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SUNMARY

We attempt to measure the amount of work inherent in the task
of computing a given computable (recursive) function. A notion of
degree of difficulty of computing a function is introduced and
studied. The notion is invaeriant in the sense that it is independent
of the idealized computers (Turing Machines) used for computing the
functions in question. Applications are made to the classification
of solvable decision problems (recursive sets) according to relative
difficulty.
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INTRODUCTION

The operation called tmiddle-squaring" 1is sometimes used for
the generation of random digits, Let p be an integer having k

digits in decimal notation, m(p) is defined to be the k digit

. £ . . . . 2 . . — ﬁ\ B(,QL:L
integer forming the middle section of »° (which is a 2k digith:

in case the middle section of p2 starts with the digit O, m(p)

7

is the k digit integer obtained from the middle section by changing
the first digit into a 1. Let m“1(n) be the smallest integer P
for which m(p)=n and O if no such P exists. The only known

method for computing m—1(n), where n is a k digit integer, is to

e 1 -1
)y

calculate one by one all the §.170 values m(10

2(105=141),...,m(105-1), and thereby Tind the smellest p (if 1T
exists) for which m(p)=n. If we compare the function me with the
function d(n)=2n we thus feel that m~' is considerably more diffi-
cult to compute than - d.

The guestion at once arises how could one assign a precise meaning
to the notion "f is more difficult to compute than g"? This question
breaks naturally into two parts. First, for a given function f and a

given computation of a functic.. value f(n), we want to express, prefer-

£ I
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ably by means of a number, the amount of difficulty involved in that

computation, Tne computation of the value y=f(n) may be considered
as a proof, in some formal system, of the formula T(n)=y: thus what

is needed is a measure on proofs., One could, for example, take the

length of a proof as a measure of its difficulty. Generally, however,
the mezsure on proofs one would want to use would depend or the methods
or comraters he has for constructing procfs. It is conceivable that
the difficulty involved in the constructicn of a procf by a certaln
- computer (expressed, say, by the time required by the computer for
the construction) depends not on the length of that proof but on some
other significant feature of the proof, We therefore introduce, in
Szction 1, the notion of a measure on proofs axiomaticallly and do not
use any specific measure in the subsequent develcpment., The results
therefore apply 0 any measure on proofs satisfying the axioms., Still,
a careful study of measures on proofs would be of great interes®t on
its own rights and also of importance for the theory of computers and
eutcmata.

Having agreed upon some measure on proofs, how should the notion
“?  is more Aifficult to compute than g¥ (g« )} bve defined? The
notior must clearly depend on the overall behaviour of the functions.
Thus g« f if in general it is more difficult to compute fin}

than to compute g(n). Returning to the example of d and m S, we

realize that saying that d<m~' Tbecause of the fact that with a
certain particular method for computing m”] it is harder to compute

H

x~' +than to compute @, is not justified. It is possible (though
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inprobable) that there exists some algorithm for computing n ] (n) which

in general, simpler than the computation of d(n)=2n. To get an

v

adegquate invariant definition for g I we nust therefore consider all

[el)

possible algorithms for computing £. The definition of g« £ as well
as the main theorems concerning this relation are contained in Section 2,
The most general notion of an algorithm existing in the literature is

o

that arising from Post Systems [3, 152-1691] . A Post system L consists

ct

set of symbols &,,...,2_, called the alphabet of L; a finite
17 n 4
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set of words A1’°°°”Am on this alpnadet, called the axioms of L; and a

«

finite set of production rules of the form

L ! e Pand
Gyq P11 G12 Fyp o0 F1x, Gy,
G ot Lo i e P G
rl TriY e27re ric, rkr R

where the (Yi. and i;i are fixed words,

rodueces + T eee
B Uees, P ‘C2P2 'DSPS'C 3

171 s+17?

the P, . are variable words and P1,..,, PS are a subset of the words Pijo
The notions of a proof of L and theorem of L are now defined in the
usual way. All our results will be stated in terms of Post systems but

they remain true for any other notion of algorithm,-

By the decision problem of a set S of integers we mean the problem

of deciding for each integer i whether 1€ 3. This terminology conforms to




that of Post's article [ 2] but differs from the terminology of
Tarski [4] . The decision problem of S is called solwvable if

S 1is recursive., The notions and results of Section 2 now enable
us to order solvabdle decision problems according to their relative
degree of difficulty (Section 3). Stronger results are obtained for
the case of primitive recursive sets. Whereas in Post's ordering by
means of recursive reducibilify all recursive sets are lumped into one
class, a whole spectrum of classes of recursive, and even primitive

gcursive, sets is obtained under the ordering defined here. Further

¥

H

research will be needed for defternining the exact form of the partially
ordered system obtained by our ordering relation.

In Section 4 +the results about ordering of solvable decision
problems according to degree of difficulty are applied to prdving that

certain Post systems are undlcidable.

1. MEASURES ON PROOFS AND LENGTH
OF .COMPUTATION FUNCTION.

Definition 1. A function n(L,P) defined for pairs L.P., where L
2 b2 b

PSS

LS ow 203t uystem and 2 1s a proof of L, and assuming integral values,

wxll be called a measure on proofs .if the following conditions are

satisfied. (a) m is primitive recursive. (b) Given a system L
and a number n there is only a finite number vw(L,n) of proofs

P of L such that m(L,P)< n. (¢c) The function §) (L,n) is

U © - e e e S o e e s rr—s -~
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primitive recursive.

-

1. Strictly speaking tae ~unction m depends not only cn

the proof P but zlso on the Post system L in which P is a

jore

Fal

001,

The same string P of words may be a proof with respect To

two different systems L1 and L and it is possible that

2

m(L,,P)# m(ngP . Still, when there is no danger of confusion we

shall drop the reference to L and simply write m(P).

-

An

LeTiNa .

immediate conseguence of the above requirements is the following

c v

if m is a measure then there exists an effective primitive

recursive procedure whereby when given a system L and a nunber n abﬁﬁ

it is possible to find all proofs PyyeoosPy (k=~(L,an)) of L for

which m(Pi)é;n°

Example

in

the s

1, The length 1(P) of a proof (i.e. the number of words

equence P) 1is a measure on proofs, It is not hard to verify

that condition (a)-(c) are satisfied Dby this function.
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T2 Taking the length as a measure On proofs is motivated

odel of a procedure for constructing proofs in which the

rious steps are taken in linear order one at a time. But we might

(t

of & procedure or a computer which can perform several opera-

tions simultaneously. A computer may posses; facilities for drawing

b S

one S

secoua

LA

tep several immediate consequences from a given set of words.,

1 cases there will exist an a-priori vound to the number of

ons which a given computer may perform simultaneously. For each
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bound N we could define a measure g On proofs which is motivated

by the model of computers capable of performing N operations
simultaneously. From our point of view it is, however, more interesting
to0 model a measure on a more extreme assumption, namely that at each
stage in the construction of a prcof we draw in one step all the

necessary immediate consequences from the words already derived. This

motivates the following definition.

Let P= (§1,..., S, ve a proof of the system L. Define

inductively

51 = {61 | 6’16“"}

(where ‘A -is the set of axioms of L), and in general

S8, = Sy U { 61 l S’i immediate consequence of words in Sk_1}

The number 4a(L,P), to be called the depth of P, is now defined
as the smallest & for which Sd=P°

Again it is possible to prove that d(L,P) is a measure on proofs.
Clearly a(L,P) € 1(P) for all proofs P. The measure d is, in fact,
a lower bound of all the previously mentioned measures my; thus

d(LgP)émN(L,P) for all measures Mye

In order to fix notations we shall henceforth assume that all

208t systcms under consideration contain the stroke | and equality
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sign = in their alphabet. The word [i coo ‘ consisting of n+1

strokes will be referred to as the numeral n and denoted by =n.

Definition 2. Let L be a Post system end @ a word on the

alphabet of L. The pair (L,W) is said to compute the function

f 1if for all integers n,n

f"LwE;fE< > f(n)=m.
We shall usually drop the reference to «w and simply say that
L computes f. A function f 1is computable (recursive) if and
only if there exists a systenm L computing it.
The. computation of a function f Dby a given system (L,w)
presents a certain amount of work which we would like to measure. This

is achieved by the function introduced in the following

Definition 3. ILet (L,®) compute f and let m be a measure on

Lo}

roofs. The length of computation function Fp(n) is defined by

F,(n) = min m(L,P), C= {P | P proof of wA=E in I}
L PeC |

For a given function f and system (L, ) computing it, the
length of computation function obviously depends both on W and the -
neasure m used. In any given discussion, however, both W and m are

<ept fixed and we simply write FL(n).
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o

Pemaris 2, It is easy to verify that for a given system L which
computes I, the function FL(n) is coputable. If f 1is primitive
recursive then there exists a system (L,w) computing f such that
Fr(n) is primitive recursive. Namely, let E be the system of

' defining equations for f constructed according to Kleene's proof

that every primitive recursive function-is general recursive

[ 1, ppo. 262-270]. Let L be a Post system obtained by a straight-
forward translation of the formal system consisting of E and Kleene's
rules for deducing equations, into the framework of Post systems (we

omit the simple details of this prpcess)., For this L the function FL

is primitive recursive.

2. THE RELATION g <X f AND ITS PROPERTIES.

The taék oX comparing the respective degrees of difficulty
involved in computing two functions is rather delicate. Given two
computable functions £ and g we méy chose Post systems L and
M which compute the functions f and g respectively and compafe
the length of cmputation functions FL(n) and Gm(n), But this is
not adequate because using other Post systems for computing f and
g may change the outcome of this comparison. The natural way to get

an invariant notion dependirng only on the functions is as follows.

Definition 4. A computable function £ dis said to be more difficult




-
Fl

to compute than a computable function g (in symbols: g < T)
if there exists a system M computing ' g such that for every L

computing f there exists an integer ng for which

(1) n,<n

3 Fkgn) £ FL(n)°

ﬁemark 3., The introduction of ng in the above definition is
unavoidable, For it is always possible to ‘"cheat" and for any
given k define a system (I, w) computing f such that for all
n<€ kX the word <n=f(n) is included among the axioms of L, For

~

any natural measure m on proofs (e.g. the measures of 1 and a

of Examples 1-2) we would then have FL(n)=1° Thus Fm(n)-< FL(n)

pes

can not be expected to hold for all n; at best it can hold from a certain

integer n, and on.

Theorem 1. For all computable functions T, f-% t.

The proof is immediate and will be omitted.
Theorem 2. If gL f and f£<Lh then g h,

Prqof, For appropriate systems M and N computing g and £

respectively we have

(2) GM(n) <.FL(n) for n(L) < n,
(3) Fyp(n) < Hy(n) for n'(K)<n,

where L and KX are arbitrary systems computing f and h., Taking

L=N we have




() G.(n)< SK(n) for mex(n(i@),nt (K))<gn,

Gegsllery. If g« them I < &

This follows at once Irom the previous Two theorems.

mve wolation A expressing the relative difficulty of computation

(@)

a5, in view of Pheorems 1-2 and the Corollary, all the properties
of a« partial ordering. It is not obvious from the start that this
pariial ordering is non-trivial, i.e. that +there are at all functions
f and g which are comparable. The following two theorems supply

~Formation on this point but ectually accomplish much more.

[

]

orem 3. Let h be a computable function. There exists a computable

T
el

q

function T assuming only the values 0,1 and primitive recursive in h
such that for every system L which computes T, hi(n) < FL(n) for

almost all integers n.

il

rootf. The proof will proceed in two steps. PFirst a weaker result

4211 pe established, From this result the desired result will then
directly follow.

tet (L,w) be a pair consisting of the Post system described in
+r.. Introduction and a.word > on the alphabet of L. Define the

Luight W(L,w) of the pair by(1(G ) denotes the length of the word G)

e LT e s

)

w(L, Q) = n+;(co)+ T l(Ai)+ r1( G i;>"‘ z l(Pkr

We shall construct a function £ assuming only the values 0,1
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223 primitive recursive in h such that for every system (L,c)
wnich computes T, hin) 4.W(L,QJ)+FL(n) for almost all n.

For each 0<L k let us enwmerate 21l pairs (L,w) for which
W{L,0) )=k and order them effectively Zn a finite sequence
r(x)? &Dk,r(k\>° This can be done by a primitive
restrsive procedure which is uniform in k. The fanction =r(k) giving
ihe number of pairs of weight X 1is primitive recursive. Now we arrange
il these pairs (Lk,j9°Jk,j)’ where J & r{k), into a single sequence
ili,cai)s i=1,2,..., by ordering the pairs (k,j) of indices
~e¢xicograpnically. Clearly we obtain an effective, in fact even
primitive reéursive, enumeration of all pairs (L,Cd)o . This enumeraticn

zztisfies

WL, W) e 1&r(1) + .00 + (k)

We now define by induction on n both the function f(n) and an

auxiliary sequence of finite sets Io, I],oo,,ln,ooni,

Define Io=ﬁ o For every 1< n enumerate all pairs (Li,cdi) for
wnich i £ I,_1 and W(Li,cai) £ n(n), For eacn such (Li’cdi)
crumerate all the proofs Pij of Li satisfying

(5) WLy, 0,) + m(PiJ-)S n(n) .-

Let i=i(n) be the smallest integer satisfying the above conditiozns
nd the further condition that one of the proofs Pi(n),j ctf Li(n)

s a proof of one of the formulas




S
Ny

If just one of these formulas has a proof P, define T(n) so
, , ,

thet the provable formula 1is WL o= et If hoth formulas have

proofs among ti Pi(n)9j , define fi{n) = 1. In either case define

U {‘L(l’l) } .

= I
In n-1

If for every i satisfying the zuove cor.ditions there does nod

exist a proof Py satisfying (5) which is a proof of cre of the
J
formulas (6) , define f{n) =1 =az I, =1 _..

The furction f is clearly well defined for all n, assumes
only the values 0,1, and is primitive recursive in ko
Assume now that (Li,QJi) computes f ard that for infinitely

many integers D

(1) W(n,,) + Py (p) < hip)
N ‘ 1

holds. It is impossible thaet 1 ¢ 1 for some n, for this implies
that (L;96Ji) does not compute I, Since I CI.eI, S.eny there
L i

exists an integer S such that Ifor s< @q the setv I consaing all
the intsgers J < 1 satisfying J € VI_. Chese an integer D
satisfying (7) and s < D. The integer 1 satisfies 1 & Ipu1
and in virtue of (7) there exis®ts im L, a proof P, of a formula

4

of the form cusP = € where e is O or 1 ({(namely e = £(n)).



amerr

o integer j < i has these two propariies, For otherwise we would have
fox the smallest integer joé i with these properties, jo & IpuT

eand hence jo € Ip, contrary to s p=1 a2d the definition of &
Thus we get 1 € ID’ a contradiciton.

To finish the proof of

tre function

values 0,1
in k) such
Thus

prelininary ressult to

There exists a function T assuming only the

hin) + n.

and primitive recursive in #(n)+n (hence primitive recursive

o

that for every (L,w0) computing £ there exists an integer

B

a

n,< n—v h(n) +n < W(L,w) + FL(n);

max (W(L,CQ), no) < n —s hin) < FL(n),

this completes the proof.

Ty - -
Theoren 4 .

computable function £

difficult <o

tg

ro0f, Let

computable.,

4,
0,1

velues

IZ & func:ion

Let g be a computable funcition. There exists a

assuming only the wvalues 0;1 which is nore

compute than g.

i be a system computing Th is

®

function GM(n)

o
oo

Apply Theorem 3 %o h(n) = Gm(n),

4y

The requirement that bve a function assuming only the

is an important part of the c¢laims of Theorems 3 and 4.

f(n) grows very rapidly with n then for certain measures




3. ORDERING ACCORDING T0C RELATIVE

DIFFICULTY OF SOLVABLE DECISION PROBLENMS

4 recursive set R will e sald tc posses a uore
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ct
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curgive set £ , iIn symbels: S-L X

17 Tor the respective charccteristic Functicns fR and fs, fsa< fR
nclds,
Zheorewn 5. For every recursive se¢v S  ithers exizis a o
savistying S <X R,

Let fs be the characteristic Tuneiticse of S, By Trneoroemn 4

& exists a function £ assuming only the values 0,7 FVRNy

A3
[44]
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can be obtained for the case that S is a

i

A stronger res

primitive recursive sct.

Theorom. 6, For every primitive recursive set S there exists a primitive

recursive set R satisfying S < R.

Proof, The characteristic function fq o S is primitive recursive.

Lccording to Remark 2 there exist a system L computing fs such
that the lersih of the computation function F; of fg is primitive
recursive. By Theorem 3 there exists a function f assuming only the
values O,1 and primitive recursive in Fy, satisfying FL'< T, The

set R = {Il' f(n) } is clearly primitive rccursive and satisfies S < R,

Exemple 3. Taking S to be the set P of all primes, there exists a

primitive recursive set R such that its decisicn protlem is more

difficult than that of P.




4, AN APPLICATION TO UNDECID.BILITY O0F POST SYSTENS

e

Theorem 3 may be generalize
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Theorem 7. Let pln,m) be a recursive functicn. There exisis a

somputable function f assuming only the valuss 0,7 such that

for every system L computing it and for every Tixed integer I,

\ 4 ~ - - N
(8) p(n,m ) € Fp(n) for almost all integers n.

n(n)= Z plk,m).
k,mgn

The function h is recursive, For every n we have that

p(n,mo)sfh(n) for all n>n Now apply Theorem 3 to I,

o°
In [ 4, p. 49] Mostowski Robinscn and Tarski generalize

36del's argument to prove that every formal thecry in which all

recursive functions are representakle is essentizlly undecidatle,

Tt turns out that an even stronger result holds for arbitrarxry Post

systems. Thus the above mentioned theorem does not really depsnd on

v of logical machinery in the formal theoriss with

respect to which it is formulated.

~

Theorem 8, Let I be a Post system such that ITor every recursive
set S there exists a word QJS on the alphatet of L such that
(L,GJS) computes the characteristic functiom of 8. The systemw F

is undecidatle,
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Proof., Assume to the contrary that F i1z dscidable, The

p(F ) from the set of 2ll words on the alphztstv of L into integers

defined by (8 )=k if -G and
{(9) k=min m (L,P) for all proof T ol &
end /& )=0 1if € is not o theorim of L, is compuiable,

:\
o
-
i)}
g
i
E)
!
Lo
o]
£
i
Lo
——
&

Let f ©be the computable function whese existence is guaranteed

Theorem 7. Let Sz.{n !f(n)z?} be the recursive set having T

characteristic function, Denote g(w g)=m,. The pair (L. )

1)
clearly computes the function £, By the definitior of the length
computation function Fp and by (9) and {'0) we have

F.(n) < p(n,m,)
for all n, contrary to (8). Thus I s undecidabla,
nemari 5, Our prcof actually shows that for every decadable syst
L there exis®%s a recursive set S with a decisicn prodlem which

more difficult than all decision probvlems of all recursive seis

representable in L.
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