the bipartite graph on the top with a new graph (see Problem 10.14). This new
graph exhibits an exponential jump in the time to pebble the graph but at a value of space that
is the fourth root of the number of vertices in Gk.

10.4 Grigoriev’s Lower-Bound Method
In this section we present a method for developing lower bounds on the exchange of space for
time in the pebble game. These lower bounds are typically of the form (S + 1)T = Ω(n2),
where S, T , and n are the space, time, and the size of the input to the problem, and are similar
in spirit to those of Theorem 3.6.1. Because they assume a less general model of computation
(the pebble game instead of the RAM), lower bounds are easier to derive.

The lower bounds use as a measure the maximum amount of information that can flow
from a subset of the inputs to a subset of the outputs, and are much easier to derive than are
lower bounds on circuit size for the circuit model. Although the results are stated for straight-
line computations, they apply to all “input-output-oblivious” computations by finite-state ma-
chines: computations in which inputs are read and outputs produced at times independent of
the values of the input variables. (See Problem 10.20.)

10.4.1 Flow Properties of Functions

We start by defining a flow property of functions. (See Fig. 10.5.) A function f : An 7→ Am

has a large information flow from input variables in X1 to output variables in Y1 if there are
values for input variables in X0 = X −X1 such that many different values can be assumed by

c©John E Savage 10.4 Grigoriev’s Lower-Bound Method 469

X

YY0

X0

X1

Y1

Figure 10.5 A function f that has a large information flow from input variables in X1 to
output variables in Y1 for some values of input variables in X0 = X − X1.

outputs in Y1 as inputs in X1 range over all their |A||X1| values. This flow property is also used
in Section 12.7 to derive lower bounds on the exchange of area for time in the VLSI model of
computation.

DEFINITION 10.4.1 A function f : An 7→ Am has a w(u, v)-flow if for all subsets X1 and
Y1 of its n input and m output variables, with |X1| ≥ u and |Y1| ≥ v, there is a subfunction
h of f obtained by making some assignment to variables of f not in X1 (variables in X0) and
discarding output variables not in Y1 such that h has at least |A|w(u,v) points in the image of its
domain.

The exponent function w(u, v) is a nondecreasing function of both of its arguments: in-
creasing u, the number of variables that are allowed to vary, can only increase the number of
values assumed by f ; the same is true if v is increased.

An important class of functions are the (α, n, m, p)-independent functions defined below.

DEFINITION 10.4.2 A function f : An 7→ Am is an (α, n, m, p)-independent function for
α ≥ 1 and p ≤ m if it has a w(u, v)-flow satisfying w(u, v) > (v/α)− 1 for n− u + v ≤ p.

We illustrate the independence property of a function with matrix multiplication: we show
that the function defined by the product of two n×n matrices is (1, 2n2, n2, n)-independent.
In Section 10.5.4, we show that a stronger property holds for matrix multiplication.

The proof of the independence property of n × n matrices uses the permutation matrices
described in Section 6.2. An n × n permutation matrix is obtained by permuting either the
rows or columns of the n×n identity matrix. When a permutation matrix B multiplies another
matrix A on the right (left) to produce AB (BA), it permutes the columns (rows) of A.

LEMMA 10.4.1 The matrix multiplication function f
(n)
A×B : R2n2 7→ Rn2

over the ring R is
(1, 2n2, n2, n)-independent.

470 Chapter 10 Space–Time Tradeoffs Models of Computation

Proof Let C = AB be the product of n × n matrices A and B. Consider any set X0 of
input variables (entries of A and B) and any set Y1 of output variables (entries of C) such
that |X0|+ |Y1| = n. The outputs in Y1 fall into at most |Y1| columns of C and the inputs
in X0 fall into at most |X0| columns of A. It follows that at least n − |X0| columns of A
contain only variables in X1. Fix the entries in B so that it forms a permutation matrix that
permutes the columns of A containing only elements in X1 onto columns of C containing
elements of Y1. (We are free to make the best assignment of variables in B, whether in X0

or X1.) It follows that each output variable in Y1 is assigned to an input variable of A in X1

by this permutation. Thus these output variables are free to assume |R||Y1| different values.

Since this is more than |R||Y1|−1, it follows that f
(n)
A×B is (1, 2n2, n2, n)-independent.

As this result illustrates, for any set of y1 outputs of the matrix multiplication function and
any set of x0 of its inputs satisfying x0 +y1 ≤ p, there is some assignment to these inputs such
that there is a large flow of information from the complementary set of inputs, X1, to any set
y1 of its outputs.

10.4.2 The Lower-Bound Method in the Basic Pebble Game

The following theorem provides a lower bound on the exchange of space for time. Its proof
uses a variant of the pigeonhole principle. Since the pebbling of vertices is assumed to occur
sequentially, time is divided into intervals in which the number of output vertices pebbled, b, is
chosen to be a small multiple of the number of pebbles, S, used in pebbling. The pigeonhole
principle is used to show that a large number of inputs must be pebbled in each interval.
In particular, we show that if the number of inputs pebbled inside an interval is small, the
number of inputs outside the interval is large enough that there is a large flow from the inputs
outside the interval to the outputs inside it. However, the flow cannot be any larger than can
be supported by the number, S, of vertices carrying pebbles just before the interval. Thus, the
number of input variables outside the interval is small, which implies that the number inside is
large. That is, many inputs must be pebbled within each interval. Multiplying by the number
of intervals in which b outputs are pebbled provides the lower bound.

THEOREM 10.4.1 Let f : An 7→ Am have an w(u, v)-flow and let it be realized by a straight-
line program over a basis {h : Ar 7→ As | r, s ≥ 1}. For arbitrary b ≤ m, every pebbling of
every DAG for f requires space S and time T satisfying the inequality

T ≥ ⌊m/b⌋(n − d)

where d is the largest integer such that w(d, b) ≤ S.

Proof Assume that G = (V , E) is pebbled with S ≥ 1 pebbles in T ≥ 1 steps. Let
TI ≤ T be the number of times that input vertices are pebbled. (This is generally more
than the number of input variables.)

Given a pebbling of G with S pebbles, group the consecutive pebbling steps into in-
tervals, the first ⌊m/b⌋ of which contain b pebbled outputs and one of which contains
m − b(⌊m/b⌋) pebbled outputs.

Consider an arbitrary interval I in which b outputs are pebbled. Let Y1 be these outputs
and let x0 and x1 be the number of inputs pebbled inside and outside the interval, respec-
tively. By definition, there is an assignment to the x0 inputs such that that the b = |Y1|

c©John E Savage 10.4 Grigoriev’s Lower-Bound Method 471

outputs have at least |A|w(x1,b) different values. If w(x1, b) > S, the outputs Y1 assume
more values than can be taken by the S pebbles in use just prior to the start of I. Because
the values of variables in Y1 are determined by the inputs pebbled in I, which are fixed, and
the values under the S pebbles, this contradicts the definition of f . It follows that x1 can be
no larger than d, where d is the largest value such that w(d, b) ≤ S. Thus the number of
inputs pebbled in I, x0, satisfies x0 ≥ (n − d).

Since there are ⌊m/b⌋ intervals in which b outputs are pebbled, the number of times
that inputs are pebbled, TI , is at least ⌊m/b⌋(n − d).

Grigoriev [120] established the above theorem for (1, n, m, p)-independent functions. We
restate as a corollary a slightly revised version of his theorem for (α, n, m, p)-independent
functions.

COROLLARY 10.4.1 Let f : An 7→ Am be (α, n, m, p)-independent and let it be realized by a
straight-line program over a basis {h : Ar 7→ As | r, s ≥ 1}. Every pebbling of every DAG for f
requires space S and time T satisfying the inequality

⌈α(S + 1)⌉T ≥ mp/4

Proof An (α, n, m, p)-independent function on n inputs has a w(u, v)-flow satisfying
w(u, v) > (v/α) − 1 for n − u + v ≤ p, where x0 = n − u ≥ 0. Since b can be
freely chosen, let b = ⌈α(S + 1)⌉. Thus, (b/α) − 1 ≥ S for (n − d) + b ≤ p, which
contradicts the requirement that w(d, b) ≤ S. It follows that (n − d) + b > p or that
(n − d) ≥ p − ⌈α(S + 1)⌉. With the inequality ⌊m/x⌋ ≥ (m − x + 1)/x (see Prob-
lem 10.2), the following lower bound follows from Theorem 10.4.1:

T ≥ (m − ⌈α(S + 1)⌉ + 1)(p − ⌈α(S + 1)⌉)
⌈α(S + 1)⌉

Since p ≤ m, if ⌈α(S + 1)⌉ ≤ p/2, the desired lower bound follows. On the other hand,
if ⌈α(S + 1)⌉ ≥ p/2, ⌈α(S + 1)⌉T ≥ mp/2 since T ≥ m.

It is possible that a function f : An 7→ Am is not (α, n, m, p)-independent but a sub-
function g : Ar 7→ As is (α, r, s, p)-independent for r ≤ n and s ≤ m. (Subfunctions are
defined in Section 2.4.) As shown in Problem 10.18, the lower bound for the subfunction g
applies to f .

Lower bounds on space–time exchanges can also be derived using properties of the graphs
to be pebbled. For example, if a graph contains a superconcentrator (defined in Section 10.8),
lower bounds on the product can be derived on (S + 1)T in terms of the number of inputs of
the graph. (See Problem 10.28.)

As mentioned at the beginning of this section, Theorem 10.4.1 is much more general
that it appears. In Problem 10.20 the reader is asked to show that the lower bound holds for
“input-output-oblivious” finite-state machines, FSMs that compute functions but read their
inputs and produce their outputs at data-independent times. Problem 10.21 asks the reader to
establish that pebblings of straight-line computations can be translated directly into computa-
tions by finite-state machines.

472 Chapter 10 Space–Time Tradeoffs Models of Computation

Figure 10.6 Pebbling an inner product graph with three pebbles.

10.4.3 First Matrix Multiplication Bound

The Grigoriev lower-bound method is well illustrated by matrix multiplication. We established
its independence property in Section 10.4.1. In this section we apply it to Corollary 10.4.1.
The upper bound stated in the following theorem follows from the development of an algo-
rithm for matrix multiplication that uses three pebbles and executes at most 4n3 steps. This
algorithm, based on the standard matrix multiplication algorithm of Section 6.2.2, forms each
of the n2 inner products defined by the product of two n × n matrices using three pebbles, as
suggested in Fig. 10.6, and 4n − 1 steps.

THEOREM 10.4.2 Every pebbling strategy for straight-line programs computing the matrix multi-

plication function f
(n)
A×B : B2n2 7→ Bn2

for n×n matrices requires space S and time T satisfying
the following inequality:

(S + 1)T ≥ n3/4

The standard algorithm for multiplying n × n matrices uses space and time satisfying

(S + 1)T = 16 n3

Those familiar with fast non-standard matrix multiplication algorithms such as Strassen’s
fast matrix algorithm (Section 6.3) may find this result surprising. Whereas one learns that
the standard matrix multiplication algorithm is not optimal with respect to computation time,
the above result states that the standard matrix multiplication algorithm is nearly optimal with
respect to the space–time product.

In Section 10.5.4 we specialize Theorem 10.4.1 to the flow properties of matrix multipli-
cation, giving a stronger result: that the space and time for matrix multiplication must satisfy
the inequality ST 2 = Ω(n6).

10.5 Applications of Grigoriev’s Method
Given the above results, to derive a lower bound on ⌈α(S + 1)⌉T using Corollary 10.4.1
it suffices to establish the independence property of a function. We apply this idea in this
section to convolution, cyclic shifting, integer multiplication, matrix-vector multiplication,
matrix inversion, and solving linear equations. We apply related arguments to derive lower
bounds for the discrete Fourier transform and merging. Finally, we apply Theorem 10.4.1 to
derive a lower bound on space–time exchanges for matrix-matrix multiplication that improves
upon the bound of Section 10.4.3. Where possible we also derive upper bounds on space–time
tradeoffs.

c©John E Savage 10.5 Applications of Grigoriev’s Method 473

10.5.1 Convolution

The wrapped convolution on strings of length n over the ring R, f
(n)
wrapped : R2n 7→ Rn, is

defined in Problem 6.19. It can be characterized by the following product of a circulant matrix
with a vector (see Section 6.2):




w0

w1

w2

...

wn−1




=




u0 un−1 un−2 . . . u1

u1 u0 un−1 . . . u2

. . .

un−2 un−3 un−4 . . . un−1

un−1 un−2 un−3 . . . u0



×




v0

v1

v2

...

vn−1




(10.1)

Lemma 10.5.1 demonstrates (2, 2n, n, n/2)-independence for the wrapped convolution

f
(n)
wrapped : R2n 7→ Rn function by showing that for any set X0 of inputs there is a way to put
|Y1|/2 of the inputs in X − X0 into a one-to-one correspondence with |Y1|/2 entries in any
set Y1 of outputs. This is established by setting one component of v to 1 and the rest to 0.

LEMMA 10.5.1 For n even, the wrapped convolution f
(n)
wrapped : R2n 7→ Rn over the ring R is

(2, 2n, n, n/2)-independent.

Proof Consider subsets X0 and Y1 of the inputs X and outputs Y of f
(n)
wrapped satisfying

|X0| + |Y1| = p = n/2. For f
(n)
wrapped to be (2, 2n, n, n/2)-independent, there must be

an assignment to input variables in X0 such that the output variables in Y1 have more than

|R|(|Y1|/2)−1 distinct values as the input variables of f
(n)
wrapped in X1 = X − X0 range over

all possible values.

As shown above, f
(n)
wrapped is defined by a matrix-vector product w = Mv, M a cir-

culant matrix, in which each row (column) is a cyclic shift of the first row (column). Let
e = |X0 ∩ {u0, u1, . . . , un−1}|. Thus, every row of M contains the same number e of
entries from X0. Also, n−e inputs are in X1 = X−X0. The entries in X1 are free to vary.

Each output in Y1 corresponds to a row of M . The number of instances of input
variables from X1 in these rows is |Y1|(n − e). Since these rows have n columns, there
is some column, say the tth, containing at least the average number of instances from X1.
This average is |Y1|(1 − e/n) ≥ |Y1|/2. (The instances of variables from X1 in a column
are distinct.) It follows that by choosing the tth component of v, vt, to be 1 and the
others to be 0, at least |Y1|/2 of the inputs in X1 are mapped onto outputs in Y1. Since

these inputs (and outputs) can assume |R||Y1|/2 different values, it follows that f
(n)
wrapped is

(2, 2n, n, n/2)-independent.

This implies the lower bound stated below. The upper bound follows from the standard
matrix-vector algorithm for the wrapped convolution using the observation that an inner prod-
uct can be done with three pebbles, as suggested in Fig. 10.6.

THEOREM 10.5.1 The time T and space S required to pebble any straight-line program for the
standard or wrapped convolution must satisfy the following inequality:

(S + 1)T ≥ n2/16

This lower bound can be achieved to within a constant multiplicative factor for S = O(1).

474 Chapter 10 Space–Time Tradeoffs Models of Computation

10.5.2 Cyclic Shifting

The cyclic shifting function f
(n)
cyclic : Bn+⌈log n⌉ 7→ Bn defined in Section 2.5.2 is a sub-

function of many functions, including integer multiplication and squaring (see Section 2.9.5),
integer reciprocal (see Section 2.10.1), and powers of integers (see Problems 2.34 and 2.35).

Cyclic shifting is another good example of a problem for which a lower bound on the
exchange of space and time exists. The method used to establish the independence properties
of this function can be generalized to the class of transitive functions. (See Problem 10.22.)

We redefine f
(n)
cyclic here. Let k = ⌈log n⌉. The input variables of f

(n)
cyclic are segmented

into two groups, an n-tuple x = (xn−1, . . . , x1, x0) of value variables and a k-tuple s =
(sk−1, . . . , s1, s0) of control variables. The control variables specify the integer |s|:

|s| = sk−12k−1 + · · · + s121 + s0

|s| is the number of places by which the value inputs must be shifted left cyclically to produce

the output n-tuple y = (yn−1, . . . , y1, y0). That is, f
(n)
cyclic(x, s) = (y), where

yj = x(j−|s|) mod n for 0 ≤ j ≤ ⌈log n⌉ − 1 (10.2)

A circuit to implement f
(n)
cyclic is given in Section 2.5.2 that cyclically shifts x left by 2j places

for each of those values of j, 0 ≤ j ≤ ⌈log n⌉ − 1, such that sj = 1.
The independence properties of the cyclic function are shown by demonstrating that some

permutation of the input vector x aligns unselected inputs with selected outputs.

LEMMA 10.5.2 f
(n)
cyclic : Bn+⌈log n⌉ 7→ Bn is (2, n + ⌈log n⌉, n, n/2)-independent.

Proof Consider subsets X0 and Y1 of the inputs X and outputs Y of f
(n)
cyclic satisfying

|X0|+ |Y1| = p = n/2. For f
(n)
cyclic to be (2, n+ ⌈log n⌉, n, n/2)-independent, there must

be an assignment to input variables in X0 such that the output variables in Y1 have more

than |B|(|Y1|/2)−1 distinct values as the input variables of f
(n)
cyclic in X1 = X − X0 range

over all possible values.
Let X0 contain e elements from x. Let yi ∈ Y1. As s runs through all possible shift

values, yi is made equal to every one of the inputs in x. For n − e of these shifts yi is
set equal to an input in X1 = X − X0. (For example, if n = 6 and e = 2, say with
X1 = {x0, x3, x4, x5} and Y1 = {y2, y3, y5}, then as s ranges over all of its values, each
of the three yi in Y1 is assigned four different variables in X1.) Thus, the number of input
variables assigned to outputs, summed over all cyclic shifts, is |Y1|(n − e). Since there are
n cyclic shifts, for some shift the number of variables in X1 that are matched with outputs
in Y1 is at least the average of this quantity; that is, at least |Y1|(1 − e/n) ≥ |Y1|/2. Thus,
some shift sets at least |Y1|/2 inputs in X1 to outputs in Y1. Since these outputs can assume

|B||Y1|/2 different values, it follows that f
(n)
cyclic is (2, n + ⌈log n⌉, n, n/2)-independent.

THEOREM 10.5.2 Every pebbling strategy for straight-line programs computing the cyclic shifting

function f
(n)
cyclic : Bn+⌈log n⌉ 7→ Bn requires space S and time T satisfying the inequality

(S + 1)T ≥ n2/16

c©John E Savage 10.5 Applications of Grigoriev’s Method 475

An algorithm exists to compute f
(n)
cyclic that uses space O(n) and time O(n log n), namely, that

satisfies the inequality

(S + 1)T = O(n2 log n)

Proof We leave the upper-bound proof to the reader. (See Problem 10.30.)

We now apply this result to integer multiplication.

10.5.3 Integer Multiplication

To apply Grigoriev’s method to the binary integer multiplication function f
(n)
mult : B2n 7→ B2n

of Section 2.9, we assemble a collection of results to show that with the proper encoding of one

of its two arguments, f
(n)
mult computes the logical shifting function f

(n)
shift (see Lemma 2.9.1)

and when n is even the logical shifting function f
(n)
shift contains the cyclic shift function f

(n/2)
cyclic

as a subfunction (see Lemma 2.5.2). Thus, f
(n)
mult contains f

(n/2)
cyclic as a subfunction. We use

this fact to obtain a lower bound on the space–time product for integer multiplication.

THEOREM 10.5.3 Let n be even. Every pebbling strategy for straight-line programs computing the

binary integer multiplication function f
(n)
mult : B2n 7→ B2n requires space S and time T satisfying

the following inequality:
(S + 1)T ≥ n2/64

An algorithm exists for multiplying n-bit integers using space O(log2 n) and time O(n2), namely,
that satisfies

(S + 1)T = O(n2 log2 n)

Proof The lower-bound argument is given above. The upper bound follows from a pebbling
of an integer multiplication circuit to multiply n-bit binary integers u and v. The circuit is
based on the following standard expansion of their product:

v3u0 v2u0 v1u0 v0u0

v3u1 v2u1 v1u1 v0u1 0

v3u2 v2u2 v1u2 v0u2 0 0

v3u3 v2u3 v1u3 v0u3 0 0 0

To construct a circuit we use the observation that the number of 1s in the jth column is the
jth component, wj , of the convolution w = u ⊗ v. (See Section 6.7.4.)

To compute wj we use the counting circuit f
(n)
count : Bn 7→ B⌈log n⌉ of Section 2.11 on

n inputs to count the number of 1s among the products urvs of the Boolean variables ur

and vs in the sum

wj =
∑

r+s=j

ur ∗ vs for 0 ≤ j ≤ 2n − 2

To compute the 2n-bit product we add the binary representations for w0, w1, . . . , w2n−2

in a set of (2n − 1) ripple adders, adding wj to the sum σ(j) =
∑

0≤i≤j−1 wi2
i, as

suggested in Fig. 10.7, where we omit the counting circuits used to compute the values of
w0, . . . , w2n−2.

476 Chapter 10 Space–Time Tradeoffs Models of Computation

Add AddAddAddAddAddAdd
w0

w6
w7

w5

w4
w3

w2
w1

Figure 10.7 A multiplication circuit that can be pebbled in O(n2) time and O(log2 n) space.
The counting circuits that generate w0, w1, . . . , w2n−2 are not shown.

Each counting function can be pebbled with O(n) steps using O(log2 n) pebbles with-
out repebbling vertices. (See Problem 10.10.) After the counting circuit is pebbled, pebbles
remain on their outputs until their values have been used elsewhere in the multiplication
circuit.

The value of wj is represented by a k-tuple, k ≤ ⌈log2 n⌉. The value of σ(j) is repre-
sented by at most ⌈log2(n(2j − 1))⌉ ≤ j + ⌈log2 n⌉ bits since it is the sum of at most n
j-bit binary numbers. Because wj is added after the first j bits, the pebbles on these bits can
be discarded. Only ⌈log2 n⌉ bits of the running sum and a like number for wj are needed to
hold values on the inputs to the ripple adder. A fixed additional number of pebbles suffices
to pebble the internal vertices of the adder. On completion of the sum only ⌈log2 n⌉ pebbles
are needed. They are used to hold the portion of the running sum that is used in the next
stage of addition.

For each value of j, 0 ≤ j ≤ 2(n − 1), O(log n) steps are executed in the ripple adder
and O(n) steps are executed in a counting circuit. Consequently, O(log2 n) pebbles and
O(n2) time suffice to compute the product of n-bit binary numbers.

In Section 10.13.2 we show that a lower bound of Ω(n2/ log2 n) applies under the branch-
ing program model. The stronger lower bound of Ω(n2) derived here reflects the extra con-
straints imposed on the pebble game, namely that inputs are read and computations performed
at data-independent times.

Similar results apply to the squaring function f
(n)
square since, as shown in Lemma 2.9.2,

f
(3n+1)
square contains f

(n)
mult as a subfunction. (See Problem 10.32.)

Similar results also apply to the reciprocal function f
(n)
recip : Bn 7→ Bn since, as shown

in Lemma 2.10.1, f
(n)
recip contains as a subfunction the squaring function f

(m)
square for m =

⌊n/12⌋ − 1. (See Problem 10.33.)

10.5.4 Matrix Multiplication

In this section we show that the matrix multiplication function is richer than the other func-
tions examined above in that it exhibits a stronger space–time lower bound than given in
Theorem 10.4.2. After we derive a lower bound on the function w(u, v) we specialize Theo-
rem 10.4.1 to this case, thereby deriving the stronger lower bound.

c©John E Savage 10.5 Applications of Grigoriev’s Method 477

LEMMA 10.5.3 The matrix multiplication function f
(n)
A×B : R2n2 7→ Rn2

over the ring R has
a w(u, v)-flow, where w(u, v) satisfies the following lower bound:

w(u, v) ≥ (v − (2n2 − u)2/4n2)/2

Proof Let C = AB be the product of n× n matrices A and B. We establish this result by
using characteristic functions to identify the outputs in C in Y1 and the inputs in A and B
in X1, as indicated below. Here the indices i and j range over 0 ≤ i, j ≤ n − 1:

σi,j =

{
1 ci,j ∈ Y1

0 otherwise
αi,j =

{
1 ai,j ∈ X1

0 otherwise

βi,j =

{
1 bi,j ∈ X1

0 otherwise

Let A, B, and C denote the matrices [αi,j], [βi,j], and [σi,j], respectively. Denote by |A|,
|B|, and |C| the number of 1s in the three corresponding matrices. Note that |A|+ |B| =
|X1| and |C| = |Y1|.

The kth n × n cyclic permutation matrix P (k) is the n × n identity matrix in which
the rows are rotated cyclically k− 1 times. For example, the following 3× 3 matrix is P (3).




0 1 0

0 0 1

1 0 0




Let D be an n × n matrix. The matrix P (k)D consists of the rows of D shifted cyclically
down k − 1 places. Similarly, the matrix DP (k) consists of the columns of D shifted
cyclically left k − 1 places.

Let B(k) be the matrix B obtained by multiplication on the left by A = P (k). Sim-
ilarly, let A(k) be the matrix A obtained by multiplication on the right by B = P (k).
Then, a 1 value for the (i, j) entry in A(k) and B(k) identifies a variable in X1 that is
mapped to an output variable of C through its multiplication by P (k).

Let D and E be n×n matrices whose entries are drawn from the set {0, 1}. We denote
by D ∩ E the n × n matrix whose (i, j) entry is 1 if di,j = ei,j = 1. Similarly, let D ∪ E

be the n × n matrix whose (i, j) entry is 1 if either di,j = 1 or ei,j = 1. The following
identity applies:

|D ∪ E| + |D ∩ E| = |D| + |E| (10.3)

Since |D ∪ E| ≤ n2 for n × n matrices, the following inequality holds:

|D ∩ E| ≥ |D| + |E| − n2 (10.4)

Also, since |D ∩ E| ≥ 0 we have

|D| + |E| ≥ |D ∪ E| (10.5)

The w(u, v)-flow of matrix multiplication is large if for some choice of r or s |C∩A(r)|
or |C ∩ B(s)| is large. This follows because choosing A to be the rth cyclic permutation

478 Chapter 10 Space–Time Tradeoffs Models of Computation

makes many variables of B in X1 match entries in C in Y1, or choosing B to be the sth
cyclic permutation makes many variables of A in X1 match entries in C in Y1. When an
input and output variable match, the latter assumes the value of the former. Thus, all the
variation in the former is reflected in the latter.

Let Q = |C ∩ A(r)| + |C ∩ B(s)|. Then the w(u, v)-flow is at least Q/2. Applying
(10.5) and then (10.4) to Q, we have the following inequalities:

Q ≥ |C ∩ (A(r) ∪ B(s)) | ≥ |C| + |A(r) ∪ B(s)| − n2

Applying (10.3) to |A(r) ∪ B(s)| yields the following lower bound on Q:

Q ≥ |C| + |A(r)| + |B(s)| − |A(r) ∩ B(s)| − n2 (10.6)

But |C| = |Y1|, |A(r)| = |A|, |B(s)| = |B|, and |A| + |B| = |X1|. We now show that
there are values for r and s such that |A(r) ∩ B(s)| is at most |A||B|/n2.

Consider the following sum:

S =

n∑

r=1

n∑

s=1

|A(r) ∩ B(s)|

Since A(r) and B(s) are formed by the rth and sth cyclic shift of columns of A and rows
of B respectively, each 1 in A is aligned once with each 1 in B. It follows that

S = |A||B|

As a consequence, there are some r and s such that |A(r)∩B(s)| is at most S/n2. Applying
this result in (10.6), we have the following lower bound on Q:

Q ≥ |Y1| + |A| + |B| − |A||B|/n2 − n2

Since |X1| = |A| + |B| is fixed, the above lower bound on Q is minimized by maximizing
|A||B| under variation of |A|. This maximum occurs when |A| = |X1|/2. Consequently
we have the following lower bound on Q:

Q ≥ |Y1| − n2

(
1 − |X1|

2n2

)2

Since w(u, v) ≥ Q/2 for u = |X1| and v = |Y1|, we have desired the conclusion.

We now apply this result and Theorem 10.4.1 to derive a stronger result for matrix multi-
plication than was obtained earlier using its (1, 2n2, n2, n)-independence property.

THEOREM 10.5.4 Every pebbling strategy for straight-line programs computing the matrix multi-

plication function f
(n)
A×B : B2n2 7→ Bn2

for n×n matrices requires space S and time T satisfying
the following inequality:

ST 2 ≥ n6/3

The standard algorithm for multiplying n × n matrices uses space and time satisfying

ST 2 = 48 n6

c©John E Savage 10.5 Applications of Grigoriev’s Method 479

Proof From Lemma 10.5.3 we have that the matrix multiplication function has a w(u, v)-
flow, where

w(u, v) ≥ (v − (2n2 − u)2/4n2)/2

Applying Theorem 10.4.1 to this problem with b = 3S, we seek the largest integer d such
that w(d, b) ≤ S, which must satisfy the bound

(
3S − (2n2 − d)2/4n2

)
/2 ≤ S

This implies that (2n2 − d) ≥ 2n
√

S. From Theorem 10.4.1, the time to pebble the graph
satisfies

T ≥ 2
√

Sn⌊n2/3S⌋
≥ 2

√
Sn(n2 − 3S + 1)/3S

If S ≤ n2/27, T ≥ (16
√

2n3)/(27
√

S) or ST 2 ≥ (.35)n6. On the other hand, since
T ≥ 3n2 just to pebble inputs and outputs, if S > n2/27, then ST 2 ≥ n6/3.

10.5.5 Discrete Fourier Transform

The discrete Fourier transform (DFT) is defined in Section 6.7.3. We derive upper and lower
bounds on the space–time product needed to compute this function.

LEMMA 10.5.4 The n-point DFT function Fn : Rn 7→ Rn over a commutative ring R is
(2, n, n, n/2)-independent for n even.

Proof As shown in equation (6.23), the DFT is defined by the matrix-vector product
[wij]a, where [wij] is a Vandermonde matrix. To show that the DFT function is (2, n, n,
n/2)-independent, consider any set Y1 of outputs (corresponding to rows of [wij]) and any
set X0 of inputs (corresponding to columns) whose values are to be fixed judiciously, where
p = |X0|+ |Y1| = n/2. We show that the outputs in Y1 have at least |R||Y1|/2 values as we
vary over the remaining inputs.

It is straightforward to show that the submatrix of [wij] defined by any |Y1| rows and any
|Y1| consecutive columns is non-singular. (Its determinant is that of another Vandermonde
matrix. Show this by letting the row and column indices be r1, r2, . . . , r|Y1| and s, s +
1, . . . , s+ |Y1|− 1, respectively, and demonstrating that wris can be factored out of the ith
row when computing its determinant.) Our goal is to show that some consecutive group of
columns corresponds to at least |Y1|/2 inputs of a in X1.

Divide the n columns of [wij] into ⌈n/|Y1|⌉ groups of consecutive columns with |Y1|
inputs in each group except possibly the last, which may have fewer. There are n − |X0|
inputs that may vary. Since there are ⌈n/|Y1|⌉ groups, by an averaging argument some group
contains at least (n−|X0|)/⌈n/|Y1|⌉ of these inputs. Since ⌈n/|Y1|⌉ ≤ (n+|Y1|−1)/|Y1|,
we show that (n − |X0|)/⌈n/|Y1|⌉ > |Y1|/2 for p = n/2. Observe that (n − |X0|)/(n +
|Y1| − 1) ≥ 1/2 if 2n − 2|X0| ≥ n + |Y1| − 1 or n ≥ |X0| + p− 1, which holds because
|X0| ≤ p ≤ n/2.

Since the submatrix defined by k consecutive columns and any k rows where ⌈|Y1|/2⌉ ≤
k ≤ |Y1| is non-singular, it follows that any subset of ⌈|Y1|/2⌉ columns has full rank. Thus,
the submatrix contains a non-singular ⌈|Y1|/2⌉×⌈|Y1|/2⌉ matrix. When all inputs outside

480 Chapter 10 Space–Time Tradeoffs Models of Computation

of these columns are set to zero, the ⌈|Y1|/2⌉ outputs have |R|⌈|Y1|/2⌉ values, or Fn is
(2, n, n, n/2)-independent.

The space–time lower bound stated below follows from Corollary 10.4.1.

THEOREM 10.5.5 To pebble any straight-line program for the n-point DFT over a commutative
ring R requires space S and time T satisfying the following:

(S + 1)T ≥ n2/16

when n is even. The FFT graph on n = 2d inputs can be pebbled with space S and time T
satisfying the upper bound

T ≤ 4n2/(S − log2 n) + n log2 S

Thus, (S + 1)T = O(n2) when 2 log2 n ≤ S ≤ (n/ log2 n) + log2 n.

Proof This lower bound can be achieved up to a constant factor by a pebbling strategy
for the FFT algorithm, as we now show. Denote with F (d) the n-point FFT graph (it has
n inputs), n = 2d. (Figures. 6.1, 6.7, and 10.8 show 4-point, 16-point, and 32-point
FFT graphs.) Inputs are at level 0 and outputs are at level d. We invoke Lemma 6.7.4
to decompose F (d) at level d − e into a set of top 2d−e 2e-point FFT graphs above the

split, {F (e)
t,j | 1 ≤ j ≤ 2e}, and a set of 2e 2d−e-point FFT graphs below the split,

{F (d−e)
b,j | 1 ≤ j ≤ 2e}, as suggested in Fig. 10.8. In this figure the vertices and edges have

been grouped together as recognizable FFT graphs and surrounded by shaded boxes. The
edges between boxes identify vertices that are common to pairs of FFT subgraphs.

F
(2)
t,1 F

(2)
t,2 F

(2)
t,3 F

(2)
t,4 F

(2)
t,5 F

(2)
t,6 F

(2)
t,7 F

(2)
t,8

F
(3)
b,1 F

(3)
b,2 F

(3)
b,3 F

(3)
b,4

Figure 10.8 Decomposition of the FFT graph F (5) into four copies of F (3) and eight copies
of F (2). Edges between bottom and top sub-FFT graphs are fictitious; they identify overlapping
vertices between sub-FFT graphs.

c©John E Savage 10.5 Applications of Grigoriev’s Method 481

A good strategy for pebbling the vertices of an FFT graph is to pebble the top FFT

graphs {F (e)
t,j | 1 ≤ j ≤ 2d−e} individually. The vertices of a top FFT graph in Fig. 10.8

are highlighted. To pebble its inputs, which are output vertices of FFT graphs below the
split, it suffices to pebble the subtrees rooted at these vertices. (They are also highlighted.)
Such subtrees are completely balanced binary trees with 2d−e inputs. Thus, d−e+1 pebbles
and 2d−e+1 − 1 pebble placements suffice to place a pebble on the root of one such subtree.
If these subtrees are pebbled in sequence, pebbles can be left on the inputs to a 2e-point FFT
graph F (e) above the split using at most 2e + d − e pebbles and 2e(2d−e+1 − 1) pebble
placements. Since 2e + 1 pebbles and e2e pebble placements suffice to pebble F (e) level by
level without repebbling vertices, it follows that all instances of F (e) above the split can be
pebbled using a total of T = 2d(2d−e+1 + e − 1) pebble placements and S = 2e + d − e
pebbles.

We now derive an upper bound on T by deriving upper and lower bounds on the value
of e satisfying S = 2e + d− e. Because S ≥ 2e, we have e ≤ log2 S. Let e0 be the smallest
integer such that 2e0+1 + d ≥ S. Then, 2e0 + d − e0 ≤ S and e ≥ e0. Consequently,
2e ≥ (S − d)/2, from which we have

T = 2d(2d−e+1 + e − 1) ≤ 4
22d

(S − d)
+ 2d log2 S

Finally, log2 S ≤ 2d/(S − d) ≤ 2 2d/S when 2d ≤ S ≤ (2d/d) + d, from which the
desired conclusion follows.

10.5.6 Merging Networks

In this section we consider networks of comparators to merge two sorted lists. Such networks
were described in Section 6.8 and an example was given, Batcher’s (m, p) bitonic merging
network.

A comparator element computes the function ⊗ : A2 7→ A2 that returns the maximum
and minimum of its two arguments, that is, ⊗(a, b) = (max(a, b), min(a, b)).

LEMMA 10.5.5 Consider a comparator-based merging network that merges two sorted lists of n
distinct elements x = (x1, x2, . . . , xn) (xi ≤ xi+1) and y = (y1, y2, . . . , yn) (yi ≤ yi+1)
to produce the sorted list z = (z1, z2, . . . , z2n) of 2n outputs (zi ≤ zi+1). There must be r
vertex-disjoint paths from any r inputs in x to the outputs in z to which they are mapped by the
network.

Proof Working backwards from the r selected outputs, we see that each output exits from
the comparator elements to which it is attached via a disjoint path, as suggested for three
outputs in Fig. 10.9. Extending this argument to the remainder of the network establishes
the result.

We next show that inputs can be given values to cause a merging network to shift its values
in a fashion that permits the derivation of a space–time lower bound.

THEOREM 10.5.6 Any straight-line comparator-based program that merges two sorted lists of n
elements requires space S and time T satisfying

ST = Ω(n2)

482 Chapter 10 Space–Time Tradeoffs Models of Computation

x1

x2

x3

y2

y1

y4

y3

u1

v1

u2

v3

v2

u3

u4

v4

z2

z3

z4

z5

z6

z7

z8

z1

Even MergeOdd Merge

x4

Figure 10.9 Movement of an ordered subset of the items through Batcher’s bitonic merge
algorithm.

This lower bound can be achieved to within a constant multiplicative factor when 2 log2 n ≤ S
≤ (n/ log2 n) + log2 n.

Proof Let n be divisible by 2. Any consecutive n/2 inputs in x can be shifted to the middle
n/2 positions in z through a judicious choice of values for y. To see this, observe that the
first k = n − n/4 − l components of y, l ≤ n/2, can be chosen to be less than the first l
components of x with the remaining n − k components of y chosen to be larger than the
first l+n/2 components of x. This will cause elements in positions l+1, l+2, . . . , l+n/2
to shift into positions n − n/4 + 1, . . . , n + n/4.

Since coalescing vertices in a graph reduces neither the time nor space needed to peb-
ble it, coalesce input vertices assigned to x whose indices are equivalent modulo n/2. By
Lemma 10.5.5, the new graph has n/2-vertex disjoint paths between the new inputs and the
n/2 outputs in positions l + 1, l + 2, . . . , l + n/2 for each of the n/2 cyclic permutations.
It follows that the argument applied to the cyclic shifting function (Lemma 10.5.2) applies
to this function. Thus, the merging network computes a function containing a subfunction
that is (2, n/2, n/2, n/4)-independent. The lower bound follows from Corollary 10.4.1.

As shown in Section 6.8, the graph of Batcher’s bitonic merging network is an FFT
graph. Thus, the upper bounds given in Theorem 10.5.5 apply.

10.6 Worst-Case Tradeoffs for Pebble Games*
In this section we show that degree-d graphs on n vertices can be pebbled with O(n/ log n)
pebbles (Theorem 10.7.1) and that some graphs require this many (Theorem 10.8.1). These
results do not answer the question of how bad the space–time tradeoff can be for an arbitrary
graph. To address this question we must make it precise. Lengauer and Tarjan [196] state it
as follows: is there a value for the space S, say, SJ(n), such that for positive constants c1(d)
and c2(d) if S ≤ c1(d)SJ (n), some graph on n vertices requires time superpolynomial in

c©John E Savage 10.7 Upper Bounds on Space* 483

n to pebble it, whereas for S ≥ c2(d)SJ(n) all graphs on n vertices can be pebbled with a
polynomial number of steps? They show that there is such a jump value for space and that
SJ (n) = Θ(n/ log log n). Since all graphs on n vertices can be pebbled with O(n/ log n)
space, their result shows there exist graphs on n vertices that require time exponential in n
when pebbled with this number of pebbles.

10.7 Upper Bounds on Space*
We establish upper bounds on space for the class G(n, d) of directed acyclic graphs on n
vertices that have maximum in-degree d and out-degree 2. We limit the out-degree to 2
because many straight-line programs with fan-out k > 2 (and their associated DAGs) can
be reorganized so that each computation with fan-out k can be replaced by a binary tree of
replicating subcomputations in which edges are directed from the root to the leaves. This at
most doubles the number of vertices in the graph. (See Problem 10.12.)

THEOREM 10.7.1 Let G(n, d) be graphs with n vertices, in-degree d, and out-degree 2 for d
fixed. Then Smin(n, d), the minimum space needed to pebble any DAG in G(n, d), satisfies
Smin(n, d) = O(n/ log n).

Proof Let Emin(p, d) be the minimum number of edges in any graph in G(n, d) that re-
quires p pebbles in the pebble game. We show that Emin(p, d) ≥ cp log2 p for some
constant c > 0. From this it follows that

p ≤ 2(Emin(p, d)/c)/ log2(Emin(p, d)/c)

when p ≥ 2 and Emin(p, d) ≥ 2c. (See Problem 10.3.)
Consider a graph G = (V , E) in G(n, d) with |E| edges. The number of edges incident

on vertices is 2|E|. Since each vertex has at most d + 2 incident edges, 2|E| ≤ (d + 2)|V |
= (d + 2)n. The upper bound on the number of pebbles, p, follows from this fact and the
previous discussion.

Let G = (V , E) in G(n, d) require p pebbles. An edge in E is a pair of vertices (u, v).
Let V1 ⊆ V be vertices that can be pebbled with p/2 or fewer pebbles. Let V2 = V − V1.
Thus, every vertex in V2 requires more than p/2 pebbles. Let Ei, i = 1, 2, be the set of
edges both of whose endpoints are in Vi. Let Gi = (Vi, Ei). Let A = E − (E1 ∪E2); that
is, A is the set of edges joining vertices in V1 and V2.

We now show that there exists a vertex in G2 that requires more than p/2 − d pebbles
if the pebble game is played on G2 only. Suppose not. Then we show that every vertex in G
can be pebbled with fewer than p pebbles. Certainly every vertex in V1 can be pebbled with
fewer than p pebbles. Consider vertices in V2. We show they can be pebbled with fewer than
p pebbles, thereby establishing a contradiction.

Let ν ∈ V2 be pebbled with p/2 − d or fewer pebbles when G2 alone is pebbled. In
pebbling ν as part of the complete graph G, we may need to pebble a vertex ω ∈ V2 some of
whose immediate predecessors are in V1. As we encounter such vertices ω, advance a pebble
to each of ω’s predecessors in V1 one at at time until all predecessors of ω are pebbled. After
pebbling a predecessor in V1, remove pebbles in V1 not on such predecessors. When all
of ω’s predecessors in V1 have been pebbled, pebble ω itself using one of the p/2 − d or
fewer pebbles reserved for pebbling on V2. This strategy uses at most p/2 + d − 1 pebbles
on vertices in V1, at most d − 1 for all but the last predecessor in V1 and at most p/2

484 Chapter 10 Space–Time Tradeoffs Models of Computation

for the last such predecessor, and at most p/2 − d pebbles on vertices in V2, for a total of
at most p − 1. This is a contradiction. It follows that G2 requires at least p/2 − d + 1
pebbles when pebbled alone and must have at least Emin(p/2 − d + 1, d) edges. Note that
Emin(p/2 − d + 1, d) ≥ Emin(p/2 − d, d).

There is also some vertex in G1 that requires at least p/2 − d vertices, as we show. By
assumption every vertex in V1 must be pebbled. Suppose that each can be pebbled with
p/2 − d − 1 pebbles. There must be a vertex η in V2 all of whose predecessors are in
V1. (If not, we can always move backward from a vertex in V2 to one of its immediate
predecessors in V2, a process that must terminate since the finite acyclic graph does not have
a cycle.) Thus, the vertex η can be pebbled with p/2−1 pebbles using the pebbling strategy
described in the preceding paragraph for ω, contradicting the definition of V2. It follows
that G1 must have at least Emin(p/2 − d, d) edges.

Consider now the set of edges A connecting vertices in V1 and V2. If |A| ≥ p/4,
Emin(p, d) ≥ 2Emin(p/2 − d, d) + |A| because both G1 and G2 have Emin(p/2 − d, d)
edges. If |A| < p/4, pebbles can be placed on the endpoints of edges of A in V1 using at
most p/2 + p/4 − 1 ≤ 3p/4 pebbles, with the strategy for ω given above. If we leave at
most p/4 pebbles on these vertices, 3p/4 pebbles are available to pebble the vertices in V2.
If V2 does not require at least 3p/4 pebbles, we have a contradiction to the assumption that
p pebbles are needed. Thus, there must be an output vertex µ that requires at least 3p/4
pebbles, for if not, none of its predecessors can require more.

We show that a graph requiring at least 3p/4 pebbles has a subgraph with at least p/(4d)
fewer edges that requires at least p/2 pebbles. To see this, observe that some predecessor of
the output vertex µ requires at least 3p/4 − d pebbles. Delete µ and all its incoming edges
to produce a subgraph with at least one fewer edge requiring at least 3p/4 − d pebbles.
Repeat this process p/(4d) times to produce the desired result. It follows that G2 has at least
Emin(p/2, d) + p/(4d) edges.

Thus, when either |A| ≥ p/4 or |A| < p/4, at least 2Emin(p/2−d, d)+p/(4d) edges
are required, and

Emin(p, d) ≥ 2Emin(p/2 − d, d) +
p

4d

The solution to this recurrence is Emin(p, d) ≥ cp log p for some constant c ≥ 1/8d and a
sufficiently large value of p.

10.8 Lower Bound on Space for General Graphs*
Now that we have established that every graph in G(n, d) can be pebbled with O(n/ log n)
pebbles, we show that for all n there exists a graph G(n) in G(n, d) whose minimum space
requirement is at least c5n/ log n for some constant c5 > 0.

The graph G(n) is obtained from a recursively constructed graph H(k) on 2k inputs and
2k outputs, n/2 < 2k ≤ n, by adding n − 2k vertices and no edges. The graph H(k) is
composed of two copies of H(k − 1) and two copies of an n-superconcentrator, which is
defined below.

DEFINITION 10.8.1 An n-superconcentrator is a directed acyclic graph G = (V , E) with n
input vertices and n output vertices and the property that for any r inputs and any r outputs,

c©John E Savage 10.8 Lower Bound on Space for General Graphs* 485

1 ≤ r ≤ n, there are r vertex-disjoint paths in G connecting these inputs and outputs. (Paths are
vertex-disjoint if they have no vertices in common.)

For n = 2k Valiant [342] has shown the existence of n-superconcentrators SC(k) that
have 2k inputs, 2k outputs, and c2k edges. Since his graphs have in-degree greater than 2,
replace vertices with in-degree d > 2 with binary trees of d leaves, thereby at most doubling
the size of the graph. (See Problem 10.12.) This provides the following result.

LEMMA 10.8.1 For some constant c > 0 and each integer k and n = 2k there exists an n-
superconcentrator SC(k) with c2k vertices.

We let H(8) = SC(8). For k ≥ 8 we construct H(k + 1) recursively from two copies
of H(k), two copies of SC(k), and extra edges, as suggested in Fig. 10.10. Here edges are
directed from left to right. The 2k output vertices of the first (leftmost) copy of SC(k) (called
SC1(k)) are identified with the 2k input vertices of the first copy of H(k) (called H1(k)),
the 2k output vertices of H1(k) are identified with the 2k input vertices of the second copy
of H(k) (called H2(k)), and the 2k output vertices of H2(k) are identified with the 2k input
vertices of the second copy of SC(k) (called SC2(k)). In addition, we introduce 2k+1 new
input vertices and 2k+1 new output vertices. The first (topmost) half of the new inputs (called
It) are connected via individual edges to the inputs of SC1(k). The second (bottommost) half
of the new inputs (called Ib) are also connected via individual edges to the inputs of SC1(k).
The new inputs are connected individually to the new outputs. Finally, each output of SC2(k)
is connected via individual edges to two new output vertices, one each in the top (called Ot)
and bottom half (called Ob) of the new outputs.

SC1(k) H1(k)

OutputsInputs

SC2(k)H2(k) Ot

Ob

It

Ib

Figure 10.10 A graph H(k + 1) requiring large minimum space.

486 Chapter 10 Space–Time Tradeoffs Models of Computation

The graph H(k) has n(k) = |H(k)| vertices, where n(k) satisfies the following:

n(8) = c28

n(k + 1) = 2n(k) + (2c + 4)2k

The solution to the recurrence is n(k) = (k−7)c2k +(k−8)2k+1, as can be shown directly.
The graph H(k) is in G(n(k), 2).

Important subgraphs of H(k + 1) have the superconcentrator property, as we now show.
This result is applied in the subsequent lemma to derive bounds on the amount of space used
to pebble outputs of H(k + 1).

LEMMA 10.8.2 The subgraphs of H(k +1) on 2k inputs and 2k outputs defined by vertices and
edges on paths from either inputs in It or inputs in Ib to the outputs of SC1 and H1(k) have the
2k-superconcentrator property.

Proof The superconcentrator property applies to the outputs of SC1(k) by definition. Note
that the jth input of H1(k) is connected to its jth output by an individual edge for 1 ≤ j ≤
2k. Thus, any r outputs of H1(k) have vertex-disjoint paths to the corresponding inputs of
H1(k). By the superconcentrator property of SC1(k), there are vertex-disjoint paths from
these outputs of SC1(k) to any r of its inputs. These statements obviously apply to inputs
in It and Ib.

Our goal is to show that pebbling the graph H(k) requires a number of pebbles propor-
tional to n(k)/ log n(k). To do this we establish the following stronger condition, which
implies the desired result.

LEMMA 10.8.3 Let c1 = 14/256, c2 = 3/256, c3 = 34/256, and c4 = 1/256. To pebble at
least c12k outputs of H(k) in any order from an initial placement of at most c22k pebbles requires
there be a time interval [t1, t2] during which at least c32k inputs are pebbled and at least c42k

pebbles remain on the graph.

Proof The proof is by induction on k with k = 8 as the base case. For the base case,
consider pebbling c12k = 14 outputs during a time interval [0, t] from an initial placement
of no more than c22k = 3 pebbles.

By Problem 10.27 any four outputs of SC(8) are connected via pebble-free paths to
256 − 3 = 253 inputs. At least one of these four outputs, say v, has pebble-free paths to 64
= ⌈253/4⌉ inputs. Let t1−1 be the last time at which all 64 of these inputs have pebble-free
paths to v. Let t2 be the last time at which a pebble is placed on these 64 inputs. During the
time interval [t1, t2] at least 64 ≥ c32k inputs are pebbled and at least one pebble remains
on the graph; that is, at least c42k pebbles remain. This establishes the base case.

Now assume the conditions of the lemma (our inductive hypothesis) hold for k. We
show they hold for k + 1. Assume that at least c12k+1 outputs of H(k + 1) are pebbled in
any order from an initial placement of at most c22k+1 pebbles during a time interval [ta, tb].

We consider four cases including the following two cases. There is an interval [t1, t2] ⊆
[ta, tb] during which at least c22k pebbles are always on the graph and at least c32k outputs
of either (1) SC1(k), or (2) H1(k) are pebbled. By Lemma 10.8.2 the subgraph of H(k+1)
consisting of paths from It (and Ib) to the outputs of each of these graphs constitutes a 2k-
superconcentrator. This is the only fact about these two cases that we use. Without loss of
generality, we show the hypothesis holds for the first of them.

c©John E Savage 10.8 Lower Bound on Space for General Graphs* 487

The graph consisting of paths from inputs in It to the outputs of SC1(k) constitutes a
2k-superconcentrator. Prior to time ta there are at most c22k+1 pebbles on the graph and
during the interval [t1, t2] there are at least c22k (but at most c22k+1) pebbles on the graph.
Thus, there is a latest time t0 before t1 when there are at most c22k+1 pebbles on the graph.
Since c32k ≥ c22k+1 + 1 outputs of SC1(k) are pebbled in the interval [t1, t2] (and in
the interval [t0, t2]), by Problem 10.27 at time t0 there are at least 2k − c22k+1 ≥ c32k

inputs in It (and in Ib) that are connected by pebble-free paths to the pebbled outputs of
SC1(k). Thus, at least c32k+1 inputs in It and Ib are connected via pebble-free paths to the
pebbled outputs of SC1(k). In [t0, t1 − 1] there are at least c22k+1 pebbles continuously
on the graph, whereas there are at least c22k pebbles during [t1, t2]. Since c22k ≥ c42k+1,
the number continuously on the graph in [t1, t2] is at least c42k+1 and we have the desired
conclusion for H(k + 1).

In the third case, there is an interval [t1, t2] ⊆ [ta, tb] during which at least c12k outputs
of the full graph H(k+1) are pebbled and at least c22k pebbles are always on the graph. This
implies that during [t1, t2] either c12k/2 outputs in Ot or in Ob are pebbled, which in turn
implies that at least c12k/2 outputs of SC2(k) are pebbled. Since c12k/2 ≥ c22k+1 + 1
(at most c22k+1 pebbles are on H(k + 1)), it follows from Problem 10.27 that at least
2k − c22k+1 ≥ c32k inputs in It (or Ib) are connected via pebble-free paths to the pebbled
outputs of SC2(k). The total number of such inputs is c32k+1. Since c22k ≥ c42k+1, there
are at least c42k+1 pebbles on the graph continuously during [t1, t2] and we have the desired
conclusion.

In the fourth case none of the previous cases hold. Since c12k+1 outputs of H(k + 1)
are pebbled during [ta, tb], there is an earliest time t1 ∈ [ta, tb] such that c12k outputs of
H(k + 1) are pebbled in the interval [ta, t1 − 1]. Since the third case does not hold, there
is a time t2 ≤ t1 such that fewer than c22k pebbles are on the graph at t2 − 1 and at least
c12k outputs of H(k + 1) are pebbled in the interval [t2, tb]. It follows that at least c12k/2
outputs of SC2(k) are pebbled during this interval. Since c12k/2 ≥ c22k + 1, it follows
from Problem 10.27 that at least 2k − c22k ≥ c32k inputs to SC2(k) (which are outputs to
H2(k)) are connected via pebble-free paths to the pebbled outputs of SC2(k) and must be
pebbled during [t2, tb]. Since c32k ≥ c12k, by the inductive hypothesis there is an interval
[td, te] ⊆ [t2, tb] during which at least c32k inputs of H2(k) (which are outputs of H1(k))
are pebbled and c42k pebbles reside continuously on H2(k).

Since the second case does not hold, by an argument paralleling that given in the pre-
ceding paragraph there must be a time t3 ∈ [td, te] such that at most c32k/2 outputs of
H1(k) are pebbled during [td, t3 − 1] and fewer than c22k pebbles reside on H(k + 1) at
tc − 1. Thus, during [t3, te] at least c32k/2 ≥ c12k outputs of H1(k) are pebbled from
an initial configuration of fewer than c22k pebbles. By the inductive hypothesis there is an
interval [tf , tg] ⊆ [t3, te] during which at least c32k inputs of H1(k) (which are outputs of
SC1(k)) are pebbled and c42k pebbles reside on H1(k) continuously.

Since the first case does not hold, again paralleling an earlier argument there must be a
time t4 ∈ [tf , tg] such that at most c32k/2 outputs of SC1(k) are pebbled during [tf , t4−1]
and fewer than c22k pebbles reside on H(k + 1) at t4 − 1. Thus, during [t4, tg] at least
c32k/2 ≥ c22k + 1 outputs of SC1(k) are pebbled from an initial configuration of fewer
than c22k pebbles. By Problem 10.27 at least 2k − c22k ≥ c32k inputs of SC1(k) are
connected via pebble-free paths to the pebbled outputs. Thus at least c32k corresponding
inputs in both It and Ib must be pebbled for a total of at least c32k+1 inputs.

488 Chapter 10 Space–Time Tradeoffs Models of Computation

Since at least c42k pebbles reside continuously on both H1(k) during [td, te] and on
H2(k) during [tf , tg] and [tf , tg] ⊆ [td, te], it follows that c42k + c42k = c42k+1 reside
continuously on H(k + 1) during [tf , tg].

We are now ready to show the existence of a graph on n vertices that requires ω(n/ log n)
minimal space.

THEOREM 10.8.1 For integers n ≥ 1 there exists a graph G(n) in G(n, d) that requires mini-
mum space Smin(G(n)) ≥ c5n/ log n for some constant c5 > 0.

Proof For n ≥ 28, let k be the largest integer such that n(k) ≤ n; that is, n(k) ≤ n <
n(k+1). Construct the graph G(n) by adding n−n(k) vertices and no edges to the graph
H(k). An optimal pebbling strategy for G(n) pebbles the added vertices one at a time using
one pebble, after which H(k) is pebbled. From Lemma 10.8.3 it follows that pebbling
H(k) requires at least c42k pebbles, since at least this many must reside on the graph at one
time. Since n(k + 1) ≤ 4n(k) for k ≥ 8 and c ≥ 2, it follows that n/4 ≤ n(k) ≤ n. This
implies that 2k ≤ n and k ≤ log2 n and that n/4 ≤ k(c + 2)2k ≤ (log2 n)(c + 2)2k.
From this we have 2k ≥ c5n/ log2 n, where c5 = 1/(4c + 8). The conclusion follows by
observing that at least (c4c5)n/ log2 n pebbles are needed to pebble G(n).

10.9 Branching Programs
The general branching program is a serial computational model that permits data-dependent
computation, unlike the pebble game. A branching program is a directed graph consisting of
a single starting vertex and in which vertices are labeled with predicates. Each vertex has one
outgoing edge for each value of its predicate. (See, for example, Figs. 10.11 and 10.12.) Time
in this model is the number of queries performed, and computations other than queries are
not counted. The space used by a branching program is the base-2 logarithm of the number
of vertices in its graph. Lower bounds on space and input time obtained with the branching
program apply to within constant multiplicative factors to the pebble game and the RAM
model. (See Section 10.9.1.)

As noted in Section 10.1.1, since the branching program reads inputs in a less constrained
manner than the straight-line program, it may be possible to solve some problems with branch-
ing programs using less space or time than in the pebble game. As a consequence, space–time
lower bounds for branching programs may be smaller than for the pebble game. Thus, if a
problem is going to be solved with straight-line programs, such as an algebraic circuit, it is bet-
ter to use lower bounds derived with the pebble game unless the branching program gives the
same lower bounds. In particular, branching programs give smaller space–time lower bounds
for integer multiplication and shifting (see Section 10.13.2) than does the pebble game.

We examine two kinds of branching programs in this section, general branching programs
and decision branching programs.

DEFINITION 10.9.1 A multigraph is a graph that may have more than one edge between two
vertices. A directed multigraph is a multigraph in which each edge has a direction. A directed
acyclic multigraph (DAM) is a multigraph with no directed cycles. A rooted directed acyclic
multigraph is a multigraph with a root vertex, a vertex with no edges directed into it, and is such
that every vertex can be reached via some path from the root. A sink vertex has no edges directed
away from it.

c©John E Savage 10.9 Branching Programs 489

A branching program P with input variables x over the set A and output variables y over
the set F is a rooted directed acyclic multigraph that has a query q(x) associated with each vertex
except for sink vertices and has a query outcome associated with every edge directed away from a
vertex. Each edge may also carry as a label the values of some output variables, with the proviso that
each output variable is assigned exactly one value along any one path from the root to a sink vertex.

The decision branching program is a special kind of branching program in which the
queries q(x) compare two variables and produce either the two outcomes {≤, >} or the three
outcomes {<, =, >}. Figure 10.11 shows an example of a decision branching program that
merges two 2-element sorted lists (u1, u2) and (v1, v2) (u1 ≤ u2 and v1 ≤ v2) by using
queries that compare the values of two input variables. Each vertex in the example has two
out-directed edges corresponding to the results of the query. The outputs appear in sorted
order along a path from the root to a leaf.

A decision tree is a decision branching program whose DAM (directed acyclic multigraph)
is a tree. A decision tree may be constructed for a sequential comparison-based sorting algo-
rithm, such as Batcher’s odd-even merging algorithm of Section 6.8, by associating the first
comparison with the root, the second comparisons with the roots of the left and right subtrees,
etc.

DEFINITION 10.9.2 A computation on a branching program P is a traversal of the unique
path in the DAM from the root to a leaf determined by the values of the input variables in x =
(x1, x2, . . . , xn) over the set A. The output of the computation is the sequence of output values
in y = (y1, y2, . . . , ym) over the set F encountered on the edges of the path traversed.

A function f (n) : An 7→ F m with input variables in x and output variables in y, namely

f (n)(x1, x2, . . . , xn) = (y1, y2, . . . , ym)

u1 : v2

v2u1u2

u1 : v1

v2u2u2v1v2 u2v2

u2 : v2

u2 : v1

u1

≤ > ≤ >

≤ >

≤ >
v1

v1 u1

Figure 10.11 A decision branching program that merges the lists (u1, u2) and (v1, v2) when
u1 ≤ u2 and v1 ≤ v2.

490 Chapter 10 Space–Time Tradeoffs Models of Computation

is computed by P if for each value of x the correct value of each output variable appears exactly
once on each path from the root to a leaf.

The time associated with a computation is the length of the path traversed by the computa-
tion. The computation time T of a branching program is the length of its longest path.

In Fig. 10.11 the computation associated with the input values (u1, u2, v1, v2) = (2, 4, 1,
3) takes the right branch out of the root and produces the output value v1 = 1, takes the left
branch at the next vertex and produces u1 = 2, and takes the right branch at the last vertex
and produces v2 = 3 and u2 = 4. The output of this computation is the sorted sequence
1, 2, 3, 4, as expected. This branching program merges the two sorted lists. Each sink vertex
corresponds to one of the four ways of merging the two lists. The computation time of this
branching program is 3.

Branching programs that compare elements at vertices are well suited to merging and sort-
ing but are not of the most general type.

DEFINITION 10.9.3 A general branching program P with input variables x over a finite set
A has a query of the form xi = ? associated with a variable xi at each vertex. It also has one edge
directed away from the vertex for each value of xi. A general branching program is non-redundant
if along each path from the root to a leaf a query xi = ? appears at most once.

The general branching program is also known as a binary decision diagram (BDD). BDD’s
are widely used in the computer-aided design (CAD) of circuits for Boolean functions.

A general branching program that convolves two short binary sequences over the integers
is shown in Fig. 10.12. (Convolution is defined in Section 6.7.4.) A computation leaves the
left branch of a vertex when the associated variable has value 0 and the right branch when it

0 1 0 1 0 1
c1 = 0
c2 = 0

c2 = 0
c1 = 0

a0 =?

a1 =? b0 =?

b0 =? b1 =? a1 =?

b1 =? b1 =? a1 =? b1 =? b1 =?

c2 = 0 c1 = 0 c1 = 1 c1 = 2
c2 = 1

c2 = 1

c1 = 1

0 1

0 1 0 1 0 1 0 10
1

0 10 1

c1 = 0

c0 = 0

c1 = 1

c0 = 0 c0 = 1

c2 = 0

Figure 10.12 A general branching program to compute the convolution of two sequences
(a0, a1) and (b0, b1).

c©John E Savage 10.9 Branching Programs 491

has value 1. This branching program computes the convolution c = a ⊗ b of the sequences
a = (a0, a1) and b = (b0, b1); that is,

c0 = a0b0, c1 = a0b1 + a1b0, c2 = a1b1

The performance of a branching program is also measured by its space complexity.

DEFINITION 10.9.4 The space used by branching program P is the base-2 logarithm of the num-
ber of vertices in its directed acyclic multigraph.

As shown in the next section, this definition permits a lower bound on the space complexity
used by any reasonable general-purpose computer model equipped with a random-access read-
only memory for its input data.

The following lemma demonstrates that every decision branching program can be simu-
lated by a general branching program, thereby showing the latter to be more general than the
former. (See Problem 10.35.)

LEMMA 10.9.1 Every decision branching program with variables over a finite set A with com-
putation time T and space S can be simulated by a general branching program with computation
time 2T and space S + log(|A| + 1).

This result is proved by constructing a general branching program to simulate a comparison
operator and substituting it for the comparison operator in a decision branching program. (See
Problem 10.35.) The graph that results from this construction is explicitly a multigraph.

While Lemma 10.9.1 establishes that decision branching programs are no more powerful
than general branching programs, this does not imply that general branching programs require
less space. In fact, the space complexity of a given decision branching program is independent
of the size of the setA over which the variables are defined; this is not true for general branching
programs.

If space complexity is not an issue, a tree program can be constructed. This is a branch-
ing program whose DAM is a tree. The following recursive procedure converts a branching
program to a tree program: a) If any immediate descendant of the root has more than one edge
directed into it, make as many copies of the submultigraph rooted at that descendant as there
are entering edges and direct exactly one edge into each. b) Apply this procedure recursively to
each of the submultigraphs until leaf vertices are reached. This procedure does not change the
length of any path in the original DAM or the computation time.

The notions of space and time can be generalized to average time and space when a prob-
ability distribution is defined on input values. (See Problem 10.37.)

Below we present a key lemma used to derive lower bounds on the space–time product.
This lemma is stated for normal-form branching programs, general branching programs
whose DAMs are level multigraphs, that is, multigraphs in which each vertex has a level and
adjacent vertices are in adjacent levels. An example of such a graph is shown in Fig. 10.13.

LEMMA 10.9.2 If there is a general branching program of space S and computation time T for a
function f , then there is a normal-form branching program for f that has space 2S and computation
time T .

Proof To convert a general branching program to a normal-form branching program, create
T + 1 copies of the general branching program, one for each time step including the zeroth.

492 Chapter 10 Space–Time Tradeoffs Models of Computation

c =?

a =?

b =?

101

c =?

1010 1 0 1

0 1

1010

c =?c =?

111011 100

0

000010110

b =?

001

Figure 10.13 A normal-form tree program for table lookup. It has one path for each value of
the input.

Delete the original edges and add an edge from vertex u in the ith copy to vertex v in the
(i + 1)st copy if there was an edge between u and v in the original graph. Now delete all
edges and vertices that are not reached from the root of the zeroth branching program. (See
Fig. 10.14.)

This procedure increases the number of vertices by at most a factor of T , thereby in-
creasing the space by adding at most log T . However, a branching program with space S
has 2S vertices. Thus, the length of the longest path through the program T cannot exceed
2S , or S + log T ≤ 2S.

Generally the space S used for a branching program computation will be large by com-
parison with log T , in which case the space bounds for normal-form branching programs and
general branching programs will differ by at most a constant factor.

In the rest of this chapter when we speak of a branching program we mean a general
branching program.

Figure 10.14 Construction of a normal-form general branching program as a level multigraph.

c©John E Savage 10.9 Branching Programs 493

We close this section by describing a normal-form tree program for table lookup, an
important programming tool that can be used to compute an arbitrary function f (n) : An 7→
Am on n variables whose value is an m-tuple. Each of the n variables is read and the value of
the function is found in a table. This is simulated by a tree program with branching factor |A|
in which the variables are read in succession until they are all read, at which point the value of
the function is provided. An example of such a tree program for a function f (3) : B3 7→ B3

is shown in Fig. 10.13. There is one path through the tree for each of the possible |A|n
assignments to the n inputs. The sink vertices are labeled by the appropriate m-tuple. Such
table-lookup tree programs have computation time n and space proportional to n log |A| since
they have (|A|n+1−1)/(|A|−1) vertices with A edges per vertex except for those at the lowest
level.

10.9.1 Branching Programs and Other Models

We begin this section with a comparison of branching programs and pebble games and con-
clude with a brief comparison of branching programs and the RAM model of computation.

The pebble model assumes that computation is serial and straight-line. If all algorithms
used for a particular problem are of this type, the pebble game is the appropriate model, es-
pecially if the lower bounds on space–time exchanges are larger than those provided by the
branching program model. (All algorithms used today for integer multiplication are straight-
line and the lower bounds on the space–time product for this problem are larger with the
pebble game than with the branching program model.) If the two models give the same lower
bounds, then we can invoke Lemma 10.9.3 to derive lower bounds on the space–time ex-
changes for pebbling from those for branching programs when log2 TP is small by comparison
with SP , where TP and SP are the time and space used by the pebbling model.

Data-dependent reading of inputs may allow the branching program to perform a com-
putation more quickly than the pebbling model. For example, merging requires a space–time
product that is quadratic in the length of the input strings with the pebble game but only
linear in the branching program. (See Section 10.10.2.) This demonstrates that the branching
program is a much more natural model for this problem.

If the lower bounds derived with the branching program are comparable in strength to
those offered by the pebbling model, as is true for most of the problems considered in this
chapter, straight-line programs are the better model for these problems. But the extra flexibility
offered by branching programs means that when their results are comparable to those provided
by the pebble game, one must work harder to obtain them. (See Sections 10.11 and 10.12.)

The branching program measures the time to read inputs but ignores the time for com-
putations and the production of outputs. By contrast, the pebble game measures the time to
read inputs, perform computations, and produce outputs. Although the time for computations
generally cannot be ignored, the methods available today to derive lower bounds for both mod-
els are based on the time spent reading inputs. But while for many problems the time to read
inputs dominates computation time for many values of space, when space is large the pebbling
model has the potential to give larger lower bounds than the branching program model. For
example, no way is known to compute the n-point DFT with fewer than Θ(n log n) steps,
the number used by the FFT algorithm, although in the limit of large space the branching
program gives a lower bound on space proportional to n.

To simulate the pebbling of a DAG by a branching program we must give an interpreta-
tion to each vertex of the DAG: assign an operation to each non-input vertex and a variable as

494 Chapter 10 Space–Time Tradeoffs Models of Computation

well as values to each input vertex. Two different interpretations of a DAG may yield different
branching programs. Of course, a DAG is pebbled without regard to the interpretation of ver-
tices: the pebble-game lower bounds use only the fact that vertices can hold one of |A| values
and do not depend explicitly on the interpretation given to their operator.

LEMMA 10.9.3 Given a pebbling P of an interpreted directed acyclic graph G that uses SP
pebbles and TP input steps to compute a function with operations over a finite set A, there is a
branching program with space SP log |A| + log (2TP) and time TP that computes the function
computed by G. Thus, if 2TP ≤ |A|SP , simultaneous lower bounds on the space and time for
a branching program for the function imply simultaneous lower bounds on space and time in the
pebble game that differ by at most constant multiplicative factors.

Proof We construct a branching program Q to simulate the pebbling P of a directed acyclic
graph that uses SP pebbles and TP steps. (Figure 10.15 illustrates the construction of such
a branching program.) Initially the branching program has a single vertex, the root, which
is labeled with the first variable to be pebbled according to P . Advance the first pebble as
far as possible. Create a vertex in the branching program for each value of the operation
or input covered by the first pebble. Label these new vertices with the name of the second
input to be pebbled and attach an edge from the root vertex to these new vertices labeled
with the corresponding value for the first input. Advance pebbles as far as possible according
to P and create one new vertex in the branching program for each different tuple of values

1

0, 1

1

1

0

0,1

0

0

1

01 2 4 5

u v w x

(a) (b)

0

0 1

7 +

3 6 ∗+

u =?

v =? v =?

w =? w =?

x =? x =? x =? x =?

0, 10, 1

1

Figure 10.15 A general branching program (b) that simulates the pebbling of a DAG (a) in the
vertex order 1, 2, 4, 3, 5, 6, 7. The DAG input variables are denoted u, v, w, and x and assume
values in {0, 1}. + denotes OR and ∗ denotes AND.

c©John E Savage 10.10 Straight-Line Versus Branching Programs 495

residing under the pebble(s) currently on the DAG. (In the example of Fig. 10.15, after
placing a pebble on the second vertex we advance a pebble to the third vertex and remove
all other pebbles. Thus, only two vertices are added to the branching program at this step.)
Label the new vertices with the third input to be pebbled. Now repeat the above process
by advancing pebbles as far as possible (in the example, pebbles now reside on the third and
fourth vertices), add one new vertex for each tuple of pebbles on the DAG (four vertices are
added), and connect edges from the previous to the current set of new vertices that conform
to the values assumed at the vertices of the DAG. This process is repeated until all inputs
have been pebbled.

Since the values of operations are always determined by the values under at most SP
pebbles, the number of new vertices added in Q with the pebbling of each new input vertex
in G is most |A|SP . Since TP input vertices of G are pebbled, it follows that Q has at most
TP |A|SP + 1 ≤ 2TP |A|SP vertices, from which the conclusion follows.

A branching program can also simulate a computation by a general model of computation,
such as the RAM discussed in Section 3.4, as we now show. Let the RAM have M b-bit words
of memory and a finite number of b-bit words in its CPU. Consider any program for such a
machine. Its state is determined by the values in its registers and memory locations. Thus the
RAM has at most O(2Mb) states. Let the space used by a RAM be the base-2 logarithm of
the number of its states. Let the RAM execute TRAM steps to read its inputs. We simulate
this computation in the same fashion as with the pebble game. After reading an input variable,
the branching program enters one of at most O(2Mb) vertices corresponding to states of the
RAM. Since the RAM reads inputs on TRAM steps, the branching program also takes TRAM

steps and has at most O(TRAM2Mb) vertices or uses space of at most O(Mb + log TRAM).
As long as Mb is larger than some multiple of log TRAM, simultaneous lower bounds on the
time to read inputs and space of a branching program for a function computed by the RAM
serve as lower bounds on the same quantities on the RAM. The following lemma summarizes
this discussion.

LEMMA 10.9.4 Given a RAM program that uses space SRAM and TRAM input steps to compute
f : An 7→ Am there is a branching program with space O(SRAM + log (2TRAM)) and time
TRAM that computes f . Thus, if 2TRAM ≤ 2SRAM , simultaneous lower bounds on the space and
time for a branching program for the function imply simultaneous lower bounds on the space and
time on the RAM that differ by at most constant multiplicative factors.

10.10 Straight-Line Versus Branching Programs
In this section we show that some problems can use space and time more efficiently with
branching programs than they can with the pebble game. We demonstrate this for the cyclic

shifting function f
(n)
cyclic : Bn+⌈log n⌉ 7→ Bn introduced in Section 2.5.2 and the merging

problem introduced in Section 6.8. However, for all of the other problems studied in this
chapter the lower bounds obtained with these two models are the same up to constant mul-
tiplicative factors, except for integer multiplication, where the branching program bound is
smaller by a factor of log2 n.

It is important to note, however, that the superiority of branching programs arises from
the assumption that inputs can be read in a data-dependent fashion, an assumption that is

496 Chapter 10 Space–Time Tradeoffs Models of Computation

not available to straight-line programs. As we know from Problem 10.20, if branching is
allowed but inputs must be read in a data-independent fashion by an input-output-oblivious
finite-state machine, Theorem 10.4.1 applies. Thus, branching programs that read inputs in
a data-independent fashion have no advantage over straight-line programs, at least in terms of
lower bounds on space–time exchanges.

10.10.1 Efficient Branching Programs for Cyclic Shift

We present a branching program for f
(n)
cyclic that uses space S = O(logn) and time T =

n + ⌈log n⌉; that is, ST = O(n log n), a product that is much less than the Θ(n2) product
required in the pebble game. (See Section 10.5.2.)

The function f
(n)
cyclic has n + ⌈log n⌉ Boolean variables, ⌈log n⌉ control inputs, and n

“value” inputs whose values are shifted by the amount specified by the control inputs. Our
efficient branching program is a tree program (see Fig. 10.13) that reads the control inputs
and selects one of n paths through the tree. (Note that n ≤ 2⌈log2 n⌉ ≤ 2n.) Each path
corresponds to one of the n possible cyclic shifts of the n value inputs. Attached to a leaf of
this tree is a chain of vertices, one per value input. These inputs appear in the order specified
by the cyclic shift associated with the path. An input value is read and then produced as output
at each of these n vertices. Since this branching program has at most 2n + 2n2 vertices, it has
space O(log n). It uses time n + ⌈log n⌉.

If cyclic shifting is to be done by a straight-line program, say in hardware, then it is better to
use the pebble game for lower bounds since this model applies to logic circuits and the results
it provides are stronger. However, if the problem is to be executed in software, the branching
program should be used unless the program is straight-line.

10.10.2 Efficient Branching Programs for Merging

Consider now the merging problem. In Section 10.5.6 we show that it requires an Ω(n2)
space–time product where n is the size of the input. However, when executed by a branching
program it uses space O(log n) and time O(n), as we show.

Figure 10.11 shows a “pyramid” decision branching program to merge two sequences of
length two. It is straightforward to extend this decision branching program to sequences of
length n, as suggested in Fig. 10.16. In this figure vertices are labeled by the number of
elements that are removed from the two lists being merged before arriving at the vertex carrying
the label. For example, prior to arriving at the vertex labeled (2, 1), two elements have been
removed from the left list and one from the right list. We assume that the lists to be merged
each contain n elements. Thus, all the pyramid vertices below a vertex labeled with (n, k) or
(k, n), 1 ≤ k ≤ n − 1, are deleted because below such vertices no further comparisons are
needed; the outputs produced are those on the list from which k values have been removed.
Thus, we attach a chain of n − k vertices, one for each of the input values at the end of the
smaller list. If the root is at level 1, vertices labeled (n, k) and (k, n) are at level n + k + 1 ≤
2n + 1.

The number of vertices on level l of this decision branching program is at most l. Since

1 ≤ l ≤ 2n, it has at most
∑2n+1

l=1 l = (n + 1)(2n + 1) vertices. The space associated with
this program is O(log(n + 1)(2n + 1)). Since the length of the longest path in this program
is 2n, it has time 2n associated with it. From Lemma 10.9.2 it follows that merging can be

c©John E Savage 10.11 The Borodin-Cook Lower-Bound Method 497

(0, 3)

(0, 2)

(0, 1)

(1, 2)(2, 1)(3, 0)

(1, 1)(2, 0)

(1, 0)

(0, 0)

Figure 10.16 The top portion of a decision branching program to merge two sorted lists. The
pair of integers at a vertex denotes the number of elements removed from the left and right lists
by the program before arriving at the vertex carrying the pair.

realized by a general branching program with space O(log n) + log |A| and time O(n) or a
space–time product that is O(n log n), much smaller than the O(n2) space–time product that
applies to the pebble game.

10.11 The Borodin-Cook Lower-Bound Method
In this section we generalize the method of Borodin and Cook [53] for deriving space-time
lower bounds for branching programs. The conditions under which lower bounds can be
derived are captured by a property of functions called (φ, λ, µ, ν, τ)-distinguishability, which
is stronger than the flow property used to derive lower bounds on space-time tradeoffs for
the pebble game. In fact, we show that a function that is (1, λ, µ, ν, τ)-distinguishable is
(α, n, m, p)-independent for the appropriate values of α, n, m, and p.

DEFINITION 10.11.1 Let τ :N 7→N be a nondecreasing function. A function f : An 7→ Fm

is (φ, λ, µ, ν, τ)-distinguishable for 0 ≤ φ, λ, µ, ν ≤ 1 if there is a set D ⊂ An satisfying
|D| ≥ φ|A|n such that for each assignment to a selection of a ≤ λn input variables and each
assignment to a selection of b ≤ µm output variables of f , a ≤ τ (b), the number of input
n-tuples consistent with the values of the a input variables that cause f to assume the given values
for the b output variables is at most |A|n−a−νb.

The meaning of this property for the function f is suggested by Fig. 10.17. For a fraction
of φ of the input tuples (φ = 1 is the normal case), when any a input variables and any b
output variables of f are assigned values, the maximum number of input n-tuples that cause
f to produce these output values is no more than |A|n−a−νb. This property is used below to
derive a lower bound on the space-time product for branching programs. We use φ = 1 for all
problems considered below except for the unique elements problem.

This theorem also uses a version of the pigeonhole principle. Time is subdivided into
intervals containing equal numbers of input queries. This has the effect of chopping the

498 Chapter 10 Space–Time Tradeoffs Models of Computation

Output tuples containing b fixed outputs≤ |A|n−aνb input tuples

Input tuples consistent with a fixed inputs and b fixed outputs

Figure 10.17 For a fraction of at least φ of the input n-tuples, an (φ, λ, µ, ν, τ)-distinguishable
function f has an upper limit of |A|n−a−νb on the number of input n-tuples consistent with
an assignment of values to any a inputs and any b outputs of f when a ≤ λn, b ≤ µm and
a ≤ τ(b).

branching program up into layers (called stages in the proof). We reason that each input n-
tuple follows a rich path through a layer that contains a large number of outputs. Because of
the distinguishability property, an upper limit on the number of inputs can be associated with
each rich path. It follows that there must be many rich paths or that the branching program
must have a large number of vertices (and space).

THEOREM 10.11.1 Let f : An 7→ Fm be (φ, λ, µ, ν, τ)-distinguishable for λ ≤ µ. Then
the space S and time T ≥ n required by any general branching program P that computes f must
satisfy

S ≥ mνa

4T
log2 |A| + 1

2
log2 φ

where a ≤ λn is the largest integer satisfying a ≤ τ (ma/2T) and n > (⌈1/λ⌉ − 2)/(1 −
λ(⌈1/λ⌉ − 1)). (Note that log2 φ is a negative constant.)

Proof We show that S ≥ mνa/2T log2 |A|+log2 φ for normal-form branching programs
and then invoke Lemma 10.9.2 to apply it to a general branching program with space 2S
and time T .

The approach is to break P into σ = ⌈(T +1)/(a+1)⌉ disjoint stages starting with the
root at the zeroth level, each stage of which contains a + 1 levels, a ≤ λn, except possibly
for the last, which may have fewer levels. (σ ≤ 2T/a since T ≥ n ≥ 1.) Each stage has
depth a. Thus, the last row in one stage is the first row in the next stage. Each stage except
for the first typically has multiple roots. (Figure 10.18(a) shows a branching program with
T = 5 levels. Since a = 2, it is divided into σ = ⌈(T + 1)/(a + 1)⌉ = 2 layers by the
horizontal line. Internal vertices belong to two layers.)

Using a modified version of the technique described on page 491 to create a tree program
from a branching program, replace the branching program in each stage by a set of tree
programs of depth a, shown in Fig. 10.18(b). Eliminate redundant queries on each path in
each tree. Also, pad paths that do not have a queries on them with superfluous but non-
redundant queries so that each path through each tree has the same length. A superfluous

c©John E Savage 10.11 The Borodin-Cook Lower-Bound Method 499

(a) (b)

Figure 10.18 The transformation of a T -step branching program into a branching program
with σ = ⌈(T + 1)/(a + 1)⌉ layers in which each layer consists of a forest of trees.

query has all of its output edges directed to a single successor vertex. Also, move all tree
outputs down to the leaves of these trees (which are also roots of trees in the next stage). Let
P∗ be the new branching program. Since the roots of trees in each stage are vertices in the
original branching program, there are no more than 2S trees.

Let x be one of the input n-tuples among the fraction φ for which (φ, λ, µ, ν, τ)-dis-
tinguishability is defined. The path through P∗ defined by x passes through σ stages.
Therefore, there must be at least one stage containing a tree path that produces at least
b = ⌈m/σ⌉ outputs (a rich path). (As shown in the last paragraph of this proof, b ≤ ⌈µm⌉
when λ ≤ µ for sufficiently large n.) Thus, x defines at least one rich path. Let a ≤ τ (b).
Because the function f : An 7→ Fm is (φ, λ, µ, ν, τ)-distinguishable, each rich path can be
associated with at most |A|n−a−νb inputs. (This number is smaller if more than b outputs
are produced.) Since there are at most 2S trees and at most |A|a paths through each tree,
there are at most 2S |A|a rich paths. Furthermore, two distinct rich paths (either the inputs
queried or outputs produced are different) are associated with disjoint sets of input n-tuples.
Thus, 2S |A|a|A|n−a−νb cannot be less than the number of input n-tuples in question,
from which the following inequality holds:

φ|A|n ≤ 2S |A|a|A|n−a−νb

We conclude that

S ≥ νb log2 |A| + 1

2
log2 φ

We replace b = ⌈m/σ⌉ by its lower bound ma/2T . Since τ (b) is a nondecreasing function,
the value of a satisfying a ≤ τ (b) is not increased by replacing b by ma/2T . Thus, S ≥
ν(ma/2T) log2 |A| + log2 φ, subject to a ≤ τ (ma/2T) and a ≤ λn.

We show there exists an integer nα such that for n > nα the condition b ≤ ⌈µm⌉
is met by the condition λ ≤ µ. Note that b = ⌈m/σ⌉ is a nondecreasing function of
a and a nonincreasing function of T since σ = ⌈(T + 1)/(a + 1)⌉ is a nonincreasing

500 Chapter 10 Space–Time Tradeoffs Models of Computation

function of a and a nondecreasing function of T . Thus, b is largest when T = n and
a = λn. It follows that b is largest when σ = ⌈(n + 1)/(λn + 1)⌉ ≤ ⌈1/λ⌉. If n >
(⌈1/λ⌉−2)/(1−λ(⌈1/λ⌉−1)), then (n+1)/(λn+1) > ⌈1/λ⌉−1, which implies that
⌈(n+1)/(λn+1)⌉ = ⌈1/λ⌉. In other words, when n > (⌈1/λ⌉−2)/(1−λ(⌈1/λ⌉−1)),
b assumes a value of at most ⌈m/⌈1/λ⌉⌉ ≤ ⌈λm⌉.

COROLLARY 10.11.1 Let f : An 7→ Fm be (φ, λ, µ, ν, τ)-distinguishable for λ ≤ µ and
τ (b) = n. Then the space S and time T required by any normal-form branching program P that
computes f must satisfy

ST ≥ mnλν

2
log2 |A| + log2 φ

when T ≥ n and n > (⌈1/λ⌉ − 2)/(1 − λ(⌈1/λ⌉ − 1)).

Proof The result follows from the observation that the maximum value of a in Theo-
rem 10.11.1 is λn.

The connection between (α, n, m, p)-independence and (1, λ, µ, ν, τ)-distinguishability
is given below.

LEMMA 10.11.1 If f : An 7→ Fm is (1, λ, µ, ν, τ)-distinguishable, it is (1/ν, n, m, p)-
independent for p = min(λn, τ (µm)) + µm.

Proof Consider sets of a input and b output variables to f such that a ≤ τ (b), a ≤ λn, and
b ≤ µm, or equivalently a ≤ τ∗, where τ∗ = min(λn, τ (µm)) since τ (x) is nondecreasing
in x. For any particular assignment to the a inputs, the input n-tuples that agree with this
assignment but lead to different values for the b outputs must be disjoint, as suggested in
Fig. 10.19. We show that for some assignment of values to the a inputs, the number of
values assumed by the b outputs is more than |A|b/α−1 for α = 1/ν. Suppose not. Then
there are at most |A|n−a−νb|A|νb−1 input tuples for each assignment to the a inputs, or a
total of at most |A|n−1 input tuples. Since f has |A|n input tuples, we have a contradiction.
Therefore, f is (1/ν, n, m, p)-independent for p = τ∗ + µm.

The following lemma makes it easier to derive space-time lower bounds for branching
programs. It uses the notions of subfunction (see Definition 2.4.2) and reduction (see Defini-
tion 2.4.1).

��������

����

����

����

����
����

����

����

����

��
��
��

��
��
��

021

124

414

223

312

Figure 10.19 On the left are the points in the domain of f that map to individual output
b-tuples when the values of a input variables are fixed.

c©John E Savage 10.12 Properties of “nice” and “ok” Matrices* 501

LEMMA 10.11.2 Let g : Ar 7→ As be a reduction of f : An 7→ Am that is either a subfunction
or a reduction obtained by restricting f to a subset of its domain. A lower bound to the space-time
product ST on branching programs for g is also a lower bound for f .

Proof Given any branching program for f , we can construct one for g that has no more
vertices or longer paths as follows. If g is obtained by deleting outputs, delete these outputs
from vertices in the branching program. This may allow the coalescing of vertices. If g is
obtained by restricting the set of values that variables of f can assume, this may make some
paths and subgraphs inaccessible and therefore removable. If g is obtained by giving two
variables of f the same identity, this constrains the branching program and again may make
some subgraphs inaccessible. In all cases neither the number of vertices nor the length of
any path to a sink vertex is increased by the reduction of f to g. Thus, any lower bound to
ST for g must be a lower bound for f .

10.12 Properties of “nice” and “ok” Matrices*
In this section we develop properties of matrices that are γ-nice or γ-ok, concepts we now
introduce. (A matrix that is γ-nice is also γ-ok.) These properties are used in Section 10.13
to develop lower bounds on the exchange of space for time using the Borodin-Cook method.
This section requires a knowledge of probability theory.

DEFINITION 10.12.1 An n × m matrix A, n ≤ m, is γ-nice for 0 < γ < 1/2 if and only if
for all p ≤ ⌈γn⌉ and q ≥ n − ⌈γn⌉ every p × q submatrix of A has rank p. Such a matrix is
γ-ok if all such p × q submatrices have rank at least γp.

As shown below, most matrices are γ-nice, a fact that is used in several places.

LEMMA 10.12.1 At least a fraction (1 − |A|−1(2/3)γn) of the |A|n2

n × n matrices over a
subset A of a field, |A| ≥ 2, are γ-nice for some constant γ, 0 < γ < 1

2
, independent of n and A.

This result also holds for n×n Toeplitz matrices, matrices [ti,j] with the property that ti,j = ai−j ;
that is, all elements on each diagonal are the same.

Proof Let r = ⌈γn⌉ and s = n− r. The proof is established by deriving upper bounds on
the number N(r, s) of r×s matrices in an n×n matrix M and the probability q(r, s) that
any particular r × s matrix fails to contain a non-singular r × r submatrix (it fails to have
rank r) when each entry in M is equally likely to be an element of A. Since the probability
of a union of events is at most the sum of the probabilities of the events, the probability that
some r × s matrix fails to have rank r is at most q(r, s)N(r, s).

It is straightforward to show that

N(r, s) =

(
n

r

)2

since an r × s submatrix of an n × n matrix is chosen by selecting a set of r rows and
a set of s columns and each can be chosen in

(
n
r

)
ways. (Note that

(
n
s

)
=

(
n
r

)
.) We

now show that the binomial coefficient
(
n
r

)
is at most (n/r)rer. We use the fact that

n!/(n − r)! = n(n − 1) · · · (n − r + 1) ≤ nr and the observation that rr/r! is a term in

502 Chapter 10 Space–Time Tradeoffs Models of Computation

the Taylor-series expansion of er, as stated below:
(

n

r

)
=

n!

r!(n − r)!
≤ nr

r!
=

(n

r

)r rr

r!
≤

(n

r

)r

er

Later we show that q(r, s) ≤ ρ−s|A|r−1, where ρ = |A|2/(2|A|− 1) ≤ 2|A|/3, from
which it follows that

q(r, s)N(r, s) ≤ |A|−1
(en

r

)2r

ρ−nρr|A|r

≤ |A|−1

(
2

3

)r
[
ρ−n

(
en|A|

r

)2r
]

since s = n − r. Elementary calculus shows that (e|A|/r)2r is an increasing function of
r and that it has value 1 at r = 0. Since r = ⌈γn⌉ and ρ ≥ 4/3, it follows that the
quantity in square brackets is less than 1 for some value of 0 < γ < 1/2, which is the
desired conclusion.

We now give a proof by induction that q(r, s) satisfies q(r, s) ≤ ρ−s|A|r−1. Clearly
q(1, 1) ≤ 1/|A|, since at most one entry in A is zero. This satisfies the bound. We now
assume the inductive hypothesis holds for q(r − 1, s − 1) and q(r, s − 1) and show that it
holds for q(r, s).

Consider an r × s matrix B. It has rank r if the submatrix consisting of the first s − 1
columns has rank r. (This occurs with probability 1 − q(r, s − 1).) If this is not the case,
there are many other ways in which it can have rank r. In particular, this is true if the
submatrix C consisting of the last r − 1 rows and the first s − 1 columns of B has rank
r − 1 (with probability 1 − q(r − 1, s − 1)) and the element b1,s has an appropriate value
(with probability at least 1 − 1/|A|), as we now show.

Consider a submatrix D consisting of some r − 1 linearly independent columns of C.
Consider the r × r submatrix of B consisting of these same r − 1 columns and its last
column. When the determinant of this matrix is expanded on the first row, the multiplier of
b1,s is ±1 times the determinant of D, which is non-zero. Thus, there is at most one value
for b1,s that causes the determinant to be zero (the field element causing it to be zero may
not be in the set A) or at least |A|− 1 values that cause it to be non-zero. Summarizing this
result, we have the following lower bound:

1 − q(r, s) ≥ 1 − q(r, s − 1) + (1 − q(r − 1, s − 1))

(
1 − 1

|A|

)

≥ (1 − q(r, s − 1))
1

|A| + (1 − q(r − 1, s − 1))

(
1 − 1

|A|

)

This implies that

q(r, s) ≤ q(r, s − 1)
1

|A| + q(r − 1, s − 1)

(
1 − 1

|A|

)

≤ ρ−s+1|A|r−1 1

|A|

(
2 − 1

|A|

)

≤ ρ−s|A|r−1

c©John E Savage 10.12 Properties of “nice” and “ok” Matrices* 503

which is the desired conclusion.
The proof also holds for Toeplitz matrices (each element on a diagonal of the matrix

is the same) because we reasoned only about the value of elements in the upper right-hand
corner of submatrices that are on different diagonals.

The Kronecker product of matrices is used in Section 10.13.5 to derive a lower bound on
the space-time product for matrix inversion.

DEFINITION 10.12.2 The Kronecker product of two n × n matrices A and B is the n2 × n2

matrix C, denoted C = A ⊗ B, obtained by replacing the entry ai,j of A with the matrix ai,jB.

A Kronecker product C = A ⊗ B of matrices A and B is shown below:

A =

[
1 2

3 4

]
, B =

[
5 6

7 8

]
, C =




5 6 10 12

7 8 14 16

15 18 20 24

21 24 28 32




The following property of the Kronecker product of two γ-nice matrices is used to derive
the space-time lower bounds stated in Theorem 10.13.5.

LEMMA 10.12.2 If A and B are both n × n γ-nice matrices for some 0 ≤ γ ≤ 1/2, then
C = A ⊗ B is an n2 × n2 γ2-ok matrix.

Proof Number the rows and columns of A, B, and C consecutively from 0. For a matrix
E, extend the notation ei,j for the entry in the ith row and jth column of E to eI ,J , by
which we denote the submatrix of E consisting of the intersection of the rows in the set I
and columns in the set J . Thus, if I = {i} and J = {j}, then eI ,J = ei,j .

To show that C is γ2-ok, we must show that every p × q submatrix S of C satisfying
p ≤ ⌈γ2 n2⌉ and q ≥ n−⌈γ2 n2⌉ has rank at least γ2 p. Such a matrix S can be represented
as S = cI ,J for index sets I and J , where p = |I| ≤ ⌈γ2 n2⌉ and q = |J | ≥ n − ⌈γ2 n2⌉.
We assume that γn ≥ 1, since otherwise the result holds trivially.

The rth block row of C is the submatrix [ar,0B, ar,1B, . . . , ar,n−1B] containing rows
numbered Ir = {rn, rn + 1, . . . , rn + n − 1} and all n2 columns.

Let ∆r = I∩{rn, rn+1, . . . , rn+n−1} be the indices of the rows of S that fall into
the rth block row. Choose a set Γ ⊂ {0, 1, 2, . . . , n−1} of size |Γ| = ⌈γn⌉ that maximizes
the sum T =

∑
r∈Γ |∆r|. Then, T ≥ γp because the lower bound is achieved if the rows

of S are uniformly distributed over the rows of C and T is larger if they are not.
Let Λr = ∆r if |∆r| ≤ ⌈γn⌉ and let Λr consist of the smallest ⌈γn⌉ indices in ∆r

otherwise. Clearly, |Λr| ≥ |∆r|γ because ∆r is chosen from a set of size n. Call rows of C
with indices in

⋃
r∈Γ Λr blue rows. There must be at least γ2p blue rows because, if not,

γ2p >
∑

r∈Γ

|Λr| ≥
∑

r∈Γ

|∆r|γ = γT ≥ γ2p

which is a contradiction.
We now show that the blue rows of S are linearly independent. Suppose not. Then

there exist constants {αr,s | r ∈ Γ, s ∈ ∆r} not all of which are zero such that the linear

504 Chapter 10 Space–Time Tradeoffs Models of Computation

combination of the blue rows of S is zero:

∑

r∈Γ

∑

s∈Λr

αr,scnr+s,J = 0 (10.7)

Here 0 is a column vector of zeros, one per blue row. Again, J is the set of columns of C in
the submatrix S.

Column j of the n×n matrix B is good if it is associated with at least (1−γ)n columns
of S and is bad otherwise. Let G be the indices of the good columns in B and let g = |G|.
Then there are g ≥ (1 − γ)n good columns and b ≤ γn bad columns in B (g + b = n)
because, if not, g ≤ (1 − γ)n − 1 and the number of columns altogether in S is at most
gn + b(1 − γ)n, which is an increasing function of g whose value is less than n2 − ⌈γ2 n2⌉
when g ≤ (1 − γ)n − 1, which is less than the number of columns of S.

Since B has at least g = |G| ≥ (1−γ)n good columns and B is γ-nice, any set of up to
⌈γn⌉ rows are linearly independent. In particular, the rows of B indexed by Λr are linearly
independent. This implies that

∑

s∈Λr

αr,sbs,G 6= 0

where 0 is a zero column with |Λr| rows. Thus, there must be a column index t ∈ G such
that

∑

s∈Λr

αr,sbs,t 6= 0 (10.8)

Let K = {j | nj + t ∈ J} be the columns of S corresponding to the good column of B
with index t. It follows that |K| ≥ ⌊(1 − γ)n⌋.

Let ui = ci,J∩K , the intersection of the ith row of S with columns whose indices are in
K. Similarly, let vi be the intersection of the ith row of A with columns in K. It follows
from the definition of C that uni+j = bj,tvi. From (10.7) we have that

∑

r∈Γ

∑

s∈Λr

αr,scnr+s,J∩K = 0

∑

r∈Γ

(∑

s∈Λr

αr,sbs,t

)
vr = 0

However, the rows |Γ| rows vr constitute a ⌈γn⌉ × |K| submatrix of the γ-nice matrix A
where |K| ≥ ⌊(1 − γ)n⌋. Since its rows are linearly independent, each of the coefficients∑

s∈Λr
αr,sbs,t must be zero, contradicting the statement of (10.8). It follows that C =

A ⊗ B is γ2-ok.

10.13 Applications of the Borodin-Cook Method
In this section we illustrate the Borodin-Cook method of Section 10.11 by applying it to a
variety of representative problems.

c©John E Savage 10.13 Applications of the Borodin-Cook Method 505

10.13.1 Convolution

The wrapped convolution function f
(n)
wrapped : R2n 7→ Rn over the ring R (see Problem 6.19)

of two sequences u and v is described by the matrix-vector product Cv of a circulant matrix
C in which ci,j = u(i−j) mod n, as shown in Section 10.5.1.

LEMMA 10.13.1 For n even, the wrapped convolution f
(n)
wrapped : R2n 7→ Rn over the ring R

contains a subfunction g(n) : R2n 7→ Rn/2 that is (1, γ/2, γ/2, 1, 2n)-distinguishable for some
0 < γ < 1/2.

Proof Writing C as a 2 × 2 matrix of n/2 × n/2 matrices, we find that its (1,1) entry is
an unrestricted Toeplitz matrix T . That is, each diagonal can contain a different element.

Consider the subfunction of f
(n)
wrapped defined by this submatrix. By Lemma 10.12.1, a

fraction of at least 1− (2/3)(γ/2)n/|R| of such matrices are γ-nice. By Definition 10.12.1,
this implies that ⌈(γ/2)n⌉ output variables assume |R|⌈(γ/2)n⌉ different values. If we fix
the entries of T to be those of a γ-nice matrix, by Lemma 10.11.2 the lower bound on ST
for matrix-vector multiplication with a Toeplitz matrix with n replaced by n/2 serves as a
lower bound for the original problem. Since for large n most Toeplitz matrices are γ-nice,
we have the desired conclusion.

Invoking Theorem 10.11.1, we have the space–time lower bound stated below. The up-
per bound follows from the design of a branching program to implement the inner product
operation, as suggested by Fig. 10.6.

THEOREM 10.13.1 There is an integer n0 > 0 such that for n even and n ≥ n0, the time T and

space S used by any general branching program for the wrapped convolution f
(n)
wrapped : R2n 7→

Rn over the ring R must satisfy

ST = Ω(n2 log |R|) (10.9)

Branching programs exist that achieve the following bound for log |R| ≤ S ≤ n log |R|:

ST = O(n2 log n log |R|)

Proof Since the wrapped convolution function depends on 2n variables, it can be computed
via table lookup with space O(n log |R|) and time O(n).

At the limit of small space, namely for S = Θ(log |R|), a branching program can
be designed that computes the n inner products defined by the matrix-vector product of
(10.1). An example of a branching program to compute the inner product of two 3-vectors
is shown in Fig. 10.20. A branching program for the inner product of two n-tuples can be
constructed that has O(n|R|2) vertices and depth O(n). Hence, a branching program to
multiply a general n × n matrix by a vector can be constructed that has time O(n2) and
space O(log n + log |R|).

To fill in the range between these extremes, let k divide n and note that the product of
an n×n matrix by a column n-vector can be viewed as the product of an n/k×n/k matrix
of k × k matrices with a column n/k-vector of column k-vectors. Since each product of
a k × k submatrix by a k-vector is a function of O(k) parameters, compute it with table
lookup in time O(k) and space O(k log |R|). Add two of these matrix-vector products by

506 Chapter 10 Space–Time Tradeoffs Models of Computation

b3 =?

a3 =?a3 =?

b3 =?

b2 =? b2 =?

a2 =?

b2 =?

b3 =?

b2 =?

a2 =?

b1 =?b1 =?

a1 =?

b3 =?

0 1 0 1

0 1 0 1

0,1 0 1

0 1

c = 0 c = 1

00,1
0 1 10,1

0
1 0,1

1
00,1

c = a1b1 + a2b2 + a3b3(mod2)

Figure 10.20 A branching program to compute the inner product of two 3-vectors over the set
R of integers modulo 2.

rooting a table-lookup program at each of the O(|R|k) final states of a first table-lookup
program. Coalesce final states corresponding to the |R|k sums of the two column k-vectors.
This program has O(|R|2k) vertices or space O(k log |R|) and time O(k). n/k such stages
increase the number of vertices and time each by a factor of n/k. Since this process is
then repeated for each of the n/k rows of the block matrix, the space and time used are
O(k log |R| + log(n/k)) and O(n2/k), respectively.

10.13.2 Integer Multiplication

To derive space–time lower bounds for integer multiplication, we could invoke the reductions
from this problem to cyclic shifting, as was done in Section 10.5.3. However, as shown in
Section 10.10, the space–time product for cyclic shifting is only O(n log n). Thus, we are
forced to use another reduction to obtain a strong space–time product lower bound, namely a
reduction from integer multiplication to convolution.

c©John E Savage 10.13 Applications of the Borodin-Cook Method 507

Let Z2 be the ring of integers modulo 2. As shown in Problem 6.20, the integer multi-

plication function f
(n)
mult : B2n 7→ B2n contains the convolution function over f

(n/ log n)
conv :Z2n/ log n

2 7→ Z2n/ log n
2 . Thus, by Lemmas 10.11.2 and 10.13.1 the following holds:

THEOREM 10.13.2 There is an integer n0 > 0 such that for n > n0 the time T and space S

used by any general branching program for binary integer multiplication f
(n)
mult : B2n 7→ B2n must

satisfy

ST = Ω(n2/ log2 n) (10.10)

This lower bound can be achieved to within a factor of O(log3 n) for space Ω(log n) ≤ S ≤
O(n).

Proof Since the integer multiplication function depends on 2n variables, it can be com-
puted via table lookup with space O(n) and time O(n), thereby meeting the lower bound
to within a factor of O(log2 n).

At the limit of small space, S = Θ(log n), the integer multiplication algorithm of
Section 10.5.3 provides a branching program. Since at most ⌈log2 n⌉ bits suffice for the
carry from one power of 2 to the next, a branching program based on this algorithm has
at most O(2⌈log2 n⌉) vertices at each of n2 levels. Thus, this program uses time O(n2) and
space O(log n), achieving the lower bound to within a factor of O(log n).

We sketch a procedure to fill in the range of space between these extremes and ask the
reader to complete the details. (See Problem 10.39.) Assume that k divides n and represent
each n-bit binary number as an (n/k)-component base-2k number. As in the standard bi-
nary integer multiplication algorithm (where k = 1), form n/k (n/k)-component numbers
through multiplication and shifting of consecutive base-2k components, as suggested below:

v3u0 v2u0 v1u0 v0u0

v3u1 v2u1 v1u1 v0u1 0

v3u2 v2u2 v1u2 v0u2 0 0

v3u3 v2u3 v1u3 v0u3 0 0 0

Here ur and vs are base-2k numbers. Multiply two such numbers through table lookup in
time and space O(k). Extend the algorithm for the base-2 case by replacing each subpro-
gram that multiplies two binary numbers by the table lookup program to multiply base-2k

numbers. This new program adds products to a running sum of length O(log n) bits. Thus,
it uses space O(k + log n) and time O(n2/k), giving a space–time product of O(n2 log n)
for k ≥ log n.

10.13.3 Matrix-Vector Product

The matrix-vector product function f
(n)
A×x : Rn 7→ Rn computes the n-tuple y from the

n-tuple x for a fixed n × n matrix A over R according to the rule

y = Ax

where yj =
∑n−1

k=0 aj,kxk for 0 ≤ j ≤ n − 1.

508 Chapter 10 Space–Time Tradeoffs Models of Computation

LEMMA 10.13.2 Let A be a γ-ok n×n matrix over R for some 0 < γ < 1/2. Then the matrix-

vector product function f
(n)
A×x : Rn 7→ Rn is (1, γ, γ, γ, τ)-distinguishable where τ (b) = n.

Proof To show that f
(n)
A×x is (1, γ, γ, γ, τ)-distinguishable, select any a ≤ ⌈γn⌉ inputs and

any b ≤ ⌈γn⌉ outputs. If the ith input is chosen and it has value ui, introduce the equation
xi = ui. Let B be the a × n coefficient matrix defining these equations; that is, Bx = u,
where B contains the jth row of the n × n identity matrix if the jth variable is among the
selected inputs.

Consider the (n + a) × n matrix C =

[
A

B

]
. We show that it has rank a + γb. The

submatrix D of A consisting of the intersection of those columns not selected by inputs (of
which there are n − a ≥ n − ⌈γn⌉) and rows selected by outputs (of which there are b)
has rank γb because A is γ-ok. Thus, γb of the n − a columns of A not selected by inputs
and the a non-zero columns of B are linearly independent. Thus, the submatrix E of C
consisting of the selected rows of B and the rows of D has rank a + γb.

The number of n-tuple input vectors x consistent with the linear system Ex = d is
|A|n−a−γb, as we show. Without loss of generality assume that the first a+γb columns of E
(call it F) are linearly independent. (Permute the columns, if necessary, so that this is true.)
Fix the values of the b realizable outputs. Then for each assignment to inputs corresponding
to the last n − (a + γb) columns there are unique values for the first a + γb inputs, due to
the non-singularity of F . Thus the number of assignments to the last n− (a+γb) columns
that are consistent with values for the a inputs and b outputs is |A|n−a−γb.

Invoking Corollary 10.11.1 yields the following result.

THEOREM 10.13.3 Let A be a γ-ok n × n matrix over R for some 0 < γ < 1/2. Then there
is a constant 0 < γ < 1/2 and an integer n0 such that for n ≥ n0 the space S and time T used

by any general branching program for the function f
(n)
A×x : Rn 7→ Rn must satisfy the following

lower bound when T ≥ n:

ST = Ω(n2 log |R|)

This lower bound can be met to within a factor of O(log n) for log n ≤ S ≤ n.

Proof The lower bound follows from the application of Theorem 10.11.1.
The matrix-vector product Ax for an n × n matrix A can be done with a branching

program for the standard algorithm as follows: Compute the inner product of the ith row
with the column x for 1 ≤ i ≤ n. The inner product of two n-tuples can be computed
with a branching program having O(n|R|2) vertices, as suggested in Fig. 10.20. (This is
true even if A is not fixed.) n branching programs for inner products can be concatenated to
form one branching program to multiply an n×n matrix with an n-vector. This branching
program uses space O(log n + log |R|) and time O(n2), thereby meeting the lower bound
to within a factor of O(log n).

A matrix-vector product for a fixed matrix (this case) can also be computed by table
lookup in space O(n log |R|) and time O(n) since this function has n variables.

To bridge the gap between these two results, compute the matrix-vector product using a
hybrid algorithm similar to that used for convolution in the proof of Theorem 10.13.1.

c©John E Savage 10.13 Applications of the Borodin-Cook Method 509

10.13.4 Matrix Multiplication*

The space–time lower-bound argument for matrix multiplication in the branching program
model uses ideas similar to those used for matrix-vector multiplication.

LEMMA 10.13.3 The matrix multiplication function f
(n)
A×B : R2n2 7→ Rn2

over the ring R is

(1, 1, 1, γ/4, τ)-distinguishable for some 0 < γ < 1/2, where τ (b) = γn
√

b/2.

Proof Consider the subfunction of f
(n)
A×B obtained by choosing A and B from the set of

n × n γ-nice matrices. By Lemma 10.11.2, a lower bound on the space–time product for
this subfunction provides a lower bound to the matrix multiplication function.

Consider some a ≤ 2n2 selected inputs and some b ≤ n2 selected outputs such that
a ≤ τ (b); that is, (a/γn)2 ≤ b/2. The outputs correspond to entries of the product matrix
C = A × B. Let row i of C be a heavy row if at least γn of the a selected inputs are in
row i of A. Similarly, let column j of C be a heavy column if at least γn of the a selected
inputs are in column j of B. A row or column of C is light otherwise. (See Fig. 10.21.)

There are at most a/γn heavy rows and a/γn heavy columns of C. We now show that
either a) at least b/4 of the selected outputs fall into light rows of C or b) at least b/4 of
the selected outputs fall into light columns of C. Suppose not. Then both statements are
false and less than b/4 of the selected outputs fall into light rows and less than b/4 of the
selected outputs fall into light columns of C. It follows that at least 3b/4 of the selected
outputs fall into heavy rows. Of these at most (a/γn)2 fall into heavy columns, since this is
the maximum number of entries of C that could be in both heavy rows and columns. The
remaining selected outputs in these rows (of which there are less than b/4) fall into light
columns. However, because the entries in each row fall into either heavy or light columns,
the number of selected outputs that are in heavy rows is less than (a/γn)2 + b/4. But this
is less than 3b/4 since a ≤ τ (b) = γn

√
b/2, contradicting the stated hypothesis.

Without loss of generality, assume that b holds. (If not, a holds and at least b/4 selected
outputs fall into light rows of C or into light columns of the transpose CT .) Represent the

C = A B

=

Figure 10.21 Identification of heavy rows and columns of matrices.

510 Chapter 10 Space–Time Tradeoffs Models of Computation

product C = A × B as follows:



A

.. .

A







B1

...

Bn


 =




C1

...

Cn




Here Bi and Ci are the ith columns of the matrices B and C, respectively. Let B and
C denote the columns of these columns, respectively, and let D denote the block diagonal
matrix on the left.

We show that at most |R|2n2−a−γb/4 of the matrix pairs (A, B) are consistent with any
assignment to any set of a selected inputs and values of any b selected outputs.

Of the a selected inputs, let a1 be drawn from A and a2 be drawn from B, where
a = a1 + a2. The number of γ-nice matrices A consistent with the a1 selected inputs from

A is at most |R|n2−a1 . We now bound the number of matrices B that are consistent with
the values of selected inputs and outputs.

Let A be fixed and γ-nice. Consider just the (at least b/4) selected outputs that fall into
light columns of C. Every value for B consistent with the selected inputs and these outputs
must satisfy the following linear equation:

[
E

F

]
B = HB =

[
r

c

]

Here E consists of the b rows of D corresponding to selected outputs and F is a submatrix
of the n2 × n2 identity matrix consisting of the a2 rows corresponding to selected inputs
in B. c is the column of values for the selected inputs in B and r is a column of selected
outputs of C that fall into light columns. The number of values for B consistent with a
fixed A and the values of the selected inputs and outputs is no more than the number of
solutions B to these equations, since we are ignoring outputs in heavy rows.

We now show that H has rank at least a2 +γb/4. A column of H is queried if a column
of E contains a selected input or the corresponding row of B contains a selected input. a2

of these columns correspond to selected inputs in B and are linearly independent because
the corresponding columns of F are linearly independent. Consider the unqueried columns
of H . These columns in F are zero columns. Thus, consider these unqueried columns in
E. Consider k rows in E that come from a common copy of A on the diagonal of D. The
column Bi of B corresponding to this copy of A is light (it has fewer than γn selected
entries) because the corresponding column of C is chosen to be light. Thus, this copy of A
has at least n(1 − γ) unqueried entries, or at least n(1 − γ) of its columns are unqueried.

Since A is γ-nice, the unqueried columns of this copy of it have rank at least min (k, γn).
Because there are no dependencies between columns in distinct copies of A in D, the num-
ber of linearly independent unqueried columns of E is minimal if they all fall in as few
common copies of A as possible, because then min (k, γn) = γn. It follows that the un-
queried columns of E have rank at least γb/4. Since the queried columns have rank at least
a2, the columns of H have rank at least a2 + γb/4. It follows from an argument given
in the proof of Lemma 10.13.2 that the number of solutions B to this system is at most

|R|n2−a2−γb/4. Since there are at most |R|n2−a1 matrices A that are γ-nice and consistent
with the a1 selected inputs in A, it follows that the number of pairs consistent with values

of the selected inputs and outputs is at most |R|2n2−a−γb/4, the desired conclusion.

c©John E Savage 10.13 Applications of the Borodin-Cook Method 511

This result provides a lower bound on the space and time for matrix multiplication. The
upper bound cited below is obtained by another hybrid algorithm that mixes a branching
program for the standard algorithm with one for table lookup.

THEOREM 10.13.4 There is an integer n0 > 0 such that for n > n0 the space S and time T

needed to compute the matrix multiplication function f
(n)
A×B : R2n2 7→ Rn2

over the ring R using
a general branching program satisfies the inequality:

ST 2 ≥ γ3

16
n6 log2 |R|

for some 0 < γ < 1/2 when T ≥ n2. This lower bound can be achieved up to a multiplicative
factor of O(log n) for space in the range Ω(log n + log |A|) ≤ S ≤ O(n log |A|).

Proof The lower bound follows from Theorem 10.11.1 and Lemma 10.13.3 by letting
a = ⌊γ2n4/4T ⌋, since this value of a satisfies the two conditions a ≤ τ (ma/2T) =

γn
√

ma/4T and a ≤ 2n2 when T ≥ n2.
At the extreme of large space, namely S = O(n2), the upper bound follows from

a branching program for table lookup that has one level for each of the 2n2 variables in

the matrices A and B and the fact that there are |R|2n2

pairs of such matrices over the

ring R. Consequently, the branching program has at most O(|R|2n2

) vertices and space
O(n2 log |R|). It uses O(n2) steps.

At the extreme of small space, namely S = Ω(log n + log |A|), we use a branching
program for the standard matrix multiplication algorithm that forms n2 inner products of
rows and columns of the two matrices. As discussed in the proof of Theorem 10.13.3, a
branching program can be constructed to form the inner product of two n-tuples that has
Θ(n|R|2) vertices; that is, space Ω(log n + log |A|) and time O(n). Concatenating n2 of
these programs, one for each of the n2 entries in the product matrix, we have a branching
program with space Ω(log n + log |A|) and time O(n3).

To fill in the gap between these extremes, the method applied in Theorem 10.13.3 can
be used, as the reader can demonstrate. (See Problem 10.40.)

10.13.5 Matrix Inversion

As an intermediate step to deriving a space–time product lower bound on matrix inversion, we
derive a lower bound for the product of three n × n matrices. This is done by first deriving
an alternate representation for this product in terms of the Kronecker product of two matrices.
Kronecker products are defined in Section 10.12.

LEMMA 10.13.4 Let A, B, C, and D be n×n matrices over a commutative ring. The following
two equations define the same set of mappings from entries of A, B, and C to entries in D:

D = ABC

E = (A ⊗ CT)B

where B and E are n2 × 1 column vectors obtained by concatenating the transposes of the rows of
the matrices B and D, respectively.

512 Chapter 10 Space–Time Tradeoffs Models of Computation

Proof Let E = (A ⊗ CT)B. The goal is to show that the results in the n2 × 1 column
vector E are the same as those in the n× n matrix D but in a different order. In particular,
we show that the ni + j entry in the former, namely eni+j,1, is equal to the (i, j) entry in
D, namely di,j .

Given a matrix F , let fi,j denote its entry in the ith row and jth column. Let fi,−
and f−,j denote the ith row and jth column of F , respectively. Let rows and columns of
matrices be numbered consecutively from zero.

The matrix A ⊗ CT consists of blocks of n consecutive rows with the ith block con-
taining [ai,1C

T , ai,2C
T , . . . , ai,nCT]. Thus, the ni + jth entry of E, namely eni+j,1,

is the jth entry in the product [ai,1C
T , ai,2C

T , . . . , ai,nCT]B, as shown below, where
(c−,j)

T (bk,−)T is the inner product of the row vector (c−,j)
T with the column vector

(bk,−)T .

eni+j,1 =

n−1∑

k=0

ai,k(c−,j)
T (bk,−)T

=

n−1∑

k=0

n−1∑

l=0

ai,kcl,jbk,l

=
n−1∑

k=0

n−1∑

l=0

ai,kbk,lcl,j

= di,j

This is the desired conclusion.

With this as background, we state the space–time results to compute the product of three
matrices.

THEOREM 10.13.5 There is an integer n0 > 0 such that for n > n0 the time T and space
S used by any general branching program to compute the product of three n × n matrices over a
commutative ring R must satisfy the following inequality:

ST = Ω(n4 log |R|)
Proof Given a general branching program to compute ABC, no more space or time are
used when the matrices A and C are given specific values. Let them each be γ-nice for
some 0 ≤ γ ≤ 1/2. The existence of such matrices is established in Lemma 10.12.1.
From Lemma 10.12.2 we know that the matrix A ⊗ CT is γ2-ok. The result follows from
Theorem 10.13.3 since A ⊗ CT is n2 × n2.

We are now prepared to state space–time bounds for matrix inversion.

THEOREM 10.13.6 There is an integer n0 > 0 such that for n > n0 the time T and space S
used by any general branching program to compute the inverse of a non-singular n× n matrix over
a commutative ring R must satisfy the following inequality:

ST = Ω(n4 log |R|)
This lower bound can be achieved to within a multiplicative factor over the range Ω(n2) ≤ T ≤
O(n3).

c©John E Savage 10.13 Applications of the Borodin-Cook Method 513

Proof Let n be a multiple of 4. The lower bound follows by reducing matrix inversion to
the computation of the product of three arbitrary n/4 × n/4 matrices, as shown below:




I −A 0 0

0 I −B 0

0 0 I −C

0 0 0 I




−1

=




I A AB ABC

0 I B BC

0 0 I C

0 0 0 I




The upper bound for T = Θ(n2) is obtained by table lookup using an algorithm of
the kind described in the proof of Theorem 10.13.3. For T = Θ(n3), the matrix inversion
algorithm based on the LDLT decomposition of a symmetric positive definite matrix of
Section 6.5.4 can be used. For intermediate values of time, a hybridized algorithm based on
the inversion of block matrices provides the stated upper bound.

10.13.6 Discrete Fourier Transform

The discrete Fourier transform (DFT) and the fast Fourier transform algorithm are described
in Sections 6.7.2 and 6.7.3. In this section we derive upper and lower bounds on space–
time tradeoffs for this problem. The lower bound follows from the result for matrix-vector
multiplication and the fact that the coefficient matrix for the DFT is (1/4)-ok.

LEMMA 10.13.5 Consider the n-point DFT over a commutative ring that has a principal nth
root of unity. It is defined as a matrix-vector product with [wij] as its n × n coefficient matrix.
This matrix is (1/4)-ok.

Proof We use the fact, shown in Theorem 10.5.5, that the submatrix of W = [wij] con-
sisting of any k rows and any k consecutive columns is non-singular. We show that any p×q
submatrix B of W , with p ≤ ⌈n/4⌉ and q ≥ n − ⌈n/4⌉, has rank at least p/4.

Let I denote the row indices of the submatrix B and let J denote its column indices.
Let C be the submatrix of W with row indices in I . Divide the columns of C into ⌈n/p⌉
groups each containing p columns except possibly the last which has at most p columns. We
claim that some group has at least p/2 columns in common with B. Suppose not. Then
every one of the ⌈n/p⌉ groups has at most (p − 1)/2 columns in common with B. Thus
B has at most χ(p) = ⌈n/p⌉(p − 1)/2 columns. We show that χ(p) < n − (n + 3)/4 ≤
n − ⌈n/4⌉. But this is a contradiction because B has at least n − ⌈n/4⌉ columns. Since
⌈n/p⌉ ≤ (n + p− 1)/p, if (n + p− 1)(p− 1)/2p < n− (n + 3)/4, the following holds
after multiplying both sides by 2p:

(n + p − 1)(p − 1) <
3p(n − 1)

2
or

−n + 1 < p

(
(n + 1)

2
− p

)

It suffices to show that the right-hand side of the last equation is positive. But ((n+1)/2)−p
is positive since p ≤ ⌈n/4⌉ ≤ (n + 3)/4 ≤ (n + 1)/2 for n ≥ 1.

THEOREM 10.13.7 There is an integer n0 > 0 such that for n > n0 the n-point DFT over a
commutative ring R requires space S and time T with a branching program satisfying the following

514 Chapter 10 Space–Time Tradeoffs Models of Computation

lower bound:

ST = Ω(n2 log |R|)

This lower bound can be achieved to within a constant multiplicative factor.

Proof The upper bound follows by applying Lemma 10.9.3 and Theorem 10.5.5.

10.13.7 Unique Elements

We now derive a lower bound on the space–time product for the sorting problem by reducing
sorting to the unique-elements problem. The unique elements problem takes a list of values
and returns in any order a list of the non-repeated elements among them.

DEFINITION 10.13.1 Let R be a set with at least n distinct elements. The function f
(n)
unique :

Rn 7→ 2R
n

defines the unique elements problem where 2R
n

is the power set of Rn and

f
(n)
unique(x) is the set of non-repeated elements in the input string x.

We emphasize that no order is imposed on the outputs of f
(n)
unique. Thus, if a set of values

appears in the output, their position in the output does not matter.
From Lemma 10.11.2 it follows that a lower bound to ST can be derived by restricting

the domain and discarding outputs. We restrict the domain by restricting each input variable
to values in a subset S ⊆ R containing n elements. We also restrict input tuples to the
set D containing at least n/(2e) unique values (e is the base of the natural logarithm). In
the following lemma we show that |D| ≥ |S|n/(2e − 1) = φnn, where φ = 1/(2e − 1).

On inputs in D the function f
(n)
unique has at least n/(2e) unique outputs. We define the

subfunction f
(n)
restricted : Sn 7→ Sm, m = n/(2e), of f

(n)
unique to be the subfunction obtained

by restricting its inputs to D ⊂ Sn and deleting all but the first n/(2e) outputs, which are all
unique.

LEMMA 10.13.6 Let S be a set of n elements. The fraction φ of the input n-tuples over Sn

containing n/(2e) or more unique elements exceeds 1/(2e − 1).

Proof We use simple probabilistic arguments. Assign each n-tuple over Sn probability
1/nn. Let u(x) be the number of unique elements in x. Let Xi(x) have value 1 if the ith
element of S occurs uniquely in x and value 0 otherwise. Then

u(x) =

n∑

i=1

Xi(x)

Let E[u] denote the average value of u(x) (the sum of u(x) over x weighted by its prob-
ability). Because the order of summation can be changed without affecting the sum, we
have

E[u(x)] =
n∑

i=1

E[Xi(x)]

E[Xi(x)] is also the probability that Xi = 1. If Xi = 1, then each of the other components
of x can assume only one of n−1 values. Since the ith value can be in any one of n positions

c©John E Savage 10.13 Applications of the Borodin-Cook Method 515

among input variables and since for each position that it occupies there are (n − 1)n−1

ways to fill the remaining n − 1 positions so that the ith value is unique, we have that
E[Xi] = f(n) where f(n) = n(n − 1)n−1/nn = (1 − 1/n)n/(1 − 1/n). But f(n) is
a decreasing function of n, as is shown by calculating its derivative and using the inequality
(1−x) ≤ e−x (see Problem 10.5). The limit of f(n) for large n is e−1 because in the limit
of small x the function e−x has value 1 − x. It follows that E[u(x)] > n/e.

Let π = Pr[u(x) ≥ n/(2e)] be the fraction (or probability) of the input n-tuples
for which u(x) ≥ n/(2e)). Because u(x) ≤ n, it follows that πn + (1 − π)n/(2e) ≥
E[u(x)] ≥ n/e, from which we conclude that π > 1/(2e−1). (This is known as Markov’s
inequality.)

LEMMA 10.13.7 Let |S| = n. Then f
(n)
restricted : Sn 7→ Sm, m = n/(2e), is (φ, λ, µ, ν, τ)-

distinguishable for φ = 1/(2e − 1), λ = µ = 1, ν = (1 − 1/(2e))/ log2 n, and τ (b) = n.

Proof If f
(n)
restricted is (φ, λ, µ, ν, τ)-distinguishable for φ = 1/(2e − 1), λ = µ = 1/2,

ν = (1−1/(2e))/ log2 n, and τ (b) = n, then for at least φnn input tuples and any a ≤ λn

input and b ≤ µm output variables and specified values for them, f
(n)
restricted has at most

nn−a−νb = nn−ae−(1−1/(2e))b input n-tuples that are consistent with these assignments.

The order of output values to f
(n)
restricted is irrelevant.

Let B be the values of the b selected and specified unique outputs, b ≤ m, and let A
be the values of the a selected and specified input values. The k values in B − A appear in
input positions that are not specified. r = n − k − a inputs are in neither A nor B. We
overestimate the number of patterns of inputs consistent with the a inputs and b outputs
that are specified if we allow these a inputs to assume any value not in B, since all values in
B are unique. Thus, there are at most (n − b)r ways to assign values to these r inputs. The
k values in B − A are fixed, but their positions among the r + k non-selected inputs are
not fixed. Since there are (r + k)!/r! ways for these ordered k values to appear among any
specific ordering of the remaining r non-selected inputs (see Problem 10.6), the number Q
of input patterns consistent with the selected and specified a inputs and b outputs satisfies
the following inequality:

Q ≤ (r + k)!

r!
(n − b)r

Here r + k = n− a ≤ n and k ≤ b. Below we bound (r + k)!/r! by (r + k)k and use the
inequality (1 − x) ≤ e−x:

Q ≤ (r + k)k(n − b)r ≤ nr+k
(

1 − a

n

)k
(

1 − b

n

)r

≤ nn−ae−(ka/n+rb/n) ≤ nn−ae−(ka/n+(n−a−k)b/n)

The exponent e(a, b, k) = ka/n + (n − a − k)b/n is a decreasing function of a whose
smallest value is (1 − k/n)b. In turn, this function is a decreasing function of k whose
smallest value is (1 − b/n)b ≥ (1 − 1/(2e))b. As a consequence, we have

Q ≤ nn−ae−(1−1/(2e))b

It follows that f
(n)
restricted is (φ, λ, µ, ν, τ)-distinguishable for φ = 1/(2e − 1), λ = µ = 1,

ν = (1 − 1/(2e))/ log2 n, and τ (b) = n.

516 Chapter 10 Space–Time Tradeoffs Models of Computation

b := 0;
for j := 1 to ⌈n/S⌉
{b = (j − 1)S on the jth iteration.}

begin
for i := 1 to S

C[i] := 0;
for i := 1 to n

if b ≤ xi ≤ b + S then
begin

k:= xi − b;
if C[k] < 2 then C[k] := C[k] + 1;

end;
for i := 1 to S

if C[i] = 1 then print b + i;
b := b + S;

end

Figure 10.22 A RAM program for the unique-elements problem over the set {1, 2, . . . , n}
when n ≥ S ≥ O(log n). The input to the program is the n-tuple x in which xi is the ith
entry. The program uses space O(S).

Invoking Theorem 10.11.1, we have a quadratic space–time product lower bound. The
RAM program for the unique elements problem given in Fig. 10.22 can be converted to a
branching program to obtain an upper bound on the space–time product needed for this
problem, as shown in Theorem 10.13.8.

THEOREM 10.13.8 Let |R| ≥ n. There is an integer n0 > 0 such that for n ≥ n0 and
S = Ω(log n) the time T and space S used by any general branching program for the unique

elements function f
(n)
unique : Rn 7→ 2R

n

must satisfy

ST = Ω(n2)

This lower bound can be met to within a constant multiplicative factor for inputs drawn from the
set {1, 2, 3, . . . , n}.

Proof The lower bound follows directly from Theorem 10.11.1. The upper bound follows
from an analysis of the branching program that results from conversion of the RAM program
in Fig. 10.22. The RAM program makes ⌈n/S⌉ passes over the input data. On the jth pass
the program examines input values in the range [(j − 1)S, . . . , jS] and determines for each
value whether there are zero, one, or more than one instances of it in the input.

The program uses an S-element one-dimensional array C[1..S] that it initializes to zero
at the beginning of each pass. If on the jth pass the ith input variable, xi, is in the interval
[(j − 1)S, . . . , jS], the array element associated with it, namely C[xi − (j − 1)S], is
incremented unless it already has value 2. At the end of the jth pass, if the array element
C[i] has value 1, the program prints out the value jS + i, namely, the value of an input that
appears only once in the input.

c©John E Savage 10.13 Applications of the Borodin-Cook Method 517

The reader is asked to show that the program of Fig. 10.22 can be converted to a branch-
ing program of space O(S) and time O(T). (See Problem 10.41.)

The program of Fig. 10.22 relies on the fact that input variables are drawn from the set
{1, 2, 3, . . . , n}. If the set from which they are drawn is much larger, say {1, 2, 3, . . . , nc},
c > 1, the outer loop is executed O(nc/S) times and its total running time is O(nc). Thus,
the program is not optimal in this case.

10.13.8 Sorting

The sorting problem is described in Section 6.8. The general sorting problem is defined by

a function f
(n)
sort : Rn 7→ Rn that rearranges the values of input variables so they are in

descending order. Given a branching program for sorting, we show below that a branching
program for the unique-elements problem can be obtained with a small additional amount of
space. As a consequence, the space–time product lower bound for unique elements applies to
the sorting problem. We also give a nearly matching upper bound.

THEOREM 10.13.9 Let |R| ≥ n. There is an integer n0 > 0 such that for n ≥ n0 and
S = Ω(log n) the time T and space S used by any general branching program for the sorting

function f
(n)
sort : Rn 7→ Rn that reports its outputs in descending order must satisfy

ST = Ω(n2)

This lower bound can be met to within a constant multiplicative factor for inputs drawn from the
set {1, 2, 3, . . . , n}.

Proof Given a branching program for f
(n)
sort that uses space S, we use it to construct a

branching program for f
(n)
unique that uses space S + O(log n) = O(S). Since f

(n)
unique

requires space that is Ω(n2/T), the same lower bound applies to sorting.

The branching program for f
(n)
sort generates its sorted outputs in descending order. By

analyzing the outputs the unique elements can be found. Store the last output l along with
a bit b that is 1 if l is so far the only occurrence of this value and 0 otherwise. If the next
output value is the same as l, set b to 0. If it is different from l and b = 1, produce l as
an output, replace l with the last output, and set b to 1. Otherwise, do not produce an
output.

Given a branching program Π for sorting, we describe a branching program for unique
elements that uses modified copies of Π. If more than one output appears on some edge
in Π, modify it (yielding Π∗) by replacing edges producing more than one output by a
sequence of edges each producing one output separated by vertices testing an arbitrary in-
put. This increases the number of vertices in Π by a factor of at most n and adds at most
log2 n to its space. Now make 2|R| additional copies of Π∗, two for each value in R, a
“one” copy if the value is the first encountered in the sorted output and a “zero” copy if it
is not.

Consider an edge in Π∗ or one of its copies that produces an output (call it v). There
are several cases to examine: the current copy of Π∗ is a) the original copy, b) a “one” copy,
or c) a “zero” copy. In case a), redirect the edge to the same vertex in the “one” copy of Π∗

associated with v. In case b), if v is different from the value c associated with the current

518 Chapter 10 Space–Time Tradeoffs Models of Computation

copy of Π∗, output c and redirect the edge to the same vertex in the “one” copy of Π∗ as-
sociated with v. In case c), if v is the same as the value associated with the current copy of
Π∗, produce no output; otherwise also produce no output but redirect the edge to the same
vertex in the “one” copy of Π∗ associated with v. The new branching program has at most
2n + 1 copies of Π∗, thereby increasing its space by an additive term of size O(log n). The
lower bound on ST for the sorting problem follows.

The upper bound on ST for the sorting problem is obtained by constructing a family of
branching programs, one for each value of S. We begin by constructing a “full” branching
program for the case S = Θ(n). Let the variables in the input string be x1, x2, . . . , xn and
let them be tested in sequence. Thus, the root is labeled x1 and has n successors, each of
which tests x2. There is one successor for each vertex labeled with x2 for each way two num-
bers can be chosen with replacement from the set {1, 2, . . . , n}. As shown in Problem 10.7,
there are N(n, k) ways in which k numbers can be drawn from a set of n elements with
replacement where the order among the numbers is unimportant and

N(n, k) =

(
n + k − 1

k

)

Thus, N(n, 1) = n and N(n, 2) = (n + 1)n/2. The successors to vertices labeled x2 are
labeled x3. They have N(n, 3) successors, and so on. At the kth level there are N(n, k) suc-
cessors. Since N(n, k) < 2n+k−1, it follows that for k ≤ n the above branching program
has O(22n) vertices or space S = Θ(n). It also has time T = n and space–time product
O(n2).

To construct a branching program for space S = O(n), we use O(n/S) pruned copies
of the full branching program described above. The idea behind the pruning is the fol-
lowing: we scan the input list looking for variables with values in the set {1, 2, . . . , S}. If
there are O(S) of them, we record the number of values of each type and produce them in
sorted order. However, if there are more than O(S) elements in this range, as we examine
additional inputs we reduce the size of the range so that only O(S) space is used to carry
the number of values of variables encountered. (This space is represented by 2O(S) vertices
in the branching program.) On each pass through the input either we reduce the size of
the range by O(S) or reduce the number of outputs that must be produced by the same
amount. Thus, after 2n/S passes the input is sorted. Since each pass tests the value of each
variable, the time is O(n2/S).

It is not difficult to convert the above schema into a branching program. The goal is to
have no more than about 2S vertices on each level of the branching program. The branching
program will consist of O(n/S) copies of the full branching program, each having n levels.
Thus, the branching program will have O(n22S/S) vertices or space O(S).

We order vertices at each level in the branching program, placing those with smaller
input values to the left. We remove vertices at the jth level that correspond to input values
larger than S as well as those to the right of the first 2S vertices on the jth level. Each edge
in the first full branching program that is directed into a removed vertex is redirected to the
root of the next copy of the branching program. The second copy of the full branching
program is pruned to remove the vertices appearing in the first copy as well as those reached
on inputs outside the range [S + 1, S + 2, . . . , 2S]. The edges directed to removed vertices
are redirected to the root of the third copy of the full branching program. A similar process
is applied to each copy of the full branching program.

c©John E Savage Problems 519

. .

Problems
MATHEMATICAL PRELIMINARIES

10.1 Show that the the pyramid graph on m inputs, P (m), has m(m + 1)/2 vertices. Let
n = m(m + 1)/2. Show that m ≥

√
2n − 1.

10.2 Show that the following inequalities hold for integers m and x:

m/x ≤ ⌈m/x⌉ ≤ (m + x − 1)/x

(m − x + 1)/x ≤ ⌊m/x⌋ ≤ m/x

10.3 Suppose that p log2 p ≤ q for positive integers p, q ≥ 2. Show that p ≤ 2q/ log2 q.

10.4 For n positive integers x1, x2, . . ., xn, show that the following inequality holds between
the geometric mean on the left and the arithmetic mean on the right:

(x1x2 · · ·xn)
1/n ≤ (x1 + x2 + · · · + xn)/n

10.5 Show that the inequality (1 − x) ≤ e−x holds for x ≤ 1.

10.6 Show that there are (r + k)!/r! ways for k ordered values to appear among r distinct
ordered items.

10.7 Show that there are N(n, k) =
(
n+k−1

k

)
< 2n+k−1 ways to choose with repetition k

numbers from a set A of size n where the order among the numbers is unimportant.
Choosing with repetition means that a number can be chosen more than once.

Hint: Without loss of generality, let A = {1, 2, . . . , n}. Since order is unimportant,
assume the chosen numbers are sorted. Let each chosen number be represented by a
blue marker. Imagine placing the blue markers on a horizontal line. For 1 ≤ i ≤ n−1,
place a red marker between the last blue marker associated with the number i and the
first blue marker associated with the number i+1, if any. This representation uniquely
determines the number of elements of each type chosen. How many ways can the red
markers be placed?

10.8 Show that a complete balanced binary tree on 2k−1 leaves has 2k −1 vertices including
leaves and that each path from a leaf to the root has k − 1 edges and k vertices.

THE PEBBLE GAME

10.9 Consider the circuit shown in Fig. 2.15. Treat each gate and each input vertex as a
vertex. Give a good pebbling strategy for this graph.

10.10 Give a pebbling strategy for the m-input counting circuit in Fig. 2.21(b) that uses
O(log2 m) pebbles and O(m) steps. Determine the minimum number of pebbles
with which the circuit can be pebbled. Determine the number of steps needed with
this minimal pebbling.

520 Chapter 10 Space–Time Tradeoffs Models of Computation

SPACE LOWER BOUNDS WITH PEBBLING

10.11 Consider the FFT graph F (k) on m = 2k inputs. Show that the subgraph connecting
inputs to any one output is a complete binary tree on m leaves.

10.12 Consider a directed acyclic graph with n vertices, some of which have out-degree greater
than 2. (a) Show that if each vertex of out-degree k > 2 is replaced by a binary tree
with k leaves and edges directed from the root to the leaves, the number of vertices in
the graph is at most doubled. (b) Show that replacing vertices with in-degree greater
than 2 with binary trees also at most doubles the number of vertices in the graph.

EXTREME TRADEOFFS WITH PEBBLING

10.13 Let N(k) be the number of vertices in the graph Hk discussed in Section 10.3. Show
that the following recurrence holds for N(k):

N(k) = N(k − 1) + 4k + 3

Show that N(k) = 2k2 + 5k − 6 for k ≥ 2 since N(2) = 12.

10.14 Construct a new family {Gk} of graphs with fan-in 2 at each vertex from the graphs
{Hk} by replacing the tree in Fig. 10.4 by a pyramid graph in k inputs and the bipartite
graph with the graph Ek shown in Fig. 10.23. Show that each output of Ek can be
pebbled with k pebbles but that after pebbling any one output there is at least one path
without pebbles between the input and every other output. Show also that with k + 1
pebbles Ek can be pebbled without repebbling any vertex.

Let Tk(S) be the number of steps to pebble Gk with S pebbles. Using the above facts,
show the following:

a) N(k) = |Gk| = O(n4)

b) Smin(Gk) = k

c) Tk(k + 1) = N(k)

d) Tk(k) = 2Ω(N(k)1/4 log N(k))

...

u1 u2 uk uk+1

Inputs

k

Outputs

Figure 10.23 The graph Ek used in the construction of the family {Gk}.

c©John E Savage Problems 521

SPACE–TIME LOWER BOUNDS WITH PEBBLING

10.15 Let A be a γ-nice n × n matrix over a ring R for some 0 < γ < 1/2. Show that the

matrix-vector multiplication function f
(n)
A×x : Rn 7→ Rn that maps the input n-tuple

x to the output n-tuple Ax is (1, n2 + n, n, γn)-independent.

10.16 Use Lemma 10.12.1 and the result of the previous problem to show that for almost
all n × n matrices A every straight-line program for the matrix-vector multiplication

function f
(n)
A×x : Rn 7→ Rn over the ring R requires space S and time T satisfying

the inequality

(S + 1)T = Ω(n2)

Furthermore, show that a straight-line program for matrix-vector multiplication can be
realized with space S = 3 and time T = n(2n − 1), that is, with

(S + 1)T = O(n2)

10.17 Linear systems are described in Section 6.2.2. A linear system of n equations in n
unknowns x is defined by an (n × n)-coefficient matrix A and an n-vector b, as
suggested below:

Ax = b (10.11)

The goal is to solve this equation for x. If A is non-singular, such a solution exists for

each vector b. Let f
(n)

A−1×b
: Rn2+n 7→ Rn denote the linear system solver function

that maps the matrix A and the vector b onto the solution x when the matrix-vector
multiplication is over the ring R and A is non-singular.

Show that every pebbling strategy for every straight-line program to compute the linear

system solver function f
(n)

A−1×b
: Rn2 7→ Rn2

over the ring R for n even requires space
S and time T satisfying the following inequality:

(S + 1)T ≥ n3/24

Hint: Would it be possible to violate the lower bound on (S+1)T for matrix inversion
given in Problem 10.25 if a DAG for the linear system solver function can be pebbled
with S pebbles in too few steps?

10.18 Let f : An 7→ Am have g : Ar 7→ As as a subfunction. Show that if g is (α, r, s, p)-
independent for r ≤ n and s ≤ m, then so is f . Show that, as a consequence, the
space S and time T needed to pebble the graph of a straight-line program for f satisfy
the following inequality:

⌈α(S + 1)⌉T ≥ sp/4

10.19 Show that if a function is (α, n, m, p)-independent, it is also (α, n, m, q)-independent
for q ≤ p.

Hint: Consider the same set V of outputs in the two definitions.

522 Chapter 10 Space–Time Tradeoffs Models of Computation

10.20 A finite-state machine M computes the function f
(n)
M : Q × Σn 7→ Ψn that maps

the initial state in Q and an input string x of length n over the input alphabet Σ onto
an output string y of the same length over the output alphabet Ψ. Such a machine
can compute a function f : An 7→ An by associating inputs and outputs of f with

inputs and outputs of f
(n)
M . A computation of an FSM M of a function f is input-

output oblivious if the times at which inputs of f are read and its outputs produced
are independent of the value of its input variables.

Show that Theorem 10.4.1 can be generalized from straight-line computations to com-
putations by input-output-oblivious FSMs.

Hint: Try to parallel the proof of Theorem 10.4.1 using the FSM M instead of the
pebble game. What correspondence can you make between the values under pebbles
before the interval I and the state of M ? Let log2 |Q|, where Q is the set of states of
M , be the measure of space associated with it.

10.21 Give a design of an FSM that computes a function f from straight-line programs for it
using a number of steps and storage locations proportional to the time and space used
by a pebbling strategy for this straight-line program.

Hint: Design the FSM so that it receives the inputs provided to the pebbling strategy
as well as instructions to specify which operations are performed on the inputs and
temporary storage locations of the FSM.

TRANSITIVE FUNCTIONS

10.22 Many functions for which space–time lower bounds have been derived are transitive.
Such functions have the property that for subsets X and Y of their inputs and outputs,
respectively, |X| = |Y | = n, the (control) inputs not in X can be chosen so as to cause
the outputs in Y to be equal to an arbitrary permutation drawn from the set G(n)
of the inputs in X . For example, the cyclic shifting function studied in Section 2.5.2
has a set of control inputs that specify the amount by which value inputs are permuted
cyclically and assigned to the output variables.

DEFINITION 10.13.2 Let G(n) be a group of permutations of the integersN(n) = {0,
1, 2, . . . , n− 1}. That is, if π is in G(n), then π :N(n) 7→N(n). We denote by π(i)
the integer to which integer i is mapped by π. A function fG(n) : An+s 7→ An, where
(yn−1, . . . , y1, y0) = fG(n)(xn−1, . . . , x1, x0, cs−1, . . . , c0), is said to have value in-
puts xn−1, . . . , x1, x0, control inputs cs−1, . . . , c0, and outputs yn−1, . . . , y1, y0.
Such a function is transitive of order n with respect to the group G(n) if

a) For each 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ n − 1, there exists a permutation π ∈ G(n)
such that π(i) = j, and

b) For each π ∈ G(n), there is an assignment to cs−1, . . . , c0 such that yπ(i) = xi for
0 ≤ i ≤ n − 1.

Show that every transitive function of order n with respect to the permutation group
G(n), fG(n) : An+s 7→ An, is (2, n + s, n, n/2)-independent.

10.23 Show that the cyclic shifting function f
(n)
cyclic : Bn+⌈log n⌉ 7→ Bn defined in Sec-

tion 2.5.2 is transitive of order n.

c©John E Savage Problems 523

10.24 Consider the function f
(n)
PAQ : R3n2 7→ Rn2

whose value is the product PAQ of three
n×n matrices P , A, and Q. Let P and Q be permutation matrices whose entries serve

as control inputs. Show that f
(n)
PAQ is transitive of order n2.

10.25 The matrix inversion function f
(n)
M−1 : Rn2 7→ Rn2

maps a non-singular n× n matrix

over the ring R to its inverse. (See Section 6.3.) Show that f
(n)
M−1 is (2, n2, n, n/2)-

independent.

Hint: Show that f
(2n)
M−1 contains as a subfunction the function f

(n)
PAQ : R3n2 7→ Rn2

defined in Problem 10.24. In this connection consider the following identity, which
holds when the n × n matrices R and S are non-singular:

M =

[
R A

0 S

]−1

=

[
R−1 −R−1AS−1

0 S−1

]

PEBBLING SUPERCONCENTRATORS

10.26 Show that the graph consisting of two n = 2d-input FFT graphs connected back
to back (as shown in Fig. 10.24 with the second FFT graph reversed) is a supercon-
centrator. (Valiant [342] has shown the existence of n-superconcentrators with O(n)
vertices.)

Hint: Reason that there are unique vertex-disjoint paths from any r input vertices of
this graph to any r consecutive vertices that are simultaneously outputs of the first
FFT graph and the inputs to the reversed FFT graph. The first and last vertices are
consecutive.

10.27 Prove that to pebble any S +1 outputs of an n-superconcentrator, S +1 ≤ n, from an
initial placement of S pebbles requires that at least n − S different inputs be pebbled.

Hint: Suppose that at most n − (S + 1) inputs are pebbled from an initial placement
of S pebbles to pebble S + 1 outputs. Can you reason from the superconcentration

Figure 10.24 Two back-to-back FFT graphs form a superconcentrator.

524 Chapter 10 Space–Time Tradeoffs Models of Computation

property that S + 1 or more inputs cannot remain unpebbled since S + 1 outputs are
pebbled?

10.28 Use the result of the previous problem to show that to pebble an n-superconcentrator
with S pebbles in time T requires S and T to satisfy the following inequality:

(S + 1)T ≥ n2

2

Hint: As in the proof of Theorem 10.4.1, divide time up into consecutive intervals.
Choose the intervals so that each has the same number of outputs pebbled during it.
Apply the results of the previous problem to obtain a lower bound on the sum of the
number of input and output vertices that are pebbled during the interval.

10.29 Show that the pebbling of two n-input back-to-back FFT graphs requires space and
time that satisfy S2T = Ω(n3) and that this lower bound can be achieved up to a
multiplicative factor.

Hint: From the proof of Lemma 10.5.4 it follows that to pebble any 2S outputs with
S pebbles at least n − S + 1 inputs must be pebbled because if fewer inputs need be
pebbled the outputs can have more values than is possible for the FFT.

APPLICATIONS OF THE GRIGORIEV LOWER BOUND

10.30 Show that there is a pebbling for a straight-line program for the cyclic shift func-

tion f
(n)
cyclic : Bn+⌈log n⌉ 7→ Bn examined in Section 10.5.2 for which (S + 1)T =

O(n2 log n).

Hint: Pebble the graph of the circuit described in Section 2.5.1. Construct a circuit for

f
(n)
cyclic that produces each output with O(n log n) gates.

10.31 Show that the binary addition function f
(n)
add (see Section 2.7) can be realized by a

straight-line program using space and time satisfying ST = O(n).

10.32 Derive upper and lower bounds on the product (S + 1)T for pebblings of circuits for

the squaring function f
(n)
square that are within a factor of O(log2 n) of one another.

10.33 Derive good upper and lower bounds on the product (S+1)T for pebblings of circuits

for the reciprocal function f
(n)
recip.

10.34 In Section 6.5.3 a straight-line algorithm is given to invert an n × n triangular matrix.
Construct another straight-line algorithm based on it that can be pebbled with O(n)
pebbles to produce outputs by columns in O(n3) steps under the assumption that the
standard matrix multiplication algorithm is used for the matrix multiplication steps.

Hint: To produce outputs of a triangular matrix T by columns using the algorithm of
Fig. 6.5, it is necessary to read the elements of T2,1 by rows and produce the outputs of
T−1

2,2 by rows. Consider modifying this algorithm to generate the elements of the latter
matrix first by rows and then by columns.

c©John E Savage Problems 525

BRANCHING PROGRAMS

10.35 Give a proof of Lemma 10.9.1 by a) designing a general branching program to simulate
a comparison operator and b) using this design in a complete branching program that
simulates a decision branching program.

10.36 In Section 10.9 a procedure is given to convert a general branching program to a tree
program without increasing the length of any path. Use this fact to show that every
decision branching program with queries {≤, =} that sorts a list of n items requires
worst-case time of at least (n/2) log(n/2) when n is even. Show that this lower bound
can be achieved up to a constant multiplicative factor.

Hint: Show that every binary tree with m leaves must have a longest path of length
at least log2 m and determine the number of distinct leaves necessary in every decision
branching program for sorting.

THE BORODIN-COOK LOWER-BOUND METHOD

10.37 The computation time of a branching program is the length of the longest path in its
directed acyclic multigraph. Assume that a probability is assigned to each input x of
length n. The average computation time, T , of a branching program is the sum of
the lengths of the paths associated with different inputs weighted by the probabilities of
these inputs. To compute the average space of a branching program with k vertices, the
integers in the set {1, 2, . . . , k} are assigned to the vertices of the branching program.
The space associated with input x is the base-2 logarithm of the largest such integer
encountered during the computation associated with x. The average space associated
with a numbering of vertices is the average of this logarithm. The average space, S,
associated with a branching program is the smallest average space over all numberings
of vertices.

Given a probability distribution on inputs of length n, let Cf (a, b) denote the maxi-
mum over all those tree branching programs of depth a of the probability that b of the
m outputs of the function f are computed correctly. Show that Theorem 10.11.1 can
be generalized to the above probabilistic setting.

Hint: If T is the average time of the branching program P , truncate the branching
program at depth 2T , call the new program P ∗, and show that P ∗ solves the problem
solved by P with probability at least 1/2. Also, show that with probability at least 1/2
there exists a rich path in some stage that produces b = ⌈m/σ⌉ outputs. Let pi be
the probability that the subtree with root i in some stage correctly produces b outputs.
Now develop an upper bound in terms of the pi on the probability that some tree in
some stage correctly produces b outputs.

APPLICATIONS OF THE BORODIN-COOK LOWER BOUND

10.38 Show that the branching program in Fig. 10.20 computes the inner product of two 3-
element sequences over the set of integers modulo-2; that is, the integers {0, 1} with
the EXCLUSIVE-OR function for addition and the AND function for multiplication.

10.39 Complete the proof of Theorem 10.13.2 by filling in the details of the construction of
a branching program for integer multiplication for the middle range of space.

526 Chapter 10 Space–Time Tradeoffs Models of Computation

10.40 Complete the proof of Theorem 10.13.4 by showing that two n × n matrices can
be multiplied with a hybrid algorithm that combines table lookup with the standard
matrix multiplication algorithm on k × k blocks to achieve space and time satisfying

ST 2 = O(n3 log |R|)

10.41 Show that the RAM program described in Fig. 10.22 can be converted to a branching
program of space O(S) and time O(T).

Chapter Notes
The first formal study of space–time tradeoffs was made by Cobham [73]. He considered
computations on one-tape Turing machines using as a space measure the logarithm of the
number of configurations, and obtained quadratic lower bounds on the space–time product to
recognize strings representing palindromes and perfect squares.

The pebble-game model was implicitly used by Paterson and Hewitt [238] to study pro-
gram schemas, uninterpreted graphs representing programs. They derived the space lower
bound of Lemma 10.2.1, thereby demonstrating that recursive programs are more power-
ful than nonrecursive ones. Cook [75,79] asked how much space (how many pebbles) was
needed to execute a program schema with n vertices and obtained the result for pyramids of
Lemma 10.2.2, showing that the minimum space is at least Ω(

√
n) for some schemas. The

minimum-space question was answered by Hopcroft, Paul, and Valiant [139], who proved
Theorem 10.7.1, and Paul, Tarjan, and Celoni [245], who obtained Theorem 10.8.1. The
pebble model first formally appeared in [139]. Gilbert, Lengauer, and Tarjan [114] and Loui
[204] have shown that the languages associated with minimal pebblings of DAGs (described
at the end of Section 10.2) are PSPACE-complete.

In addition to studying the minimum space needed for a computation, researchers also
examined tradeoffs between space and time. Paterson and Hewitt [238] studied the conversion
of a linear recursive program schema into a non-recursive one and demonstrated that the time
needed satisfies T = Ω(n1+1/(S−1)) for S ≥ 2. (See Chandra [66] and Swamy and Savage
[320]) for more details on this problem.)

A number of other authors have identified graphs exhibiting non-trivial exchanges of space
for time. Pippenger [253] gave a graph on n vertices for which T = Ω(n log log n) when
S = O(n/ log n), and Savage and Swamy [292] demonstrated that the FFT graph requires S
and T satisfying ST = Θ(n2). (This is the first tradeoff result for a natural algorithm. Their
upper bound is given in Theorem 10.5.5.) Later Tompa [332] and Reischuk [278] exhibited
graphs requiring T = Ω(n log n) and T = Ω(n logt n) for any integer t, respectively, when
S = Θ(n/ log n).

Paul and Tarjan [244], Lingas [200], and van Emde Boas and van Leeuwen [348] gave

graphs with T increasing from O(n) to T = 2Ω(n1/2), T = 2Ω(n1/3), and T = 2Ω(n1/4 log n),
respectively, when S drops by a constant amount from S = O(n1/2), S = O(n1/3) and
S = O(n1/4), respectively. Theorem 10.3.1 is from [348], as is Problem 10.14. Carl-
son and Savage [64] took a different tack and exhibited graphs for which T is superlinear,
namely, T = 2Ω(log n log log n) over a range of values of S, namely, Ω(log n) ≤ S ≤
O(n1/2/ log n). References to the worst-case exchange of space for time are given in Sec-
tion 10.6.

c©John E Savage Chapter Notes 527

Grigoriev [120] gave the first space–time lower bounds that apply to all graphs for a prob-
lem (see Corollary 10.4.1), the essential idea of which is generalized in Theorem 10.4.1. Savage
[290] introduced the w(u, v)-flow measure used in this version of a theorem to derive lower
bounds on area–time tradeoffs for VLSI algorithms. Grigoriev [120] also established Theo-
rem 10.4.2 and derived a tradeoff lower bound on polynomial multiplication that is equiva-
lent to Theorem 10.5.1 on convolution. The improved version of Theorem 10.4.2, namely
Theorem 10.5.4, is original with this book.

Lower bounds using the Grigoriev approach explicitly require that the sets over which
functions are defined be finite. Tompa [330,331] eliminated the requirement for finite sets but
required instead that functions be linear. Using concentrator properties of matrices deduced
by Valiant [342], Tompa derived a lower bound on ST for superconcentrators that he applied
to matrix-vector multiplication and polynomial multiplication. He developed a similar lower
bound for the DFT. (See Abelson [2] for a generalization of some of these results to continuous
functions.) The lower bound of Theorem 10.5.5 uses Tompa’s DFT proof but does not require
that straight-line programs be linear.

The result on cyclic shift (Theorem 10.5.2) is due to Savage [291]. (This paper also gener-
alizes Grigoriev’s model to I/O-oblivious FSMs, extends JáJá’s [146] space–time lower bound
for matrix inversion, and derives space–time lower bounds for transitive functions and banded
matrices.) The result on integer multiplication (Theorem 10.5.3) is due to Savage and Swamy
[293]. In [330] Tompa also obtained Theorem 10.5.6 on merging. Transitive functions de-
fined in Problem 10.22 were introduced by Vuillemin [354].

In [332] Tompa examined the graph associated with the algorithm for transitive closure
based on successive squarings described in Section 6.4 and demonstrated that it can be peb-
bled either in a polynomial number of steps or with small space, namely O(log2 n), but not
both. Carlson [61] demonstrated that algorithms for convolution based on FFT graphs (see
Section 6.7.4) require that T = Θ(n3/S2 + n2(log n)/S), which doesn’t come close to
matching the lower bound of Theorem 10.5.1. However, through the judicious replacement
of back-to-back FFT subgraphs in the standard convolution algorithm, Carlson [62] was able
to achieve the bounds T = Θ(n log S + n2(log S)/S), which are optimal over all FFT-based
convolution algorithms and nearly as good as the T = Θ(n2/S) bounds. (See also [63].)
Carlson and Savage [65] explored for a number of problems the size of the smallest graphs that
can be pebbled with a small number of pebbles and demonstrated a tradeoff between size and
space.

Pippenger [250] has surveyed many of the results described above as well as those on the
black-white pebble game described below.

Several extensions of the pebble game have been developed. One of these is the red-blue
pebble game discussed in Chapter 11 and its generalization, the memory hierarchy game.
Another is the black-white pebble game whose rules are the following: a) a black pebble can be
placed on an input vertex at any time and on a non-input vertex only if its predecessors carry
pebbles, whether white or black; b) a black pebble may be removed at any time; c) a white
pebble can be placed on a vertex at any time; d) a white pebble can be removed only if all its
predecessors carry pebbles. The placement of white pebbles models a non-deterministic guess.
The removal of a white vertex is allowed only when the guess has been verified. Questions
this game makes possible are whether the minimum space required for a graph is lower with
the black-white pebble game than with the standard game and whether for a given amount of
space, the time required is lower. The black-white game was introduced by Cook and Sethi

528 Chapter 10 Space–Time Tradeoffs Models of Computation

[78], who showed that the minimum space for the pyramid graph is at least
√

N/2−1. Meyer
auf der Heide [221] proved that this minimum space is at most ⌈n/2⌉ + 2 and established in
general that any graph with minimum space n in the black-white game has minimum space at
most (n2 −n)/2 + 1 in the standard game. The latter result is the pebbling analog of Savitch’s
theorem (Theorem 8.5.5).

Loui [205] and Meyer auf der Heide [221] have shown that the minimum space with the
black-white game is at least one half that for the standard pebble game for balanced trees, a
result extended by Lengauer and Tarjan [195] to all trees and then by Klawe [166]. Wilber
[362] has exhibited an infinite family of graphs for which the black-white minimum space is
smaller than the minimum space with the standard game by more than a constant factor.

All of the pebble games mentioned above are one-person games; that is, one person plays
the game. A two-person game introduced by Venkateswaran and Tompa [351] models parallel
complexity classes. Savage and Vitter [295] have also introduced a model of parallel pebbling.

Branching programs have been known as binary decision diagrams for at least 30 years
[15], although their importance to CAD was recognized only in the last 10 or 12 years. (See
[60]). Branching programs were proposed as a vehicle for studying space–time problems by
Pippenger and first studied by Tompa [330], who cites Pippenger for Lemma 10.9.2. Borodin,
Fischer, Kirkpatrick, Lynch, and Tompa [55] derived a lower bound of ST = Ω(n2) to
sort n items with decision branching programs. Borodin and Cook [53] formulated the same
problem in terms of the general branching programs of Section 10.9 and developed the general
framework used in Theorem 10.11.1.

Yesha [369] developed lower bounds on the space–time product with branching prob-
lems for the discrete Fourier transform (see Theorem 10.13.7) and matrix multiplication over
restricted domains. Abrahamson [6] (see also [4]) derived the lower bound on ST 2 in The-
orem 10.13.4, thereby improving upon the matrix multiplication bound of Yesha. He also
extended the Borodin-Cook model to probabilistic branching programs (see Problem 10.37)
and derived the lower bound on ST for convolution (Theorem 10.13.1), integer multiplica-
tion (Theorem 10.13.2), matrix-vector multiplication (Theorem 10.13.3), and matrix inver-
sion (Theorem 10.13.6). He also developed a lower bound of Ω(n3) on ST to compute the
product PAQ of three n×n matrices, where P and Q are permutation matrices. Abrahamson
has also studied Boolean matrix multiplication in the general branching program model [5].
Beame [34] has obtained the result of Theorem 10.13.8 showing that the unique elements
problem requires that ST = Ω(n2) for general branching programs, which implies the lower
bound on sorting stated in Theorem 10.13.9.

In the comparison-based branching program model, Borodin, Fich, Meyer auf der Heide,
Upfal, and Wigderson [54] derive the lower bound ST = Ω(n3/2

√
log n) for the element-

distinctness problem on n inputs. For the same computational model, Yao [368] improved
this to ST = Ω(n2−ǫ(n)), where ǫ(n) is a decreasing function of n.

