
C H A P T E R

Algebraic and Combinatorial
Circuits

Algebraic circuits combine operations drawn from an algebraic system. In this chapter we de-
velop algebraic and combinatorial circuits for a variety of generally non-Boolean problems, in-
cluding multiplication and inversion of matrices, convolution, the discrete Fourier transform,
and sorting networks. These problems are used primarily to illustrate concepts developed in
later chapters, so that this chapter may be used for reference when studying those chapters.

For each of the problems examined here the natural algorithms are straight-line and the
graphs are directed and acyclic; that is, they are circuits. Not only are straight-line algorithms
the ones typically used for these problems, but in some cases they are the best possible.

The quality of the circuits developed here is measured by circuit size, the number of circuit
operations, and circuit depth, the length of the longest path between input and output ver-
tices. Circuit size is a measure of the work necessary to execute the corresponding straight-line
program. Circuit depth is a measure of the minimal time needed for a problem on a parallel
machine.

For some problems, such as matrix inversion, we give serial (large-depth) as well as par-
allel (small-depth) circuits. The parallel circuits generally require considerably more circuit
elements than the corresponding serial circuits.

237

238 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

6.1 Straight-Line Programs
Straight-line programs (SLP) are defined in Section 2.2. Each SLP step is an input, compu-
tation, or output step. The notation (s READ x) indicates that the sth step is an input step on
which the value x is read. The notation (s OUTPUT i) indicates that the result of the ith step
is to be provided as output. Finally, the notation (s OP i . . . k) indicates that the sth step
computes the value of the operator OP on the results generated at steps i, . . . , k. We require
that s > i, . . . , k so that the result produced at step s depends only on the results produced
at earlier steps. In this chapter we consider SLPs in which the inputs and operators have values
over a set A that is generally not binary. Thus, the circuits considered here are generally not
logic circuits. The basis Ω for an SLP is the set of operators it uses. A circuit is the graph of a
straight-line program. By its nature this graph is directed and acyclic.

An example of a straight-line program that computes the fast Fourier transform (FFT)
on four inputs is given below. (The FFT is introduced in Section 6.7.3.) Here the function
f+, α(a, b) = a + bα where α is a power of a constant ω that is a principal nth root of unity of
a commutative ring R. (See Section 6.7.1.) The arguments a and b are variables with values
in R.

(1 READ a0)

(2 READ a2)

(3 READ a1)

(4 READ a3)

(5 f+, ω0 1 2)

(6 f+, ω2 1 2)

(7 f+, ω0 3 4)

(8 f+, ω2 3 4)

(9 f+, ω0 5 7)

(10 f+, ω1 6 8)

(11 f+, ω2 5 7)

(12 f+, ω3 6 8)

The graph of the above SLP is the familiar FFT butterfly graph shown in Fig. 6.1. As-
signment statements are associated with vertices of in-degree zero and operator statements are
associated with other vertices. We attach the name of the operator or variable associated with
each step to the corresponding vertex in the graph. We often suppress the unique indices of
vertices, although they are retained in Fig. 6.1.

f+, ω3f+, ω2f+, ω1f+, ω0

9 10 11 12

1 2 3 4

a2a0 a1 a3

f+, ω2f+, ω0f+, ω2f+, ω0

86 75

Figure 6.1 The FFT butterfly graph on four inputs.

c©John E Savage 6.2 Mathematical Preliminaries 239

The function gs is associated with the sth step. The identity function with value v is
associated with the assignment statement (r READ v). Associated with the computation step
(s OP i . . . k) is the function gs = OP(gi, . . . , gk), where gi, . . . , gk are the functions
computed at the steps on which the sth step depends. If a straight-line program has n inputs
and m outputs, it computes a function f : An "→ Am. If s1, s2, . . ., sm are the output steps,
then f = (gs1 , gs2 , . . . , gsm). The function computed by a circuit is the function computed
by the corresponding straight-line program.

In the example above, g11 = f+, ω2(g5, g7) = g5 + g7ω2, where g5 = f+, ω0(g1, g2) =
a0 + a2ω0 = a0 + a2 and g7 = f+, ω0(g3, g4) = a1 + a3ω0 = a1 + a3. Thus,

g11 = a0 + a1ω
2 + a2 + a3ω

2

which is the value of the polynomial p(x) at x = ω2 when ω4 = 1:

p(x) = a0 + a1x + a2x
2 + a3x

3

The size of a circuit is the number of operator statements it contains. Its depth is the
length of (number of edges on) the longest path from an input to an output vertex. The basis
Ω is the set of operators used in the circuit. The size and depth of the smallest and shallowest
circuits for a function f over the basis Ω are denoted CΩ(f) and DΩ(f), respectively. In this
chapter we derive upper bounds on the size and depth of circuits.

6.2 Mathematical Preliminaries
In this section we introduce rings, fields and matrices, concepts widely used in this chapter.

6.2.1 Rings and Fields
Rings and fields are algebraic systems that consists of a set with two special elements, 0 and 1,
and two operations called addition and multiplication that obey a small set of rules.

DEFINITION 6.2.1 A ring R is a five-tuple (R, +, ∗, 0, 1), where R is closed under addition
+ and multiplication ∗ (that is, + : R2 "→ R and ∗ : R2 "→ R) and + and ∗ are associative
(for all a, b, c ∈ R, a + (b + c) = (a + b) + c and a ∗ (b ∗ c) = (a ∗ b) ∗ c). Also, 0, 1 ∈ R,
where 0 is the identity under addition (for all a ∈ R, a+0 = 0+a = a) and 1 is the identity
under multiplication (for all a ∈ R, a ∗ 1 = 1 ∗ a = a). In addition, 0 is an annihilator
under multiplication (for all a ∈ R, a ∗ 0 = 0 ∗ a = 0). Every element of R has an additive
inverse (for all a ∈ R, there exists an element −a such that (−a)+a = a+(−a) = 0). Finally,
addition is commutative (for all a, b ∈ R, a + b = b + a) and multiplication distributes over
addition (for all a, b, c ∈ R, a∗ (b+ c) = (a∗ b)+(a∗ c) and (b+ c)∗a = (b∗a)+(c∗a)).
A ring is commutative if multiplication is commutative (for all a, b ∈ R, a ∗ b = b ∗ a). A field
is a commutative ring in which each element other than 0 has a multiplicative inverse (for all
a ∈ R, a '= 0, there exists an element a−1 such that a ∗ a−1 = 1).

Let be the set of positive and non-negative integers and let + and ∗ denote integer
addition and multiplication. Then (, +, ∗, 0, 1) is a commutative ring. (See Problem 6.1.)
Similarly, the system ({0, 1}, +, ∗, 0, 1), where + is addition modulo 2 (for all a, b ∈ {0, 1},
a + b is the remainder after division by 2 or the EXCLUSIVE OR operation) and ∗ is the AND

240 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

operation, is a commutative ring, as the reader can show. A third commutative ring is the
integers modulo p together with the operations of addition and multiplication modulo p. (See
Problem 6.2.) The ring of matrices introduced in the next section is not commutative. Some
important commutative rings are introduced in Section 6.7.1.

6.2.2 Matrices
A matrix over a set R is a rectangular array of elements drawn from R consisting of some
number m of rows and some number n of columns. Rows are indexed by integers from the set
{1, 2, 3, . . . , m} and columns are indexed by integers from the set {1, 2, 3, . . . , n}. The entry
in the ith row and jth column of A is denoted ai,j , as suggested in the following example:

A = [ai,j] =




a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4



 =




1 2 3 4

5 6 7 8

9 10 11 12





Thus, a2,3 = 7 and a3,1 = 9.
The transpose of a matrix A, denoted AT , is the matrix obtained from A by exchanging

rows and columns, as shown below for the matrix A above:

AT =





1 5 9

2 6 10

3 7 11

4 8 12





Clearly, the transpose of the transpose of a matrix A, (AT)T , is the matrix A.
A column n-vector x is a matrix containing one column and n rows, for example:

x =





x1

x2

...

xn




=





5

6

...

8





A row m-vector y is a matrix containing one row and m columns, for example:

y = [y1, y2, . . . , ym] = [1, 5, . . . , 9]

The transpose of a row vector is a column vector and vice versa.
A square matrix is an n × n matrix for some integer n. The main diagonal of an n × n

square matrix A is the set of elements {a1,1, a2,2, . . . , an−1,n−1, an,n}. The diagonal below
(above) the main diagonal is the elements {a2,1, a3,2, . . . , an,n−1} ({a1,2, a2,3, . . . , an−1,n}).
The n × n identity matrix, In, is a square n × n matrix with value 1 on the main diagonal
and 0 elsewhere. The n × n zero matrix, 0n, has value 0 in each position. A matrix is upper
(lower) triangular if all elements below (above) the main diagonal are 0. A square matrix A is
symmetric if A = AT , that is, ai,j = aj,i for all 1 ≤ i, j ≤ n.

The scalar product of a scalar c ∈ R and an n × m matrix A over R, denoted cA, has
value cai,j in row i and column j.

c©John E Savage 6.2 Mathematical Preliminaries 241

The matrix-vector product between an m × n matrix A and a column n-vector x is the
column m-vector b below:

b = Ax =





a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

. . .
...

am,1 an−1,2 . . . am−1,n

am,1 an,2 . . . am,n





×





x1

x2

...

xn−1

xn





=





a1,1 ∗ x1 + a1,2 ∗ x2 + · · · + a1,n ∗ xn

a2,1 ∗ x1 + a2,2 ∗ x2 + · · · + a2,n ∗ xn

...
...

. . .
...

am−1,1 ∗ x1 + am−1,2 ∗ x2 + · · · + am−1,n ∗ xn

am,1 ∗ x1 + am,2 ∗ x2 + · · · + am,n ∗ xn





Thus, bj is defined as follows for 1 ≤ j ≤ n:

bj = ai,1 ∗ x1 + ai,2 ∗ x2 + · · · + ai,m ∗ xm

The matrix-vector product between a row m-vector x and an m × n matrix A is the row
n-vector b below:

b = [bi] = xA

where for 1 ≤ i ≤ n bi satisfies

bi = x1 ∗ a1,i + x2 ∗ a2,i + · · · + xm ∗ am,i

The special case of a matrix-vector product between a row n-vector, x, and a column n vector,
y, denoted x · y and defined below, is called the inner product of the two vectors:

x · y =
n∑

i=1

xi ∗ yi

If the entries of the n × n matrix A and the column n-vectors x and b shown below are
drawn from a ring R and A and b are given, then the following matrix equation defines a
linear system of n equations in the n unknowns x:

Ax = b

An example of a linear system of four equations in four unknowns is

1 ∗ x1 + 2 ∗ x2 + 3 ∗ x3 + 4 ∗ x4 = 17

5 ∗ x1 + 6 ∗ x2 + 7 ∗ x3 + 8 ∗ x4 = 18

9 ∗ x1 + 10 ∗ x2 + 11 ∗ x3 + 12 ∗ x4 = 19

13 ∗ x1 + 14 ∗ x2 + 15 ∗ x3 + 16 ∗ x4 = 20

242 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

It can be expressed as follows:




1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16









x1

x2

x3

x4




=





17

18

19

20





Solving a linear system, when it is possible, consists of finding values for x given values for
A and b. (See Section 6.6.)

Consider the set of m × n matrices whose entries are drawn from a ring R. The matrix

addition function f (m,n)
A+B : R2mn "→ Rmn on two m×n matrices A = [ai,j] and B = [bi,j]

generates a matrix C = f (m,n)
A+B (A, B) = A +m,n B = [ci,j], where +m,n is the infix matrix

addition operator and ci,j is defined as

ci,j = ai,j + bi,j

The straight-line program based on this equation uses one instance of the ring addition op-

erator + for each entry in C. It follows that over the basis {+}, C+(f (m,n)
A+B) = mn and

D+(f (m,n)
A+B) = 1. Two special cases of matrix addition are the addition of square matrices

(m = n), denoted +n, and the addition of row or column vectors that are either 1 × n or
m × 1 matrices.

The matrix multiplication function f (n)
A×B : R(m+p)n "→ Rmp multiplies an m ×

n matrix A = [ai,j] by an n × p matrix B = [bi,j] to produce the m × p matrix C =

f (n)
A×B(A, B) = A ×n B = [ci,j], where

ci,j =
n∑

k=1

ai,k ∗ bk,j (6.1)

and ×n is the infix matrix multiplication operator. The subscript on ×n is usually dropped
when the dimensions of the matrices are understood. The standard matrix multiplication
algorithm for multiplying an m×n matrix A by an n×p matrix B forms mp inner products
of the kind shown in equation (6.1). Thus, it uses mnp instances of the ring multiplication
operator and m(n − 1)p instances of the ring addition operator.

A fast algorithm for matrix multiplication is given in Section 6.3.1. It is now straightfor-
ward to show the following result. (See Problem 6.4.)

THEOREM 6.2.1 Let Mn×n be the set of n × n matrices over a commutative ring R. The
system Mn×n = (Mn×n, +n,×n, 0n, In), where +n and ×n are the matrix addition and
multiplication operators and 0n and In are the n × n zero and identity matrices, is a ring.

The ring of matrices Mn×n is not a commutative ring because matrix multiplication is not
commutative. For example, the following two matrices do not commute, that is, AB '= BA:

A =

[
0 1

1 0

]
B =

[
1 0

0 −1

]

A linear combination of a subset of the rows of an n × m matrix A is a sum of scalar
products of the rows in this subset. A linear combination is non-zero if the sum of the scalar

c©John E Savage 6.2 Mathematical Preliminaries 243

product is not the zero vector. A set of rows of a matrix A over a field R is linearly indepen-
dent if all linear combinations are non-zero except when each scalar is zero.

The rank of an n × m matrix A over a field R, f (n)
rank : Rn2 "→ , is the maximum

number of linearly independent rows of A. It is also the maximum number of linearly inde-

pendent columns of A. (See Problem 6.5.) We write rank(A) = f (n)
rank(A). An n × n matrix

A is non-singular if rank(A) = n.
If an n×n matrix A over a field R is non-singular, it has an inverse A−1 that is an n×n

matrix with the following properties:

AA−1 = A−1A = In

where In is the n × n identity matrix. That is, there is a (partial) inverse function f (n)
inv :

Rn2 "→ Rn2

that is defined for non-singular square matrices A such that f (n)
inv (A) = A−1.

f (n)
inv is partial because it is not defined for singular matrices. Below we exhibit a matrix and its

inverse over a field R.

[
1 1

−1 1

]−1

=

[
1 −1

1 1

]

Algorithms for matrix inversion are given in Section 6.5.
We now show that the inverse (AB)−1 of the product AB of two invertible matrices, A

and B, over a field R is the product of their inverses in reverse order.

LEMMA 6.2.1 Let A and B be invertible square matrices over a field R. Then the following
relationship holds:

(AB)−1 = B−1A−1

Proof To show that (AB)−1 = B−1A−1, we multiply AB either on the left or right by
B−1A−1 to produce the identity matrix:

AB(AB)−1 = ABB−1A−1 = A(BB−1)A−1 = AA−1 = I

(AB)−1AB = B−1A−1AB = B−1(A−1A)B = B−1B = I

The transpose of the product of an m × n matrix A and an n × p matrix B over a ring R
is the product of their transposes in reverse order:

(A B)T = BT AT

(See Problem 6.6.) In particular, the following identity holds for an m × n matrix A and a
column n-vector x:

xT AT = (Ax)T

A block matrix is a matrix in which each entry is a matrix with fixed dimensions. For
example, when n is even it may be convenient to view an n×n matrix as a 2×2 matrix whose
four entries are (n/2) × (n/2) matrices.

Two special types of matrix that are frequently encountered are the Toeplitz and circulant
matrices. An n × n Toeplitz matrix T has the property that its (i, j) entry ti,j = ar for

244 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

j = i − n + 1 + r and 0 ≤ r ≤ 2n − 2. A generic Toeplitz matrix T is shown below:

T =





an−1 an an+1 . . . a2n−2

an−2 an−1 an . . . a2n−3

an−3 an−2 an−1 . . . a2n−4

...
...

...
. . .

...

a0 a1 a2 . . . an−1





An n × n circulant matrix C has the property that the entries on the kth row are a right
cyclic shift by k − 1 places of the entries on the first row, as suggested below.

C =





a0 a1 a2 . . . an−1

an−1 a0 a1 . . . an−2

an−2 an−1 a0 . . . an−3

...
...

...
. . .

...

a1 a2 a3 . . . a0





The circulant is a type of Toeplitz matrix. Thus the function defined by the product of a
Toeplitz matrix and a vector contains as a subfunction the function defined by the product of
a circulant matrix and a vector. Consequently, any algorithm to multiply a vector by a Toeplitz
matrix can be used to multiply a circulant by a vector.

As stated in Section 2.11, a permutation π : Rn "→ Rn of an n-tuple x = (x1, x2, . . . ,
xn) over the set R is a rearrangement π(x) = (xπ(1), xπ(2), . . . , xπ(n)) of the components
of x. A n × n permutation matrix P has entries from the set {0, 1} (here 0 and 1 are the
identities under addition and multiplication for a ring R) with the property that each row
and column of P has exactly one instance of 1. (See the example below.) Let A be an n × n
matrix. Then AP contains the columns of A in a permuted order determined by P . A similar
statement applies to PA. Shown below is a permutation matrix P and the result of multiplying
it on the right by a matrix A on the left. In this case P interchanges the first two columns of A.





1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16









0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1




=





2 1 3 4

6 5 7 8

10 9 11 12

14 13 15 16





6.3 Matrix Multiplication
Matrix multiplication is defined in Section 6.2. The standard matrix multiplication algo-
rithm computes the matrix product using the formula for ci,j given in (6.1). It performs nmp
multiplications and n(m − 1)p additions. As shown in Section 6.3.1, however, matrices can
be multiplied with many fewer operations.

Boolean matrix multiplication is matrix multiplication for matrices over B when + de-
notes OR and ∗ denotes AND. Another example is matrix multiplication over the set of integers

c©John E Savage 6.3 Matrix Multiplication 245

modulo a prime p, a set that forms a finite field under addition and multiplication modulo p.
(See Problem 6.3.)

In the next section we describe Strassen’s algorithm, a straight-line program realizable by a
logarithmic-depth circuit of size O(n2.807). This is not the final word on matrix multiplication,
however. Winograd and Coppersmith [81] have improved the bound to O(n2.38). Despite
this progress, the smallest asymptotic bound on matrix multiplication remains unknown.

Since later in this chapter we design algorithms that make use of matrix multiplication,
it behooves us to make the following definition concerning the number of ring operations to
multiply two n × n matrices over a ring R.

DEFINITION 6.3.1 Let K ≥ 1. Then Mmatrix(n, K) is the size of the smallest circuit of depth
K log2 n over a commutative ring R for the multiplication of two n × n matrices.

The following assumptions on the rate of growth of Mmatrix(n, K) with n make subse-
quent analysis easier. They are satisfied by Strassen’s algorithm.

ASSUMPTION 6.3.1 We assume that for all c satisfying 0 ≤ c ≤ 1 and n ≥ 1,

Mmatrix(cn, K) ≤ c2Mmatrix(n, K)

ASSUMPTION 6.3.2 We assume there exists an integer n0 > 0 such that, for n ≥ n0,

2n2 ≤ Mmatrix(n, K)

6.3.1 Strassen’s Algorithm
Strassen [318] has developed a fast algorithm for multiplying two square matrices over a com-
mutative ring R. This algorithm makes use of the additive inverse of ring elements to reduce
the total number of operations performed.

Let n be even. Given two n × n matrices, A and B, we write them and their product C
as 2 × 2 matrices whose components are (n/2) × (n/2) matrices:

C =

[
u v

w x

]
= A × B =

[
a b

c d

]
×

[
e f

g h

]

Using the standard algorithm, we can form C with eight multiplications and four additions
of (n/2) × (n/2) matrices. Strassen’s algorithm exchanges one of these multiplications for
10 such additions. Since one multiplication of two (n/2) × (n/2) matrices is much more
costly than an addition of two such matrices, a large reduction in the number of operations is
obtained. We now derive Strassen’s algorithm.

Let D be the the 4 × 4 matrix shown below whose entries are (n/2) × (n/2) matrices.
(Thus, D is a 2n × 2n matrix.)

D =





a b 0 0

c d 0 0

0 0 a b

0 0 c d





246 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

The entries u, v, w, and x of the product A × B can also be produced by the following
matrix-vector product:





u

w

v

x




= D ×





e

g

f

h





We now write D as a sum of seven matrices as shown in Fig. 6.2; that is,

D = A1 + A2 + A3 + A4 + A5 + A6 + A7

Let P1, P2, . . . , P7 be the products of the (n/2) × (n/2) matrices

P1 = (a + d) × (e + h)

P2 = (c + d) × e

P3 = a × (f − h)

P4 = d × (−e + g)

P5 = (a + b) × h

P6 = (−a + c) × (e + f)

P7 = (b − d) × (g + h)

A1 =





a + d 0 0 a + d

0 0 0 0

0 0 0 0

a + d 0 0 a + d




A2 =





0 0 0 0

c + d 0 0 0

0 0 0 0

−(c + d) 0 0 0





A3 =





0 0 0 0

0 0 0 0

0 0 a −a

0 0 a −a




A4 =





−d d 0 0

−d d 0 0

0 0 0 0

0 0 0 0





A5 =





0 0 0 −(a + b)

0 0 0 0

0 0 0 a + b

0 0 0 0




A6 =





0 0 0 0

0 0 0 0

0 0 0 0

−a + c 0 −a + c 0





A7 =





0 b − d 0 b − d

0 0 0 0

0 0 0 0

0 0 0 0





Figure 6.2 The decomposition of the 4 × 4 matrix D as the sum of seven 4 × 4 matrices.

c©John E Savage 6.3 Matrix Multiplication 247

Then the product of the vector [e, g, f , h]T with D is the following sum of seven column
vectors.




u

w

v

x




=





P1

0

0

P1




+





0

P2

0

−P2




+





0

0

P3

P3




+





P4

P4

0

0




+





−P5

0

P5

0




+





0

0

0

P6




+





P7

0

0

0





It follows that u, v, w, and x are given by the following equations:

u = P1 + P4 − P5 + P7

w = P2 + P4

v = P3 + P5

x = P1 − P2 + P3 + P6

Associativity and commutativity under addition and distributivity of multiplication over ad-
dition are used to obtain this result. In particular, commutativity of the ring multiplication
operator is not assumed. This is important because it allows this algorithm to be used when
the entries in the original 2 × 2 matrices are themselves matrices, since matrix multiplication
is not commutative.

Thus, an algorithm exists to form the product of two n × n matrices with seven multi-
plications of (n/2) × (n/2) matrices and 18 additions or subtractions of such matrices. Let
n = 2k and M(k) be the number of operations over the ring R used by this algorithm to
multiply n × n matrices. Then, M(k) satisfies

M(k) = 7M(k − 1) + 18
(
2k−1

)2
= 7M(k − 1) + (18)4k−1

If the standard algorithm is used to multiply 2 × 2 matrices, M(1) = 12 and M(k) satisfies
the following recurrence:

M(k) = (36/7)7k − (18/3)4k

The depth (number of operations on the longest path), D(k), of this straight-line algo-
rithm for the product of two n × n matrices when n = 2k satisfies the following bound:

D(k) = D(k − 1) + 3

because one level of addition or subtraction is used before products are formed and one or two
levels are used after they are formed. Since D(1) = 2 if the standard algorithm is used to
multiply 2 × 2 matrices, D(k) = 3k − 1 = 3 log n − 1.

These size and depth bounds can be improved to those in the following theorem by using
the standard matrix multiplication algorithm on small matrices. (See Problem 6.8.)

THEOREM 6.3.1 The matrix multiplication function for n×n matrices over a commutative ring

R, f (n)
A×B , has circuit size and depth satisfying the following bounds over the basis Ω containing

addition, multiplication, and additive inverse over R:

CΩ

(
f (n)

A×B

)
≤ 4.77nlog2 7

DΩ

(
f (n)

A×B

)
= O(log n)

248 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

We emphasize again that subtraction plays a central role in Strassen’s algorithm. Without
it we show in Section 10.4 that the standard algorithm is nearly best possible.

Strassen’s algorithm is practical for sufficiently large matrices, say with n ≥ 64. It can
also be used to multiply Boolean matrices even though the addition operator (OR) and the
multiplication operator (AND) over the set B do not constitute a ring. (See Problem 6.9.)

6.4 Transitive Closure
The edges of a directed graph G = (V , E), n = |V |, specify paths of length 1 between pairs of
vertices. (See Fig. 6.3.) This information is captured by the Boolean n × n adjacency matrix
A = [ai,j], 1 ≤ i, j ≤ n, where ai,j is 1 if there is an edge from vertex i to vertex j in E and
0 otherwise. (The adjacency matrix for the graph in Fig. 6.3 is given after Lemma 6.4.1.) Our
goal is to compute a matrix A∗ whose i, j entry a∗

i,j has value 1 if there is a path of length
0 or more between vertices i and j and value 0 otherwise. A∗ is called the transitive closure

of the matrix A. The transitive closure function f (n)
A∗ : Bn2 "→ Bn2

maps an arbitrary n × n

Boolean matrix A onto its n × n transitive closure matrix; that is, f (n)
A∗ (A) = A∗. In this

section we add and multiply Boolean matrices over the set B using OR as the element addition
operation and AND as the element multiplication operation. (Note that (B,∨,∧, 0, 1) is not
a ring; it satisfies all the rules for a ring except for the condition that each element of B have
an (additive) inverse under ∨.)

To compute A∗ we use the following facts: a) the entry in the rth row and sth column
of the Boolean matrix product A2 = A × A is 1 if there is a path containing two edges from
vertex r to vertex s and 0 otherwise (which follows from the definition of Boolean matrix
multiplication given in Section 6.3), and b) the entry in the rth row and sth column of
Ak = Ak−1 × A is 1 if there is a path containing k edges from vertex r to vertex s and 0
otherwise, as the reader is asked to show. (See Problem 6.11.)

LEMMA 6.4.1 Let A be the Boolean adjacency matrix for a directed graph and let Ak be the kth
power of A. Then the following identity holds for k ≥ 1, where + denotes the addition (OR) of
Boolean matrices:

(I + A)k = I + A + · · · + Ak (6.2)

Proof The proof is by induction. The base case is k = 1, for which the identity holds.
Assume that it holds for k ≤ K−1. We show that it holds for k = K. Since (I+A)K−1 =

2 3

4

5

1

Figure 6.3 A graph that illustrates transitive closure.

c©John E Savage 6.4 Transitive Closure 249

I + A + · · · + AK−1, multiply both sides by I + A:

(I + A)K = (I + A) × (I + A)K−1

= (I + A) × (I + A + · · · + AK−1)

= I + (A + A) + · · · + (AK−1 + AK−1) + AK

However, since Aj is a Boolean matrix, Aj + Aj = Aj for all j and the result follows.

The adjacency matrix A of the graph in Fig. 6.3 is given below along with its powers up to
the fifth power. Note that every non-zero entry appearing in A5 appears in at least one of the
other matrices. The reason for this fact is explained in the proof of Lemma 6.4.2.

A =





0 0 1 0 1

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

1 0 0 0 0




A2 =





1 0 0 1 0

0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 1




A3 =





0 1 1 0 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 1 0





A4 =





1 0 1 1 0

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

0 1 1 0 1




A5 =





0 1 1 1 1

0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

1 0 1 1 0





LEMMA 6.4.2 If there is a path between pairs of vertices in the directed graph G = (V , E),
n = |V |, there is a path of length at most n − 1.

Proof We suppose that the shortest path between vertices i and j in V has length k ≥ n.
Such a path has k + 1 vertices. Because k + 1 ≥ n + 1, some vertex is repeated more than
once. (This is an example of the pigeonhole principle.) Consider the subpath defined by the
edges between the first and last instance of this repeated vertex. Since it constitutes a loop,
it can be removed to produce a shorter path between vertices i and j. This contradicts the
hypothesis that the shortest path has length n or more. Thus, the shortest path has length
at most n − 1.

Because the shortest path has length at most n−1, any non-zero entries in Ak, k ≥ n, are
also found in one of the matrices Aj , j ≤ n − 1. Since the identity matrix I is the adjacency
matrix for the graph that has paths of length zero between two vertices, the transitive closure,
which includes such paths, is equal to:

A∗ = I + A + A2 + A3 + · · · + An−1 = (I + A)n−1

It also follows that A∗ = (I + A)k for all k ≥ n − 1, which leads to the following result.

THEOREM 6.4.1 Over the basis Ω = {AND, OR} the transitive closure function, f (n)
A∗ , has circuit

size and depth satisfying the following bounds (that is, a circuit of this size and depth can be

250 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

constructed with AND and OR gates for it):

CΩ

(
f (n)

A∗

)
≤ Mmatrix(cn, K)-log2 n.

DΩ

(
f (n)

A∗

)
≤ K(log n)-log2 n.

Proof Let k = 2p be the smallest power of 2 such that k ≥ n−1. Then, p = -log2(n−1)..
Since A∗ = (I + A)k, it can be computed with a circuit that squares the matrix I + A p
times. Each squaring can be done with a circuit for the standard matrix multiplication algo-
rithm described in (6.1) using Mmatrix(cn, K) = O(n3) operations and depth -log2 2n..
The desired result follows.

The above statement says that the transitive closure function on n × n matrices has circuit
size and depth at most a factor O(log n) times that of matrix multiplication. We now show
that Boolean matrix multiplication is a subfunction of the transitive closure function, which
implies that the former has a circuit size and depth no larger than the latter. We subsequently
show that the size bound can be improved to a constant multiple of the size bound for matrix
multiplication. Thus the transitive closure and Boolean matrix multiplication functions have
comparable size.

THEOREM 6.4.2 The n × n matrix multiplication function f (n)
A×B : R2n2 "→ Rn2

for Boolean

matrices is a subfunction of the transitive closure function f (3n)
A∗ : R18n2 "→ R9n2

.

Proof Observe that the following relationship holds for n × n matrices A and B, since the
third and higher powers of the 3n × 3n matrix on the left are 0.




0 A 0

0 0 B

0 0 0





∗

=




I A AB

0 I B

0 A I





It follows that the product AB of n × n matrices is a subfunction of the transitive closure
function on a 3n × 3n matrix.

COROLLARY 6.4.1 It follows that

CΩ

(
f (n)

A×B

)
≤ CΩ

(
f (3n)

A∗

)

DΩ

(
f (n)

A×B

)
≤ DΩ

(
f (3n)

A∗

)

over the basis Ω = {AND, OR}.

Not only can a Boolean matrix multiplication algorithm be devised from one for transitive
closure, but the reverse is also true, as we show. Let n be a power of 2 and divide an n × n
matrix A into four (n/2) × (n/2) matrices:

A =

[
U V

W X

]
(6.3)

c©John E Savage 6.4 Transitive Closure 251

Compute X∗ recursively and use it to form Y = U + V X∗W by performing two multiplica-
tions of (n/2) × (n/2) matrices and one addition of such matrices. Recursively form Y ∗ and
then assemble the matrix B shown below with four further multiplications and one addition
of (n/2) × (n/2) matrices.

B =

[
Y ∗ Y ∗V X∗

X∗WY ∗ X∗ + X∗WY ∗V X∗

]
(6.4)

We now show that B = A∗.

THEOREM 6.4.3 Under Assumptions 6.3.1 and 6.3.2, a circuit of size O(Mmatrix(n, K)) and
depth O(n) exists to form the transitive closure of n × n matrices.

Proof We assume that n is a power of 2 and use the representation for the matrix A given
in (6.3). If n is not a power of 2, we augment the matrix A by embedding it in a larger
matrix in which all the new entries, are 0 except for the new diagonal entries, which are 1.
Given that 4M(n) ≤ M(2n), the bound applies.

We begin by showing that B = A∗. Let F ⊂ V and S ⊂ V be the first and second
sets of n/2 vertices, respectively, corresponding to the first and second halves of the rows
and columns of the matrix A. Then, F ∪ S = V and F ∩ S = ∅. Observe that X∗ is
the adjacency matrix for those paths originating on and terminating with vertices in F and
visiting no other vertices. Similarly, Y = U + V X∗W is the adjacency matrix for those
paths consisting of an edge from a vertex in F to a vertex in F or paths of length more
than 1 consisting of an edge from vertices in F to vertices in S, a path of length 0 or more
within vertices in S, and an edge from vertices in S to vertices in F . It follows that Y ∗ is
the adjacency matrix for all paths between vertices in F that may visit any vertices in V . A
similar line of reasoning demonstrates that the other entries of A∗ are correct.

The size of a circuit realizing this algorithm, T (n), satisfies

T (n) = 2T (n/2) + 6Mmatrix(n/2, K) + 2(n/2)2

because the above algorithm (see Fig. 6.4) uses two circuits for transitive closure on (n/2)×
(n/2) matrices, six circuits for multiplying, and two for adding two such matrices.

Because we assume that n2 ≤ Mmatrix(n, K), it follows that T (n) ≤ 2T (n/2) +
8Mmatrix(n/2, K). Let T (m) ≤ cMmatrix(cm, K) for m ≤ n/2 be the inductive hy-
pothesis. Then we have the inequalities

T (n) ≤ (2c + 8)Mmatrix(n/2, K) ≤ (c/2 + 2)Mmatrix(n, K)

which follow from Mmatrix(n/2, K) ≤ Mmatrix(n, K)/4 (see Assumption 6.3.2). Because
(c/2 + 2) ≤ c for c ≥ 4, for c = 4 we have the desired bound on circuit size.

The depth D(n) of the above circuit satisfies D(n) = 2D(n/2) + 6K log2 n, from
which we conclude that D(n) = O(n).

A semiring (S, +, ·, 0, 1) is a set S, two operations + and · and elements 0, 1 ∈ S with
the following properties:

a) S is closed under + and ·;

b) + and · are associative;

252 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

X∗W Y ∗ W

VYW

X∗WY ∗

V X∗

Y ∗V X∗

X∗ + X∗WY ∗V X∗

X∗WY ∗V X∗

X

f (n/2)
A+B

f (n/2)
A×B

f (n/2)
A×B

f (n/2)
A×B

f (n/2)
A×B

f (n/2)
A∗

f (n/2)
A∗

X∗

f (n/2)
A+B

f (n/2)
A×B

U

f (n/2)
A×B

Figure 6.4 A circuit for the transitive closure of a Boolean matrix based on the construction of
equation (6.4).

c) for all a ∈ S, a + 0 = 0 + a = a;

d) for all a ∈ S, a · 1 = 1 · a = a;

e) + is commutative and idempotent; i.e. a + a = a;

f) · distributes over +; i.e. for all a, b, c ∈ S, a · (b + c) = a · b + a · c
and (b + c) · a = b · a + c · a.

The above definitions and results generalize to matrices over semirings. To show this, it suf-
fices to observe that the properties used to derive these results are just these properties. (See
Problem 6.12.)

6.5 Matrix Inversion
The inverse of a non-singular n × n matrix M defined over a field R is another matrix M−1

whose product with M is the n × n identity matrix I ; that is,

MM−1 = M−1M = I

c©John E Savage 6.5 Matrix Inversion 253

Given a linear system of n equations in the column vector x of n unknowns defined by
the non-singular n × n coefficient matrix M and the vector b, namely,

Mx = b (6.5)

the solution x can be obtained through a matrix-vector multiplication with M−1:

x = M−1b

In this section we present two algorithms for matrix inversion. Such algorithms compute

the (partial) matrix inverse function f (n)
A−1 : Rn2 "→ Rn2

that maps non-singular n × n
matrices over a field R onto their inverses. The first result, Theorem 6.5.4, demonstrates that

CΩ

(
f (n)

A−1

)
= Θ(Mmatrix(n, K)) with a circuit whose depth is more than linear in n. The

second, Theorem 6.5.6, demonstrates that DΩ

(
f (n)

A−1

)
= O(log2 n) with a circuit whose size

is O(nMmatrix(n, K)).
Before describing the two matrix inversion algorithms, we present a result demonstrating

that matrix multiplication of n×n matrices is no harder than inverting a 3n× 3n matrix; the
function defining the former task is a subfunction of the function defining the latter task.

LEMMA 6.5.1 The matrix inverse function f (3n)
A−1 contains as a subfunction the function f (n)

A×B :

R2n2 "→ Rn2

that maps two matrices over R to their product.

Proof The proof follows by writing a 3n × 3n matrix as a 3 × 3 matrix of n × n matrices
and then specializing the entries to be the identity matrix I , the zero matrix 0, or matrices
A and B:




I A 0

0 I B

0 0 I





−1

=




I −A AB

0 I −B

0 0 I





This identity is established by showing that the product of these two matrices is the identity
matrix.

6.5.1 Symmetric Positive Definite Matrices
Our first algorithm to invert a non-singular n × n matrix M has a circuit size linear in
Mmatrix(n, K), which, in light of Lemma 6.5.1, is optimal to within a constant multiplicative
factor. This algorithm makes use of symmetric positive definite matrices, the Schur comple-
ment, and LDLT factorization, terms defined below. This algorithm has depth O(n log2 n).

The second algorithm, Csanky’s algorithm, has circuit depth O(log2 n), which is smaller,
but circuit size O(nMmatrix(n, K)), which is larger. Symmetric positive definite matrices are
defined below.

DEFINITION 6.5.1 A matrix M is positive definite if for all non-zero vectors x the following
condition holds:

xT Mx =
∑

1≤i,j≤n

ximi,jxj > 0 (6.6)

A matrix is symmetric positive definite (SPD) if it is both symmetric and positive definite.

254 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

We now show that an algorithm to invert SPD matrices can be used to invert arbitrary
non-singular matrices by adding a circuit to multiply matrices.

LEMMA 6.5.2 If M is a non-singular n × n matrix, then the matrix P = MT M is symmetric
positive definite. M can be inverted by inverting P and then multiplying P−1 by MT . Let

f (n)
SPD inverse : Rn2 "→ Rn2

be the inverse function for n × n SPD matrices over the field R.

Then the size and depth of f (n)
A−1 over R satisfy the following bounds:

C
(
f (n)

A−1

)
≤ C

(
f (n)
SPD inverse

)
+ Mmatrix(n, K)

D
(
f (n)

A−1

)
≤ D

(
f (n)
SPD inverse

)
+ O(log n)

Proof To show that P is symmetric we note that
(
MT M

)T
= MT M . To show that it is

positive definite, we observe that

xT Px = xT MT Mx

= (Mx)T Mx

=
n∑

i=1




n∑

j=1

mi,jxj




2

which is positive unless the product Mx is identically zero for the non-zero vector x. But
this cannot be true if M is non-singular. Thus, P is symmetric and positive definite.

To invert M , invert P to produce M−1
(
MT

)−1
. If we multiply this product on the

right by MT , the result is the inverse M−1.

6.5.2 Schur Factorization
We now describe Schur factorization. Represent an n × n matrix M as the 2 × 2 matrix

M =

[
M1,1 M1,2

M2,1 M2,2

]
(6.7)

where M1,1, M1,2, M2,1, and M2,2 are k×k, k×n−k, n−k×k, and n−k×n−k matrices,
1 ≤ k ≤ n − 1. Let M1,1 be invertible. Then by straightforward algebraic manipulation M
can be factored as

M =

[
I 0

M2,1M
−1
1,1 I

][
M1,1 0

0 S

][
I M−1

1,1 M1,2

0 I

]
(6.8)

Here I and O denote identity and zero matrices (all entries are zero) of a size that conforms
to the size of other submatrices of those matrices in which they are found. This is the Schur
factorization. Also,

S = M2,2 − M2,1M
−1
1,1 M1,2

is the Schur complement of M . To show that M has this factorization, it suffices to carry out
the product of the above three matrices.

c©John E Savage 6.5 Matrix Inversion 255

The first and last matrix in this product are invertible. If S is also invertible, the middle
matrix is invertible, as is the matrix M itself. The inverse of M , M−1, is given by the product

M−1 =

[
I −M−1

1,1 M1,2

0 I

][
M−1

1,1 0

0 S−1

][
I 0

−M2,1M
−1
1,1 I

]
(6.9)

This follows from three observations: a) the inverse of a product is the product of the inverses
in reverse order (see Lemma 6.2.1), b) the inverse of a 2 × 2 upper (lower) triangular matrix
is the matrix with the off-diagonal term negated, and c) the inverse of a 2 × 2 diagonal matrix
is a diagonal matrix in which the ith diagonal element is the multiplicative inverse of the ith
diagonal element of the original matrix. (See Problem 6.13 for the latter two results.)

The following fact is useful in inverting SPD matrices.

LEMMA 6.5.3 If M is an n × n SPD matrix, its Schur complement is also SPD.

Proof Represent M as shown in (6.7). In (6.6) let x = u · v; that is, let x be the concate-
nation of the two column vectors. Then

xT Mx =
[
uT , vT

]
[

M1,1u + M1,2v

M2,1u + M2,2v

]

= uT M1,1u + uT M1,2v + vT M2,1u + vT M2,2v

If we say that

u = −M−1
1,1 M1,2 v

and use the fact that MT
1,2 = M2,1 and

(
M−1

1,1

)T
=

(
MT

1,1

)−1
= M−1

1,1 , it is straightforward
to show that S is symmetric and

xT Mx = vT Sv

where S is the Schur complement of M . Thus, if M is SPD, so is its Schur complement.

6.5.3 Inversion of Triangular Matrices
Let T be n × n lower triangular and non-singular. Without loss of generality, assume that
n = 2r. (T can be extended to a 2r × 2r matrix by placing it on the diagonal of a 2r × 2r

matrix along with a 2r − n × 2r − n identity matrix.) Represent T as a 2 × 2 matrix of
n/2 × n/2 matrices:

T =

[
T1,1 0

T2,1 T2,2

]

The inverse of T , which is lower triangular, is given below, as can be verified directly:

T−1 =

[
T−1

1,1 0

−T−1
2,2 T2,1T

−1
1,1 T−1

2,2

]

256 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

TRI INV[n/2] TRI INV[n/2]

−T−1
2,2 T2,1T

−1
1,1

T2,1

T2,2

T−1
1,1

T1,1

T−1
2,2

MULT[n/2]

MULT[n/2]

Figure 6.5 A recursive circuit TRI INV[n] for the inversion of a triangular matrix.

This representation for the inverse of T defines the recursive algorithm TRI INV[n] in
Fig. 6.5. When n = 1 this algorithm requires one operation; on an n × n matrix it requires

two calls to TRI INV[n/2] and two matrix multiplications. Let f (n)
tri inv : R(n2+n)/2 "→

R(n2+n)/2 be the function corresponding to the inversion of an n × n lower triangular ma-
trix. The algorithm TRI INV[n] provides the following bounds on the size and depth of the

smallest circuit to compute f (n)
tri inv.

THEOREM 6.5.1 Let n be a power of 2. Then the matrix inversion function f (n)
tri inv for n × n

lower triangular matrices satisfies the following bounds:

C
(
f (n)
tri inv

)
≤ Mmatrix(n, K)

D
(
f (n)
tri inv

)
= O(log2 n)

Proof From Fig. 6.5 it is clear that the following circuit size and depth bounds hold if the
matrix multiplication algorithm has circuit size Mmatrix(n, K) and depth K log2 n:

C
(
f (n)
tri inv

)
≤ 2C

(
f (n/2)
tri inv

)
+ 2Mmatrix(n/2, K)

D
(
f (n)
tri inv

)
≤ D

(
f (n/2)
tri inv

)
+ 2K log n

The solution to the first inequality follows by induction from the fact that Mmatrix(1, K) =
1 and the assumption that 4Mmatrix(n/2, K) ≤ Mmatrix(n, K). The second inequality
follows from the observation that d > 0 can be chosen so that d log2(n/2) + c log n ≤
d log2 n for any c > 0 for n sufficiently large.

c©John E Savage 6.5 Matrix Inversion 257

6.5.4 LDLT Factorization of SPD Matrices
Now that we know that the Schur complement S of M is SPD when M is SPD, we can show
that every SPD matrix M has a factorization as the product LDLT of a unit lower triangular
matrix L (each of its diagonal entries is the multiplicative unit of the field R), a diagonal
matrix D, and the transpose of L.

THEOREM 6.5.2 Every n × n SPD matrix M has a factorization as the product M = LDLT ,
where L is a unit lower triangular matrix and D is a diagonal matrix.

Proof The proof is by induction on n. For n = 1 the result is obvious because we can write
[m1,1] = [1][m1,1][1]. Assume that it holds for n ≤ N − 1. We show that it holds for
n = N .

Form the Schur factorization of the N ×N matrix M . Since the k × k submatrix M1,1

of M as well as the n − k × n − k submatrix S of M are SPD, by the inductive hypothesis
they can be factored in the same fashion. Let

M1,1 = L1D1L
T
1 , S = L2D2L

T
2

Then the middle matrix on the right-hand side of equation (6.8) can be represented as

[
M1,1 0

0 S

]
=

[
L1 0

0 L2

][
D1 0

0 D2

][
LT

1 0

0 LT
2

]

Substituting the above product for the middle matrix in (6.8) and multiplying the two left
and two right matrices gives the following representation for M :

M =

[
L1 0

M2,1M
−1
1,1 L1 L2

][
D1 0

0 D2

][
LT

1 LT
1 M−1

1,1 M1,2

0 LT
2

]
(6.10)

Since M is symmetric, M1,1 is symmetric, M1,2 = MT
2,1, and

LT
1 M−1

1,1 M1,2 = LT
1 (M−1

1,1)T MT
2,1 = (M2,1M

−1
1,1 L1)

T

Thus, it suffices to compute L1, D1, L2, D2, and M2,1M
−1
1,1 L1.

When n = 2r and k = n/2, the proof of Theorem 6.5.2 describes a recursive procedure,
LDLT[n], defined on n×n SPD matrices that produces their LDLT factorization. Figure 6.6
captures the steps involved. They are also described below.

• The LDLT factorization of the n/2 × n/2 matrix M1,1 is computed using the proce-
dure LDLT[n/2] to produce the n/2 × n/2 triangular and diagonal matrices L1 and D1,
respectively.

• The product M2,1M
−1
1,1 L1 = M2,1

(
L−1

1

)T
D−1

1 which may be computed by inverting the
lower triangular matrix L1 with the operation TRI INV[n/2], computing the product

M2,1

(
L−1

1

)T
using MULT[n/2], and multiplying the result with D−1

1 using a procedure
SCALE[n/2] that inverts D1 and multiplies it by a square matrix.

258 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

L1 D1

D2L2

LDLT[n/2]

SUB[n/2]

MULT[n/2]

SCALE[n/2]

MULT[n/2]

TRI INV[n/2]

Transpose

Transpose
M2,2

M2,1(L
−1
1)T

M2,1M
−1
1,1 M1,2

M2,1(L
−1
1)T D−1

1

M2,1

L−1
1

S = M2,2 − M2,1M
−1
1,1 M1,2

M1,1

LDLT[n/2]

Figure 6.6 An algebraic circuit to produce the LDLT factorization of an SPD matrix.

• S = M2,2 − M2,1M
−1
1,1 M1,2 can be formed by multiplying M2,1

(
L−1

1

)T
D−1

1 by the

transpose of M2,1

(
L−1

1

)T
using MULT[n/2] and subtracting the result from M2,2 by the

subtraction operator SUB[n/2].

• The LDLT factorization of the n/2 × n/2 matrix S is computed using the procedure
LDLT[n/2] to produce the n/2 × n/2 triangular and diagonal matrices L2 and D2, re-
spectively.

Let’s now determine the size and depth of circuits to implement the algorithm for LDLT[n].

Let f (n)
LDLT : Rn2 "→ R(n2+n)/2 be the function defined by the LDLT factorization of an n×n

SPD matrix, f (n)
tri inv : R(n2+n)/2 "→ R(n2+n)/2 be the inversion of an n× n lower triangular

matrix, f (n)
scale : Rn2+n "→ Rn2

be the computation of N(D−1) for an n × n matrix N and

a diagonal matrix D, f (n)
mult : R2n2 "→ Rn2

be the multiplication of two n × n matrices, and

f (n)
sub : R2n2 "→ Rn2

the subtraction of two n × n matrices. Since a transposition can be done

c©John E Savage 6.5 Matrix Inversion 259

without any operators, the size and depth of the circuit for LDLT[n] constructed above satisfy
the following inequalities:

C
(
f (n)
LDLT

)
≤ C

(
f (n/2)
tri inv

)
+ C

(
f (n/2)
scale

)
+ 2C

(
f (n/2)
mult

)
+ C

(
f (n/2)
sub

)
+ 2C

(
f (n/2)
LDLT

)

D
(
f (n)
LDLT

)
≤ D

(
f (n/2)
tri inv

)
+ D

(
f (n/2)
scale

)
+ 2D

(
f (n/2)
mult

)
+ D

(
f (n/2)
sub

)
+ 2D

(
f (n/2)
LDLT

)

The size and depth of a circuit for f (n)
tri inv are Mmatrix(n, K) and O(log2 n), as shown in

Theorem 6.5.1. The circuits for f (n)
scale and f (n)

sub have size n2 and depth 1; the former multiplies
the elements of the jth column of N by the multiplicative inverse of jth diagonal element of
D1 for 1 ≤ j ≤ n, while the latter subtracts corresponding elements from the two input
matrices.

Let CSPD(n) = C
(
f (n)
LDLT

)
and DSPD(n) = D

(
f (n)
LDLT

)
. Since Mmatrix(n/2, K) ≤

(1/4)Mmatrix(n, K) is assumed (see Assumption 6.3.1), and 2m2 ≤ Mmatrix(m, K) (see
Assumption 6.3.2), the above inequalities become

CSPD(n) ≤ Mmatrix(n/2, K) + (n/2)2 + 2Mmatrix(n/2, K) + (n/2)2 + 2CSPD(n/2)

≤ 2CSPD(n/2) + Mmatrix(n, K) (6.11)

DSPD(n) ≤ O(log2(n/2)) + 1 + 2O(log(n/2)) + 1 + 2DSPD(n/2)

≤ 2DSPD(n/2) + K log2
2 n for some K > 0 (6.12)

As a consequence, we have the following results.

THEOREM 6.5.3 Let n be a power of two. Then there exists a circuit to compute the LDLT

factorization of an n × n matrix whose size and depth satisfy

C
(
f (n)
LDLT

)
≤ 2Mmatrix(n, K)

D
(
f (n)
LDLT

)
≤ O

(
n log2 n

)

Proof From (6.11) we have that

CSPD(n) ≤
log n∑

j=0

2jMmatrix(n/2j , K)

By Assumption 6.3.2, Mmatrix(n/2, K) ≤ (1/4)Mmatrix(n, K). It follows by induction
that Mmatrix(n/2j , K) ≤ (1/4)jMmatrix(n, K), which bounds the above sum by a geo-

metric series whose sum is at most 2Mmatrix(n, K). The bound on D
(
f (n)
LDLT

)
follows

from the observation that (2c)(n/2) log2(n/2) + c log2 n ≤ cn log2 n for n ≥ 2 and
c > 0.

This result combined with earlier observations provides a matrix inversion algorithm for
arbitrary non-singular matrices.

260 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

THEOREM 6.5.4 The matrix inverse function f (n)
A−1 for arbitrary non-singular n × n matrices

over an arbitrary field R can be computed by an algebraic circuit whose size and depth satisfy the
following bounds:

C
(
f (n)

A−1

)
= Θ(Mmatrix(n, K))

D
(
f (n)

A−1

)
= O(n log2 n)

Proof To invert a non-singular n × n matrix M that is not SPD, form the product P =
MT M (which is SPD) with one instance of MULT[n] and then invert it. Then multi-
ply P−1 by MT on the right with a second instance of MULT[n]. To invert P , compute

its LDLT factorization and invert it by forming
(
LT

)−1
D−1L−1. Inverting LDLT re-

quires one application of TRI INV[n], one application of SCALE[n], and one application of
MULT[n], in addition to the steps used to form the factorization. Thus, three applications
of MULT[n] are used in addition to the factorization steps. The following bounds hold:

C
(
f (n)

A−1

)
≤ 4Mmatrix(n, K) + n2 ≤ 4.5Mmatrix(n)

D
(
f (n)

A−1

)
= O

(
n log2 n

)
+ O(log n) = O

(
n log2 n

)

The lower bound on C
(
f (n)

A−1

)
follows from Lemma 6.5.1.

6.5.5 Fast Matrix Inversion*
In this section we present a depth-O(log2 n) circuit for the inversion of n×n matrices known
as Csanky’s algorithm, which is based on the method of Leverrier. Since this algorithm uses
a number of well-known matrix functions and properties that space precludes explaining in
detail, advanced knowledge of matrices and polynomials is required for this section.

The determinant of an n × n matrix A, det(A), is defined below in terms of the set of all
permutations π of the integers {1, 2, . . . , n}. Here the sign of π, denoted σ(π), is the number
of swaps of pairs of integers needed to realize π from the identity permutation.

det(A) =
∑

π

(−1)σ(π)
n∏

i=1

ai,π(i)

Here
∏n

i=1 ai,π(i) is the product a1,π(1) · · · an,π(n). The characteristic polynomial of a
matrix A, namely, φA(x) in the variable x, is the determinant of xI −A, where I is the n×n
identity matrix:

φA(x) = det(xI − A)

= xn + cn−1x
n−1 + cn−2x

n−2 + · · · + c0

If x is set to zero, this equation implies that c0 = det(−A). Also, it can be shown that
φA(A) = 0, a fact known as the Cayley-Hamilton theorem: A matrix satisfies its own
characteristic polynomial. This implies that

A
(
An−1 + cn−1A

n−2 + cn−2A
n−3 + · · · + c1

)
= −c0I

Thus, when c0 '= 0 the inverse of A can be computed from

A−1 =
−1

c0

(
An−1 + cn−1A

n−2 + cn−2A
n−3 + · · · + c1

)

c©John E Savage 6.5 Matrix Inversion 261

Once the characteristic polynomial of A has been computed, its inverse can be computed
by forming the n−1 successive powers of A, namely, A, A2, A3, . . . , An−1, multiplying them
by the coefficients of φA(x), and adding the products together. These powers of A can be
computed using a prefix circuit having O(n) instances of the associative matrix multiplication
operator and depth O(log n) measured in the number of instances of this operator. We have
defined Mmatrix(n, K) to be the size of the smallest n × n matrix multiplication circuit with
depth K log n (Definition 6.3.1). Thus, the successive powers of A can be computed by a
circuit of size O(nMmatrix(n, K)) and depth O(log2 n). The size bound can be improved to
O(

√
nMmatrix(n, K)). (See Problem 6.15.)

To complete the derivation of the Csanky algorithm we must produce the coefficients of
the characteristic polynomial of A. For this we invoke Leverrier’s theorem. This theorem uses
the notion of the trace of a matrix A, that is, the sum of the elements on its main diagonal,
denoted tr(A).

THEOREM 6.5.5 (Leverrier) The coefficients of the characteristic polynomial of the n×n matrix
A satisfy the following identity, where sr = tr(Ar) for 1 ≤ r ≤ n:





1 0 0 · · · 0

s1 2 0 · · · 0

s2 s1 3 0

...
. . .

...

sn−1 · · · s2 s1 n









cn−1

cn−2

cn−3

...

c0





= −





s1

s2

s3

...

sn





(6.13)

Proof The degree-n characteristic polynomial φA(x) of A can be factored over a field of
characteristic zero. If λ1,λ2, . . . ,λn are its roots, we write

φA(x) =
n∏

i=1

(x − λi)

From expanding this expression, it is clear that the coefficient cn−1 of xn−1 is −
∑n

j=1 λj .
Similarly, expanding det(xI − A), cn−1 is the negative sum of the diagonal elements of A,
that is, cn−1 = −tr(A). It follows that tr(A) =

∑n
j=1 λj .

The λj ’s are called the eigenvalues of A, that is, values such that there exists an n-vector
u (an eigenvector) such that Au = λju. It follows that Aru = λr

ju. It can be shown
that λr

1, . . ., λr
n are precisely the eigenvalues of Ar, so Πn

j=1(x − λr
j) is the characteristic

polynomial of Ar. Since sr = tr(Ar), sr =
∑n

j=1 λ
r
j .

Let s0 = 1 and sk = 0 for k < 0. Then, to complete the proof of (6.13), we must show
that the following identity holds for 1 ≤ i ≤ n:

si−1cn−1 + si−2cn−2 + · · · + s1cn−i+1 + icn−i = −si

Moving si to the left-hand side, substituting for the traces, and using the definition of the
characteristic polynomial yield

icn−i +
n∑

j=1

φA(λj) −
(
λn−i

j cn−i + λn−i−1
j cn−i−1 + · · · + λjc1 + c0

)

λn−i
j

= 0

262 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

Since φA(λj) = 0, when we substitute l for n − i it suffices to show the following for
0 ≤ l ≤ n − 1:

(n − l)cl =
n∑

j=1

l∑

k=0

ck

λl
j

(6.14)

This identity can be shown by induction using as the base case l = 0 and the following facts
about the derivatives of the characteristic polynomial of A, which are easy to establish:

c0 = (−1)n
n∏

j=1

λj

ck =
dkφA(x)

dxk

∣∣∣∣
x=0

= (−1)k c0
∑

j1
· · ·

∑
jk

jr != js

k∏

t=1

1

λjt

The reader is asked to show that (6.14) follows from these identities. (See Problem 6.17.)

Csanky’s algorithm computes the traces of powers, namely the sr ’s, and then inverts the
lower triangular matrix given above, thereby solving for the coefficients of the characteristic
polynomial. The coefficients are then used with a prefix computation, as mentioned earlier, to
compute the inverse. Each of the n sr’s can be computed in O(n) steps once the powers of
A have been formed by the prefix computation described above. The lower triangular matrix
is non-singular and can be inverted by a circuit with Mmatrix(n, K) operations and depth
O(log2 n), as shown in Theorem 6.5.1. The following theorem summarizes these results.

THEOREM 6.5.6 The matrix inverse function for non-singular n × n matrices over a field of

characteristic zero, f (n)
A−1 , has an algebraic circuit whose size and depth satisfy the following bounds:

C
(
f (n)

A−1

)
= O(nMmatrix(n, K))

C
(
f (n)

A−1

)
= O(log2 n)

The size bound can be improved to O(
√

nMmatrix(n, K)), as suggested in Problems 6.15
and 6.16.

6.6 Solving Linear Systems
A general linear system with n×n coefficient matrix M , n-vector x of unknowns and n-vector
b is defined in (6.5) and repeated below:

Mx = b

This system can be solved for x in terms of M and b using the following steps when M is not
SPD. If it is SPD, the first step is unnecessary and can be eliminated.

a) Premultiply both sides by the transpose of M to produce the following linear system in
which the coefficient matrix MT M is SPD:

MT Mx = MT b = b∗

c©John E Savage 6.7 Convolution and the FFT Algorithm 263

b) Compute the LDLT decomposition of MT M .

c) Solve the system (6.15) by solving three subsequent systems:

LDLT x = b∗ (6.15)

Lu = b∗ (6.16)

Dv = u (6.17)

LT x = v (6.18)

Clearly, Lu = LDv = LDLT x = b∗.
The vector b∗ is formed by a matrix-vector multiplication that can be done with n2 mul-

tiplications and n(n − 1) additions, for a total of 2n2 − n operations.
Since L is unit lower triangular, the system (6.16) is solved by forward elimination. The

value of u1 is b∗1 . The value of u2 is b∗1 − l2,1u1, obtained by eliminating u1 from the sec-
ond equation. Similarly, on the jth step, the values of u1, u2, . . . , uj−1 are known and their
weighted values can be subtracted from b∗j to provide the value of uj ; that is,

uj = b∗j − lj,1u1 − lj,2u2 − · · · − lj,j−1uj−1

for 1 ≤ j ≤ n. Here n(n− 1)/2 products are formed and n(n− 1)/2 subtractions taken for
a total of n(n − 1) operations.

Since D is diagonal, the system (6.17) is solved for v by multiplying uj by the multiplica-
tive inverse of dj,j ; that is,

vj = ujd
−1
j,j

for 1 ≤ j ≤ n. This is called normalization. Here n divisions are performed.
Finally, the system (6.18) is solved for x by backward substitution, which is forward

elimination applied to the elements of x in reverse order.

THEOREM 6.6.1 Let f (n)
SPD solve : Rn2+n "→ Rn be the (partial) function that computes the

solution to a linear system of equations defined by an n × n symmetric positive definite coefficient
matrix M . Then

C(f (n)
SPD solve) ≤ C(f (n)

LDLT) + O(n2)

D(f (n)
SPD solve) ≤ C(f (n)

LDLT) + O(n)

If M is not SPD but is non-singular, an additional O(Mmatrix(n, K)) circuit elements and
depth O(log n) suffice to compute it.

6.7 Convolution and the FFT Algorithm
The discrete Fourier transform (DFT) and convolution are widely used techniques with im-
portant applications in signal processing and computer science.

In this section we introduce the DFT, describe the fast Fourier transform algorithm, and
derive the convolution theorem. The naive DFT algorithm on sequences of length n uses
O(n2) operations; the fast Fourier transform algorithm uses only O(n log n) operations, a
saving of a factor of at least 100 for n ≥ 1, 000. The convolution theorem provides a way
to use the DFT to convolve two sequences in O(n log n) steps, many fewer than the naive
algorithm for convolution, which uses O(n2) steps.

264 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

6.7.1 Commutative Rings*
Since the DFT is defined over commutative rings having an nth root of unity, we digress briefly
to discuss such rings. (Commutative rings are defined in Section 6.2.)

DEFINITION 6.7.1 A commutative ring R = (R, +, ∗, 0, 1) has a principal nth root of unity
ω if ω ∈ R satisfies the following conditions:

ωn = 1 (6.19)
n−1∑

k=0

ωlk = 0 for each 1 ≤ l ≤ n − 1 (6.20)

The elements ω0,ω1,ω2, . . . ,ωn−1 are the nth roots of unity and the elements ω0, ω−1,ω−2,
. . . ,ω−(n−1) are the nth inverse roots of unity. (Note that ω−j = ωn−j is the multiplicative
inverse of ωj since ωjωn−j = ωn = 1.)

Two commutative rings that have principal nth roots of unity are the complex numbers
and the ring m of integers modulo m = 2tn/2 + 1 when t ≥ 2 and n = 2q, as we show.
The reader is asked to show that m has a principal nth root of unity, as stated below. (See
Problem 6.24.)

LEMMA 6.7.1 Let m be the ring of integers modulo m when m = 2tn/2 + 1, t ≥ 2 and
n = 2q. Then ω = 2t is a principal nth root of unity.

An example of the ring m is given by t = 2, n = 4, and m = 24 + 1 = 17. In this
ring ω = 4 is a principal fourth root of unity. This is true because ωn = 44 = 16 · 16 =
(16+1)(16−1)+1 = 1 mod (16+1) and

∑n−1
j=0 ω

pj = ((4p)n −1)/(4p −1) mod (17)

= ((4n)p − 1)/(4p − 1) mod (17) = (1p − 1)/(4p − 1) mod (17) = 0 mod (17).

LEMMA 6.7.2 e2πi/n = cos(2π/n) + i sin(2π/n) is a principal nth root of unity over the
complex numbers where i =

√
−1 is the “imaginary unit.”

Proof The first condition is satisfied because (e2πi/n)n = e2πi = 1. Also,
∑n−1

k=0 ω
lk =

(ωln − 1)/(ωl − 1) = 0 if 1 ≤ l ≤ n − 1 for ω = e2πi/n.

6.7.2 The Discrete Fourier Transform
The discrete Fourier transform has many applications. In Section 6.7.4 we see that it can be
used to compute the convolution of two sequences efficiently, which is the same as computing
the coefficients of the product of two polynomials. The discrete Fourier transform can also be
used to construct a fast algorithm (circuit) for the multiplication of two binary integers [302].
It is widely used in processing analog data such as speech and music.

The n-point discrete Fourier transform Fn : Rn "→ Rn maps n-tuples a = (a0, a1, . . . ,
an−1) over R to n-tuples f = (f0, f1, . . . , fn−1) over R; that is, Fn(a) = f . The com-
ponents of f are defined as the values of the following polynomial p(x) at the nth roots of
unity:

p(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1 (6.21)

c©John E Savage 6.7 Convolution and the FFT Algorithm 265

Then fr, the rth component of Fn(a), is defined as

fr = p(ωr) =
n−1∑

k=0

akω
rk (6.22)

This computation is equivalent to the following matrix-vector multiplication:

Fn(a) = [wij] × a (6.23)

where [ωij] is the n × n Vandermonde matrix whose i, j entry is ωij , 0 ≤ i, j ≤ n − 1, and
a is treated as a column vector.

The n-point inverse discrete Fourier transform F−1
n : Rn "→ Rn is defined as the values

of the following polynomial q(x) at the inverse nth roots of unity:

q(x) = (f0 + f1x + f2x
2 + · · · + fn−1x

n−1)/n (6.24)

That is, the inverse DFT maps an n-tuple f to an n-tuple g, namely, F−1
n (f) = g, where gs

is defined as follows:

gs = q(ω−s) =
1

n

n−1∑

l=0

flω
−ls (6.25)

This computation is equivalent to the following matrix-vector multiplication:

F−1
n (f) =

[
1

n
ω−ij

]
× f

Because of the following lemma it is legitimate to call F−1
n the inverse of Fn.

LEMMA 6.7.3 For all a ∈ Rn, a = F−1
n (Fn(a)).

Proof Let f = Fn(a) and g = F−1
n (f). Then gs satisfies the following:

gs =
1

n

n−1∑

l=0

flω
−ls =

1

n

n−1∑

l=0

n−1∑

k=0

akω
(k−s)l

=
n−1∑

k=0

ak
1

n

n−1∑

l=0

ω(k−s)l

= as

The second equation results from a change in the order of summation. The last follows
from the definition of nth roots of unity. It follows that the matrix [ω−ij/n] is the inverse
of [ωij].

The computation of the n-point DFT and its inverse using the naive algorithms suggested
by their definitions requires O(n2) steps. Below we show that a fast DFT algorithm exists for
which only O(n log n) steps suffice.

266 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

6.7.3 Fast Fourier Transform
The fast Fourier transform algorithm is a consequence of the following observation: when
n is even, the polynomial p(x) in equation (6.21) can be decomposed as

p(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1

= (a0 + a2x
2 + · · · + an−2x

n−2)

+ x (a1 + a3x
2 + · · · + an−1x

n−2)

= pe(x
2) + xpo(x

2) (6.26)

Here pe(y) and po(y) are polynomials of degree (n/2) − 1.
Let n be a power of 2, that is, n = 2d. As stated above, the n-point DFT of a is

obtained by evaluating p(x) at the nth roots of unity. Because of the decomposition of
p(x), it suffices to evaluate pe(y) and po(y) at y = (ω0)2, (ω1)2, (ω2)2, . . . , (ωn−1)2 =
(ω2)0, (ω2)1, (ω2)2, . . . , (ω2)n−1 and combine their values with one multiplication and one
addition for each of the n roots of unity. However, because ω2 is a (n/2)th principal root
of unity (see Problem 6.25), (ω2)(n/2)+r = (ω2)r and the n powers of ω2 collapse to n/2
distinct powers of ω2, namely, the (n/2)th roots of unity. Thus, p(x) at the nth roots of unity
can be evaluated by evaluating pe(y) and po(y) at the (n/2)th roots of unity and combining
their values with one addition and multiplication for each of the nth roots of unity. In other
words, the n-point DFT of a can be done by performing the (n/2)-point DFT of its even
and odd subsequences and combining the results with O(n) additional steps. This is the fast
Fourier transform (FFT) algorithm.

We denote by F (d) the directed acyclic graph associated with the straight-line program
resulting from this realization of the FFT on n = 2d inputs. A circuit for the 16-point FFT
algorithm inputs, F (4), is shown in Fig. 6.7. It is computed from the eight-point FFT on
the even and odd components of a, as shown in the boxed regions. These components are
permuted because each of these smaller FFTs is computed recursively in turn. (The index of

f0 f1 f2 f3 f4 f5 f6 f8 f9 f14f7 f12f11f10 f13 f15

pe(x) po(x)

a15a0 a8 a4 a12 a2 a10 a6 a14 a1 a9 a7a11a3a13a5

Figure 6.7 A circuit F (4) for the FFT algorithm on 16 inputs.

c©John E Savage 6.7 Convolution and the FFT Algorithm 267

the ith input vertex from the left is obtained by writing the integer i as a binary number,
reversing the bits, and converting the resulting binary number to an integer. This is called the
bit-reverse permutation of the binary representation of the integer. For example, the third
input from the left has index 3, which is (011) in binary. Reversed, the binary number is (110),
which represents 12.) Inputs are associated with the open vertices at the bottom of the graph.
Each vertex except for input vertices is associated with an addition and a multiplication. For
example, the white vertex at the top of the graph computes f8 = pe((ω8)2) + ω8po((ω8)2),
where (ω8)2 = ω16 = ω.

Let C(F (d)) and D(F (d)) be the size and depth of circuits for the 2d-point FFT algorithm
for integer d ≥ 1. The construction given above leads to the following recurrences for these
two measures:

C
(
F (d)

)
≤ 2C

(
F (d−1)

)
+ 2d+1

D
(
F (d)

)
≤ D

(
F (d−1)

)
+ 2

Also, examination of the base case of n = 2 demonstrates that C
(
F (1)

)
= 3 and D

(
F (1)

)
=

2, from which we have the following theorem.

THEOREM 6.7.1 Let n = 2d. The circuit for the n-point FFT algorithm over a commutative
ring R has the following circuit size and depth bounds:

C
(
F (d)

)
≤ 2n log n

D
(
F (d)

)
≤ 2 log n

The FFT graph is used in later chapters to illustrate tradeoffs between space and time, space
and the number of I/O operations, and area and time for computation with VLSI machines.
For each of these applications we decompose the FFT graph into sub-FFT graphs. One such
decomposition is shown in Fig. 6.7. A more general decomposition is shown in Fig. 6.8 and
described below.

LEMMA 6.7.4 The 2d-point FFT graph F (d) can be decomposed into 2e 2d−e-point bottom

FFT graphs, {F (d−e)
b,j | 1 ≤ j ≤ 2e}, and 2d−e 2e-point top FFT graphs, {F (e)

t,j | 1 ≤ j ≤
2d−e}. The ith input of F (e)

t,j is the jth output of F (d−e)
b,i .

In Fig. 6.8 the vertices and edges have been grouped together as recognizable FFT graphs
and surrounded by shaded boxes. The edges between boxes are not edges of the FFT graph but
instead are used to identify vertices that are simultaneously outputs of bottom FFT subgraphs
and inputs to top FFT subgraphs.

COROLLARY 6.7.1 F (d) can be decomposed into 4d/e5 stages each containing 2d−e copies of
F (e) and one stage containing 2d−k copies of F (k), k = d − 4d/e5e. (F (0) is a single vertex.)
The output vertices of one stage are the input vertices to the next.

Proof From Lemma 6.7.4, each of the 2e bottom FFT subgraphs F (d−e) can be further
decomposed into 2d−2e top FFT subgraphs F (e) and 2e bottom FFT subgraphs F (d−2e).
By repeating this process t times, t ≤ d/e, F (d) can be decomposed into t stages each

268 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

F (2)
t,1 F (2)

t,2 F (2)
t,3 F (2)

t,4 F (2)
t,5 F (2)

t,6 F (2)
t,7 F (2)

t,8

F (3)
b,1 F (3)

b,2 F (3)
b,3 F (3)

b,4

Figure 6.8 Decomposition of the 32-point FFT graph F (5) into four copies of F (3) and 8
copies of F (2). The edges between bottom and top sub-FFT graphs do not exist in the FFT
graph. They are used here to identify common vertices and highlight the communication needed
among sub-FFT graphs.

containing 2d−e copies of F (e) and one stage containing 2d−te copies of F (d−te). The
result follows by setting t = 4d/e5.

6.7.4 Convolution Theorem
The convolution function f (n,m)

conv : Rn+m "→ Rn+m−1 over a commutative ring R maps an
n-tuple a = (a0, a1, . . . , an−1) and an m-tuple b = (b0, b1, . . . , bm−1) onto an (n+m−1)-
tuple c, denoted c = a ⊗ b, where cj is defined as follows:

cj =
∑

r+s=j

ar ∗ bs for 0 ≤ j ≤ n + m − 2

Here
∑

and ∗ are addition and multiplication over the ring R. The direct computation of the
convolution function using the above formula takes O(nm) steps. The convolution theorem
given below and the fast Fourier transform algorithm described above allow the convolution
function to be computed in O(n log n) steps when n = m.

Associate with a and b the following polynomials in the variable x:

a(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1

b(x) = b0 + b1x + b2x
2 + · · · + bn−1x

n−1

Then the coefficient of the term xj in the product polynomial c(x) = a(x)b(x) is clearly the
term cj in the convolution c = a ⊗ b.

Convolution is used in signal processing and integer multiplication. In signal processing,
convolution describes the results of passing a signal through a linear filter. In binary integer

c©John E Savage 6.7 Convolution and the FFT Algorithm 269

multiplication the polynomials a(2) and b(2) represent binary numbers; convolution is related
to the computation of their product.

The convolution theorem is one of the most important applications of the DFT. It
demonstrates that convolution, which appears to require O(n2) operations when n = m,
can in fact be computed by a circuit with O(n) operations plus a small multiple of the number
needed to compute the DFT and its inverse.

THEOREM 6.7.2 Let R = (R, +, ∗, 0, 1) be a commutative ring and let a, b ∈ Rn. Let
F2n : R2n "→ R2n and F−1

2n : R2n "→ R2n be the 2n-point DFT and its inverse over R. Let
F2n(a) × F2n(b) denote the 2n-tuple obtained from the term-by-term product of the components
of F2n(a) and F2n(b). Then, the convolution a ⊗ b satisfies the following identity:

a ⊗ b = F−1
2n (F2n(a) × F2n(b))

Proof The n-point DFT Fn : Rn "→ Rn transforms the n-tuple of coefficients a of the
polynomial p(x) of degree n − 1 into the n-tuple f = Fn(a). In fact, the rth component
of f , fr, is the value of the polynomial p(x) at the rth of the n roots of unity, namely
fr = p(ωr). The n-point inverse DFT F−1

n : Rn "→ Rn inverts the process through a
similar computation. If q(x) is the polynomial of degree n−1 whose lth coefficient is fl/n,
then the sth component of the inverse DFT on f , namely F−1

n (f), is as = q(ω−s).
As stated above, to compute the convolution of n-tuples a and b it suffices to compute

the coefficients of the product polynomial c(x) = a(x)b(x). Since the product c(x) is of
degree 2n − 2, we can treat it as a polynomial of degree 2n − 1 and take the 2n-point
DFT, F2n, of it and its inverse, F−1

2n , of the result. This seemingly futile process leads to an
efficient algorithm for convolution. Since the DFT is obtained by evaluating a polynomial

Figure 6.9 The DAG associated with the straight-line program resulting from the application
of the FFT to the convolution theorem with sequences of length 8.

270 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

at the n roots of unity, the DFT of c(x) can be done at the 2n roots of unity by evaluating
a(x) and b(x) at the 2n roots of unity (that is, computing the DFTs of their coefficients
as if they had degree 2n − 1), multiplying their values together, and taking the 2n-point
inverse DFT, that is, performing the computation stated in the theorem.

The combination of the convolution theorem and the algorithm for the FFT provides a
fast straight-line program for convolution, as stated below. The directed acyclic graph for this
straight-line program is shown in Fig. 6.9 on page 269.

THEOREM 6.7.3 Let n = 2d. The convolution function f (n,n)
conv : R2n "→ R2(n−1) over a

commutative ring R can be computed by a straight-line program over R with size and depth
satisfying the following bounds:

C
(
f (n,n)
conv

)
≤ 12n log 2n

D
(
f (n,n)
conv

)
≤ 4 log 2n

6.8 Merging and Sorting Networks
The sorting problem is to put into ascending or descending order a collection of items that
are drawn from a totally ordered set. A set is totally ordered if for every two distinct elements
of the set one is larger than the other. The merging problem is to merge two sorted lists into
one sorted list. Sorting and merging algorithms can be either straight-line or non-straight-line.
An example of a non-straight-line merging algorithm is the following:

Create a new sorted list from two sorted lists by removing the smaller item from the
two lists and appending it to the new list until one list is empty, at which point append
the non-empty list to the end of the new list.

The binary sorting function f (n)
sort : Bn "→ Bn described in Section 2.11 sorts a Boolean n-

tuple into descending order. The combinational circuit given there is an example of a straight-
line sorting network, a network realized by a straight-line program. When the set of elements
to be sorted is not Boolean, sorting networks can become quite a bit more complicated, as we
see below.

In this section we describe sorting networks, circuits constructed from comparator oper-
ators that take n elements drawn from a finite totally ordered set A and put them into sorted
order. A comparator function ⊗ : A2 "→ A2 with arguments a and b returns their maximum
and minimum; that is, ⊗(a, b) = (max(a, b), min(a, b)).

It is convenient to show a comparator operator as a vertical edge between two lines carrying
values, as in Fig. 6.10(a). The values on the two lines to the right of the edge are the values to
its left in sorted order, the smaller being on the upper line. A sorting network is an example
of a comparator network, a circuit in which the only operator is a comparator. Input values
appear on the left and output values appear on the right in sorted order.

Shown in Fig. 6.10(b) is an insertion-sorting network on five inputs that inserts an ele-
ment into a previously sorted sublist. Two inputs are sorted at the wavefront labeled A. Between
wavefronts A and B a new item is inserted that is compared against the previously sorted sublist
and inserted into its proper position. The same occurs between wavefronts B and C and after

c©John E Savage 6.8 Merging and Sorting Networks 271

A B C

a

b

min(a, b)

max(a, b)

(b)(a)

Figure 6.10 (a) A comparison operator, and (b) an insertion-sorting network.

wavefront C. An insertion-sorting network can be realized with one comparator for the first
two inputs and k − 1 more for the kth input, 3 ≤ k ≤ n. Let Cinsert(n) and Dinsert(n)
denote the size and depth of an insertion-sorting network on n elements. Then C(2) = 1 and
D(2) = 1, and

Cinsert(n) ≤ Cinsert(n − 1) + n − 1 = n(n − 1)/2

Dinsert(n) ≤ max(Dinsert(n − 1) + 1, n − 1) = n − 1

The depth bound follows because there is a path of length n−1 through the chain of compara-
tors added at the last wavefront and every path through the sorting network is extended by one
comparator with the addition of the new wavefront. A simple proof by induction establishes
these results.

6.8.1 Sorting Via Bitonic Merging
We now describe Batcher’s bitonic merging network BM(m), which is the basis for a sorting
network. Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) be ordered sequences of
length m. That is, xj ≤ xj+1 and yj ≤ yj+1. As suggested in Fig. 6.11, the even-indexed
components of x are merged with the odd-indexed components of y, as are the odd-indexed
components of x and the even-indexed components of y. Each of the four lists that are merged
are themselves sorted. The two lists are interleaved and the kth and (k+1)st elements, k even,
are compared and swapped if necessary. To prove correctness of this circuit, we use the zero-one
principle which is stated below for sorting networks but applied later to merging networks.

THEOREM 6.8.1 (Zero-one principle) If a comparator network for inputs over a set A correctly
sorts all binary inputs, it correctly sorts all inputs.

Proof The proof is by contradiction. Suppose the network correctly sorts all 0-1 sequences
but fails to sort the input sequence (a1, a2, . . . , an). Then there are inputs ai and aj such
that ai < aj but the network puts aj before ai.

Since a sorting network contains only comparators, if we replace each entry ar in an
input sequence (a1, a2, . . . , an) with a new entry h(ar), where h(a) is monotonically
non-decreasing in a (h(a) is non-decreasing as a increases), each comparison of entries
ar and as is replaced by a comparison of entries h(ar) and h(as). Since ar < as only

272 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

BM(2)BM(2)

x0

x1

x2

x3

y1

y0

y3

y2

u0

v0

u1

v2

v1

u2

u3

v3

z1

z2

z3

z4

z5

z6

z7

z0

Figure 6.11 A recursive construction of the bitonic merging network BM(4). The even-
indexed elements of one sorted sequence are merged with the odd-indexed elements of the other,
the resulting sequences interleaved, and the even- and succeeding odd-indexed elements com-
pared. The inputs of one sequence are permuted to demonstrate that BM(4) uses two copies of
BM(2).

if h(ar) ≤ h(as), the set of comparisons made by the sorting network will be exactly
the same on (a1, a2, . . . , an) as on (h(a1), h(a2), . . . , h(an)). Thus, the original output
(b1, b2, . . . , bn) will be replaced by the output sequence (h(b1), h(b2), . . . , h(bn)).

Since it is presumed that the comparator network puts ai and aj in the incorrect order,
let h(x) be the following monotone function:

h(x) =

{
0 if x ≤ ai

1 if x > ai

Then the input and output sequences to the comparator network are binary. However,
the output sequence is not sorted (aj appears before ai but h(aj) = 1 and h(ai) = 0),
contradicting the hypothesis of the theorem. It follows that all sequences over A must be
sorted correctly.

We now show that Batcher’s bitonic merging circuit correctly merges two sorted lists. If
a correct m-sorter exists, then a correct 2m-sorter can be constructed by combining two m-
sorters with a correct 2m-input bitonic merging circuit. It follows that a correct 2m-input
bitonic merging circuit exists if and only if the resulting sorting network is correct. This is
the core idea in a proof by induction of correctness of the 2m-input bitonic merging circuit.
The basis for induction is the fact that individual comparators correctly sort sequences of two
elements.

Suppose that x and y are sorted 0 − 1 sequences of length m. Let x have k 0’s and
m− k 1’s, and let y have l 0’s and m− l 1’s. Then the leftmost merging network of Fig. 6.11
selects exactly -k/2. 0’s from x and 4l/25 0’s from y to produce the sequence u consisting of
a = -k/2. + 4l/25 0’s followed by 1’s. Similarly, the rightmost merging network produces

c©John E Savage 6.8 Merging and Sorting Networks 273

the sequence v consisting of b = 4k/25 + -l/2. 0’s followed by 1’s. Since -x. − 4x5 is 0 or
1, it follows that either a = b, a = b − 1, or a = b + 1. Thus, when u and v are interleaved
to produce the sequence z it contains a sequence of a + b 0’s followed by 1’s when a = b or
a = b + 1, or 2a 0’s followed by 1 0 followed by 1’s when a = b − 1, as suggested below:

z =

2a︷ ︸︸ ︷
0, 0, . . . , 0, 1, 0, 1, . . . , 1

Thus, if for each 0 ≤ k ≤ m − 1 the outputs in positions 2k and 2k + 1 are compared and
swapped, if necessary, the output will be properly sorted.

The graph of BM(4) of Fig. 6.11 illustrates that BM(4) is constructed of two copies of
BM(2). In addition, it demonstrates that the operations of each of the two BM(2) subnet-
works can be performed in parallel. Another important observation is that this graph is iso-
morphic to an FFT graph when the comparators are replaced by two-input butterfly graphs,
as shown in Fig. 6.12.

THEOREM 6.8.2 Batcher’s 2n-input bitonic merging circuit BM(n) for merging two sorted n-
sequences, n = 2k, has the following size and depth bounds over the basis Ω of comparators:

CΩ(BM(n)) ≤ n(log n + 1)

DΩ(BM(n)) ≤ log n + 1
Proof Let C(k) and D(k) be the size and depth of BM(n). Then C(0) = 1, D(0) = 1,
C(k) = 2C(k − 1) + 2k, and D(k) = D(k − 1) + 1. It follows that C(k) = (k + 1)2k

and D(k) = k + 1. (See Problem 6.29.)

This leads us to the recursive construction of a Batcher’s bitonic sorting network BS(n)
for sequences of length n, n = 2k. It merges the output of two copies of BS(n/2) using
a copy of Batcher’s n-input bitonic merging circuit BM(n/2). The proof of the following
theorem is left as an exercise. (See Problem 6.28.)

THEOREM 6.8.3 Batcher’s n-input bitonic sorting circuit BS(n) for n = 2k has the following
size and depth bounds over the basis Ω of comparators:

CΩ(BS(n)) =
n

4
[log2 n + log n]

z4

z2

z6

z1

z5

z3

z7

z0

y3

x2

y1

x1

y2

x3

y0

x0

Figure 6.12 The graph resulting from the replacement of comparators in Fig. 6.11 with two-
input butterfly graphs and the permutation of inputs. All edges are directed from left to right.

274 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

DΩ(BS(n)) =
1

2
log n(log n − 1)

6.8.2 Fast Sorting Networks
Ajtai, Komlós, and Szemerédi [14] have shown the existence of a sorting network (known
as the AKS sorting network) on n inputs whose circuit size and depth are O(n log n) and
O(log n), respectively. The question had been open for many years whether such a sorting
network existed. Prior to [14] it was thought that sorting networks required Ω(log2 n) depth.

. .
Problems
MATHEMATICAL PRELIMINARIES

6.1 Show that (, +, ∗, 0, 1) is a commutative ring, where + and ∗ denote integer addition
and multiplication and 0 and 1 denote the first two integers.

6.2 Let p be the set of integers modulo p, p > 0, under addition and multiplication
modulo p with additive identity 0 and multiplicative identity 1. Show that p is a ring.

6.3 A field F is a commutative ring in which each element other than 0 has a multiplicative
inverse. Show that (p, +, ∗, 0, 1) is a field when p is a prime.

MATRICES

6.4 Let Mn×n be the set of n× n matrices over a ring R. Show that (Mn×n, +n,×n, 0n,
In) is a ring, where +n and ×n are the matrix addition and multiplication operators
and 0n and In are the n × n zero and identity matrices.

6.5 Show that the maximum number of linearly independent rows and of linearly indepen-
dent columns of an n × m matrix A over a field are the same.

Hint: Use the fact that permuting the rows and/or columns of A and adding a scalar
product of one row (column) of A to any other row (column) does not change its rank.
Use row and column permutations as well as additions of scalar products to rows and/or
columns of A to transform A into a matrix that contains the largest possible identity
matrix in its upper left-hand corner. This is called Gaussian elimination.

6.6 Show that (A B)T = BT AT for all m × n matrices A and n × p matrices B over a
commutative ring R.

MATRIX MULTIPLICATION

6.7 The standard matrix-vector multiplication algorithm for a general n×n matrix requires
O(n2) operations. Show that at most O(nlog2 3) operations are needed when the matrix
is Toeplitz.

Hint: Assume that n is a power of two and treat the matrix as a 2 × 2 matrix of
n/2 × n/2 matrices. Also note that only 2n − 1 values determine all the entries in a
Toeplitz matrix. Thus, the difference between two n × n Toeplitz matrices does not
require n2 operations.

c©John E Savage Problems 275

6.8 Generalize Strassen’s matrix multiplication algorithm to matrices that are m × m for
m = p2k, p and k both integers. Derive bounds on the size and depth of a circuit
realizing this version of the algorithm.

For arbitrary n, show how n × n matrices can be embedded into m × m matrices,
m = p2k, so that this new version of the algorithm can be used. Show that upper
bounds of 4.77nlog2 7 and O(log n) on the size and depth of this algorithm can be
obtained.

6.9 Show that Strassen’s matrix multiplication algorithm can be used to multiply square
Boolean matrices by replacing OR by addition modulo n + 1. Derive a bound on the
size and depth of a circuit to realize this algorithm.

6.10 Show that, when one of two n × n Boolean matrices A and B is fixed and known in
advance, A and B can be multiplied by a circuit with O(n3/ log n) operations and
depth O(log n) to produce the product C = AB using the information provided
below.

a) Multiplication of A and B is equivalent to n multiplications of A with an n × 1
vector x, a column of B.

b) Since A is a 0 − 1 matrix, the product Ax consists of sums of variables in x.

c) The product Ax can be further decomposed into the sum A1x1 + A2x2 + · · · +
Akxk where k = -n/-log n.., Aj is the n × -log n. submatrix consisting of
columns (j − 1)-log n. + 1 through j-log n. of A, and xj is the jth set of
-log n. rows (variables) in x.

d) There are at most n distinct sums of -log n. variables each of which can be formed
in at most 2n addition steps, thereby saving a factor of -log n..

TRANSITIVE CLOSURE

6.11 Let A = [ai,j], 1 ≤ i, j ≤ n, be a Boolean matrix that is the adjacency matrix of
a directed graph G = (V , E) on n = |V | vertices. Give a proof by induction that
the entry in the rth row and sth column of Ak = Ak−1 × A is 1 if there is a path
containing k edges from vertex r to vertex s and 0 otherwise.

6.12 Consider a directed graph G = (V , E) in which each edge carries a label drawn from
a semiring. Let the entry in the ith row and jth column of the adjacency matrix of G
contain the label of the edge between vertices i and j if there is such an edge and the
empty set otherwise. Assume that the labels of edges in G are drawn from a semiring.
Show that Theorems 6.4.1, 6.4.2, and 6.4.3 hold for such labeled graphs.

MATRIX INVERSION

6.13 Show that over fields the following properties hold for matrix inversion:

a) The inverse of a 2 × 2 upper (lower) triangular matrix is the matrix with the off-
diagonal term negated.

b) The inverse of a 2×2 diagonal matrix is a diagonal matrix in which the ith diagonal
element is the multiplicative inverse of the ith diagonal element of the original
matrix.

276 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

6.14 Show that a lower triangular Toeplitz matrix T can be inverted by a circuit of size
O(n log n) and depth O(log2 n).

Hint: Assume that n = 2k, write T as a 2 × 2 matrix of n/2 × n/2 matrices, and
devise a recursive algorithm to invert T .

6.15 Exhibit a circuit to compute the characteristic polynomial φA(x) of an n × n matrix
A over a field R that has O(max(n3,

√
nMmatrix(n))) field operations and depth

O(log2 n).

Hint: Consider the case n = k2. Represent the integer i, 0 ≤ i ≤ n−1, by the unique
pair of integers (r, s), 0 ≤ r, s ≤ k − 1, where i = rk + s. Represent the coefficient
ci+1, 0 ≤ i ≤ n − 2, of φA(x) by cr,s. Then we can write φA(x) as follows:

φA(x) =
k−1∑

r=0

Ark

(
k−1∑

s=0

cr,sA
s

)

Show that it suffices to perform k2n2 = n3 scalar multiplications and k(k−1)n2 ≤ n3

additions to form the inner sums, k multiplications of n × n matrices, and kn2 scalar
additions to combine these products. In addition, A2, A3, . . . , Ak−1and Ak, A2k, . . . ,
A(k−1)k must be computed.

6.16 Show that the traces of powers, sr, 1 ≤ r ≤ n, for an n × n matrix A over a field can
be computed with O(

√
nMmatrix(n)) operations.

Hint: By definition sr =
∑n

j=1 a(r)
j,j , where a(r)

j,j is the jth diagonal term of the matrix

Ar. Let n be a square. Represent r uniquely by a pair (a, b), where 1 ≤ a, b ≤
√

n−1

and r = a
√

n + b. Then Ar = Aa
√

nAb. Thus, a(r)
j,j can be computed as the product

of the jth row of Aa
√

n with the jth column of Ab. Then, for each j, 1 ≤ j ≤ n,
form the

√
n×n matrix Rj whose ath row is the jth row of Aa

√
n, 0 ≤ a ≤

√
n− 1.

Also form the n×
√

n matrix Cj whose bth column is the jth column of Ab, 1 ≤ b ≤
√

n − 1. Show that the product RjCj contains each of the terms a(r)
j,j for all values

of r, 0 ≤ r ≤ n − 1 and that the products RjCj , 1 ≤ j ≤ n, can be computed
efficiently.

6.17 Show that (6.14) holds by applying the properties of the coefficients of the characteristic
polynomial of an n × n matrix stated in (6.15).

Hint: Use proof by induction on l to establish (6.14).

CONVOLUTION

6.18 Consider the convolution f (n,m)
conv : Rn+m "→ Rn+m−2 of an n-tuple a with an m-

tuple b when n 7 m. Develop a circuit for this problem whose size is O(m log n)
that uses the convolution theorem multiple times.

Hint: Represent the m-tuple b as sequence of -m/n. n-tuples.

6.19 The wrapped convolution f (n)
wrapped : R2n "→ Rn maps n-tuples a = (a0, a1, . . . ,

an−1) and b = (b0, b1, . . . , bn−1), denoted a ' b, to the n-tuple c the jth component
of which, cj , is defined as follows:

cj =
∑

r+s = j mod n

ar ∗ bs

c©John E Savage Problems 277

Show that the wrapped convolution on n-tuples contains the standard convolution on
4(n + 1)/25-tuples as a subfunction and vice versa.

Hint: In both halves of the problem, it helps to characterize the standard and wrapped
convolutions as matrix-vector products. It is straightforward to show that the wrapped
convolution contains the standard convolution as a subfunction. To show the other re-
sult, observe that the matrix characterizing the standard convolution contains a Toeplitz
matrix as a submatrix. Consider, for example, the standard convolution of two six-
tuples. The matrix associated with the wrapped convolution contains a special type of
Toeplitz matrix.

6.20 Show that the standard convolution function f (n,n)
conv : R2n "→ R2n−2 is a subfunction

of the integer multiplication function, f (n)
mult : B2n&log n' "→ B2n&log n' of Section 2.9

when R is the ring of integers modulo 2.

Hint: Represent the two sequences to be convolved as binary numbers that have been
padded with zeros so that at most one bit in a sequence appears among -log n. posi-
tions.

DISCRETE FOURIER TRANSFORM

6.21 Let n = 2k. Use proof by induction to show that for all elements a of a commutative
ring R the following identity holds, where

∏
is the product operation:

n−1∑

j=0

aj =
k−1∏

j=0

(1 + a2j

)

6.22 Let n = 2k and let R be a commutative ring. For ω ∈ R, ω '= 0, let m = ωn/2 + 1.
Show that for 1 ≤ p < n

n−1∑

j=0

ωpj = 0 mod m

Hint: Represent p as the product of the largest power of 2 with an odd integer and
apply the result of Problem 6.21.

6.23 Let n and ω be positive powers of two. Let m = ωn/2 + 1. Show that in the ring m

of integers modulo m the integer n has a multiplicative inverse and that ω is a principal
nth root of unity.

6.24 Let n be even. Use the results of Problems 6.21, 6.22, and 6.23 to show that m,
the set of integers modulo m, m = 2tn/2 + 1 for any positive integer t ≥ 2, is a
commutative ring in which ω = 2t is a principal nth root of unity.

6.25 Let ω be a principal nth root of unity of the commutative ring R = (R, +, ∗, 0, 1).
Show that ω2 is a principal (n/2)th root of unit.

6.26 A circulant is an n × n matrix in which the rth row is the rth cyclic shift of the first
row, 2 ≤ r ≤ n. When n is a prime, show that computing the DFT of a vector of
length n is equivalent to multiplying by an (n − 1) × (n − 1) circulant.

6.27 Show that the multiplication of circulant matrix with a vector can be done by a circuit
of size O(n log n) and depth O(log n).

278 Chapter 6 Algebraic and Combinatorial Circuits Models of Computation

x1

x2

x3

x4

x5

x6

x7

Figure 6.13 A bitonic sorter on seven inputs.

MERGING AND SORTING

6.28 Prove Theorem 6.8.3.

6.29 Show that the recurrences given below and stated in the proof of Theorem 6.8.2 have
the solutions shown, where C(0) = 1 and D(0) = 1:

C(k) = 2C(k − 1) + 2k = (k + 1)2k

D(k) = D(k − 1) + 1 = k + 1

6.30 A sequence (x1, x2, . . . , xn) is bitonic if there is an integer 0 ≤ k ≤ n such that
x1 > . . . > xk ≤ . . . ≤ xn.

a) Show that a bitonic sorting network can be constructed as follows: i) sort (x1,
x3, x5, . . .) and (x2, x4, x6, . . .) in bitonic sorters whose lines are interleaved, ii)
compare and interchange the outputs in pairs, beginning with the least significant
pairs. (See Fig. 6.13.)

b) Show that two ordered lists can be merged with a bitonic sorter and that an n-sorter
can be constructed from bitonic sorters.

c) Determine the number of comparators in a 2k-sorter based on merging with bitonic
sorters.

Chapter Notes
The bulk of this chapter concerns matrix computations, a topic with a long history. Many
books have been written on this subject to which the interested reader may refer. (See [25],
[44], [104], [197], and [361].)

Among the more important recent results in this area are the matrix multiplication algo-
rithm of Strassen [318]. Many other improvements have been made on this work, among the
most significant of which is the demonstration by Coppersmith and Winograd [81] that two
n × n matrices can be multiplied with O(n2.376) ring operations.

The relationships between transitive closure and matrix multiplication embodied in Theo-
rems 6.4.2 and 6.4.3 as well as the generalization of these results to closed semirings are taken
from the book by Aho, Hopcroft, and Ullman [10].

c©John E Savage Chapter Notes 279

Winograd [363] demonstrated that matrix multiplication is no harder than matrix inver-
sion, whereas Aho, Hopcroft, and Ullman [10] demonstrated the converse.

Csanky’s algorithm for matrix inversion is reported in [82]. Leverrier’s method for com-
puting the characteristic function of a matrix is described in [97].

Although the FFT algorithm became well known through the work of Cooley and Tukey
[80], the idea actually begins with Gauss in 1805! (See Heideman, Johnson, and Burrus [129].)

The zero-one principle for the study of comparator networks is due to Knuth [169]. Oddly
enough, Batcher’s odd-even merging network is due to Batcher [29].

Borodin and Munro [56] is a good early source for arithmetic complexity, the size and
depth of arithmetic circuits for problems related to matrices and polynomials. More recent
work on the parallel evaluation of arithmetic circuits is surveyed by JáJá [147, Chapter 8] and
von zur Gathen [110].

