Proots, Computability, Undecidability,
Complexity, And the Lambda Calculus
An Introduction

Jean Gallier and Jocelyn Quaintance
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104, USA
e-mail: jean@seas.upenn.edu

©) Jean Gallier

Please, do not reproduce without permission of the author

May 20, 2024

Preface

The main goal of this book is to present a mix of material dealing with
1. Proof systems.
2. Computability and undecidability.
3. The Lambda Calculus.
4. Some aspects of complexity theory.

Historically, the theory of computability and undecidability arose from Hilbert’s efforts
to completely formalize mathematics and from Godel’s first incompleteness theorem that
showed that such a program was doomed to fail. People realized that to carry out both
Hilbert’s program and Godel’s work it was necessary to define precisely what is the notion of
a computable function and the notion of a mechanically checkable proof. The first definition
given around 1934 was that of the class of computable function in the sense of Herbrand—
Godel-Kleene. The second definition given by Church in 1935-1936 was the notion of a
function definable in the A-calculus. The equivalence of these two definitions was shown by
Kleene in 1936. Shortly after in 1936, Turing introduced a third definition, that of a Turing-
computable function. Turing proved the equivalence of his definition with the Herbrand—
Godel-Kleene definition in 1937 (his proofs are rather sketchy compared to Kleene’s proofs).
All these historical papers can be found in a fascinating book edited by Martin Davis [27].

Negative results pointing out limitations of the notion of computability started to appear:
Godel’s first (and second) incompleteness result, but also Church’s theorem on the undecid-
ability of validity in first-order logic, and Turing’s result on the undecidability of the halting
problem for Turing machines. Although originally the main focus was on the notion of func-
tion, these undecidability results triggered the study of computable and noncomputable sets
of natural numbers.

Other definitions of the computable functions were given later. From our point of view,
the most important ones are

1. RAM programs and RAM-computable functions by Shepherdson and Sturgis (1963),
and anticipated by Post (1944); see Machtey and Young [41].

3

2. Diophantine-definable sets (Davis—Putnam-Robinson-Matiyasevich); see Davis [10,
11].

We find the RAM-progam model quite attractive because it is a very simplified realistic
model of the true architecture of a modern computer. Technically, we also find it more
convenient to assign Godel numbers to RAM programs than assigning Goédel numbers to
Turing machines. Every RAM program can be converted to a Turing machine and vice-
versa in polynomial time (going from a Turing machine to a RAM is quite horrific), so the
two models are equivalent in a strong sense. So from our perspective Turing machines could
be dispensed with, but there is a problem. The problem is that the Turing machine model
seems more convenient to cope with time or space restrictions, that is, to define complexity
classes.

There is actually no difficulty in defining nondeterministic RAM programs and to impose
a time restriction on the program counter or a space restriction on the size of registers,
but nobody seems to follow this path. This seems unfortunate to us because it appears
that it would be easier to justify the fact that certain reductions can be carried out in
polynomial time (or space) by writing a RAM program rather than by constructing a Turing
machine. Regarding this issue, we are not aware than anyone actually provides Turing
machines computing these reductions, even for SAT.

In any case, we will stick to the tradition of using Turing machines when discussing
complexity classes.

In addition to presenting the RAM-program model, the Turing machine model, the
Herbrand-Gdédel-Kleene definition of the computable functions, and showing their equiv-
alence, we provide an introduction to recursion theory (see Chapter 8). In particular, we
discuss creative and productive sets (see Rogers [50]). This allows us to cover most of the
main undecidability results. These include

1. The undecidability of the halting problem for RAM programs (and Turing machines).
2. Rice’s theorem for the computable functions.
3. Rice’s extended theorem for the listable sets.

4. A strong form of Godel’ first incompleteness theorem (in terms of creative sets) follow-
ing Rogers [50].

5. The fact that the true first-order sentences of arithmetic are not even listable (a pro-
ductive set) following Rogers [50].

6. The undecidability of the Post correspondence problem (PCP) using a proof due to
Dana Scott.

7. The undecidability of the validity in first-order logic (Church’s theorem), using a proof
due to Robert Floyd.

8. The undecidability of Hilbert’s tenth problem (the DPRM theorem) following Davis
[10].

9. Another strong form of Godel’” first incompleteness theorem, as a consequence of dio-
phantine definability following Davis [10].

The following two topics are rarely covered in books on the theory of computation and
undecidability.

In Chapter 7 we introduce Church’s A-calculus and show how the computable functions
and the partial computable functions are definable in the A-calculus, using a method due to
Barendregt [4]. We also give a glimpse of the second-order polymorphic A-calculus of Girard.

In Chapter 9 we discuss the definability of the listable sets in terms of Diophantine
equations (zeros of polynomials with integer coefficients) and state the famous result about
the undecidability of Hilbert’s tenth problem (the DPRM theorem). We follow the masterly
exposition of Davis [10, 11].

A possibly unsusual aspect of our book is that we begin with two chapters on mathemat-
ical reasoning and logic. Given the origins of the theory of computation and undecidability,
we feel that this is very appropriate. We present proof systems in natural deduction style
(a la Prawitz), which makes it easy to discuss the special role of the proof-by—contradiction
principle, and to introduce intuitionistic logic, which is the result of removing this rule from
the set of inference rules. It is also quite natural to explain how proofs in intuitionistic
propositional logic are represented by simply-typed A-terms. Then it is easy to introduce
the “Curry-Howard isomorphism.” This is a prelude to the introduction of the “pure”
(untyped) A-calculus.

Our treatment of complexity theory is limited to P, NP, co-NP, EXP, NEXP, PS
(PSPACE) and N'PS (NPSPACE) and is fairly standard. However, we prove that SAT
is N'P-complete by first proving (following Lewis and Papadimitriou [40]) that a bounded
tiling problem is N'P-complete.

In Chapter 13 we treat the result that primality testing is in AP in more details than
most other sources, relying on an improved version of a theorem of Lucas as discussed in
Crandall and Pomerance [6]. The only result that we omit is the existence of primitive roots
in (Z/pZ)* when p is prime.

In Chapter 14 we prove Savitch’s theorem (PS = N'PS). We state the fact that the
validity of quantified boolean formulae is PS-complete and provide parts of the proof. We
conclude with the beautiful proof of Statman [53] that provability in intuitionistic logic is
PS-complete. We do not give all the details but we prove the correctness of Statman’s
amazing translation of a valid QBF into an intuitionistically provable proposition.

We feel strongly that one does not learn mathematics without reading (and struggling
through) proofs, so we tried to provide as many proofs as possible. Among some of the

omissions, we do we show how to construct a Godel sentence in the proof of the first incom-
pleteness theorem; Rogers [50] leaves this as an exercise! We also do not give a complete
proof of Statman’s result. Giving a complete proof of the DPRM would require the inclusion
of some very technical number theory material. This would probably turn off most readers
and be of very little value so we decided to omit the most arduous material. However, we
present an almost complete proof. We have omitted the hardest step: showing that the
exponential function is Diophantine definable. Whenever a proof is omitted, we provide a
pointer to a source that contains such a proof.

Acknowledgement: We would like to thank Joao Sedoc and Marcelo Siqueira, for reporting
typos and for helpful comments. I was initiated to the theory of computation and undecid-
ability by my advisor Sheila Greibach who taught me how to do research. My most sincere
thanks to Sheila for her teachings and the inspiration she provided. In writing this book we
were inspired and sometimes borrowed heavily from the beautiful papers and books written
by the following people who have my deepest gratitude: Henk Barendregt, Richard Crandall,
Martin Davis, Herbert Enderton, Harvey Friedman, Jean-Yves Girard, John Hopcroft, Bill
Howard, Harry Lewis, Zohar Manna, Christos Papadimitriou, Carl Pomerance, Dag Prawitz,
Helmut Schwichtenberg, Dana Scott, Rick Statman, Jeff Ullman, Hartley Rogers, and Paul
Young. Of course, we must acknowledge Alonzo Church, Gerhard Gentzen, Kurt Godel,
Stephen Kleene and Alan Turing for their extraordinary seminal work.

Contents

Contents

1 Mathematical Reasoning And Basic Logic
1.1 Introduction
1.2 Logical Connectives, Definitions
1.3 Meaning of Implication and Proof Templates for Implication
1.4 Proof Trees and Deduction Trees
1.5 Proof Templates for =
1.6 Proof Templates for A,V,=
1.7 De Morgan Laws and Other Useful Rules of Logic
1.8 Formal Versus Informal Proofs; Some Examples
1.9 Truth Tables and Truth Value Semantics
1.10 Proof Templates for the Quantifiers
1.11 Sets and Set Operations
1.12 Induction and Well-Ordering Principle
1.13 Summary e
Problems

2 Mathematical Reasoning And Logic, A Deeper View
2.1 Introduction
2.2 Inference Rules, Deductions, Proof Systems N, and NG,
2.3 Proof Rules, Deduction and Proof Trees for Implication
2.4 Examples of Proof Trees,
2.5 A Gentzen-Style System for Natural Deduction
2.6 Adding A, V, L; The Proof Systems N7Vt and NG00 L.
2.7 Clearing Up Differences Among Rules Involving 1
2.8 De Morgan Laws and Other Rules of Classical Logic
2.9 Formal Versus Informal Proofs
2.10 Truth Value Semantics for Classical Logic
2.11 Kripke Models for Intuitionistic Logic
2.12 Decision Procedures, Proof Normalization
2.13 The Simply-Typed A-Calculus

11
11
12
16
20
22
26
34
35
39
42
20
95
57
29

CONTENTS

2.14 Completeness and Counter-Examples 113
2.15 Adding Quantifiers; Proof Systems N >/\V¥3L AfG=AVYEL 0 115
2.16 First-Order Theories 128
2.17 Basics Concepts of Set Theory L. 134
218 SUMMATYo e 144
Problems 148
RAM Programs, Turing Machines, Computability 165
3.1 Partial Functions and RAM Programs 168
3.2 Definition of a Turing Machine 175
3.3 Computations of Turing Machines 177
3.4 Equivalence of RAM programs And Turing Machines 181
3.5 Listable Languages and Computable Languages 182
3.6 A Simple Function Not Known to be Computable 183
3.7 The Primitive Recursive Functions 186
3.8 Primitive Recursive Predicates 197
3.9 The Partial Computable Functions 201
Equivalence of the Models of Computation 207
4.1 Simulation of a RAM Program by a Turing Machine. 207
4.2 Simulation of Turing Machine by a RAM Program 214
4.3 Every Turing Computable Function is Partial Computable 220
Universal RAM Programs and the Halting Problem 227
5.1 Pairing Functionso Lo 227
5.2 Equivalence of Alphabets 0o 236
5.3 Coding of RAM Programs; The Halting Problem 238
5.4 Universal RAM Programs 242
5.5 Indexing of RAM Programs 247
5.6 Kleene’s T-Predicate oo 248
5.7 A Non-Computable Function; Busy Beavers 250
Elementary Recursive Function Theory 255
6.1 Acceptable Indexings 255
6.2 Undecidable Problems 258
6.3 Reducibility and Rice’s Theorem 261
6.4 Listable (Recursively Enumerable) Sets 264
6.5 Reducibility and Complete Sets 270
The Lambda-Calculus 275
7.1 Syntax of the Lambda-Calculus 277
7.2 [p-Reduction and [-Conversion; the Church-Rosser Theorem 282

7.3 Some Useful Combinators 286

CONTENTS

7.4 Representing the Natural Numbers
7.5 Fixed-Point Combinators and Recursively Defined Functions
7.6 A-Definability of the Computable Functions
7.7 Definability of Functions in Typed Lambda-Calculi
7.8 Head Normal-Forms and the Partial Computable Functions

8 Recursion Theory; More Advanced Topics
8.1 The Recursion Theorem
8.2 Extended Rice Theorem
8.3 Creative and Productive Sets; Incompleteness

9 Listable and Diophantine Sets; Hilbert’s Tenth
9.1 Diophantine Equations; Hilbert’s Tenth Problem
9.2 Diophantine Sets and Listable Sets
9.3 Diophantine Funtions Lo
9.4 GCD’s, Bezout Identity, Chinese Remainder Theorem
9.5 Proof of the DPRM: Main Steps
9.6 The DPRM For Relations
9.7 Some Applications of the DPRM Theorem
9.8 Godel’s Incompleteness Theorem

10 The Post Correspondence Problem; Applications
10.1 The Post Correspondence Problem
10.2 Some Undecidability Results for CFG’s
10.3 More Undecidable Properties of Languages
10.4 Undecidability of Validity in First-Order Logic

11 Computational Complexity; P and NP
11.1 The Class P o o o e e e e
11.2 Directed Graphs, Paths o
11.3 Eulerian Cycles
11.4 Hamiltonian Cycles
11.5 Propositional Logic and Satisfiability
11.6 The Class NP, N'P-Completeness
11.7 The Bounded Tiling Problem is NP-Complete
11.8 The Cook-Levin Theorem
11.9 Satisfiability of Arbitrary Propositions and CNF

12 Some NP-Complete Problems
12.1 Statements of the Problems
12.2 Proofs of N'P-Completeness
12.3 Succinct Certificates, cONP, and EXP

289
295
298
303
311

315
315
321
324

331
331
334
338
339
343
358
360
367

375
375
381
384
385

389
389
391
392
393
394
399
408
415
419

10 CONTENTS

13 Primality Testing is in NP 459
13.1 Prime Numbers and Composite Numbers 459
13.2 Methods for Primality Testing 460
13.3 Modular Arithmetic, the Groups Z/nZ, (Z/nZ)* 463
13.4 The Lucas Theorem 471
13.5 Lucas Trees e 474
13.6 Algorithms for Computing Powers Modulom 477
13.7 PRIMES is in NP 479

14 Polynomial-Space Complexity; PS and N'PS 483
14.1 The Classes PS (or PSPACE) and NPS (NPSPACE) 483
14.2 Savitch’s Theorem: PS = NPS 485
14.3 A Complete Problem for PS: QBF 486
14.4 Provability in Intuitionistic Propositional Logic 494

A Well-Ordered Sets, Ordinals, Cardinals, Alephs 501
A1 Well-Ordered Sets 501
A2 Ordinals e 505
A.3 Cardinals, Alephs (R,) and Beths (3,) 508
A.4 Ordinal Arithmetic 512
A.5 Multisets, Nested Multisets and the Ordinal eq 524
A.6 Cantor Normal Form 529

Bibliography 531

Symbol Index 535

Index 539

Chapter 1

Mathematical Reasoning And Basic
Logic

1.1 Introduction

One of the main goals of this book is to show how to

construct and read mathematical proofs.
Why?
1. Computer scientists and engineers write programs and build systems.

2. It is very important to have rigorous methods to check that these programs and systems
behave as expected (are correct, have no bugs).

3. It is also important to have methods to analyze the complezity of programs (time/space
complexity).

More generally, it is crucial to have a firm grasp of the basic reasoning principles and
rules of logic. This leads to the question:

What is a proof?

There is no short answer to this question. However, it seems fair to say that a proof is
some kind of deduction (derivation) that proceeds from a set of hypotheses (premises, axioms)
in order to derive a conclusion, using some proof templates (also called logical rules).

A first important observation is that there are different degrees of formality of proofs.

1. Proofs can be very informal, using a set of loosely defined logical rules, possibly omit-
ting steps and premises.

11

12 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

2. Proofs can be completely formal, using a very clearly defined set of rules and premises.
Such proofs are usually processed or produced by programs called proof checkers and
theorem provers.

Thus, a human prover evolves in a spectrum of formality.

It should be said that it is practically impossible to write formal proofs. This is because
it would be extremely tedious and time-consuming to write such proofs and these proofs
would be huge and thus, very hard to read.

In principle, it is possible to write formalized proofs and sometimes it is desirable to do
so if we want to have absolute confidence in a proof. For example, we would like to be sure
that a flight-control system is not buggy so that a plane does not accidentally crash, that a
program running a nuclear reactor will not malfunction, or that nuclear missiles will not be
fired as a result of a buggy “alarm system.”

Thus, it is very important to develop tools to assist us in constructing formal proofs or
checking that formal proofs are correct. Such systems do exist, for example Isabelle, COQ),
TPS, NUPRL, PVS, Twelf. However, 99.99% of us will not have the time or energy to write
formal proofs.

Even if we never write formal proofs, it is important to understand clearly what are the
rules of reasoning (proof templates) that we use when we construct informal proofs.

The goal of this chapter is to explain what is a proof and how we construct proofs using
various proof templates (also known as proof rules).

This chapter is an abbreviated and informal version of Chapter 2. It is meant for readers
who have never been exposed to a presentation of the rules of mathematical reasoning (the
rules for constructing mathematical proofs) and basic logic.

1.2 Logical Connectives, Definitions

In order to define the notion of proof rigorously, we would have to define a formal language
in which to express statements very precisely and we would have to set up a proof system in
terms of axioms and proof rules (also called inference rules). We do not go into this in this
chapter as this would take too much time. Instead, we content ourselves with an intuitive
idea of what a statement is and focus on stating as precisely as possible the rules of logic
(proof templates) that are used in constructing proofs.

In mathematics and computer science, we prove statements. Statements may be atomic
or compound, that is, built up from simpler statements using logical connectives, such as
implication (if-then), conjunction (and), disjunction (or), negation (not), and (existential
or universal) quantifiers.

As examples of atomic statements, we have:

1. “A student is eager to learn.”

2. “A student wants an A.”

1.2. LOGICAL CONNECTIVES, DEFINITIONS 13

3. “An odd integer is never 0.”

4. “The product of two odd integers is odd.”

Atomic statements may also contain “variables” (standing for arbitrary objects). For
example

1. human(z): “x is a human.”
2. needs-to-drink(z): “z needs to drink.”
An example of a compound statement is
human(z) = needs-to-drink(z).

In the above statement, = is the symbol used for logical implication. If we want to assert
that every human needs to drink, we can write

Va(human(z) = needs-to-drink(x));

this is read: “For every x, if x is a human, then z needs to drink.”
If we want to assert that some human needs to drink we write

Jz(human(x) = needs-to-drink(x));

this is read: “There is some x such that, if x is a human, then x needs to drink.”

We often denote statements (also called propositions or (logical) formulae) using letters,
such as A, B, P, @, and so on, typically upper-case letters (but sometimes Greek letters, ¢,
P, ete.).

Compound statements are defined as follows: if P and () are statements, then
1. the conjunction of P and @ is denoted P A @ (pronounced, P and @),
2. the disjunction of P and @ is denoted PV @ (pronounced, P or),

3. the implication of P and @ is denoted by P = @ (pronounced, if P then @), or P
implies Q).

We also have the atomic statements L (falsity), think of it as the statement that is false
no matter what; and the atomic statement T (truth), think of it as the statement that is
always true.

The constant L is also called falsum or absurdum. It is a formalization of the notion of
absurdity or inconsistency (a state in which contradictory facts hold).

Given any proposition P it is convenient to define

4. the negation =P of P (pronounced, not P) as P = 1. Thus, =P (sometimes denoted
~ P) is just a shorthand for P = 1.

14 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

The intuitive idea is that =P (an abbreviation for P =-_1) is true if and only if P is false.
Actually, because we don’t know what truth is, it is “safer” to say that —P is provable if
and only if for every proof of P we can derive a contradiction (namely, L is provable). By
provable, we mean that a proof can be constructed using some rules that will be described
shortly (see Section 1.3).

Whenever necessary to avoid ambiguities, we add matching parentheses: (PAQ), (PVQ),
(P = Q). For example, PVQAR is ambiguous; it means either (PV(QAR)) or (PVQ)AR).

Another important logical operator is equivalence.

If P and () are statements, then

5. the equivalence of P and @ is denoted P = @ (or P <= @Q); it is an abbreviation for
(P = Q)N (Q = P). We often say “P if and only if Q" or even “P iff Q" for P = Q.

As a consequence, to prove a logical equivalence P = (), we have to prove both implica-
tions P = @ and) = P.

The meaning of the logical connectives (A, V, =, =, =) is intuitively clear. This is certainly
the case for and (A), since a conjunction P A @ is true if and only if both P and @ are true
(if we are not sure what “true” means, replace it by the word “provable”). However, for or
(V), do we mean inclusive or or exclusive or? In the first case, P V @ is true if both P and
@ are true, but in the second case, PV @ is false if both P and @) are true (again, in doubt
change “true” to “provable”). We always mean inclusive or.

The situation is worse for implication (=). When do we consider that P = @) is true
(provable)? The answer is that it depends on the rules! The “classical” answer is that
P = @ is false (not provable) if and only if P is true and @ is false. For an alternative view
(that of intuitionistic logic), see Chapter 2. In this chapter (and all others except Chapter
2), we adopt the classical view of logic. Since negation (—) is defined in terms of implication,
in the classical view, =P is true if and only if P is false.

The purpose of the proof rules, or proof templates, is to spell out rules for constructing
proofs which reflect, and in fact specify, the meaning of the logical connectives.

Before we present the proof templates it should be said that nothing of much interest can
be proven in mathematics if we do not have at our disposal various objects such as numbers,
functions, graphs, etc. This brings up the issue of where we begin, what may we assume. In
set theory, everything, even the natural numbers, can be built up from the empty set! This
is a remarkable construction but it takes a tremendous amount of work. For us, we assume

that we know what the set
N={0,1,2,3,...}

of natural numbers is, as well as the set
Z=A...,-3,-2,—-1,0,1,2,3,...}

of integers (which allows negative natural numbers). We also assume that we know how
to add, subtract and multiply (perhaps even divide) integers (as well as some of the basic
properties of these operations), and we know what the ordering of the integers is.

1.2. LOGICAL CONNECTIVES, DEFINITIONS 15

The way to introduce new objects in mathematics is to make definitions. Basically, a
definition characterizes an object by some property. Technically, we define a “gizmo” z by
introducing a so-called predicate (or property) gizmo(x), which is an abbreviation for some
possibly complicated logical proposition P(z). The idea is that z is a “gizmo” if and only if
gizmo(z) holds if and only if P(x) holds. We may write

gizmo(z) = P(x),

or o
gizmo(z) = P(x).

Note that gizmo is just a name, but P(z) is a (possibly complex) proposition.

It is also convenient to define properties (also called predicates) of one of more ob-
jects as abbreviations for possibly complicated logical propositions. In this case, a prop-
erty p(xi,...,x,) of some objects x1,...,x, holds if and only if some logical proposition
P(zy,...,x,) holds. We may write

p(r1, ... x,) = Play, ..., z,)

or ot
€
p(x1,...,x,) = Play, ..., 2,)
Here too, p is just a name, but P(xy,...,z,) is a (possibly complex) proposition.
Let us give a few examples of definitions.

Definition 1.1. Given two integers a,b € Z, we say that a is a multiple of b if there is some
¢ € Z such that a = be. In this case, we say that a is divisible by b, that b is a divisor of a
(or b is a factor of a), and that b divides a. We use the notation b | a.

In Definition 1.1, we define the predicate divisible(a, b) in terms of the proposition P(a, b)
given by
there is some ¢ € N such that a = be.

For example, 15 is divisible by 3 since 15 = 3-5. On the other hand, 14 is not divisible by 3.

Definition 1.2. A integer a € Z is even if it is of the form a = 2b for some b € Z, odd if it
is of the form a = 2b + 1 for some b € Z.

In Definition 1.2, the property even(a) of a being even is defined in terms of the predicate
P(a) given by
there is some b € N such that a = 2b.

The property odd(a) is obtained by changing a = 2b to a = 2b+ 1 in P(a). The integer 14
is even, and the integer 15 is odd. Beware that we can’t assert yet that if an integer is not
even then it is odd. Although this is true, this needs to be proven and requires induction,
which we haven’t discussed yet.

Prime numbers play a fundamental role in mathematics. Let us review their definition.

16 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Definition 1.3. A natural number p € N is prime if p > 2 and if the only divisors of p are
1 and p.

In the above definition, the property prime(p) is defined by the predicate P(p) given by
p > 2, and for all ¢ € N, if divisible(p, ¢), then ¢ =1 or ¢ = p.

If we expand the definition of a prime number by replacing the predicate divisible by
its defining formula we get a rather complicated formula. Definitions allow us to be more
concise.

According to Definition 1.3, the number 1 is not prime even though it is only divisible by
1 and itself (again 1). The reason for not accepting 1 as a prime is not capricious. It has to
do with the fact that if we allowed 1 to be a prime, then certain important theorems (such
as the unique prime factorization theorem would no longer hold.

Nonprime natural numbers (besides 1) have a special name too.

Definition 1.4. A natural number a € N is composite if a = bc for some natural numbers
b, c with b,c > 2.

For example, 4, 15, 36 are composite. Note that 1 is neither prime nor composite.
We are now ready to introduce the proof templates for implication.

1.3 Meaning of Implication and Proof Templates for
Implication

First, it is important to say that there are two types of proofs:
1. Direct proofs.
2. Indirect proofs.

Indirect proofs use the proof-by—contradiction principle, which will be discussed soon.

Because propositions do not arise from the vacuum but instead are built up from a set
of atomic propositions using logical connectives (here, =), we assume the existence of an
“official set of atomic propositions,” or set of propositional symbols, PS = {Pq, Py, P3,...}.
So, for example, P; = P, and P; = (Py = P;) are propositions. Typically, we use upper-
case letters such as P,Q, R, S, A, B,C, and so on, to denote arbitrary propositions formed
using atoms from PS.

We begin by presenting proof templates to construct direct proofs of implications. An
implication P = () can be understood as an if-then statement; that is, if P is true then (@) is
also true. A better interpretation is that any proof of P = Q) can be used to construct a proof
of Q given any proof of P. As a consequence of this interpretation, we show later that if =P
is provable, then P = @ is also provable (instantly) whether or not @ is provable. In such

1.3. MEANING OF IMPLICATION AND PROOF TEMPLATES FOR IMPLICATION17

a situation, we often say that P = @ is vacuously provable. For example, (P A —P) = @ is
provable for any arbitrary Q).

It might help to view the action of proving an implication P = @ as the construction
of a program that converts a proof of P into a proof of (). Then, if we supply a proof of
P as input to this program (the proof of P = @), it will output a proof of Q. So, if we
don’t give the right kind of input to this program, for example, a “wrong proof” of P, we
should not expect the program to return a proof of (). However, this does not say that the
program is incorrect; the program was designed to do the right thing only if it is given the
right kind of input. From this functional point of view (also called constructive), we should
not be shocked that the provability of an implication P =) generally yields no information
about the provability of Q.

For a concrete example, say P stands for the statement,

“Our candidate for president wins in Pennsylvania”

and () stands for

“Our candidate is elected president.”

Then, P = @, asserts that ¢f our candidate for president wins in Pennsylvania then our
candidate is elected president.

If P = @ holds, then if indeed our candidate for president wins in Pennsylvania then
for sure our candidate will win the presidential election. However, if our candidate does not
win in Pennsylvania, we can’t predict what will happen. Our candidate may still win the
presidential election but he may not.

If our candidate president does not win in Pennsylvania, then the statement P = @
should be regarded as holding, though perhaps uninteresting.

For one more example, let odd(n) assert that n is an odd natural number and let Q(n, a, b)
assert that a™+0" is divisible by a+b, where a, b are any given natural numbers. By divisible,
we mean that we can find some natural number ¢, so that

a”+b" = (a+b)c.

Then, we claim that the implication odd(n) = @Q(n,a,b) is provable.
As usual, let us assume odd(n), so that n = 2k + 1, where £k = 0,1,2,3,.... But then,
we can easily check that

2k
a2t P = (g 4 b) (Z(_l)ia2k—ibi) ’

=0

which shows that a?**1 + b?*! is divisible by a + b. Therefore, we proved the implication
odd(n) = Q(n,a,b).

If n is not odd, then the implication odd(n) = Q(n, a, b) yields no information about the
provablity of the statement Q)(n,a,b), and that is fine. Indeed, if n is even and n > 2, then
in general, a™ + b" is not divisible by a + b, but this may happen for some special values of
n, a, and b, for example: n =2, a =2, b = 2.

18 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

During the process of constructing a proof, it may be necessary to introduce a list of
hypotheses, also called premises (or assumptions), which grows and shrinks during the proof.
When a proof is finished, it should have an empty list of premises.

The process of managing the list of premises during a proof is a bit technical. In Chapter
2 we study carefully two methods for managing the list of premises that may appear during
a proof. In this chapter we are much more casual about it, which is the usual attitude when
we write informal proofs. It suffices to be aware that at certain steps, some premises must
be added, and at other special steps, premises must be discarded. We may view this as a
process of making certain propositions active or inactive. To make matters clearer, we call
the process of constructing a proof using a set of premises a deduction, and we reserve the
word proof for a deduction whose set of premises is empty. Every deduction has a possibly
empty list of premises, and a single conclusion. The list of premises is usually denoted by
I', and if the conclusion of the deduction is P, we say that we have a deduction of P from
the premises T'.

The first proof template allows us to make obvious deductions.

Proof Template 1.1. (Trivial Deductions)

If Pi,..., P, ..., P, is a list of propositions assumed as premises (where each P; may occur
more than once), then for each P;, we have a deduction with conclusion P;.

All other proof templates are of two kinds: introduction rules or elimination rules. The
meaning of these words will be explained after stating the next two proof templates.

The second proof template allows the construction of a deduction whose conclusion is an
implication P = Q).
Proof Template 1.2. (Implication—Intro)

Given a list I of premises (possibly empty), to obtain a deduction with conclusion P = @,
proceed as follows:

1. Add one or more occurrences of P as additional premises to the list .
2. Make a deduction of the conclusion @), from P and the premises in I
3. Delete P from the list of premises.

The third proof template allows the constructions of a deduction from two other deduc-
tions.

Proof Template 1.3. (Implication—Elim, or Modus—Ponens)

Given a deduction with conclusion P = Q) from a list of premises I' and a deduction with
conclusion P from a list of premises A, we obtain a deduction with conclusion Q. The list
of premises of this new deduction is the list ", A.

1.3. MEANING OF IMPLICATION AND PROOF TEMPLATES FOR IMPLICATION19

The modus—ponens proof template formalizes the use of auzilliary lemmas, a mechanism
that we use all the time in making mathematical proofs. Think of P = () as a lemma that
has already been established and belongs to some database of (useful) lemmas. This lemma
says if I can prove P then I can prove). Now, suppose that we manage to give a proof of
P. 1t follows from modus—ponens that () is also provable.

Mathematicians are very fond of modus—ponens because it gives a potential method for
proving important results. If ¢) is an important result and if we manage to build a large
catalog of implications P = @, there may be some hope that, some day, P will be proven,
in which case) will also be proven. So, they build large catalogs of implications! This has
been going on for the famous problem known as P versus NP. So far, no proof of any premise
of such an implication involving P wversus NP has been found (and it may never be found).

g% Beware, when we deduce that an implication P = () is provable, we do not prove that
P and @ are provable; we only prove that if P is provable then (@ is provable.

In case you wonder why the words “Intro” and “Elim” occur in the names assigned to
the proof templates, the reason is the following:

1. If the proof template is tagged with X-Intro, the connective X appears in the conclusion
of the proof template; it is introduced. For example, in Proof Template 1.2, the
conclusion is P = @), and = is indeed introduced.

2. If the proof template is tagged with X-Elim, the connective X appears in one of the
premises of the proof template but it does not appear in the conclusion; it is eliminated.
For example, in Proof Template 1.3 (modus ponens), P = () occurs as a premise but
the conclusion is (); the symbol = has been eliminated.

The introduction/elimination pattern is a characteristic of the kind of proof system that we
are describing which is called a natural deduction proof system.

Example 1.1. Let us give a simple example of the use of Proof Template 1.2. Recall that
a natural number n is odd iff it is of the form 2k 4 1, where k € N. Let us denote the fact
that a number n is odd by odd(n). We would like to prove the implication

odd(n) = odd(n + 2).

Following Proof Template 1.2, we add odd(n) as a premise (which means that we take
as proven the fact that n is odd) and we try to conclude that n 4+ 2 must be odd. However,
to say that n is odd is to say that n = 2k 4+ 1 for some natural number k. Now,

n+2=2k+1+2=2k+1)+1,

which means that n + 2 is odd. (Here, n = 2h + 1, with A = k+ 1, and k£ + 1 is a natural
number because k is.)

20 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Thus, we proven that if we assume odd(n), then we can conclude odd(n + 2), and ac-
cording to Proof Template 1.2, by step (3) we delete the premise odd(n) and we obtain a
proof of the proposition

odd(n) = odd(n + 2).

It should be noted that the above proof of the proposition odd(n) = odd(n+2) does not
depend on any premises (other than the implicit fact that we are assuming n is a natural
number). In particular, this proof does not depend on the premise odd(n), which was
assumed (became “active”) during our subproof step. Thus, after having applied the Proof
Template 1.2, we made sure that the premise odd(n) is deactivated.

Example 1.2. For a second example, we wish to prove the proposition P = P.

According to Proof Template 1.2, we assume P. But then, by Proof Template 1.1, we
obtain a deduction with premise P and conclusion P; by executing step (3) of Proof Template
1.2, the premise P is deleted, and we obtain a deduction of P = P from the empty list of
premises. Thank God, P = P is provable!

Proofs described in words as above are usually better understood when represented as
trees. We will reformulate our proof templates in tree form and explain very precisely how
to build proofs as trees in Chapter 2. For now, we use tree representations of proofs in an
informal way.

1.4 Proof Trees and Deduction Trees

A proof tree is drawn with its leaves at the top, corresponding to assumptions, and its root at
the bottom, corresponding to the conclusion. In computer science, trees are usually drawn
with their root at the top and their leaves at the bottom, but proof trees are drawn as
the trees that we see in nature. Instead of linking nodes by edges, it is customary to use
horizontal bars corresponding to the proof templates. One or more nodes appear as premises
above a vertical bar, and the conclusion of the proof template appears immediately below
the vertical bar.

According to the first step of proof of P = P (presented in words) we move the premise
P to the list of premises, building a deduction of the conclusion P from the premise P
corresponding to the following unfinished tree in which some leaf is labeled with the premise
P but with a missing subtree establishing P as the conclusion:

PI

Implication-Intro =
P=Pr

The premise P is tagged with the label z which corresponds to the proof rule which
causes its deletion from the list of premises.

In order to obtain a proof we need to apply a proof template which allows use to deduce
P from P and of course this is the Trivial Deduction proof template.

1.4. PROOF TREES AND DEDUCTION TREES 21

The finished proof is represented by the tree shown below. Observe that the premise P
is tagged with the symbol 1/, which means that it has been deleted from the list of premises.
The tree representation of proofs also has the advantage that we can tag the premises in such
a way that each tag indicates which rule causes the corresponding premise to be deleted. In
the tree below, the premise P is tagged with x, and it is deleted when the proof template
indicated by x is applied.

p=v
_ Trivial Deduction

Implication-Intro =

P=P

Example 1.3. For a third example, we prove the proposition P = (Q = P).

According to Proof Template 1.2, we assume P as a premise and we try to prove QQ = P
assuming P. In order to prove) = P, by Proof Template 1.2, we assume () as a new
premise so the set of premises becomes {P, Q}, and then we try to prove P from P and Q.

At this stage we have the following unfinished tree with two leaves labeled P and @ but
with a missing subtree establishing P as the conclusion:

P QY
Implication-Intro y
Q=P .
Implication-Intro =
P=(Q=P)

We need to find a deduction of P from the premises P and). By Proof Template 1.1
(trivial deductions), we have a deduction with the list of premises { P, @} and conclusion P.
Then, executing step (3) of Proof Template 1.2 twice, we delete the premise), and then
the premise P (in this order), and we obtain a proof of P = (@) = P). The above proof of
P = (Q = P) (presented in words) is represented by the following tree:

PV Qv
= Trivial Deduction

Implication-Intro y

Q=P
P=(Q=P)

Observe that both premises P and @) are tagged with the symbol 4/, which means that
they have been deleted from the list of premises.

We tagged the premises in such a way that each tag indicates which rule causes the
corresponding premise to be deleted. In the above tree, () is tagged with y, and it is deleted
when the proof template indicated by y is applied, and P is tagged with z, and it is deleted

when the proof template indicated by x is applied. In a proof, all leaves must be tagged
with the symbol /.

Implication-Intro =

22 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Example 1.4. Let us now give a proof of P = ((P = Q) = ().

Using Proof Template 1.2, we assume both P and P = () and we try to prove (). At
this stage we have the following unfinished tree with two leaves labeled P =) and P but
with a missing subtree establishing () as the conclusion:

(P=QF P
Q
(P=Q)=0Q
P=(P=0Q) =Q)

We can use Proof Template 1.3 to derive a deduction of () from P = () and P. Finally,
we execute step (3) of Proof Template 1.2 to delete P = @ and P (in this order), and we
obtain a proof of P = ((P = @) =). A tree representation of the above proof is shown
below.

Implication-Intro =

Implication-Intro y

(P=Q™ PV
Q
(P=Q)=0Q
P=((P=Q)=0Q)

Implication-Elim

Implication-Intro =

Implication-Intro y

Remark: We have not yet examined how we can represent precisely arbitrary deductions.
This can be done using certain types of trees where the nodes are tagged with lists of
premises. Two methods for doing this are carefully defined in Chapter 2. It turns out that
the same premise may be used in more than one location in the tree, but in our informal
presentation, we ignore such fine details.

We now describe the proof templates dealing with the connectives —, A, V, =.

1.5 Proof Templates for —

Recall that =P is an abbreviation for P = 1. We begin with the proof templates for negation,
for direct proofs.

Proof Template 1.4. (Negation—Intro)

Given a list T of premises (possibly empty), to obtain a deduction with conclusion —P, proceed
as follows:

1. Add one or more occurrences of P as additional premises to the list T'.

2. Derive a contradiction. More precisely, make a deduction of the conclusion L from P
and the premises in I

1.5. PROOF TEMPLATES FOR — 23

3. Delete P from the list of premises.

Proof Template 1.4 is a special case of Proof Template 1.2, since =P is an abbreviation
for P=1.

Proof Template 1.5. (Negation—Elim)

Given a deduction with conclusion =P from a list of premises I' and a deduction with con-
clusion P from a list of premises A, we obtain a contradiction; that is, a deduction with
conclusion L. The list of premises of this new deduction is T", A.

Proof Template 1.5 is a special case of Proof Template 1.3, since =P is an abbreviation
for P =_1.

Proof Template 1.6. (Perp—Elim)

Given a deduction with conclusion L (a contradiction), for every proposition @), we obtain a
deduction with conclusion Q). The list of premises of this new deduction is the same as the
original list of premises.

The last proof template for negation constructs an indirect proof; it is the proof-by—
contradiction principle.

Proof Template 1.7. (Proof-By-Contradiction Principle)

Given a list T of premises (possibly empty), to obtain a deduction with conclusion P, proceed
as follows:

1. Add one of more occurrences of =P as additional premises to the list I

2. Derive a contradiction. More precisely, make a deduction of the conclusion L from —P
and the premises in I'.

3. Delete =P from the list of premises.

Proof Template 1.7 (the proof-by—contradiction principle) also has the fancy name of
reductio ad absurdum rule, for short RAA.

Proof Template 1.6 may seem silly and one might wonder why we stated it. It turns
out that it is subsumed by Proof Template 1.7, but it is still useful to state it as a proof
template.

Example 1.5. Let us prove that for every natural number n, if n? is odd, then n itself must
be odd.

We use the proof-by—contradiction principle (Proof Template 1.7), so we assume that n
is not odd, which means that n is even. (Actually, in this step we are using a property of
the natural numbers that is proven by induction but let’s not worry about that right now;
a proof can be found in Section 1.12) But to say that n is even means that n = 2k for some
k and then n? = 4k* = 2(2k?), so n? is even, contradicting the assumption that n? is odd.
By the proof-by—contradiction principle (Proof Template 1.7), we conclude that n must be
odd.

24 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Example 1.6. Let us prove that -——P = P.

It turns out that this requires using the proof-by—contradiction principle (Proof Template
1.7). First by Proof Template 1.2, assume ——P as a premise. Then by the proof-by—
contradiction principle (Proof template 1.7), in order to prove P, assume —P. By Proof
Template 1.5, we obtain a contradiction (_L). Thus, by step (3) of the proof-by—contradiction
principle (Proof Template 1.7), we delete the premise =P and we obtain a deduction of P
from == P. Finally, by step (3) of Proof Template 1.2, we delete the premise == P and obtain
a proof of =—P = P. This proof has the following tree representation.

——Pyv —prv
P r Negation-Elim

L RAA.

= Implication-Intro y
-—P =P

Example 1.7. Now, we prove that P = ——P.

First by Proof Template 1.2, assume P as a premise. In order to prove =—P from P,
by Proof Template 1.4, assume —P. We now have the two premises =P and P, so by Proof
Template 1.5, we obtain a contradiction (L). By step (3) of Proof Template 1.4, we delete
the premise =P and we obtain a deduction of =—P from P. Finally, by step (3) of Proof
Template 1.2, delete the premise P to obtain a proof of P = ——P. This proof has the
following tree representation.

—prV/ (v
P r Negation-Elim

- Negation-Intro «
||P

= Implication-Intro y
P = —-=P

Observe that the previous two examples show that the equivalence P = —— P is provable.
As a consequence of this equivalence, if we prove a negated proposition =P using the proof—
by—contradiction principle, we assume ——FP and we deduce a contradiction. But since == P
and P are equivalent (as far as provability), this amounts to deriving a contradiction from
P, which is just the Proof Template 1.4.

In summary, to prove a negated proposition =P, always use Proof Template 1.4.

On the other hand, to prove a nonnegated proposition, it is generally not possible to
tell if a direct proof exists or if the proof-by—contradiction principle is required. There are
propositions for which it is required, for example =—P = P and (—(P = Q)) = P.

Example 1.8. Let us now prove that (-(P = Q)) = Q.

First by Proof Template 1.2, we add =(P = @) as a premise. Then, in order to prove =@
from (P = @), we use Proof Template 1.4 and we add () as a premise. Now, recall that
we showed in Example 1.3 that P = @ is provable assuming @) (with P and @ switched).

1.5. PROOF TEMPLATES FOR — 25

Then since —(P = Q) is a premise, by Proof Template 1.5, we obtain a deduction of L. We

now execute step (3) of Proof Template 1.4, delete the premise @ to obtain a deduction of

=@ from =(P = @), we and we execute step (3) of Proof Template 1.2 to delete the premise

—(P = Q) and obtain a proof of (=(P = @Q)) = —Q. The above proof corresponds to the
following tree.

Qv PV

Trivial Deduction

Implication-Intro =

—(P = Q)*V P=
(9 ° Negation-Elim
i Negation-Intro y
¢ Implication-Intro =
(P = Q) =-Q

Here is an example using Proof Templates 1.6 (Perp-Elim) and 1.7 (RAA).

Example 1.9. Let us prove that (=(P = Q)) = P.

First we use Proof Template 1.2, and we assume —(P = () as a premise. Next we
use the proof-by—contradiction principle (Proof Template 1.7). So, in order to prove P, we
assume P as another premise. The next step is to deduce P =). By Proof Template
1.2, we assume P as an additional premise. By Proof Template 1.5, from =P and P we
obtain a deduction of 1, and then by Proof Template 1.6 a deduction of) from —P and
P. By Proof Template 1.2, executing step (3), we delete the premise P and we obtain a
deduction of P =). At this stage, we have the premises =P, =(P = @) and a deduction of
P = @, so by Proof Template 1.5, we obtain a deduction of L. This is a contradiction, so
by step (3) of the proof-by—contradiction principle (Proof Template 1.7) we can delete the
premise =P, and we have a deduction of P from —(P = Q). Finally, we execute step (3)
of Proof Template 1.2 and delete the premise =(P = @), which yields the desired proof of
(=(P = Q)) = P. The above proof has the following tree representation.

— Py zy/
P P Negation-Elim
i_ Perp-Elim
Q o
Implication-Intro =
-(P = Q)Y P=Q
() Negation-Elim
+ Raa,
P

Implication-Intro -

-(P=Q))=P

The reader may be surprised by how many steps are needed in the above proof and may
wonder whether the proof-by—contradiction principle is actually needed. It can be shown

26 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

that the proof-by—contradiction principle must be used, and unfortuately there is no shorter
proof.

Even though Proof Template 1.4 qualifies as a direct proof template, it proceeds by deriv-
ing a contradiction, so I suggest to call it the proof-by—contradiction for negated propositions
principle.

Remark: The fact that the implication ——P = P is provable has the interesting conse-
quence that if we take =—P = P as an aziom (which means that -=—P = P is assumed to
be provable without requiring any proof), then the proof-by—contradiction principle (Proof
Template 1.7) becomes redundant. Indeed, Proof Template 1.7 is subsumed by Proof Tem-
plate 1.4, because if we have a deduction of L from —P, then by Proof Template 1.4 we
delete the premise —P to obtain a deduction of == P. Since -—P = P is assumed to be
provable, by Proof Template 1.3, we get a proof of P. The tree shown below illustrates what
is going on. In this tree, a proof of L from the premise —P is denoted by D.

- PV
D

- Negation-Intro «
-—P =P —-—P

P

Implication-Elim

Proof Templates 1.5 and 1.6 together imply that if a contradiction is obtained during a de-
duction because two inconsistent propositions P and =P are obtained, then all propositions
are provable (anything goes). This explains why mathematicians are leary of inconsistencies.

1.6 Proof Templates for A, V, =

The proof templates for conjunction are the simplest.

Proof Template 1.8. (And-Intro)

Given a deduction with conclusion P from a list of premises " and a deduction with conclusion
Q from a list of premises A, we obtain a deduction with conclusion PAQ. The list of premises
of this new deduction is I', A.

Proof Template 1.9. (And-Elim)

Given a deduction with conclusion P A\ @), we obtain a deduction with conclusion P, and a
deduction with conclusion Q). The list of premises of these new deductions is the same as the
list of premises of the orginal deduction.

Let us consider a few examples of proofs using the proof templates for conjunction as
well as Proof Templates 1.4 and 1.7.

1.6. PROOF TEMPLATES FOR A, V,= 27

Example 1.10. Let us prove that for any natural number n, if n is divisible by 2 and n is
divisible by 3, then n is divisible by 6. This is expressed by the proposition

() AB[n)=(6]n).

We start by using Proof Templates 1.2 and we add the premise (2 | n) A (3 | n). Using
Proof Template 1.9 twice, we obtain deductions of (2 | n) and (3 | n) from (2 | n) A (3 | n).
But (2 | n) means that

n = 2a

for some a € N, and 3 | n means that
n = 3b

for some b € N. This implies that
n = 2a = 3b.

Because 2 and 3 are relatively prime (their only common divisor is 1), the number 2 must
divide b (and 3 must divide a) so b = 2¢ for some ¢ € N. Here we are using Euclid’s lemma.
So, we have shown that

n=3b=3-2c=6c,
which says that n is divisible by 6. We conclude with step (3) of Proof Template 1.2 by

deleting the premise (2 | n) A (3 | n) and we obtain our proof.

Example 1.11. Let us prove that for any natural number n, if n is divisible by 6, then n is
divisible by 2 and n is divisible by 3. This is expressed by the proposition

(6]n)=((2]n)A(3]|n)).
We start by using Proof Template 1.2 and we add the premise 6 | n. This means that
n==6a=2-3a

for some a € N. This implies that 2 | n and 3 | n, so we have a deduction of 2 | n from the
premise 6 | n and a deduction of 3 | n from the premise 6 | n. By Proof Template 1.8, we
obtain a deduction of (2 | n) A (3 | n) from 6 | n, and we apply step (3) of Proof Template
1.2 to delete the premise 6 | n and obtain our proof.

Example 1.12. Let us prove that a natural number n cannot be even and odd simultane-
ously. This is expressed as the proposition

—(odd(n) A even(n)).

We begin with Proof Template 1.4 and we assume odd(n) A even(n) as a premise. Using
Proof Template 1.9 twice, we obtain deductions of odd(n) and even(n) from odd(n)Aeven(n).
Now odd(n) says that n = 2a + 1 for some a € N, and even(n) says that n = 2b for some
b € N. But then,

n =2a+1 =20,

28 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

so we obtain 2(b —a) = 1. Since b — a is an integer, either 2(b —a) = 0 (if a = b) or
12(b — a)| > 2, so we obtain a contradiction. Applying step (3) of Proof Template 1.4, we
delete the premise odd(n) A even(n) and we have a proof of =(odd(n) A even(n)).

Example 1.13. Let us prove that (=(P = Q)) = (P A =Q).

We start by using Proof Templates 1.2 and we add —(P = @) as a premise. Now,
in Example 1.9 we showed that (=(P = @Q)) = P is provable, and this proof contains a
deduction of P from —(P = Q). Similarly, in Example 1.8 we showed that (=(P = Q)) =
—() is provable, and this proof contains a deduction of =@ from —=(P = Q). By proof
Template 1.8, we obtain a deduction of P A =@ from =(P = @), and executing step (3) of
Proof Templates 1.2, we obtain a proof of (=(P = Q)) = (P A =Q). The following tree
represents the above proof. Observe that two copies of the premise =(P = Q) are needed.

—pyv PV
J_ Qw\/ Pt\/
Q Q t
-(P = Q)*Y P=qQ -(P = Q)*Y P=Q
i‘ RAA 4 i Negation-Intro w
P —Q
PA=Q

(P =Q)) = (PANQ)
Next, we present the proof templates for disjunction.

Proof Template 1.10. (Or-Intro)
Given a list T of premises (possibly empty),

1. If we have a deduction with conclusion P, then we obtain a deduction with conclusion

PVQ.

2. If we have a deduction with conclusion @), then we obtain a deduction with conclusion
PVvQ.

In both cases, the new deduction has I' as premises.

Proof Template 1.11. (Or-FElim or Proof-By—Cases)

Given three lists of premises I', A, A, to obtain a deduction of some proposition R as con-
clusion, proceed as follows:

1. Construct a deduction of some disjunction PV Q) from the list of premises I'.

2. Add one or more occurrences of P as additional premises to the list A and find a
deduction of R from P and A.

1.6. PROOF TEMPLATES FOR A, V,= 29

3. Add one or more occurrences of Q as additional premises to the list A and find a
deduction of R from @ and A.

The list of premises after applying this rule is T', A, A.
Note that in making the two deductions of R, the premise P V () is not assumed.

Example 1.14. Let us show that for any natural number n, if 4 divides n or 6 divides n,
then 2 divides n. This can expressed as

((4]n)V(6]n)=(2]n).

First, by Proof Template 1.2, we assume (4 | n) V (6 | n) as a premise. Next, we use
Proof Template 1.11, the proof-by—cases principle. First, assume (4 | n). This means that

n=4a=2-2a
for some a € N. Therefore, we conclude that 2 | n. Next, assume (6 | n). This means that
n=6b=2-3b

for some b € N. Again, we conclude that 2 | n. Since (4 | n) V (6 | n) is a premise, by Proof
Template 1.11, we can obtain a deduction of 2 | n from (4 | n) V (6 | n). Finally, by Proof
Template 1.2, we delete the premise (4 | n) V (6 | n) to obtain our proof.

Proof Template 1.10 (Or-Intro) may seem trivial, so let us show an example illustrating
its use.

Example 1.15. Let us prove that =(PV Q) = (=P A =Q).

First by Proof Template 1.2, we assume —=(P V Q) (two copies). In order to derive =P,
by Proof Template 1.4, we also assume P. Then by Proof Template 1.10 we deduce P V @,
and since we have the premise =(P V @), by Proof Template 1.5 we obtain a contradiction.
By Proof Template 1.4, we can delete the premise P and obtain a deduction of =P from
~(PVQ).

In a similar way we can construct a deduction of =@ from =(PV Q). By Proof Template
1.8, we get a deduction of “PA =@ from —~(PVQ), and we finish by applying Proof Template
1.2. A tree representing the above proof is shown below.

z+/ wy/
P Or-Intro © Or-Intro
~(PVQ)*™Y PVQ ~(PVQ)*™Y PVQ
i Negation-Intro = i Negation-Intro w

-(PVQ)= (-PA-Q)

30 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

The proposition (=P A =Q) = —(P V @) is also provable using the proof-by—cases prin-
ciple. Here is a proof tree; we leave it as an exercise to the reader to check that the proof
templates have been applied correctly.

(=P A =Q)Y (=P A=Q)Y
-P P -Q Qv
(PV Q) 1 1

x7y

Lt
-(PVQ)
(PA-Q) = ~(PVQ)

As a consequence the equivalence
—(PVQ)=(-PA-Q)
is provable. This is one of three identities known as de Morgan laws.

Example 1.16. Next let us prove that —=(=P V —=Q) = P.

First by Proof Template 1.2, we assume —(—=P V —=(Q) as a premise. In order to prove P
from —(=P V =Q), we use the proof-by—contradiction principle (Proof Template 1.7). So,
we add =P as a premise. Now, by Proof Template 1.10, we can deduce =P V =@ from =P,
and since (=P V (@) is a premise, by Proof Template 1.5, we obtain a contradiction. By
the proof-by—contradiction principle (Proof Template 1.7), we delete the premise =P and
we obtain a deduction of P from —=(—=P V =@Q). We conclude by using Proof Template 1.2
to delete the premise —=(—=P V =) and to obtain our proof. A tree representing the above
proof is shown below.

- p*v
—(=P Vv =Q)" PV -Q
-+ RAA.
P

~(~PV Q) = P

A similar proof shows that =(=PV =Q) = @ is provable. Putting together the proofs of
P and @ from —(=P V =Q) using Proof Template 1.8, we obtain a proof of

—(=PV-Q)=(PANQ).

A tree representing this proof is shown below.

1.6. PROOF TEMPLATES FOR A, V,= 31

—pr/ _.Qw\/
=(=P VvV =Q)" PV -Q =(=PV =Q)" PV -Q

RAA . RAA w

~5 -
Ol -

PAQ
(=P V-Q) = (PAQ)

Example 1.17. The proposition =(P A Q) = (=P V —Q) is provable.

First by Proof Template 1.2, we assume —=(P A Q) as a premise. Next we use the proof-
by—contradiction principle (Proof Template 1.7) to deduce =P V =@, so we also assume
—(=P V =Q). Now, we just showed that P A @ is provable from the premise =(—=P V =Q).
Using the premise =(P A @), by Proof Principle 1.5, we derive a contradiction, and by the
proof-by—contradiction principle, we delete the premise —=(=P V =@Q)) to obtain a deduction
of =PV =@ from —(P A Q). We finish the proof by applying Proof Template 1.2. This proof
is represented by the following tree.

_|Px\/ _\Qw\/
L RAA. L RAA.
P Q
(P A Q)Y PAQ
L Raa,

t

~(PAQ)= —PV-Q

The next example is particularly interesting.
It can be shown that the proof-by—contradiction principle must be used.

Example 1.18. We prove the proposition
PV -P.

We use the proof-by—contradiction principle (Proof Template 1.7), so we assume —(P V —P)
as a premise. The first tricky part of the proof is that we actually assume that we have two
copies of the premise —(P V —P).

Next the second tricky part of the proof is that using one of the two copies of —=(PV —P),
we are going to deduce PV —P. For this, we first derive =P using Proof Template 1.4, so we
assume P. By Proof Template 1.10, we deduce PV =P, but we have the premise =(PV —P),
so by Proof Template 1.5, we obtain a contradiction. Next, by Proof Template 1.4 we delete
the premise P, deduce =P, and then by Proof Template 1.10 we deduce P V —P.

32 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Since we still have a second copy of the premise =(P V —=P), by Proof Template 1.5,
we get a contradiction! The only premise left is =(P vV —P) (two copies of it), so by the
proof-by—contradiction principle (Proof Template 1.7), we delete the premise —(P V —P)
and we obtain the desired proof of PV = P.

Py
-(PVv-P)* PV-=P

Negation-Elim

i Negation-Intro y

P
=(P Vv —P)*Y PV P
Negation-Elim
L RAA.
PV -P

If the above proof made you dizzy, this is normal. The sneaky part of this proof is that
when we proceed by contradiction and assume —(PV—P), this proposition is an inconsistency,
so it allows us to derive PV =P, which then clashes with =(PV —=P) to yield a contradiction.
Observe that during the proof we actually showed that —=—(P VvV —P) is provable. The proof-
by—contradiction principle is needed to get rid of the double negation.

The fact is that even though the proposition PV —P seems obviously “true,” its truth is
viewed as controversial by certain matematicians and logicians. To some extant, this is why
its proof has to be a bit tricky and has to involve the proof-by—contradiction principle. This
matter is discussed quite extensively in Chapter 2. In this chapter, which is more informal,
let us simply say that the proposition PV —P is known as the law of excluded middle. Indeed,
intuitively, it says that for every proposition P, either P is true or —P is true; there is no
middle alternative.

It can be shown that if we take all formulae of the form P V —P as axioms, then the
proof-by—contradiction principle is derivable from the other proof tempates; see Section 2.7.
Furthermore, the proposition =—P = P and PV =P are equivalent (that is, (——P = P) =
(P V —P) is provable).

Typically, to prove a disjunction P V @), it is rare that we can use Proof Template 1.10
(Or—Intro), because this requires constructing of a proof of P or a proof of @) in the first
place. But the fact that P V () is provable does not imply in general that either a proof
of P or a proof of) can be produced, as the example of the proposition P V —P shows
(other examples can be given). Thus, usually to prove a disjunction we use the proof-by-
contradiction principle. Here is an example.

Example 1.19. Given some natural numbers p, g, we wish to prove that if 2 divides pq,
then either 2 divides p or 2 divides q. This can be expressed by

2[pg) = (2]p)V(2]q).
We use the proof-by-contradiction principle (Proof Template 1.7), so we assume —((2 |
p) V(2] ¢q)) as a premise. This is a proposition of the form =(P V @), and in Example 1.15

1.6. PROOF TEMPLATES FOR A, V,= 33

we showed that =(PV Q) = (-PA—Q) is provable. Thus, by Proof Template 1.3, we deduce
that =(2 | p) A=(2 | ¢). By Proof Template 1.9, we deduce both =(2 | p) and =(2 | ¢). Using
some basic arithmetic, this means that p = 2a + 1 and ¢ = 2b + 1 for some a,b € N. But
then,

pq = 2(2ab+a+b) + 1.

and pq is not divisible by 2, a contradiction. By the proof-by-contradiction principle (Proof
Template 1.7), we can delete the premise =((2 | p) V (2| ¢)) and obtain the desired proof.

Another proof template which is convenient to use in some cases is the
proof-by—contrapositive principle.

Proof Template 1.12. (Proof-By-Contrapositive)

Given a list of premises I', to prove an implication P = @, proceed as follows:
1. Add —Q to the list of premises I
2. Construct a deduction of =P from the premises —=Q) and I.
3. Delete Q) from the list of premises.

It is not hard to see that the proof-by—contrapositive principle (Proof Template 1.12)
can be derived from the proof-by—contradiction principle. We leave this as an exercise.

Example 1.20. We prove that for any two natural numbers m,n € N, if m + n is even,
then m and n have the same parity. This can be expressed as

even(m + n) = ((even(m) A even(n)) V (odd(m) A odd(n))).

According to Proof Template 1.12 (proof-by—contrapositive principle), let us assume
—((even(m) Aeven(n)) V (odd(m) Aodd(n))). Using the implication proven in Example 1.15
(=(PVQ)) = =PA-Q)) and Proof Template 1.3, we deduce that —(even(m)Aeven(n)) and
—(odd(m) A odd(n)). Using the result of Example 1.17 and modus ponens (Proof Template
1.3), we deduce that —even(m) V —even(n) and —odd(m) V —odd(n). At this point, we can
use the proof-by—cases principle (twice) to deduce that —even(m + n) holds. We leave some
of the tedious details as an exercise. In particular, we use the fact proven in Chapter 2 that
even(p) iff —odd(p) (see Section 2.16).

We treat logical equivalence as a derived connective: that is, we view P = @ as an
abbreviation for (P = @) A (Q = P). In view of the proof templates for A, we see that
to prove a logical equivalence P = (), we just have to prove both implications P = () and
(Q = P. For the sake of completeness, we state the following proof template.

Proof Template 1.13. (Equivalence—Intro)

Given a list of premises I', to obtain a deduction of an equivalence P = @), proceed as follows:

34 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

1. Construct a deduction of the implication P = @) from the list of premises .
2. Construct a deduction of the implication (Q = P from the list of premises I.

The proof templates described in this section and the previous one allow proving propo-
sitions which are known as the propositions of classical propositional logic. We also say that
this set of proof templates is a natural deduction proof system for propositional logic; see
Prawitz [47] and Gallier [16].

1.7 De Morgan Laws and Other Useful Rules of Logic

In Section 1.5, we proved certain implications that are special cases of the so-called de Morgan
laws.

Proposition 1.1. The following equivalences (de Morgan laws) are provable:

-—P=P
—~(PAQ)=-PV-Q

The following equivalence expressing = in terms of V and — is also provable:
P=Q=-PVQ.
The following proposition (the law of the excluded middle) is provable:
PV -P.

The proofs that we have not shown are left as as exercises (sometimes tedious).

Proposition 1.1 shows a property that is very specific to classical logic, namely, that the
logical connectives =, A, V, — are not independent. For example, we have P A Q = (=P V
—(@)), which shows that A can be expressed in terms of V and —. Similarly, P = @ = -PVQ
shows that = can be expressed in terms of V and —.

The next proposition collects a list of equivalences involving conjunction and disjunction
that are used all the time. Constructing proofs using the proof templates is not hard but
tedious.

Proposition 1.2. The following propositions are provable:

PVP=P
PAP=P
PVQ=QVP

PANQ=QANP.

1.8. FORMAL VERSUS INFORMAL PROOFS; SOME EXAMPLES 35

The last two assert the commutativity of V and N. We have distributivity of A over V and
of V over A:

We have associativity of A\ and V:

PAQAR)=(PAQ)AR
PV(QVR)=(PVQ)VR.

1.8 Formal Versus Informal Proofs; Some Examples

In this section we give some explicit examples of proofs illustrating the proof templates that
we just discussed. But first it should be said that it is practically impossible to write formal
proofs (i.e., proofs written using the proof templates of the system presented earlier) of “real”
statements that are not “toy propositions.” This is because it would be extremely tedious
and time-consuming to write such proofs and these proofs would be huge and thus very hard
to read.

As we said before it is possible in principle to write formalized proofs, however, most of
us will never do so. So what do we do?

Well, we construct “informal” proofs in which we still make use of the proof templates
that we have presented but we take shortcuts and sometimes we even omit proof steps (some
proof templates such as 1.9 (And-Elim) and 1.10 (Or-Intro)) and we use a natural language
(here, presumably, English) rather than formal symbols (we say “and” for A, “or” for V,
etc.). As an example of a shortcut, when using the Proof Template 1.11 (Or—Elim), in most
cases, the disjunction P V @) has an “obvious proof” because P and) “exhaust all the
cases,” in the sense that () subsumes =P (or P subsumes —()) and classically, PV =P is an
axiom. Also, we implicitly keep track of the open premises of a proof in our head rather than
explicitly delete premises when required. This may be the biggest source of mistakes and
we should make sure that when we have finished a proof, there are no “dangling premises,”
that is, premises that were never used in constructing the proof. If we are “lucky,” some of
these premises are in fact unnecessary and we should discard them. Otherwise, this indicates
that there is something wrong with our proof and we should make sure that every premise
is indeed used somewhere in the proof or else look for a counterexample.

We urge our readers to read Chapter 3 of Gowers [28] which contains very illuminating
remarks about the notion of proof in mathematics.

The next question is then, “How does one write good informal proofs?”

It is very hard to answer such a question because the notion of a “good” proof is quite
subjective and partly a social concept. Nevertheless, people have been writing informal
proofs for centuries so there are at least many examples of what to do (and what not to do).
As with everything else, practicing a sport, playing a music instrument, knowing “good”

36 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

wines, and so on, the more you practice, the better you become. Knowing the theory of
swimming is fine but you have to get wet and do some actual swimming. Similarly, knowing
the proof rules is important but you have to put them to use.

Write proofs as much as you can. Find good proof writers (like good swimmers, good
tennis players, etc.), try to figure out why they write clear and easily readable proofs, and
try to emulate what they do. Don’t follow bad examples (it will take you a little while to
“smell” a bad proof style).

Another important point is that nonformalized proofs make heavy use of modus ponens.
This is because, when we search for a proof, we rarely (if ever) go back to first principles. This
would result in extremely long proofs that would be basically incomprehensible. Instead, we
search in our “database” of facts for a proposition of the form P = @) (an auxiliary lemma)
that is already known to be proven, and if we are smart enough (lucky enough), we find
that we can prove P and thus we deduce @), the proposition that we really want to prove.
Generally, we have to go through several steps involving auxiliary lemmas. This is why it is
important to build up a database of proven facts as large as possible about a mathematical
field: numbers, trees, graphs, surfaces, and so on. This way we increase the chance that we
will be able to prove some fact about some field of mathematics. practicing (constructing
proofs).

And now we return to some explicit examples of informal proofs.

Recall that the set of integers is the set

Z=A4..,-2,-1,01,2,...}
and that the set of natural numbers is the set
N=1{0,1,2,...}.

(Some authors exclude 0 from N. We don’t like this discrimination against zero.) The
following facts are essentially obvious from the definition of even and odd.

(a) The sum of even integers is even.

(b) The sum of an even integer and of an odd integer is odd.

(
(d

)

¢) The sum of two odd integers is even.
) The product of odd integers is odd.
)

(e) The product of an even integer with any integer is even.

We will contruct deductions using sets of premises consisting of the above propositions.
Now we prove the following fact using the proof-by—cases method.

Proposition 1.3. Let a,b,c be odd integers. For any integers p and q, if p and q are not
both even, then
ap® + bpq + cq®

18 odd.

1.8. FORMAL VERSUS INFORMAL PROOFS; SOME EXAMPLES 37

Proof. We consider the three cases:

1. p and ¢ are odd. In this case as a,b, and ¢ are odd, by (d) all the products ap?, bpq,
and cq?® are odd. By (c), ap? + bpq is even and by (b), ap® + bpq + cq? is odd.

2. pis even and ¢ is odd. In this case, by (e), both ap? and bpq are even and by (d), cq?

is odd. But then, by (a), ap* + bpq is even and by (b), ap? + bpq + c¢* is odd.

3. pis odd and ¢ is even. This case is analogous to the previous case, except that p and
q are interchanged. The reader should have no trouble filling in the details.

All three cases exhaust all possibilities for p and ¢ not to be both even, thus the proof
is complete by Proof Template 1.11 applied twice, because there are three cases instead of
two.]

The set of rational numbers Q consists of all fractions p/q, where p,q € Z, with ¢ # 0.
The set of real numbers is denoted by R. A real number, a € R, is said to be irrational if it
cannot be expressed as a number in Q (a fraction).

We now use Proposition 1.3 and the proof by contradiction method to prove the following.

Proposition 1.4. Let a,b, c be odd integers. Then the equation
aX’+bX +c=0
has no rational solution X . FEquivalently, every zero of the above equation is irrational.

Proof. We proceed by contradiction (by this we mean that we use the proof-by—contradiction
principle). So assume that there is a rational solution X = p/q. We may assume that p
and ¢ have no common divisor, which implies that p and ¢ are not both even. As ¢ # 0, if
aX? + bX + ¢ = 0, then by multiplying by ¢?, we get

ap?® 4+ bpq + cq® = 0.

However, as p and ¢ are not both even and a, b, ¢ are odd, we know from Proposition 1.3 that
ap® + bpg + cq® is odd. This contradicts the fact that p? + bpg + c¢g®> = 0 and thus finishes
the proof. n

As as example of the proof-by—contrapositive method, we prove that if an integer n? is
even, then n must be even.

Observe that if an integer is not even then it is odd (and vice versa). This fact may seem
quite obvious but to prove it actually requires using induction (which we haven’t officially
met yet). A rigorous proof is given in Section 1.12.

Now the contrapositive of our statement is: if n is odd, then n? is odd. But, to say that
n is odd is to say that n = 2k + 1 and then, n? = (2k +1)* = 4k? + 4k +1 = 2(2k* +2k) + 1,
which shows that n? is odd.

38 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

As another illustration of the proof methods that we have just presented, let us prove
that /2 is irrational, which means that V2 is not rational. The reader may also want to
look at the proof given by Gowers in Chapter 3 of his book [28]. Obviously, our proof is
similar but we emphasize step (2) a little more.

Because we are trying to prove that v/2 is not rational, we use Proof Template 1.4. Thus
let us assume that v/2 is rational and derive a contradiction. Here are the steps of the proof.

1. If /2 is rational, then there exist some integers p, ¢ € Z, with ¢ # 0, so that v/2 = p/q.
2. Any fraction p/q is equal to some fraction r/s, where r and s are not both even.

3. By (2), we may assume that

Vil
q

where p, q € Z are not both even and with ¢ # 0.

4. By (3), because ¢ # 0, by multiplying both sides by ¢, we get

qV2 = p.

5. By (4), by squaring both sides, we get

2q2 = p2.

6. Inasmuch as p? = 2¢?, the number p? must be even. By a fact previously established,
p itself is even; that is, p = 2s, for some s € Z.

7. By (6), if we substitute 2s for p in the equation in (5) we get 2¢*> = 4s%. By dividing
both sides by 2, we get
¢ = 2s%

8. By (7), we see that ¢? is even, from which we deduce (as above) that q itself is even.

9. Now, assuming that v/2 = p/q where p and ¢ are not both even (and ¢ # 0), we
concluded that both p and q are even (as shown in (6) and(8)), reaching a contradiction.
Therefore, by negation introduction, we proved that v/2 is not rational.

A closer examination of the steps of the above proof reveals that the only step that may
require further justification is step (2): that any fraction p/q is equal to some fraction r/s
where r and s are not both even.

This fact does require a proof and the proof uses the division algorithm, which itself
requires induction. Besides this point, all the other steps only require simple arithmetic
properties of the integers and are constructive.

Remark: Actually, every fraction p/q is equal to some fraction /s where r and s have no
common divisor except 1. This follows from the fact that every pair of integers has a greatest

1.9. TRUTH TABLES AND TRUTH VALUE SEMANTICS 39

common divisor (a ged; s and r and s are obtained by dividing p and ¢ by their ged. Using
this fact and Euclid’s lemma, we can obtain a shorter proof of the irrationality of v/2. First
we may assume that p and ¢ have no common divisor besides 1 (we say that p and ¢ are
relatively prime). From (5), we have
2¢* = p?,

so ¢ divides p?. However, g and p are relatively prime and as ¢ divides p? = p x p, by Euclid’s
lemma, ¢ divides p. But because 1 is the only common divisor of p and ¢, we must have
g = 1. Now, we get p? = 2, which is impossible inasmuch as 2 is not a perfect square.

The above argument can be easily adapted to prove that if the positive integer n is not
a perfect square, then /n is not rational.

We conclude this section by showing that the proof-by—contradiction principle allows for
proofs of propositions that may lack a constructive nature. In particular, it is possible to
prove disjunctions PV () which states some alternative that cannot be settled.

For example, consider the question: are there two irrational real numbers a and b such
that a® is rational? Here is a way to prove that this is indeed the case. Consider the number

2 : : . : .
\/5\[. If this number is rational, then a = V2 and b = /2 is an answer to our question
(because we already know that v/2 is irrational). Now observe that

(\/5\/5)‘/5 = \/?ﬁxx/E — V2 =2 s rational.

Thus, if \/5\/§ is not rational, then a = \/5\/§ and b = /2 is an answer to our question.

Because PV —P is provable using the proof-by—contradiction principle (\/5\/E is rational or
it is not rational), we proved that

(V/2 is irrational and \/5\/i is rational) or
(\/5\/§ and /2 are irrational and (\/5\/5)‘/5 is rational).

However, the above proof does not tell us whether \/ﬁﬁ is rational!

We see one of the shortcomings of classical reasoning: certain statements (in particular,
disjunctive or existential) are provable but their proof does not provide an explicit answer.
For this reason, classical logic is considered to be nonconstructive.

. L b
Remark: Actually, it turns out that another irrational number b can be found so that V2
is rational and the proof that b is not rational is fairly simple. It also turns out that the

2
exact nature of \/5\[(rational or irrational) is known. The answers to these puzzles can be
found in Section 1.10.

1.9 Truth Tables and Truth Value Semantics

So far we have deliberately focused on the construction of proofs using proof templates, we
but have ignored the notion of truth. We can’t postpone any longer a discussion of the truth
value semantics for classical propositional logic.

40 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

We all learned early on that the logical connectives =, A, V, = and = can be interpreted
as Boolean functions, that is, functions whose arguments and whose values range over the
set of truth values,

BOOL = {true, false}.

These functions are given by the following truth tables.

P Q P=Q|PNQ|PVQ| P |P=Q
true | true true true true | false | true
true | false | false false | true | false | false
false | true | true false | true | true | false
false | false | true false | false | true | true

Note that the implication P = @ is false (has the value false) exactly when P = true
and () = false.

Now any proposition P built up over the set of atomic propositions PS (our propositional
symbols) contains a finite set of propositional letters, say

{P,...,P,}.

If we assign some truth value (from BOOL) to each symbol P; then we can “compute” the
truth value of P under this assignment by using recursively using the truth tables above.
For example, the proposition Py = (P; = P5), under the truth assignment v given by

P, = true, P, = false,

evaluates to false. Indeed, the truth value, v(P; = (P; = P5)), is computed recursively as

v(P; = (P = Py)) =0v(Py) = v(P; = Py).
Now, v(P;) = true and v(P; = P3) is computed recursively as

v(P1 = Py) =0(Py) = v(Py).
Because v(P;) = true and v(P3) = false, using our truth table, we get
v(Py = Py) = true = false = false.

Plugging this into the right-hand side of v(P; = (P; = P3)), we finally get

v(Py = (P; = Py)) = true = false = false.
However, under the truth assignment v given by

P, = true, P, = true,

1.9. TRUTH TABLES AND TRUTH VALUE SEMANTICS 41

we find that our proposition evaluates to true.

The values of a proposition can be determined by creating a truth table, in which a
proposition is evaluated by computing recursively the truth values of its subexpressions. For
example, the truth table corresponding to the proposition P; = (P; = Ps) is

P, P, Pi=P | P = (Pl = Pg)
true | true true true

true | false false false
false | true true true
false | false true true

If we now consider the proposition P = (Py = (P2 = Py)), its truth table is

P1 P2 P2 = P1 P1 = (P2 = Pl)
true | true true true
true | false true true
false | true false true
false | false true true

which shows that P evaluates to true for all possible truth assignments.

The truth table of a proposition containing m variables has 2™ rows. When m is large,
2™ is very large, and computing the truth table of a proposition P may not be practically
feasible. Even the problem of finding whether there is a truth assignment that makes P true
is hard. This is actually a very famous problem in computer science.

A proposition P is said to be valid or a tautology if in the truth table for P all the entries
in the column corresponding to P have the value true. This means that P evaluates to true
for all 2™ truth assignments.

What'’s the relationship between validity and provability? Remarkably, validity and prov-
ability are equivalent.

In order to prove the above claim, we need to do two things:

(1) Prove that if a proposition P is provable using the proof templates that we described
earlier, then it is valid. This is known as soundness or consistency (of the proof
system).

(2) Prove that if a proposition P is valid, then it has a proof using the proof templates.
This is known as the completeness (of the proof system).

In general, it is relatively easy to prove (1) but proving (2) can be quite complicated.
In this book we content ourselves with soundness.

Proposition 1.5. (Soundness of the proof templates) If a proposition P is provable using
the proof templates desribed earlier, then it is valid (according to the truth value semantics).

42 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Sketch of Proof. 1t is enough to prove that if there is a deduction of a proposition P from a
set of premises I', then for every truth assignment for which all the propositions in I' evaluate
to true, then P evaluates to true. However, this is clear for the axioms and every proof
template preserves that property.

Now, if P is provable, a proof of P has an empty set of premises and so P evaluates to
true for all truth assignments, which means that P is valid. O]

Theorem 1.6. (Completeness) If a proposition P is valid (according to the truth value
semantics), then P is provable using the proof templates.

Proofs of completeness for classical logic can be found in van Dalen [58] or Gallier [21]
(but for a different proof system).

Soundness (Proposition 1.5) has a very useful consequence: in order to prove that a
proposition P is not provable, it is enough to find a truth assignment for which P evaluates
to false. We say that such a truth assignment is a counterezample for P (or that P can be
falsified).

For example, no propositional symbol P; is provable because it is falsified by the truth
assignment P; = false.

The soundness of our proof system also has the extremely important consequence that
L cannot be proven in this system, which means that contradictory statements cannot be
derived.

This is by no means obvious at first sight, but reassuring.

Note that completeness amounts to the fact that every unprovable proposition has a coun-
terexample. Also, in order to show that a proposition is provable, it suffices to compute its
truth table and check that the proposition is valid. This may still be a lot of work, but it is
a more “mechanical” process than attempting to find a proof. For example, here is a truth
table showing that (P; = Py) = (=P, V Py) is valid.

P, P, Pi=Py| PVPy (Pl = PQ) = (_|P1 V PQ)
true | true true true true
true | false false false true
false | true true true true
false | false true true true

1.10 Proof Templates for the Quantifiers

As we mentioned in Section 1.1, atomic propositions may contain variables. The intention
is that such variables correspond to arbitrary objects. An example is

human(z) = needs-to-drink(z).

In mathematics, we usually prove universal statements, that is statements that hold for all
possible “objects,” or existential statements, that is, statements asserting the existence of

1.10. PROOF TEMPLATES FOR THE QUANTIFIERS 43

some object satisfying a given property. As we saw earlier, we assert that every human needs
to drink by writing the proposition

Va(human(z) = needs-to-drink(x)).

The symbol V is called a universal quantifier. Observe that once the quantifier V (pronounced
“for all” or “for every”) is applied to the variable x, the variable x becomes a placeholder
and replacing x by y or any other variable does not change anything. We say that = is a
bound variable (sometimes a “dummy variable”).

If we want to assert that some human needs to drink we write

Jz(human(x) = needs-to-drink(x));

The symbol 3 is called an ezistential quantifier. Again, once the quantifier 3 (pronounced
“there exists”) is applied to the variable z, the variable = becomes a placeholder. However,
the intended meaning of the second proposition is very different and weaker than the first.
It only asserts the existence of some object satisfying the statement

human(z) = needs-to-drink(z).
Statements may contain variables that are not bound by quantifiers. For example, in
dx parent(z, y)

the variable z is bound but the variable y is not. Here, the intended meaning of parent(z, y)
is that x is a parent of y, and the intended meaning of 3z parent(zx,y) is that any given y
has some parent z. Variables that are not bound are called free. The proposition

Vy3z parent(z, y),

which contains only bound variables is meant to assert that every y has some parent x. Typi-
cally, in mathematics, we only prove statements without free variables. However, statements
with free variables may occur during intermediate stages of a proof.

Now, in addition to propositions of the form PAQ,PV Q,P = @Q,—-P, P = @, we add
two new kinds of propositions (also called formulae):

1. Unwversal formulae, which are formulae of the form Vz P, where P is any formula and
x is any variable.

2. FEmistential formulae, which are formulae of the form dx P, where P is any formula and
x is any variable.

The intuitive meaning of the statement Vx P is that P holds for all possible objects z and
the intuitive meaning of the statement dz P is that P holds for some object x. Thus we see
that it would be useful to use symbols to denote various objects. For example, if we want

44 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

to assert some facts about the “parent” predicate, we may want to introduce some constant
symbols (for short, constants) such as “Jean,” “Mia,” and so on and write

parent(Jean, Mia)

to assert that Jean is a parent of Mia. Often we also have to use function symbols (or
operators, constructors), for instance, to write a statement about numbers: +, %, and so on.
Using constant symbols, function symbols, and variables, we can form terms, such as

(xxz+1)%(3xy+2).

In addition to function symbols, we also use predicate symbols, which are names for atomic
properties. We have already seen several examples of predicate symbols: “odd,” “even,”
“prime,” “human,” “parent.” So in general, when we try to prove properties of certain classes
of objects (people, numbers, strings, graphs, and so on), we assume that we have a certain
alphabet consisting of constant symbols, function symbols, and predicate symbols. Using
these symbols and an infinite supply of variables we can form terms and predicate terms.
We say that we have a (logical) language. Using this language, we can write compound
statements. A detailed presentation of this approach is given in Chapter 2. Here we follow
a more informal and more intuitive approach. We use the notion of term as a synonym for
some specific object. Terms are often denoted by the Greek letter 7, sometimes subscripted.
A variable qualifies as a term.

When working with propositions possibly containing quantifiers, it is customary to use the
term formula instead of proposition. The term proposition is typically reserved to formulae
wihout quantifiers.

Unlike the Proof Templates for =, V, A and L, which are rather straightforward, the
Proof Templates for quantifiers are more subtle due to the presence of variables (occurring
in terms and predicates) and the fact that it is sometimes necessary to make substitutions.

Given a formula P containing some free variable x and given a term 7, the result of
replacing all occurrences of = by 7 in P is called a substitution and is denoted P[r/z] (and
pronounced “the result of substituting 7 for x in P”). Substitutions can be defined rigorously
by recursion. Let us simply give an example. Consider the predicate P(z) = odd(2z + 1).
If we substitute the term 7 = (y 4+ 1)? for in P(z), we obtain

Plr/z] = odd(2(y +1)* + 1).

We have to be careful to forbid inferences that would yield “wrong” results and for
this we have to be very precise about the way we use free variables. More specifically, we
have to exercise care when we make substitutions of terms for variables in propositions. If
P(ty,ta,...,t,) is a statement containing the free variables t¢q,...,t, and if 74,...,7, are
terms, we can form the new statement

Plm/ty, ..., Ta/ts]

1.10. PROOF TEMPLATES FOR THE QUANTIFIERS 45

obtained by substituting the term 7; for all free occurrences of the variable ¢;, fori =1,...,n.
By the way, we denote terms by the Greek letter 7 because we use the letter ¢ for a variable
and using t for both variables and terms would be confusing; sorry.

However, if P(tq,ts,...,t,) contains quantifiers, some bad things can happen; namely,
some of the variables occurring in some term 7; may become quantified when 7; is substituted
for t;. For example, consider

Vedy P(x,y, 2)

which contains the free variable z and substitute the term z + y for z: we get
Vady P(z,y,x +v).

We see that the variables x and y occurring in the term x + y become bound variables after
substitution. We say that there is a “capture” of variables.

This is not what we intended to happen. To fix this problem, we recall that bound
variables are really place holders so they can be renamed without changing anything. There-
fore, we can rename the bound variables x and y in Vz3y P(z,y, z) to u and v, getting the
statement Yu3v P(u, v, z) and now, the result of the substitution is

Yudv P(u, v,z + 1),

where z and y are free. Again, all this needs to be explained very carefuly but in this chapter
we will content ourselves with an informal treatment.
We begin with the proof templates for the universal quantifier.

Proof Template 1.14. (Forall-Intro)

Let T be a list of premises and let y be a variable that does not occur free in any premise in I’
or inVzP. If we have a deduction of the formula Ply/x] from T', then we obtain a deduction
of VxP from T.

Proof Template 1.15. (Forall-Elim)

Let T be a list of premises and let T be a term representing some specific object. If we have
a deduction of VxP from T, then we obtain a deduction of P[r/x] from T'.

The Proof Template 1.14 may look a little strange but the idea behind it is actually very
simple: Because y is totally unconstrained, if P[y/z] (the result of replacing all occurrences
of by y in P) is provable (from T'), then intuitively Ply/z| holds for any arbitrary object,
and so, the statement Va P should also be provable (from I').

Note that we can’t deduce Va P from Ply/z| because the deduction has the single premise
Ply/x] and y occurs in P[y/x] (unless = does not occur in P).

The meaning of the Proof Template 1.15 is that if Vz P is provable (from I'), then P holds
for all objects and so, in particular for the object denoted by the term 7; that is, P[r/z]
should be provable (from I').

Here are the proof templates for the existential quantifier.

46 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Proof Template 1.16. (Ezist—Intro)

Let T be a list of premises and let T be a term representing some specific object. If we have
a deduction of P[r /x| from T, then we obtain a deduction of 3xP(x) from .

Proof Template 1.17. (Exist-Elim)

Let I' and A be a two lists of premises. Let C' and dx P be formulae, and let y be a variable
that does not occur free in any premise in I', in Az P, or in C. To obtain a deduction of C
from I', A, proceed as follows:

1. Make a deduction of AxP from T.

2. Add one or more occurrences of Ply/x| as premises to A, and find a deduction of C

from Ply/x| and A.
3. Delete the premise Ply/z].

If P[r/z] is provable (from I'), this means that the object denoted by 7 satisfies P, so
Jz P should be provable (this latter formula asserts the existence of some object satisfying
P, and 7 is such an object).

Proof Template 1.17 is reminiscent of the proof-by—cases principle (Proof template 1.11)
and is a little more tricky. It goes as follows. Suppose that we proved JzP (from T).
Moreover, suppose that for every possible case Ply/z] we were able to prove C' (from A).
Then, as we have “exhausted” all possible cases and as we know from the provability of dz P
that some case must hold, we can conclude that C is provable (from I', A) without using
Ply/x] as a premise.

Like the the proof-by—cases principle, Proof Template 1.17 is not very constructive.
It allows making a conclusion (C') by considering alternatives without knowing which one
actually occurs.

Constructing proofs using the proof templates for the quantifiers can be quite tricky due
to the restrictions on variables. In practice, we always use “fresh” (brand new) variables
to avoid problems. Also, when we use Proof Template 1.14, we begin by saying “let y be
arbitrary,” then we prove Ply/z] (mentally substituting y for x), and we conclude with:
“since y is arbitrary, this proves VxP.” We proceed in a similar way when using Proof
Template 1.17, but this time we say “let y be arbitrary” in step (2). When we use Proof
Template 1.15, we usually say: “Since Va P holds, it holds for all z, so in particular it holds
for 7, and thus P[r/z] holds.” Similarly, when using Proof Template 1.16, we say “since
P[r/x] holds for a specific object 7, we can deduce that 3z P holds.”

Here is an example of a “wrong proof” in which the V-introduction rule is applied illegally,
and thus, yields a statement that is actually false (not provable). In the incorrect “proof”
below, P is an atomic predicate symbol taking two arguments (e.g., “parent”) and 0 is a
constant denoting zero:

1.10. PROOF TEMPLATES FOR THE QUANTIFIERS 47

P(u,0)*
"~ illegal step!
VtP(t,0)

Implication-Intro =

P(u,0) = VtP(t,0)
Forall-Intro

Vs(P(s,0) = VtP(t,0
(() ()) Forall-Elim

P(0,0) = VtP(t,0)

The problem is that the variable u occurs free in the premise Plu/t,0] = P(u,0) and
therefore, the application of the V-introduction rule in the first step is illegal. However,
note that this premise is discharged in the second step and so, the application of the V-
introduction rule in the third step is legal. The (false) conclusion of this faulty proof is that
P(0,0) = VtP(t,0) is provable. Indeed, there are plenty of properties such that the fact
that the single instance P(0,0) holds does not imply that P(¢,0) holds for all .

Let us now give two examples of a proof using the proof templates for V and 4.

Example 1.21. For any natural number n, let odd(n) be the predicate that asserts that n
is odd, namely
odd(n) = 3Im((m € N) A (n =2m + 1)).

First let us prove that
Va((a € N) = odd(2a + 1)).

By Proof Template 1.14, let « be a fresh variable; we need to prove
(x € N) = odd(2z + 1).
By Proof Template 1.2, assume = € N. If we consider the formula
(meN)A(2r+1=2m+1),
by substituting = for m, we get
(xeN)A(2x+1=2x+1),
which is provable since x € N. By Proof Template 1.16, we obtain
Im(m € N) A (22 4+ 1 =2m + 1);

that is, odd(2x + 1) is provable. Using Proof Template 1.2, we delete the premise = € N and

we have proven
(x € N) = odd(2z + 1).

This proof has no longer any premises, so we can safely conclude that

Va((a € N) = odd(2a + 1)).

48 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Next consider the term 7 = 7. By Proof Template 1.15, we obtain
(7 € N) = odd(15).

Since 7 € N, by modus ponens we deduce that 15 is odd.
Let us now consider the term 7 = (b+1)? with b € N. By Proof Template 1.15, we obtain

(b+1)* €N) = odd(2(b+ 1)* +1)).

But b € N implies that (b+ 1) € N so by modus ponens and Proof Template 1.2, we deduce
that

(b € N) = odd(2(b+ 1)* + 1)).

Example 1.22. Let us prove the formula Va(P A Q) = VP A VzQ.

First using Proof Template 1.2, we assume Vz(P A @) (two copies). The next step uses
a trick. Since variables are terms, if u is a fresh variable, then by Proof Templare 1.15 we
deduce (P A Q)[u/x]. Now we use a property of substitutions which says that

(P AQ)u/x] = Plu/z] A Qu/x].

We can now use Proof Template 1.9 (twice) to deduce Plu/z] and Q[u/z]. But, remember
that the premise is V(P A Q) (two copies), and since u is a fresh variable, it does not occur
in this premise, so we can safely apply Proof Template 1.14 and conclude Vx P, and similarly
Vx@. By Proof Template 1.8, we deduce VP A Vz(@Q from Vz(P A Q). Finally, by Proof
Template 1.2, we delete the premise V(P A @) and obtain our proof. The above proof has
the following tree representation.

Va(P A Q)™ Va(P A Q)™
Plu/z] A Qu/z] Plu/z] A Qu/x]
Plu/x] Qlu/x]

Vo P V@)

Ve P AVzQ

V(P A Q)= VeP AVzQ

The reader should show that Yz P A Vz@Q = Va(P A Q) is also provable.

However, in general, one can’t just replace V by 3 (or A by V) and still obtain provable
statements. For example, 3z P A 2@ = Jx(P A Q) is not provable at all.

Here are some useful equivalences involving quantifiers. The first two are analogous to
the de Morgan laws for A and V.

1.10. PROOF TEMPLATES FOR THE QUANTIFIERS 49

Proposition 1.7. The following formulae are provable:

Vo P = dx—P
—JxP =Va-P
V(P A Q) =VeP AVxQ
Jz(PV Q) =3xPV JzQ
Jx(PA Q)= 3xP A JzQ
VeP VVzQ = V(P V Q).

The proof system that uses all the Proof Templates that we have defined proves formulae
of classical first-order logic.
One should also be careful that the order the quantifiers is important. For example, a
formula of the form
VedyP

is generally not equivalent to the formula
JyVa P.

The second formula asserts the existence of some object y such that P holds for all . But
in the first formula, for every x, there is some y such that P holds, but each y depends on
x and there may not be a single y that works for all x.

Another amusing mistake involves negating a universal quantifier. The formula Vx—P
is not equivalent to =VaxP. Once traveling from Philadelphia to New York I heard a train
conductor say: “all doors will not open.” Actually, he meant “not all doors will open,” which
would give us a chance to get out!

Remark: We can illustrate, again, the fact that classical logic allows for nonconstructive

proofs by re-examining the example at the end of Section 1.5. There we proved that if \/§\/5
is rational, then a = V2 and b = /2 are both irrational numbers such that a® is rational

and if \/5\/5 is irrational then a = \/5\/5 and b = v/2 are both irrational numbers such that
a’ is rational. By Proof Template 1.16, we deduce that if \/5\/§ is rational, then there exist

some irrational numbers a, b so that a’ is rational, and if \/5\& is irrational, then there exist
some irrational numbers a, b so that a® is rational. In classical logic, as P V =P is provable,
by the proof-by—cases principle we just proved that there exist some irrational numbers a
and b so that a® is rational.

However, this argument does not give us explicitly numbers a and b with the required
properties. It only tells us that such numbers must exist.

Now, it turns out that \/5\/i is indeed irrational (this follows from the Gel’fond—Schneider
theorem, a hard theorem in number theory). Furthermore, there are also simpler explicit
solutions such as a = v/2 and b = log, 9, as the reader should check.

20 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

1.11 Sets and Set Operations

In this section we review the definition of a set and basic set operations. This section takes
the “naive” point of view that a set is an unordered collection of objects, without duplicates,
the collection being regarded as a single object.

Given a set A we write that some object a is an element of (belongs to) the set A as

a€ A

and that a is not an element of A (does not belong to A) as
a¢ A.

The symbol € is the set membership symbol.

A set can either be defined explicitely by listing its elements within curly braces (the
symbols { and }) or as a collection of objects satisfying a certain property. For example, the
set C consisting of the colors red, blue, green is given by

C' = {red, blue, green}.
Because the order of elements in a set is irrelevant, the set C'is also given by
C = {green, red, blue}.

In fact, a moment of reflexion reveals that there are six ways of writing the set C.
If we denote by N the set of natural numbers

N=1{0,1,2,3,...},

then the set F of even integers can be defined in terms of the property even of being even
by
E ={n €N |even(n)}.

More generally, given some property P and some set X, we denote the set of all elements of
X that satisfy the property P by

{reX|P(x)} or {z|xeXAP(x)}

When are two sets A and B equal? The answer is given by the first proof template of
set theory, called the Extensionality Axiom.

Proof Template 1.18. (Extensionality Axziom)

Two sets A and B are equal iff they have exactly the same elements; that is, every element
of A is an element of B and conversely. This can be written more formally as

Ve(r € A=z € B)AVz(x € B=z € A).

1.11. SETS AND SET OPERATIONS 51

There is a special set having no elements at all, the empty set, denoted (). The empty
set is characterized by the property
Va(z ¢ 0).

Next we define the notion of inclusion between sets

Definition 1.5. Given any two sets, A and B, we say that A is a subset of B (or that A is
included in B), denoted A C B, iff every element of A is also an element of B, that is,

Vr(r € A=z € B).

We say that A is a proper subset of B it A C B and A # B. This implies that that there is
some b € B with b ¢ A. We usually write A C B.

For example, if A = {green, blue} and C = {green, red, blue}, then
ACC.

Note that the empty set is a subset of every set.
Observe the important fact that equality of two sets can be expressed by

A=B iff ACB and B CA.

Proving that two sets are equal may be quite complicated if the definitions of these sets
are complex, and the above method is the safe one.

If a set A has a finite number of elements, then this number (a natural number) is called
the cardinality of the set and is denoted by |A| (sometimes by card(A)). Otherwise, the set
is said to be infinite. The cardinality of the empty set is 0.

Sets can be combined in various ways, just as numbers can be added, multiplied, etc.
However, operations on sets tend to minic logical operations such as disjunction, conjunction,
and negation, rather than the arithmetical operations on numbers. The most basic operations
are union, intersection, and relative complement.

Definition 1.6. For any two sets A and B, the union of A and B is the set AU B defined
such that
re AUB iff (x € A)V(x € B).

This reads, is a member of AU B if either x belongs to A or = belongs to B (or both). We
also write
AuB={z|xz€ A or xe€ B}

The intersection of A and B is the set AN B defined such that
reANB iff (zxe€ A)A(x € B).
This reads, x is a member of A N B if x belongs to A and x belongs to B. We also write

ANB={z|x €A and =z € B}.

52 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

The relative complement (or set difference) of A and B is the set A — B defined such that
reA—-—B iff (x€ A)A-(x € B).

This reads, x is a member of A — B if x belongs to A and x does not belong to B. We also
write

A-B={x|z€A and z ¢ B}.
For example, if A =1{0,2,4,6} and B ={0,1,3,5}, then

AUB ={0,1,2,3,4,5,6}
ANB = {0}
A— B={214,6}.

Two sets A, B are said to be disjoint if AN B = (). It is easy to see that if A and B are
two finite sets and if A and B are disjoint, then

|AU B| = |A| + |B|.
In general, by writing
AUB=(ANB)U(A—-B)U(B - A),
if A and B are finite, it can be shown that
|JAUB| = |A|+ |B| - |AN B].

The situation in which we maniplulate subsets of some fixed set X often arises, and it is
useful to introduce a special type of relative complement with respect to X. For any subset
A of X, the complement A of A in X is defined by

A=X— A,
which can also be expressed as
A={reX |z ¢ A}

Using the union operation, we can form bigger sets by taking unions with singletons. For
example, we can form

{a,b,c} = {a,b} U{c}.

Remark: We can systematically construct bigger and bigger sets by the following method:
given any set A let
At =AU {A}.

1.11. SETS AND SET OPERATIONS 93

If we start from the empty set, we obtain the sets

0, {03, {0,103}, {0,{0},{0,{0}}}, ete.

These sets can be used to define the natural numbers and the 4+ operation corresponds to
the successor function on the natural numbers (i.e., n +— n +1).

The algebraic properties of union, intersection, and complementation are inherited from
the properties of disjunction, conjunction, and negation. The following proposition lists
some of the most important properties of union, intersection, and complementation. Some
of these properties are versions of Proposition 1.2 for subsets.

Proposition 1.8. The following equations hold for all sets A, B,C':

AUupd=A
ANP=10
AUA=A
ANA=A
AUB=BUA
ANB=BNA.

The last two assert the commutativity of U and N. We have distributivity of N over U and
of U over N:

AN(BUC)=(ANB)U(ANC)
AU(BNC)=(AUB)N(AUCQ).

o~~~

We have associativity of N and U:

AN(BNC)=(ANB)NC
AU(BUC) =(AUB)UC.

Proof. We use Proposition 1.2. Let us prove that AN (BUC) = (ANB)U(ANC), leaving
the proof of the other equations as an exercise. We prove the two inclusions AN (BUC) C
(ANB)U(ANC)and (ANB)U(ANC)C AN (BUCQO).
Assume that x € AN (B UC). This means that x € A and x € B U () that is,
(xe A)AN((x € B)V (z € C)).
Using the distributivity of A over V, we obtain
(x e A)AN(x € B))V((x € A)A(z € C)).

But the above says that x € (AN B) U (AN C), which proves our first inclusion.

o4 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Conversely assume that z € (ANB)U(ANC'). This means that x € (ANB) or z € (ANC);
that is,
(xe A)N(xeB))V(xe AN (xel)).

Using the distributivity of A over V (in the other direction), we obtain
(x e A)A((x € B) V (xz € C)),

which says that z € AN (B U C), and proves our second inclusion.
Note that we could have avoided two arguments by proving that x € AN (B U C) iff
(ANB)U(ANC) using the fact that the distributivity of A over V is a logical equivalence. [

We also have the following version of Proposition 1.1 for subsets.

Proposition 1.9. For every set X and any two subsets A, B of X, the following identities
hold:

The last two are de Morgan laws.

Another operation is the power set formation. It is indeed a “powerful” operation, in the
sense that it allows us to form very big sets.

Definition 1.7. Given any set A, there is a set P(A) also denoted 24 called the power set
of A whose members are exactly the subsets of A; that is,

X ePA) iff X CA
For example, if A = {a,b,c}, then

P(A) = {0, {a}, {b},{c},{a, 0} {a, c}, {b,c} {a, b, c}},

a set containing eight elements. Note that the empty set and A itself are always members

of P(A).

Remark: If A has n elements, it is not hard to show that P(A) has 2" elements. For this
reason, many people, including me, prefer the notation 24 for the power set of A.

It is possible to define the union of possibly infinitely many sets. Given any set X (think
of X as a set of sets), there is a set | J X defined so that

rel|JX iff IB(BeXAz€eB)

This says that | J X consists of all elements that belong to some member of X.

1.12. INDUCTION AND WELL-ORDERING PRINCIPLE 95

If we take X = {A, B}, where A and B are two sets, we see that
| {A. B} =AuB.
Observe that

Ay =4, [J{A... 4}=40--UA4,

and in particular, (J0 = 0.
We can also define infinite intersections. For every nonempty set X there is a set (| X
defined by

re()X iff VB(BEX=xz¢€B).

Observe that
(WA, B}=ANB, [[Ai...,A}=AN--NA,

However, (0 is undefined. Indeed, (0 would have to be the set of all sets, since the
condition
VB(Be€ = x € B)

holds trivially for all B (as the empty set has no members). However there is no such set,
because its existence would lead to a paradox! This point is discussed is Chapter 2. Let us
simply say that dealing with big infinite sets is tricky.

Thorough and yet accessible presentations of set theory can be found in Halmos [29] and
Enderton [13].

We close this chapter with a quick discussion of induction on the natural numbers.

1.12 Induction and The Well-Ordering Principle on
the Natural Numbers

Recall that the set of natural numbers is the set N given by
N=1{0,1,2,3,...}.

In this chapter we do not attempt to define the natural numbers from other concepts, such
as sets. We assume that they are “God given.” One of our main goals is to prove properties
of the natural numbers. For this, certain subsets called inductive play a crucial role.

Definition 1.8. We say that a subset S of N is inductive iff
(1) 0e S

(2) For every n € S, we have n +1 € S.

26 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

One of the most important proof principles for the natural numbers is the following:

Proof Template 1.19. (Induction Principle for N)
Every inductive subset S of N is equal to N itself; that is S = N.

Let us give one example illustrating Proof Template 1.19.

Example 1.23. We prove that for every real number a # 1 and every natural number n,

we have
an—i—l -1

l+a+---+ad" =
a—1

This can also be written as
an-i—l -1

2 0= ()
=1

with the convention that a® = 1, even if @ = 0. Let S be the set of natural numbers n for
which the identity (x) holds, and let us prove that S is inductive.

First we need to prove that 0 € S. The lefthand side becomes a” = 1, and the righthand
side is (a — 1)/(a — 1), which is equal to 1 since we assume that a # 1. Therefore, (%) holds
for n = 0; that is, 0 € S.

Next assume that n € S (this is called the induction hypothesis). We need to prove that

n+1¢&S. Observe that
n+1 n

E az — E az ‘I‘ an—‘rl‘
i=1 i=1
Now since we assumed that n € S, we have
n
; an—i—l -1
E a' = ——,
: a—1
i=1

and we deduce that

n+1 n
E:GIZE az+an+1
i=1 =1
n+l
a—1
a™tl — 1 4 q"t? — g™t
a—1
an-i—? -1
a—1

This proves that n + 1 € S. Therefore, S is inductive, and so S = N.

Another important property of N is the so-called well-ordering principle. This principle
turns out to be equivalent to the induction principle for N. In this chapter we accept the
well-ordering principle without proof.

1.13. SUMMARY 57

Proof Template 1.20. (Well-Ordering Principle for N)
Every nonempty subset of N has a smallest element.

Proof Template 1.20 can be used to prove properties of N by contradiction. For example,
consider the property that every natural number n is either even or odd.

For the sake of contradiction (here, we use the proof-by—contradiction principle), assume
that our statement does not hold. If so, the subset S of natural numbers n for which n is
neither even nor odd is nonempty. By the well-ordering principle, the set S has a smallest
element, say m.

If m = 0, then 0 would be neither even nor odd, a contradiction since 0 is even. Therefore,
m > 0. But then, m — 1 ¢ S, since m is the smallest element of S. This means that m — 1
is either even or odd. But if m — 1 is even, then m — 1 = 2k for some k, so m = 2k + 1 is
odd, and if m — 1 is odd, then m — 1 = 2k + 1 for some k, so m = 2(k + 1) is even. We just
proved that m is either even or odd, contradicting the fact that m € S. Therefore, S must
be empty and we proved the desired result.

We conclude this section with one more example showing the usefulness of the well-
ordering principle.

Example 1.24. Suppose we have a property P(n) of the natural numbers such that P(n)
holds for at least some n, and that for every n such that P(n) holds and n > 100, then
there is some m < n such that P(m) holds. We claim that there is some m < 100 such that
P(m) holds. Let S be the set of natural numbers n such that P(n) holds. By hypothesis,
there is some n such that P(n) holds, so S is nonempty. By the well-ordering principle, the
set S has a smallest element, say m. For the sake of contradiction, assume that m > 100.
Then since P(m) holds and m > 100, by the hypothesis there is some m’ < m such that
P(m') holds, contradicting the fact that m is the smallest element of S. Therefore, by the
proof—-by—contradiction principle, we conclude that m < 100, as claimed.

@ Beware that the well-ordering principle is false for Z, because Z does not have a smallest
element.

1.13 Summary

The main goal of this chapter is to describe how to construct proofs in terms of proof
templates. A brief and informal introduction to sets and set operations is also provided.

e We describe the syntax of propositions.
e We define the proof templates for implication.

e We show that deductions proceed from assumptions (or premises) according to proof
templates.

o8

CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

We introduce falsity 1 and negation —P as an abbrevation for P =1. We describe
the proof templates for conjunction, disjunction, and negation.

We show that one of the rules for negation is the proof-by—contradiction rule (also
known as RAA). It plays a special role, in the sense that it allows for the construction
of indirect proofs.

We present the proof-by—contrapositive rule.
We present the de Morgan laws as well as some basic properties of V and A.
We give some examples of proofs of “real” statements.

We give an example of a nonconstructive proof of the statement: there are two irrational
numbers, a and b, so that a’ is rational.

We explain the truth-value semantics of propositional logic.

We define the truth tables for the boolean functions associated with the logical con-
nectives (and, or, not, implication, equivalence).

We define the notion of validity and tautology.
We discuss soundness (or consistency) and completeness.
We state the soundness and completeness theorems for propositional classical logic.

We explain how to use counterexamples to prove that certain propositions are not
provable.

We add first-order quantifiers (“for all” V and “there exists” 3) to the language of
propositional logic and define first-order logic.

We describe free and bound variables.

We describe Proof Templates for the quantifiers.

We prove some “de Morgan”-type rules for the quantified formulae.
We introduce sets and explain when two sets are equal.

We define the notion of subset.

We define some basic operations on sets: the union AU B, intersection AN B, and
relative complement A — B.

We define the complement of a subset of a given set.

1.13. PROBLEMS 99

e We prove some basic properties of union, intersection and complementation, including
the de Morgan laws.

e We define the power set of a set.
e We define inductive subsets of N and state the induction principle for N.

e We state the well-ordering principle for N.

Problems

Problem 1.1. Give a proof of the proposition (P = Q) = ((P = (@ = R)) = (P = R)).

Problem 1.2. (a) Prove the “de Morgan” laws:

—I(P/\Q)E—!P\/_'Q
~(PVQ)=-PA-Q.

(b) Prove the propositions (P A =Q) = =(P = Q) and ~(P = Q) = (P A Q).

Problem 1.3. (a) Prove the equivalences

PVP=P

PANP=P

PvQ=QVP

PANQ=QANP.
(b) Prove the equivalences

PAN(PVQ)=P

PV(PAQ)=P.

Problem 1.4. Prove the propositions

P=(Q=(PAQ))
(P=Q)= ((P=-Q)=—P)
(P=R) = (Q=R)= ((PVQ)=R)).

Problem 1.5. Prove the following equivalences:

PAP=Q) = PAQ
QNP=Q) = Q
(P=(QAR) = ((P=Q)A(P=R)).

60 CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Problem 1.6. Prove the propositions

(P=Q)=(=PVQ)
—~(==P = P).

Problem 1.7. Prove the proposition =—(P V =P).
Problem 1.8. Prove the propositions

(PV—-P)=(-——P=P) and (——P= P)= (PV-P).
Problem 1.9. Prove the propositions

(P=Q)=-—(-PVQ) and (-P=Q)=——(PVQ).
Problem 1.10. (a) Prove the distributivity of A over V and of V over A:

PA(QVR)=(PANQ)V(PAR)
PV(QANR)=(PVQ)AN(PVR).

(b) Prove the associativity of A and V:

PAQAR)=(PAQ)AR
PV(QVR)=(PVQ)VR.

Problem 1.11. (a) Let X = {X; | 1 < ¢ < n} be a finite family of sets. Prove that if
XiJrl - Xz for all i, with 1 < 1 <n-— 1, then

ﬂX:&.

Prove that if X; C X;,; for all 7, with 1 <7 <mn — 1, then

UX:&.

(b) Recall that Ny = N—{0} = {1,2,3,...,n,...}. Give an example of an infinite family
of sets, X = {X; | ¢ € N} }, such that

1. X;u1 C X, foralli>1.

2. X, is infinite for every ¢ > 1.

3. ()X has a single element.

(c) Give an example of an infinite family of sets, X = {X; | i € N}, such that

1. XiJrl g Xz for all ¢ 2 1.

1.13. PROBLEMS 61

2. X, is infinite for every ¢ > 1.
3. X =0.

Problem 1.12. An integer, n € 7Z, is divisible by 3 iff n = 3k, for some k € Z. Thus (by the
division theorem), an integer, n € Z, is not divisible by 3 iff it is of the form n = 3k+1, 3k+2,
for some k € Z (you don’t have to prove this).

Prove that for any integer, n € Z, if n? is divisible by 3, then n is divisible by 3.

Hint. Prove the contrapositive. If n of the form n = 3k + 1,3k + 2, then so is n? (for a
different k).

Problem 1.13. Use Problem 1.12 to prove that v/3 is irrational, that is, v/3 can’t be written
as /3 = p/q, with p,q € Z and q # 0.

Problem 1.14. Prove that b = log, 9 is irrational. Then, prove that a = v/2 and b = log, 9
are two irrational numbers such that @’ is rational.

62

CHAPTER 1. MATHEMATICAL REASONING AND BASIC LOGIC

Chapter 2

Mathematical Reasoning And Logic,
A Deeper View

2.1 Introduction

This chapter is a more advanced and more formal version of Chapter 1. The reader should
review Chapter 1 before reading this chapter which relies rather heavily on it.

As in Chapter 1 , the goal of this chapter is to provide an answer to the question, “What
is a proof?” We do so by formalizing the basic rules of reasoning that we use, most of the
time subconsciously, in a certain kind of formalism known as a natural deduction system. We
give a (very) quick introduction to mathematical logic, with a very deliberate proof-theoretic
bent, that is, neglecting almost completely all semantic notions, except at a very intuitive
level. We still feel that this approach is fruitful because the mechanical and rules-of-the-
game flavor of proof systems is much more easily grasped than semantic concepts. In this
approach, we follow Peter Andrews’ motto [1]:

“To truth through proof.”

We present various natural deduction systems due to Prawitz and Gentzen (in more
modern notation), both in their intuitionistic and classical version. The adoption of natural
deduction systems as proof systems makes it easy to question the validity of some of the
inference rules, such as the principle of proof by contradiction. In brief, we try to explain to
our readers the difference between constructive and classical (i.e., not necessarily construc-
tive) proofs. In this respect, we plant the seed that there is a deep relationship between
constructive proofs and the notion of computation (the “Curry—Howard isomorphism” or
“formulae-as-types principle,” see Section 2.12 and Howard [32]).

63

64 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

2.2 Inference Rules, Deductions, The Proof Systems
N7 and NG

In this section we review some basic proof principles and attempt to clarify, at least infor-
mally, what constitutes a mathematical proof.

In order to define the notion of proof rigorously, we would have to define a formal language
in which to express statements very precisely and we would have to set up a proof system
in terms of axioms and proof rules (also called inference rules). We do not go into this as
this would take too much time. Instead, we content ourselves with an intuitive idea of what
a statement is and focus on stating as precisely as possible the rules of logic that are used in
constructing proofs. Readers who really want to see a thorough (and rigorous) introduction
to logic are referred to Gallier [21], van Dalen [58], or Huth and Ryan [33], a nice text with
a computer science flavor. A beautiful exposition of logic (from a proof-theoretic point of
view) is also given in Troelstra and Schwichtenberg [57], but at a more advanced level. Frank
Pfenning has also written an excellent and more extensive introduction to constructive logic.
This is available on the web at

http://www.andrew.cmu.edu/course/15-317/handouts/logic.pdf

We also highly recommend the beautifully written little book by Timothy Gowers (Fields
Medalist, 1998) [28] which, among other things, discusses the notion of proof in mathematics
(as well as the necessity of formalizing proofs without going overboard).

In mathematics and computer science, we prove statements. Recall that statements
may be atomic or compound, that is, built up from simpler statements using logical connec-
tives, such as implication (if-then), conjunction (and), disjunction (or), negation (not), and
(existential or universal) quantifiers.

As examples of atomic statements, we have:

1. “A student is eager to learn.”
2. “The product of two odd integers is odd.”

Atomic statements may also contain “variables” (standing for arbitrary objects). For
example

1. human(z): “x is a human.”
2. needs-to-drink(z): “z needs to drink.”
An example of a compound statement is
human(z) = needs-to-drink(z).

In the above statement, = is the symbol used for logical implication. If we want to assert
that every human needs to drink, we can write

Va(human(z) = needs-to-drink(x));

2.2. INFERENCE RULES, DEDUCTIONS, PROOF SYSTEMS N;; AND NG3; 65

this is read: “For every z, if x is a human then x needs to drink.”
If we want to assert that some human needs to drink we write

Jz(human(x) = needs-to-drink(x));

this is read: “There is some z such that, if x is a human then = needs to drink.”

We often denote statements (also called propositions or (logical) formulae) using letters,
such as A, B, P, @, and so on, typically upper-case letters (but sometimes Greek letters, ¢,
¥, ete.).

Recall from Section 1.2 that Compound statements are defined as follows: If P and Q)
are statements, then

1. the conjunction of P and @ is denoted P A @ (pronounced, P and @),
2. the disjunction of P and @ is denoted PV @ (pronounced, P or Q),

3. the implication of P and @ is denoted by P = @ (pronounced, if P then @, or P
implies Q).

Instead of using the symbol =, some authors use the symbol — and write an implication
as P —). We do not like to use this notation because the symbol — is already used in
the notation for functions (f: A — B). The symbol D is sometimes used instead of =. We
mostly use the symbol =.

We also have the atomic statements L (falsity), think of it as the statement that is false
no matter what; and the atomic statement T (truth), think of it as the statement that is
always true.

The constant L is also called falsum or absurdum. It is a formalization of the notion of
absurdity inconsistency (a state in which contradictory facts hold).

Given any proposition P it is convenient to define

4. the negation =P of P (pronounced, not P) as P = 1. Thus, =P (sometimes denoted
~ P) is just a shorthand for P = 1. We write =P = (P =1).

The intuitive idea is that =P = (P = 1) is true if and only if P is false. Actually, because
we don’t know what truth is, it is “safer” (and more constructive) to say that =P is provable
if and only if for every proof of P we can derive a contradiction (namely, L is provable). In
particular, P should not be provable. For example, =(Q A —Q) is provable (as we show later,
because any proof of @ A =@ yields a proof of 1). However, the fact that a proposition P
is not provable does not imply that =P is provable. There are plenty of propositions such
that both P and =P are not provable, such as () = R, where () and R are two unrelated
propositions (with no common symbols).

Whenever necessary to avoid ambiguities, we add matching parentheses: (PAQ), (PVQ),
(P = Q). For example, PVQAR is ambiguous; it means either (PV(QAR)) or (PVQ)AR).

Another important logical operator is equivalence.

If P and @) are statements, then

66 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

5. the equivalence of P and @ is denoted P = @ (or P <= @)); it is an abbreviation for
(P = Q)N (Q = P). We often say “P if and only if Q" or even “P iff Q" for P = Q.

To prove a logical equivalence P = (), we have to prove both implications P =) and
Q= P.

As discussed in Sections 1.2 and 1.3, the meaning of the logical connectives (A, V, =, -, =)
is intuitively clear. This is certainly the case for and (A), since a conjunction P A @) is true
if and only if both P and @) are true (if we are not sure what “true” means, replace it by
the word “provable”). However, for or (V), do we mean inclusive or or exclusive or? In the
first case, P V @) is true if both P and () are true, but in the second case, P V () is false
if both P and @ are true (again, in doubt change “true” to “provable”). We always mean
inclusive or. The situation is worse for implication (=). When do we consider that P = @
is true (provable)? The answer is that it depends on the rules! The “classical” answer is
that P = @ is false (not provable) if and only if P is true and @ is false.

Of course, there are problems with the above paragraph. What does truth have to do
with all this?” What do we mean when we say, “P is true”? What is the relationship between
truth and provability?

These are actually deep (and tricky) questions whose answers are not so obvious. One
of the major roles of logic is to clarify the notion of truth and its relationship to provability.
We avoid these fundamental issues by dealing exclusively with the notion of proof. So, the
big question is: what is a proof?

An alternative view (that of intuitionistic logic) of the meaning of implication is that
any proof of P = () can be used to construct a proof of) given any proof of P. As a
consequence of this interpretation, we show later that if =P is provable, then P = () is also
provable (instantly) whether or not @) is provable. In such a situation, we often say that
P = @ is vacuously provable.

2.3 Proof Rules, Deduction and Proof Trees for Impli-
cation

During the process of constructing a proof, it may be necessary to introduce a list of hy-
potheses, also called premises (or assumptions), which grows and shrinks during the proof.
When a proof is finished, it should have an empty list of premises. As we show shortly, this
amounts to proving implications of the form

(Pl/\PQ/\"'/\Pn>:>Q.

However, there are certain advantages in defining the notion of proof (or deduction) of a
proposition from a set of premises. Sets of premises are usually denoted using upper-case
Greek letters such as I" or A.

Roughly speaking, a deduction of a proposition () from a multiset of premises I' is a
finite labeled tree whose root is labeled with @ (the conclusion), whose leaves are labeled

2.3. PROOF RULES, DEDUCTION AND PROOF TREES FOR IMPLICATION 67

B |
-

Figure 2.1: David Hilbert, 1862-1943 (left and middle), Gerhard Gentzen, 1909-1945 (middle
right), and Dag Prawitz, 1936— (right)

with premises from I' (possibly with multiple occurrences), and such that every interior node
corresponds to a given set of proof rules (or inference rules). In Chapter 1, proof rules were
called proof templates. Certain simple deduction trees are declared as obvious proofs, also
called axioms. The process of managing the list of premises during a proof is a bit technical
and can be achieved in various ways. We will present a method due to Prawitz and another
method due to Gentzen.

There are many kinds of proof systems: Hilbert-style systems, natural-deduction systems,
Gentzen sequents systems, and so on. We describe a so-called natural deduction system
invented by G. Gentzen in the early 1930s (and thoroughly investigated by D. Prawitz in
the mid 1960s).

The major advantage of this system is that it captures quite nicely the “natural” rules of
reasoning that one uses when proving mathematical statements. This does not mean that it
is easy to find proofs in such a system or that this system is indeed very intuitive. We begin
with the inference rules for implication and first consider the following question.

How do we proceed to prove an implication, A = B? The proof rule corresponds to
Proof Template 1.2 (Implication—Intro) and the reader may want to first review the examples
discussed in Section 1.3. The rule, called =-intro, is: assume that A has already been proven
and then prove B, making as many uses of A as needed.

An important point is that a proof should not depend on any “open” assumptions and
to address this problem we introduce a mechanism of “discharging” or “closing” premises,
as we discussed in Section 1.3.

What this means is that certain rules of our logic are required to discard (the usual
terminology is “discharge”) certain occurrences of premises so that the resulting proof does
not depend on these premises.

Technically, there are various ways of implementing the discharging mechanism but they
all involve some form of tagging (with a “new” variable). For example, the rule formalizing
the process that we have just described to prove an implication, A = B, known as =-
introduction, uses a tagging mechanism described precisely in Definition 2.1.

Now, the rule that we have just described is not sufficient to prove certain propositions
that should be considered provable under the “standard” intuitive meaning of implication.
For example, after a moment of thought, I think most people would want the proposition

68 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

P = ((P = Q) = Q) to be provable. If we follow the procedure that we have advocated,
we assume both P and P =) and we try to prove (). For this, we need a new rule, namely:

If P and P = Q are both provable, then Q) is provable.

The above rule is known as the =-elimination rule (or modus ponens) and it is formalized
in tree-form in Definition 2.1. It corresponds to Proof Template 1.3.

We now make the above rules precise and for this, we represent proofs and deductions as
certain kinds of trees and view the logical rules (inference rules) as tree-building rules. In the
definition below, the expression I', P stands for the multiset obtained by adding one more
occurrence of P to I'. So, P may already belong to I'. Similarly, if I' and A are two multisets
of propositions, then I', A denotes the union of I' and A as a multiset, which means that
if P occurs k; times in I" and P occurs ko times in A, then P occurs ki + ko times in I', A
(k1,ke € N).

A picture such as

A
D
P

represents a deduction tree D whose root is labeled with P and whose leaves are labeled with
propositions from the multiset A (a set possibly with multiple occurrences of its members).
Some of the propositions in A may be tagged by variables. The list of untagged propositions
in A is the list of premises of the deduction tree. We often use an abbreviated version of the
above notation where we omit the deduction D, and simply write

A
P.

For example, in the deduction tree below,
P=qQ P
P=(R=25) P Q=R Q

R=S5 R
S

no leaf is tagged, so the premises form the multiset
A={P=(R=15),P,Q= R,P=Q,P},

with two occurrences of P, and the conclusion is S.

As we saw in our earlier example, certain inferences rules have the effect that some of
the original premises may be discarded; the traditional jargon is that some premises may
be discharged (or closed). This is the case for the inference rule whose conclusion is an
implication. When one or several occurrences of some proposition P are discharged by an
inference rule, these occurrences (which label some leaves) are tagged with some new variable
not already appearing in the deduction tree. If x is a new tag, the tagged occurrences of P

2.3. PROOF RULES, DEDUCTION AND PROOF TREES FOR IMPLICATION 69

are denoted P* and we indicate the fact that premises were discharged by that inference by
writing immediately to the right of the inference bar. For example,

Pr Q
Q@
P=qQ

is a deduction tree in which the premise P is discharged by the inference rule. This deduction
tree only has () as a premise, inasmuch as P is discharged.

What is the meaning of the horizontal bars? Actually, nothing really. Here, we are victims
of an old habit in logic. Observe that there is always a single proposition immediately under
a bar but there may be several propositions immediately above a bar. The intended meaning
of the bar is that the proposition below it is obtained as the result of applying an inference
rule to the propositions above it. For example, in

Q=R Q
R

the proposition R is the result of applying the =-elimination rule (see Definition 2.1 below)
to the two premises () = R and (). Thus, the use of the bar is just a convention used by
logicians going back at least to the 1900s. Removing the bar everywhere would not change
anything in our trees, except perhaps reduce their readability. Most logic books draw proof
trees using bars to indicate inferences, therefore we also use bars in depicting our proof trees.

Because propositions do not arise from the vacuum but instead are built up from a set
of atomic propositions using logical connectives (here, =), we assume the existence of an
“official set of atomic propositions,” or set of propositional symbols, PS = {Pq, Py, P3,...}.
So, for example, P; = P, and P; = (Py = P;) are propositions. Typically, we use upper-
case letters such as P,Q, R, S, A, B,C, and so on, to denote arbitrary propositions formed
using atoms from PS.

Definition 2.1. The axioms, inference rules, and deduction trees for implicational logic are
defined as follows.

Axioms.

(i) Every one-node tree labeled with a single proposition P is a deduction tree for P with
set of premises {P}.

(ii) The tree

T, P
P

is a deduction tree for P with multiset set of premises I, P.

The above is a concise way of denoting a two-node tree with its leaf labeled with the
multiset consisting of P and the propositions in I', each of these propositions (including P)
having possibly multiple occurrences but at least one, and whose root is labeled with P. A
more explicit form is

70 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

k ki kn
Pla"' 7P17"' a-P’ia"' a-P’iv"' aan"' 7Pn
P;
where ki,...,k, > 1 and n > 1. This axiom says that we always have a deduction of P;
from any set of premises including P;. They correspond to the Proof Template 1.1 (Trivial

Deduction).
The =-introduction rule.
If D is a deduction tree for) from the premises in I' and one or more occurrences of the
proposition P, then
r, p*
D
Q

P=Q

is a deduction tree for P = @ from T’

This proof rule is a formalization of Proof Template 1.2 (Implication—Intro). Note that
this inference rule has the additional effect of discharging a nonempty set of occurrences of
the premise P (which label leaves of the deduction D). These occurrences are tagged with
a new variable x, and the tag z is also placed immediately to the right of the inference bar.
This is a reminder that the deduction tree whose conclusion is P =) no longer has the
occurrences of P labeled with x as premises.

The =-elimination rule.

If D, is a deduction tree for P = () from the premises I' and D5 is a deduction for P
from the premises A, then

r A

Dy D,

P=qQ P
Q

is a deduction tree for () from the premises in the multiset I, A. This rule is also known as
modus ponens. This proof rule is a formalization of Proof Template 1.3 (Implication—Elim).

In the above axioms and rules, I' or A may be empty; P, () denote arbitrary propositions
built up from the atoms in PS; and D, D;, and D, denote deductions, possibly a one-node
tree.

A deduction tree is either a one-node tree labeled with a single proposition or a tree
constructed using the above axioms and rules. A proof tree is a deduction tree such that all
its premises are discharged. The above proof system is denoted N (here, the subscript m
stands for minimal, referring to the fact that this a bare-bones logical system).

Observe that a proof tree has at least two nodes. A proof tree Il for a proposition P may
be denoted

2.3. PROOF RULES, DEDUCTION AND PROOF TREES FOR IMPLICATION 71

I1
P

with an empty set of premises (we don’t display () on top of IT). We tend to denote deductions
by the letter D and proof trees by the letter II, possibly subscripted.

We emphasize that the =-introduction rule says that in order to prove an implication
P = (@ from a set of premises I', we assume that P has already been proven, add P to the
premises in I', and then prove () from I" and P. Once this is done, the premise P is deleted.

This rule formalizes the kind of reasoning that we all perform whenever we prove an
implication statement. In that sense, it is a natural and familiar rule, except that we per-
haps never stopped to think about what we are really doing. However, the business about
discharging the premise P when we are through with our argument is a bit puzzling. Most
people probably never carry out this “discharge step” consciously, but such a process does
take place implicitly.

Remarks:

1. Only the leaves of a deduction tree may be discharged. Interior nodes, including the
root, are never discharged.

2. Once a set of leaves labeled with some premise P marked with the label z has been
discharged, none of these leaves can be discharged again. So, each label (say z) can
only be used once. This corresponds to the fact that some leaves of our deduction trees
get “killed off” (discharged).

3. A proof is a deduction tree whose leaves are all discharged (I" is empty). This corre-
sponds to the philosophy that if a proposition has been proven, then the validity of
the proof should not depend on any assumptions that are still active. We may think
of a deduction tree as an unfinished proof tree.

4. When constructing a proof tree, we have to be careful not to include (accidentally)
extra premises that end up not being discharged. If this happens, we probably made a
mistake and the redundant premises should be deleted. On the other hand, if we have
a proof tree, we can always add extra premises to the leaves and create a new proof
tree from the previous one by discharging all the new premises.

5. Beware, when we deduce that an implication P = () is provable, we do not prove
that P and @ are provable; we only prove that if P is provable, then @) is provable.

The =-elimination rule formalizes the use of auxiliary lemmas, a mechanism that we use
all the time in making mathematical proofs. Think of P = @) as a lemma that has already
been established and belongs to some database of (useful) lemmas. This lemma says if I can
prove P then I can prove (). Now, suppose that we manage to give a proof of P. It follows
from the =--elimination rule that () is also provable.

72 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

Observe that in an introduction rule, the conclusion contains the logical connective as-
sociated with the rule, in this case, =; this justifies the terminology “introduction”. On the
other hand, in an elimination rule, the logical connective associated with the rule is gone
(although it may still appear in @)). The other inference rules for A, Vv, and the like, follow
this pattern of introduction and elimination.

2.4 Examples of Proof Trees

(a) Here is a proof tree for P = P:
P"E

P
P=P

So, P = P is provable; this is the least we should expect from our proof system! Note
that

P:I?
P=P

is also a valid proof tree for P = P, because the one-node tree labeled with P is a deduction

tree.
(b) Here is a proof tree for (P = Q) = ((Q = R) = (P = R)):

(P = Q) pP*
(Q@= R)Y Q
R
P=R

(@ = R)= (P=R)

(P=0Q)=(Q=R)=(P=R)

In order to better appreciate the difference between a deduction tree and a proof tree,
consider the following two examples.

1. The tree below is a deduction tree beause two of its leaves are labeled with the premises
P = @ and) = R, that have not been discharged yet. So this tree represents a deduction
of P = R from the set of premises I' = {P = Q,Q = R} but it is not a proof tree because
I’ # (). However, observe that the original premise P, labeled z, has been discharged.

P=qQ pP*
Q=R Q

R

P=R

xT

2.4. EXAMPLES OF PROOF TREES 73

2. The next tree was obtained from the previous one by applying the =--introduction
rule which triggered the discharge of the premise () = R labeled y, which is no longer active.
However, the premise P = (@ is still active (has not been discharged yet), so the tree below

is a deduction tree of () = R) = (P = R) from the set of premises I' = {P = @Q}. It is
not yet a proof tree inasmuch as I' # 0.

P=qQ pP*
Q= R)Y Q
R xX
P=R

(@ = R)= (P=R)

Finally, one more application of the =-introduction rule discharged the premise P = @),
at last, yielding the proof tree in (b).

(c) This example illustrates the fact that different proof trees may arise from the same set
of premises { P, Q}. For example, here are proof trees for Q = (P = P) and P = (Q = P):

PrQY
P
P=P

Q= (P=P)

and
P QY
P
Q=P

P=(Q=P)

Similarly, there are six proof trees with a conclusion of the form

A= (B= (C=P))
begining with the deduction
Pr. QY R
P

where A, B, C correspond to the six permutations of the premises P, Q, R.
Note that we would not have been able to construct the above proofs if Axiom (ii),

T, P

P

74 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

were not available. We need a mechanism to “stuft” more premises into the leaves of our
deduction trees in order to be able to discharge them later on. We may also view Axiom (ii)
as a weakening rule whose purpose is to weaken a set of assumptions. Even though we are
assuming all of the proposition in I' and P, we only use the assumption P. The necessity
of allowing multisets of premises is illustrated by the following proof of the proposition

P=(P=(Q=(Q=(P=P)):
Pu7 P’U’PyJQ’LU7Q]}
P

P=P
Q= (P=P)

)

Q= (Q=(P=P))
P=(Q=(Q=(P=P)
P=(P=(Q@=(@Q=(P=P)

(d) In the next example which shows a proof of
(A= (B=0)=((A=B)= (A=0()),

the two occurrences of A labeled = are discharged simultaneously:

(A= (B=0)) A" (A= B)Y A*
B=C B
C

A=C
(A= B)= (A= C)

(A= (B=0))= (A= B)= (A= 0))

(e) In contrast to Example (d), in the proof tree below with conclusion
A= ((A:>(B:>C)) = ((A:>B):>(A:>C))>,

the two occurrences of A are discharged separately. To this effect, they are labeled differently.

2.4. EXAMPLES OF PROOF TREES 75

(A= (B= Q) A® (A= B) At
B=C B
C

A=C
(A= B)= (A= C)

(A= (B=0))= (A= B)= (A= 0))

A:>((A:>(B:>C)):>((A:>B):>(A:>C)))

How do we find these proof trees? Well, we could try to enumerate all possible proof
trees systematically and see if a proof of the desired conclusion turns up. Obviously, this is
a very inefficient procedure and moreover, how do we know that all possible proof trees will
be generated and how do we know that such a method will terminate after a finite number
of steps (what if the proposition proposed as a conclusion of a proof is not provable)?

Finding an algorithm to decide whether a proposition is provable is a very difficult prob-
lem and for sets of propositions with enough “expressive power” (such as propositions in-
volving first-order quantifiers), it can be shown that there is no procedure that will give an
answer in all cases and terminate in a finite number of steps for all possible input propo-
sitions. We come back to this point in Section 2.12. However, for the system N7 such a
procedure exists but it is not easy to prove that it terminates in all cases and in fact, it can
take a very long time.

What we did, and we strongly advise our readers to try it when they attempt to construct
proof trees, is to construct the proof tree from the bottom up, starting from the proposition
labeling the root, rather than top-down, that is, starting from the leaves. During this
process, whenever we are trying to prove a proposition P = (), we use the =-introduction
rule backward, that is, we add P to the set of active premises and we try to prove @) from
this new set of premises. At some point, we get stuck with an atomic proposition, say R.
Call the resulting deduction Dy,; note that R is the only active (undischarged) premise of
Dy, and the node labeled R immediately below it plays a special role; we call it the special
node of Dy,.

Here is an illustration of this method for Example (d). At the end of the bottom-up
process, we get the deduction tree Dy,:

(A= (B=(0))* (A= B)Y A* C
C
A=C
(A= B)= (A= C)

(A= (B=0))= ((A=B)= (A= 0))

76 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

In the above deduction tree the proposition R = C' is the only active (undischarged)
premise. To turn the above deduction tree into a proof tree we need to construct a deduction
of C' from the premises other than C. This is a more creative step which can be quite difficult.
The trick is now to switch strategies and start building a proof tree top-down, starting from
the leaves, using the =-elimination rule. If everything works out well, we get a deduction
with root R, say D4, and then we glue this deduction Dy to the deduction Dy, in such a
way that the root of D,y is identified with the special node of Dy, labeled R.

We also have to make sure that all the discharged premises are linked to the correct
instance of the =-introduction rule that caused them to be discharged. One of the difficulties
is that during the bottom-up process, we don’t know how many copies of a premise need to
be discharged in a single step. We only find out how many copies of a premise need to be
discharged during the top-down process.

Going back to our example, at the end of the top-down process, we get the deduction
tree Dyg:

A= (B=C) A A= B A

B=C B
C

Finally, after gluing D,y on top of Dy, (which has the correct number of premises to be
discharged), we get our proof tree:

(A= (B=0)) A® (A= B)Y A*

B=C B
C

A=C
(A= B)= (A= C)

(A= (B=0))= (A= B)= (A= 0))

(f) The following example shows that proofs may be redundant. The proposition P =
((P = Q) = Q) has the following proof.

P P
Q
(P=@Q)=Q

P=((P=Q)=Q)
Now, say P is the proposition R = R, which has the proof
£
R
R=R

2.4. EXAMPLES OF PROOF TREES 7

Using =--elimination, we obtain a proof of (R = R) = @) = @ from the proof of
(R=R)= (((R= R) = Q) = Q) and the proof of R = R shown above:

(R=R)= Q)" (R= R)Y

Q
x R?
(R=R)=Q)=Q R
(R=R)= ((R=R)=Q)=0Q) R=R

(R=R)=Q) =«

Note that the above proof is redundant. The deduction tree shown in blue has the
proposition ((R = R) = Q) = Q as conclusion but the proposition R = R is introduced
in the step labeled y and immediately eliminated in the next step. A more direct proof can
be obtained as follows. Undo the last =-introduction (involving the the proposition R = R
and the tag y) in the proof of (R = R) = (((R = R) = Q) = () obtaining the deduction
tree shown in blue above

(R=R)=Q)" R=R
Q
(R=R)=Q)=Q

and then glue the proof of R = R on top of the leaf R = R, obtaining the desired proof of
(R=R)=0Q)=Q:

(R=R)=Q)" R=R
Q
(R=R)=Q)=Q

In general, one has to exercise care with the label variables. It may be necessary to re-
name some of these variables to avoid clashes. What we have above is an example of proof
substitution also called proof normalization. We come back to this topic in Section 2.12.

While it is necessary to allow multisets of premises as shown in Example (c), our definition
allows undesirable proof trees such as

P* . P* QY, QY
2
P=P
Q= (P=P)

in which the two occurrences of P labeled x are discharged at the same time and the two

T

78 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

occurrences of () labeled y are discharged at the same time. Obviously, the above proof tree
is equivalent to the proof tree

Pr QY
P
P=P
Q= (P=P)

We leave it as an exercise to show that we can restrict ourselves to deduction trees and
proof trees in which the labels of propositions appearing as premises of Rule Axioms (ii) are
all distinct.

2.5 A Gentzen-Style System for Natural Deduction

The process of discharging premises when constructing a deduction is admittedly a bit con-
fusing. Part of the problem is that a deduction tree really represents the last of a sequence
of stages (corresponding to the application of inference rules) during which the current set
of “active” premises, that is, those premises that have not yet been discharged (closed, can-
celled) evolves (in fact, shrinks). Some mechanism is needed to keep track of which premises
are no longer active and this is what this business of labeling premises with variables achieves.
Historically, this is the first mechanism that was invented. However, Gentzen (in the 1930s)
came up with an alternative solution that is mathematically easier to handle. Moreover, it
turns out that this notation is also better suited to computer implementations, if one wishes
to implement an automated theorem prover.

The point is to keep a record of all undischarged assumptions at every stage of the
deduction. Thus, a deduction is now a tree whose nodes are labeled with pairs of the form
(I, P), where P is a proposition, and I" is a record of all undischarged assumptions at the
stage of the deduction associated with this node.

Instead of using the notation (I', P), which is a bit cumbersome, Gentzen used expressions
of the form I' — P, called sequents

It should be noted that the symbol — is used as a separator between the left-hand side
I, called the antecedent, and the right-hand side P, called the conclusion (or succedent) and
any other symbol could be used. Of course — is reminiscent of implication but we should
not identify — and =-. Still, it turns out that a sequent I' — P is provable if and only if
(PLA---AP,) = P is provable, where I' = (Py,..., P,).

During the construction of a deduction tree, it is necessary to discharge packets of as-
sumptions consisting of one or more occurrences of the same proposition. To this effect, it is
convenient to tag packets of assumptions with labels, in order to discharge the propositions
in these packets in a single step. We use variables for the labels, and a packet labeled with
x consisting of occurrences of the proposition P is written as z: P.

2.5. A GENTZEN-STYLE SYSTEM FOR NATURAL DEDUCTION 79

Definition 2.2. A sequent is an expression I' — P, where I' is any finite set of the form
{z1: P1,..., 2y Py} called a context, where the x; are pairwise distinct (but the P; need
not be distinct). Given I' = {z1: Py, ..., 2, Py}, the notation I, z: P is only well defined
when = # x; for all i, 1 < i < m, in which case it denotes the set {x1: Py, ...,z Py, z: P}.
Given two contexts I' and A, the context I' U A is the union of the sets of pairs (z;: P;) in
I' and the set of pairs (yx: @;) in A, provided that if z: P € I' and x: Q € A for the same
variable z, then P = (). In this case we say that I' and A are consistent. So if x: P occurs
both in I' and A, then z: P also occurs in I' U A (once).

One can think of a context I' = {z1: Py, ..., x,,: Py} as a set of type declarations for the
variables z1, ..., x,, (z; has type P;). It should be noted that in the Prawitz-style formalism
for proof trees, premises are treated as multisets, but in the Genten-style formalism, premises
are sets of tagged pairs.

Using sequents, the axioms and rules of Definition 2.3 are now expressed as follows.

Definition 2.3. The axioms and inference rules of the system NG (implicational logic,
Gentzen-sequent style (the G in NG stands for Gentzen)) are listed below:

[Voz: P— P (Axioms)

e: P—Q ,

TSpog (T
r~P=Q AP .

TUA SO (=-elim)

In an application of the rule (=-intro), observe that in the lower sequent, the proposition
P (labeled z) is deleted from the list of premises occurring on the left-hand side of the arrow
in the upper sequent. We say that the proposition P that appears as a hypothesis of the
deduction is discharged (or closed). In the rule (=-elim), it is assumed that ' and A are
consistent contexts. A deduction tree is either a one-node tree labeled with an axiom or
a tree constructed using the above inference rules. A proof tree is a deduction tree whose
conclusion is a sequent with an empty set of premises (a sequent of the form — P).

It is important to note that the ability to label packets consisting of occurrences of the
same proposition with different labels is essential in order to be able to have control over
which groups of packets of assumptions are discharged simultaneously. Equivalently, we
could avoid tagging packets of assumptions with variables if we assume that in a sequent
I' = C, the expression I' is a multiset of propositions.

Let us display the proof tree for the second proof tree in Example (¢) in our new Gentzen-
sequent system. The orginal proof tree is

P, QY
P
Q=r

P=(Q=P)

80 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

and the corresponding proof tree in our new system is
x: Py:Q— P
r:P—-Q=P
— P=(Q=P)

Below we show a proof of the first proposition of Example (d) given above in our new
system.

22:A=(B=C)—-A=(B=C) z: A=A y:A=B—>A=DB z: A= A
2:A=(B=0C),z:A—-B=C y:A=B,x: A— B
2:A=(B=0C),y: A= B,x: A= C
2: A= (B=0C),y: A=B—>A=C
22 A= (B=C)— (A= B)= (A= C0)

-+ (A= B=0C)=((A=B)=(A=0))

It is not hard to design an algorithm that converts a deduction tree (or a proof tree) in
the system A into a deduction tree (or a proof tree) in the system NG, and vice-versa.
In both cases the underlying tree is exactly the same and there is a bijection between the
sets of undischarged premises in both representations.

After experimenting with the construction of proofs, one gets the feeling that every proof
can be simplified to a “unique minimal” proof, if we define “minimal” in a suitable sense,
namely, that a minimal proof never contains an elimination rule immediately following an
introduction rule (for more on this, see Section 2.12). Then it turns out that to define the
notion of uniqueness of proofs, the second version is preferable. However, it is important to
realize that in general, a proposition may possess distinct minimal proofs.

In principle, it does not matter which of the two systems N> or NG, we use to con-
struct deductions; it is basically a matter of taste. The Prawitz-style system N produces
proofs that are closer to the informal proofs that humans construct. One the other hand,
the Gentzen-style system NG, is better suited for implementing theorem provers. My ex-
perience is that I make fewer mistakes with the Gentzen-sequent style system NG .

We now describe the inference rules dealing with the connectives A, V and L.

2.6 Adding A, V, 1; The Proof Systems N>+ and
Ng:>,/\,\/,J_

In this section we describe the proof rules for all the connectives of propositional logic both in
Prawitz-style and in Gentzen-style. As we said earlier, the rules of the Prawitz-style system
are closer to the rules that human use informally, and the rules of the Gentzen-style system
are more convenient for computer implementations of theorem provers.

2.6. ADDING A, V, L; THE PROOF SYSTEMS N """ AND NGZ """+ 81

The rules involving L are not as intuitively justifed as the other rules. In fact, in the early
1900s, some mathematicians especially L. Brouwer (1881-1966), questioned the validity of
the proof-by-contradiction rule, among other principles. This led to the idea that it may
be useful to consider proof systems of different strength. The weakest (and considered the
safest) system is called minimal logic. This system rules out the _L-elimination rule (the
ability to deduce any proposition once a contradiction has been established) and the proof-
by—contradiction rule. Intuitionistic logic rules out the proof-by—contradiction rule, and
classical logic allows all the rules. Most people use classical logic, but intuitionistic logic is
an interesting alternative because it is more constructive. We will elaborate on this point
later. Minimal logic is just too weak.

Recall that =P is an abbreviation for P = 1.

Definition 2.4. The axioms, inference rules, and deduction trees for (propositional) classical
logic are defined as follows. In the axioms and rules below, I', A, or A may be empty; P, Q, R
denote arbitrary propositions built up from the atoms in PS; D, D;, Dy denote deductions,
possibly a one-node tree; and all the premises labeled = or y are discharged.

Axioms:

(i) Every one-node tree labeled with a single proposition P is a deduction tree for P with
set of premises {P}.

(ii) The tree

T, P
P

is a deduction tree for P with multiset of premises I, P.

The =-introduction rule:

If D is a deduction of) from the premises in I' and one or more occurrences of the
proposition P, then

r, P

Y

D
Q

P=qQ

is a deduction tree for P = @) from I'. Note that this inference rule has the additional effect
of discharging a nonempty set of occurrences of the premise P (which label leaves of the
deduction D). These occurrences are tagged with a new variable z, and the tag z is also
placed immediately to the right of the inference bar. This proof rule corresponds to Proof
Template 1.2 (Implication—Intro).

The =-elimination rule (or modus ponens):

If D, is a deduction tree for P = () from the premises I', and D, is a deduction for P
from the premises A, then

82 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

r A

D, Dy

P=qQ P
Q

is a deduction tree for () from the premises in the multiset I', A. This proof rule corresponds
to Proof Template 1.3 (Implication-Elim).

The A-introduction rule:

If D, is a deduction tree for P from the premises I', and D, is a deduction for () from
the premises A, then

r A

D, D,

P Q
PAQ

is a deduction tree for P A @Q from the premises in the multiset I'; A. This proof rule
corresponds to Proof Template 1.8 (And-Intro).

The A-elimination rule:
If D is a deduction tree for P A () from the premises I', then

r r
D D
PAQ PAQ
P Q

are deduction trees for P and () from the premises I'. This proof rule corresponds to Proof
Template 1.9 (And—elim).

The V-introduction rule:

If D is a deduction tree for P or for () from the premises I', then

T r
D D
P Q@
PVvQ PVvQ

are deduction trees for PV @ from the premises in I'. This proof rule corresponds to Proof
Template 1.10 (Or-Intro).

The V-elimination rule:

If Dy is a deduction tree for PV @) from the premises I', Dy is a deduction for R from
the premises in the multiset A and one or more occurrences of P, and D3 is a deduction for
R from the premises in the multiset A and one or more occurrences of (), then

2.6. ADDING A, V, L; THE PROOF SYSTEMS Ng ™" AND NGZ"™* 83

r AP N QY

D, D, D,
PVQ R R
z,y
R

is a deduction tree for R from the premises in the multiset I'; A, A. A nonempty set of
premises P in D, labeled x and a nonempty set of premises () in D3 labeled y are discharged.
This proof rule corresponds to Proof Template 1.11 (Or—Elim).

The 1-elimination rule:

If D is a deduction tree for L from the premises I', then

is a deduction tree for P from the premises I', for any proposition P. This proof rule
corresponds to Proof Template 1.6 (Perp—Elim).

The proof-by—contradiction rule (also known as reductio ad absurdum rule, for
short RAA):

If D is a deduction tree for L from the premises in the multiset I' and one or more
occurrences of =P, then

r,-P°
D
1

P

x

is a deduction tree for P from the premises I'. A nonempty set of premises =P labeled x
are discharged. This proof rule corresponds to Proof Template 1.7 (Proof-By—Contradiction
Principle).

Because =P is an abbreviation for P =1, the =-introduction rule is a special case of the
=--introduction rule (with Q =1). However, it is worth stating it explicitly.

The —-introduction rule:

If D is a deduction tree for L from the premises in the multiset I' and one or more
occurrences of P, then

T, pe
D
1

P

T

is a deduction tree for =P from the premises I'. A nonempty set of premises P labeled x are
discharged. This proof rule corresponds to Proof Template 1.4 (Negation—-Intro).

84 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

The above rule can be viewed as a proof-by—contradiction principle applied to negated
propositions.

Similarly, the —-elimination rule is a special case of =-elimination applied to
-P(=P=1)and P.

The —-elimination rule:

If D is a deduction tree for =P from the premises I', and D, is a deduction for P from
the premises A, then

r A

D, D,

-P P
L

is a deduction tree for L from the premises in the multiset I'; A. This proof rule corresponds
to Proof Template 1.5 (Negation—Elim).

A deduction tree is either a one-node tree labeled with a single proposition or a tree
constructed using the above axioms and inference rules. A proof tree is a deduction tree
such that all its premises are discharged. The above proof system is denoted N>V:+ (here,
the subscript ¢ stands for classical).

The system obtained by removing the proof-by—contradiction (RAA) rule is called (propo-
sitional) intuitionistic logic and is denoted /\/?’A’V’L. The system obtained by deleting both
the L-elimination rule and the proof-by—contradiction rule is called (propositional) minimal
logic and is denoted N7Vt

The version of N7V+ in terms of Gentzen sequents is the following.

Definition 2.5. The axioms and inference rules of the system NG+ (of propositional
classical logic, Gentzen-sequent style) are listed below.

[z: P— P (Axioms)

—ll:’i ;) :_: 8 (=-intro)
Féijf;gép(:dm)
12222
% (A-elim) % (A-elim)
% (V-intro) % (V-intro)

2.6. ADDING A, V, L; THE PROOF SYSTEMS Ng ™" AND NGZ"™* 85

r-PvQ Az:P—>R ANy:Q—R
FrUAUA—R
I'—1
r—pP
F,a::ﬂP—U_
I'—-P
Iz: P—_1
I —»-P

I'—-—-P A—=P
TUA =L

(V-elim)

(L-elim)

(by-contra)

(—-introduction)

(—-elimination)

A deduction tree is either a one-node tree labeled with an axiom or a tree constructed
using the above inference rules. A proof tree is a deduction tree whose conclusion is a sequent
with an empty set of premises (a sequent of the form () — P).

The rule (_L-elim) is trivial (does nothing) when P =1, therefore from now on we assume
that P #1. Propositional minimal logic, denoted N'GZ "+, is obtained by dropping the
(L-elim) and (by-contra) rules. Propositional intuitionistic logic, denoted J\/'Q?’/\’V’L, is
obtained by dropping the (by-contra) rule.

When we say that a proposition P is provable from I', we mean that we can construct
a proof tree whose conclusion is P and whose set of premises is I', in one of the systems
NZAVL or N QC:}’A’V’L. Therefore, when we use the word “provable” unqualified, we mean
provable in classical logic. If P is provable from I" in one of the intuitionistic systems /\/’f’/\’v’L
or NG;7 ’A’V’L, then we say intuitionistically provable (and similarly, if P is provable from I'
in one of the systems N7+ or NGZV++ then we say provable in minimal logic). When
P is provable from I', most people write I' = P, or - I' — P, sometimes with the name of
the corresponding proof system tagged as a subscript on the sign F if necessary to avoid
ambiguities. When I" is empty, we just say P is provable (provable in intuitionistic logic,
and so on) and write - P.

We treat logical equivalence as a derived connective: that is, we view P = @) as an
abbreviation for (P = Q) A (Q = P). In view of the inference rules for A, we see that to
prove a logical equivalence P = @), we just have to prove both implications P = () and
Q= P.

Since the only difference between the proof systems N7Vt and N is the way
in which they perform the bookkeeping of premises, it is intuitively clear that they are equiv-
alent. However, they produce different kinds of proof so to be rigorous we must check that
the proof systems N7Vt and NGV (as well as the systems N7V and NGZY4)
are equivalent. This is not hard to show but is a bit tedious; see Problem 2.14.

In view of the —-elimination rule, we may be tempted to interpret the provability of a
negation =P as “P is not provable.” Indeed, if =P and P were both provable, then | would

g:&,/\,\/,L
m

86 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

be provable. So, P should not be provable if =P is. However, if P is not provable, then
=P is not provable in general. There are plenty of propositions such that neither P nor =P
is provable (for instance, P, with P an atomic proposition). Thus, the fact that P is not
provable is not equivalent to the provability of =P and we should not interpret =P as “P is
not provable.”

Let us now make some (much-needed) comments about the above inference rules. There
is no need to repeat our comments regarding the =--rules.

The V-introduction rule says that if P (or @) has been proved from I'; then PV Q is also
provable from I'. Again, this makes sense intuitively as P V @) is “weaker” than P and Q).

The V-elimination rule formalizes the proof-by—cases method. It is a more subtle rule.
The idea is that if we know that in the case where P is already assumed to be provable and
similarly in the case where @) is already assumed to be provable that we can prove R (also
using premises in I'), then if PV @ is also provable from I'; as we have “covered both cases,”
it should be possible to prove R from I' only (i.e., the premises P and () are discarded).
For example, if remainl(n) is the proposition that asserts n is a natural number of the form
4k + 1 and remain3(n) is the proposition that asserts n is a natural number of the form
4k 4 3 (for some natural number k), then we can prove the implication

(remainl(n) V remain3(n)) = odd(n),

where odd(n) asserts that n is odd, namely, that n is of the form 2h + 1 for some h.

To prove the above implication we first assume the premise, remainl(n) V remain3(n).
Next we assume each of the alternatives in this proposition. When we assume remainl(n),
we have n = 4k + 1 = 2(2k) + 1 for some k, so n is odd. When we assume remain3(n),
we have n = 4k + 3 = 2(2k + 1) + 1, so again, n is odd. By V-elimination, we conclude
that odd(n) follows from the premise remainl(n) V remain3(n), and by =--introduction, we
obtain a proof of our implication.

The L-elimination rule formalizes the principle that once a false statement has been
established, then anything should be provable.

The —-introduction rule is a proof-by—contradiction principle applied to negated propo-
sitions. In order to prove =P, we assume P and we derive a contradiction (L). It is a
more restrictive principle than the classical proof-by—contradiction rule (RAA). Indeed, if
the proposition P to be proven is not a negation (P is not of the form —Q)), then the —-
introduction rule cannot be applied. On the other hand, the classical proof-by-contradiction
rule can be applied but we have to assume —P as a premise. For further comments on the
difference between the —-introduction rule and the classical proof-by—contradiction rule, see
Section 2.7.

The proof-by—contradiction rule formalizes the method of proof by contradiction. That
is, in order to prove that P can be deduced from some premises I', one may assume the
negation =P of P (intuitively, assume that P is false) and then derive a contradiction from
[' and =P (i.e., derive falsity). Then P actually follows from I' without using =P as a
premise, that is, =P is discharged. For example, let us prove by contradiction that if n? is
odd, then n itself must be odd, where n is a natural number.

2.6. ADDING A, V, L; THE PROOF SYSTEMS N5+ AND NGg "™+ 87

b
E

=
=

figgmé%;’ggns ,
B

=

= =

= 4

3 2
y— =

TR

Figure 2.2: L. E. J. Brouwer, 1881-1966

According to the proof-by—contradiction rule, let us assume that n is not odd, which
means that n is even. (Actually, in this step we are using a property of the natural numbers
that is proven by induction but let’s not worry about that right now. A proof is given
in Section 2.16.) But to say that n is even means that n = 2k for some k and then
n? = 4k* = 2(2k?), so n? is even, contradicting the assumption that n? is odd. By the
proof-by—contradiction rule, we conclude that n must be odd.

Remark: If the proposition to be proven, P, is of the form —(), then if we use the proof-
by-contradiction rule, we have to assume the premise =—() and then derive a contradiction.
Because we are using classical logic, we often make implicit use of the fact that ——Q is
equivalent to @) (see Proposition 2.2) and instead of assuming ——() as a premise, we assume
() as a premise. But then, observe that we are really using —-introduction.

In summary, when trying to prove a proposition P by contradiction, proceed as follows.

(1) If P is a negated formula (P is of the form —(@Q)), then use the —-introduction rule; that
is, assume () as a premise and derive a contradiction.

(2) If P is not a negated formula, then use the the proof-by-contradiction rule; that is,
assume —P as a premise and derive a contradiction.

Most people, I believe, will be comfortable with the rules of minimal logic and will agree
that they constitute a “reasonable” formalization of the rules of reasoning involving =, A,
and V. Indeed, these rules seem to express the intuitive meaning of the connectives =, A,
and V. However, some may question the two rules L -elimination and proof-by-contradiction.
Indeed, their meaning is not as clear and, certainly, the proof-by-contradiction rule introduces
a form of indirect reasoning that is somewhat worrisome.

The problem has to do with the meaning of disjunction and negation and more gener-
ally, with the notion of constructivity in mathematics. In fact, in the early 1900s, some
mathematicians, especially L. Brouwer (1881-1966), questioned the validity of the proof-by-
contradiction rule, among other principles.

Two specific cases illustrate the problem, namely, the propositions

Pv—-P and ——P= P

88 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

As we show shortly, the above propositions are both provable in classical logic; see Proposi-
tion 2.1 and Proposition 2.2.

Now Brouwer and some mathematicians belonging to his school of thought (the so-called
“Intuitionists” or “constructivists”) advocate that in order to prove a disjunction P V @
(from some premises I') one has to either ezhibit a proof of P or a proof or @ (from I).
However, it can be shown that this fails for PV =P. The fact that P V =P is provable (in
classical logic) does not imply (in general) that either P is provable or that =P is provable.
That PV —P is provable is sometimes called the principle (or law) of the excluded middle.
In intuitionistic logic, P V =P is not provable (in general). Of course, if one gives up the
proof-by-contradiction rule, then fewer propositions become provable. On the other hand,
one may claim that the propositions that remain provable have more constructive proofs and
thus feel on safer grounds.

A similar controversy arises with the proposition =—P = P (double-negation rule) If we
give up the proof-by-contradiction rule, then this formula is no longer provable (i.e., =—P is
no longer equivalent to P). Perhaps this relates to the fact that if one says “I don’t have no
money,” then this does not mean that this person has money. (Similarly with “I can’t get
no satisfaction.”) However, note that one can still prove P = —=—P in minimal logic (try
doing it). Even stranger, =——P = =P is provable in intuitionistic (and minimal) logic, so
——=P and —P are equivalent intuitionistically.

Remark: Suppose we have a deduction
r,-P
D
L

as in the proof-by-contradiction rule. Then by —-introduction, we get a deduction of =—P
from I

r,-P°
D
1

||P

x

So, if we knew that =—P was equivalent to P (actually, if we knew that =—P = P is
provable), then the proof-by-contradiction rule would be justified as a valid rule (it follows
from modus ponens). We can view the proof-by-contradiction rule as a sort of act of faith
that consists in saying that if we can derive an inconsistency (i.e., chaos) by assuming the
falsity of a statement P, then P has to hold in the first place. It not so clear that such an
act of faith is justified and the intuitionists refuse to take it.

Constructivity in mathematics is a fascinating subject but it is a topic that is really
outside the scope in this book. What we hope is that our brief and very incomplete discussion
of constructivity issues made the reader aware that the rules of logic are not cast in stone
and that, in particular, there isn’t only one logic.

2.6. ADDING A, V, L; THE PROOF SYSTEMS Ng ™" AND NGZ"™* 89

We feel safe in saying that most mathematicians work with classical logic and only a
few of them have reservations about using the proof-by-contradiction rule. Nevertheless,
intuitionistic logic has its advantages, especially when it comes to proving the correctess of
programs (a branch of computer science). We come back to this point several times in this
book.

In the rest of this section we make further useful remarks about (classical) logic and give
some explicit examples of proofs illustrating the inference rules of classical logic. We begin
by proving that PV =P is provable in classical logic.

Proposition 2.1. The proposition PNV —P 1is provable in classical logic.

Proof. We prove that PV (P =_1) is provable by using the proof-by-contradiction rule as
shown below:

pe
(PV(P=1))=1)Y Pv(P=1)
1L
P=1
(PV(P=1))=1) Pv(P=1)
1
Pv(P=1)

V-intro

¢ (—-intro)

V-intro

y (by-contra)

Next, we consider the equivalence of P and ——P.

Proposition 2.2. The proposition P = ——P is provable in minimal logic. The proposition
——P = P is provable in classical logic. Therefore, in classical logic, P is equivalent to ~—P.

Proof. We leave that P = ——P is provable in minimal logic as an exercise. Below is a proof
of == P = P using the proof-by-contradiction rule:

(P=1)=1) (P=1)"
1

— 2 (by-contra)
P

(P=1l)=1)=P

Y

The next proposition shows why L can be viewed as the “ultimate” contradiction.

Proposition 2.3. In intuitionistic logic, the propositions 1. and P N =P are equivalent for
all P. Thus, 1. and P N =P are also equivalent in classical propositional logic

90 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

Proof. We need to show that both 1= (PA—P) and (PA—P) =1 are provable in intuition-
istic logic. The provability of 1= (P A =P) is an immediate consequence or _L-elimination,
with I' = (). For (P A =P) =1, we have the following proof.

(PN=P)” (P AN—=P)*

-P P
1

(PAN=P)=1

]

So, in intuitionistic logic (and also in classical logic), L is equivalent to P A =P for all P.
This means that L is the “ultimate” contradiction; it corresponds to total inconsistency. By
the way, we could have the bad luck that the system N>"V4 (or ;7Y or even NZ/Vot)
is inconsistent, that is, that L is provable. Fortunately, this is not the case, although this
is hard to prove. (It is also the case that P V =P and —=——P = P are not provable in
intuitionistic logic, but this too is hard to prove.)

2.7 Clearing Up Differences Among —-Introduction, -
Elimination, and RAA

The differences between the rules, —-introduction, 1 -elimination, and the
proof-by-contradiction rule (RAA) are often unclear to the uninitiated reader and this tends
to cause confusion. In this section we try to clear up some common misconceptions about
these rules.

Confusion 1. Why is RAA not a special case of =-introduction?

r, p r,—p
D D

L (~intro) L L ®AA)
P P

The only apparent difference between —-introduction (on the left) and RAA (on the right) is
that in RAA, the premise P is negated but the conclusion is not, whereas in —-introduction
the premise P is not negated but the conclusion is.

The important difference is that the conclusion of RAA is not negated. If we had applied
—-introduction instead of RAA on the right, we would have obtained

T, -P°

D

i « (—-intro)

__|P

2.7. CLEARING UP DIFFERENCES AMONG RULES INVOLVING L 91

where the conclusion would have been =—P as opposed to P. However, as we already said

earlier, =—P = P is not provable intuitionistically. Consequently, RAA is not a special

case of —-introduction. On the other hand, one may view —-introduction as a “constructive”

version of RAA applying to negated propositions (propositions of the form —P).
Confusion 2. Is there any difference between |-elimination and RAA?

r L =pP*

D D
L (L-elim) L L (RAA)
P P

The difference is that 1 -elimination does not discharge any of its premises. In fact, RAA is
a stronger rule that implies | -elimination as we now demonstate.
RAA implies |-Elimination
Suppose we have a deduction
r
D
€

Then, for any proposition P, we can add the premise =P to every leaf of the above deduction
tree and we get the deduction tree

r,-P
D/
€
We can now apply RAA to get the following deduction tree of P from I' (because —P is
discharged), and this is just the result of L-elimination:
r,-pP
D/

L L (RAA)

P

The above considerations also show that RAA is obtained from —-introduction by adding
the new rule of =—-elimination (also called double-negation elimination):

_— (——-elimination)

Some authors prefer adding the =—-elimination rule to intuitionistic logic instead of RAA
in order to obtain classical logic. As we just demonstrated, the two additions are equivalent:
by adding either RAA or ——-elimination to intuitionistic logic, we get classical logic.

92 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

There is another way to obtain RAA from the rules of intuitionistic logic, this time, using
the propositions of the form PV —P. We saw in Proposition 2.1 that all formulae of the
form PV =P are provable in classical logic (using RAA).

Confusion 3. Are propositions of the form PV =P provable in intuitionistic logic?
The answer is no, which may be disturbing to some readers. In fact, it is quite difficult
to prove that propositions of the form P V —P are not provable in intuitionistic logic. One
method consists in using the fact that intuitionistic proofs can be normalized (see Section
2.12 for more on normalization of proofs). Another method uses Kripke models (see Section
2.11 and van Dalen [58]).

Part of the difficulty in understanding at some intuitive level why propositions of the
form PV =P are not provable in intuitionistic logic is that the notion of truth based on the
truth values true and false is deeply rooted in all of us. In this frame of mind, it seems
ridiculous to question the provability of P V =P, because its truth value is true whether P
is assigned the value true or false. Classical two-valued truth value semantics is too crude
for intuitionistic logic.

Another difficulty is that it is tempting to equate the notion of truth and the notion
of provability. Unfortunately, because classical truth values semantics is too crude for intu-
itionistic logic, there are propositions that are universally true (i.e., they evaluate to true for
all possible truth assignments of the atomic letters in them) and yet they are not provable
intuitionistically. The propositions PV =P and =——P = P are such examples.

One of the major motivations for advocating intuitionistic logic is that it yields proofs
that are more constructive than classical proofs. For example, in classical logic, when we
prove a disjunction PV @), we generally can’t conclude that either P or () is provable, as
exemplified by PV =P. A more interesting example involving a nonconstructive proof of
a disjunction is given in Section 2.8. But in intuitionistic logic, from a proof of P V @,
it is possible to extract either a proof of P or a proof of) (and similarly for existential
statements; see Section 2.15). This property is not easy to prove. It is a consequence of the
normal form for intuitionistic proofs (see Section 2.12).

In brief, besides being a fun intellectual game, intuitionistic logic is only an interesting
alternative to classical logic if we care about the constructive nature of our proofs. But then
we are forced to abandon the classical two-valued truth values semantics and adopt other
semantics such as Kripke semantics. If we do not care about the constructive nature of our
proofs and if we want to stick to two-valued truth values semantics, then we should stick
to classical logic. Most people do that, so don’t feel bad if you are not comfortable with
intuitionistic logic.

One way to gauge how intuitionisic logic differs from classical logic is to ask what kind
of propositions need to be added to intuitionisic logic in order to get classical logic. It turns
out that if all the propositions of the form P V =P are considered to be axioms, then RAA
follows from some of the rules of intuitionistic logic.

RAA Holds in Intuitionistic Logic + All Axioms PV —P.

The proof involves a subtle use of the |-elimination and V-elimination rules which may be
a bit puzzling. Assume, as we do when we use the proof-by-contradiction rule (RAA) that

2.8. DE MORGAN LAWS AND OTHER RULES OF CLASSICAL LOGIC 93

we have a deduction
r —-P

Y

D
4

Here is the deduction tree demonstrating that RAA is a derived rule:

I, -PY
D
P i_ (L-elim)
pvar l P zy (V-elim)
P
At first glance, the rightmost subtree
r,-pPY

D

i_ (L-elim)

P

appears to use RAA and our argument looks circular. But this is not so because the premise
=P labeled y is not discharged in the step that yields P as conclusion; the step that yields P
is a | -elimination step. The premise =P labeled y is actually discharged by the V-elimination
rule (and so is the premise P labeled x). So our argument establishing RAA is not circular
after all.

In conclusion, intuitionistic logic is obtained from classical logic by taking away the proof-
by-contradiction rule (RAA). In this more restrictive proof system, we obtain more construc-
tive proofs. In that sense, the situation is better than in classical logic. The major drawback
is that we can’t think in terms of classical truth values semantics anymore.

Conversely, classical logic is obtained from intuitionistic logic in at least three ways:

1. Add the proof-by-contradiction rule (RAA).
2. Add the ——-elimination rule.

3. Add all propositions of the form PV —P as axioms.

2.8 De Morgan Laws and Other Rules of
Classical Logic

In Section 1.7 we discussed the de Morgan laws. Now that we also know about intuitionistic
logic we revisit these laws.

94 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

Proposition 2.4. The following equivalences (de Morgan laws) are provable in classical
logic.

ﬁ(P/\Q)EﬁP\/—'Q

In fact, =(PVQ) = -PA—-Q and (-PV—Q) = —(PAQ) are provable in intuitionistic logic.
The proposition (P A —=Q) = —(P = Q) is provable in intuitionistic logic and (P = Q) =
(P A —Q) is provable in classical logic. Therefore, =(P = Q) and P A —Q are equivalent
in classical logic. Furthermore, P = @) and - PV Q) are equivalent in classical logic and
(=P V Q)= (P= Q) is provable in intuitionistic logic.

Proof. We only prove the very last part of Proposition 2.4 leaving the other parts as a series
of exercises. Here is an intuitionistic proof of (=P V Q) = (P = Q):

1 P Q
Q@ Q@
@ y
z,t
P=qQ
(~PVQ)=(P=0Q)
Here is a classical proof of (P = Q) = (=P V Q):
o
(~(=PVQ)) —PVvVE
£ . RAA
(P = Q) P
Q
(=(=PVQ))? -PVQ
- y RAA
-PVQ
(P=Q)=(-PVQ)
The other proofs are left as exercises. n

Propositions 2.2 and 2.4 show a property that is very specific to classical logic, namely,
that the logical connectives =, A, V, — are not independent. For example, we have P A Q) =
—(=P V =Q), which shows that A can be expressed in terms of V and —. In intuitionistic
logic, A and V cannot be expressed in terms of each other via negation.

2.8. DE MORGAN LAWS AND OTHER RULES OF CLASSICAL LOGIC 95

The fact that the logical connectives =, A, V, = are not independent in classical logic
suggests the following question. Are there propositions, written in terms of = only, that are
provable classically but not provable intuitionistically?

The answer is yes. For instance, the proposition ((P = @) = P) = P (known as Peirce’s
law) is provable classically (do it) but it can be shown that it is not provable intuitionistically.

In addition to the proof-by-cases method and the proof-by-contradiction method, we also
have the proof-by-contrapositive method valid in classical logic:

Proof-by-contrapositive rule:

[, -Q*
D
-P

P=qQ

This rule says that in order to prove an implication P = @ (from I'), one may assume
=() as proven, and then deduce that =P is provable from I and —(). This inference rule is
valid in classical logic because we can construct the following deduction.

I, =Q"
D
-P PY
-+ « (by-contra)
Q
y
P=qQ

As as example of the proof-by-contrapositive method, we prove that if an integer n? is

even, then n must be even.

Observe that if an integer is not even, then it is odd (and vice versa). This fact may seem
quite obvious but to prove it actually requires using induction (which we haven’t officially
met yet). A rigorous proof is given in Section 2.16.

Now the contrapositive of our statement is: if n is odd, then n? is odd. But to say that
n is odd is to say that n = 2k + 1 and then, n? = (2k +1)* = 4k? + 4k +1 = 2(2k* +2k) + 1,
which shows that n? is odd.

As it is, because the above proof uses the proof-by-contrapositive method, it is not
constructive. Thus, the question arises, is there a constructive proof of the above fact?

Indeed there is a constructive proof if we observe that every integer n is either even or
odd but not both. Now, one might object that we just relied on the law of the excluded
middle but there is a way to circumvent this problem by using induction; see Section 2.16
for a rigorous proof.

Now, because an integer is odd iff it is not even, we may proceed to prove that if n?
s even, then n is not odd, by using our constructive version of the proof-by-contradiction
principle, namely, —-introduction.

96 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

Therefore, assume that n? is even and that n is odd. Then n = 2k + 1, which implies
that n? = 4k? + 4k + 1 = 2(2k* + 2k) + 1, an odd number, contradicting the fact that n? is
assumed to be even.

The next proposition collects a list of equivalences involving conjunction and disjunction
that are used all the time. Proofs of these propositions are left as exercises (see the problems).

Proposition 2.5. All the propositions below are provable intuitionistically:

PVP=P
PAP=P

PVQ=QVP
PAQ=QAP.

The last two assert the commutativity of V and N\. We have distributivity of N\ over V and
of V over A:

We have associativity of A and V:

PA(QAR)=
PV(QVR)=(PVQ)VR.

|
~
>
L
>
Y

2.9 Formal Versus Informal Proofs

As we said before, it is practically impossible to write formal proofs (i.e., proofs written
as proof trees using the rules of one of the systems presented earlier) of “real” statements
that are not “toy propositions.” This is because it would be extremely tedious and time-
consuming to write such proofs and these proofs would be huge and thus very hard to read.

What we do instead is to construct “informal” proofs in which we still make use of the
logical rules that we have presented but we take shortcuts and sometimes we even omit
proof steps (some elimination rules, such as A-elimination and some introduction rules,; such
as V-introduction) and we use a natural language (here, presumably, English) rather than
formal symbols (we say “and” for A, “or” for V, etc.). We refer the readetr to Section 1.8
for a discussion of these issues. We also urge our readers to read Chapter 3 of Gowers [2§]
which contains very illuminating remarks about the notion of proof in mathematics.

Here is a concrete example illustrating the usefulnes of auxiliary lemmas in constructing
informal proofs.

Say we wish to prove the implication

~(PAQ)= (-PA=Q)V (=P AQ)V (PA-Q)). (%)

2.10. TRUTH VALUE SEMANTICS FOR CLASSICAL LOGIC 97

It can be shown that the above proposition is not provable intuitionistically, so we have to
use the proof-by-contradiction method in our proof. One quickly realizes that any proof ends
up re-proving basic properties of A and V, such as associativity, commutativity, idempotence,
distributivity, and so on, some of the de Morgan laws, and that the complete proof is very
large. However, if we allow ourselves to use the de Morgan laws as well as various basic
properties of A and V, such as distributivity,

(ANB)VC=(ANC)V (BAC),

commutativity of A and V (AANB = BAA, AV B = BV A), associativity of A and V
(AN(BANC)=(ANB)NC, AV (BVC(C)=(AV B)VC(C), and the idempotence of A and V
(ANA=A, AV A= A), then we get
(CPA=Q)V (mPAQ)V(PA-Q) = (“PA=Q)V (=P A=Q)
V(=PAQ)V(PA-Q)
(=PA=Q)V (=P AQ)
V(=P A=Q)V (P A=Q)
= (PACEQVQ)V(EPA-Q)V(PA-Q)
= -PV(-PA-Q)V(PA-Q)
= PV ((-PVP)A-Q)
= PV -Q,

where we make implicit uses of commutativity and associativity, and the fact that
RA(PV—-P) =R, and by de Morgan,

—~(PANQ)=-PV-Q,

using auxiliary lemmas, we end up proving (x) without too much pain.

2.10 Truth Value Semantics for Classical Logic
Soundness and Completeness

In Section 1.9 we introduced the truth value semantics for classical propositional logic. The
logical connectives =, A, V, = and = can be interpreted as Boolean functions, that is,
functions whose arguments and whose values range over the set of truth values,

BOOL = {true, false}.

These functions are given by the following truth tables.

P Q P=Q PANQ|PVQ| =P | P=Q
true | true | true true | true | false | true
true | false | false false | true | false | false
false | true | true false | true | true | false
false | false | true false | false | true | true

98 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

Now, any proposition P built up over the set of atomic propositions PS (our propositional
symbols) contains a finite set of propositional letters, say

{Pi,...,P,}.

If we assign some truth value (from BOOL) to each symbol P; then we can “compute” the
truth value of P under this assignment by using recursively using the truth tables above.
For example, the proposition P; = (P; = P5), under the truth assignment v given by

P, = true, P, = false,

evaluates to false; see Section 1.9.

The values of a proposition can be determined by creating a truth table, in which a
proposition is evaluated by computing recursively the truth values of its subexpressions. See
Section 1.9.

The truth table of a proposition containing m variables has 2™ rows. When m is large,
2™ is very large, and computing the truth table of a proposition P may not be practically
feasible. Even the problem of finding whether there is a truth assignment that makes P true
is hard.

Definition 2.6. We say that a proposition P is satisfiable iff it evaluates to true for some
truth assignment (taking values in BOOL) of the propositional symbols occurring in P and
otherwise we say that it is unsatisfiable. A proposition P is wvalid (or a tautology) iff it
evaluates to true for all truth assignments of the propositional symbols occurring in P.

Observe that a proposition P is valid if in the truth table for P all the entries in the
column corresponding to P have the value true. The proposition P is satisfiable if some
entry in the column corresponding to P has the value true.

The problem of deciding whether a proposition is satisfiable is called the satisfiability
problem and is sometimes denoted by SAT. The problem of deciding whether a proposition
is valid is called the wvalidity problem.

For example, the proposition

P=(P;V-PyV-P3) A (=P V-P3) AP VP VP A (=P3V Py A (=P VPy)

is satisfiable because it evaluates to true under the truth assignment P; = true, P, = false,
P; = false, and P, = true. On the other hand, the proposition

Q == (P1 V P2 V P3) A <_|P1 V PQ) A <_'P2 V Pg) A (Pl V _\Pg) A (_\P1 V _\P2 V _\Pg)

is unsatisfiable as one can verify by trying all eight truth assignments for Py, Py, P3. The
reader should also verify that the proposition

R=(-P; A=PyA=P3)V (P; A=Py)V (Py A —P3) vV (=P AP3) vV (Py APy AP3)

2.10. TRUTH VALUE SEMANTICS FOR CLASSICAL LOGIC 99

is valid (observe that the proposition R is the negation of the proposition Q).

The satisfiability problem is a famous problem in computer science because of its com-
plexity. Try it; solving it is not as easy as you think. The difficulty is that if a proposition
P contains n distinct propositional letters, then there are 2™ possible truth assignments and
checking all of them is practically impossible when n is large.

In fact, the satisfiability problem turns out to be an NP-complete problem, a very im-
portant concept that you will learn about in a course on the theory of computation and
complexity. Very good expositions of this kind of material are found in Hopcroft, Motwani,
and Ullman [31] and Lewis and Papadimitriou [40]. The validity problem is also important
and it is related to SAT. Indeed, it is easy to see that a proposition P is valid iff =P is
unsatisfiable.

What’s the relationship between validity and provability in the system N7Vt (or
Ng?,/\,V,L)?

Remarkably, in classical logic, validity and provability are equivalent.

In order to prove the above claim, we need to do two things:

(1) Prove that if a proposition P is provable in the system N>Vt (or the system
NGV then it is valid. This is known as soundness or consistency (of the proof
system).

(2) Prove that if a proposition P is valid, then it has a proof in the system N>Vt (or
NG V). This is known as the completeness (of the proof system).

In general, it is relatively easy to prove (1) but proving (2) can be quite complicated. In
fact, some proof systems are not complete with respect to certain semantics. For instance,
the proof system for intuitionistic logic N7V (or NG; V") is not complete with respect
to truth value semantics. As an example, ((P = @) = P) = P (known as Peirce’s law), is
valid but it can be shown that it cannot be proven in intuitionistic logic.

In this book we content ourselves with soundness.

Proposition 2.6. (Soundness of N7V and NGZ"V+) If a proposition P is provable in
the system N.7"V4 (or NGZ"V+), then it is valid (according to the truth value semantics).

Sketch of Proof. It is enough to prove that if there is a deduction of a proposition P from a
set of premises I' then for every truth assignment for which all the propositions in I' evaluate
to true, then P evaluates to true. However, this is clear for the axioms and every inference
rule preserves that property.

Now if P is provable, a proof of P has an empty set of premises and so P evaluates to
true for all truth assignments, which means that P is valid. O]

Theorem 2.7. (Completeness of N7Vt and NGZ"V*) If a proposition P is valid
(according to the truth value semantics), then P is provable in the system N7Vt (or

NQ?’A’V’L).

100 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Proofs of completeness for classical logic can be found in van Dalen [58] or Gallier [21]
(but for a different proof system).

Soundness (Proposition 2.6) has a very useful consequence: in order to prove that a
proposition P is not provable, it is enough to find a truth assignment for which P evaluates
to false. We say that such a truth assignment is a counterezample for P (or that P can be
falsified). For example, no propositional symbol P; is provable because it is falsified by the
truth assignment P; = false.

The soundness of the proof system N>Vt (or NGZV+) also has the extremely im-
portant consequence that L cannot be proven in this system, which means that contradictory
statements cannot be derived.

This is by no means obvious at first sight, but reassuring. It is also possible to prove that
the proof system N>V is consistent (i.e., 1 cannot be proven) by purely proof-theoretic
means involving proof normalization (See Section 2.12), but this requires a lot more work.

Note that completeness amounts to the fact that every unprovable formula has a coun-
terezample. Also, in order to show that a proposition is classically provable, it suffices to
compute its truth table and check that the proposition is valid. This may still be a lot of
work, but it is a more “mechanical” process than attempting to find a proof.

For example, here is a truth table showing that (P; = Py) = (=P, V Py) is valid.

P, P, P,=Py, | P;VvPy (Pl = PQ) = (_|P1 V PQ)
true | true true true true
true | false false false true
false | true true true true
false | false true true true

Remark: Truth value semantics is not the right kind of semantics for intuitionistic logic; it
is too coarse. A more subtle kind of semantics is required. Among the various semantics for
intuitionistic logic, one of the most natural is the notion of the Kripke model. Then again,
soundness and completeness hold for intuitionistic proof systems (see Section 2.11 and van
Dalen [58]).

2.11 Kripke Models for Intuitionistic Logic
Soundness and Completeness

In this section, we briefly describe the semantics of intuitionistic propositional logic in terms
of Kripke models.

This section has been included to quench the thirst of those readers who can’t wait to
see what kind of decent semantics can be given for intuitionistic propositional logic and it
can be safely omitted.

In classical truth value semantics based on BOOL = {true, false}, we might say that
truth is absolute. The idea of Kripke semantics is that there is a set of worlds (or states)

2.11. KRIPKE MODELS FOR INTUITIONISTIC LOGIC 101

W together with a partial ordering < on W, and that truth depends on in which world we
are. Furthermore, as we “go up” from a world u to a world v with v < v, truth “can only
increase,” that is, whatever is true in world u remains true in world v. Also, the truth of
some propositions, such as P = () or =P, depends on “future worlds.” With this type of
semantics, which is no longer absolute, we can capture exactly the essence of intuitionistic
logic. We now make these ideas precise.

Figure 2.3: Saul Kripke, 1940-

Definition 2.7. A Kripke model for intuitionistic propositional logic is a pair K = (W, ¢)
where W is a partially ordered (nonempty) set called a set of worlds and ¢ is a function
@: W — BOOLF® such that for every u € W, the function ¢(u): PS — BOOL is an as-
signment of truth values to the propositional symbols in PS satisfying the following property.
For all u,v € W, for all P; € PS,

ifu <wvand g(u)(P;) = true, then p(v)(P;) = true.

As we said in our informal comments, truth can’t decrease when we move from a world
u to a world v with u < v but truth can increase; it is possible that ¢(u)(P;) = false and
yet, o(v)(P;) = true.

If W ={0,1} ordered so that 0 < 1 and if ¢ is given by

©(0)(P;) = false
S(1)(P,) = true,

then Kpa.q = (W,) is a Kripke structure.
We use Kripke models to define the semantics of propositions as follows.

Definition 2.8. Given a Kripke model K = (W, @), for every v € W and for every proposi-
tion P we say that P is satisfied by K at u and we write ¢(u)(P) = true iff

(a) If P =P, € PS, then ¢(u)(P;) = true.
(b) If P =Q A R, then ¢(u)(Q) = true and p(u)(R) = true.
(c) If P=QV R, then ¢(u)(Q) = true or ¢(u)(R) = true.

102 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

(d) If P =@ = R, then for all v such that u < v, if (v)(Q) = true, then ¢(v)(R) = true.
(e) If P = =@, then for all v such that u < v, p(v)(Q) = false,
(f) o(u)(L) = false; that is, L is not satisfied by K at u (for any K and any u).

We say that P is valid in K (or that K is a model of P) iff P is satisfied by K = (W, ¢)
at u for all u € W and we say that P is intuitionistically valid iff P is valid in every Kripke
model K.

When P is satisfied by K at u we also say that P is true at u in K. Note that the truth
at u € W of a proposition of the form) = R or —() depends on the truth of) and R
at all “future worlds,” v € W, with u < v. Observe that classical truth value semantics
corresponds to the special case where W consists of a single element (a single world).

Given the Kripke structure Ky.q defined earlier, the reader should check that the proposi-
tion P = (P;V—P;) has the value false at 0 because ¢(0)(P;) = false, but ¢(1)(P;) = true,
so clause (e) fails for =P; at u = 0. Therefore, P = (P; V =P;) is not valid in K},q and thus,
it is not intuitionistically valid. We escaped the classical truth value semantics by using a
universe with two worlds. The reader should also check that

o(u)(—=—P) =true iff for all v such that u <wv

there is some w with v < w so that p(w)(P) = true.

This shows that in Kripke semantics, =—P is weaker than P, in the sense that
o(u)(——P) = true does not necessarily imply that ¢(u)(P) = true. The reader should also
check that the proposition =—P; = P; is not valid in the Kripke structure Ky.q.

As we said in the previous section, Kripke semantics is a perfect fit to intuitionistic
provability in the sense that soundness and completeness hold.

Proposition 2.8. (Soundness of N:7"™"V'" and NG""") If a proposition P is provable
in the system ./\ff’A’v’l (or NQ?’A’V’l), then it is valid in every Kripke model, that s, it is
intuitionistically valid.

Proposition 2.8 is not hard to prove. We consider any deduction of a proposition P from
a set of premises I' and we prove that for every Kripke model IC = (W, ¢), for every u € W,
if every premise in I' is satisfied by IC at u, then P is also satisfied by IC at u. This is obvious
for the axioms and it is easy to see that the inference rules preserve this property.
Completeness also holds, but it is harder to prove (see van Dalen [58]).

Theorem 2.9. (Completeness ofj\/?’/\’v’L and /\/g?’”#) If a proposition P is intuition-
istically valid, then P is provable in the system N7V (or NG+).

Another proof of completeness for a different proof system for propositional intuitionistic
logic (a Gentzen-sequent calculus equivalent to N'G7"Y1) is given in Takeuti [56]. We
find this proof more instructive than van Dalen’s proof. This proof also shows that if a

2.12. DECISION PROCEDURES, PROOF NORMALIZATION 103

Figure 2.4: Alonzo Church, 1903-1995 (left) and Alan Turing, 1912-1954 (right)

proposition P is not intuitionistically provable, then there is a Kripke model K where W is
a finite tree in which P is not valid. Such a Kripke model is called a counterexample for P.

Several times in this chapter, we have claimed that certain formulae are not provable in
some logical system. What kind of reasoning do we use to validate such claims? In the next
section, we briefly address this question as well as related ones.

2.12 Decision Procedures, Proof Normalization

In the previous sections we saw how the rules of mathematical reasoning can be formalized
in various natural deduction systems and we defined a precise notion of proof. We observed
that finding a proof for a given proposition was not a simple matter, nor was it to acertain
that a proposition is unprovable. Thus, it is natural to ask the following question.

The Decision Problem: Is there a general procedure that takes any arbitrary proposition
P as input, always terminates in a finite number of steps, and tells us whether P is provable?

Clearly, it would be very nice if such a procedure existed, especially if it also produced a
proof of P when P is provable.

Unfortunately, for rich enough languages, such as first-order logic (discussed in Section
2.15) it is impossible to find such a procedure. This deep result known as the undecidability of
the decision problem or Church’s theorem was proven by A. Church in 1936 (actually, Church
proved the undecidability of the validity problem but, by Godel’s completeness theorem,
validity and provability are equivalent). We will present a version of Church’s theorem in
Section 10.4.

Proving Church’s theorem is hard and a lot of work. One needs to develop a good deal of
what is called the theory of computation. This involves defining models of computation such
as Turing machines and proving other deep results such as the undecidability of the halting
problem and the undecidability of the Post correspondence problem, among other things. We
will discuss these topics in Chapters 3, 5, 6, 8, 9 and 10. See also Hopcroft, Motwani, and
Ullman [31] and Lewis and Papadimitriou [40].

So our hopes to find a “universal theorem prover” are crushed. However, if we restrict
ourselves to propositional logic, classical or intuitionistic, it turns out that procedures solving

104 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

the decision problem do exist and they even produce a proof of the input proposition when
that proposition is provable.

Unfortunately, proving that such procedures exist, and are correct in the propositional
case is rather difficult, especially for intuitionistic logic. The difficulties have a lot to do
with our choice of a natural deduction system. Indeed, even for the system N> (or NG,),
provable propositions may have infinitely many proofs. This makes the search process impos-
sible; when do we know how to stop, especially if a proposition is not provable. The problem
is that proofs may contain redundancies (Gentzen said “detours”). A typical example of
redundancy is when an elimination immediately follows an introduction, as in the following
example:

y: (R=R)=Q)—- (R=R)=Q) z: (R=R)— (R=R)
z: (R=R),y: (R=R)=Q)—>Q

r:(R=R)—= ((R=R)=Q)=Q z:R— R

—+(R=R)= ((R=R)= Q)= Q) - R=R
- (R=R)=Q)=0C

The blue deduction already has ((R = R) = () = @ as conclusion but it is not a proof
because the assumption x: (R = R) is present. However we have a proof of R = R, namely

z: R— R
—- R=R

We can obtain a proof of (R = R) = @) = @ from the blue deduction tree by replacing
the leaf labeled z: (R = R) — (R = R) by the proof tree for R = R, obtaining

z: R— R
y: ((R=R)=Q)— (R=R)= Q) — R=R
z: (R=R),y: (R=R)=Q)—Q

z

2:(R=R)— ((R=R)=Q)=Q

The above is not quite a proof tree, but it becomes one if we delete the premise z: (R =
R) which is now redundant:

z:R— R
y: ((R=R)=Q)— ((R=R)=Q) — R=R
y: (R=R)=Q)— @

- (R=R)=Q)=Q

The procedure that we just described for eliminating a redundancy can be general-
ized. Consider the deduction tree below in which D; denotes a deduction with conclusion
I''x: A — B and D, denotes a deduction with conclusion A — A.

2.12. DECISION PROCEDURES, PROOF NORMALIZATION 105

D
Nz: A— B Ds
' A=1B A— A
ruA—B

It should be possible to construct a deduction for I' = B from the two deductions D,
and D, without using at all the hypothesis x: A. This is indeed the case. If we look closely
at the deduction D;, from the shape of the inference rules, assumptions are never created,
and the leaves must be labeled with expressions of the form either

(1) IA,z: A— A, or
2) M Az: Ay:C > CifI'=1"y: Cand y # x, or
(3) IUAjz: Ay: C - Cify: C ¢ ' and y # x.

We can form a new deduction for I' — B as follows. In D;, wherever a leaf of the form
I'A,x: A — A occurs, replace it by the deduction obtained from D, by adding A to the
premise of each sequent in Dj.

In our previous example, we have A= (R= R), B=((R=R)=Q)=Q,C=(R=
R)=Q,T=A=A=0.

Actually, one should be careful to first make a fresh copy of Dy by renaming all the
variables so that clashes with variables in D; are avoided. Finally, delete the assumption
x: A from the premise of every sequent in the resulting proof. The resulting deduction is
obtained by a kind of substitution and may be denoted as D;[Ds/x], with some minor abuse
of notation. Note that the assumptions x: A occurring in the leaves of type (2) or (3) were
never used anyway. The step that consists in transforming the above redundant proof figure
into the deduction D;[Dy/x] is called a reduction step or normalization step.

The idea of proof normalization goes back to Gentzen ([22], 1935). Gentzen noted that
(formal) proofs can contain redundancies, or “detours,” and that most complications in the
analysis of proofs are due to these redundancies. Thus, Gentzen had the idea that the analysis
of proofs would be simplified if it were possible to show that every proof can be converted to
an equivalent irredundant proof, a proof in normal form. Gentzen proved a technical result
to that effect, the “cut-elimination theorem,” for a sequent-calculus formulation of first-order
logic [22]. Cut-free proofs are direct, in the sense that they never use auxiliary lemmas via
the cut rule.

Remark: It is important to note that Gentzen’s result gives a particular algorithm to pro-
duce a proof in normal form. Thus we know that every proof can be reduced to some normal
form using a specific strategy, but there may be more than one normal form, and certain
normalization strategies may not terminate.

About 30 years later, Prawitz ([47], 1965) reconsidered the issue of proof normalization,
but in the framework of natural deduction rather than the framework of sequent calculi.!

IThis is somewhat ironical, inasmuch as Gentzen began his investigations using a natural deduction
system, but decided to switch to sequent calculi (known as Gentzen systems) for technical reasons.

106 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Figure 2.5: Haskell B. Curry, 1900-1982

Prawitz explained very clearly what redundancies are in systems of natural deduction, and
he proved that every proof can be reduced to a normal form. Furthermore, this normal
form is unique. A few years later, Prawitz ([48], 1971) showed that in fact, every reduction
sequence terminates, a property also called strong normalization.

A remarkable connection between proof normalization and the notion of computation
must also be mentioned. Curry (1958) made the remarkably insightful observation that
certain typed combinators can be viewed as representations of proofs (in a Hilbert system)
of certain propositions. (See in Curry and Feys [7] (1958), Chapter 9E, pages 312-315.)

Building up on this observation, Howard ([32], 1969) described a general correspon-
dence among propositions and types, proofs in natural deduction and certain typed A-terms,
and proof normalization and [-reduction (The simply typed A-calculus was invented by
Church, 1940). This correspondence, usually referred to as the Curry-—Howard isomorphism
or formulae-as-types principle, is fundamental and very fruitful.

Let us elaborate on this correspondence.

2.13 The Simply-Typed M-Calculus

First we need to define the simply-typed A-calculus and the first step is to define simple types.
We assume that we have a countable set {To, Ty,..., Ty, ...} of base types (or atomic types).
For example, the base types may include types such as Nat for the natural numbers, Bool
for the booleans, String for strings, Tree for trees, etc. In the Curry—-Howard isomorphism,
the base types correspond to the propositional symbols {Pg, Pq,...,P,,...}.

Definition 2.9. The simple types o are defined inductively as follows:
(1) If T, is a base type, then T; is a simple type.
(2) If o and 7 are simple types, then (o — 7) is a simple type.

Thus (Tl — Tl), (Tl — (T2 — Tl)) ((Tl — TQ) — Tl), are simple types.

The standard abbreviation for (o7 — (02 = (+-- = 0,,))) I8 01 = 09 — -+ — 0.

There is obviously a bijection between propositions and simple types. Every propositional
symbol P; can be viewed as a base type, and the proposition (P = @) corresponds to the

2.13. THE SIMPLY-TYPED A\-CALCULUS 107

simple type (P —). The only difference is that the custom is to use = to denote logical
implication and — for simple types. The reason is that intuitively a simple type (¢ — 7)
corresponds to a set of functions from a domain of type o to a range of type 7.

The next crucial step is to define simply-typed A-terms. This is done in two stages. First
we define raw simply-typed A\-terms. They have a simple inductive definition but they do not
necessarily type-check so we define some type-checking rules that turn out to be the Gentzen-
style deduction proof rules annotated with simply-typed A-terms. These simply-typed A-terms
are representations of natural deductions.

We have a countable set of variables {x,z1,...,x, ...} that correspond to the atomic
raw A-terms. These are also the variables that are used for tagging assumptions when
constructing deductions.

Definition 2.10. The raw simply-typed A-terms (for short raw terms or A-terms) M are
defined inductively as follows:

(1) If z; is a variable, then z; is a raw term.
(2) If M and N are raw terms, then (M N) is a raw term called an application.

(3) If M is a raw term, o is a simple type, and z is a variable, then the expression Az: o. M
is a raw term called a A-abstraction.

Matching parentheses may be dropped or added for convenience. In a raw A-term M, a
variable x appearing in an expression \z: o is said to be bound in M. The other variables
in M (if any) are said to be free in M. A A-term M is closed if it has no free variables.

For example, in the term A\x: 0. (yz), the variable x is bound and the variable y is free.
This term is not closed. The term A\y: ¢ — 0. (A\x: 0. (yz)) is closed.

The intuition is that a term of the form A\z: 0. M represents a function. How such a
function operates will be defined in terms of -reduction.

Definition 2.11. The depth d(M) of a raw A\-term M is defined inductively as follows.
1. If M is a variable z, then d(z) = 0.
2. If M is an application (M, M), then d(M) = max{d(M,),d(Ms)} + 1.
3. If M is a A-abstraction (Ax: 0. M;), then d(M) = d(M;) + 1.
It is pretty clear that raw A-terms have representations as (ordered) labeled trees.

Definition 2.12. Given a raw A-term M, the tree tree(M) representing M is defined induc-
tively as follows:

1. If M is a variable x, then tree(M) is the one-node tree labeled z.

2. If M is an application (M;M,), then tree(M) is the tree with a binary root node labeled
., and with a left subtree tree(M;) and a right subtree tree(M).

108 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

3. If M is a A-abstraction A\z: o. M;, then tree(M) is the tree with a unary root node
labeled Az: o, and with one subtree tree(M).

Definition 2.12 is illustrated in Figure 2.6.

M=x o M=(M,M,)
tree (M)
tree(M)
M=Ax:0+ M, Ao
tree(M) tree(Vy)

tree(My)

Figure 2.6: The tree tree(M) associated with a raw A-term M.

Obviously, the depth d(M) of raw A-term is the depth of its tree representation tree(M).

Definition 2.12 could be used to deal with bound variables. For every leaf labeled with a
bound variable x, we draw a backpointer to an ancestor of x determined as follows. Given
a leaf labeled with a bound variable x, climb up to the closest ancestor labeled \z: o, and
draw a backpointer to this node. Then all bound variables can be erased. See Figure 2.7 for
an example.

Definition 2.10 allows the construction of undesirable terms such as (zz) or
(Az: 0. (xzx))(Ax: 0. (zx)) because no type-checking is done. Part of the problem is that the
variables occurring in a raw term have not been assigned types. This can be done using a
context (or type assignment), which is a set of pairs I' = {zy: 01,...,2,: 0,} where the o;
are simple types. Once a type assignment has been provided, the type-checking rules are
basically the proof rules of natural deduction in Gentzen-style. The fact that a raw term
M has type o given a type assignment I' that assigns types to all the free variables in M is

written as
I'>s M: o.

Such an expression is called a judgement. The symbol > is used instead of the symbol —
because — occurs in simple types. Here are the typing-checking rules.

Definition 2.13. The type-checking rules of the simply-typed A-calculus A~ are listed below:

Nx:o> x:0

2.13. THE SIMPLY-TYPED A\-CALCULUS

Figure 2.7: Using backpointers to deal with bound variables.

x:ov M: 1
I's (Ae:o.M):0—71

(abstraction)
' M:o—71 A N:o

F'uAps (MN): T

(application)

We write - I'> M : o to express that the judgement I'> M : o is provable. Given a raw

simply-typed A-term M, if there is a type-assigment I" and a simple type ¢ such that the
judgement I'> M : o is provable, we say that M type-checks with type o.

It can be shown by induction on the depth of raw terms that for a fixed type-assigment
[, if a raw simply-typed A-term M type-checks with some simple type o, then ¢ is unique.

The correspondence between proofs in natural deduction and simply-typed A-terms (the
Curry/Howard isomorphism) is now clear: the blue term is a representation of the deduction
of the sequents I'x: 0 -0, ' > 0 =7, and ' UA — 7, with the types 0,0 = 7 and 7

viewed as propositions. Note that proofs correspond to closed A-terms.
For example, we have the type-checking proof

z: R> z: R
y: (R=R)=Q)> y: (R=R)= Q)

>Az: R.z: R=R
y: (R=R)=Q)> y(Az: R.2): Q

>Ay: (R=R)=Q).yAz: R.2): (R=R)=Q)=Q
which shows that the simply-typed A-term

M=My: ((R=R)=Q).y(A\z: R.2)
represents the proof

109

110 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

z:R— R

y: ((R=R)=Q)— (R=R)=Q) — R=R
y: (R=R)=0Q) > Q
- (R=R)=Q)=>Q

The proposition ((R = R) = Q) = @ being proven is the type of the A\-term M. The
tree representing the A-term M = \y: (R = R) = Q).y(Az: R. z) is shown in Figure 2.8.

e @ A\y: (R=R)=Q)

Tree(M) |

Figure 2.8: The tree representation of the A-term M.

Furthermore, and this is the deepest aspect of the Curry/Howard isomorphism, proof
normalization corresponds to -reduction in the simply-typed A-calculus.

The notion of S-reduction is defined in terms of substitutions. A substitution ¢ is a finite
set of pairs ¢ = {(x1, V1), ..., (x,, N,,)}, where the z; are distinct variables and the N; are
raw A-terms. We write

o =[Ni/x1,...,Npjx,] or =[xy :=Ny,...,z, = N,

The second notation indicates more clearly that each term N; is substituted for the variable
x; and it seems to have been almost universally adopted.

Given a substitution ¢ = [z := Ny,...,x, := N,], for any variable z;, we denote by
¢©_,, the new substitution where the pair (x;, IV;) is replaced by the pair (x;, x;) (that is, the
new substitution leaves z; unchanged).

Given any raw A-term M and any substitution ¢ = [z := Ny,...,z, := N,], we define
the raw A-term M |y], the result of applying the substitution ¢ to M, as follows:

(1) If M =y, with y # x; for i =1,...,n, then M[p] =y = M.
(2) If M = z; for some i € {1,...,n}, then M[p| = N;.

2.13. THE SIMPLY-TYPED A\-CALCULUS 111

(3) It M = (PQ), then M[p] = (Plp]Qlp]).
(4) If M = Xz: 0. N and x # x; for i = 1,... ,n, then M[p] = Ax: 0. N[p],

(5) If M = Az: 0. N and x = x; for some i € {1,...,n}, then
Mlp] = Ax: 0. N[p]_,.

There is a problem with the present definition of a substitution in Cases (4) and (5),
which is that the result of substituting a term N; containing the variable = free causes this
variable to become bound after the substitution. We say that x is captured. To remedy this
problem, Church defined a-conversion.

The idea of a-conversion is that in a raw term M any subterm of the form Ax: 0. P can
be replaced by the subterm Az: o. Pz := z] where z is a new variable not occurring at all
(free or bound) in M to obtain a new term M’'. We write M =, M’ and we view M and M’
as equivalent.

For example, \z: 0.yx =, A\z: 0.yz and

Ay: o = o . (Ax: 0.yx) =, Aw: 0 — 0. (Az: 0. wz).

The variables x and y are just place-holders.

Then given a raw A-term M and a substitution ¢ = [x; := Ny,...,z, := N,|, before
applying ¢ to M we first apply some a-conversion to rename all bound variables in M
obtaining M’ =, M so that they do not occur in any of the Nj;, and then safely apply the
substitution ¢ to M’ without any capture of variables. We say that the term M’ is safe for
the substitution ¢. The details are a bit tedious and we omit them. We refer the interested
reader to Gallier [19] for a comprehensive discussion.

The following result shows that substitutions behave well with respect to type-checking.
Given a context I' = {z1: 01,...,2,: 0.}, we let I'(z;) = 0;.

Proposition 2.10. For any raw A-term M and any substitution ¢ = [xq := Ny,..., T, :=
N,], whose domain contains the set of free variables of M, if the judgement I'> M: T is
provable for some context I' and some simple type T, and if there is some context A such
that for every free variable x; in M the judgement A> N;: I'(x) is provable, then there some
M' =, M such that the judgment A M'[¢]: T is provable.

Finally we define S-reduction and S-conversion as follows.

Definition 2.14. The relation —g, called immediate B-reduction, is the smallest relation
satisfying the following properties for all raw A-terms M, N, P, Q:

(Az: 0. M)N —3 M[z := N]
provided that M is safe for [z := NJ;

M—>5N M—)/BN
MQ—5NQ PM —; PN

for all P, Q (congruence)

112 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

M—)gN
Ao M —pg Az 0. N

for all & (£)

The transitive closure of —4 is denoted by im, the reflexive and transitive closure of
—+p is denoted by L{g, and we define (-conversion, denoted by <L>ﬁ, as the smallest
equivalence relation g = (—5 U —>/§1)* containing —g.

For example, we have

(M o (vu)) (Az: 0 = 0. (zy))(Az: 0.2)) —5
(Au: 0. (vu)(Az: 0 = 0. (zy))[z == (A\z: 0.2)] = (Au: 0. (vu)) ((Az: 0. 2)y)
—p (Au: 0. (vu))zlz :=y] = (Au: 0. (vu))y —5 (vu)[u = y] = vy.

The following result shows that S-reduction (and §-conversion) behave well with respect
to type-checking.

Proposition 2.11. For any two raw A-terms M and N, if there is a proof of the judgement

I'> M: o for some context I' and some simple type o, and if M i>5N (or M é/g N),
then the judgement I'> N : o is provable. Thus B-reduction and [(5-conversion preserve type-
checking.

We say that a A-term M is f-irreducible or a S-normal form if there is no term N such
that M —3 N.
The fundamental result about the simply-typed A-calculus is this.

Theorem 2.12. For every raw A-term M, if M type-checks, which means that there a
provable judgement I'> M : o for some context I' and some simple type o, then the following
results hold:

(1) If M i)g M, and M %/3 M, then there is some Ms such that M, L>5 Ms and
My —5 M3. We say that —4 is confluent.

(2) Every reduction sequence M i>5 N s finite. We that that the simply-typed \-calculus
is strongly normalizing (for short, SN).

As a consequence of (1) and (2), there is a unique B-irreducible term N (called a B-normal
form) such that M —4 N.

A proof of Theorem 2.12 can be found in Gallier [17]. See also Gallier [19] which contains
a thorough discussion of the techniques involved in proving these results.
In Theorem 2.12, the fact that the term M type-checks is crucial. Indeed the term

(Ax. (zx))(Az. (z2)),

which does not type-check (we omitted the type tags o of the variable x since they do not
play any role), gives rise to an infinite S-reduction sequence!

2.14. COMPLETENESS AND COUNTER-EXAMPLES 113

Figure 2.9: Stephen C. Kleene, 1909-1994

In summary, the correspondence between proofs in intuitionistic logic and typed A-terms
on one hand and between proof normalization and S-reduction, can be used to translate
results about typed A-terms into results about proofs in intuitionistic logic. These results
can be generalized to typed A-calculi with product types and union types; see Gallier [17].

Using some suitable intuitionistic sequent calculi and Gentzen’s cut elimination theorem
or some suitable typed A-calculi and (strong) normalization results about them, it is possible
to prove that there is a decision procedure for propositional intuitionistic logic. However, it
can also be shown that the time-complexity of any such procedure is very high. As a matter of
fact, it was shown by Statman (1979) that deciding whether a proposition is intuitionisticaly
provable is P-space complete; see [53] and Section 14.4. Here, we are alluding to complezity
theory, another active area of computer science, see Hopcroft, Motwani, and Ullman [31]
and Lewis and Papadimitriou [40].

Readers who wish to learn more about these topics can read my two survey papers Gallier
[17] (On the Correspondence Between Proofs and A-Terms) and Gallier [16] (A Tutorial on
Proof Systems and Typed A-Calculi), both available on the website
http://www.cis.upenn.edu/ jean/gbooks/logic.html and the excellent introduction to proof
theory by Troelstra and Schwichtenberg [57].

Anybody who really wants to understand logic should of course take a look at Kleene
[34] (the famous “I.M.”), but this is not recommended to beginners.

2.14 Completeness and Counter-Examples

Let us return to the question of deciding whether a proposition is not provable. To simplify
the discussion, let us restrict our attention to propositional classical logic. So far, we have
presented a very proof-theoretic view of logic, that is, a view based on the notion of prov-
ability as opposed to a more semantic view of based on the notions of truth and models. A
possible excuse for our bias is that, as Peter Andrews (from CMU) puts it, “truth is elusive.”
Therefore, it is simpler to understand what truth is in terms of the more “mechanical” notion
of provability. (Peter Andrews even gave the subtitle
To Truth Through Proof

to his logic book Andrews [1].)

114 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Figure 2.10: Peter Andrews, 1937—

However, mathematicians are not mechanical theorem provers (even if they prove lots of
stuff). Indeed, mathematicians almost always think of the objects they deal with (functions,
curves, surfaces, groups, rings, etc.) as rather concrete objects (even if they may not seem
concrete to the uninitiated) and not as abstract entities solely characterized by arcane axioms.

It is indeed natural and fruitful to try to interpret formal statements semantically. For
propositional classical logic, this can be done quite easily if we interpret atomic propositional
letters using the truth values true and false, as explained in Section 2.10. Then, the crucial
point that every provable proposition (say in NQ?’V’A’L) has the value true no matter how
we assign truth values to the letters in our proposition. In this case, we say that P is valid.

The fact that provability implies validity is called soundness or consistency of the proof
system. The soundness of the proof system N'GZ"" is easy to prove, as sketched in Section
2.10.

We now have a method to show that a proposition P is not provable: find some truth
assignment that makes P false.

Such an assignment falsifying P is called a counterezample. If P has a counterexample,
then it can’t be provable because if it were, then by soundness it would be true for all
possible truth assignments.

But now, another question comes up. If a proposition is not provable, can we always find
a counterexample for it? Equivalently, is every valid proposition provable? If every valid
proposition is provable, we say that our proof system is complete (this is the completeness
of our system).

The system N G?’V’A’L is indeed complete. In fact, all the classical systems that we
have discussed are sound and complete. Completeness is usually a lot harder to prove than
soundness. For first-order classical logic, this is known as Gaddel’s completeness theorem
(1929). Again, we refer our readers to Gallier [21], van Dalen [58], or Huth and Ryan [33] for
a thorough discussion of these matters. In the first-order case, one has to define first-order
structures (or first-order models).

What about intuitionistic logic?

Well, one has to come up with a richer notion of semantics because it is no longer true
that if a proposition is valid (in the sense of our two-valued semantics using true, false),
then it is provable. Several semantics have been given for intuitionistic logic. In our opinion,
the most natural is the notion of the Kripke model, presented in Section 2.11. Then, again,
soundness and completeness hold for intuitionistic proof systems, even in the first-order case

2.15. ADDING QUANTIFIERS; PROOF SYSTEMS N5 ™V"34 N go V%3t 115

Figure 2.11: Jean-Yves Girard, 1947

(see Section 2.11 and van Dalen [58]).

In summary, semantic models can be used to provide countereramples of unprovable
propositions. This is a quick method to establish that a proposition is not provable.

We close this section by repeating something we said earlier: there isn’t just one logic but
instead, many logics. In addition to classical and intuitionistic logic (propositional and first-
order), there are: modal logics, higher-order logics, and linear logic, a logic due to Jean-Yves
Girard, attempting to unify classical and intuitionistic logic (among other goals).

An excellent introduction to these logics can be found in Troelstra and Schwichtenberg
[57]. We warn our readers that most presentations of linear logic are (very) difficult to follow.
This is definitely true of Girard’s seminal paper [26]. A more approachable version can be
found in Girard, Lafont, and Taylor [23], but most readers will still wonder what hit them
when they attempt to read it.

In computer science, there is also dynamic logic, used to prove properties of programs
and temporal logic and its variants (originally invented by A. Pnueli), to prove properties of
real-time systems. So logic is alive and well.

We now add quantifiers to our language and give the corresponding inference rules.

2.15 Adding Quantifiers; Proof Systems N.7"V¥3+ and
Ng:>,A,\/,V,H,L
C

As we mentioned in Section 2.1, atomic propositions may contain variables. The intention
is that such variables correspond to arbitrary objects. An example is

human(z) = needs-to-drink(z).

Now in mathematics, we usually prove universal statements, that is statements that hold for
all possible “objects,” or existential statements, that is, statements asserting the existence
of some object satisfying a given property. As we saw earlier, we assert that every human
needs to drink by writing the proposition

Vz(human(z) = needs-to-drink(z)).

116 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Observe that once the quantifier V (pronounced “for all” or “for every”) is applied to the
variable z, the variable x becomes a placeholder and replacing x by y or any other variable
does not change anything. What matters is the locations to which the outer x points in the
inner proposition. We say that x is a bound variable (sometimes a “dummy variable”).

If we want to assert that some human needs to drink we write

Jz(human(x) = needs-to-drink(x));

Again, once the quantifier 3 (pronounced “there exists”) is applied to the variable x, the
variable x becomes a placeholder. However, the intended meaning of the second proposition
is very different and weaker than the first. It only asserts the existence of some object
satisfying the statement

human(z) = needs-to-drink(z).

Statements may contain variables that are not bound by quantifiers. For example, in
Jz parent(z, y)

the variable x is bound but the variable y is not. Here the intended meaning of parent(z,y)
is that z is a parent of y, and the intended meaning of 3z parent(z,y) is that any given y
has some parent z. Variables that are not bound are called free. The proposition

Vy3x parent(z, y),

which contains only bound variables is meant to assert that every y has some parent x. Typi-
cally, in mathematics, we only prove statements without free variables. However, statements
with free variables may occur during intermediate stages of a proof.

The intuitive meaning of the statement Vx P is that P holds for all possible objects x,
and the intuitive meaning of the statement Jdx P is that P holds for some object x. Thus,
we see that it would be useful to use symbols to denote various objects. For example, if
we want to assert some facts about the “parent” predicate, we may want to introduce some
constant symbols (for short, constants) such as “Jean,” “Mia,” and so on and write

parent(Jean, Mia)

to assert that Jean is a parent of Mia. Often, we also have to use function symbols (or
operators, constructors), for instance, to write a statement about numbers: +, %, and so on.
Using constant symbols, function symbols, and variables, we can form terms, such as

(xxx+1)*(3xy+2).

In addition to function symbols, we also use predicate symbols, which are names for atomic
properties. We have already seen several examples of predicate symbols: “human,” “parent.”
So, in general, when we try to prove properties of certain classes of objects (people, numbers,
strings, graphs, and so on), we assume that we have a certain alphabet consisting of constant

2.15. ADDING QUANTIFIERS; PROOF SYSTEMS N5 ™V"34 N go V%3t 117

symbols, function symbols, and predicate symbols. Using these symbols and an infinite
supply of variables (assumed distinct from the variables we use to label premises) we can
form terms and predicate terms. We say that we have a (logical) language. Using this
language, we can write compound statements.

Let us be a little more precise. In a first-order language L in addition to the logical
connectives =, A, V,—, 1, V, and 3, we have a set L of nonlogical symbols consisting of

(i) A set CS of constant symbols, ci,ca,

(ii) A set F'S of function symbols, fi, f2,...,. Each function symbol f has a rank ny > 1,
which is the number of arguments of f.

(iii) A set PS of predicate symbols, Py, Ps, . . .,. Each predicate symbol P has a rank np > 0,
which is the number of arguments of P. Predicate symbols of rank 0 are propositional
symbols as in earlier sections.

(iv) The equality predicate = is added to our language when we want to deal with equations.

(v) First-order variables ¢y, ts, ... used to form quantified formulae.

The difference between function symbols and predicate symbols is that function symbols
are interpreted as functions defined on a structure (e.g., addition, +, on N), whereas predicate
symbols are interpreted as properties of objects, that is, they take the value true or false.

An example is the language of Peano arithmetic, L = {0, S, +, *, =}, where 0 is a constant
symbol, S is a function symbol with one argument, and +, * are function symbols with two
arguments. Here, the intended structure is N, 0 is of course zero, S is interpreted as the
function S(n) = n + 1, the symbol + is addition, * is multiplication, and = is equality.

Using a first-order language L, we can form terms, predicate terms, and formulae. The
terms over L are the following expressions.

(i) Every variable ¢ is a term.
(ii) Every constant symbol ¢ € CS, is a term.

(iii) If f € FS is a function symbol taking n arguments and 7y,...,7, are terms already
constructed, then f(7,...,7,) is a term.

The predicate terms over L are the following expressions.

(i) If P € PS is a predicate symbol taking n arguments and 7y, ..., 7, are terms already
constructed, then P(7,...,7,) is a predicate term. When n = 0, the predicate symbol
P is a predicate term called a propositional symbol.

(i) When we allow the equality predicate, for any two terms 73 and 7o, the expression
71 = Ty is a predicate term. It is usually called an equation.

118 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

The (first-order) formulae over L are the following expressions.

(i) Every predicate term P(7y,...,7,) is an atomic formula. This includes all propositional
letters. We also view L (and sometimes T) as an atomic formula.

(ii) When we allow the equality predicate, every equation 73 = 7 is an atomic formula.

(iii) If P and @ are formulae already constructed, then P = @, P A Q, PV Q, —P are
compound formulae. We treat P = () as an abbreviation for (P = Q) A (Q = P), as
before.

(iv) If P is a formula already constructed and t is any variable, then VtP and 3tP are
quantified compound formulae.

All this can be made very precise but this is quite tedious. Our primary goal is to explain
the basic rules of logic and not to teach a full-fledged logic course. We hope that our intuitive
explanations will suffice, and we now come to the heart of the matter, the inference rules for
the quantifiers. Once again, for a complete treatment, readers are referred to Gallier [21],
van Dalen [58], or Huth and Ryan [33].

Unlike the rules for =, V, A and L, which are rather straightforward, the rules for quan-
tifiers are more subtle due to the presence of variables (occurring in terms and predicates).
We have to be careful to forbid inferences that would yield “wrong” results and for this we
have to be very precise about the way we use free variables. More specifically, we have to
exercise care when we make substitutions of terms for variables in propositions. For example,
say we have the predicate “odd,” intended to express that a number is odd. Now we can
substitute the term (2y + 1)? for z in odd(x) and obtain

odd((2y + 1)?).

More generally, if P(t,ts,...,t,) is a statement containing the free variables t1, ..., ¢, and
if 74,...,7, are terms, we can form the new statement

Plmi/t1, ..., Ta/ts]

obtained by substituting the term 7; for all free occurrences of the variable t;, fori =1,... n.
By the way, we denote terms by the Greek letter 7 because we use the letter ¢ for a variable
and using ¢ for both variables and terms would be confusing.

However, if P(tq,ts,...,t,) contains quantifiers, some bad things can happen; namely,
some of the variables occurring in some term 7; may become quantified when 7; is substituted
for t;. For example, consider

Vedy P(x,y, 2)

which contains the free variable z and substitute the term x + y for z: we get

Vedy P(x,y,x + y).

2.15. ADDING QUANTIFIERS; PROOF SYSTEMS N5 ™V"34 N go V%3t 119

We see that the variables x and y occurring in the term x + y become bound variables after
substitution. We say that there is a “capture of variables.”

This is not what we intended to happen. To fix this problem, we recall that bound vari-
ables are really place holders, so they can be renamed without changing anything. Therefore,
we can rename the bound variables x and y in Va3y P(x,y, z) to u and v, getting the state-
ment Yu3v P(u, v, z) and now, the result of the substitution is

Vudv P(u, v,z + y).

Again, all this needs to be explained very carefuly but this can be done.

Finally, here are the inference rules for the quantifiers, first stated in a natural deduction
style and then in sequent style. It is assumed that we use two disjoint sets of variables for
labeling premises (z,v,...) and free variables (t,u,v,...). As we show, the V-introduction
rule and the J-elimination rule involve a crucial restriction on the occurrences of certain
variables. Remember, variables are terms.

Definition 2.15. The inference rules for the quantifiers are
V-introduction:
If D is a deduction tree for Plu/t] from the premises I', then

r
D

Plu/i]
vVtP

is a deduction tree for VtP from the premises I". Here, u must be a variable that does not
occur free in any of the propositions in I' or in ¥YtP. The notation P[u/t] stands for the
result of substituting u for all free occurrences of ¢ in P.

Recall that I" denotes the multiset of premises of the deduction tree D, so if D only has
one node, then T' = { P[u/t]} and ¢ should not occur in P.

V-elimination:

If D is a deduction tree for VtP from the premises I', then

r

D
VtP

Plr/i]

is a deduction tree for P[r/t] from the premises I Here 7 is an arbitrary term and it is
assumed that bound variables in P have been renamed so that none of the variables in 7 are
captured after substitution.

J-introduction:
If D is a deduction tree for P[r/t] from the premises I', then

120 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

r
D

Plr/t]
JtP

is a deduction tree for 3t P from the premises I'. As in V-elimination, 7 is an arbitrary term
and the same proviso on bound variables in P applies (no capture of variables when 7 is
substituted).

J-elimination:

If D, is a deduction tree for dtP from the premises I', and if D, is a deduction tree for
C from the premises in the multiset A and one or more occurrences of Plu/t], then

r A, Plu/t]”
D, D;
3tP C

C

is a deduction tree of C from the set of premises in the multiset I', A. Here, v must be a
variable that does not occur free in any of the propositions in A, tP, or C, and all premises
P[u/t] labeled z are discharged.

In the V-introduction and the J-elimination rules, the variable u is called the eigenvariable
of the inference.

In the above rules, I' or A may be empty; P, C denote arbitrary propositions constructed
from a first-order language L; D, Dy, Dy are deductions, possibly a one-node tree; and ¢ is
any variable.

The system of first-order classical logic N77V"»+¥3 is obtained by adding the above rules
to the system of propositional classical logic N-7»V+. The system of first-order intuitionistic
logic ./\/;-:>’\/’A’L’V’H is obtained by adding the above rules to the system of propositional intu-
itionistic logic ./\/f’v’A’L. Deduction trees and proof trees are defined as in the propositional
case except that the quantifier rules are also allowed.

Using sequents, the quantifier rules in first-order logic are expressed as follows:

Definition 2.16. The inference rules for the quantifiers in Gentzen-sequent style are

' — Plu/t] I' - VtP

T - th (V—mtro) m (V-elzm)

where in (V-intro), u does not occur free in I' or Vit P;

' — P/t ' - 3tP z: Plu/t],),A - C
I — 3P ruA—-==C

where in (3-elim), u does not occur free in I', 3tP, or C'. Again, t is any variable.

(F-intro) (3-elim),

2.15. ADDING QUANTIFIERS; PROOF SYSTEMS N5 ™V"34 N go V%3t 121

The variable u is called the eigenvariable of the inference. The systems
NGVAEYT and NGV %7 are defined from the systems NGV and NGV
respectively, by adding the above rules. As usual, a deduction tree is a either a one-node
tree or a tree constructed using the above rules and a proof tree is a deduction tree whose
conclusion is a sequent with an empty set of premises (a sequent of the form () — P).

When we say that a proposition P is provable from I' we mean that we can construct
a proof tree whose conclusion is P and whose set of premises is I' in one of the systems
NI o NGZMYAY3 - Therefore, as in propositional logic, when we use the word
“provable” unqualified, we mean provable in classical logic. Otherwise, we say intuitionisti-
cally provable.

It is not hard to show that the proof systems N.>V>5%3 and NGZV-" are equivalent
(and similarly for N;7"Y"5% and NG7"V""7). We leave the details as Problem 2.16.

A first look at the above rules shows that universal formulae ViP behave somewhat
like infinite conjunctions and that existential formulae J¢P behave somewhat like infinite
disjunctions.

The V-introduction rule looks a little strange but the idea behind it is actually very
simple: because u is totally unconstrained, if Pfu/t] is provable (from I'), then intuitively
Plu/t] holds of any arbitrary object, and so, the statement V¢P should also be provable
(from I'). Note that the tree

Plu/t]
VtP

is generally not a deduction, because the deduction tree above VtP is a one-node tree con-
sisting of the single premise P[u/t], and u occurs in Plu/t] unless ¢ does not occur in P.

The meaning of the V-elimination is that if V¢P is provable (from I'), then P holds for
all objects and so, in particular for the object denoted by the term 7; that is, P[7/t] should
be provable (from T').

The J-introduction rule is dual to the V-elimination rule. If P[r/t] is provable (from I'),
this means that the object denoted by 7 satisfies P, so JtP should be provable (this latter
formula asserts the existence of some object satisfying P, and 7 is such an object).

The J-elimination rule is reminiscent of the V-elimination rule and is a little more tricky:.
It goes as follows. Suppose that we proved 3tP (from I'). Moreover, suppose that for every
possible case Plu/t] we were able to prove C' (from I'). Then as we have “exhausted” all
possible cases and as we know from the provability of 3¢ P that some case must hold, we can
conclude that C' is provable (from I') without using P[u/t] as a premise.

Like the V-elimination rule, the J-elimination rule is not very constructive. It allows
making a conclusion (C') by considering alternatives without knowing which one actually
occurs.

Remark: Analogously to disjunction, in (first-order) intuitionistic logic, if an existential
statement JtP is provable, then from any proof of JtP, some term 7 can be extracted so
that P[r/t] is provable. Such a term 7 is called a witness. The witness property is not easy

122 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

to prove. It follows from the fact that intuitionistic proofs have a normal form (see Section
2.12). However, no such property holds in classical logic.
We can illustrate, again, the fact that classical logic allows for nonconstructive proofs

by re-examining the example at the end of Section 2.6. There we proved that if \/5\& is
rational, then a = V2 and b = /2 are both irrational numbers such that a® is rational, and

. 2. .. 2 o
if \/5\[is irrational, then a = \/§f and b = /2 are both irrational numbers such that a®
is rational. By d-introduction, we deduce that if \/iﬁ is rational, then there exist some

irrational numbers a, b so that a® is rational, and if \/5\/5 is irrational, then there exist some
irrational numbers a, b so that a’ is rational. In classical logic, as P V =P is provable, by
V-elimination, we just proved that there exist some irrational numbers a and b so that a® is
rational.

However, this argument does not give us explicitly numbers a and b with the required

properties. It only tells us that such numbers must exist. Now it turns out that \/§\/§
is indeed irrational (this follows from the Gel'fond-Schneider theorem, a hard theorem in
number theory). Furthermore, there are also simpler explicit solutions such as a = v/2 and
b = log, 9, as the reader should check.

Here is an example of a proof in the system N=¥"%3 (actually, in N;7""%7) of the
formula V(P A Q) = VtP A VtQ.

VEH(P A Q)* VEH(P A Q)
Plu/t] AQu/t] Plu/t] A Qlu/t]
Plu/t] Qlu/t]
VP ViQ
VEP AVEQ

VEH(P A Q) = VEP AVEQ

In the above proof, u is a new variable, that is, a variable that does not occur free in P or
(). We also have used some basic properties of substitutions such as

(PAQ)T/t] = Plr/t]AQ[r/t]

(PVQIr/t] = Plr/t]vQ[r/t]

(P=Q)r/t] = Plr/t]=Q[r/1]
(=P)[r/t] = —P[r/1]
(VsP)[r/t] = VsP[r/t]
(3sP)[r/t] = 3dsP|r/t],

for any term 7 such that no variable in 7 is captured during the substitution (in particular,
in the last two cases, the variable s does not occur in 7).
The reader should show that VtP A VtQ = Vt(P A Q) is also provable in the system

2.15. ADDING QUANTIFIERS; PROOF SYSTEMS N5 ™V"34 N go V%3t 123

/\/?’V’A’L’v’a. However, in general, one can’t just replace V by 3 (or A by V) and still obtain

provable statements. For example, 3tP A 3tQ = Jt(P A @) is not provable at all.

Here is an example in which the V-introduction rule is applied illegally, and thus, yields
a statement that is actually false (not provable). In the incorrect “proof” below, P is an
atomic predicate symbol taking two arguments (e.g., “parent”) and 0 is a constant denoting
Zero:

P(u,0)*

"~ illegal step!
VtP(t,0)

Implication-Intro «

P(u,0) = VtP(t,0)

Forall-Intro

Vs(P(s,0) = VtP(t,0
(P(s,0) (t,0)) Forall-Elim

P(0,0) = V4P(t,0)

The problem is that the variable uw occurs free in the premise Plu/t,0] = P(u,0) and
therefore, the application of the V-introduction rule in the first step is illegal. However,
note that this premise is discharged in the second step and so, the application of the V-
introduction rule in the third step is legal. The (false) conclusion of this faulty proof is that
P(0,0) = VtP(t,0) is provable. Indeed, there are plenty of properties such that the fact
that the single instance P(0,0) holds does not imply that P(t,0) holds for all t.

Remark: The above example shows why it is desirable to have premises that are universally
quantified. A premise of the form V¢P can be instantiated to Plu/t], using V-elimination,
where u is a brand new variable. Later on, it may be possible to use V-introduction without
running into trouble with free occurrences of u in the premises. But we still have to be very
careful when we use V-introduction or 3-elimination.

Here are some useful equivalences involving quantifiers. The first two are analogous to
the de Morgan laws for A and V.

Proposition 2.13. The following equivalences are provable in classical first-order logic.

—VtP = Jt—-P
—3tP = Vi-P
Vt(P A Q) = VtP AVLQ
(P VQ)=3ItPVIHQ.

In fact, the last three and I—P = —VtP are provable intuitionistically. Moreover, the
formulae
H(PAQ)= FHPAIIQ and VtPVVLQ = Vi(PV Q)

are provable in intuitionistic first-order logic (and thus, also in classical first-order logic).

Proof. Left as an exercise to the reader. n

124 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Before concluding this section, let us give a few more examples of proofs using the rules
for the quantifiers. First let us prove that

VtP = YuPlu/t],

where u is any variable not free in V¢ P and such that « is not captured during the substitution.
This rule allows us to rename bound variables (under very mild conditions). We have the

proofs
(VtP)
Plu/t]
VuPlu/t]

VtP = YuP[u/t]
and
(VuPlu/t])"
Plu/t]
VtP
VuPlu/t] = VtP

Here is now a proof (intuitionistic) of
(P = Q)= (VtP = Q),

where ¢ does not occur (free or bound) in Q.

(VtP)Y
(Plu/t] = Q)" Plu/t]
BUP = Q) @ z (3-elim)
762 Yy
VtP = @

(P = Q)= (VtP = Q)

In the above proof, u is a new variable that does not occur in @, VtP, or
Jt(P = Q). Because t does not occur in @), we have

(P = Q)u/t] = Plu/t] = Q.

The converse requires (RAA) and is a bit more complicated. Here is a classical proof:

2.15. ADDING QUANTIFIERS; PROOF SYSTEMS N5 ™V"34 N go V%3t 125

—=Plu/t]° Plu/t]”

L
Q
Plu/t]*,Q° Plu/t] = Q
Q X (3P =Q))Y HP=Q)
Plu/t] = Q L 5 (RAA)
(—-3(P=Q))Y FHP=Q) Plu/t]
i 5 (VtP = Q)* vtP
-Q Q
ot RraAA
(P = Q)
(VtP = Q) = 3t(P = Q)
Next, we give intuitionistic proofs of
(FHPAQ)= FH(PAQ)
and
H(PAQ)= (FPAQ),
where t does not occur (free or bound) in Q.
Here is an intuitionistic proof of the first implication:
(FtP AQ)*
Plu/t] Q

(FtP AQ)* Plu/t] A Q

JtP (P AQ) (3-elim)

(P AQ)

(FHPAQ)= FH(PAQ)

In the above proof, u is a new variable that does not occur in 3tP or (). Because t does
not occur in (), we have

(P AQ)u/t] = Plu/t] A Q.

Here is an intuitionistic proof of the converse:

126 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

(Plu/n Q)
Plu/1] (Plu/t] 1 @
(B(PAQ)" P S Gt QY ¢ . (B-clim)
3tpP Q
3P AQ

(P AQ)= (3P AQ)

Finally, we give a proof (intuitionistic) of
(VtPV Q) = Vt(PV Q),

where ¢ does not occur (free or bound) in Q.

(VtP)?
Pugve — Pluive

(VPVQ)* VHPVQ) VHEVQ) eelim)
Vi(PV Q)

(VtPV Q) = V(P V Q)

In the above proof, u is a new variable that does not occur in VP or (). Because t does
not occur in (), we have

(PVQ)[u/t] = Plu/t] v Q.
The converse requires (RAA).
The useful above equivalences (and more) are summarized in the following propositions.

Proposition 2.14. (1) The following equivalences are provable in classical first-order logic,
provided that t does not occur (free or bound) in Q.

VIPAQ = VHPAQ
JPVEQ = 3t

SIPAQ = JH(PAQ
VIPVQ = VHPVQ).

Furthermore, the first three are provable intuitionistically and so is (VtPV Q) = Vt(P V Q).

(2) The following equivalences are provable in classical logic, provided that t does not
occur (free or bound) in P.

Vi(P = Q) = (P=WtQ)
(P =Q) = (P=3tQ).

2.15. ADDING QUANTIFIERS; PROOF SYSTEMS N5 ™V"34 N go V%3t 127

Figure 2.12: Andrey N. Kolmogorov, 1903-1987 (left) and Kurt Godel, 1906-1978 (right)

Furthermore, the first one is provable intuitionistically and so is (P = Q) = (P = Q).
(8) The following equivalences are provable in classical logic, provided that t does not
occur (free or bound) in Q.

Vi(P= Q) = (FtP=Q)
d(P=Q) = (VtP = Q).

Furthermore, the first one is provable intuitionistically and so is (P = Q) = (VtP = Q).

Proofs that have not been supplied are left as exercises.

Obviously, every first-order formula that is provable intuitionistically is also provable
classically and we know that there are formulae that are provable classically but not provable
intuitionistically. Therefore, it appears that classical logic is more general than intuitionistic
logic. However, this not not quite so because there is a way of translating classical logic
into intuitionistic logic. To be more precise, every classical formula A can be translated
into a formula A* where A* is classically equivalent to A and A is provable classically iff
A* is provable intuitionistically. Various translations are known, all based on a “trick”
involving double-negation (This is because =——A and —A are intuitionistically equivalent).
Translations were given by Kolmogorov (1925), Gédel (1933), and Gentzen (1933).

For example, Godel used the following translation.

A* = —=A, if Ais atomic,
(A" = A%
) = (A"ABY),
)" = —(A"A=BY),
(A\/B)* = ﬂ(—|A*/\ﬁB*)7
)
)

ES
>
Sy,

|

(VzA)" = VzA",
(FzA)" = —Vz-A~
Actually, if we restrict our attention to propositions (i.e., formulae without quantifiers), a

theorem of V. Glivenko (1929) states that if a proposition A is provable classically, then
——A is provable intuitionistically. In view of these results, the proponents of intuitionistic

128 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

logic claim that classical logic is really a special case of intuitionistic logic. However, the
above translations have some undesirable properties, as noticed by Girard. For more details
on all this, see Gallier [16].

2.16 First-Order Theories

The way we presented deduction trees and proof trees may have given our readers the
impression that the set of premises I' was just an auxiliary notion. Indeed, in all of our
examples, ' ends up being empty. However, nonempty I's are crucially needed if we want to
develop theories about various kinds of structures and objects, such as the natural numbers,
groups, rings, fields, trees, graphs, sets, and the like. Indeed, we need to make definitions
about the objects we want to study and we need to state some axioms asserting the main
properties of these objects. We do this by putting these definitions and azioms in I'. Actually,
we have to allow I" to be infinite but we still require that our deduction trees be finite; they
can only use finitely many of the formulae in I". We are then interested in all formulae P
such that A — P is provable, where A is any finite subset of I'; the set of all such Ps is
called a theory (or first-order theory). Of course we have the usual problem of consistency:
if we are not careful, our theory may be inconsistent, that is, it may consist of all formulae.

Let us give two examples of theories.

Our first example is the theory of equality. Indeed, our readers may have noticed that
we have avoided dealing with the equality relation. In practice, we can’t do that.

Given a language L with a given supply of constant, function, and predicate symbols,
the theory of equality consists of the following formulae taken as axioms.

Va(x = x)
vxlvanylv:yn[(xl :yl/\/\xn:yn) :>f(371;7xn> :f(yl,,yn)]
vxl\v/zn\vlyl\V/yn[(xl :yl/\"'/\l'n:yn)/\P(xla"'axn) :>P(y1,...,yn)],

for all function symbols (of n arguments) and all predicate symbols (of n arguments), in-
cluding the equality predicate, =, itself.

It is not immediately clear from the above axioms that = is symmetric and transitive
but this can be shown easily.

Our second example is the first-order theory of the natural numbers known as Peano
arithmetic (for short, PA).

In this case the language L consists of the nonlogical symbols {0, S, +,*,=}. Here,
we have the constant 0 (zero), the unary function symbol S (for successor function; the
intended meaning is S(n) = n + 1) and the binary function symbols + (for addition) and
« (for multiplication). In addition to the axioms for the theory of equality we have the

2.16. FIRST-ORDER THEORIES 129

Figure 2.13: Giuseppe Peano, 1858-1932

Figure 2.14: Kurt Godel with Albert Einstein

following axioms:

Vz—(S(x) =0)

Vavy(S(z) = S(y) = z = y)
Va(z +0=2x)

VaVy(x + S(y) = S(z + y))
Va(x * 0 =0)

VaVy(z x S(y) = v xy + x)
[A(0) AVz(A(z) = A(S(x)))] = YnA(n),

where A is any first-order formula with one free variable.

This last axiom is the induction axiom. Observe how + and * are defined recursively in
terms of 0 and S and that there are infinitely many induction axioms (countably many).

Many properties that hold for the natural numbers (i.e., are true when the symbols
0,5, 4+, * have their usual interpretation and all variables range over the natural numbers)
can be proven in this theory (Peano arithmetic), but not all. This is another very famous
result of Godel known as Gédel’s first incompleteness theorem (1931). We give two proofs of
Godel’s first incompleteness theorem; one in Section 8.3 using creative and productive sets
from recursion theory; the other one using Diophantine definability in Section 9.8.

However, we feel that it should be instructive for the reader to see how simple properties
of the natural numbers can be derived (in principle) in Peano arithmetic.

130 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

First it is convenient to introduce abbreviations for the terms of the form S™(0), which
represent the natural numbers. Thus, we add a countable supply of constants, 0,1,2,3,...,
to denote the natural numbers and add the axioms

n = S5"(0),

for all natural numbers n. We also write n + 1 for S(n).

Let us illustrate the use of the quantifier rules involving terms (V-elimination and 3-
introduction) by proving some simple properties of the natural numbers, namely, being even
or odd. We also prove a property of the natural number that we used before (in the proof
that v/2 is irrational), namely, that every natural number is either even or odd. For this, we
add the predicate symbols, “even” and “odd”, to our language, and assume the following
axioms defining these predicates:

Vn(even(n) = Jk(n = 2 x k))
Vn(odd(n) = 3k(n =2k +1)).

Consider the term, 2 % (m + 1) * (m + 2) + 1, where m is any given natural number. We
need a few preliminary results.

Proposition 2.15. The statement odd(2 * (m + 1) x (m + 2) + 1) is provable in Peano
arithmetic.

As an auxiliary lemma, we first prove
Proposition 2.16. The formula
Vrxodd(2*z + 1)
18 provable in Peano arithmetic.

Proof. Let p be a variable not occurring in any of the axioms of Peano arithmetic (the
variable p stands for an arbitrary natural number). From the axiom,

Vn(odd(n) = Jk(n =2xk+ 1)),
by V-elimination where the term 2 % p + 1 is substituted for the variable n we get
odd(2xp+1)=3Jk2xp+1=2xk+1). (%)
Now we can think of the provable equation 2xp+1=2x%p+ 1 as
2*xp+1=2xk+1)[p/k],
so by J-introduction, we can conclude that

J2xp+1=2xk+1),

2.16. FIRST-ORDER THEORIES 131

which, by (x), implies that

odd(2xp+1).
But now, because p is a variable not occurring free in the axioms of Peano arithmetic, by
V-introduction, we conclude that

Vrodd(2+z + 1),
as claimed. n

Proof of Proposition 2.15. If we use V-elimination in the above formula where we substitute
the term, 7 = (m + 1) x (m + 2), for x, we get

odd(2* (m+1)x (m+2)+ 1),
as claimed. O]
Now we wish to prove

Proposition 2.17. The formula
Vn(even(n) V odd(n))
18 provable in Peano arithmetic.

Proof. We use the induction principle of Peano arithmetic with
A(n) = even(n) V odd(n).

For the base case, n = 0, because 0 = 20 (which can be proven from the Peano axioms),
we see that even(0) holds and so even(0) V odd(0) is proven.

For n = 1, because 1 = 2% 0+ 1 (which can be proven from the Peano axioms), we see
that odd(1) holds and so even(1) V odd(1) is proven.

For the induction step, we may assume that A(n) has been proven and we need to prove
that A(n + 1) holds.

So, assume that even(n) V odd(n) holds. We do a proof by cases.

(a) If even(n) holds, by definition this means that n = 2k for some k and then,
n+ 1 = 2k + 1, which again, by definition means that odd(n + 1) holds and thus,
even(n + 1) V odd(n + 1) holds.

(b) If odd(n) holds, by definition this means that n = 2k + 1 for some k and then,
n+1=2k+2 = 2(k+1), which again, by definition means that even(n + 1) holds and thus,
even(n + 1) V odd(n + 1) holds.

By V-elimination, we conclude that even(n 4+ 1) V odd(n + 1) holds, establishing the
induction step.

Therefore, using induction, we have proven that

Vn(even(n) V odd(n)),

as claimed. n

132 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Actually, we can show that even(n) and odd(n) are mutually exclusive as we now prove.

Proposition 2.18. The formula
Vn—(even(n) A odd(n))
18 provable in Peano arithmetic.

Proof. We prove this by induction. For n = 0, the statement odd(0) means that
0 = 2k + 1 = S(2k), for some k. However, the first axiom of Peano arithmetic states that
S(x) # 0 for all z, so we get a contradiction.

For the induction step, assume that —(even(n) A odd(n)) holds. We need to prove that
—(even(n 4+ 1) A odd(n + 1)) holds, and we can do this by using our constructive proof-by-
contradiction rule. So, assume that even(n + 1) A odd(n + 1) holds. At this stage, we realize
that if we could prove that

Vn(even(n + 1) = odd(n)) (%)

and
Vn(odd(n + 1) = even(n)) (%)

then even(n + 1) A odd(n + 1) would imply even(n) A odd(n), contradicting the assumption
—(even(n) A odd(n)). Therefore, the proof is complete if we can prove (%) and (k).

Let’s consider the implication (x) leaving the proof of (xx) as an exercise.

Assume that even(n + 1) holds. Then n + 1 = 2k, for some natural number k. We can’t
have k = 0 because otherwise we would have n + 1 = 0, contradicting one of the Peano
axioms. But then k is of the form k = h + 1 for some natural number h, so

n+1=2k=2h+1)=2h+2=(2h+1)+1
By the second Peano axiom, we must have
n=2h+1,

which proves that n is odd, as desired.
In that last proof, we made implicit use of the fact that every natural number n different
from zero is of the form n = m + 1, for some natural number m which is formalized as

Vn((n # 0) = Im(n =m+1)).

This is easily proven by induction.
Having done all this work, we have finally proven (x) and after proving (*x), we will have
proven that

Vn—(even(n) A odd(n)),

as claimed. n

2.16. FIRST-ORDER THEORIES 133

It is also easy to prove that
Vn(even(n) V odd(n))

and
Vn—(even(n) A odd(n))

together imply that
Vn(even(n) = —odd(n)) and Vn(odd(n) = —even(n))
are provable, facts that we used several times in Section 2.9. This is because, if
Ve(PV Q) and VYaz—(PAQ)
can be deduced intuitionistically from a set of premises, I', then
V(P =-Q) and Vz(Q =-P)

can also be deduced intuitionistically from I'. In this case it also follows that Va(——P = P)
and Vz(——Q = @) can be deduced intuitionistically from I

Remark: Even though we proved that every nonzero natural number n is of the form
n = m + 1, for some natural number m, the expression n — 1 does not make sense because
the predecessor function n — n — 1 has not been defined yet in our logical system. We need
to define a function symbol “pred” satisfying the axioms:

pred(0) = 0
Vn(pred(n +1) = n).

For simplicity of notation, we write n — 1 instead of pred(n). Then we can prove that if
k # 0, then 2k—1 = 2(k—1)+1 (which really should be written as pred(2k) = 2pred(k)+1).
This can indeed be done by induction; we leave the details as an exercise. We can also define
substraction, —, as a function sastisfying the axioms

Vn(n—0 = n)
Vn¥m(n — (m+1) = pred(n —m)).

It is then possible to prove the usual properties of subtraction (by induction).

These examples of proofs in the theory of Peano arithmetic illustrate the fact that con-
structing proofs in an axiomatized theory is a very laborious and tedious process. Many
small technical lemmas need to be established from the axioms, which renders these proofs
very lengthy and often unintuitive. It is therefore important to build up a database of useful
basic facts if we wish to prove, with a certain amount of comfort, properties of objects whose
properties are defined by an axiomatic theory (such as the natural numbers). However, when

134 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

in doubt, we can always go back to the formal theory and try to prove rigorously the facts
that we are not sure about, even though this is usually a tedious and painful process. Human
provers navigate in a “spectrum of formality,” most of the time constructing informal proofs
containing quite a few (harmless) shortcuts, sometimes making extra efforts to construct
more formalized and rigorous arguments if the need arises.

Now what if the theory of Peano arithmetic were inconsistent! How do know that Peano
arithmetic does not imply any contradiction? This is an important and hard question that
motivated a lot of the work of Gentzen. An easy answer is that the standard model N of
the natural numbers under addition and multiplication validates all the axioms of Peano
arithmetic. Therefore, if both P and —P could be proven from the Peano axioms, then both
P and =P would be true in N, which is absurd. To make all this rigorous, we need to define
the notion of truth in a structure, a notion explained in every logic book. It should be noted
that the constructivists will object to the above method for showing the consistency of Peano
arithmetic, because it assumes that the infinite set N exists as a completed entity. Until
further notice, we have faith in the consistency of Peano arithmetic (so far, no inconsistency
has been found).

Another very interesting theory is set theory. There are a number of axiomatizations of
set theory and we discuss one of them (ZF) very briefly in Section 2.17.

2.17 Basics Concepts of Set Theory

Having learned some fundamental notions of logic, it is now a good place before proceeding
to more interesting things, such as functions and relations, to go through a very quick review
of some basic concepts of set theory. This section takes the very “naive” point of view that
a set is an unordered collection of objects, without duplicates, the collection being regarded
as a single object. Having first-order logic at our disposal, we could formalize set theory
very rigorously in terms of axioms. This was done by Zermelo first (1908) and in a more
satisfactory form by Zermelo and Fraenkel in 1921, in a theory known as the “Zermelo—
Fraenkel” (ZF) axioms. Another axiomatization was given by John von Neumann in 1925
and later improved by Bernays in 1937. A modification of Bernay’s axioms was used by Kurt
Godel in 1940. This approach is now known as “von Neumann-Bernays” (VNB) or “Gédel-
Bernays” (GB) set theory. There are many books that give an axiomatic presentation of
set theory. Among them, we recommend Enderton [13], which we find remarkably clear
and elegant, Suppes [55] (a little more advanced), and Halmos [29], a classic (at a more
elementary level).

However, it must be said that set theory was first created by Georg Cantor (1845-1918)
between 1871 and 1879. However, Cantor’s work was not unanimously well received by all
mathematicians.

Cantor regarded infinite objects as objects to be treated in much the same way as finite
sets, a point of view that was shocking to a number of very prominent mathematicians who
bitterly attacked him (among them, the powerful Kronecker). Also, it turns out that some
paradoxes in set theory popped up in the early 1900s, in particular, Russell’s paradox.

2.17. BASICS CONCEPTS OF SET THEORY 135

Figure 2.15: Ernst F. Zermelo, 1871-1953 (left), Adolf A. Fraenkel, 1891-1965 (middle left),
John von Neumann, 1903-1957 (middle right) and Paul I. Bernays, 1888-1977 (right)

Figure 2.16: Georg F. L. P. Cantor, 1845-1918

Russell’s paradox (found by Russell in 1902) has to to with the
“set of all sets that are not members of themselves,”

which we denote by
R={z|xz ¢ x}.

(In general, the notation {z | P} stand for the set of all objects satisfying the property P.)
Now, classically, either R € R or R ¢ R. However, if R € R, then the definition of R
says that R ¢ R; if R ¢ R, then again, the definition of R says that R € R.
So, we have a contradiction and the existence of such a set is a paradox. The problem
is that we are allowing a property (here, P(z) = = ¢ z), which is “too wild” and circular
in nature. As we show, the way out, as found by Zermelo, is to place a restriction on the

Figure 2.17: Bertrand A. W. Russell, 1872-1970

136 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

property P and to also make sure that P picks out elements from some already given set
(see the subset axioms below).

The apparition of these paradoxes prompted mathematicians, with Hilbert among its
leaders, to put set theory on firmer ground. This was achieved by Zermelo, Fraenkel, von
Neumann, Bernays, and Godel, to name only the major players.

In what follows, we are assuming that we are working in classical logic. The language L
of set theory consists of the symbols {0, €,=}, where) is a constant symbol (corresponding
to the empty set) and € is binary predicate symbol (denoting set membership).

In set theory formalized in first-order logic, every object is a set. Instead of writing the
membership relation as € (X,Y), we write X € Y, which expresses that the set X belongs
to the set Y. To reduce the level of formality, we often denote sets using capital letters and
members of sets using lower-case letters, and so we wite a € A for a belongs to the set A
(even though a is also a set). Instead of —(a € A), we write

a¢ A.

We introduce various operations on sets using definitions involving the logical connectives
A, V, =, V, and 3.

In order to ensure the existence of some of these sets requires some of the axioms of set
theory, but we are rather casual about that.

When are two sets A and B equal? This corresponds to the first axiom of set theory,
called the

Extensionality Axiom
Two sets A and B are equal iff they have exactly the same elements; that is,

Ve(r € A=z € B)AVz(z € B=x € A).

The above says: every element of A is an element of B and conversely.
There is a special set having no elements at all, the empty set, denoted (). This is the
following.

Empty Set Axiom There is a set having no members. This set is denoted () and it is
characterized by the property
Va(x ¢ 0).

Remark: Beginners often wonder whether there is more than one empty set. For example,
is the empty set of professors distinct from the empty set of potatoes?

The answer is, by the extensionality axiom, there is only one empty set.

Given any two objects a and b, we can form the set {a,b} containing exactly these two
objects. Amazingly enough, this must also be an axiom:

Pairing Axiom

Given any two objects a and b (think sets), there is a set {a, b} having as members just a
and b.

2.17. BASICS CONCEPTS OF SET THEORY 137

Observe that if a and b are identical, then we have the set {a, a}, which is denoted by
{a} and is called a singleton set (this set has a as its only element).
To form bigger sets, we use the union operation. This too requires an axiom.

Union Axiom (Version 1)
For any two sets A and B, there is a set AU B called the union of A and B defined by

re AUB iff (zxe€ A)V(z € B).

This reads, z is a member of AU B if either x belongs to A or = belongs to B (or both). We
also write

AUB={z|x€ A or z¢€ B}.

Using the union operation, we can form bigger sets by taking unions with singletons. For
example, we can form
{a,b,ct ={a,b} U {c}.

Remark: We can systematically construct bigger and bigger sets by the following method:
Given any set A let

At =AU {A}.
If we start from the empty set, we obtain sets that can be used to define the natural numbers
and the + operation corresponds to the successor function on the natural numbers (i.e.,
n—n+1).

Another operation is the power set formation. It is indeed a “powerful” operation, in the
sense that it allows us to form very big sets. For this, it is helpful to define the notion of
inclusion between sets. Given any two sets, A and B, we say that A is a subset of B (or that
A is included in B), denoted A C B, iff every element of A is also an element of B, that is,

Vr(r € A=z € B).

We say that A is a proper subset of B iff A C B and A # B. This implies that that there is
some b € B with b ¢ A. We usually write A C B.
Observe that the equality of two sets can be expressed by

A=B iff ACB and B CA.

Power Set Axiom
Given any set A, there is a set P(A) (also denoted 24) called the power set of A whose
members are exactly the subsets of A; that is,

X eP(4) iff X C A
For example, if A = {a,b,c}, then

P(A) = {0, {a}, {0}, {c},{a, 0} {a, c}, {b,c} {a, b, c}},

138 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

a set containing eight elements. Note that the empty set and A itself are always members

of P(A).

Remark: If A has n elements, it is not hard to show that P(A) has 2" elements. For this
reason, many people, including me, prefer the notation 24 for the power set of A.

At this stage, we define intersection and complementation. For this, given any set A and
given a property P (specified by a first-order formula) we need to be able to define the subset
of A consisting of those elements satisfying P. This subset is denoted by

{r e A| P}.

Unfortunately, there are problems with this construction. If the formula P is somehow a
circular definition and refers to the subset that we are trying to define, then some paradoxes
may arise.

The way out is to place a restriction on the formula used to define our subsets, and
this leads to the subset axioms, first formulated by Zermelo. These axioms are also called
comprehension axioms or axioms of separation.

Subset Axioms
For every first-order formula P we have the axiom:

VAIXVz(z € X iff (x € A)AP),

where P does not contain X as a free variable. (However, P may contain x free.)
The subset axioms says that for every set A there is a set X consisting exactly of those
elements of A so that P holds. For short, we usually write

X={zxeA|P}

As an example, consider the formula
P(B,z) =z € B.
Then, the subset axiom says
VAIXVx(r € ANz € B),

which means that X is the set of elements that belong both to A and B. This is called the
intersection of A and B, denoted by AN B. Note that

ANB={z|x€ A and =z € B}.

We can also define the relative complement of B in A, denoted A — B, given by the
formula P(B,z) = = ¢ B, so that

A—B={x|xre€A and z ¢ B}.

2.17. BASICS CONCEPTS OF SET THEORY 139

In particular, if A is any given set and B is any subset of A, the set A — B is also denoted
B and is called the complement of B.

The algebraic properties of union, intersection, and complementation are inherited from
the properties of disjunction, conjunction, and negation. The following proposition lists some
of the most important properties of union, intersection, and complementation.

Proposition 2.19. The following equations hold for all sets A, B, C':

AUupd=A
ANP=10
AUA=A
ANA=A
AUB=BUA
ANB=BnNA.

The last two assert the commutativity of U and N. We have distributivity of N over U and
of U over N:

We have associativity of N and U:

AN(BNC)=(AnB)NnC
AU(BUC)=(AUuB)UC.

Proof. Use Proposition 2.5.]

Because A, V, and — satisfy the de Morgan laws (remember, we are dealing with classical
logic), for any set X, the operations of union, intersection, and complementation on subsets
of X satisfy the de Morgan laws.

Proposition 2.20. For every set X and any two subsets A, B of X, the following identities
(de Morgan laws) hold:

A=A
(ANB)=4UB
(AUB)=4nB.

So far, the union axiom only applies to two sets but later on we need to form infinite
unions. Thus, it is necessary to generalize our union axiom as follows.

Union Axiom (Final Version)

140 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Given any set X (think of X as a set of sets), there is a set | J X defined so that
rel|JX iff 3B(BeXAz€eB)

This says that | J X consists of all elements that belong to some member of X.
If we take X = {A, B}, where A and B are two sets, we see that

| J{A, B} =AUB,

and so, our final version of the union axiom subsumes our previous union axiom which we
now discard in favor of the more general version.
Observe that

Ay =4, [J{4....4}=40U0-UA4A,

and in particular, |J0 = 0.
Using the subset axioms, we can also define infinite intersections. For every nonempty
set X there is a set (| X defined by

re()X iff VB(BEX=uxz¢€B).

The existence of (| X is justified as follows: Because X is nonempty, it contains some
set, A; let
P(X,z)=VB(Be X = x € B).

Then, the subset axioms asserts the existence of a set Y so that for every =,
zreY iff r€A and P(X,x)

which is equivalent to
zreY iff P(X, x).

Therefore, the set Y is our desired set, [X.
Observe that

(WA B}=ANB, [{Ai...,A} =40 NA,

Note that (0 is not defined. Intuitively, it would have to be the set of all sets, but such a
set does not exist, as we now show. This is basically a version of Russell’s paradox.

Theorem 2.21. (Russell) There is no set of all sets, that is, there is no set to which every
other set belongs.

2.17. BASICS CONCEPTS OF SET THEORY 141

Proof. Let A be any set. We construct a set B that does not belong to A. If the set of all
sets existed, then we could produce a set that does not belong to it, a contradiction. Let

B={acA|a¢a}.

We claim that B ¢ A. We proceed by contradiction, so assume B € A. However, by the
definition of B, we have

BeB iff BeA and B ¢B.
Because B € A, the above is equivalent to
BeB iff B¢ B,

which is a contradiction. Therefore, B ¢ A and we deduce that there is no set of all sets. [

Remarks:

(1) We should justify why the equivalence B € B iff B ¢ B is a contradiction. What we
mean by “a contradiction” is that if the above equivalence holds, then we can derive |
(falsity) and thus, all propositions become provable. This is because we can show that
for any proposition P if P = —P is provable, then every proposition is provable. We
leave the proof of this fact as an easy exercise for the reader. By the way, this holds
classically as well as intuitionistically.

(2) We said that in the subset axioms, the variable X is not allowed to occur free in
P. A slight modification of Russell’s paradox shows that allowing X to be free in
P leads to paradoxical sets. For example, pick A to be any nonempty set and set
P(X,z) =x ¢ X. Then, look at the (alleged) set

X={reA|xz¢X}.
As an exercise, the reader should show that X is empty iff X is nonempty,

This is as far as we can go with the elementary notions of set theory that we have
introduced so far. In order to proceed further, we need to define relations and functions,
which is the object of the next chapter.

The reader may also wonder why we have not yet discussed infinite sets. This is because
we don’t know how to show that they exist. Again, perhaps surprisingly, this takes another
axiom, the aziom of infinity. We also have to define when a set is infinite. However, we do
not go into this right now. Instead, we accept that the set of natural numbers N exists and
is infinite. Once we have the notion of a function, we will be able to show that other sets are
infinite by comparing their “size” with that of N (This is the purpose of cardinal numbers,
but this would lead us too far afield).

142 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

5 MATHEMATIGIAN

¢ IOt von NEUMANN

e /

Figure 2.18: John von Neumann

Remark: In an axiomatic presentation of set theory, the natural numbers can be defined
from the empty set using the operation A — AT = AU {A} introduced just after the union

axiom. The idea due to von Neumann is that the natural numbers, 0,1,2,3,..., can be
viewed as concise notations for the following sets.

0 0

1 0" = {0} = {0}

3

= 27 ={0,{0},{0,{0}}} = {0,1, 2}

n+1l = nt=1{0,1,2,...,n}

However, the above subsumes induction. Thus, we have to proceed in a different way to
avoid circularities.

Definition 2.17. We say that a set X is inductive iff
(1) P e X.

(2) For every A € X, we have A" € X.

Axiom of Infinity
There is some inductive set.
Having done this, we make the following.

Definition 2.18. A natural number is a set that belongs to every inductive set.

Using the subset axioms, we can show that there is a set whose members are exactly
the natural numbers. The argument is very similar to the one used to prove that arbitrary
intersections exist. By the axiom of infinity, there is some inductive set, say A. Now consider

2.17. BASICS CONCEPTS OF SET THEORY 143

the property P(x) which asserts that = belongs to every inductive set. By the subset axioms
applied to P, there is a set, N, such that

reN iff r€A and P(z)

and because A is inductive and P says that x belongs to every inductive set, the above is
equivalent to
reN iff P(x);

that is, € N iff x belongs to every inductive set. Therefore, the set of all natural numbers
N does exist. The set N is also denoted w. We can now easily show the following.

Theorem 2.22. The set N is inductive and it is a subset of every inductive set.

Proof. Recall that () belongs to every inductive set; so,) is a natural number (0). As N is the
set of natural numbers, () (= 0) belongs to N. Secondly, if n € N, this means that n belongs
to every inductive set (n is a natural number), which implies that n™ = n + 1 belongs to
every inductive set, which means that n+ 1 is a natural number, that is, n+1 € N. Because
N is the set of natural numbers and because every natural number belongs to every inductive
set, we conclude that N is a subset of every inductive set. O]

@ It would be tempting to view N as the intersection of the family of inductive sets, but
unfortunately this family is not a set; it is too “big” to be a set.

As a consequence of the above fact, we obtain the following.

Induction Principle for N: Any inductive subset of N is equal to N itself.
Now, in our setting, 0 = () and n* = n + 1, so the above principle can be restated as
follows.

Induction Principle for N (Version 2): For any subset, S C N, if 0e Sandn+1€ S
whenever n € S, then S = N.

We show how to rephrase this induction principle a little more conveniently in terms of
the notion of function in the next chapter.

Remarks:
1. We still don’t know what an infinite set is or, for that matter, that N is infinite.

2. Zermelo-Fraenkel set theory (+ Choice) has three more axioms that we did not dis-
cuss: The axiom of choice, the replacement axioms and the reqularity axiom. For our
purposes, only the axiom of choice is needed. Let us just say that the replacement
axioms are needed to deal with ordinals and cardinals and that the regularity axiom is
needed to show that every set is grounded. For more about these axioms, see Enderton
[13], Chapter 7. An introduction to ordinals and cardinals is provided in Chapter A.
The regularity axiom also implies that no set can be a member of itself, an eventuality
that is not ruled out by our current set of axioms.

144 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

As we said at the beginning of this section, set theory can be axiomatized in first-order
logic. To illustrate the generality and expressiveness of first-order logic, we conclude this
section by stating the axioms of Zermelo—Fraenkel set theory (for short, ZF') as first-order
formulae. The language of Zermelo-Fraenkel set theory consists of the constant () (for the
empty set), the equality symbol, and of the binary predicate symbol € for set membership.
It is convenient to abbreviate =(z = y) as # y and —(z € y) as ¢ y. The axioms are the
equality axioms plus the following seven axioms.

VAVB(Vz(xr € A=z € B)= A= B)
Va(z ¢ 0)

VaVb3ZVx(x € Z = (x =aV x =D))
VX3YVr(r e Y =3B(B € X Az € B))
VAFYVX(X €Y =Vz(z € X = 2z € A))
VAIXVr(r € X = (x € A) A P)

IX (e X AVyly e X = yU{y} € X)),

where P is any first-order formula that does not contain X free.

e Axiom (1) is the extensionality axiom.
e Axiom (2) is the empty set axiom.

e Axiom (3) asserts the existence of a set ¥ whose only members are a and b. By
extensionality, this set is unique and it is denoted {a, b}. We also denote {a,a} by {a}.

e Axiom (4) asserts the existence of set Y which is the union of all the sets that belong
to X. By extensionality, this set is unique and it is denoted | J X. When X = {A, B},
we write (J{A,B} = AU B.

e Axiom (5) asserts the existence of set Y which is the set of all subsets of A (the power
set of A). By extensionality, this set is unique and it is denoted P(A) or 24.

e Axioms (6) are the subset axioms (or axioms of separation).

e Axiom (7) is the infinity axiom, stated using the abbreviations introduced above.
For a comprehensive treatment of axiomatic theory (including the missing three axioms),
see Enderton [13] and Suppes [55].

2.18 Summary

The main goal of this chapter is to describe precisely the logical rules used in mathematical
reasoning and the notion of a mathematical proof. A brief introduction to set theory is

2.18. SUMMARY 145

also provided. We decided to describe the rules of reasoning in a formalism known as a
natural deduction system because the logical rules of such a system mimic rather closely
the informal rules that (nearly) everybody uses when constructing a proof in everyday life.
Another advantage of natural deduction systems is that it is very easy to present various
versions of the rules involving negation and thus, to explain why the “proof-by-contradiction”
proof rule or the “law of the excluded middle” allow for the derivation of “nonconstructive”
proofs. This is a subtle point often not even touched in traditional presentations of logic.
However, inasmuch as most of our readers write computer programs and expect that their
programs will not just promise to give an answer but will actually produce results, we feel
that they will grasp rather easily the difference between constructive and nonconstructive
proofs, and appreciate the latter, even if they are harder to find.

e We describe the syntax of propositional logic.

e The proof rules for implication are defined in a natural deduction system
(Prawitz-style).

e Deductions proceed from assumptions (or premises) using inference rules.

e The process of discharging (or closing) a premise is explained. A proof is a deduction
in which all the premises have been discharged.

e We explain how we can search for a proof using a combined bottom-up and top-down
process.

e We propose another mechanism for decribing the process of discharging a premise and
this leads to a formulation of the rules in terms of sequents and to a Gentzen system.

e We introduce falsity L and negation =P as an abbrevation for P =_1. We describe
the inference rules for conjunction, disjunction, and negation, in both Prawitz style
and Gentzen-sequent style natural deduction systems

e One of the rules for negation is the proof-by-contradiction rule (also known as RAA).
e We define intuitionistic and classical logic.

e We introduce the notion of a constructive (or intuitionistic) proof and discuss the two
nonconstructive culprits: PV =P (the law of the excluded middle) and ——P = P
(double-negation rule).

e We show that PV —P and -——P = P are provable in classical logic

e We clear up some potential confusion involving the various versions of the rules re-
garding negation.

1. RAA is not a special case of =-introduction.

146

CHAPTER 2. MATHEMATICAL REASONING AND LOGIC, A DEEPER VIEW

2. RAA is not equivalent to _-elimination; in fact, it implies it.

3. Not all propositions of the form PV =P are provable in intuitionistic logic. How-
ever, RAA holds in intuitionistic logic plus all propositions of the form PV —P.

4. We define double-negation elimination.
We present the de Morgan laws and prove their validity in classical logic.
We present the proof-by-contrapositive rule and show that it is valid in classical logic.
We give some examples of proofs of “real” statements.

We give an example of a nonconstructive proof of the statement: there are two irrational
numbers, a and b, so that a’ is rational.

We explain the truth-value semantics of propositional logic.
We define the truth tables for the propositional connectives
We define the notions of satisfiability, unsatisfiability, validity, and tautology.

We define the satisfiability problem and the validity problem (for classical propositional
logic).

We mention the NP-completeness of satisfiability.
We discuss soundness (or consistency) and completeness.

We state the soundness and completeness theorems for propositional classical logic
formulated in natural deduction.

We explain how to use counterexamples to prove that certain propositions are not
provable.

We give a brief introduction to Kripke semantics for propositional intuitionistic logic.
We define Kripke models (based on a set of worlds).
We define validity in a Kripke model.

We state the the soundness and completeness theorems for propositional intuitionistic
logic formulated in natural deduction.

We add first-order quantifiers (“for all” V and “there exists” 3) to the language of
propositional logic and define first-order logic.

We describe free and bound variables.

2.18.

SUMMARY 147

We give inference rules for the quantifiers in Prawitz-style and Gentzen sequent-style
natural deduction systems.

We explain the eigenvariable restriction in the V-introduction and 3-elimination rules.

We prove some “de Morgan”-type rules for the quantified formulae valid in classical
logic.

We discuss the nonconstructiveness of proofs of certain existential statements.

We explain briefly how classical logic can be translated into intuitionistic logic (the
Godel translation).

We define first-order theories and give the example of Peano arithmetic.

We revisit the decision problem and mention the undecidability of the decision problem
for first-order logic (Church’s theorem).

We discuss the notion of detours in proofs and the notion of proof normalization.
We mention strong normalization.

We mention the correspondence between propositions and types and proofs and typed
A-terms (the Curry—Howard isomorphism).

We mention Gédel’s completeness theorem for first-order logic.

Again, we mention the use of counterexamples.

We mention Godel’s incompleteness theorem.

We present informally the axioms of Zermelo—Fraenkel set theory (ZF).

We present Russell’s paradozr, a warning against “self-referential” definitions of sets.

We define the empty set (()), the set {a,b}, whose elements are a and b, the union
AU B, of two sets A and B, and the power set 24, of A.

We state carefully Zermelo’s subset azioms for defining the subset {x € A | P} of
elements of a given set A satisfying a property P.

Then, we define the intersection AN B, and the relative complement A — B, of two
sets A and B.

We also define the union | J A and the intersection () A, of a set of sets A.

We show that one should avoid sets that are “too big;” in particular, we prove that
there is no set of all sets.

148 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

We define the natural numbers “a la Von Neumann.”

We define inductive sets and state the aziom of infinity.

We show that the natural numbers form an inductive set N, and thus, obtain an
induction principle for N.

e We summarize the axioms of Zermelo—Fraenkel set theory in first-order logic.

Problems

Problem 2.1. (a) Give a proof of the proposition P = (Q = P) in the system N7.
(b) Prove that if there are deduction trees of P = @ and Q = R from the set of premises
I" in the system N7, then there is a deduction tree for P = R from I' in N

Problem 2.2. Give a proof of the proposition (P = @) = (P = (Q = R)) = (P = R))
in the system N7 .

Problem 2.3. (a) Prove the “de Morgan” laws in classical logic:

l(P/\Q> EﬁPV\Q
—I<P\/Q) =P A Q.
(b) Prove that =(P V Q) = =P A —=(Q is also provable in intuitionistic logic.
(c) Prove that the proposition (P A =Q) = —(P = Q) is provable in intuitionistic logic
and (P = Q) = (P A —Q) is provable in classical logic.

Problem 2.4. (a) Show that P = =—P is provable in intuitionistic logic.
(b) Show that =—=—P and —P are equivalent in intuitionistic logic.

Problem 2.5. Recall that an integer is even if it is divisible by 2, that is, if it can be written
as 2k, where k € Z. An integer is odd if it is not divisible by 2, that is, if it can be written
as 2k + 1, where k € Z. Prove the following facts.

(a) The sum of even integers is even.

(b) The sum of an even integer and of an odd integer is odd.
(c) The sum of two odd integers is even.

(d) The product of odd integers is odd.

(e) The product of an even integer with any integer is even.

2.18. PROBLEMS 149

Problem 2.6. (a) Show that if we assume that all propositions of the form
P=(Q=R)

are axioms (where P, (), R are arbitrary propositions), then every proposition is provable.
(b) Show that if P is provable (intuitionistically or classically), then Q = P is also
provable for every proposition Q).

Problem 2.7. (a) Give intuitionistic proofs for the equivalences

PvP=P
PANP=P
PvQ=QVP
PANQ=QANP.

(b) Give intuitionistic proofs for the equivalences

PAN(PVQ)=P
PV (PAQ)=P.

Problem 2.8. Give intuitionistic proofs for the propositions

P=(Q=(PNQ))
(P=Q) = (P=-Q)=~P)
(P=R) = (Q=R)=(PVQ)=R)).

Problem 2.9. Prove that the following equivalences are provable intuitionistically:

PA(P=Q) = PAQ
QNP=Q) = @
(P=(QAR) = ((P=Q)A(P=R)).

Problem 2.10. Give intuitionistic proofs for

(P=Q)=(-PVQ)
—~—(—=P = P).

Problem 2.11. Give an intuitionistic proof for =—(P V = P).

Problem 2.12. Give intuitionistic proofs for the propositions
(PV—-P)=(-—P=P) and (—-—P= P)= (PV-P).

Hint. For the second implication, you may want to use Problem 2.11.

150 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Problem 2.13. Give intuitionistic proofs for the propositions
(P=Q)=-—~(-PVQ) and (=P = Q)= ——~(PVQ).

Problem 2.14. (1) Design an algorithm for converting a deduction of a proposition P in
the system N,”""¥"" into a deduction in the system NG;™"".

(2) Design an algorithm for converting a deduction of a proposition P in the system
NVt into a deduction in the system NGZ Y+,

(3) Design an algorithm for converting a deduction of a proposition P in the system
NG ™" into a deduction in the system N7V,

(4) Design an algorithm for converting a deduction of a proposition P in the system
NGZ"V+ into a deduction in the system N7Vt

Hint. Use induction on deduction trees.

Problem 2.15. Prove that the following version of the V-elimination rule formulated in
Gentzen-sequent style is a consequence of the rules of intuitionistic logic:

Nz:P—-R T,y:Q — R
Iz: PVQ — R

Conversely, if we assume that the above rule holds, then prove that the V-elimination
rule

r-Lprv I'Ne:P—-R Ty:Q—R
I'=R

follows from the rules of intuitionistic logic (of course, excluding the V-elimination rule).

(V-elim)

Problem 2.16. (1) Give algorithms for converting a deduction in N7"V+4%7 to a deduction
in NGZV+%3 and vice-versa.
. AV.LV.3 . .
(2) Give algorithms for converting a deduction in N;”"™""=" to a deduction in
SSYARE :
NG; and vice-versa.

Problem 2.17. (a) Give intuitionistic proofs for the distributivity of A over V and of V over
A:

PAQVR)=(PAQ)V (PAR)
PV(QAR)=(PVQ)AN(PVR).

(b) Give intuitionistic proofs for the associativity of A and V:

PA(QANR)=(PANQ)AR
PV(QVR)=(PVQ)VR.

2.18. PROBLEMS 151

Problem 2.18. Recall that in Problem 2.1 we proved that if P = @ and) = R are
provable, then P = R is provable. Deduce from this fact that if P =) and Q = R hold,
then P = R holds (intuitionistically or classically).

Prove that if P = @ holds then @) = P holds (intuitionistically or classically). Finally,
check that P = P holds (intuitionistically or classically).

Problem 2.19. Prove (intuitionistically or classically) that if P, = ()1 and P, =)2 then
PiAPRy) = (Q1NQo)

L (
(PLV Py) = (Q1VQ2).
)
(

2.
(b) Prove (intuitionistically or classically) that if); = P; and P> = ()5 then
L (A= PR)=(Q1= Q)
2. P = =Q;.
(c) Prove (intuitionistically or classically) that if P = @, then
1. ViP = VtQ
2. P = 3tQ.
(d) Prove (intuitionistically or classically) that if P, =)y and Py =)2 then
1. (PEAPR) =(Q1ANQ9)
2. (PLV P)=(Q1V Q)
(Pr = P) = (Q1= Q)
4. =P = =0,

3.

6. P = 3Q;.
Problem 2.20. Show that the following are provable in classical first-order logic:

=VtP = dt—-P

—3tP = Vt—=P
Vi(P A Q) = VtP AVLQ
Jt(PV Q) =3tPV Q.

(b) Moreover, show that the propositions 3t(P A Q) = JtP A FtQ and
VtP Vv VtQ) = Vt(P V @) are provable in intuitionistic first-order logic (and thus, also in
classical first-order logic).

152 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

(c) Prove intuitionistically that
JaVyP = VydzP.

Give an informal argument to the effect that the converse, VydxP = dxVyP, is not
provable, even classically.

Problem 2.21. (a) Assume that @ is a formula that does not contain the variable ¢ (free
or bound). Give a classical proof of

V(P V Q) = (VtPV Q).

(b) If P is a proposition, write P(z) for P[z/t] and P(y) for Ply/t], where z and y are
distinct variables that do not occur in the orginal proposition P. Give an intuitionistic proof

for
—Vzdy(—P(z) A P(y)).

(c) Give a classical proof for

3y (P(z) V ~P(y)).
Hint. Negate the above, then use some identities we’ve shown (such as de Morgan) and
reduce the problem to part (b).

Problem 2.22. (a) Let X = {X; | 1 < i < n} be a finite family of sets. Prove that if
X1 C X, forall 7, with 1 <7 <n—1, then

ﬂxz&.

Prove that if X; C X;,; for all 7, with 1 <¢ <mn — 1, then

UX:L.

(b) Recall that Ny = N—{0} = {1,2,3,...,n,...}. Give an example of an infinite family
of sets, X = {X; | i € N} }, such that

1. X;11 C X, foralli>1.

2. X, is infinite for every ¢ > 1.

3. [X has a single element.

(c) Give an example of an infinite family of sets, X = {X; | i € N}, such that
1. X1 C X, foralli>1.

2. X; is infinite for every ¢ > 1.

2.18. PROBLEMS 153

3. NX =0.
Problem 2.23. Prove that the following propositions are provable intuitionistically:
(P:>ﬂP)E—|P, (ﬁP=>P)E—|—|P.

Use these to conlude that if the equivalence P = —P is provable intuitionistically, then every
proposition is provable (intuitionistically).

Problem 2.24. (1) Prove that if we assume that all propositions of the form,
(P=Q)=P)= P,

are axioms (Peirce’s law), then =—P = P becomes provable in intuitionistic logic. Thus, an-
other way to get classical logic from intuitionistic logic is to add Peirce’s law to intuitionistic
logic.
Hint. Pick @) in a suitable way and use Problem 2.23.

(2) Prove ((P = @) = P) = P in classical logic.
Hint. Use the de Morgan laws.

Problem 2.25. Let A be any nonempty set. Prove that the definition
X={acA|la¢ X}

yields a “set,” X, such that X is empty iff X is nonempty and therefore does not define a
set, after all.

Problem 2.26. Prove the following fact: if
I IR
Di ana Do
PVvQ Q
are deduction trees provable intuitionistically, then there is a deduction tree
I''P=R
D
Q
for @ from the premises in I' U {P = S}.

Problem 2.27. Recall that the constant T stands for true. So, we add to our proof systems
(intuitionistic and classical) all axioms of the form

154 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

where k; > 1 and n > 0; note that n = 0 is allowed, which amounts to the one-node tree, T.
(a) Prove that the following equivalences hold intuitionistically.

PVvVT=T
PAT=P.

Prove that if P is intuitionistically (or classically) provable, then P = T is also provable
intuitionistically (or classically). In particular, in classical logic,
PV P =T. Also prove that

Pv.1=P
PAnl=1

hold intuitionistically.
(b) In the rest of this problem, we are dealing only with classical logic. The connective
exclusive or, denoted @, is defined by

PaQ=(PAN-Q)V(-PAQ).

In solving the following questions, you will find that constructing proofs using the rules of
classical logic is very tedious because these proofs are very long. Instead, use some identities
from previous problems.

Prove the equivalence

-P=P&T.
(c) Prove that
PeoP=1
Pe@=QaeP

(POQ)®R=P&(Q®R).
(d) Prove the equivalence
PVQ=(PAQ)®(PaQ).
Problem 2.28. Give a classical proof of
(P =-Q)= (PANQ).

Problem 2.29. (a) Prove that the rule

r A
D, D,
P=qQ =@

—P

2.18. PROBLEMS 155

can be derived from the other rules of intuitionistic logic.
(b) Give an intuitionistic proof of =P from I' = {=(=P V Q), P = Q} or equivalently,
an intuitionistic proof of

(ﬁ(ﬁp VQ)A (P = Q)) = -P,
Problem 2.30. (a) Give intuitionistic proofs for the equivalences
JrdyP = Jy3dxP and VaVyP = VyVaP.
(b) Give intuitionistic proofs for
(VtPAQ) = VH(PAQ) and VH(PAQ)= (VIPAQ),

where ¢ does not occur (free or bound) in Q.
(¢) Give intuitionistic proofs for

(3tPVQ)=IH#(PVQ) and H(PVQ)= (IHPVQ),

where ¢ does not occur (free or bound) in Q.

Problem 2.31. An integer, n € Z, is divisible by 3 iff n = 3k, for some k € Z. Thus (by the
division theorem), an integer, n € Z, is not divisible by 3 iff it is of the form n = 3k+1, 3k+2,
for some k € Z (you don’t have to prove this).

Prove that for any integer, n € Z, if n? is divisible by 3, then n is divisible by 3.

Hint. Prove the contrapositive. If n of the form n = 3k + 1,3k + 2, then so is n? (for a
different k).

Problem 2.32. Use Problem 2.31 to prove that v/3 is irrational, that is, v/3 can’t be written
as /3 = p/q, with p,q € Z and q # 0.

Problem 2.33. Give an intuitionistic proof of the proposition
(P=RANQ=R)=(PVQ) = R).

Problem 2.34. Give an intuitionistic proof of the proposition

(PAQ)=R)=(P=(Q=R)).

Problem 2.35. (a) Give an intuitionistic proof of the proposition
(PAQ) = (PVQ).

(b) Prove that the proposition (P V Q) = (P A Q) is not valid, where P, Q, are proposi-
tional symbols.

(c) Prove that the proposition (P V Q) = (P A Q) is not provable in general and that
if we assume that all propositions of the form (P V Q) = (P A Q) are axioms, then every
proposition becomes provable intuitionistically.

156 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

Problem 2.36. Give the details of the proof of Proposition 2.6; namely, if a proposition P
is provable in the system N>"V:4 (or NGZYF), then it is valid (according to the truth
value semantics).

Problem 2.37. Give the details of the proof of Theorem 2.8; namely, if a proposition P is
provable in the system ./\/?’A’v’L (or N Q?’/\’v’l), then it is valid in every Kripke model; that
is, it is intuitionistically valid.

Problem 2.38. Prove that b = log, 9 is irrational. Then, prove that a = v/2 and b = log, 9
are two irrational numbers such that a® is rational.

Problem 2.39. (1) Prove that if Ya—(P A @) can be deduced intuitionistically from a set
of premises I', then Va(P = —@Q) and Vz(Q = —P) can also be deduced intuitionistically
from T'.
(2) Prove that if V(P V Q) can be deduced intuitionistically from a set of premises I,
then Vo (=P = @) and Vz(—Q = P) can also be deduced intuitionistically from I'.
Conclude that if
Ve(PV Q) and VYaz—(PAQ)

can be deduced intuitionistically from a set of premises I', then
V(P =-Q) and Vz(Q =-P)

can also be deduced intuitionistically from I'.
(3) Prove that if Vo(P = @) can be deduced intuitionistically from a set of premises I,
then Vx(—-@ = —P) can also be deduced intuitionistically from I". Use this to prove that if

V(P =-Q) and Vz(Q =-P)

can be deduced intuitionistically from a set of premises I', then Va(—-—P = P) and
Va(=—Q = Q) can be deduced intuitionistically from T.

Problem 2.40. Prove that the formula,
Vxeven(2 x),
is provable in Peano arithmetic. Prove that
even(2x (n+ 1) x (n+ 3)),
is provable in Peano arithmetic for any natural number n.
Problem 2.41. A first-order formula A is said to be in prenex-form if either

(1) A is a quantifier-free formula.

(2) A=VtB or A= 3tB, where B is in prenex-form.

2.18. PROBLEMS 157

In other words, a formula is in prenex form iff it is of the form

Qi1t1Qats - - - Qi P,

where P is quantifier-free and where Q10Qs - - - Q,, is a string of quantifiers, Q; € {V, 3}.
Prove that every first-order formula A is classically equivalent to a formula B in prenex
form.

Problem 2.42. Even though natural deduction proof systems for classical propositional logic
are complete (with respect to the truth value semantics), they are not adequate for designing
algorithms searching for proofs (because of the amount of nondeterminism involved).

Gentzen designed a different kind of proof system using sequents (later refined by Kleene,
Smullyan, and others) that is far better suited for the design of automated theorem provers.
Using such a proof system (a sequent calculus), it is relatively easy to design a procedure
that terminates for all input propositions P and either certifies that P is (classically) valid
or else returns some (or all) falsifying truth assignment(s) for P. In fact, if P is valid, the
tree returned by the algorithm can be viewed as a proof of P in this proof system.

For this miniproject, we describe a Gentzen sequent-calculus G' for propositional logic
that lends itself well to the implementation of algorithms searching for proofs or falsifying
truth assignments of propositions.

Such algorithms build trees whose nodes are labeled with pairs of sets called sequents. A
sequent is a pair of sets of propositions denoted by

P17"'7Pm_>Q17"'7Qn7

with m,n > 0. Symbolically, a sequent is usally denoted I' — A, where I' and A are two
finite sets of propositions (not necessarily disjoint).

For example,
—-P=(Q=P), PVvQ —, PQ—PAQ

are sequents. The sequent —, where both I' = A = () corresponds to falsity.

The choice of the symbol — to separate the two sets of propositions I' and A is commonly
used and was introduced by Gentzen but there is nothing special about it. If you don’t like
it, you may replace it by any symbol of your choice as long as that symbol does not clash
with the logical connectives (=, A, V,). For example, you could denote a sequent

Pl)"'apm;Qh”'aQTw

using the semicolon as a separator.
Given a truth assignment v to the propositional letters in the propositions P; and @), we
say that v satisfies the sequent, Py, ..., P, — Q1,...,Q,, iff

V(PLA A PR) = (QuV -V @n)) = true,
or equivalently, v falsifies the sequent, Py, ..., P, — Q1,...,Q,, iff

V(PLA- - ANPyp A=Qy A -+ AN—Q,) = true,

158 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

iff
v(P;) =true, 1 <i<m and v(Q;) =false, 1 <j<n.
A sequent is valid iff it is satisfied by all truth assignments iff it cannot be falsified.

Note that a sequent Py, ..., P, — Q1,...,Q, can be falsified iff some truth assignment
satisfies all of Py,..., P, and falsifies all of Q,...,Q,. In particular, if {P,,..., P,} and
{Q1,...,Q,} have some common proposition (they have a nonempty intersection), then the
sequent, Py,..., P, — Q1,...,Qy, is valid. On the other hand if all the P;s and @);s are
propositional letters and {Py, ..., P,} and {Q1,...,Q,} are disjoint (they have no symbol
in common), then the sequent, Pi,..., P, = Q1,...,Q,, is falsified by the truth assignment
v where v(P;) = true, for i = 1,...m and v(Q;) = false, for j =1,...,n.

The main idea behind the design of the proof system G’ is to systematically try to falsify
a sequent. If such an attempt fails, the sequent is valid and a proof tree is found. Otherwise,
all falsifying truth assignments are returned. In some sense

failure to falsify is success (in finding a proof).

The rules of G’ are designed so that the conclusion of a rule is falsified by a truth
assignment v iff its single premise of one of its two premises is falsified by v. Thus, these
rules can be viewed as two-way rules that can either be read bottom-up or top-down.

Here are the axioms and the rules of the sequent calculus G':

Axioms: I', P — P, A

Inference rules:

T,P,Q,A — A I 5APA T —AQA ,
A: left A: right

T,PAQ,A = A T A PAQ,A

I,PA—A T,Q,A A T = A,P,Q,A

o Q.48 = V: left 48P0, V: right
T,PVQ,A = A T A PVQ,A

A= PA QT,A—A PT = QA A _

))) b .lf b) b : h
IP= QA A Tl T A P e

A — P A et P T — AA right

T,-PAA - ° T 5 A-PA 8

where I', A, A are any finite sets of propositions, possibly the empty set.

A deduction tree is either a one-node tree labeled with a sequent or a tree constructed
according to the rules of system G’. A proof tree (or proof) is a deduction tree whose leaves
are all axioms. A proof tree for a proposition P is a proof tree for the sequent — P (with
an empty left-hand side).

2.18. PROBLEMS 159

For example,
PQ—P

is a proof tree.
Here is a proof tree for (P = Q) = (-Q = —P):

P,_|Q—>P Q_>Q7_'P
Q) — P, P -Q,Q — P
— P, (=Q = —~P) Q— (-Q = —P)

(P=Q) = (-Q=—P)
= (P=@Q) = (-Q=—P)

The following is a deduction tree but not a proof tree,

PR— P R,Q,P—
R— PP R,QQ — —P
— P, (R = —P) Q — (R= -P)

(P=Q)— (R=—-P)
- (P=Q)= (R= —P)

because its rightmost leaf, R,), P —, is falsified by the truth assignment
v(P) =v(Q) = v(R) = true, which also falsifies (P = Q) = (R = —P).

Let us call a sequent Py, ..., P, — Q1,...,Q, finished if either it is an axiom (P; = Q)
for some ¢ and some j) or all the propositions P; and (); are atomic
and {Py,...,P,}N{Q1,...,Q,} = 0. We also say that a deduction tree is finished if all its
leaves are finished sequents.

The beauty of the system G’ is that for every sequent, Pi,..., P, = Q1,...,Q,, the
process of building a deduction tree from this sequent always terminates with a tree where
all leaves are finished independently of the order in which the rules are applied. Therefore,
we can apply any strategy we want when we build a deduction tree and we are sure that we
will get a deduction tree with all its leaves finished. If all the leaves are axioms, then we
have a proof tree and the sequent is valid, or else all the leaves that are not axioms yield a
falsifying assignment, and all falsifying assignments for the root sequent are found this way.

If we only want to know whether a proposition (or a sequent) is valid, we can stop as soon
as we find a finished sequent that is not an axiom because in this case, the input sequent is
falsifiable.

(1) Prove that for every sequent Py,..., P, — Q1,...,Q, any sequence of applications
of the rules of G’ terminates with a deduction tree whose leaves are all finished sequents (a
finished deduction tree).

Hint. Define the number of connectives ¢(P) in a proposition P as follows.

(1) If P is a propositional symbol, then
c(P)=0.

160 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

(2) If P = —Q, then
o(=Q) = c(Q) + L.

(3) If P =@ x R, where x € {=,V, A}, then

c(@Qx*R)=c(Q) +c(R) + 1.

Given a sequent,
F—>A:P1,...,Pm—>Q1,...,Qn,

define the number of connectives, ¢(I' - A), in I' — A by
C(F%A> :C(P1>+"'+C(Pm)+C(Q1>+"'+C(Qn)'

Prove that the application of every rule decreases the number of connectives in the premise(s)
of the rule.
(2) Prove that for every sequent P,..., P, — Q1,...,Q, for every finished deduction

tree T constructed from Py, ..., B, — @1,...,Q, using the rules of G’, every truth assign-
ment v satisfies Py, ..., P, = Q1,...,Q, iff v satisfies every leaf of T. Equivalently, a truth
assignment v falsifies Py, ..., P, — @Q1,...,Q, iff v falsifies some leaf of T

Deduce from the above that a sequent is valid iff all leaves of every finished deduction tree
T are axioms. Furthermore, if a sequent is not valid, then for every finished deduction tree
T, for that sequent, every falsifying assignment for that sequent is a falsifying assignment of
some leaf of the tree, T.

(3) Programming Project:
Design an algorithm taking any sequent as input and constructing a finished deduction tree.
If the deduction tree is a proof tree, output this proof tree in some fashion (such a tree can
be quite big so you may have to find ways of “flattening” these trees). If the sequent is
falsifiable, stop when the algorithm encounters the first leaf that is not an axiom and output
the corresponding falsifying truth assignment.

I suggest using a depth-first expansion strategy for constructing a deduction tree. What
this means is that when building a deduction tree, the algorithm will proceed recursively as
follows. Given a nonfinished sequent

Al,...,Ap%Bl,...,Bq,

if A; is the leftmost nonatomic proposition if such proposition occurs on the left or if B; is
the leftmost nonatomic proposition if all the A;s are atomic, then

(1) The sequent is of the form
[AL, A — A,

with A; the leftmost nonatomic proposition. Then either

2.18. PROBLEMS 161

(a) A; = C;AD; or A; = —C;, in which case either we recursively construct a (finished)
deduction tree

D,
F, Cia Di: A—= A

to get the deduction tree
D,
I,C, D;y, A — A
IC;NnD;,A — A

or we recursively construct a (finished) deduction tree

Dy
P,A — OZ,A

to get the deduction tree
D,
F, A — Oi, A
I, ﬁCi, A— A

or

(b) A; =C; Vv D; or A; = C; = D;, in which case either we recursively construct two
(finished) deduction trees

Dy D,
F,Ci,A%A and F,DZ,A%A

to get the deduction tree

Dy D,
F,CZ',A—>A F,DZ,A%A
F,CZ\/DZ,A%A

or we recursively construct two (finished) deduction trees

D, D,
A —=C;,A and D;, ',/ A— A

to get the deduction tree
Dl DZ
F,A-)CZ',A D“F,A—>A
F, CZ = l)i7 A— A

162 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

(2) The nonfinished sequent is of the form

I — A,Bj,A7

with B, the leftmost nonatomic proposition. Then either

(a)

B; =C;V Djor B; =C; = Dj, or B =}, in which case either we recursively
construct a (finished) deduction tree

D,
I' = A,Cj,Dj, A
to get the deduction tree
D,
I' = A, Cj,Dj;, A
I' = AC; VD, A

or we recursively construct a (finished) deduction tree
Dy
C;,I' = D;,AJA
to get the deduction tree
Dy
C;,I' = D;,AJA
I' = A,C; = Dj;, A

or we recursively construct a (finished) deduction tree
Dy
C;,I' = A A
to get the deduction tree
Dy
C;,I' = A A
I' = A -Cj A

or

B; = C; N Dj, in which case we recursively construct two (finished) deduction
trees

Dl DZ
F%A,Oj,/\ and F—>A,Dj,A

to get the deduction tree

2.18. PROBLEMS 163

Dl D2
F—)A,Cj,A F—>A,DJ,A
F—)A,Cj/\Dj,A

If you prefer, you can apply a breadth-first expansion strategy for constructing a deduction
tree.

Problem 2.43. Let A and be B be any two sets of sets.

(1) Prove that
<UA> U <UB> =Jaun).

(2) Assume that A and B are nonempty. Prove that

(ﬂA)mQﬁB):(MAUB)

(3) Assume that A and B are nonempty. Prove that

Uins)c Q}Q (U)

and give a counterexample of the inclusion

(UA) N (UB) clJAann).

Hint. Reduce the above questions to the provability of certain formulae that you have already
proved in a previous assignment (you need not re-prove these formulae).

Problem 2.44. A set A is said to be transitive iff for all a € A and all z € a, then x € A,
or equivalently, for all a € A,
a€ A= aCA.

(1) Check that a set A is transitive iff

UAgA

A C 24,

iff
(2) Recall the definition of the von Neumann successor of a set A given by
At =AU {A}.

Prove that if A is a transitive set, then

) = A

164 CHAPTER 2. MATHEMATICAL REASONING AND LOGIC; A DEEPER VIEW

(3) Recall the von Neumann definition of the natural numbers. Check that for every
natural number m
méemtT and m Cm™.

Prove that every natural number is a transitive set.
Hint. Use induction.
(4) Prove that for any two von Neumann natural numbers m and n, if m*™ = n™, then

~—

3

m=n.
(5) Prove that the set, N, of natural numbers is a transitive set.
Hint. Use induction.

~—

Chapter 3

RAM Programs, Turing Machines,
and the Partial Computable Functions

In this chapter we address the fundamental question
What is a computable function?

Nowadays computers are so pervasive that such a question may seem trivial. Isn’t the
answer that a function is computable if we can write a program computing it!

This is basically the answer so what more can be said that will shed more light on the
question?

The first issue is that we should be more careful about the kind of functions that we
are considering. Are we restricting ourselves to total functions or are we allowing partial
functions that may not be defined for some of their inputs? It turns out that if we consider
functions computed by programs, then partial functions must be considered. In fact, we will
see that “deciding” whether a program terminates for all inputs is impossible. But what
does deciding mean?

To be mathematically precise requires a fair amount of work. One of the key technical
points is the ability to design a program U that takes other programs P as input, and then
executes P on any input x. In particular, U should be able to take U itself as input!

Of course a compiler does exactly the above task. But fully describing a compiler for
a “real” programming language such as JAVA, PYTHON, C++, etc. is a complicated and
lengthy task. So a simpler (still quite complicated) way to proceed is to develop a toy
programming language and a toy computation model (some kind of machine) capable of
executing programs written in our toy language. Then we show how programs in this toy
language can be coded so that they can be given as input to other programs. Having done
this we need to demonstrate that our language has universal computing power. This means
that we need to show that a “real” program, say written in JAVA, could be translated into
a possibly much longer program written in our toy language. This step is typically an act

165

166 CHAPTER 3. RAM PROGRAMS, TURING MACHINES, COMPUTABILITY

of faith, in the sense that the details that such a translation can be performed are usually
not provided.

A way to be precise regarding universal computing power is to define mathematically a
family of functions that should be regarded as “obviously computable,” and then to show that
the functions computed by the programs written either in our toy programming language
or in any modern progamming language are members of this mathematically defined family
of computable functions. This step is usually technically very involved, because one needs
to show that executing the instructions of a program can be mimicked by functions in our
family of computable functions. Conversely, we should prove that every computable function
in this family is indeed computable by a program written in our toy programming language
or in any modern progamming language. Then we will be have the assurance that we have
captured the notion of universal computing power.

Remarkably, Herbrand, Godel, and Kleene defined such a family of functions in 1934-
1935. This is a family of numerical functions f: N™ — N containing a subset of very simple
functions called base functions, and this family is the smallest family containing the base
functions closed under three operations:

1. Composition
2. Primitive recursion

3. Minimization.

Historically, the first two models of computation are the A-calculus of Church (1935)
and the Turing machine (1936) of Turing. Kleene proved that the A-definable functions are
exactly the (total) computable functions in the sense of Herbrand-Godel-Kleene in 1936, and
Turing proved that the functions computed by Turing machines are exactly the computable
functions in the sense of Herbrand-Godel-Kleene in 1937. Therefore, the A-calculus and
Turing machines have the same “computing power,” and both compute exactly the class of
computable functions in the sense of Herbrand-Godel-Kleene. In those days these results
were considered quite surprising because the formalism of the A-calculus has basically nothing
to do with the formalism of Turing machines.

Once again we should be more precise about the kinds of functions that we are dealing
with. Until Turing (1936), only numerical functions f: N — N were considered. In order to
compute numerical functions in the A-calculus, Church had to encode the natural numbers
as certain A-terms, which can be viewed as iterators.

Turing assumes that what he calls his a-machines (for automatic machines) make use of
the symbols 0 and 1 for the purpose of input and output, and if the machine stops, then
the output is a string of Os and 1s. Thus a Turing machine can be viewed as computing a
function f: ({0,1}*)™ — {0, 1}* on strings. By allowing a more general alphabet ¥, we see
that a Turing machine computes a function f: (¥*)™ — X* on strings over X.

167

At first glance it appears that Turing machines compute a larger class of functions, but
this is not so because there exist mutually invertible computable coding functions C': ¥* — N
and decoding functions D: N — ¥*. Using these coding and decodin