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A THEOREM ON REPEATING DECIMALS 

W. G. LEAVITT, University of Nebraska 

I t  is well known that a real number is rational if and only if its decimal ex- 
pansion is a repeating decimal. For example, 2/7 =.285714285714 . . . . Many 
students also know that if n/m is a rational number reduced to lowest terms 
(that is, n and m relatively prime), then the number of repeated digits (we call 
this the length of period) depends only on m. Thus all fractions with denominator 
7 have length of period 6. A sharp-eyed student may also notice that when the 
period (that is, the repeating digits) for 2/7 is split into its two half-periods 285 
and 714, then the sum 285+714=999 is a string of nines. A little experimenta- 
tion makes it appear likely that this is always true for a fraction with the 
denominator 7, as well as for fractions with denominators 11, 13, or 17. A 
natural conjecture is that all primes with even length of period (note that many 
primes, such as 3 and 31, have odd length of period) will have a similar property. 
This conjecture is, in fact, true but it is unfortunately not a criterion for prime- 
ness, since many composite numbers (such as 77) also have the property. The 
relevant theorem appears not to be well known, although i t  was discovered 
many years ago. (L. E. Dickson [see 1, p. 1631 attributes the result to E. Midy, 
Nantes, 1836). The proof of the theorem is simple and elegant, and since i t  also 
provides a nice example of the usefulness of the concept of the order of an ele- 
ment of a group, i t  deserves to be better known. 

In the following, we will develop from the beginning the theory of repeating 
decimals. This is to provide the necessary machinery for the proof of Midy's 
theorem, as well as for completeness. 

Write (n, m) for the G.C.D. of n and m. Assuming n/m is a fraction reduced 
to lowest terms is thus equivalent to supposing (n, m) = 1. (Note: we are inter- 
ested only in positive fractions, so we restrict ourselves to m > l  and n>O.) 
Without loss of generality, we may also assume (10, m) = 1, for if m is divisible 
by 5 or 2 we could multiply numerator and denominator of n/m by the appropri- 
ate power of 2 or 5 to obtain n/m = 10-hnl/ml (for some integer h h I), where we 
still have (nl, m') = 1, and m1 is not divisible by either 2 or 5. Since dividing by 
10h simply moves the decimal place, it is clear that the repeating digits of n/m 
are the same as those for nt/m'. 

Write n/m = c f hl/m where 0 < hl <m and c 1 0  is an integer. Since n = cmf h ~ ,  
i t  is clear that we still have (hl, m) = 1. Also, since c may be any integer, the 
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repeating digits we are after will be those of hl/m. Now we are interested only 
in the digits obtained upon division by m (not in the position of the decimal 
point). Thus when in the division process we bring down the first zero, we are 
actually dividing 10hl by m. Let a1 be the first digit in the quotient (0 6a1$9) 
and let hz be the next remainder, then 

Repeating the division process to obtain the next digit az and the next re- 
mainder ha, 

h3 = 10h2 - am.  

Thus in general for any t 1 2 ,  

Substituting for ht-1 from the preceding relation of (1) yields 

and in general for any s (where t> s 1 1), 

(2) ht = 10Vzt, - (10"1at-8 + 10"2at-,+1 + . + loat-2 + at-dm. 

Note that  since (m, 10hl) = 1 i t  follows from (1) that  m and h2 have no com- 
mon factors, so (m, 10hz) = 1. I t  is thus clear (inductively) that  for all the re- 
mainders hi we have (m, 10hi) = 1. But the total number of integers less than 
m and prime to m is finite. (Remark that  this number is the so-called "Euler 
4-function" 4(m)). Accordingly there must exist integers k and k+r such that  
hk = hk+,. Then from (2) 

so that  m divides (10'-1)ha. But  (m, he) = 1, and so m divides 10,- 1 (write 
this m(lOr-1). Thus 10r=l  (mod m), and we assume that  r is the least such 
integer. Another way of saying this is: r is the order of 10 in the multiplicative 
group (modulo m) of all integers <m and relatively prime to m. As we mentioned 
above, the order of this group is 4(m), so by  the Lagrange theorem, rI+(m). 

Writing, as we have indicated, the decimal expansion of hl/m as .alaz . . . , 
we can prove: 

THEOREM 1. If r is the order of 10 modulo m, then a,+i = ai for all i 2 1. Con- 
versely, if there exist positive integers k and u such that a,+i=ai for all i h  k, 
then r 1 u. 

Proof. From (2) we have h,+i=lOrhi (mod m), and since 1 O r = 1  (mod m), 
i t  follows that  h,+;=hi (mod m). But  all remainders hi<m, so this implies 
h,+i = hi. Then from (1) 
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whence 

Conversely, suppose au+i = ai for all i 2 k. If we take w large enough so that 
wr 5 k, then this says that au*,+i =aw,+; for all i 5 1, so by (3), au+i =a{. 
Now let d = (u, r) and take advantage of the fact that there exist integers s and 
t such that su+tr=d. We know that either s or t must be positive, so suppose 
s>O (same proof if t>O). Then a,u+i=ai and by using (3), aaU+t,+i=ai. Thus 
ad+i=ai. Once again, using (I), i t  is clear that 

(4) 10(h&i - hi) = hd+i+l -  hi+^, 

and lO(hd+i+l-hi+l) =hd+i+z-hi+z. Multiplying (4) by 10 and adding, yields 

102(h&i - hi) = hd+i+2 - hi+% 

Thus (inductively), for any q2 1, 

But since all hi<m, the right hand side (in absolute value) is less than m. 
If we choose q large enough so that 10q>m, this relation could be true only if 
hd+i=hi. As in the discussion of above, this implies 10+1 (mod m). But r is 
the order of 10 modulo m and so from group theory we know that r 1 d. Since 
d =  (u, r), i t  follows that r = d  and so rlu. 

From this theorem it  is clear that the digits repeat if and only if we moved 
ahead r digits (or some multiple of r digits). That is to say, all fractions hl/m 
have periods of length precisely r, where r is the order of 10 modulo m. 

Note that when m is prime, +(m) = m  - 1. Thus when m is prime, r 1 m- 1. 
We now discuss the case of even period r. 

LEMMA 1. If there exists a positive integer v such that lov= - 1 (mod m), then 
r is even, where r is the order of 10 modulo m. 

Proof. Since 102v= 1 (mod m) and r is the period of 10 modulo m, we know 
that r 1 2v. If r were odd then r 1 v and thus loV= 1 (mod m). But from lov= - 1 
(mod m) we would then get 0 =2 (mod m), which is impossible (since we are 
assuming (m, 10) = 1). 

LEMMA 2. If m is prime and r is even, then - 1 (mod m). 

Proof. Writer =2w, then since lor= 1 (mod m) we have (low- 1)(1OW+ 1) = O  
(mod m). Since m is prime i t  must divide one or the other of the terms on the 
left-hand side. But r is the order of 10 and so 1 O W + 1  (mod m). Thus m can 
only divide the second of the two factors, that is low= -1 (mod m). 

We will continue to assume that r=2w and that the period is a1 . . 
a,aw+l . . . azW. Let c and d be the two half-periods, so that c=al . . . a, 
and d = ~ , + ~  . . . atw (or writing in terms of powers of 10, c=al10w-1+az10w-2 
+ . . +aw and d=aw+llOw-l+aw+zlOw~z+ . +azw). 
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We can now prove Midy's theorem in a very simple way. 

Proof. From (2) we have hw+l= 1OWhl-cm, &+I= 1OWhw+l-dm. But r =2w is 
the period, so h2,+1= hl and thus 

But by hypothesis low - 1 = - 2 (mod m), so 1W - 1 and m are relatively prime. 
From (5) we therefore have that ml hl+hw+l. But each h+<m so hl+hw+1<2m. 
I t  can therefore be divisible by m only if i t  equals m, that is, hl+k+l=m. 
Hence c+d = low- 1. 

Notice that, once again, this theorem depends only on the denominator m 
of the fraction. Let us say that an integer m which satisfies Theorem 2 has the 
nines-property. From Lemma 2, i t  immediately follows that: 

COROLLARY 1. Every prime with even period has the nines-property. 

However, i t  is also true, as the following corollary shows, that there are 
many composite numbers with the nines-property. 

COROLLARY 2. If ml (lop+ 1) where p is prime, then m has the nines-property. 

Proof. By hypothesis, l o p =  - 1 (mod m) and so 102p=l (mod m). Since r 
is the order of 10 modulo m, i t  follows that rl2p. If r l2 then m199. But we 
always have l o p =  1 (mod 3) and so l o p #  - 1 (mod 3). Since l o p =  - 1 (mod m), 
i t  follows that m and 3 are relatively prime. Thus in this case we could only 
have m =  11, and i t  is easily verified directly that m = l l  satisfies Theorem 2. 

The remaining cases are r=p ,  which (as we saw in the proof of Lemma 1) 
contradicts lop= - 1 (mod m) or r = 2p. In the latter case, Theorem 2 is evi- 
dently satisfied. 

From this corollary, i t  follows that there are many composite nines-numbers. 
For example 103+1 = 7.11.13 so that in addition to primes 7, 11, and 13 we 
also have composites 77, 91, and 143 (as well as 1001 itself) as nines-numbers. 

COROLLARY 3. If m is prime and 10(m-1)/2 = - 1 (mod m) then m is a nines- 
number. 

Proof. By Lemma 1, r is even and so by Corollary 1, m is a nines-number. 
This corollary, together with the theory of quadratic residues, shows that 

any prime of form 40k + 7, + 11, k 17, or + 19 is a nines-number. (For a dis- 
cussion of quadratic residues see, for example, [z, Chapter 51. The condition 
10(m-l)/2= - 1 (mod m) is the so-called Euler criterion that 10 should be a quad- 
ratic nonresidue of the prime m [2, p. 461. A determination of the form given 
for the primes for which 10 is a quadratic non-residue is found, as an example, 
in [2, p. 741.) 

On the other hand, there are many primes m with odd periods. If, for exam- 
ple, (m- 1)/2 is odd and 10(m-1)/2=1 (mod m), then clearly r is odd, since i t  
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must divide (m-1)/2. Again from the theory of quadratic residues, this class 
will contain all primes of form 40ki-3, -13, -9, or - 1. 

Note that Corollary 3 does not give all prime nines-numbers. One such 
prime which escapes Corollary 3 is 13. 

Another familiar class of numbers, the Fermat numbers m=22n+1, are 
covered by the following: 

COROLLARY 4. Every prime Fermat number > 5 is a nines-number. 

Proof. This can be established directly, or one can use a simple induction 
to show that when n 2 2, 22n= 16 (mod 40). The result is thus a special case of 
the remark following Corollary 3. This class is, of course, somewhat restricted 
since the only Fermat primes known which are > 5 are given by n = 2, 3, or 4. 

This paper was presented a t  the May, 1965 meeting of the Nebraska Section of the Mathemati- 
cal Association of America. 
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