A breeding program for Nile tilapia in Brazil: Results from nine generations of selection to increase the growth rate in cages
Grazyella Massako Yoshida
PeixeGen Research Group - Management, Breeding and Molecular Genetics of Freshwater Fish Farming, Department of Animal Science, State University of Maringá, Maringá, Brazil
Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
Search for more papers by this authorCarlos Antonio Lopes de Oliveira
PeixeGen Research Group - Management, Breeding and Molecular Genetics of Freshwater Fish Farming, Department of Animal Science, State University of Maringá, Maringá, Brazil
Department of Animal Science, State University of Maringá, Maringá, Brazil
Search for more papers by this authorCorresponding Author
Eric Costa Campos
PeixeGen Research Group - Management, Breeding and Molecular Genetics of Freshwater Fish Farming, Department of Animal Science, State University of Maringá, Maringá, Brazil
Center of Agrarian Sciences, Department of Animal Science, Graduate Program in Animal Science, State University of Maringá, Maringá, Brazil
Graduate Program in Animal Science, State University of Maringá, Maringá, Brazil
Correspondence
Eric Costa Campos, Graduate Program in Animal Science, State University of Maringá, CEP 87020-900, PR, Brazil.
Email: eric.peixegen@gmail.com
Search for more papers by this authorHumberto Todesco
PeixeGen Research Group - Management, Breeding and Molecular Genetics of Freshwater Fish Farming, Department of Animal Science, State University of Maringá, Maringá, Brazil
Graduate Program in Animal Science, State University of Maringá, Maringá, Brazil
Search for more papers by this authorFilipe C. T. Araújo
PeixeGen Research Group - Management, Breeding and Molecular Genetics of Freshwater Fish Farming, Department of Animal Science, State University of Maringá, Maringá, Brazil
Graduate Program in Animal Science, State University of Maringá, Maringá, Brazil
Search for more papers by this authorHanner Mahmud Karin
Graduate Program in Animal Science, State University of Maringá, Maringá, Brazil
Search for more papers by this authorAline M. S. O. Zardin
Graduate Program in Animal Science, State University of Maringá, Maringá, Brazil
Search for more papers by this authorJailton S. Bezerra Júnior
Graduate Program in Animal Science, State University of Maringá, Maringá, Brazil
Search for more papers by this authorLuiz Alexandre Filho
PeixeGen Research Group - Management, Breeding and Molecular Genetics of Freshwater Fish Farming, Department of Animal Science, State University of Maringá, Maringá, Brazil
Department of Animal Science, State University of Maringá, Maringá, Brazil
Search for more papers by this authorLauro Vargas
PeixeGen Research Group - Management, Breeding and Molecular Genetics of Freshwater Fish Farming, Department of Animal Science, State University of Maringá, Maringá, Brazil
Department of Animal Science, State University of Maringá, Maringá, Brazil
Search for more papers by this authorRicardo Pereira Ribeiro
PeixeGen Research Group - Management, Breeding and Molecular Genetics of Freshwater Fish Farming, Department of Animal Science, State University of Maringá, Maringá, Brazil
Department of Animal Science, State University of Maringá, Maringá, Brazil
Search for more papers by this authorGrazyella Massako Yoshida
PeixeGen Research Group - Management, Breeding and Molecular Genetics of Freshwater Fish Farming, Department of Animal Science, State University of Maringá, Maringá, Brazil
Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
Search for more papers by this authorCarlos Antonio Lopes de Oliveira
PeixeGen Research Group - Management, Breeding and Molecular Genetics of Freshwater Fish Farming, Department of Animal Science, State University of Maringá, Maringá, Brazil
Department of Animal Science, State University of Maringá, Maringá, Brazil
Search for more papers by this authorCorresponding Author
Eric Costa Campos
PeixeGen Research Group - Management, Breeding and Molecular Genetics of Freshwater Fish Farming, Department of Animal Science, State University of Maringá, Maringá, Brazil
Center of Agrarian Sciences, Department of Animal Science, Graduate Program in Animal Science, State University of Maringá, Maringá, Brazil
Graduate Program in Animal Science, State University of Maringá, Maringá, Brazil
Correspondence
Eric Costa Campos, Graduate Program in Animal Science, State University of Maringá, CEP 87020-900, PR, Brazil.
Email: eric.peixegen@gmail.com
Search for more papers by this authorHumberto Todesco
PeixeGen Research Group - Management, Breeding and Molecular Genetics of Freshwater Fish Farming, Department of Animal Science, State University of Maringá, Maringá, Brazil
Graduate Program in Animal Science, State University of Maringá, Maringá, Brazil
Search for more papers by this authorFilipe C. T. Araújo
PeixeGen Research Group - Management, Breeding and Molecular Genetics of Freshwater Fish Farming, Department of Animal Science, State University of Maringá, Maringá, Brazil
Graduate Program in Animal Science, State University of Maringá, Maringá, Brazil
Search for more papers by this authorHanner Mahmud Karin
Graduate Program in Animal Science, State University of Maringá, Maringá, Brazil
Search for more papers by this authorAline M. S. O. Zardin
Graduate Program in Animal Science, State University of Maringá, Maringá, Brazil
Search for more papers by this authorAbstract
Variance components and heritabilities for daily weight gain (DWG) were estimated for Nile tilapia farmed in cages across nine generations (G1–G9) of selection in a breeding program in Brazil. DWG was measured in 16,272 accumulated tagged animals representing 535 full- and half-sib families of Nile tilapia under cage farming. The additive genetic variance showed a slight variation (0.051–0.066), and heritability estimates ranged from 0.20 to 0.33. The common environmental effect accounted for a higher proportion of the total variance in DWG, especially in the last generations (6%–24%). A genetic trend based on all data available showed a substantial increase in the DWG (about 3.3% per generation) of Nile tilapia across nine generations of selection. Furthermore, our results demonstrate ample scope for further genetic improvement.
CONFLICT OF INTEREST
The authors declare no conflict of interest related to this study.
REFERENCES
- Araújo, F. C. T., de Oliveira, C. A. L., Campos, E. C., Yoshida, G. M., Lewandowski, V., Todesco, H., Nguyen, N. H., & Ribeiro, R. P. (2020). Effects of genotype × environment interaction on the estimation of genetic parameters and gains in Nile tilapia. Journal of Applied Genetics, 61(4), 575–580. https://doi.org/10.1007/s13353-020-00576-2
- Bentsen, H. B., Gjerde, B., Eknath, A. E., Vera, M. S. P., Velasco, R. R., Danting, J. C., Dionisio, E. E., Longalong, F. M., Reyes, R. A., Abella, T. A., Tayamen, M. M., & Ponzoni, R. W. (2017). Genetic improvement of farmed tilapias: Response to five generations of selection for increased body weight at harvest in Oreochromis niloticus and the further impact of the project. Aquaculture, 468, 206–217. https://doi.org/10.1016/j.aquaculture.2016.10.018
- Bentsen, H. B., Gjerde, B., Nguyen, N. H., Rye, M., Ponzoni, R. W., Palada de Vera, M. S., Bolivar, H. L., Velasco, R. R., Danting, J. C., Dionisio, E. E., Longalong, F. M., Reyes, R. A., Abella, T. A., Tayamen, M. M., & Eknath, A. E. (2012). Genetic improvement of farmed tilapias: Genetic parameters for body weight at harvest in Nile tilapia (Oreochromis niloticus) during five generations of testing in multiple environments. Aquaculture, 338–341, 56–65. https://doi.org/10.1016/j.aquaculture.2012.01.027
- Campos, E. C., Oliveira, C. A. L., Araújo, F. C. T., Todesco, H., Souza, F. N., Rossi, R. M., Fornari, D. C., & Ribeiro, R. P. (2020). Genetic parameters and response to selection for growth in tambaqui. Animal, 14(9), 1777–1785. https://doi.org/10.1017/S1751731120000488
- Charo-Karisa, H., Komen, H., Rezk, M. A., Ponzoni, R. W., van Arendonk, J. A. M., & Bovenhuis, H. (2006). Heritability estimates and response to selection for growth of Nile tilapia (Oreochromis niloticus) in low-input earthen ponds. Aquaculture, 261(2), 479–486. https://doi.org/10.1016/j.aquaculture.2006.07.007
- Cowles, M. K., & Carlin, B. P. (1996). Markov chain monte carlo convergence diagnostics: A comparative review. Journal of the American Statistical Association, 91(434), 883–904. https://doi.org/10.1080/01621459.1996.10476956
- da Cardoso, A. J. S., Oliveira, C. A. L. D., Campos, E. C., Ribeiro, R. P., Assis, G. J. D. F., & Silva, F. F. E. (2021). Estimation of genetic parameters for body areas in Nile tilapia measured by digital image analysis. Journal of Animal Breeding and Genetics, 1–8. https://doi.org/10.1111/jbg.12551
- Eknath, A. E., Acosta, B. O., Eknath, A. E., & Acosta, B. O. (1998). Genetic Improvement of Farmed Tilapias (GIFT) Project: Final report, March 1988 to December 1997.
- Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics ( 4th Rev. ed., p. 464). Pearson.
- Garcia, A. L. S., Oliveira, C. A. L., Karim, H. M., Sary, C., Todesco, H., & Ribeiro, R. P. (2017). Genetic parameters for growth performance, fillet traits, and fat percentage of male Nile tilapia (Oreochromis niloticus). Journal of Applied Genetics, 58, 527–533. https://doi.org/10.1007/s13353-017-0413-6
- Gjedrem, T. (2010). The first family-based breeding program in aquaculture. Reviews in Aquaculture, 2(1), 2–15. https://doi.org/10.1111/j.1753-5131.2010.01011.x
- Gjedrem, T. (2012). Genetic improvement for the development of efficient global aquaculture: A personal opinion review. Aquaculture, 344–349(0044), 12–22. https://doi.org/10.1016/j.aquaculture.2012.03.003
- Gjedrem, T., Robinson, N., & Rye, M. (2012). The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture, 350–353, 117–129. https://doi.org/10.1016/j.aquaculture.2012.04.008
- Gjedrem, T., & Rye, M. (2018). Selection response in fish and shellfish: A review. Reviews in Aquaculture, 10, 168–179. https://doi.org/10.1111/raq.12154
- Gjerde, B., Mengistu, S. B., Ødegård, J., Johansen, H., & Altamirano, D. S. (2012). Quantitative genetics of body weight, fillet weight and fillet yield in Nile tilapia (Oreochromis niloticus). Aquaculture, 342–343, 117–124. https://doi.org/10.1016/j.aquaculture.2012.02.015
- Janssen, K., Saatkamp, H., & Komen, H. (2018). Cost-benefit analysis of aquaculture breeding programs. Genetics Selection Evolution, 50(1), 2. https://doi.org/10.1186/s12711-018-0372-3
- Khaw, H. L., Bovenhuis, H., Ponzoni, R. W., Rezk, M. A., Charo-Karisa, H., & Komen, H. (2009). Genetic analysis of Nile tilapia (Oreochromis niloticus) selection line reared in two input environments. Aquaculture, 294(1–2), 37–42. https://doi.org/10.1016/j.aquaculture.2009.05.025
- Khaw, H. L., Ponzoni, R. W., & Danting, M. J. C. (2008). Estimation of genetic change in the GIFT strain of Nile tilapia (Oreochromis niloticus) by comparing contemporary progeny produced by males born in 1991 or in 2003. Aquaculture, 275(1–4), 64–69. https://doi.org/10.1016/j.aquaculture.2008.01.022
- Kinghorn, B., & Shepherd, R. (1999). Mate selection for the tactical implementation of breeding programs. Association for the Advancement of Animal Breeding and Genetics, 13, 130–133.
- Maluwa, A. O., Gjerde, B., & Ponzoni, R. W. (2006). Genetic parameters and genotype by environment interaction for body weight of Oreochromis shiranus. Aquaculture, 259(1–4), 47–55. https://doi.org/10.1016/j.aquaculture.2006.06.033
- Meuwissen, T. H. (1997). Maximizing the response of selection with a predefined rate of inbreeding. Journal of Animal Science, 75(4), 934. https://doi.org/10.2527/1997.754934x
- Misztal, I., Tsuruta, S., Lourenco, D., Masuda, Y., Aguilar, I., & Legarra, A. (2016). Manual for BLUPF90 family of programs. University of Georgia.
- Nguyen, N. H., Ponzoni, R. W., Abu-Bakar, K. R., Hamzah, A., Khaw, H. L., & Yee, H. Y. (2010). Correlated response in fillet weight and yield to selection for increased harvest weight in genetically improved farmed tilapia (GIFT strain), Oreochromis niloticus. Aquaculture, 305(1–4), 1–5. https://doi.org/10.1016/j.aquaculture.2010.04.007
- Olesen, I., Bentsen, H., Phillips, M., & Ponzoni, R. (2015). Can the global adoption of genetically improved farmed fish increase beyond 10%, and how? Journal of Marine Science and Engineering, 3(2), 240–266. https://doi.org/10.3390/jmse3020240
- Oliveira, C. A. L., Ribeiro, R. P., Yoshida, G. M., Kunita, N. M., & Rizzato, G. S. (2016). Correlated changes in body shape after five generations of selection to improve growth rate in a breeding program for Nile tilapia Oreochromis niloticus in Brazil. Journal of Applied Genetics, 57(4), 487–493. https://doi.org/10.1007/s13353-016-0338-5
- Oliveira, C. A. L., Yoshida, G. M., Oliveira, S. N., Kunita, N. M., Santos, A. I., Filho, L. A., & Ribeiro, R. P. (2015). Avaliação genética de tilapias do Nilo durante cinco anos de seleção. Pesquisa Agropecuária Brasileira, 50(10), 871–877. https://doi.org/10.1590/S0100-204X2015001000002
- Pereira, R. P., Vargas, L., & Oliveira, C. A. L. (2016). Dez anos da tilápia GIFT no Brasil. Aquaculture Brasil, 1(2525–3379), 22–26.
- PeixeBr (2021). Anuário PeixeBr da Piscicultura. Associação Brasileira de Piscicultura (p. 140).
- Ponzoni, R. W., Hamzah, A., Tan, S., & Kamaruzzaman, N. (2005). Genetic parameters and response to selection for live weight in the GIFT strain of Nile Tilapia (Oreochromis niloticus). Aquaculture, 247(1–4), 203–210. https://doi.org/10.1016/j.aquaculture.2005.02.020
- Ponzoni, R. W., Khaw, H. L., Nguyen, N. H., & Hamzah, A. (2010). Inbreeding and effective population size in the Malaysian nucleus of the GIFT strain of Nile tilapia (Oreochromis niloticus). Aquaculture, 302(1–2), 42–48. https://doi.org/10.1016/j.aquaculture.2010.02.009
- Ponzoni, R. W., Nguyen, N. H., & Khaw, H. L. (2007). Investment appraisal of genetic improvement programs in Nile tilapia (Oreochromis niloticus). Aquaculture, 269(1–4), 187–199. https://doi.org/10.1016/j.aquaculture.2007.04.054
- Porto, E. P., Oliveira, C. A. L., Martins, E. N., Ribeiro, R. P., Conti, A. C. M., Kunita, N. M., de Oliveira, S. N., & Porto, P. P. (2015). Respostas à seleção de características de desempenho em tilápia-do-nilo. Pesquisa Agropecuária Brasileira, 50(9), 745–752. https://doi.org/10.1590/S0100-204X2015000900002
- R Development Core Team. (2015). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://doi.org/10.1007/978-3-540-74686-7
- Rezk, M. A., Ponzoni, R. W., Khaw, H. L., Kamel, E., Dawood, T., & John, G. (2009). Selective breeding for increased body weight in a synthetic breed of Egyptian Nile tilapia, Oreochromis niloticus: Response to selection and genetic parameters. Aquaculture, 293(3–4), 187–194. https://doi.org/10.1016/j.aquaculture.2009.03.019
- Rutten, M. J. M., Bovenhuis, H., & Komen, H. (2005). Genetic parameters for fillet traits and body measurements in Nile tilapia (Oreochromis niloticus L.). Aquaculture, 246(1–4), 125–132. https://doi.org/10.1016/j.aquaculture.2005.01.006
- Santos, A. I., Ribeiro, R. P., Vargas, L., Mora, F., Alexandre Filho, L., Fornari, D. C., & de Oliveira, S. N. (2011). Bayesian genetic parameters for body weight and survival of Nile tilapia farmed in Brazil. Pesquisa Agropecuária Brasileira, 46(1), 33–43. https://doi.org/10.1590/S0100-204X2011000100005
- Shepherd, R., & Kinghorn, B. (1998). A tactical approach to the design of crossbreeding programs. In Proceedings of the Sixth World Congress on Genetics Applied to Livestock Production: 431–438.
- Thodesen (Da-Yong Ma), J., Rye, M., Wang, Y.-X., Yang, K.-S., Bentsen, H. B., & Gjedrem, T. (2011). Genetic improvement of tilapias in China: Genetic parameters and selection responses in growth of Nile tilapia (Oreochromis niloticus) after six generations of multi-trait selection for growth and fillet yield. Aquaculture, 322–323, 51–64. https://doi.org/10.1016/j.aquaculture.2011.10.010
- Van Tassell, C. P., & Van Vleck, L. D. (1996). Multiple-trait gibbs sampler for animal models: Flexible programs for bayesian and likelihood-based (co)variance component inference. Journal of Animal Science, 74, 2586. https://doi.org/10.2527/1996.74112586x
- Wright, S. (1922). Coefficients of Inbreeding and Relationship. The American Naturalist, 56(645), 330–338. https://doi.org/10.1086/27987210.1086/279872Google Scholar
- Yoshida, G. M., Yáñez, J. M., de Oliveira, C. A. L., Ribeiro, R. P., Lhorente, J. P., de Queiroz, S. A., & Carvalheiro, R. (2017). Mate selection in aquaculture breeding using differential evolution algorithm. Aquaculture Research, 48(11), 5490–5497. https://doi.org/10.1111/are.13365
Citing Literature
Recommended
Metrics
Details
© 2021 Wiley-VCH GmbH
Research funding
- Conselho Nacional de Desenvolvimento Científico e Tecnológico
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Keywords
Publication History
- 03 February 2022
- 22 September 2021
- 07 September 2021
- 15 August 2021
- 13 February 2021